EMPIRICALLY INVESTIGATING ENERGY IMPACTS
OF
SOFTWARE ENGINEERING DECISIONS

by

Cagri Sahin

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Science

Summer 2017

(© 2017 Cagri Sahin
All Rights Reserved

EMPIRICALLY INVESTIGATING ENERGY IMPACTS
OF
SOFTWARE ENGINEERING DECISIONS

by

Cagri Sahin

Approved:

Kathleen F. McCoy, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:

Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:

Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

Signed:

Signed:

Signed:

Signed:

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

James Clause, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Lori Pollock, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

John Cavazos, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Yu David Liu, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

I would like to express my immense gratitude to my advisor, Dr. James Clause,
for his invaluable guidance, constant support, enthusiasm, and encouragement through-
out my PhD journey. He has always been kind and helpful to me, and willing to share
his skills, knowledge, and expertise.

I would like to thank my co-advisor, Dr. Lori Pollock, for giving so generously of
her time, and providing invaluable suggestions and advice that have greatly improved
not only the quality of my research but also my scientific thinking.

I would also like to thank my committee members, Dr. John Cavazos and Dr.
Yu David Liu, for all of their time, advice, and constructive comments.

I want to thank all of my friends in Delaware. We have shared so many memories
together and I will always remember them with a big smile.

Last but not the least, I would like to thank my family for their endless love,

support, understanding, and patience. I am grateful to have them in my life.

v

TABLE OF CONTENTS

LIST OF TABLES oo ..
LIST OF FIGURES o ..
ABSTRACT e

Chapter
1 INTRODUCTION
2 BACKGROUND AND STATE OF ART
2.1 System-Level Strategies for Energy Efficiency
2.2 Programming Language Level Strategies for Energy Efficiency
2.3 Investigating Software Level Impacts
3 ENERGY MEASUREMENT
3.1 Power & Energy
3.2 Energy Measurement Approaches
3.3 Energy Measurement Infrastructure
3.3.1 Embedded System
3.3.2 Desktop System
3.3.3 Mobile System

4 EMPIRICAL STUDIES ON SOFTWARE ENGINEERING
DECISIONS e

4.1 General Methodology oo
4.2 Potential Threats to Validity
4.3 Studies of Design Patterns

4.3.1 Experiment-Specific Methodology

4.3.1.1 Experimental Variables

Ne}

10
11
13
15
15
16
17
17

17

4.4

4.5

4.6

4.3.2
4.3.3

4.3.1.2
4.3.1.3

Studied Design Patterns .
Experimental Procedure .

Data Analysis and Discussion . . .
Summary

Studies of Code Refactorings

4.4.1

Experiment-Specific Methodology .

4.4.1.1
4.4.1.2
4.4.1.3
4.4.14
4.4.1.5

Experimental Variables .
Considered Applications .
Studied Code Refactorings
Considered Platforms . .
Experimental Procedure .

4.4.2 Data Analysis and Discussion . . .
4.4.3 Summary

Studies of Code Obfuscations

4.5.1

Experiment-Specific Methodology .

4.5.1.1
4.5.1.2
4.5.1.3
4.5.1.4
4.5.1.5
4.5.1.6

Experimental Variables .
Considered Applications .

Considered Usage Scenarios

Studied Code Obfuscations

Additional Energy Measurement Platforms (EMPs) .

Experimental Procedure .

4.5.2 Data Analysis and Discussion . . .
4.5.3 Summary

Studies of Performance Tips

4.6.1

Experiment-Specific Methodology .

4.6.1.1
4.6.1.2
4.6.1.3
4.6.14

Experimental Variables .
Considered Applications .

Considered Usage Scenarios

Studied Performance Tips

vi

19
19

21
26

26

27

27
29
30
32
32

37
44

45

46

46
48
50
ol
53
54

o8
74

74
5
75
76

7
7

4.6.1.5 Experimental Procedure 80

4.6.2 Data Analysis and Discussion 83
4.6.3 SUMMATY o e 88
4.7 Related Worko 89
4.7.1 Design Patternso oo 89
4.7.2 Code Refactorings 0L 90
4.7.3 Performance Tips 91

5 PREDICTION OF ENERGY TESTING REQUIREMENTS . . . 92

5.1 Backgroundo 93
5.2 Motivating Scenario 95
5.3 Approach: Energy Retest Umpire (ERU) 96
5.3.1 Example Scenarios 98
5.3.2 Phase 1: Calculate Impact Set 100
5.3.3 Phase 2: Determine Energy Tests 100

5.4 Implementation 102
5.4.1 Energy Greedy APIs 102
5.4.2 Change Impact Analysis 102
5.4.3 Identifying the Callees of the Source Code Units 105

5.5 Evaluationo 105
5.5.1 Subject Applications 106
5.5.2 Experimental Procedure 108
5.5.3 Data Analysis and Discussion 109
5.5.4 Potential Threats to Validity 116

5.6 Related Work 117
D7 Summary 118
6 CONCLUSION s 120
6.1 Summary of Contributions 120
6.2 Future Work 122
BIBLIOGRAPHY 124

Vil

Appendix

PERMISSIONS

Viil

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

5.1

LIST OF TABLES

Studied design patterns.

Energy usage measurement obtained by running the before and after

versions of the design patterns.
Java applications. o

Number of times each refactoring causes a statistically significant
difference in energy usage.

Considered applications.
Considered usage scenarios.
Studied obfuscations.o
Recorded execution durations.

For an obfuscation configuration, is there a statistically significant
difference among the obfuscation tools (% change ~ tool)?

For an obfuscation tool, is there a statistically significant difference
among the obfuscation configurations (% change ~ configuration)?

Battery life when using an unobfuscated version.
Considered applications.
Considered usage scenarios.
Number of covered changes.
Battery life when using a base version.

Dependencies.

1X

18

23

30

38

49

50

23

26

67

68

70

76

78

82

5.2 Subject applications. 107

5.3 Proposed changes. Lo 110

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11a

LIST OF FIGURES

XILINX Atlys Spartan-6 FPGA
Leap Energy Measurement Platform
Design of the EMPs for the Nexus 4/Galaxy S5.

General methodology for investigating the energy impacts of software
engineering decisions.o

High-Level Experimental Procedure of Design Patterns.

Example code showing (a) before and (b) after applying the proxy
design pattern and (c) the application driver code.

Example of design artifacts illustrating before and after applying the
Proxy design pattern. (a) and (b) show the object diagram and
sequence diagram of the code before applying the proxy pattern. (c)
and (d) show the object diagram and sequence diagram of the code
after applying the Proxy pattern.
High-Level Experimental Procedure of Code Refactorings.
Applying the Inline Method refactoring to addUnique.
Impacts on energy usage of applying refactorings.
Impacts on execution time of applying refactorings.
Design of the EMPs for the Nexus 3/Galaxy SII
High-Level Experimental Procedure of Code Obfuscations.
Vargha and Delaney’s Alz—probability that an unobfuscated version

consumes more energy than an obfuscated version when run on the
Nexus & platform. oo

x1

10

12

13

16

19

20

25

32

34

40

43

54

%)

60

4.11b

4.11c

4.11d

4.12a

4.12b

4.12¢

4.12d

4.13a

4.13b

4.13c

4.13d

4.14

Vargha and Delaney’s Au—probability that an unobfuscated version
consumes more energy than an obfuscated version when run on the
Nexus 4 platform.o

Vargha and Delaney’s Alg—probability that an unobfuscated version
consumes more energy than an obfuscated version when run on the
Galaxy S 1I platform.

Vargha and Delaney’s fllg—probability that an unobfuscated version
consumes more energy than an obfuscated version when run on the
Galaxy S5 platform.

Percent change in mean energy usage when using an obfuscated
version instead of an unobfuscated version when run on the Nezus 3
platform.

Percent change in mean energy usage when using an obfuscated
version instead of an unobfuscated version when run on the Nezus 4
platform.

Percent change in mean energy usage when using an obfuscated
version instead of an unobfuscated version when run on the

Galaxy S 1I platform.
Percent change in mean energy usage when using an obfuscated
version instead of an unobfuscated version when run on the

Galazy S5 platform. o

Change in mean battery life when using an obfuscated version instead
of an unobfuscated version when run on the Nezxus 3 platform. . . .

Change in mean battery life when using an obfuscated version instead
of an unobfuscated version when run on the Nexus 4 platform. . . .

Change in mean battery life when using an obfuscated version instead
of an unobfuscated version when run on the Galaxy S II platform. .

Change in mean battery life when using an obfuscated version instead
of an unobfuscated version when run on the Galazy S5 platform.

High-Level Experimental Procedure of Performance Tips.

xii

60

61

61

64

64

65

65

71

71

72

72

80

4.15

4.16

5.1

5.2a

5.2b

5.2¢

5.3

5.4

5.5

Vargha and Delaney’s Au—probability that a base version consumes
more energy than the modified version. 85

Change in mean battery life when using a modified version instead of

a base version. 88
High-level overview of Energy Retest Umpire Technique. 96
No energy tests scenario. 99
Partial or all energy tests scenario. 99
All energy tests scenario. 99

Energy Testing Feedback for Case Study 1: Method Level with
Release History. 113

Energy Testing Feedback for Case Study 2: File Level with Release
History. 114

Energy Testing Feedback for Case Study 3: File Level with Commit
History. 115

Xlil

ABSTRACT

Software energy efficiency has become an important objective in a broad range
of environments where reducing energy consumption is a high-priority goal (e.g., em-
bedded systems in devices, mobile phones and tablets, laptops, and large data centers).
Historically, software engineers were unconcerned with energy efficiency; instead they
focused on quality attributes such as correctness, performance, reliability, and main-
tainability. Although the task of improving energy efficiency was left for compiler
writers, operating system designers, and hardware engineers, software developers can
further reduce the energy usage of the applications that they write beyond what can
be achieved at lower system levels. Unfortunately, lack of information about how soft-
ware engineering decisions impact energy consumption of applications and incorrect
assumptions about the underlying causes of energy impacts prevent software develop-
ers fulfilling their role in reducing energy consumption.

In addition to reducing the energy consumption of an application, it is also
important to maintain the application’s energy efficiency. Therefore, developers need
to test their applications for energy consumption and energy issues while evolving them.
However, the high costs of energy testing can adversely impact the planning process
of application evolution since developers must anticipate performing energy testing in
response to code changes.

The research in this dissertation aims to enable and support software engineers
in developing and maintaining energy-efficient applications in two ways. First, we
have conducted empirical studies that examine the software engineering decisions to
improve developers’ understanding of how the decisions they make potentially impact
the energy consumption of their applications. Second, we have developed a technique

that predicts energy testing requirements of proposed code changes to help developers

Xiv

in making informed decisions and creating an effective timeline during the planning

process of application evolution.

XV

Chapter 1

INTRODUCTION

Computers are now used in a broad range of environments including embedded
systems in devices; mobile phones and tablets; laptops and desktops used for everyday
computing tasks; and large data centers for enterprise and cloud computing.

As the use of computers has expanded in these areas, so too has concern about
the amount of energy that they consume. For embedded systems, where recharging
can be difficult or impossible, and laptops, mobile phones and tablets, where battery
life is an important selling point, extending the lifetime of a system has become a
major design goal. Any computing platform in which heat or fan noise may be a factor
also demands attention to energy usage. Data centers are limited in scalability as
they struggle with soaring energy costs as many large companies rely on fast, reliable,
and round-the-clock computing services. On large-scale computing clusters, like data
centers, even a small reduction in energy consumption can have large effects. In short,
across nearly all computing contexts, reducing energy consumption has become a major
concern.

Although the computing environments described above are diverse, they share
a common limitation: They would be more energy-efficient if the software they execute
was designed and implemented with regard for energy consumption. Historically, soft-
ware engineers have focused on quality attributes such as the correctness, performance,
reliability, and maintainability of the software they create while concerns about energy
were left for compiler writers, operating system designers, and hardware engineers.
While this strategy has been successful—indeed, researchers have made advances in
reducing energy consumption by designing computer architectures that are more en-

ergy efficient (e.g., [30, 33, 63, 55, 96, 112]), developing compiler optimizations focused

on energy usage (e.g., [49, 51, 50, 53, 60, 64, 99, 106]), creating operating systems that
help manage energy usage (e.g., [37, 93, 94, 95, 119]), and designing power-aware hard-
ware and batteries (e.g., [3, 23, 34])—even greater results can be achieved by enabling,
encouraging, and supporting the participation of software developers in the process of
reducing software energy usage.

A recent broad-based study revealed that software engineers have begun to care
and think about energy consumption of their applications [76]. However, there are sev-
eral obstacles to software engineers fulfilling their role in reducing energy consumption.
First, software engineers do not understand how the choices and tradeoffs they make on
a daily basis impact the energy consumption of their applications. Unlike for common
optimization targets such as execution time and memory usage, where software engi-
neers feel they have at least some understanding of the impacts of their decisions, they
simply have no idea what the energy impact of a decision will be. Second, they often
have incorrect assumptions about the underlying causes of energy impacts and how
other nonfunctional aspects of their applications relate to energy usage. For example,
one of the common assumptions is that energy consumption is directly associated with
the CPU utilization. However, only measuring reduction on CPU utilization cannot
be translated into actual energy savings. These obstacles can be overcomed with a
better understanding of the implications of software engineering decisions with regard
to energy consumption, and software engineers can play an important role in reducing
the energy usage of the applications they write.

In addition to reducing the energy consumption of an application, it is also
important to maintain its energy efficiency. Software engineers currently plan code
changes to evolve their applications without knowing whether those changes impact
energy consumption of the applications. This lack of information introduces the need
to test applications for energy consumption and energy issues in response to code
changes. Unfortunately, the high costs of energy testing can significantly increase the
total testing cost and adversely impact the planning process of application evolution.

For example, developers might be limited in the number of changes they can include

in a release because they must conservatively plan to conduct energy testing after each
change. Predicting the amount of energy testing required for proposed changes can help
software engineers to develop a realistic and effective application evolution timeline.
Furthermore, they can make decisions on code changes such as ordering, postponing,
or canceling them.

The overall goal of my research is to enable and support software engineers in
developing and maintaining energy-efficient applications. My dissertation work ad-
dresses this goal first by gathering knowledge about how software engineering decisions
impact the overall energy usage of an application and second by developing a technique
for supporting the software engineering process.

The main contributions of this dissertation include (1) guidelines to design and
conduct high-quality empirical studies on software engineering decisions with energy
consideration; (2) data generated by four empirical studies of major software engi-
neering decisions including design patterns, code refactorings, code obfuscations, and
performance tips; (3) analyses of the generated data to determine how software en-
gineering decisions impact energy usage; (4) a technique to predict energy testing
requirements of proposed code changes; and (5) a prototype implementation of the
technique for Android applications.

The following chapters are organized as follows. Chapter 2 provides background
information on related work. Chapter 3 introduces energy measurement approaches
and energy measurement infrastructures used in the empirical studies. Chapter 4 de-
scribes empirical studies of software engineering decisions. Chapter 5 describes an
approach to predict energy testing requirements of proposed code changes with a pro-
totype implementation of the approach. Finally, Chapter 6 summarizes contributions

of the dissertation and discusses the potential future work.

Chapter 2

BACKGROUND AND STATE OF ART

In today’s computing enviroments, energy consumption is an important topic.
There have been successful strategies at the system and programming language levels
for improving energy efficiency of software. In addition to these strategies, researchers
have begun to investigate how design and implementation decisions made by software
developers impact software energy consumption to combat the lack of knowledge avail-
able to developers and to optimize energy usage at the software level. This chapter
discusses related work in these categories. Note that, the most closely related area of
work to this dissertation is provided within Chapters 4 and 5 to simplify reader’s task

of comparing with this dissertation.

2.1 System-Level Strategies for Energy Efficiency

There is a significant amount of research on optimizing energy usage at the
system-level including compiler, operating system, and hardware levels.

At the compiler level, work has focused on optimizing code to use fewer in-
structions or a more efficient ordering of instructions; controlling hibernation, dynamic
frequency and voltage scaling; and performing remote task mapping (e.g., [49, 50, 53,
60, 64, 99, 106, 38, 112, 29, 78]).

At the operating system level, work has focused on the goals of allowing an
operating system to manage energy in the same manner as other system resources
(e.g., [119]) and optimizing the balance between power and performance via the auto-
matic selection of power policies during application execution (e.g., [95, 37, 94]).

At the hardware level, there has been significant work on many topics includ-

ing reducing excessive CPU cycles (e.g., [111]), capping RAM energy consumption

(e.g., [28]), and the addition of special cores to support common virtual machine (VM)
operations (e.g., [19]). There is also significant work in the area of high perfor-
mance computing: for example, assigning threads to a subset of the processors to
enable power-gated sleep mode for unused processors while not degrading performance

(e.g., [46, 80, 86, 33, 63, 55, 96]).

2.2 Programming Language Level Strategies for Energy Efficiency

There are several approaches to helping developers write more energy efficient
software at the programming language-level. Such work includes new type systems
(e.g., [25]), new programming models (e.g., [12, 73, 110, 75]), mechanisms for expos-
ing energy-expensive architectural details (e.g., [72, 74] and manipulating quality-of-

service [10] and the precision of the results of the computation at runtime [36, 105].

2.3 Investigating Software Level Impacts

Recent studies at the source code level (i.e., software level) have focused on
identifying the underlying causes of energy consumption by investigating the impact of
various software development decisions (i.e., the impact of developers’ decisions). These
investigations include empirical studies on the impacts of applying a method or pattern,
and choosing among available components. For example, researchers, including us, have
investigated the impacts of design patterns [71, 17, 88], code refactorings [26, 98, 100,
89], and performance tips [67, 114, 84] to support developers’ decision making with
regard to energy usage. We will discuss them in Section 4.7.

Other studies at the software level include investigating the impacts of sorting
algorithms [16], web servers [77], advertisements [42], API usage [70], and lock-free
data structures [54] within a single application in addition to investigating trends in
an application’s energy consumption among versions [47, 91| and among separate im-
plementations of the same specification [4, 9]. The remainder of this section discusses

these studies in chronological order.

Sorting algorithms are used to reorder elements of a list in a certain order.
Efficient sorting is important for optimizing other algorithms which require sorted lists
as input. Bunse et al. [16] compared energy usage impacts of choosing among different
sorting algorithms executed on an embedded system. They found that the algorithms
indeed use different amounts of energy. For instance, among insertion sort, bubble sort,
heap sort, merge sort, quicksort, selection sort, shake sort, and shellsort, they found
insertion sort to be the most energy efficient. Additionally, they demonstrated that
there is no correlation between time complexity and energy usage of sorting algorithms.
For instance, a sorting algorithm may consume less energy while it has a worse time
complexity.

In multithreaded programs, accessing shared data should be synchronized cor-
rectly to ensure data consistency and integrity. The most common technique for main-
taining data consistency is to use locks such as mutual execution and coarse-grained
locks. Alternatively, lock-free data structures can be used although it is more difficult
to implement for developers. Hunt et al. [54] analyzed performance and energy effi-
ciency of lock-free and locking data structures. Based on their study, lock-free data
structures improve not only performance but also energy efficiency.

Comparing the energy consumption impacts of selecting between different soft-
ware systems that achieve the same purpose can help both developers and users make
informed decisions. Amsel et al. [4] measured CPU energy usage of several popular
Internet browsers including Internet Explorer, Mozilla Firefox, and Google Chrome.
Their results showed that Internet Explorer was most energy efficient.

Stereo matching is an open problem and actively researched topic in computer
vision. Arunagiri et al. [9] performed a comparative study to solve the global stereo
matching problem in terms of performance and energy consumption. Their results
suggest that stereo matching with the graph cut algorithm is a lot better than stereo
matching with simulated annealing for both terms they consider.

Developers periodically evolve their software and provide new versions of the

software. Hindle [47] investigated the effect of software change on power consumption

by using the Firefox web browser and the Azureus/Vuze BitTorrent client applications.
He compared the power consumption of different Firefox branches and Azureus/Vuze
revisions and tried relate object-oriented metrics with power consumption. The main
findings of his work are that power consumption varies among different versions of
the same application and there is no strong correlation between static object-oriented
metrics and power consumption. Similarly, Pathak et al. [91] showed that two versions
of the same app might have significantly different energy consumption behavior. They
worked on popular smartphone apps to examine where the energy is spent inside the
apps.

The impacts of choosing different web servers (Mongrel, Puma, Thin, and WE-
Brick) on the energy consumption of a web application were analyzed by Manotas
et al. [77]. Their experimental results indicate that a web application’s energy con-
sumption depends on the web server used to handle its requests. Furthermore, energy
efficiency of the web servers changes based on the executed web application’s features.

Application program interfaces (APIs) help developers to build applications by
providing routines, object classes, data structures, variables, etc. Linares-Vasquez et
al. [70] investigated whether some API method calls in the source code of an application
may cause high energy consumption than others and influence energy consumption in
the application. They analyzed energy consumption of 55 Android applications and
classified 131 out of 807 Android API methods as energy greedy. Based on their
findings, most of the energy greedy API methods are related to GUI and image ma-
nipulation, and database.

In summary, these studies provide evidence that software engineers can play
an effective role in reducing energy usage through their design and implementation

decisions.

Chapter 3
ENERGY MEASUREMENT

This chapter begins with background an electrical power and energy definitions.
It then describes the different energy measurement approaches for software and in-
troduces the energy measurement infrastructures we built and used in our empirical

studies.

3.1 Power & Energy

In this section, we provide definitions of electrical power and energy, and their
formulas, as background.

Power: Power is the rate at which energy is transmitted by an electric circuit.
Thus, power is the amount of energy consumed per unit time. It is measured in watts
and real power consumption of an electrical device is calculated by multiplying electric

potential(voltage) difference by electric current as shown in the formula:
P=V=xI (3.1)

where
(i) P is Power, measured in watts
(ii) V is Voltage, measured in volts
(iii) I is Current, measured in amperes
Energy: The energy consumed by an electrical device is the product of power

and time. Energy is measured in units called joules which is equivalent to watt-seconds.

W="PxT (3.2)

where

(i) W is Energy, measured in joules
(ii) P is Power, measured in watts
(iii) T is Time, measured in seconds
Thus, we need to measure power and time to calculate energy consumption of

software during its execution.

3.2 Energy Measurement Approaches

The ability to measure the energy usage of a unit of software is a necessary
prerequisite for optimizing its energy usage. Although measuring energy consumption
is conceptually simple, this is an active research area. Work in the area of energy usage
measurement has been conducted at various levels.

Hardware instrumentation-based approaches (e.g., [109, 117, 48]) use physical
instrumentation (i.e., soldering wires to power leads) to measure the actual energy
usage of a system. Such approaches have the benefit of being accurate since they
measure actual energy usage; however, they are also expensive and difficult to use
since they require specialized hardware.

Simulation-based approaches (e.g., [43, 15, 83] use a cycle-accurate simulator
to replicate the actions of a processor at the architecture level and estimate energy
consumption of each executed cycle. Like hardware instrumentation-based approaches,
simulation-based approaches can be accurate, but they are also difficult to use.

Finally, estimation-based approaches (e.g., [113, 107, 108, 44, 32, 87, 5, 47| build
models of energy-influencing features and use such models to estimate energy usage.
For example, Hao et al. [44] and Seo et al. [107, 108] construct energy models of Java
bytecode and then use the models to estimate the energy usage of a given method
or execution path. Estimation-based approaches are frequently less accurate than
hardware instrumentation-based or simulation-based approaches, but they have the

benefits of being easier to use and more widely applicable.

3.3 Energy Measurement Infrastructure

In our empirical studies, we used hardware instrumentation-based approaches
because of their higher accuracy. To measure energy consumption of software, we
currently have three different hardware systems. Each of our hardware systems is
designed for a specific computing environment that includes embedded, desktop, and
mobile systems. These systems were used in empirical studies that we conducted
based on their availability and compatibility with the considered software engineering
decision. For instance, we only had an embedded system during the design pattern
study. While our embedded system can measure energy consumption of a small piece
of code, our desktop system can measure energy consumption of real applications such
as applications we used in the refactoring study. Similarly, our mobile system was
used when we conducted an empirical study that investigated energy usage of mobile

applications.

3.3.1 Embedded System

XILINX
UNIVERSITY
PROGRAM

Figure 3.1: XILINX Atlys Spartan-6 FPGA

To measure the amount of energy consumed by executing an application on
the embedded system, we developed a Field-Programmable Gate Array (FPGA)-based
platform. Our FPGA platform uses the XILINX Atlys Spartan-6 FPGA development

10

board as an analogue for a standard desktop computer. We chose this board because
it is a complete, single-board computer system with a collection of high-performance
on-board peripherals including Gbit ethernet, HDMI video, DDR2 memory, audio and
USB ports—essentially everything we need to mimic a conventional desktop computer.
Moreover, it includes multiple, integrated, real time, power monitors, and the sampling
rate of the Spartan-6’s power monitors is &~ 1ms. In our current configuration of the
Spartan-6 board, the 1.2V supply primarily powers the CPU and the Ethernet core,
which was disabled in our experiments, the 1.8V supply primarily powers the DDR2
memory, and the 3.3 V supply powers the FPGA 1/0, video (HDMI), USB ports, and
audio. Note that the Spartan-6 has an additional 2.5 V that we disabled so it does
not contribute to overall power consumption. Having multiple monitors allows for
easily monitoring the power consumption of individual components, and the fact that
they are integrated with the system means that they bypass the current smoothing
infrastructure, which allows for more accurate power consumption measurements, and
they do not impose any overhead on executing code. In addition, because the Spartan-
6 is an embedded system, there is no operating system or other processes that can
influence the energy usage of the system (i.e., only the code that we are interested in

consumes the energy).

3.3.2 Desktop System

To measure the amount of energy consumed by executing an application on
a desktop system, we developed the Low Power Energy Aware Processing (LEAP)
platform. Our LEAP platform uses an x86 platform based on an Intel Atom mother-
board (D945GCLF2) [109]. It is currently configured with 1 GB of DDR2 memory, a
320 GB 7200 RPM SATA disk drive (WD3200 BEKT), and runs XUbuntu 12.04. Each
component in the LEAP system (e.g., CPU, disk drives, memory, etc.) is connected
to an analog-to-digital data acquisition (DAQ) card (National Instruments USB-6215)
that continually samples the amount of power consumed by the component at a rate

of 10kHz (= 10000 samples per second). The LEAP platform also provides running

11

applications with the ability to trigger a synchronization signal. This allows for syn-

chronizing the power samples with the portions of the execution that are of interest.

Figure 3.2: Leap Energy Measurement Platform

Note that while the original LEAP specification calls for using the same com-
puter to both run an application of interest and collect power samples, we have mod-
ified the design to use dedicated hardware for each of these roles. Using separate
machines prevents the introduction of any unwanted measurement overheads. The
only remaining source of unwanted overhead is the collection of synchronization in-
formation. Because power samples are collected by hardware instrumentation, it is
necessary to synchronize them with the application execution to identify, in terms of
the application, when a specific power sample was taken. It is possible to account for
costs of collecting synchronization information by profiling the energy cost of record-
ing such information and subtracting it from the reported energy numbers. However,
because we are concerned with energy consumption relative to a base line rather than
absolute numbers and because the energy cost of recording synchronization information

is essentially constant, we have removed this step.

12

3.3.3 Mobile System

To measure the amount of energy consumed by executing an application on a
mobile system, we developed two custom-built Energy Measurement Platforms (EMPs)
with a sampling rate of around 1000 Hz. Each EMP is based on a commercial Android
smart-phone platform: the first EMP is based on a Nexus 4 with 8 GB of storage
running Android version 4.3 (Jelly Bean), and the second EMP is based on a Samsung
Galaxy S5 with 16 GB of storage running Android version 4.4 (Kit Kat). Figure 3.3
shows a picture of the Galaxy S5-based EMP that we built. The Nexus 4-based EMP
is identical except that a Nexus 4 phone is used in place of the Galaxy Sb5.

Figure 3.3: Design of the EMPs for the Nexus 4/Galaxy S5.

We chose to use these specific phone models because their hardware specifica-
tions are good representatives of the current and penultimate generations of Android
mobile phones. They also have contrasting features that allow us to assess the impacts
of the performance tips in various phone environments. For example, the Nexus 4
uses a Qualcomm Snapdragon S4 Pro system on chip (SoC) with a 1.5 GHz quad-core
Krait central processing unit (CPU) and an Adreno 320 GPU while the Galaxy S5 uses

13

an Exynos 5 Octa 5422 SoC with two CPUs, a 1.9 GHz quad-core Cortex-A15 and a
1.3 GHz quad-core Cortex-A7, and an ARM Mali T628MP6 GPU.

Instead of using the phone’s battery, the EMPs use a 30V, 5A DC power
supply (KORAD KA3005D). Using an external power source ensures that the phone’s
battery monitor observes a constant charge level and allows us to compare results
across executions without having to worry about variations in the physical battery’s
performance, age, or temperature, or the phone’s power-saving infrastructure.

To sample the voltage and current draw of the phone, EMPs use two Arduino
Unos, each equipped with an Adafruit INA219 High Side DC Current Sensor board.
One Arduino is used to sense the voltage and current drawn from the DC power supply
and the other is used to sense the voltage and current drawn over the phone’s USB
port. The EMPs report voltage measurements in volts (V) and current measurements
in milliamps (mA).

Because our EMPs measure power consumption via hardware that is external
to the phones, they do not introduce any measurement overhead to the application.
This is ideal, since it means that we do not have to factor out the amount of energy
consumed by the monitoring infrastructure itself. However, it also means that the
EMPs and the phones do not share a single clock that can be used to identify which
samples occurred during an execution of interest. A desktop computer can solve this
problem by providing the global clock necessary for performing synchronization. By
having the desktop computer start the execution of interest over the Android Debug
Bridge (ADB), it is possible to discard power samples recorded before the start of the
execution. Similarly, because the duration of the recorded scenarios are known, it is

possible to identify samples that were recorded after the end of the execution.

14

Chapter 4

EMPIRICAL STUDIES ON SOFTWARE ENGINEERING DECISIONS

Our research activities are designed to gain knowledge about how the decisions
that software developers make during the course of their daily activities impact the
energy usage of the software that they design and implement. Because the scope of
decisions that developers make is essentially unbounded, we have decided to focus
on several of the most common types of decisions developers make. This chapter
presents our investigations on software engineering decisions including empirical studies
of the impacts of applying design patterns, code refactorings, code obfuscations, and
performance tips [101, 102, 104, 103].

This chapter is organized as follows: Section 4.1 describes the general method-
ology that we used for conducting the empirical studies; Section 4.2 addresses potential
threats to validity of our studies; Sections 4.3 through 4.6 present the empirical studies
that we conducted and discuss their results; and Section 4.7 discusses the most closely

related work.

4.1 General Methodology

Figure 4.1 shows the general methodology that we follow in our empirical stud-
ies. The overall procedure consists of four steps: subject creation, data collection, post
processing, and data analysis. In the subject creation step, the experimental subjects
are created by applying the software engineering decisions to the considered applica-
tions. In the data collection step, both the applications and the experimental subjects
are executed on a suitable hardware-based energy measurement platform to collect
power profiles. In addition, other execution data that can be easily gathered is col-

lected (e.g., execution time). Finally, in the post processing and data analysis steps,

15

Software

Engineering
Decisions Applications
Power Profiles
Subject Experimental Data Post N Data
Creation Subjects Collection Processing Analysis
Additional
Execution Data

Figure 4.1: General methodology for investigating the energy impacts of software en-
gineering decisions.

the data is post-processed to transform the power profiles into energy usage data, and
a statistical analysis of the results is performed. In each step of the methodology, we
use proper procedures and techniques and control for the effects of extraneous variables

carefully.

4.2 Potential Threats to Validity

One of the most significant threats to the validity of our results is the possi-
bility of energy usage measurement errors either due to imprecise measurements or
failing to control for potential sources of noise. To minimize this threat, we rely on
hardware-based energy measurement tools that are designed for specific systems. Dur-
ing our experimental runs, we disable all unessential services and programs to minimize
potential sources of noise.

Another threat to validity is that selected applications and instances of consid-
ered decisions may prevent our conclusions from generalizing to all potential contexts
and enviroments where these decisions can be applied. However, we make our selec-
tions carefully, explain those selections in detail, and use variety of applications and
instances of considered decision in each study. The results of the studies provide in-
formation about whether design patterns, code refactorings, code obfuscations, and
performance tips have potential to impact the energy usage. Therefore, we believe

that our results can give direction to future research.

16

Finally, the source code of the application may need to be examined and mod-
ified manually to apply the considered software engineering decision due to lack of
automated tool support. These might cause possible different implementations of our
applications when the study is replicated. To prevent this case, we make all versions

of our applications publicly available.

4.3 Studies of Design Patterns

Design patterns are commonly used to accomplish high-level goals such as read-
ability, efficiency, and reuse in software systems [39]. In particular, design patterns are
solutions to commonly recurring problems in code. They provide a template or de-
scription for how to solve the problem, and can be transformed into code by software
developers.

In this empirical study, we compared the energy usage of software that uses
design patterns against software that does not use design patterns as a way to explore

how high-level design decisions can impact an application’s energy usage.

4.3.1 Experiment-Specific Methodology
This section describes the details of our study design, including our independent

and dependent variables, studied design patterns, and experimental procedure.

4.3.1.1 Experimental Variables

In this study, we considered one dependent variable, the amount of energy con-
sumed by the execution of an application, and one independent variable: whether or
not the design pattern is applied to the application.

To isolate the impacts of changing our independent variable (applying a design
pattern) on our dependent variable (energy consumption), it is necessary to control for
inconsistencies in driving an application. Therefore, we used the same driver code to

execute the different versions of each subject application.

17

2INoNIYs 199(qo we Jo syuswele oY) uo pouriojrad oq 03 uoneiado ur juesardely] IOISIA
"9[(ROSURYDIIUL WD} YRUWL PUR ‘OUO [P ojemsdesus ‘WyILIos[e AJiurey € sugo(] AS9)RI)g
'$700[qo0 ueamieq Aduepuodop AURUI-0}-0UO0 € JUYI(] IQAIIS]()
"10RIUI $300[(0 JO J0s © moy soje[nsdeous jey) 300[q0 ur dUYS(] IOYRIPOIN
"190[qo ue se jsonbaa v ojemsdeour] PpuRWWO))
10401DY2 g
"11 09 $$9DOR [0I3U0D 01 109[q0 Ioyjoue 10J Iopoysde[d 10 9)RSOLINS ® dPIAOL] AXOIJ
“Aousige s309(qo poureis-ouy jo soqunu o5Ire] jroddns 03 Surreys os() WSOMA]
‘A[reotureudp 100(qo ue 03 SoIIqISUOdSol [RUOIIIPPR DRIy I0JRIOII(]
“quasardar 0 saInjonI)s 991y ojul s309[qo ssodwo) sjsoduro))
‘uoryejuawRdul s3I WOl uoljorIjsqe ur o[dnods(] o8pLIg
104NINUAG
"11 09 $s900® Jo Jutod [RQO[S © oplaoId pue ‘9dURISUL OUO SB[AJUO SSR[O B 9INSUG UOJO[SUIS
oouegsul [eotd£jojord e Jursn 9jea1d 09 s300[(qo jo spury oY) Ajwadg odAjojorg

"QIRIJURISUL O SSR[D YDIYM SPIIBP SIsse[oqns 99] 9N 109[(0 ur FUIPRSID I0J 90RIIIUL UR SULI(]
‘uoryejuasardar s)1 woay $309[qo xo1dwos ® Jo UONONIISU0D oY) djeredog
's900[qo Juspusdop 10 paje[al JO SOI[IUIR] SUI}RAID I0J 9DRJIOIUI UR IPIAOL]

poylewt A10300q

Tepring
A1090%] 100198y

uondrIosa(J

[DUOLIDAL)

wI19))eJ uSIso(]

‘surelyed uSIsop poIpnis 1§ 9[qRl,

18

4.3.1.2 Studied Design Patterns

To investigate the impact of design patterns on energy usage, we selected 15
design patterns, five in each of the categories proposed by Gamma et al. [39] in: cre-
ational, structural, and behavioral. Design pattern categories comprise Class instantia-
tion, Class and Object composition, and Class’s objects communication, respectively.
Table 4.1 lists the specific design patterns that we studied in each category with brief
descriptions. Note that, these descriptions are taken from Gamma’s book [39].

We chose specific patterns based on the availability of sample code showing an

application before and after applying design patterns.

4.3.1.3 Experimental Procedure
Figure 4.2 shows, at a high-level, the procedure we followed in this study, divided
into three main steps: Subject Collection, Data Collection, and Post Processing. The

remainder of this section describes these three steps in detail.

15 Before
Versions Data Collection
; Subject 30 Power Post Energy
15 Design Patterns —» Collection Spartan 6 ™ Profiles ™ Processing _’Usage Data
FPGA
15 After

Versions

Figure 4.2: High-Level Experimental Procedure of Design Patterns.

Subject Collection

The first step in our procedure is to collect the applications of design patterns.
As we mentioned before, selected design patterns have sample code showing an appli-
cation before and after applying design patterns. For each design pattern, we obtained
the before and after versions of an application (i.e., consists of a set of classes) mainly
from SourceMaking.com.

Figure 4.3 shows an abbreviated example of an application (a) before and (b)

after applying the proxy design pattern. The driver code (c) is the same for both

19

1. class ReallImage { 1. class Image {
2. public: 2. public:
3. Image(FILE *f) { ... }
3. Reallmage(FILE xf) { ... }
4. ~RealImage() { ... } 4. ~Image() { ... }
5. void draw() { ... }
6. }; 5. void draw() { ... }
6. };
7. class Image { (a)
8. RealImage *reallmage;
9. FILE xfile;
10. public:
11. Image(FILE *f)) {
12. realImage = 0;
file = f;
13. L
1. int main(int argc, charxx argv) {
14, ~Image() { ... } 2. for(...) {
3. Image il = new Image("...")
15. void draw() { 4. Image i2 = new Image("...")
16. if (!'reallImage) 5. Image i3 = new Image("...")
17. reallmage =
new RealImage(file); 6. il.draw();
18. realImage->draw(); 7. i2.draw();
19. 8. i3.draw();
9 b
20. }; 8. }

(b) ()

Figure 4.3: Example code showing (a) before and (b) after applying the proxy design
pattern and (c) the application driver code.

the before and after versions. The before version uses direct coupling to draw the
images. It creates and initializes all of the image objects before they are actually
needed. However, creating all image objects at once might not be desired. The after
version uses another object, an image proxy, to instantiate the real image object only
when it is requested. Then, the image proxy object forwards all subsequent requests

directly to the real image object.

Data Collection
To collect power usage data, we executed the before and after versions of the
applications for each design pattern on our FPGA-based platform. During each exe-

cution, we recorded power consumption of the FPGA 1/0, DDR2 memory, and CPU.

20

Note that because these applications are small, we modified the driver code to exe-
cute multiple times, which allows us to easily collect more samples. The number of
iterations for each pattern was chosen so that the total number of samples was as
close to 40000 as possible. 40000 samples is the maximum number of samples that

FPGA-based platform can collect at one time.

Post Processing

To obtain the total energy usage of the executions, we converted the Wattage
measurements for the FPGA 1/0O, DDR2 memory, and CPU to Joules. We then added
together the energy usage for FPGA 1/O, DDR2 memory, and CPU.

4.3.2 Data Analysis and Discussion
We refined our overall question of whether or not applying a design pattern can

impact the energy usage of an application into the following specific research questions:
e RQ1: Impact — How does applying a design pattern impact energy usage?

e RQ2: Consistency — Do all design patterns within a category (i.e., creational,

structural, and behavioral) impact energy usage in the same manner?

o RQ3: Predictability — Is it possible to predict the impact on energy usage of

applying a design pattern by examining design-level artifacts?

The remainder of this section discusses the results of our study in terms of these

research questions.

RQ1: Impact

Table 4.2 shows the experimental data that we collected. The first column,
Design pattern, shows the grouping of the 15 design patterns. The second column,
Iterations, shows the number of times we executed the driver code. The next two
columns, Before and After, show the total energy consumption in Joules of the ap-

plication before and after applying each design pattern. The fifth column, Difference,

21

shows the difference in total energy usage between the before and after versions of
applying the design patterns. Positive numbers indicate that applying the design pat-
tern increased energy usage, and negative numbers indicate that applying the design
pattern reduced energy usage. The next column in the table, Difference per iteration,
shows the difference in total energy usage per iteration (i.e., the difference in the total
energy usage divided by the number of iterations). Again, positive numbers indicate
that applying the design pattern increased the energy usage, and negative numbers
indicate that applying the design pattern reduced energy usage. The seventh column
in the table, % Change shows the percentage change in total energy usage between the
before and after version for each design pattern.

As the data in Table 4.2 shows, the impacts of applying design patterns can
vary greatly. For some design patterns (e.g., factory method, prototype, bridge, and
strategy), the impact of applying the pattern is relatively small (less than 1%). While
for other patterns, the impact is moderate (e.g., abstract factory, flyweight, decorator,
observer) or even substantial (e.g., decorator).

Note that while in absolute terms, the difference in energy usage per iteration
is small (0.0002J to 0.8672J), there are several points to keep in mind. First, our
FPGA platform is designed to be an extremely low-power system. A typical desktop
or server computer will consume significantly more energy. Second, our application
of the design patterns was minimal. We used the smallest number of classes and the
simplest actions possible. Finally, the amount of energy used is shown per iteration
(e.g., this is the difference in the amount of energy used by a single dynamic execution
of a section of code changed by the application of the pattern). In a typical application,
code associated with the implementation of a design pattern may be executed millions
or billions of times, especially in the case of long-running server applications. Even
though the cost of a single iteration can be small, in aggregate, the difference in energy

usage caused by implementing a design pattern can be large.

22

9¢ 91 4! 01 6V'L— €L80°0— 98°L— 70°L6 68 70T 06 TOISTA

¢l 6 € 14 81°0— 70000~ 10— AR9R €L7GTT 00¢ A3oreng

8 v L € 0229 84600 €e8e 96°66 ¢9'19 00¥ IOAIOSqO)

9¢ e S i 94°6— 1970°0— eqTI— ¢0'601 ggoct 0492 I0RIpaN

6¢ 66 L L 81— ¥¢00°0— 6L 1— €496 GE'86 06 pustmion
DL02DYD T

9 € é g Ly9e— 19L0°0— G0'8e— 8¢99 €ev0l1 004 Axo1g

09 09 9 09 80°8¢— 6L01°0— G6°€S— 76'8¢ 68°C6 004 TSTOMAT]

a1 i Ve 4! 68°CIL L298°0 1¢°66 erelt c6el a1t 103eI1099(]

It 01 61 L1 (AN G8¢0°0 667 71201 G1°L6 GLT opsodwion

9 € 11 9 V¢ 0— 0L00°0— V¢ 0— 7466 8L'66 ge odpug
DANIINAG

¢l L G e o L1000 aro 1166 0L'86 0492 REIRERIN

6 € L L €6'0— ¢100°0— €6'0— 89°86 09°66 0L adfyoj01g

¢ I € € L0°0— ¢000°0— 80°0— 90°8TT EI'8TIT 004 poyjout £109004

(48 8T 9 € 611 810070 ee'l 80°€TT GLTTT 06 Toprmg

¢l L el 1T Ga'1e 8L€00 16'81 69°90T 8L'LS 004 £10900] 10R1)Sq Y
IDU0YDIL)

(r) uoryeIont
)y elojog IoYy alojog oSuey)) 9, JIod eoualepiq () eouemprq () Yy (r) 910J0g
SoBessoIN # s300lq(Q) # agesn Asrouy suonjeIal] # ursjyed uSiso(]

‘surojed USISOP o) JO SUOISIOA IojJe PUR 9I0Jo(91} SUIUUNI AQ POUTR)}(O JUSWDINSBOUL 0Fesn ABIoU 7§ 9[(R],

23

RQ2: Consistency

At a high level, design patterns in a category share a common purpose: cre-
ational patterns are concerned with providing alternate ways of creating objects, rather
than instantiating objects directly; structural patterns are concerned with class and
object composition; and behavioral patterns are concerned with communication be-
tween objects. If all patterns in a category impact energy usage in a similar way, it
would simplify application design and development by allowing developers to make
decisions about whether an entire category of patterns is compatible with their goals
with respect to energy usage.

However, as Table 4.2 shows, in our study, the design patterns within a cate-
gory are not consistent in their impacts on energy usage; in each category, there are
patterns that have a positive impact and patterns that have a negative impact. More-
over, not only does the sign of the impact vary (i.e., positive or negative), but the
magnitude can be wildly different as well. For example, in the structural category,
both the composite and decorator patterns increase energy usage, but the decorator
pattern increases energy usage approximately by &~ 700 % while the composite pattern
increases energy usage by only &~ 5%. Similarly, in the behavioral category, the medi-
ator pattern decreases energy usage by ~ 9% while the strategy pattern causes a very

small reduction.

RQ3: Predicability

To discover whether it is possible to predict power behavior from a design per-
spective, we created class diagrams, sequence diagrams, and object diagrams for each
of the patterns. Figure 4.4 shows an example of the object diagrams and sequence
diagrams for the before and after versions of the application of the proxy pattern. No-
ticeable characteristics of these diagrams include the number of objects instantiated
by a program and the messages passed between objects.

The final four columns of Table 4.2, # Objects and # Messages, provide a count

of the number of objects instantiated and the number of messages passed between the

24

(Client }——»{ Image 1) (Client >——>
Image 2 oors [1mage 2 1 Realimage 2)
Empty objects mage caTmage
until draw() is
called > mage 3
ar;;ig;lersézsea —>< Image 4 }»C Reallmage 4)
D

(a) (c)

Client Image Client Image Reallmage
draw() draw() draw()
draw() > draw() > draw()
draw() draw()
draw()

(b) ()

Figure 4.4: Example of design artifacts illustrating before and after applying the Proxy
design pattern. (a) and (b) show the object diagram and sequence diagram of the code
before applying the proxy pattern. (c¢) and (d) show the object diagram and sequence
diagram of the code after applying the Proxy pattern.

objects for the before and after versions of the applications. In some of the cases that we
considered, impact on energy usage appears to be connected with the change in number
of objects and number of messages passed between objects. For example, applying the
abstract factory pattern increases the number of objects from 11 to 13, the number of
messages from 7 to 12, and the energy usage by ~ 22 %; applying the flyweight pattern
decreases the number of objects from 60 to 6 and reduces energy usage by ~ 58 %;
and applying the factory method pattern does not change the number of objects or
messages and does not greatly impact the energy usage of the application.

There are however several exceptions to this general trend (e.g., the builder,
bridge, command, mediator, and visitor patterns). For example, one of the most
expensive patterns in our experiments is the decorator pattern. The decorator pattern
does instantiate more objects than its before version, but it does not explain a 700 %
increase in energy usage. Investigating the decorator pattern more closely, we observed

that, unlike the other patterns, decorator dynamically creates complex objects without

25

the use of inheritance. We believe that creating the same complex objects through
inheritance requires less energy, as the structure is completely determined at compile
time, whereas the flexibility that the decorator pattern offers requires more work at
runtime which results in higher energy usage.

Consequently, for these subjects, a reliable prediction about the impact of ap-
plying a design pattern can not be made by considering only high-level design artifacts.
Further investigation of the role of design and the interplay between design and im-
plementation decisions is needed to better understand how to predict the impact of

applying specific design patterns.

4.3.3 Summary
In this section, we have presented an empirical study that investigates the im-

pacts on energy usage of applying design patterns. We considered 15 design patterns,
five in each of the creational, structural, and behavioral categories. The results of this
study demonstrate that:

(1) Applying design patterns can both increase and decrease the amount of energy

used by an application.
(2) Design patterns within a category do not impact energy usage in similar ways.
(3) It is unlikely that impacts on energy usage can be precisely estimated by only

considering design-level artifacts.

4.4 Studies of Code Refactorings

One of the most commonly used features in integrated development environ-
ments (IDEs) such as Eclipse is the automatic refactoring support that they provide
developers [85, 62, 118]. For example, developers can use built-in refactorings to au-
tomate common tasks such as extracting code to methods, automatically generating
boilerplate code, and introducing indirection. Refactorings typically alter an appli-

cation to improve its quality in terms of nonfunctional attributes such as readability,

26

understandability, maintainability, etc. (the same properties that developers have his-
torically been focused on).

While such changes are often beneficial, they may also have detrimental impacts
on the application’s energy consumption. Since concerns about energy efficiency are
rapidly becoming a high priority concern in many environments, the decision to apply
transformations must take into account the impacts of the code refactorings on energy
consumption. However, developers are not able to make informed choices, primarily
due to the lack of information available to them.

To address the lack of information available to developers, we investigated the
energy impacts of applying six of the most commonly used code refactorings by creating

a total of 197 refactored versions of nine applications.

4.4.1 Experiment-Specific Methodology
This section describes the details of our study design, including our independent
and dependent variables, considered applications, studied code refactorings, considered

platforms, and experimental procedure.

4.4.1.1 Experimental Variables

In this study, we considered one dependent variable, the amount of energy con-
sumed by the execution of an application, and two independent variables: (1) the choice
of whether or not to apply a refactoring, and (2) the platform where the application
executes.

To isolate the impacts of changing our independent variables (applying a refac-
toring and execution platform) on our dependent variable (energy consumption), it is
necessary to control for the effects of several extraneous variables (e.g., unnecessary
changes in the considered application’s code and the inputs that are used to drive
the application). The remainder of this section describes how we controlled for such

extraneous variables.

27

Controlling for Extraneous Changes in an Application’s Code

In many cases, refactorings are not formally specified. Because of this, different
people, or even different tools, may use the same name to refer to different sequences
of code changes. This flexibility in nomenclature can be a potential source of bias and
a potential source of confusion in interpreting the results of the study. If we compared
the impact of refactorings that were inconsistently applied, we would essentially be
comparing different refactorings. Similarly, if a developer would apply a substantially
different set of code edits that happen to share the same name as one of the refactorings
that we studied, the results that they observe could be drastically different than what
we observed.

To avoid these potential problems, we must ensure that all refactorings are
applied in a consistent, repeatable, and well documented manner. To accomplish this,
we relied on the automated refactoring support provided by the Eclipse IDE version
3.7.2 (Indigo). By using the tools provided by Eclipse, we ensured that the changes
we made to our considered applications are the same changes that a developer would

apply if they applied the same refactoring using the same tool.

Controlling for Inconsistencies in Driving an Application

In general, applications are interactive. They accept input, perform some com-
putation, and generate a response. In our experiments, this interactive nature can
introduce a potential source of bias as it is difficult to manually reproduce a given exe-
cution exactly. For example, a user can often repeatedly perform the same sequence of
actions (e.g., enter text into a form or click a button), but can not maintain the same
timing between the actions. Although such differences may seem inconsequential, they
may lead to observed differences in energy consumption that are not due to changing
our independent variables, but rather differences in how the application is driven. To
prevent such bias, it is necessary to be able to deterministically reproduce a given

sequence of actions with great fidelity; unit testing frameworks provide this capability.

28

Unit testing frameworks (e.g., JUnit [59]) are commonly used as part of the soft-
ware development process. They allow developers to encode how an application should
respond when given certain inputs. Such descriptions are then executed and checked
by an automated driver component. Because the testing framework is performing the
actions instead of a user, the variability in the amount of time that lapses between
performing actions is much less. Hence, any observed variations in energy consump-
tion are more likely to be the result of changing an independent variable rather than

inconsistencies in driving the application.

4.4.1.2 Considered Applications

We investigated the impacts of applying refactorings on nine Java applications.
The specific applications we selected are described in Table 4.3. The first two columns,
Name and Version, indicate the name and version number of each application, respec-
tively. A blank version number indicates that the corresponding application has only a
single version. The third and fourth columns, (# Classes and # Methods), provide the
number of classes and the number of methods in each application, respectively. The
number of lines of code is reported in the fifth column, LoC, and the number of JUnit
tests provided with each application is shown in the sixth column, # Tests. The final
column, % Coverage, is the percentage of statements covered by the test suite. For
example, version 1.2 of Commons CLI consists of 21 classes, 192 methods, 4739 lines
of code, and comes with 187 tests that cover 96 % of the application’s statements.

We chose these applications for several reasons. First, they represent a variety of
application domains. For example, Commons CLI is a library for processing command-
line options, Commons IO is a library for performing various input/output operations,
and Joda-Time is a library for handling dates and times. By selecting applications
from varied domains, we can improve the generalizability of our results. Second, the
applications vary in size. For example, Commons Math has over 100 000 lines of code,
while Sudoku only has 497 lines of code. Refactorings are not only applied to large,

well established projects. They are also used in the context of new or relatively small

29

Table 4.3: Java applications.

Name Version # Classes # Methods LoC # Tests % Coverage
Commons Beanutils 1.8.3 118 1199 31538 1514 63
Commons CLI 1.2 21 192 4739 187 96
Commons Collections 3.2.1 412 3796 63852 39143 81
Commons 10 2.4 108 1069 25663 966 89
Commons Lang 3.1 147 2219 55626 2047 94
Commons Math 3.0 666 4974 135796 3451 83
Joda-Convert 1.2 10 65 1317 105 93
Joda-Time 2.1 226 3731 67590 11663 88
Sudoku — 4 57 497 25 81

projects. Again, selecting applications of various sizes can improve the generalizability
of our results. Finally, they come with extensive test suites. As we mentioned in Section
4.4.1.1, we are using JUnit tests to drive the applications. We believe that extensive
tests are more likely to cover large portions of the application’s functionality and to
drive the applications in ways that match their expected behavior. In addition to
fulfilling our requirements for driving the applications, the unit tests also helped guide

the choice of where to apply refactorings in each application (see Section 4.4.1.5).

4.4.1.3 Studied Code Refactorings

To select the refactorings that we studied in our study, we first examined all of
the refactorings provided by the Eclipse IDE. We filtered this initial list based on two
criteria: (1) the refactorings we select should be commonly used, and (2) applying the
refactorings should make some structural change to the application.

To determine how often a specific refactoring is applied by developers, we
examined the publicly available data gathered by the Eclipse Usage Data Collec-
tor (UDC) [35]. From this data, we identified the most commonly used editing com-
mands (excluding navigation commands and formatting, organizing, and boilerplate
generation actions). We then filtered the remaining refactorings and eliminated ones
that make no structural changes. For example, although Rename Variable and Re-

name Method are among the most commonly used commands, the changes that they

30

make are not evident in the application’s compiled bytecode. As such, they have no
possibility of altering the amount of energy consumed by the application.

Finally, we sorted the remaining refactorings by how often they can be applied
to our Java applications. Some refactorings (e.g., Convert Anonymous Inner Class to
Nested Class) can only be applied in very specific circumstances. Since we were inter-
ested in identifying general trends about how refactorings impact energy consumption,
refactorings that can only provide a single data point are not very useful. To estimate
the number of times a refactoring could be applied, we manually examined the code
of each application and searched for locations that satisfy the necessary conditions for
each refactoring.

As our final set of refactorings to apply, we selected the following six refactorings

(listed in alphabetical order):

* Convert Local Variable to Field: Creates a new field by turning a local variable

into a field.

Extract Local Variable: Creates a new variable assigned to the expression cur-

rently selected and replaces the selection with a reference to the new variable.

Extract Method: Creates a new method containing the currently selected state-

ment or expression and replaces the selection with a reference to the new method.

Introduce Indirection: Creates a static method that can be used to indirectly

delegate to the selected method

Inline Method: Copies the body of a callee method into the body of a caller
method.

Introduce Parameter Object: Replaces a set of parameters with a new class, and
updates all callers of the method to pass an instance of the new class as the value

to the introduced parameter.

31

These refactorings all fulfill our requirements: they are commonly used and they

cause structural changes that are reflected in an application’s compiled bytecode.

4.4.1.4 Considered Platforms

We executed the original and refactored versions of each application on versions
7u25 (JVM 7) and 6b27 (JVM 6) of the OpenJDK Java Runtime Environment (JRE).
We chose these versions because they are the versions most commonly used in practice.

Although, from a programmer’s perspective, there may not appear to be many
changes between JVM 6 and JVM 7, there are indeed a significant number of differences.
For example, the performance of JVM 7 was improved by techniques such as Tiered
Compilation, Compressed Oops (ordinary object pointers), Zero-Based Compressed
Oops, and Advanced escape analysis. In addition to improving performance, JVM 7
changes also affected how internal strings are stored (they moved from being part of
the permanent generation of the Java heap to the main part of the Java heap), the
verifier, and the default garbage collector. All of these changes have the potential to
interact with the modifications made by refactorings. Thus, investigating how the the
refactorings applied on different underlying platforms impact energy consumption can
give valuable information to developers depending on where their application will be

deployed.

4.4.1.5 Experimental Procedure

6 Refactorings 9 Applications

'
Data Collection
10,300 Power Energy Usage Data
Profiles (350 GB) L

LEAP .
Subject Power Profiler 10,300 Execution Post

Execution Times

— 197 Subjects —»

Creation Time Profiles Processing
Statement 197 Execution Dynamic Execution
Coverage Monitor " Count Profiles Counts

Figure 4.5: High-Level Experimental Procedure of Code Refactorings.

32

Figure 4.5 shows, at a high-level, the procedure that we followed in this study,
divided into three main steps: Subject Creation, Data Collection, and Post Processing.

The remainder of this section describes these 3 steps in detail.

Subject Creation

The first step in our procedure is to create our set of experimental subjects.
Because we are interested in the impacts of applying a refactoring to an application,
our experimental subjects are versions of our considered applications with a refactoring
applied. To create the necessary refactored versions, we carried out the following
sequence of actions.

First, for each considered application, we used Atlassian’s Clover coverage tool
(version 3.1.11) to identify the portions of the application that are covered by its test
suite [24]. This coverage information serves as a filter to prevent applying a refactoring
in a segment of the application that is not executed by the test suite. The impacts
of refactorings in such areas would be unobservable because the code would not be
executed.

Next, we identified a set of suitable locations where each refactoring could be
performed. For each refactoring, we manually examined the covered portions of each
application and searched for locations where the preconditions necessary for applying
a refactoring are satisfied. We then attempted to apply the refactorings at the selected
locations to create four different refactored versions of each application. Four is the
maximum number of locations where refactoring could be applied for the smallest
application. Basically, a refactored version was created by applying a refactoring at
a selected location. Sometimes less than four versions could be created because there
exists no possible locations for that refactoring.

To actually apply the refactorings, as mentioned previously, we used Eclipse’s
built-in refactoring tools. Figure 4.6 shows, for a code excerpt from Sudoku, (a) the

original and (b) refactored versions of the code when applying Inline Method to the

33

public List<Box> getPeers(Puzzle puzzle) {
ArrayList<Box> peers = new ArraylList<Box>();
addUnique(peers, getPeersInSameRow(puzzle));
addUnique(peers, getPeersInSameColumn(puzzle));
addUnique(peers, getPeersInSameSubSquare(puzzle));
) return peers;

private void addUnique(ArraylList<Box> peers,
List<Box> peersInSameRow) {
for (Box peer : peersInSameRow)
if (!peers.contains(peer))
peers.add(peer);

(a) Original

public List<Box> getPeers(Puzzle puzzle) {
ArrayList<Box> peers = new ArraylList<Box>();
for (Box peer : getPeersInSameRow(puzzle))
if (!'peers.contains(peer))
peers.add(peer);
for (Box peer : getPeersInSameColumn(puzzle))
if (!peers.contains(peer))
peers.add(peer);
for (Box peer : getPeersInSameSubSquare(puzzle))
if (!peers.contains(peer))
peers.add(peer);
return peers;

(b) Refactored

Figure 4.6: Applying the Inline Method refactoring to addUnique.

getPeers method. Note that not every refactoring attempt was successful; in several
cases, Eclipse was unable to perform a refactoring due to an internal error.

When applying the refactorings, Eclipse provides configuration options for all
of our studied refactorings. The options and the parameter values for those options

that we used for each refactoring are listed below:

* Convert Local Variable to Field: The new field created by the refactoring can
be made “public”, “protected”, or “private”. We chose to make it public. Also,
we chose to initialize the new field at its declaration location instead of in the

current method, when it was possible.

34

Extract Local Variable: All occurrences of the selected expression can be replaced
by a reference to the newly created variable, or only the selected expression can

be replaced. We chose to replace all occurrences.

* Extract Method: The extracted method can be created with “public”, “pro-

tected”, or “private” protection. We chose to make the extracted method public.

Introduce Indirection: Either all method invocations can be redirected to the
newly created static method, or only the selected method invocation can be

redirected. We chose to redirect all method invocations.

Inline Method: The method to be inlined can be inlined into every caller method
or only into the selected caller method. We chose to inline it into every caller

method if it is applicable.

Introduce Parameter Object: The new parameter object class can be a top-level
class or nested within the current class. We chose to create the new class at the
top level. In addition, the signature of the existing method can be changed, or
it can be modified to be a proxy method (i.e., the method simply packages its
arguments in an instance of the new parameter object class and passes along the

new object.) We chose to modify the method rather than keep it as a delegate.

In total, we created 197 subjects. Five of the refactorings, Convert Local Vari-
able to Field, Extract Method, Introduce Indirection, Inline Method, and Introduce
Parameter Object, were successfully applied 36 times each, four times in each of our
nine applications. The remaining refactoring, Extract Local Variable, was only suc-
cessfully applied 17 times, 1 time in Commons Collections, 2 times in Commons IO,
3 times in Commons Lang and Joda-Time, and 4 times in Commons Beanutils and

Commons Math.

35

Data Collection

We collected three different types of data: (1) power usage data, (2) execution
times, and (3) dynamic execution counts. To collect this data, we first created a set
of Apache Ant build files for executing each experimental subject using its test suite.
Using an Ant file allows us to execute the subjects with a single command and from
the command line. Both of these properties are important as they help reduce noise

when executing the subjects.

Power Consumption: To collect power usage data, we executed each subject
on the LEAP platform 25 times using JVM 6 and 25 times using JVM 7. Using multiple
runs (i.e., 25) allows us to perform a statistical analysis on the impact of refactorings
that takes into account the possibility of such fluctuations. To further reduce the pos-
sibility of noise, we disconnected the LEAP platform from the network, booted into
single user mode, and terminated all unnecessary applications and processes. Although
we eliminated many possible sources of noise by carefully configuring the LEAP plat-
form, small fluctuations in energy consumption from execution to execution are still
possible.

While each subject was executing, we sampled the power usage of the entire
system. In total, we ran 10300 executions—(197 subjects 4+ 9 original applications) X
25 repetitions x 2 platforms—which took over 15 days worth of CPU time and resulted
in over 350 gigabytes of raw power usage data.

Execution Time: To collect accurate execution times, we again used the LEAP
platform as it also records synchronization information. This synchronization informa-
tion includes timestamps that correspond to the start and end of the execution. By
using this information, we can calculate the total execution time of each execution.
Again, this process resulted in 10300 data points.

Dynamic Execution Count: The final type of data that we collected was
how many times each location where the refactorings were applied was executed by

the test suite. To calculate this information, we again used Atlassian’s Clover coverage

36

tool, but this time we recorded how many times each statement in each application was
executed rather than only recording whether each statement was executed. Note that
to collect this information, we only needed to consider one execution of the original,
unmodified version of each application. The execution counts for each of the 197

subjects can be calculated from just this coverage information.

Post Processing

The final step in our procedure is to post process all of the collected data.
Dynamic execution counts and execution times are usable in their current form, but
the power consumption data needs to be synchronized, filtered, and converted to a
useable form.

We post-processed the raw power usage data to calculate the total energy usage
of each execution. Then, we grouped the collected data by application, applied refac-
toring, and platform used for the execution. Because of the large size of the power

profiles, post processing this data took an additional 25 days worth of time.

4.4.2 Data Analysis and Discussion
We refined our overall question of whether or not applying a refactoring can

impact the energy usage of an application into the following specific research questions:

e RQ1: Impact — Do refactorings impact the energy usage of an application? If

so, how?

e RQ2: Consistency — Are the effects of applying a refactoring consistent across

applications and across platforms?

o RQ)3: Predictability — Is it possible to predict the impact on energy usage of

applying a refactoring by examining data that is more easily accessible?

The remainder of this section discusses the results of our study in terms of these

research questions.

37

RQ1: Impact

To gather the data necessary to answer our first research question, we per-
formed a Mann-Whitney-Wilcoxon test to determine whether the difference between
the amount of energy consumed by the original version and refactored version of each
subject is statistically significant. We chose to use the Mann-Whitney-Wilcoxon test
because we have one nominal variable (whether or not the a refactoring is applied), one
measurement value (the amount of energy consumed), and we do not know whether
our data are normally distributed. We chose an alpha («) of 0.05 and used R version
2.14.1’s implementation of the test (i.e., wilcox.test).

Of the 394 tests that we conducted (197 for each platform), 109 (=~ 28 %) in-
dicated a statistically significant difference in energy usage between the original and
refactored versions. This result demonstrates that, although refactorings do not always
affect energy usage, it is possible for developers to impact the energy consumption of
their applications by performing refactorings. Since refactorings are common, even if
not every refactoring performed by a developer impacts energy consumption, devel-
opers are likely to perform at least a few refactorings that do indeed impact energy

usage.

Table 4.4: Number of times each refactoring causes a statistically significant difference
in energy usage.

JVM 6 JVM 7
Refactoring # Subjects Total # NI # PI Total # NI # PI
Convert Local Variable to Field 36 13 5 8 12 3 9
Extract Local Variable 17 3 0 3 0 0 0
Extract Method 36 10 8 2 9 7 2
Inline Method 36 9 4 5 7 4 3
Introduce Indirection 36 12 9 3 9 8 1
Introduce Parameter Object 36 13 4 9 12 4 8
Total 197 60 30 30 49 26 23

To gain additional insight into how the refactorings impact energy usage, we

investigated how many times each studied refactoring had a statistically significant

38

impact on energy usage. This information is shown in the first part of Table 4.4.
In the table, the first column, Refactoring, lists each of our studied refactorings. The
second column, # Subjects, shows the number of subjects that were created by applying
the refactoring. The third and sixth columns, Total, show the number of times each
refactoring caused a statistically significant difference in energy usage when the subject
was executed using JVM 6 and JVM 7, respectively. As this data shows, the 109
cases where a difference occurs are split relatively equally over the 6 refactorings with
Convert Local Variable to Field and Introduce Parameter Object making a difference
most often (13 out of 36 for JVM 6 and 12 out of 36 for JVM 7) and Extract Local
Variable making a difference least often (3 out of 17 for JVM 6 and 0 out of 17 for
JVM 7). Most importantly, the data reveals that every refactoring has the potential
to impact energy usage.

The next dimension that we investigated was how frequently each refactoring
increased energy usage and how frequently each refactoring decreased energy usage. To
answer this question, for the cases where there is a significant difference, we manually
examined our data and determined whether the energy usage of the refactored version
was more or less than the original version. The results of the investigation are also
shown in Table 4.4. In the table, columns four and seven, # NI, show the number of
times each refactoring had a negative impact (i.e., increased energy usage) for JVM 6
and JVM 7 and columns five and eight, # PI show the number of times each refactoring
had a positive impact (i.e., decrease energy usage), again, for JVM 6 and JVM 7. For
example, Extract Method increased energy usage 8 times and decreased energy usage 2
times on JVM 6. Similarly to how every refactoring has the potential to impact energy
usage, each refactoring, with the exception of Extract Local Variable, both increased
and decreased energy usage.

Finally, we investigated the magnitude of the differences caused by the refac-
torings. To determine the magnitude of the differences, we again focused on the cases
where there is a significant difference. We calculated the percentage change in the

means of the energy usages of the original and refactored versions. The results of these

39

Convert Local Variable to Field Extract Local Variable Extract Method

8,
6,
4,
g 2, 0. » X (]
8 0 A % ' A M . 2
D U1 o o A A A A
> ™ 4 . . ; .
o A !
0 -4
cC
W -6
cC _al
G 8
3
c Inline Method Introduce Indirection Introduce Parameter Object
= 8-
c
£ °
g 4] ‘
o 2- . A . . .
gl i . . t g
g 5 A o A N LIS . A e A [. \ [’y A
- i A A) A
4 9 . A
-6
-8 .
| |
u 3 @ 0 9 £ £t o 3 e 3 ¢ 0 @ £ £ o 3 £ 3 ¢ 0 © £ ¢t o 3
T 0 6§ - § &8 ¢ E S T 0 6§ - § &8 ¢ E S T 0 5 . § &8 ¢ E $
E g3 V24 285k £ 45504 28HkH3 £ 550428583
8 2 6 00 8 @ 3 ko 6 60 8 @ 3 o 6 0 0 & @
[ni]) | o m 3] | o m 0 | ie}
R 1) s O R 0 s O X 1) s O
0 s T " 0 s o " o s g "
o S o S o 3
Application

Platform BJVM 6EJVM 7

Figure 4.7: Impacts on energy usage of applying refactorings.

computations are shown in Figure 4.7. This figure is composed of 6 subfigures, one for
each refactoring. In each subfigure, the x-axis shows each of our 9 applications, and
the y-axis shows the percentage improvement in energy usage between the original and
refactored versions. For example, 2 subjects of Inline Method in Commons BeanU-
tils resulted in a percentage change of ~ 0.75%, whereas no subject of Extract Local
Variable resulted in a significant change in Commons Lang. Note that in this figure,
positive values on the y-axis indicate that energy usage improved (i.e., decreased) and
negative values indicate that energy usage degraded (i.e., increased). Also note that
the points have been “jittered” along the x-axis, to make it more obvious when several
points overlap. Finally, the shape of each dot indicates the platform that was used to

execute the subject: a e indicates that JVM 6 was used, and a A indicates that JVM 7

40

was used. As Figure 4.7 shows, the percentage change in energy usage ranges from
—7.50% to 4.54%.
Based on our investigations of the energy usage impacts of refactorings, we have
found that:
(1) It is possible that applying a refactoring can significantly impact the energy usage
of an application.
(2) All of our studied refactorings can both increase and decrease energy consump-
tion, except Extract Local Variable.
(3) The likelihood of causing an increase or decrease is approximately the same.
(4) Both beneficial and negative impacts have similar maximum percentage change

values.

RQ2: Consistency

The goal of our second research question is to determine whether refactorings
are consistent in how they impact energy usage: (1) within an application, (2) across
applications, (3) within a platform, and (4) across platforms.

To answer these questions, we again used the data presented in Table 4.4 and
Figure 4.7. For all 4 questions, it appears that the refactorings are not consistent in
their impacts. As Figure 4.7 indicates, the refactorings are not consistent within each
application. With the exception of Extract Local Variable, for each refactoring, there
is at least one subject of the refactoring that causes energy usage to increase and one
subject that causes energy usage to decrease within an application. For example, two
subjects of Convert Local Variable to Field cause the energy usage of Commons CLI
to increase and three subjects cause it to decrease.

As Figure 4.7 shows, the impacts of the refactorings are not consistent across
applications. In many cases, a refactoring that causes a significant difference several
times in one application never causes a significant difference in another application.
For example, Convert Local Variable to Field causes a significant decrease in the en-

ergy usage of Commons Math but does not cause a significant difference in Commons

41

Collections or Joda-Time. Moreover, a refactoring may decrease energy usage in one
application but increase it in another application.

Similarly, refactorings are not consistent within platforms. There are cases
where, when run on the same platform, refactorings both increase and decrease the
energy usage of different applications. For example, when run on JVM 7, Inline Method
decreases the energy usage of Commons IO but increases the energy usage of Commons
Math.

Finally, the refactorings are not consistent across platforms. Again, there are
cases where applying a refactoring will cause a significant change in energy usage when

run on JVM 6 but not when run on JVM 7, and vice versa.

RQ3: Predictability

One of the most common questions that is asked about energy usage is whether
or not it is strongly correlated with execution time. Intuitively, it makes sense that they
would be strongly correlated; the longer a program runs, the more energy it consumes.
However, this is not necessarily true [45]. It is possible for certain components such as
disk drives or Wi-Fi radios to consume significant amounts of energy even during short
executions. This is why our LEAP platform’s ability to profile not only the CPU, but
the disk and memory as well, is especially useful. With its capabilities, we can observe
the energy costs of the additional components.

We computed a correlation of 0.81 between the execution times and energy
usages of our subjects using Kendall’s tau, with @ = 0.05. This indicates that there
is a moderately strong positive correlation between execution time and energy usage.
Although this result fits with the accepted view, it was surprising for us. Because
our applications are CPU-bound and do not use the network or expensive sensors, we
expected a much stronger correlation.

To gain some additional insight into whether changes in execution time can be
used to predict changes in energy consumption, we identified the cases where applying

a refactoring significantly changes execution time. To do this, we used a procedure

42

Convert Local Variable to Field Extract Local Variable Extract Method

8,
6,
4
N ;] .
'|: 0 A a As A . 'Y A
c .) A . A .
o -2 * : ’ A . ‘ | A ...
2 4
5 .
niah
c -84
]
9]
E Inline Method Introduce Indirection Introduce Parameter Object
— 8,
=
4
0
> 2| . A
o . . .
a 04 r g N) 2 Y A . t i a 4 e A
£ A , A LI, A. L IO A s, A
= 24 7y A A
© N . .
S -4 A
_6, .
_8,
| |
L 3 @ 0 © £ t o 3 u 3 @ 0 @ £ t o 3 L 3 @ 0 9 £ ¢t o 3
=05 . 5 &8 $ESE T05§5 - &8 ¢ EIS T OS5 T G E L ED
c .85 0 4 2 E F © c . 8 0 4 2 £ F © c .8 O 4 2 & F ©
g O © . . 0 | =] g O © . . 0 | 3 g O ¢ . . 0 | 3
0 ° O 0 0 & 0 o ° O 0 0 &8 O o 2 O 0 0 &8 O
m o | ° 1] o | o m) | o
. O g 9O . O w O 3 0 s O
0 . g7 0 . g7 6] . g7
O n O L) O ~
Application

Platform DJVM GEJVM 7

Figure 4.8: Impacts on execution time of applying refactorings.

similar to the one we used to determine when a refactoring significantly impacted
energy usage. Again, we used the Mann-Whitney-Wilcoxon test with @ = 0.05 to
identify the cases where execution time was significantly changed. We then computed
the percentage difference between the means of execution times of the original and
refactored versions in each subject.

Figure 4.8 presents the results of these calculations. Like for Figure 4.7, Fig-
ure 4.8 is composed of 6 subfigures, one for each refactoring. The x-axis shows our
considered applications and the shape of the points shows whether the subject was
executed using JVM 6 or JVM 7. The only difference is that the y-axis now shows the
percentage improvement in execution time rather than the percentage improvement in

energy usage.

43

Looking at the results of this comparison, we found that ~ 11% of the time
(44 of the 394 cases), a significant change in one measure was not matched by a
significant change in the other measure. For the subjects run on JVM 6, there are
76 cases where either energy usage or execution time was significantly impacted by
applying a refactoring. For 6 of those cases, there was a significant change in energy
usage but not a significant change in execution time; for 16 of those cases, there was
a significant change in execution time, but not a significant change in energy usage.
In the remaining 54 cases, there was both a significant change in energy usage and in
execution time. Similarly, for the subjects run on JVM 7, there were 16 times when
there was a significant change in execution time but not a significant change in energy
usage, 6 times when there was a significant change in energy usage but not change in
execution time, and 43 times when there was a change in both.

Consequently, we believe that, while energy usage and execution time are roughly
correlated, execution time alone is unlikely to be an accurate enough predictor of energy
usage. A more complex model is needed to account for the situation that execution
time itself is unable to explain.

In addition to looking at overall execution times, we also considered whether
the dynamic execution count of the locations where the refactorings were applied could
predict changes in energy usage. Again, we computed Kendall’s tau to check for a
correlation. We computed a correlation score of —0.04 with o = 0.05. This means
that there is essentially no correlation between energy usage and the number of times
the location where refactoring is made is executed. As such, we believe that execution

counts are a poor predictor of energy usage impacts.

4.4.3 Summary
In this section, we have presented an empirical study that investigates the im-
pacts of applying refactorings on energy usage. As subjects for the study, we used 197

instances of six commonly used refactorings to nine real Java programs of varying sizes

44

and characteristics. In total, we ran 10300 executions across two separate platforms.
The results of this study demonstrate that:

(1) All studied refactorings can statistically significantly impact the energy usage of
an application.

(2) All studied refactorings have the potential to both increase and decrease energy
usage, with the exception of Extract Local Variable which we only observed to
decrease energy usage.

(3) The impacts of the refactorings do not appear to be consistent across or within
applications, or across or within platforms.

(4) More commonly used and easily collectible information such as execution time
and dynamic execution counts are unlikely to be able to accurately predict the

energy impacts of applying a refactoring.

4.5 Studies of Code Obfuscations

Software piracy is an important concern for application developers. Such con-
cerns are especially relevant in mobile application development, where piracy rates
can be greater than 90 % [18]. The most commonly used approach by developers for
preventing software piracy is code obfuscation. Basically, code obfuscation makes the
code of applications more difficult for a human to understand by using different types
of transformations such as renaming variables and methods; merging, splitting, and
reordering code, etc. Both Microsoft and Google strongly recommend that develop-
ers obfuscate their applications [41, 79]. Google has even gone so far as to integrate
obfuscation into the standard Android build system.

However, the decision to apply code obfuscation is performed without regard to
their impacts on another area of increasing concern for mobile application developers,
energy usage. As a result, an obfuscated application may consume an excessive amount
of power, draining the battery and causing users to leave poor reviews or request

refunds [7].

45

Because both software piracy and battery life are important concerns, mobile
application developers must strike a balance between (1) protecting their applications
and intellectual property, and (2) preserving the limited battery power of the devices
where their applications will execute. A major obstacle to striking an appropriate
balance between these concerns is a lack of information about how changes to an
application impact its energy usage. As a result, developers must either make a poorly
informed choice, or more commonly, use an obfuscation tool’s default configuration.
Unfortunately, these approaches often result in applications that either consume more
energy than necessary or are not protected as effectively as they could be.

To address the lack of information available to developers, we investigated the
energy impacts of applying 18 code obfuscations by creating a total of 198 obfuscated

versions of 11 Android applications.

4.5.1 Experiment-Specific Methodology
This section describes the details of our study design, including our indepen-
dent and dependent variables, considered applications and scenarios, obfuscation ap-

proaches, and experimental procedure.

4.5.1.1 Experimental Variables

In this study, we considered one dependent variable, the amount of energy con-
sumed by the execution of an application, and one independent variable: the obfusca-
tion applied to an application.

To isolate the impacts of changing our independent variable on our dependent
variable, it is necessary to control for the effects of several extraneous variables (e.g.,
unnecessary changes in the considered application’s code and the inputs used to drive
the application). The remainder of this section describes how we controlled for such

extraneous variables.

46

Controlling for extraneous changes in an application’s code

In many cases, obfuscations are not formally specified. Because of this, different
tools may use the same name to refer to different sequences of code changes. For
example, many obfuscation tools provide a transformation called “string encryption”.
At a high level, all of these transformations perform the same operation: encrypting the
constant strings in an application so that they cannot be easily understood. However,
the specific encryption algorithm used can vary greatly. This flexibility in nomenclature
can be a potential source of bias and a potential source of confusion in interpreting the
results of the study. If we compared the impacts of obfuscations that were inconsistently
applied, we would essentially be comparing different transformations. Similarly, if a
developer would apply a substantially different set of code edits that happen to share
the same name as one of the obfuscations that we studied, the results that they observe
could be drastically different than what we observed.

To avoid these potential problems, we ensured that all obfuscations were applied
in a consistent, repeatable, and well documented manner. To accomplish this, we
relied on several commonly used obfuscation tools (see 4.5.1.4). By using preexisting,
automated tools, we ensured that the changes we made to our considered applications
are the same changes that a developer would apply if they applied the same obfuscations

using the same tool.

Controlling for inconsistencies in executing an application

In general, mobile applications are interactive and event-driven. They accept
input, either from a user or from a sensor, perform some computation, and generate a
response. In our experiments, this interactive nature can introduce a potential source
of bias as it is difficult to manually reproduce a given execution exactly. For example,
a user can often repeatedly perform the same sequence of actions (e.g., enter text into
a textbox or click a button) but cannot maintain the same timing between the actions.
Although such differences may seem inconsequential, they may lead to observed dif-

ferences in energy usage that are not due to changing our independent variable, but

47

rather to differences in how the application is driven. In order to prevent such bias, it
is necessary to be able to reproduce deterministically a given sequence of actions with
great fidelity. Capture/replay tools provide this functionality.

Capture/replay tools are designed to allow for the deterministic replay of a
sequence of recorded events. Conceptually, this is accomplished by wrapping an appli-
cation to insulate it from its environment. When capturing, the wrapper records all of
the events that are passed to the application from the environment. When replaying,
the wrapper replaces the environment and passes the recorded events to the applica-
tion. Because precise timing information is recorded during the capture process, there
is very little variability in when events are passed to the application during replay.
Hence, when using a capture replay tool, any observed variations in energy usage are
more likely to be the result of the obfuscations used rather than inconsistencies in
driving the application.

We chose to use RERAN as our capture/replay tool, because it is designed to
record and replay Android applications [40]. Also, RERAN has a lightweight imple-

mentation and its run-time overhead is low, close to 1 %.

4.5.1.2 Considered Applications

As the applications for our study, we used popular, easily accessible Android
applications. We selected Android applications for several reasons. First, Android ap-
plication developers typically care about both the security of their intellectual property
and the energy efficiency of their applications. Second, there are many existing obfus-
cation tools that specifically target Android applications, or, more generally, operate
on Java code, that we can use. Third, the source code of many Android applications is
freely available, allowing us to easily create many different obfuscated versions. Finally,
we have extensive infrastructure to run Android applications and measure their energy
usage.

Table 4.5 lists the specific applications that we selected. The first two columns,

Application and Description, list the name of each application and a brief description

48

Table 4.5: Considered applications.

Application Description LoC Size (MB)
AnkiDroid Flashcard application 44913 2.4
Calculator Default Android calculator 1427 2.6
Calendar Default Android calendar 41715 1.4
Clock Default Android clock 13477 1.0
DailyMoney Daily financial tracker 8723 0.4
FrozenBubblePlus Bubble popping puzzle game 7517 0.2
Nim Mathematical strategy game 1475 0.8
OlIFileManager File manager 7200 0.7
OpenSudoku Sudoku game 6079 0.2
SkyMap Astronomy application 10921 0.7
Tomdroid Note taking application 7955 0.6

of its functionality. The third column, LoC. shows the application’s number of lines of
code and the final column, Size, shows the size of the application’s compiled application
package file (APK). The LoC measurement includes only the application itself, while
the size measurement includes both the application and its necessary libraries. Because
our studied obfuscation tools obfuscate both the application and its libraries, even when
the source of such libraries is unavailable, we chose to report both measures to give a
better understanding of the amount of code that is being obfuscated.

We chose these specific applications for several reasons. First, they are rep-
resentative of a wide variety of common application types (e.g., games, study aids,
productivity tools, etc.). Second, they are popular and widely used. For example,
Calculator, Calendar, and Clock are part of the default Android installation. Finally,
they are supported by RERAN. Although RERAN is generally effective at replaying
user inputs, such as touch events, it does not support replaying network connections
or other sensor readings (e.g., GPS). As such, we were unable to include applications
that depend on these types of inputs.

Note that in order to experiment with these applications successfully, we needed
to modify them slightly. Primarily, the modifications were made to their build systems

so that we could automate the obfuscation processes, but in some cases, we also needed

49

to modify the application’s source code to remove sources of randomness that are not
handled by RERAN (e.g., we modified the random number generator to use a fixed
seed).

4.5.1.3 Considered Usage Scenarios

Our considered applications are driven primarily by user input. To create the
inputs necessary for driving the applications, we examined each application and created
one or more usage scenarios. Our goal in creating these scenarios was to capture what
we believe to be typical usage patterns for the application (i.e., actions that users are
likely to perform). By focusing on typical scenarios rather than scenarios designed to

maximize other metrics such as coverage, we were able to gain a better understanding

of the impacts of obfuscations on a user’s daily interactions with their mobile device.

Table 4.6: Considered usage scenarios.

Application Name Description
AnkiDroid New Deck Create a new slide deck containing 5 cards.
Tutorial Deck Review the 20 cards in the tutorial deck.
Calculator Advance Perform several advanced arithmetic calculations.
Standard Perform several basic arithmetic calculations.
Calendar Add Event Add a new event, search for it, delete it.
Clock Interval Create intervals while running the stopwatch.
Stopwatch Run the stopwatch for 10 seconds.
Timer Run a 10 second countdown timer.
DailyMoney Add Detail Enter two transactions.
View Lists View details and balances.
FrozenBubblePlus Level 1 Play the first level.
Nim Easy Al Play three rounds with increasing difficulty levels.
OlFileManager Create File Create 2 folders, nest folders, delete folders.
Play File View 4 pictures and play a ringtone 3 times.
View File Open a file. Navigate directories.
OpenSudoku Easy Level 1 Complete a single “easy” Sudoku grid.
Hard Level 1 Complete a single “hard” Sudoku grid.
SkyMap Find Mars Set time to a fixed past date, searches for Mars.
Move Zoom Arbitrarily zoom in/out, moves along the map.
Show Component Show each component, toggle night mode.
Tomdroid Notes Create a note, search for text, open the note, delete the note.

20

Table 4.6 shows the specific usage scenarios that we created. The first two
columns, Application and Name, show the application that is used in the scenario
and a distinguishing name. For example, AnkiDroid has two scenarios, AnkiDroid:
New Deck and AnkiDroid: Tutorial Deck. The third column, Description, provides a
brief description of what user actions are performed during the scenario. For example,
during the AnkiDroid: New Deck scenario, a new flash card deck is created and five
flash cards are added to the newly created deck. In total, we created 21 scenarios for
our applications: three for Clock, OIFileManager and SkyMap; two for AnkiDroid,
Calculator, DailyMoney, and OpenSudoku; and one for Calendar, FrozenBubblePlus,

Nim, and Tomdroid.

4.5.1.4 Studied Code Obfuscations
Obfuscation Tools

We had two requirements when choosing obfuscation tools. These were that the
tools could (1) obfuscate Android applications, and (2) be easily integrated into the
standard Android build system. Because we are repeatedly obfuscating multiple ap-
plications, manually applying obfuscations is infeasible. Unfortunately, these require-
ments eliminated the majority of the free or open source Java obfuscation tools. While
such tools can work well for standard Java software, they either introduce changes that
result in invalid Android applications when the obfuscated class files are converted to
the dex format or they cannot be integrated into the Android build system. The only
free obfuscation tool that we found that met our requirements was Proguard 4.10 [97],
which is the obfuscation tool that is bundled with the Android Software Development
Kit.

Because of the limited number of free tools that met our requirements, we also
considered commercial obfuscation tools. Here, we found tools that were more likely to
fulfill our requirements. However, their trial or evaluation versions are often limited in
functionality (e.g., they only obfuscate parts of an application, or do not support the

full suite of configuration options). As such, they are not suitable for our study. To

o1

obtain full-featured versions, we emailed the tool developers and asked if they would
be willing to donate a copy of their obfuscation tool. As the result of this process, we
obtained copies of three commercial obfuscation tools: Allatori 4.7 [2], DashO 7.2 [27],
and Zelix KlassMaster 6.1.3 (ZKM) [122].

Obfuscation Configurations
After reading the manuals of Allatori, DashO, Proguard, and ZKM, we identified

several, common high-level configurations or obfuscation types:

* Control-flow (cf): Produces “spaghetti logic” that is difficult or impossible to
decompile by inserting branching and conditional instructions into the body of a

method.

* Rename (rename): Renames packages, classes, methods, and fields to short mean-
ingless names (e.g., “a”, “b”, etc.) and, if possible, moves classes into a single

package.

* Optimize (opt): Removes unused classes, fields, methods, and attributes; per-
forms simple bytecode optimizations (e.g., peephole optimizations); removes dead

code.

* String encryption (se): All constant strings in the application are replaced with
an encrypted version; decryption methods are added so that strings can be de-

crypted at runtime.
* All (all): Combines all other configurations supported by an obfuscation tool.

Information about the effectiveness of these types of obfuscations can be found
in related studies (e.g., [21, 22]). Note that, while the specific changes made by each
tool for each configuration may vary (e.g., different string encryption algorithms may
be used or branches may be inserted in different locations), from the point of view of
an application developer, the results are essentially identical. In addition, not every

configuration is supported by every tool.

52

Table 4.7: Studied obfuscations.

Supported Configurations

Obfuscation tool all opt rename cf se

Allatori v v v v v
DashO v oo v v v v
Proguard v v v

ZKM v v v v v

Table 4.7 shows which configurations are supported by which tools. The first
column, Obfuscation tool, shows our studied obfuscation tools and the remaining five
columns, all, opt, rename, cf, and se, show our studied configurations. A checkmark
(v') indicates that a configuration is supported by a tool and a blank space indicates
that a configuration is not supported. As the table shows, there are 18 supported
combinations. In the remainder of the sections, we will refer to a combination of an
obfuscation tool and an obfuscation configuration as an obfuscation. To the best of
our knowledge, the studied obfuscations are deterministic in that multiple applications

of the obfuscation to the same application produce identical results.

4.5.1.5 Additional Energy Measurement Platforms (EMPs)

To investigate the impacts of code obfuscations in a wider range of platforms,
we used two additional custom-built Energy Measurement Platforms (EMPs) that we
could access. Similar to our EMPs, these EMPs are based on a commercial Android
smart-phone platform. The first EMP is based on a Nexus 3 with 32 GB of storage
running Android version 4.3 (Jelly Bean), and the second EMP is based on a Samsung
Galaxy S II with 16 GB of storage running Android version 4.3 (Jelly Bean). Figure 4.9
shows a picture of the Galaxy S II-based EMP. The Nexus 3-based EMP is identical
except that a Nexus 3 phone is used in place of the Galaxy S II.

These EMPs use a Monsoon Power Monitor from Monsoon Solutions Inc as an

external source to power the devices [82]. The Monsoon Power Monitor also samples

23

Figure 4.9: Design of the EMPs for the Nexus 3/Galaxy S II .

the voltage and current draw of the phone. It is equipped with a dual range, self-
calibrating, integrating system. It has two current ranges with a 16-bit analogue-
to-digial converter (ADC), one with a high-resolution range, and the other with a
low-resolution range. Software continuously calibrates each of these and selects the
proper range during measurement. It reports voltage measurements in volts (V) and

current measurements in milliamps (mA).

4.5.1.6 Experimental Procedure
Figure 4.10 shows, at a high-level, the procedure we followed in this study,
divided into four main steps: Subject Creation, Replay-able Execution Creation, Data

Collection, and Post Processing. The remainder of this section describes these steps in

detail.

o4

4 Obfuscators 5 Configurations

gy

Subject)
Creation A6 Suibjests —L Data Collection

T
- 47,880 Power Post Energy
11 Applications Profiles (~15 GB) Processing | Usage Data
Galaxy S I
Galaxy S5
Replay-able 84 Replay-able 4|->
Execuglon > Executions
Creation

!

21 Usage Scenarios
Figure 4.10: High-Level Experimental Procedure of Code Obfuscations.

Replay-able Execution Creation

The first step in our procedure is to create our set of replay-able executions.
To create the replay-able executions, we manually performed the actions contained
in each scenario while using RERAN’s recording tool. Because the replays produced
by RERAN are not portable across mobile phone platforms, we created four replay-
able executions for each scenario, one for each of our considered EMP platforms. This
resulted in a total of 84 replay-able executions (21 scenarios x 4 platforms). As a sanity
check, we then verified that RERAN could accurately replay each execution by running
RERAN with the replay-able execution as input and observing the replayed executions.
Table 4.8 shows the durations of the replay-able executions for each scenario. The
first two columns, Application and Name show the scenario from Table 4.6 and the
remaining four columns, Nezus 3 through Galaxy S5, show the duration of the replay-

able execution for each platform in seconds (s).

95

Table 4.8: Recorded execution durations.

Duration (s)

Application Name Nexus 3 Nexus 4 Galaxy SII Galaxy Sh
AnkiDroid New Deck 87 128 83 129
Tutorial Deck 64 60 108 95
Calculator Advance 51 79 60 74
Standard 54 58 57 43
Calendar Add Event 108 108 113 104
Clock Interval 28 65 32 64
Stopwatch 18 20 19 19
Timer 21 19 23 20
DailyMoney Add Detail 30 34 50 61
View Lists 14 16 23 30
FrozenBubblePlus Level 1 29 36 27 45
Nim Easy Al 43 75 61 78
OlFileManager Create File 46 60 80 58
Play File 60 59 52 55
View File 22 18 22 36
OpenSudoku Easy Level 1 138 273 237 172
Hard Level 1 145 135 223 129
SkyMap Find Mars 49 42 56 58
Move Zoom 21 65 19 63
Show Component 90 100 68 101
Tomdroid Notes 72 173 62 131

Subject Creation

The second step in our procedure is to create our set of obfuscated applications.
To create the necessary obfuscated versions, we obfuscated each application (see Ta-
ble 4.5) using each obfuscation (see Table 4.7). In total, we created 198 obfuscated

applications: 11 applications, each with 18 obfuscated versions.

o6

Data Collection

The third step in our procedure is to collect power usage data. To collect power
usage data, we used RERAN to replay each replay-able execution (see Table 4.8) on
the corresponding EMP, using both the unobfuscated and obfuscated versions of the
scenario’s application. For each EMP, each replay-able execution was executed on each
version of the application (unobfuscated and obfuscated) 30 times as is suggested by
well-known guidelines for empirical study design [8]. While each scenario was executing,
we recorded the current and voltage measurements using the EMP.

While the EMP itself does not introduce measurement overhead, the replay
infrastructure does—to replay a recorded execution, RERAN installs an application
on the phone that injects events into the Android kernel’s device drivers. However,
because the RERAN process spends most of its time sleeping—it only wakes up to
inject events—its overhead is negligible. In addition, because we are concerned with
energy usage relative to a base line (i.e., before and after applying an obfuscation)
rather than absolute numbers, and the energy costs are consistent across executions,
factoring out this cost is not necessary.

To reduce the possibility of noise in the measurements, we terminated all un-
necessary applications and processes and, when possible, enabled “airplane mode.”
Although we eliminated many possible sources of noise by carefully configuring the
EMPs, small fluctuations in energy usage from execution to execution were still pos-
sible. For example, garbage collection or other operating-system level processes that
could not be disabled may have been able to impact energy usage. Multiple runs (i.e.,
30) allowed us to perform a statistical analysis on the impact of obfuscations that took
into account the possibility of such fluctuations.

In total, we ran 47880 executions—21 scenarios x (18 obfuscated versions +
1 unobfuscated version) x 30 repetitions x 4 EMPs—which took &~ 924 hours (over
5 weeks) of continuous execution time and resulted in over 15 GB of raw power con-

sumption data.

57

Post Processing

The final step in our procedure is to post-process the collected data by filtering
it and converting it to a usable form. We first filtered the data to remove samples
that occurred either before or after the execution. We then converted the current and
voltage samples to power measurements in watts by multiplying them together and
then dividing by 1000: watts (W) = volts (V) x milliamperes (mA) <+ 1000. Finally,
we converted the resulting power measurements to total energy usage in joules by
summing the results of multiplying each power measurement by the length of time

between itself and the following sample: joules (J) = watts (W) X seconds (s).

4.5.2 Data Analysis and Discussion
We refined our overall question of whether or not applying obfuscations can

impact the energy usage of an application into the following specific research questions:

e RQ1: Impact — Do obfuscations impact the energy usage of an application? If

so, how?

e RQ2: Consistency — Are there any significant differences in the impacts of the

studied obfuscation tools or the studied obfuscation configurations?

e RQ3: Importance — Are the impacts of applying obfuscations likely to be mean-

ingful or noticeable to a typical mobile application user?

The remainder of this section discusses the results of our study in terms of
these research questions. Note that in answering these questions, we are analyzing the
data for each platform separately. Because the replay-able executions are not identical
(Section 4.5.1.6), it would be inappropriate to analyze the impacts of the obfuscations

across platforms.

RQ1: Impact
To gather the data necessary to answer our first research question, we performed

Mann-Whitney-Wilcoxon (wilcox) tests to determine whether the difference between

o8

the amount of energy consumed by each scenario when run using the unobfuscated
version of the application and each obfuscated version of the application is statistically
significant. To check for statistical significance, we chose to use the Mann-Whitney-
Wilcoxon test because we have one nominal variable (the obfuscation applied to the
application), one measurement value (the amount of energy consumed by the execu-
tion), and the test does not require that the data be normally distributed. The resulting
p values were adjusted using Benjamini & Hochberg’s false discovery rate controlling
method to account for performing multiple comparisons [13]. We chose an alpha («)
of 0.05 and used R version 3.0.3’s implementation of the test (i.e., wilcox.test). Of
the 1512 tests that we conducted, 378 (21 scenarios x 18 obfuscations) for each of our
4 platforms, 791 (=~ 52 %) indicated a statistically significant difference in the amount
of energy consumed by the unobfuscated and obfuscated versions. For each platform,
the number of statistically significant differences was 229 (=~ 61 %) for the Nexus 3,
282 (=~ 75 %) for the Nexus 4, 107 (=~ 28 %) for the Galaxy S II, and 173 (=~ 46 %) for
the Galaxy S5.

For the cases where there is a statistically significant difference (i.e., p < 0.05),
we computed Vargha and Delaney’s Ay, statistic to calculate the size of the effect of
applying the obfuscation [115]. Vargha and Delaney’s Ay statistic is a simple linear
transformation of Cliff’s §: 12112 = (6+1)/2. We prefer Alg because it is in the interval
[0, 1], while ¢ is in the interval [—1,1]. Eliminating the negative sign makes Figures
4.11a, 4.11b, 4.11c, 4.11d more readable. In general, the Ay, statistic ranges from 0
to 1 and indicates, on average, how often one technique outperforms another: when
A is exactly 0.5, the two techniques achieve equal performance; when Ay, is less than
0.5, the first technique performs worse; and when Ay is greater than 0.5, the second
technique is worse. The closer 12112 is to 0 or 1, larger the effect. For our data, Alg
represents the probability that the unobfuscated version consumes more energy than
the obfuscated version.

Figures 4.11a, 4.11b, 4.11c, 4.11d show the Ay, statistics that we calculated.

In the figures, the y-axis shows the considered scenarios and the x-axis shows each

29

all opt rename se

AnkiDroid: New Deck
AnkiDroid: Tutorial Deck 4
Calculator: Advance -
Calculator: Standard <
Calendar: Add Event
Clock: Interval

Clock: Stopwatch 4

|

Nim: Easy Al 4
Medium: [0.25, 0.33]

Clock: Timer | Effect size
.2 DailyMoney: Add Detail | Large: (0.75, 1]
g DailyMoney: View Lists Medium: (0.66, 0.75]
o
ﬁ FrozenBubblePlus: Level 14 - Small: (0.5, 0.66]
o Small: 0.3, 0.5)
o)
©
[}
)

OlFileManager: Create File
. . Large: [0, 0.25]
OlFileManager: Play File
OlFileManager: View File
OpenSudoku: Easy Level 14
OpenSudoku: Hard Level 14
SkyMap: Find Mars 4
SkyMap: Move Zoom 4

SkyMap: Show Component -

Tomdroid: Notes 4

DashO-
ZKM-|
Allatori-
DashO-
ZKM-

Allatori

g
<

Proguard
Proguard
Proguard

Obfuscation Tool

Figure 4.11a: Vargha and Delaney’s Am—probability that an unobfuscated version
consumes more energy than an obfuscated version when run on the Nexus 3 platform.

opt rename cf

=N

AnkiDroid: New Deck
AnkiDroid: Tutorial Deck

Calculator: Advance
Calculator: Standard -
Calendar: Add Event

Clock: Interval

Clock: Stopwatch 4

Nim: Easy Al {
OlFileManager: Create File Medium: [0.25, 0.33]

Clock: Timer 4 Effect size
.g DailyMoney: Add Detail { Large: (0.75, 1]
% DailyMoney: View Lists - Medium: (0.66, 0.75]
() FrozenBubblePlus: Level 1 Small: (0.5, 0.66]
[} Small: 0.3, 0.5)
g
1%
o}

. . Large: [0, 0.25]
OlFileManager: Play File 4

OlFileManager: View File
OpenSudoku: Easy Level 1
OpenSudoku: Hard Level 1

SkyMap: Find Mars 4
SkyMap: Move Zoom

o
w
r

SkyMap: Show Component -

{ Lk

Tomdroid: Notes -

11.LLN M

Allatori l

— .
T o Tt 3 H [T 0 T 3 o 3 T 5 3
g £ 5 < g 5 2 £ 5 X = I~ 2 £ 4
= a 3 N = 3 = a 3 N a N L} a N
= o = o = o =
T 0 g < g I 0 g a T 0
o [N [N

Obfuscation Tool

Figure 4.11b: Vargha and Delaney’s Alg—probability that an unobfuscated version
consumes more energy than an obfuscated version when run on the Nezus 4 platform.

60

all opt rename se

AnkiDroid: New Deck
AnkiDroid: Tutorial Deck 4

Calculator: Advance 1
Calculator: Standard -
Calendar: Add Event 0.34

Clock: Interval

')

Clock: Stopwatch 4

Clock: Timer | Effect size
DailyMoney: Add Detail Large: (0.75, 1]
DailyMoney: View Lists Medium: (0.66, 0.75]
FrozenBubblePlus: Level 14 Small: (0.5, 0.66]
Small: [0.33, 0.5)

Nim: Easy Al 4
Medium: [0.25, 0.33]

Usage Scenario

OlFileManager: Create File
Large: [0, 0.25]

OlFileManager: Play File

OlFileManager: View File

OpenSudoku: Easy Level 1
OpenSudoku: Hard Level 14
SkyMap: Find Mars 4
SkyMap: Move Zoom 4

SkyMap: Show Component -

Tomdroid: Notes 4

Allatori-
DashO-
Proguard-(
ZKM-
Allatori-
DashO-|
Proguard-(
ZKM-
Allatori-
DashO-
Proguard-(
ZKM-
Allatori-
DashO-
ZKM-|
Allatori-
DashO-
ZKM-

Obfuscation Tool

Figure 4.11c: Vargha and Delaney’s Au—probability that an unobfuscated version
consumes more energy than an obfuscated version when run on the Galazy S II plat-

form.

7
@

all rename

AnkiDroid: New Deck
AnkiDroid: Tutorial Deck

Calculator: Advance

I lO
k=l

Calculator: Standard -
Calendar: Add Event
Clock: Interval

Clock: Stopwatch -

| &
XSk Ir

Allatori
DashOr

Clock: Timer 4 Effect size
DailyMoney: Add Detail 0.33 Large: (0.75, 1]
DailyMoney: View Lists - Medium: (0.66, 0.75]
FrozenBubblePlus: Level 19 Small: (05, 0.66]
Small: 0.3, 0.5)

Nim: Easy Al {
Medium: [0.25, 0.33]

Usage Scenario

OlFileManager: Create File
)) Large: [0, 0.25]
OlFileManager: Play File 4

OlFileManager: View File

1

OpenSudoku: Easy Level 1
OpenSudoku: Hard Level 1
SkyMap: Find Mars 4
SkyMap: Move Zoom

SkyMap: Show Component -

o il

Allatori
DashOr

Tomdroid: Notes -

£l

Proguard

vk |

Proguard

ZKM:
ZKM:
Allatori
DashOr
ZKMr
ZKM:

Allatori
DashOr
Allatori
DashOr
Proguard

Obfuscation Tool

Figure 4.11d: Vargha and Delaney’s A;,—probability that an unobfuscated version
consumes more energy than an obfuscated version when run on the Galazy S5 platform.

obfuscation (combination of obfuscation tool and obfuscation configuration). For ex-
ample, the first grouping shows the Ay statistics computed between the unobfuscated
version of each application and the obfuscated versions produced by each obfuscation
tool when using the all configuration. The color of each cell indicates the size and
direction of the effect. Cells colored blue indicate cases where the unobfuscated version
is more likely to consume more energy than the obfuscated version (i.e., Ay > 0.5) and
cells that are colored red indicate cases where the unobfuscated version is more likely
to consume less energy than the obfuscated version (i.e., Ay < 0.5). In addition, the
color’s saturation indicates the size of the effect with the highest saturation indicating
a “large” effect (12112 between 0.75 and 1.0 or between 0 and 0.25), a “medium” effect
(Alg between 0.66 and 0.75 or between 0.25 and 0.33), or a “small” effect (AIQ between
0.5 and 0.66 or between 0.33 and 0.5). Absent values indicate cases where there is not
a statistically significant difference in energy usage between the versions.

From this data, we observe that, when all platforms are considered, obfuscations
have a generally negative impact on energy usage (i.e., they increase energy usage). In
496 out of the 791 cases when there is a statistically significant difference in energy usage
(~ 63 % of the time), the obfuscated version is more likely to consume more energy
than the unobfuscated version. In the remaining 295 cases (=~ 37 % of the time), the
obfuscated version is more likely to consume less energy than the unobfuscated version.
In addition, the size of the effect is most often “large”: the effect size is “large” for 575
cases (= 73 % of the time), “medium” for 204 cases (=~ 26 % of the time), and “small”
for 12 cases (~ 1% of the time).

When considered individually, obfuscations also have a negative impact for ap-
plications that are executed on the Nexus 4 and Galaxy S5. In 235 out of the 282 cases
(=~ 83 % of the time) for the Nexus 4 and 127 out of the 173 cases (=~ 73 % of the time)
for the Galaxy S5, when there is a statistically significant difference in energy usage,
the obfuscated version is more likely to consume more energy than the unobfuscated
version. For applications that are executed on the Galaxy S II, the obfuscations have

a more balanced impact. For only 55 out of the 107 cases (= 51 % of the time) the

62

obfuscated version is more likely to consume more energy than the unobfuscated ver-
sion. Finally, for applications that are executed on the Nexus 3, obfuscations have a
more positive impact. For 150 out of the 229 cases (= 66 % of the time) the obfuscated
version is more likely to consume less energy than the unobfuscated version.

Next, we investigated the magnitude of the differences caused by the obfusca-
tions. To determine the magnitude of the differences, we again focused on the cases
where there is a significant difference in energy usage. For each combination of user
scenario and obfuscation, we calculated the percentage change in mean of the energy
usage between the obfuscated and the unobfuscated versions. The results of these com-
putations are shown in Figures 4.12a, 4.12b, 4.12¢, 4.12d. The layout of these figures is
similar to the layout of Figures 4.11a, 4.11b, 4.11c, 4.11d. The y-axis shows the usage
scenarios and the x-axis shows the obfuscations. The content of each cell shows the
percentage change in mean energy usage. Again, the color of each cell indicates the
direction and magnitude of the change. Blue cells indicate cases where the percentage
change is negative (i.e., energy usage decreased), red cells indicate cases where the per-
centage change is positive (i.e., energy usage increased); darker colors indicate larger
values, and absent values indicate cases where there is not a statistically significant
difference in energy usage.

Across all platforms, the percentage change in mean energy usage ranges from
~ —10.1% to ~6.9% with a median and mean value of ~ 0.5%, and a standard
deviation of ~ 2.1 percentage points. For the Nexus 3, the percentage change in mean
energy usage ranges from ~ —10.1% to ~ 3.2% with a median value of ~ —0.7%, a
mean value of & —1.1 %, and a standard deviation of & 2.2 percentage points. For the
Nexus 4, the percentage change in mean energy usage ranges from ~ —3.7 % to =~ 6.6 %
with a median value of ~ 1.2 %, a mean value of ~ 1.5 %, and a standard deviation of
~ 1.6 percentage points. For the Galaxy S II, the percentage change in mean energy
usage ranges from ~ —5.5% to &~ 5.5% with a median value of ~ 0.2 %, a mean value
of ~ 0.01%, and a standard deviation of ~ 2.0 percentage points. For the Galaxy S5,

the percentage change in mean energy usage ranges from ~ —1.6 % to ~ 6.9 % with a

63

all opt rename cf se

AnkiDroid: New Deck{ -0.88 0.52 -0.82 0.72 155 -0.64 0.67 013 010 0.16 -050 0.60 0.34 -0.34
AnkiDroid: Tutorial Deck{ -1.32 -2.53 -2.74 -3.82 -2.74 -0.83 -2.18 -334 -153 -0.74 019 -040 -0.62 0.38 -2.69 -2.38
Calculator: Advance 4 -1.01 -0.73 -0.91 G231 E R 20197/ -140 -0.72 -0.88 -1.24 -0.85 -1.04 -0.81 -0.57 -0.66 -1.30
Calculator: Standard{ -0.13 -0.65 -0.56 -0.36 -0.98 -1.06 -0.83 -0.51 -1.00 -0.61 -0.61 -1.03 -0.81 -0.98 -0.48 -0.66 -0.45 -0.64
Calendar: Add Eventq 0.48 -0.25 -0.22 -0.38 -0.47 -0.24 -0.20 -0.34
Clock: Interval{ 0.86 0.76 053 045 042 067 1.09 0.73 0.67
Clock: Stopwatch
Clock: Timer -197 -0.63 -1.51 -0.80 -1.24 -0.68 -0.97 -1.60 -0.50 -052 -1.73
2 DaiyMoney: Add Detail{ -0.27 0.32 -0.28 % czhsange
g DailyMoney: View Lists - 0.78 1.60 00
ﬁ FrozenBubblePlus: Level 14 -0.84 -0.95 -0.82 -0.83 -0.75 114 -0.96 -0.50 -25
% Nim: Easy Al { 087 -1.69 :z
S OlFileManager: Create File - 0.94 -1.60 -1.51 -1.67 -0.52 040 -0.54 -0.78 -1.63 -0.76 -0.68 -1.01 1.37 I _1;)0
OlFileManager: Play File{ 0.73 -0.80 -0.95 102 074 -041 -1.08 0.54 0.72 3.16
OlFileManager: View File{ 032 073 -270 -2.67 -2.58 - 0.65 -1.99 - -2.50 - -1.56 - 250
OpenSudoku: Easy Level 14 -0.25 -1.09 -0.72 -129 -131 -0.95 -0.59 -1.39 -047 -0.02 -0.43 -0.95 -0.78 -1.22
OpenSudoku: Hard Level 14 -0.09 -0.18 -0.70 0.29 -0.27 -0.19 -0.68 0.42 024 0.0 -0.60

SkyMap: Find Mars{ -1.50 - =&
SkyMap: Move Zoom- -1.68 -4.33 -3.89

-1.89 -249 -1.20 - -121 -0.95 -2.24 -447 -504 024 -428
-352 -3.72 -222 -0.98 Bl -121 -1.97 -2.46 —3.96- -1.97 R=Si80;

SkyMap: Show Componenty 1.07 -0.78 -0.79 164 141 088 -0.83 116 -086 250 -0.45 232 -0.63 147
Tomdroid: Notes{ 0.37 0.21 0.35 0.17 0.22 027 036 050 0.18
g 2 F - g 2 F £ s 2 5 2 2
= a 3 N] a 3 N s a 3 N k) a N 8 a N
= D = =} = <) = =
< fa} S < a S < a) S < a < a
o a [N

Obfuscation Tool

Figure 4.12a: Percent change in mean energy usage when using an obfuscated version
instead of an unobfuscated version when run on the Nezus 3 platform.

all opt rename cf se
AnkiDroid: New Deck{ 1.26 - 1.01 -0.16 119 - 219 - 0.87 - 081 - -0.63 -
AnkiDroid: Tutorial Deckq 0.44 0.63 -0.59 -0.74 -0.73 -0.52 -0.53 -0.45
Calculator: Advanceq 055 053 046 048 067 143 032 056 066 0.68 038 053 058 050 131 050 041 154
Calculator: Standard < 0.40 047

Calendar: Add Event{ 0.49 087 038 0.89 119 150 019 118 096 063 -010 188 119 060 145 110 063 142
Clock: Interval{ 251 252 182 326 247 310 204 299 251 319 251 318 236 287 330 250 322 330
Clock: Stopwatch4 1.37 121 1.02 -049 223 206 141 148 216 224 157 199 224 219 201 217 126
Clock: Timer4{ 289 299 231 317 -0.89 332 345 - 3.42 3.55 - 3.52

0
g DailyMoney: Add Detail{ 2.37 225 212 164 259 241 184 213 167 190 322 % Change
© : - 6
R —— 20 | |aon Vs8] ses sz |8 37 210 :
[‘]’) FrozenBubblePlus: Level 11 055 -0.64 -1.01 041 034 081 0.49 0.84 0.47 1.58 0.26 2
% Nim: Easy Al{ -0.20 0.08 021 -027 -012 025 011 039 0.03 -0.12 0.02 0.11 0
S OlFileManager: Create File{ 1.10 1.01 099 0.90 115 087 087 071 082 097 085 094 0.89 090 097 095 096 110 2
OlFileManager: Play File{ -0.34 -0.35 -0.38 042 -0.42 -0.62 -0.55 -0.29 -0.40 -0.41 -0.30 -0.67 -0.32 -0.68
OlFileManager: View File{ 2.66 291 146 258 256 301 287 - 0.67 259 235 - 274 287 - 300 254 -
OpenSudoku: Easy Level 1 -0.25 -0.54 0.56 0.36 -043 -0.34 054 029 -0.47 044 -0.41
OpenSudoku: Hard Level 14 -0.16 -0.55 -021 015 -0.59 -0.57 -0.20 -0.56 -0.37 | -3.69
SkyMap: Find Marsq 258 2.54 3.06 214 140 288 075 167 165 340 113 278 106 083
SkyMap: Move Zoom 4 -0.77 -1.53 -0.56 -0.75 -0.86 -0.83
SkyMap: Show Component{ 1.40 1.41 1.54 132 071 094 1.16 1.45 161 102 127
Tomdroid: Notes 4 154 191 2.01 0.50 0.60 0.49 1.84
T 6 & 3 t &6 t 3 5 & t 3 T 40 3 5 & 3
2 < 5 4 2 = @ 4 2 £ 5 v 2 £ 4 2 = 4
o) [3 N s & 3 N s & 3 N 8 8 N s & N
= D = D = =) = =
< [a) <] < a <] < a S < a < a
[a [

Obfuscation Tool

Figure 4.12b: Percent change in mean energy usage when using an obfuscated version
instead of an unobfuscated version when run on the Nezus 4 platform.

64

all opt rename cf se

AnkiDroid: New Deck 4
AnkiDroid: Tutorial Deck
Calculator: Advance 147 0.88 127 113 142 1.69
Calculator: Standard - -0.08 -0.41 -0.84 -0.59 -0.98 -0.53 -0.85 -0.56 -0.80
Calendar: Add Eventy 0.12 029 -0.40 0.23 -0.47 -0.32 -0.35 035 -0.53 -0.42 -0.40 -0.25 -0.43 -0.45
Clock: Interval 4

Clock: Stopwatch 4 1.20 082 126 0.91
Clock: Timer §
DailyMoney: Add Detail
DailyMoney: View Lists I zz

% Change

FrozenBubblePlus: Level 14
Nim: Easy Al 4
OlFileManager: Create File - 0.72 17 l 50
OlFileManager: Play File 4 053 0.59 0.42
OlFileManager: View File 0.84
OpenSudoku: Easy Level 14/ 251 2.32 -0.19 243 057 -015 -0.14 217 057 -0.28 231 265 243 039 -015
OpenSudoku: Hard Level 14 0.31 | 2.58 0.55 2.10 033 029 0.24 045 017 021 033 0.24 0.34

SkyMap: Find Mars { (28,051 ~1.66 [ESBIRaal | | 290 JE3%8] -1.08 BR8] ||-211 281 290 -156 |FEEE

SkyMap: Move Zoom 1 -2.22 -1.43 =2l =L@l -137 -1.56 -1.89 -2.76

SkyMap: Show Component - 181 -1.48 - - 219 294 -

Tomdroid: Notes -

Usage Scenario
o
S

Allatori-
DashO-
Proguard-|
ZKM-
Allatori-
DashO+
Proguard-
ZKM-
Allatori-
DashO-|
Proguard-|
ZKM-
Allatori-{
DashO-
ZKM-
Allatori-
DashO-|
ZKM-

Obfuscation Tool

Figure 4.12c: Percent change in mean energy usage when using an obfuscated version
instead of an unobfuscated version when run on the Galazy S II platform.

all opt rename cf se
AnkiDroid: New Deck -0.28 -0.62 -0.63 -0.66
AnkiDroid: Tutorial Deck 4 - - - 1.90 - -
Calculator: Advance - -0.79 -0.62 -0.78 -0.61 -0.64 -0.67 -0.89 -0.78 -0.66 -0.69 -0.50 -0.87
Calculator: Standard <
Calendar: Add Event{ 0.61
Clock: Interval 4
Clock: Stopwatch - 0.99
Clock: Timerq 1.50 1.09 0.76 212 172 241 238 079 092 119 140 228 119 131 081 156
2 DailyMoney: Add Detail 065 091 081 052 055 0.93 058 || 067 o0s 112 | %Change
g DailyMoney: View Lists - -1.64 -1.19 I j
((]J) FrozenBubblePlus: Level 11 209 181 146 141 151 156 175 144 179 174 147 125 117 19 121 175 124 156
% Nim: Easy Al 259 103 1386 -0.72 115 1436 -08s | 374 222 274 208 457 072 o0 z
g OlFileManager: Create File -0.59 -0.94 -0.75 -0.96 -0.77 -0.60 -0.74 -0.62 -0.97
OlFileManager: Play File 1 205 112 144 096 142 172 0.79
OlFileManager: View Fileq{ 1.16 0.56 1.02 113 058 112 112 0.88 1.06
OpenSudoku: Easy Level 14 -0.61 -0.50 -0.60 -0.36
OpenSudoku: Hard Level 14 -0.74 -0.84
SkyMap: Find Marsq 244 115 125 1.60 241 204 219 245 145 239 285 167 142 161 258 347 2271
SkyMap: Move Zoom4 1.78 © 3.81 2.16 254 291 110 186 349 154 061 202 377 176 261 - 238 190
SkyMap: Show Component{ 150 241 0.76 159 105 -0.48 127 -1.04 143 -0.99 2.02 -1.24
Tomdroid: Notes - 0.67 0.40 -0.59 047 0.76 -0.40 0.51 0.49 0.62 054 0.49
T 1 T T . T T T T T T T T
< [a) <] < a <] < a S < a < a
[a [

Obfuscation Tool

Figure 4.12d: Percent change in mean energy usage when using an obfuscated version
instead of an unobfuscated version when run on the Galazy S5 platform.

65

median value of &~ 1.2%, a mean value of ~ 1.2%, and a standard deviation of ~ 1.6
percentage points.

From this data, it is clear that, while overall obfuscations are more likely to
cause an increase in energy usage than a decrease in energy usage, the magnitude of
the change, regardless of direction, is likely to be less than 5%. When compared to
the energy impacts of other code level changes, the energy impacts of obfuscations are
closer to the impacts of other focused changes (e.g., refactorings, whose impacts range
from —7.50% to 4.54 % (Section 4.4.2)) than to the impacts of more broad changes
(e.g., applying design patterns, whose impacts can approach several hundred percent
(Section 4.3.2)).

Based on our investigations into the impacts of obfuscations on energy usage,
we have found that:

(1) Obfuscations can, and often do, impact the energy usage of an application with
statistical significance.

(2) Individually, all of our studied obfuscation tools and obfuscation configurations
can both increase and decrease energy usage.

(3) Across all platforms, the likelihood of causing an increase in energy usage is
higher than the likelihood of causing a decrease in energy usage.

(4) Across all platforms, the magnitude of the percentage change in energy usage is

most likely to be less than 5 %.

RQ2: Consistency

The goal of our second research question is to determine if there is a statistically
significant benefit, with respect to energy usage, to using a specific obfuscation tool
or specific obfuscation configuration. To answer this question, we performed several
Kruskal-Wallis tests. We chose to use the Kruskal-Wallis test because we want to
compare one measurement value (the amount of energy consumed by the execution)
across multiple samples (obfuscation tools or obfuscation configurations) and we do not

know if our data are normally distributed. We chose an « of 0.05 and used R version

66

3.1.2’s implementation of the test (i.e., kruskal.test). In general, if the p value
calculated by the Kruskal-Wallis test is less than the chosen «, it indicates that at
least one of the samples is significantly different from the others. It does not indicate
how many differences occur or among which samples the differences exist. However,
this information can be determined by running pairwise Mann-Whitney-Wilcoxon tests
with an appropriate correction for performing multiple comparisons (e.g., Bonferroni

correction, Benjamini & Hochberg correction, etc.).

Table 4.9: For an obfuscation configuration, is there a statistically significant difference
among the obfuscation tools (% change ~ tool)?

Obfuscation Configuration p value

Nexus 3 Nexus 4 Galaxy S II Galaxy S5 All
all 0.39 0.56 0.18 0.45 0.08
opt 0.51 0.92 0.20 0.38 0.56
rename 0.56 0.75 0.56 0.91 0.83
cf 0.67 0.90 0.89 0.90 0.93
se 0.80 0.52 0.92 0.87 0.90

Our first set of Kruskal-Wallis tests check whether there are any statistically
significant differences in the percentage changes in mean energy usage among obfus-
cation tools for each obfuscation configuration. A p value less than our chosen alpha
would indicate that one of the obfuscation configurations is statistically different from
the others. The results of these computations can be seen in Table 4.9. In this table,
the first column, Obfuscation Configuration shows the name of each obfuscation con-
figuration. The next four columns, Nezus 8 through Galaxy S5, show the p value when
each platform is considered individually and the final column, All, shows the p value
when all four platforms are considered together. Because the computed p values are
never less than our chosen «a (0.05), we cannot reject the null hypothesis. In practice,
this means that, with respect to energy usage, there is no statistical benefit to picking
one obfuscation tool over another. Consequently, developers are free to choose their

preferred obfuscation tool based on other factors such as supported obfuscations, price,

67

ease of use, etc., without having to worry about its impact on energy usage.

Table 4.10: For an obfuscation tool, is there a statistically significant difference among
the obfuscation configurations (% change ~ configuration)?

Obfuscation Tool p value

Nexus 3 Nexus 4 Galaxy S II Galaxy S5 All
Allatori 0.35 0.73 0.37 0.82 0.95
DashO 0.71 0.79 0.95 0.66 0.72
Proguard 0.99 0.80 0.15 0.70 0.11
ZKM 0.98 0.58 0.77 0.98 0.69

Our second set of Kruskal-Wallis tests check whether there are any statistically
significant differences in the percentage changes in mean energy usage among the ob-
fuscation configurations for each obfuscation tool. The result of these computations
can be seen in Table 4.10. The format of the table is similar to Table 4.9. The first
column, Obfuscation Tool shows the name of each obfuscation tool. The remaining
columns show the p value when each platform is considered individually, Nezus 3
through Galazy S5, and together, All. Again, because the computed p values are never
less than our chosen « (0.05), we cannot reject the null hypothesis. In practice, this
means that, with respect to energy usage, there is no statistical benefit to picking
one obfuscation configuration over another. Again, application developers are free to
choose their preferred obfuscation configuration based on factors other than its impact

on energy usage.

RQ3: Importance

Our first two research questions were primarily concerned with discovering if
and how obfuscations impact the energy usage of applications. The goal of our third
research question is to assess whether the observed impacts are likely to be meaningful
or noticeable to mobile application users.

To answer this question, we first used Equation 4.1 to calculate, for each plat-

form, the percentage of battery charge that is consumed by each scenario when it is

68

executed using the unobfuscated version of its application and when it is executed

using the obfuscated versions of its application.

E " 1000
Vo C x 3600

In Equation 4.1, F is the amount of energy in joules (J) consumed by an exe-

x 100 (4.1)

%charge =

cution (here we used the mean energy usage of each version of our 30 trials), V' is the
output voltage of the platform’s battery in volts (V), and C' is the electric charge of
the platform’s battery in milliampere hours (mAh). For the Nexus 3, V = 3.7V and
C = 1900 mA h; for the Nexus 4, V = 3.8V and C = 2100mA h; for the Galaxy S II
V' =3.6V and C = 1800 mA h; and for the Galaxy S5 V = 3.8V and C' = 2800 mA h.

We then calculated, using Equation 4.2, the amount of time needed to drain each
platform’s battery from full to empty (i.e., battery life) if the scenario were executed
continuously using each version of its application.

100 %

tarain = ——— X D 4.2
a %charge ()

In Equation 4.2, %charge is the percentage of battery charge calculated using
Equation 4.1 and D is the duration of the scenario (Table 4.8). Note that the unit of
measurement for tg.qn, Will be the same as the unit of measurement for D.

Table 4.11 shows the results of this computation. In the table, the first two
columns, Application and Name, show the scenario and the remaining columns, Nezus 3
through Galazy S5 show, for each platform, the mean battery life in hours (h) when
the unobfuscated version is run continuously, draining the battery from full to empty.

Finally, we computed the change in battery life for each scenario and obfuscation
by subtracting the battery life of each obfuscated version from the battery life of the
unobfuscated version. Figures 4.13a, 4.13b, 4.13c, 4.13d show the results of these
computations. The five groupings in each figure show the change in mean battery life in
minutes (min) when an obfuscated version is used instead of an unobfuscated version.

Again, absent values indicate instances where there was no statistically significant

69

Table 4.11: Battery life when using an unobfuscated version.

Battery life (h)

Application Name Nexus 3 Nexus 4 Galaxy SII Galaxy Sh
AnkiDroid New Deck 4.6 4.6 7.7 8.8
Tutorial Deck 4.1 4.7 7.8 8.1
Calculator Advance 5.1 4.9 8.0 11.6
Standard 5.5 5.4 8.7 12.1
Calendar Add Event 3.7 4.2 7.8 8.0
Clock Interval 4.9 4.2 8.9 7.0
Stopwatch 3.9 5.3 7.7 10.6
Timer 4.2 5.0 8.3 9.8
DailyMoney Add Detail 4.3 4.8 9.9 8.8
View Lists 3.9 4.4 7.7 9.7
FrozenBubblePlus Level 1 3.0 4.1 6.4 5.9
Nim Easy Al 3.8 3.9 7.2 7.1
OlFileManager Create File 4.6 4.6 9.9 10.4
Play File 4.5 4.5 8.7 9.1
View File 4.0 4.1 7.6 5.7
OpenSudoku Easy Level 1 4.7 5.4 9.0 9.6
Hard Level 1 4.8 4.7 8.6 9.2
SkyMap Find Mars 2.7 3.3 3.3 5.7
Move Zoom 2.9 3.0 2.2 5.6
Show Component 3.4 4.1 3.6 7.2
Tomdroid Notes 4.6 4.1 7.1 7.9

difference in energy usage between the application versions and the color of each cell
indicates the direction and magnitude of the change. Blue cells indicate obfuscations
that increase battery life (i.e., changes that are beneficial for users) and red cells indicate
obfuscations that decrease battery life (i.e., changes that are detrimental to users).
Across all configurations, the change in battery life for the Nexus 3 ranges from
~ —8.4min to ~ 22.0 min with a mean value of ~ 2.5 min, a median value of ~ 1.9 min,
and a standard deviation of &~ 4.6 min. The change in battery life for the Nexus 4 ranges

from ~ —16.3min to &~ 10.9 min with a mean value of ~ —3.9min, a median value of

70

all opt rename cf se

AnkiDroid: New Deckq{ 24 -14 23 -2.0 -4.2 18 -18 -03 -03 -0.4 14 -16 -09 0.9
AnkiDroid: Tutorial Deck{ 3.3 63 68 9.6 6.8 20 54 84 38 18 -05 10 15 -09 67 59
Calculator: Advance 4 31 23 28 38 36 35 30 43 22 27 38 26 32 25 18 20 40
Calculator: Standard{ 0.4 2.1 19 12 32 35 27 17 33 20 20 34 27 33 16 2:28 1.5/ B2
Calendar: Add Event{ -1.6 0.9 08 13 16 0.8 0.7 12
Clock: Interval{ -2.0 SIERN=1"3 -11 -10 -16 -26 -17 -16
Clock: Stopwatch
Clock: Timer 5.0 16 39 20 31 17 25 41 13 13 44 Change in mean
2 DailyMoney: Add Detail { 0.7 -0.8 0.7 battery life (min)
g DailyMoney: View Lists -18 -3.7 I 20
ﬁ FrozenBubblePlus: Level 14 15 17 15 15 13 -2.0 17 0.9 10
% Nim: Easy Al 4 -2.0 39
S OlFileManager: Create File - -26 45 42 4.7 14 -11 15 22 46 21 19 28 -37 0
OlFileManager: Play File{ -2.0 22 26 -28 -20 11 3.0 -15 -2.0 -84
OlFileManager: View File{ -0.8 -18 67 6.7 6.4 - -16 49 - 6.2 - 38 - =5.9
OpenSudoku: Easy Level1{ 0.7 3.1 21 37 38 27 17 40 13 0.1 12 27 22 35
OpenSudoku: Hard Level 14 0.3 05 20 -0.8 08 05 19 -12 -0.7 -0.6 17
SkyMap: Find Mars{ 2.5 | 102 6.0 108 32 42 20 107 20 16 38 7.7 87 -04 73
SkyMap: Move Zoom+ 3.0 79 7.0 . 64 67 40 17 78 21 35 . 44 72 - 35 69 .
SkyMap: Show Component{ -2.2 1.6 16 -33 -28 -18 17 -23 18 -50 09 -46 13 =29
Tomdroid: Notes{ -1.0 -0.6 -0.9 -0.5 -0.6 -07 -10 -14 =05
T & 8 = & § T &8 § T 8 = &
o o o

Obfuscation Tool

Figure 4.13a: Change in mean battery life when using an obfuscated version instead
of an unobfuscated version when run on the Nezus 3 platform.

all opt rename cf se

AnkiDroid: New Deckq -3.4 - -2.8 05 -33 - =) - 24 - B2 - 17 -
AnkiDroid: Tutorial Deckqy -1.3 -1.8 1.7 21 21 15 15 13

Calculator: Advanceq{ -1.6 -15 -14 -14 -20 -42 -10 -17 -20 -20 -11 -16 -1.7 -1.5 =8| -15 -12 -45

Calculator: Standard < -13 =13

Calendar: Add Event{ -1.2 -22 -10 -22 SZCAEEE -0.5 BE2i8 -24 -16 02 -46 52198 -1.5 EEsiH] =278 -1.6 e85

Clock: Interval{ 6.2 -6.3 -46 -8.0 -61 -76 -51 -74 -62 -78 -62 -7.8 =59 B INEEoN -62 -79 -81
Clock: Stopwatch4{ -43 -38 -3.2 16 -69 -64 -44 -46 -67 -70 -49 -62 -70 -6.8 -63 -67 -40

Change in mean

2 DailyMoney: Add Detail{ -6.6 6.3 SRt 5.2 RS6l0 battery life (min)
g DailyMoney: View Lists - 8.2 s
&’, FrozenBubblePlus: Level 11 -1.3 1.6 -2.0 0
% Nim: Easy Al{ 0.5 -0.2 -05 06 03 -06 -03 -09 -0.1 03 0.0 -0.3 -5
g OlFileManager: Create Fileq -3.0 -28 -27 -25 -31 -24 -24 -19 = =N A8 =B S =R F -26 -26 -30 I 10
OlFileManager: Play File{ 09 0.9 10 =il il 17 15 08 11 11 08 18 0.9 18 "
OlIFileManager: View File{ -63 -6.9 -35 -6.2 =6.1 IR FIE - -1.6 [EEEIEEEESIE - -65 -6.8 - gy -61 -
OpenSudoku: Easy Level 14 0.8 17 -1.8 -11 14 11 -17 -09 15 -14 13
OpenSudoku: Hard Level 14 05 16 06 -04 17 16 06 16 id -
SkyMap: Find Mars{ -4.9 -48 -5.8 -41 -27 SolN -15 -32 -32 64 -22 bl 21 -16
SkyMap: Move Zoom 4 14 29 1.0 14 1.6 15
SkyMap: Show Component{ -3.4 -3.4 53 =2 Skl =23 -2.8 =58 =30 Beyil =il
Tomdroid: Notes -38 -47 -4.9 Sl S S1% -45
T 6 5 3 T o bt 3 £t 0§ 3 5 6 3 T & 3
2 < @ 4 2 = 54 v 2 £ 5 ¥ 2 < 4 2 = 4
s 3 3 N 8 2 3 N 8 & 3 N s 3 N 8 3 N
= =) = =) = s = =
< [a) o < [a) <] < a <] < [a) < a
a o [

Obfuscation Tool

Figure 4.13b: Change in mean battery life when using an obfuscated version instead
of an unobfuscated version when run on the Nezus 4 platform.

71

all opt rename cf se

AnkiDroid: New Deck 4
AnkiDroid: Tutorial Deck

Calculator: Advance 6.9 -42 -6.0 =613 -6.7 -8.0
Calculator: Standard - 04 22 44 31 52 238 45 30 42
Calendar: Add Eventy -05 -14 19 -11 22 15 17 -16 25 20 19 12 20 21
Clock: Interval 4
Clock: Stopwatch 4 555 -3.7 =i8; 42
Clock: Timer 1 Change in mean
2 DailyMoney: Add Detail { battery life (min)
g DailyMoney: View Lists B ©
ﬁ FrozenBubblePlus: Level 1 °
% Nim: Easy Al 4 :
8 OlFileManager: Create File - -43 - I 10
OlFileManager: Play File 4 =27 -30 22
OlFileManager: View File -38
OpenSudoku: Easy Level 1-1 10 . -31 08 07 - -3.0 i3 - - -21 08
OpenSudoku: Hard Level 14 -1.6 -28 -17 -15 —1.2] EES -09 -11 -17 -12 -18
SkyMap: Find Marsq 6.2 33 | 78 - -57 80 22 82 43 51 - 4.9 -2.0 DSl 32 -
SkyMap: Move Zoom+ 3.0 19 29 25 18 21 46 27 18 12 25 &/
SkyMap: Show Component - =38 32 - - 46 -61 21 -73 -5.5 B=6./S NS -6.8
Tomdroid: Notes -
T & § T & § T &8 § T 8 T 8
o [o

Obfuscation Tool

Figure 4.13c: Change in mean battery life when using an obfuscated version instead of
an unobfuscated version when run on the Galaxy S II platform.

all opt rename cf se
AnkiDroid: New Deck 4 15 33 34 35
AnkiDroid: Tutorial Deck 4 - - - =)l - -
Calculator: Advance 4 515) 43 54 43 45 47 62 55 46 48 35 61
Calculator: Standard 4
Calendar: Add Event{ -2.9
Clock: Interval 4
Clock: Stopwatch - -6.2
Clock: Timerq -8.7 -6.3 -44 -12.2 -10.0 -138 -136 -46 -54 -6.9 -8.1 =131 -6.9 -76 -47 -9.0 Change in mean
.g DailyMoney: Add Detail -34 -47 -4.3 =27 -29 -4.9 -3.0 -35 -42 -58 battery life (min)
g DailyMoney: View Lists - 9.8 7.0 .
(‘]’; FrozenBubblePlus: Level1{ -7.3 -63 -51 -49 =58 sk =61 | =3l -63 -61 -51 -44 -41 -68 -43 -6.1 -44 -55
% Nim: Easy Al{ =108 -43 =163 3.1 -49 =170 36 -154 -93 -114 -87 =179 31 -14 o
g OlFileManager: Create File 37 6.0 4.7 6.0 48 38 46 39 62 I =
OlFileManager: Play File { -110 -61 -1.7 -52 -1.7 -9.2 -43 30
OlFileManager: View Fileq -3.9 -19 -34 -38 -20 -38 -38 -30 -36
OpenSudoku: Easy Level 14 35 29 34 21
OpenSudoku: Hard Level 14 41 4.7
SkyMap: Find Marsq -82 -39 -43 -54 -8.1 -69 -74 -82 -49 -80 -9.6 -56 -48 -55 =87 [SLI6Y 7.6
SkyMap: Move Zoom+ -5.9 -12.4) -84 -96 -37 -62 Bl 5.1 -2.0 =67 -123 -58 -86 BBl 79 63
SkyMap: Show Component{ -6.4 -102 -33 BoMl G458 2.1 -54 46 -6.1 43 -8.6 5.4
Tomdroid: Notes - =31 -19 28 -22 -3.6 19 -24 =213 -29 -25 2.3
i T T T T T i T T T T T T
< o 8 < o 8 T o g Q- Q-
a [[

Obfuscation Tool

Figure 4.13d: Change in mean battery life when using an obfuscated version instead
of an unobfuscated version when run on the Galazy S5 platform.

72

~ —3.1min, and a standard deviation of ~ 4.2 min. The change in battery life for the
Galaxy S II ranges from ~ —13.9 min to &~ 11.5 min with a mean value of ~ —1.1 min,
a median value of &~ —0.9 min, and a standard deviation of ~ 5.6 min and the change in
battery life for the Galaxy S5 ranges from ~ —31.4 min to &~ 9.8 min with a mean value
of ~ —4.6 min, a median value of & —4.9min, and a standard deviation of ~ 7.0 min.

When only the all configuration is considered, the change in battery life for
the Nexus 3 ranges from ~ —3.3min to ~ 14.1 min with a mean value of =~ 2.4 min,
a median value of ~ 2.1 min, and a standard deviation of ~ 3.9 min. The change in
battery life for the Nexus 4 ranges from ~ —14.9 min to ~ 2.9 min with a mean value of
~ —3.5 min, a median value of &~ —3.2 min, and a standard deviation of ~ 3.7 min. The
change in battery life for the Galaxy S II ranges from ~ —13.2min to ~ 9.8 min with
a mean value of &~ —0.4min, a median value of ~ 0.7 min, and a standard deviation of
~ 6.2min and the change in battery life for the Galaxy S5 ranges from ~ —29.4 min
to ~ 5.5 min with a mean value of & —5.7min, a median value of ~ —5.0min, and a
standard deviation of ~ 6.2 min.

Based on these results, we believe that it is unlikely for an application user
to notice a decrease in battery life due to an obfuscation. The observed changes
in battery life range from ~ —31.4min to & 22.0 min, which, even for the maximum
and minimum, represents a change of less than 10 % of the respective phone’s total
battery life. Recall that these are the expected changes if the scenarios were executed
continuously, draining the battery from full to empty. In practice, this is unlikely since
mobile phone users rarely use an application continuously.

In retrospect, this result makes sense. For mobile applications, recent studies
show that the majority of energy is consumed by the phone’s screen, radios, and sen-
sors [20, 68]. The changes made by the obfuscations do not change how the applications
interact with or use these resources. Because the obfuscations make changes to parts
of the application that do not consume much energy, the impacts of the obfuscations
are overshadowed by the more energy expensive parts of the execution.

While users are likely to be indifferent to this conclusion because obfuscations

73

neither harm nor improve their battery life, it is good news for application developers.
Now developers are able to protect their applications by applying obfuscations without

needing to consider the obfuscation’s impacts on energy usage.

4.5.3 Summary
In this section, we have presented an empirical study that investigated the im-
pact of code obfuscations on the energy usage of mobile applications. We considered
11 commonly used Android applications, four obfuscation tools, five obfuscation con-
figurations, 21 usage scenarios, and four platforms. In total, we ran 47 000 executions
on our EMPs. The results of this study demonstrate that:
(1) Obfuscations can, and often do, impact the energy usage of applications with
statistical significance.
(2) Obfuscations can both increase and decrease energy usage, but they are more
likely to increase energy usage.
(3) The magnitude of the impacts of obfuscations are comparable to the magnitude
of the impacts of other code level changes, such as applying refactorings.
(4) The differences between the impacts of the considered obfuscations on energy
usage are not statistically significant.
(5) The impacts of obfuscation on battery life are unlikely to be meaningful to mobile

application users.

4.6 Studies of Performance Tips

Recent studies have provided initial evidence that applying performance tips—
best practices oriented towards runtime performance—is an effective mechanism for
decreasing energy usage. More specifically, Li and Halfond [67], Tonini et al. [114], and
Mundody and K [84] all report that applying performance tips can decrease energy
usage from 10% to 67 % for Android applications. This is promising because such
tips are both easy to understand and easy to apply. In addition, these results support

the common wisdom that applications can save energy by “racing to sleep”—speeding

74

up computation to allow the CPU to reach a low power state faster. These results
also show that performance tips are related to energy code smells, where energy code
smells are implementation choices at the source code level that cause higher energy
consumption [116]. Consequently, performance tips are potentially more likely to be
used in practice. However, these studies are limited in scope in several ways. The most
severe of these limitations is that none of the existing studies evaluated the impacts
of the performance tips when applied to real applications. Rather, they applied the
performance tips to kernels or micro-benchmarks—small pieces of code that focus on
the specific issue under study. While the targeted nature of kernels is beneficial, it
remains unclear whether the observed results will transfer to real applications, which
are characteristically larger and more complex.

To better understand the energy impacts of performance tips on Android appli-
cations, we investigated the energy impacts of applying four commonly recommended
performance tips by creating a total of 32 modified versions of eight real Android
applications. This study provides deeper insight into whether Android application de-
velopers can effectively reduce the energy consumption of their applications by applying

performance tips.

4.6.1 Experiment-Specific Methodology

This section describes the details of our study design, including our independent
and dependent variables; considered applications and scenarios; studied performance
tips; and experimental procedure. In planning this work, we followed a methodology
that is nearly identical to the one used in our prior work on investigating the impacts

of code obfuscation on energy usage (Section 4.5.1)).

4.6.1.1 Experimental Variables
In this study, we considered one dependent variable, the amount of energy con-
sumed by an execution, and two independent variables: (1) the performance tip applied

to the application, and (2) the platform where the application executes.

5

To isolate the impacts of changing our independent variables on our dependent
variable, it is necessary to precisely control how the applications are executed. We
again chose to use RERAN as our capture/replay tool to prevent inconsistencies in
executing the Android application (see Section 4.5.1.1). Since RERAN is designed
to allow for the deterministic replay of a sequence of recorded events, any observed

variations in energy usage are likely to be the result of the performance tips applied.

4.6.1.2 Considered Applications

We investigated the impacts of applying performance tips on popular, easily
accessible Android applications. We selected Android applications for several reasons.
First, as is the case for most software engineers, Android developers often care about the
performance of their applications. As such, there are numerous performance tips that
have been suggested for Android applications. Second, Android application developers
typically care about the energy efficiency of their applications. Third, the source
code of many Android applications is freely available, allowing us to easily modify the
applications to apply the performance tips. Finally, we have extensive infrastructure

to run Android applications and measure their energy usage.

Table 4.12: Considered applications.

Application Description LoC

Calculator Android calculator 1427
Clock Android clock 13477
DailyMoney Daily financial tracker 8723
Nim Strategy game 1475
OlIFileManager File manager 7200
OpenSudoku Sudoku game 6079
SkyMap Astronomy application 10921
Tomdroid Note taking application 7955

Table 4.12 lists the specific applications that we used in this study. The first
two columns, Application and Description, list the name of each application and a

brief description of its functionality, respectively and the final column, LoC, shows

76

the application’s number of lines of code. These specific applications were chosen in
the same manner as described in the code obfuscation study. For example, they are
representative of a wide variety of common application types, popular and widely used,

and supported by RERAN.

4.6.1.3 Considered Usage Scenarios

To drive our user input driven applications, we examined each application and
created one or more usage scenarios. In creating these scenarios, we focused on typical
usage patterns for the application (i.e., actions that users are likely to perform). In
this way, we were able to gain a better understanding of the impacts of applying
performance tips on a user’s daily interactions with their mobile device.

Table 4.13 shows the specific usage scenarios that we created. The first two
columns, Application and Name, show the application that is used in the scenario and
a distinguishing name, respectively. For example, Calculator has two scenarios, Calcu-
lator: Advance and Calculator: Standard. The third column, Description, provides a
brief description of the user actions that are performed during the scenario. For exam-
ple, during the Calculator: Advance scenario, several advanced arithmetic calculations
are performed. The third column, % Coverage, shows the statement coverage for each
scenario. To obtain the coverage information, we used Atlassian’s Clover for the An-
droid coverage tool (version 4.0). In total, we created 17 scenarios for our applications:
three for Clock, OIFileManager and SkyMap; two for Calculator, DailyMoney, and
OpenSudoku; and one for Nim and Tomdroid.

4.6.1.4 Studied Performance Tips
Performance tips that are studied in our study cover source code level imple-
mentation choices that can improve overall app performance. They are recommended
by the Android Developers’ web page particularly for Android apps written in Java [6].
To select the performance tips that we investigated, we first examined all the

performance tips in the Android Developers’ web page [6]. We then chose tips that

7

el 1€T 061 "90U 939[0p ‘©j0u Wado ‘3x0) I0J DIeds ‘©)0U B 9IRII)) S910N proipwoq,

GOt 101 Q'8F ‘opowt JysIu 918303 ‘yuouodwod yord moyg juouoduwo) moyg

G9 €9 R'€G "dewr o1} SUO[R SPAOW ‘INO/UT WO0Z A[LIRIIIGIY W07, A0\

v ol 1°GG "SIRJA 10J soypIres ‘9jep jsed poxyy e 0} ouwil) 10§ SIRIA pulq denNAYS

cer 621 7'Ge "PUS nyopng prey,, 181y o1y 99dwo) [[0A97] pIeH

€Lz LT vae "pLIs nopng Ases,, 151y Y oj91dwo) [A9 Aseyy nyopnguad(

09 79 ik)1 OWIRULIL puR ‘s[rejop 108 ‘o[® wod() O[T MOIA

s e QLT ‘sowar) ¢ ouojuLl © Arpd pue soinjord § morp oL A®[]

79 €9 dS "SIOP[OJ 999[oP ‘SIOP[O] 189U ‘SIOPIOJ g 99edI)) o1 93891 IOSRURINPILATO

Gl 6L 9'6S "STOAS] A NOIPIP SUISLOIOUT [[IIM SPUNOI 901U} AR IV Aseq WIN

e 4% €'L3 ‘SoJue[Rq puR S[Ielop MOrA SIST] MOITA

122 GL 4'8¢ ‘suorjoesuel} om) Iojuy] [reed pprv AouopNATrRq

6T 07 1'1C “IOWII) WMOPIUIOD PUOIDS ()] © Uy JowlT,

0% 61 ¥I "spuooes ()] 10 oremdo)s o) uny yoremdo)g

G9 79 961 ‘oyemdols o) SUTUUILL S[IYM S[RAIOJUL 9)LII)) [eAToju] MO0[D

Q¢ eF L9V "STUOT)RNORD DIJOUWILIR OISR([RIOADS TWLIOKSJ plepue)g

78 i 770G ‘SUOT}R[NO[ED OIOW}IIR PIOUBADPR [RIOADS WLIONISJ 9DURADPY Ioje[nore))
7 snxeN GS Axerer) (9;) a8rIan0)) uot)dLIsa(] ouIR N uorjeorddy

(s) uoryem(y

"SOLIRUADS 98RSTL PAIOPISUO)) €1 9[qRL,

78

were previously investigated in the literature, easily applicable to applications, and
not specific to a particular application domain from that list. Since we are interested
in identifying general trends about how the studied performance tips impact energy
usage, tips that can only provide a single data point are not very useful.

We investigated the energy impacts of the following four performance tips on

the Android applications:

* Tip 1: Use final for static constants. Declarations of String and primitive static
(class) fields such as static int intVal = 42; result in the creation of a static
initializer (<clinit>) that is executed when a class is loaded. Later, when these
values are referenced, they are accessed using field lookups. Adding the final
keyword to such declarations (e.g., static final int intVal = 42;) removes
the need for the static initializer and eliminates the field lookups by replacing all

references to the field with the declared value.

Tip 2: Avoid Using Floating Point. In general, floating point operations are
approximately twice as slow as their integer equivalents on most Android-based
platforms [6]. Switching fields and local variables from floating point primitive
types (i.e., float and double) to their integer primitive equivalents (i.e., int and

long, respectively), where possible, can eliminate this unnecessary overhead.

Tip 3: Avoid Internal Getters/Setters. Getters and Setters support encapsula-
tion of a class’s data. By preventing direct access to its fields, a class can more
easily enforce constraints on its state. Unfortunately, method calls are signifi-
cantly more expensive than field lookups. For example, accessing a field directly
is typically between three and seven times faster than invoking a trivial getter [6].
Directly accessing fields (e.g., by inlining getters and setters) eliminates this over-
head. In prior work, Li and Halfond [67] report that Tip 3 improved energy usage
from 31 % to 35 %; Tonini et al. [114] report percentage improvements from 24 %
to 27 %; and Mundody and K [84] report improvements from 17 % to 67 %.

79

* Tip 4: Avoid accessing array length in loop body. Currently, the Dalvik just-in-
time compiler (JIT) is unable to optimize accesses to the length of an array or size
of a collection during iterations of a loop. To avoid the cost of repeated accesses as
the loop iterates, the array length (or collection size) should be cached across it-
erations. For example, the loop for (int i = 0; i < a.length; ++i) should
be rewritten so that the value of a.length is stored in a local variable that then
should be compared to i or, equivalently, an enhanced for loop (for (Element e

Collection)) can be used for collections that implement the Iterable inter-
face. In prior work, Li and Halfond [67] and Mundody and K [84] found that
Tip 4 improved energy usage 10 % and Tonini et al. [114] found that it improved
energy usage from 36 % to 52 %.

4.6.1.5 Experimental Procedure

Figure 4.14 shows, at a high-level, the procedure we followed in this study,
divided into four main steps: Subject Creation, Replay-able Execution Creation, Data
Collection, and Post Processing. The remainder of this section describes these steps in

detail.

8 Base
4|+ Versions
4 Performance Tips —f SUb'?Ct Data Collection
Creation
o 32 Modified Galaxy S5 5100 Power Post Energy
8 Applications Versions " “Pufles | Processing | Usage Data
Replay-able Nexus 4
17 Usage Scenarios — Execution
Creation 34 Replayable

Executions

Figure 4.14: High-Level Experimental Procedure of Performance Tips.

Replay-able Execution Creation
The first step in our procedure is to create a set of replay-able executions. To

create the replay-able executions, we manually performed the actions contained in

30

each scenario while using RERAN’s recording tool. Because the replays produced by
RERAN are not portable across mobile phone platforms, we created two replay-able
executions for each scenario, one for each of our considered EMP platforms. This
resulted in a total of 34 replay-able executions (17 scenarios x 2 platforms). The
fourth and fifth columns of Table 4.13, Galaxy S5 and Nezus 4, report the durations

of the replay-able executions for the corresponding platform in seconds (s).

Subject Creation

The second step in our procedure is to create our set of experimental subjects.
Because we are interested in the impacts of applying a performance tip to an ap-
plication, our experimental subjects are versions of our considered applications with
a performance tip applied. In total, we created 32 subjects (four performance tips
applied to eight applications) by carrying out the following sequence of actions.

The first step is to create a suitable base version for each application. Sometimes
the original versions of the applications are not suitable for this purpose because, in
many cases, the performance tips have already been partially or completely applied.
To create suitable base versions, we manually modified the original versions of the
applications to undo any previously applied performance tips. This also has the benefit
of establishing a best-case scenario for the performance tips; allowing them to be
applied in as many places as possible gives them a greater chance to impact the energy
usage of the applications.

Next, we created the modified versions of each application by exhaustively ap-
plying each performance tip to a fresh copy of the base version. To actually apply the
performance tips, we manually edited the source code of each application, using the
automated refactoring support available in Eclipse when applicable.

After creating each modified version, we manually examined the coverage in-
formation for each scenario to determine how many of the changes are covered by the
scenario. Table 4.14 shows, for each performance tip, how many changes were cov-

ered by each scenario. The first two columns, Application and Scenario, show the

81

Table 4.14: Number of covered changes.

Application Scenario Tipl Tip2 Tip3 Tip4
Calculator Advance 20 5 18 4
Standard 19 5 15 4
Clock Interval 81 16 38 5
Stopwatch 76 15 29 2
Timer 93 20 38 8
DailyMoney Add Detail 75 4 188 17
View List 68 5 163 18
Nim Easy Al 1 17 62 16
OlIFileManager Create File 56 18 64 10
Play File 49 13 42)
View File 49 12 53 5
OpenSudoku Easy Level 1 27 19 90 13
Hard Level 1 27 19 90 13
SkyMap Find Mars 135 o7 133 50
Move Zoom 130 52 137 48
Show Component 121 50 118 46
Tomdroid Notes 29 2 57 16

application that is used in the scenario and the scenarios, respectively. The remain-
ing columns list the number of covered changes. For Tips 1 and 2, which modified
potentially non-executable lines of code (i.e., variable declarations without an initial
assignment), we checked whether a statement that uses the modified variable was cov-
ered. To do that, we used Eclipse’s call hierarchy view feature. For Tips 3 and 4,
which modify executable lines of code, we simply checked whether the modified lines
were covered. In addition, to ensure that the changes did not introduce any behavioral
differences, we verified that RERAN could accurately replay each execution on each
application version by running RERAN with the replay-able execution as input and

observing the replayed executions.

82

Data Collection

The third step in our procedure is to collect power usage data. This step is sim-
ilar to how we collected power usage data in the code obfuscation study (see Section
4.5.1.6). The only difference is that we used RERAN to replay each replay-able execu-
tion on the corresponding EMP, using the base version and the four modified versions
for each of the application’s scenarios. For each EMP, each replay-able execution was
executed on each version of the application (base and optimized separately for each
performance tip) 30 times.

Note that we upgraded the version of Android running on the Galaxy S5 from
4.4 (Kit Kat) to 5.0 (Lollipop) before this study. Android 5.0 uses the newer Android
runtime (ART) instead of the Dalvik runtime. While Dalvik is currently used by more
Android versions including the version of Android running on the Nexus 4, ART will be
the default for future Android versions. The main feature of ART compared to Dalvik
is ahead-of-time (AOT) compilation which offers better performance than just-in-time
(JIT) compilation.

In total, we ran 5100 executions—17 scenarios X (4 versions with performance
tips applied + 1 base version) x 30 repetitions x 2 EMPs—which took 110 hours
(over four days) of continuous execution time and resulted in over 3 GB of raw power

consumption data.

Post Processing
The final step in our procedure is to post-process the collected data. We con-
verted the power measurements to total energy consumption in joules in the same way

as explained in the code obfuscation study (see Section 4.5.1.6).

4.6.2 Data Analysis and Discussion
We refined our overall question of whether applying performance tips can impact

the energy usage of an application into the following specific research questions:

33

e RQ1: Impact — Do performance tips impact the energy usage of an application?

If so, how?

e RQ2: Importance — Are the impacts of applying performance tips likely to be

meaningful or noticeable to a typical mobile application user in terms of battery

life?

The remainder of this section discusses the results of our study in terms of these
research questions. Note that in answering these questions, we are analyzing the data
for each platform separately. Because the replay-able executions are not identical, it

would be inappropriate to analyze the impacts of the performance tips across platforms.

RQ1: Impact

To analyze the collected energy usage data, we performed Mann-Whitney-
Wilcoxon (wilcox) tests to determine whether the difference between the amount of
energy consumed by each scenario when run using the base version of the application
and each modified version of the application is statistically significant. To check for
statistical significance, we chose to use the Mann-Whitney-Wilcoxon test because we
have one nominal variable (the performance tip applied to the application), one mea-
surement value (the amount of energy consumed by the execution), and we do not
know whether our data are normally distributed. We chose an alpha (a) of 0.05 and
used R version 3.1.3’s implementation of the test (i.e., wilcox.test).

For the cases where there is a statistically significant difference (i.e., p < 0.05),
we computed Vargha and Delaney’s Ay, statistic to calculate the size of the effect of
applying the performance tip (for more details about 12112, see Section 4.5.2). For our
data, Ao represents the probability that the base version consumes more energy than
the modified version.

Figure 4.15 shows, for each platform, the Ay, statistics that we calculated.
In each facet, the y-axis shows the considered scenarios, and the x-axis shows each

performance tip. The color of each cell indicates the size and direction of the effect.

84

Galaxy S5

Nexus 4

Calculator: Advance =
Calculator: Standard =
Clock: Interval =

Clock: Stopwatch =
Clock: Timer =
DailyMoney: Add Detail =
DailyMoney: View Lists =
Nim: Easy Al =

) OlFileManager: Create File =
© OlFileManager: Play File -
@ OlFileManager: View File =
D OpenSudoku: Easy Level 1 =

cenario

0.75

0.66

Effect Size
Large: (0.75, 1]
Medium: (0.66, 0.75]
Small: (0.5, 0.66]
Small: [0.33, 0.5)
Medium: [0.25, 0.33]
Large: [0, 0.25]

OpenSudoku: Hard Level 1 4~ 0.65
SkyMap: Find Mars =
SkyMap: Move Zoom =
SkyMap: Show Component =
Tomdroid: Notes =

I I I I I I I I
Tip1 Tip 2 Tip 3 Tip4 Tip1 Tip 2 Tip 3 Tip4
Performance Tip

Figure 4.15: Vargha and Delaney’s Alg—probability that a base version consumes more
energy than the modified version.

Cells colored blue indicate cases where the base version is more likely to consume more
energy than the modified version (i.e., Apy > 0.5) and cells that are colored red indicate
cases where the base version is more likely to consume less energy than the modified
version (i.e., A1y < 0.5). In addition, the color’s saturation indicates the size of the
effect with the highest saturation indicating a “large” effect (/112 between 0.75 and
1.0 or between 0 and 0.25), a “medium” effect (12112 between 0.66 and 0.75 or between
0.25 and 0.33), or a “small” effect (A, between 0.5 and 0.66 or between 0.33 and 0.5).
Absent values indicate cases where there is not a statistically significant difference in
energy usage between the versions.

From the data shown in Figure 4.15, it is clear that the performance tips are
unlikely to impact the energy usage of real applications. Even though we provided a
best-case scenario for the performance tips by creating base versions that allowed the
tips to be applied in as many locations as possible, of the 136 wilcox tests that we
conducted (17 scenarios x 4 performance tips x 2 platforms), only 3 (2 %) indicated
a statistically significant difference in the amount of energy consumed by the base
and modified versions. Moreover, the effect size of the performance tips was never

large. As a point of comparison, our previous study on the energy impacts of code

85

obfuscations, which considered many of the same applications and scenarios, found
that: the considered obfuscations had a statistically significant impact on energy usage
~ 52 % of the time, and when there was a significant difference in energy usage, the
size of the effect was “large” 73 % of the time, “medium” 26 % of the time, and “small”
1% of the time (Section 4.5.2). Although the performance tips are making the same
types of low level, localized changes as the obfuscations, they do not impact energy
usage with the same frequency or size.

Overall, these results are not surprising although they are contrary to the com-
mon wisdom that, in order to save energy, applications should race to sleep. Unlike
traditional desktop or data center software, which are often CPU bound, mobile ap-
plications are often much more interactive. In addition, the CPU is one of the least
energy-expensive components. For mobile devices, the screen, radios, and sensors con-
sume the majority of a device’s battery. As a result, it is commonly the case that
a larger proportion of energy is used when an application is idle, waiting for user
input [68]. While the CPU can race to these idle periods, the energy-expensive com-
ponents are still using large amounts of energy.

The nature of mobile applications also explains why the results that we ob-
served are markedly different than those observed in prior investigations of the energy
impacts of performance tips. The micro benchmarks are essentially traditional desktop
software in that they are CPU bound. As soon as the benchmark is finished, the task
is completed and power samples are no longer recorded. In that environment, racing
to sleep makes sense and explains why prior studies observed substantial reductions in

energy usage.

RQ2: Importance

To answer this question, we computed the change in battery life that a user
could expect if they were to use a modified version of an application instead of the
base version. In the same way as in Section 4.5.2, we used Equation 4.3 to calculate,

for each platform, the percentage of battery charge that is consumed by each scenario

36

when it is executed using the base version of its application and when it is executed
using the modified versions of its application. As a reminder, for the Nexus 4, V =

3.8V, C = 2100mA h; and for the Galaxy S5, V = 3.8V, = 2800 mA h.

E 1000
— X = X
Vo C %3600

We then calculated, using Equation 4.4, the amount of time needed to drain each

Pocharge = 100 (4.3)

platform’s battery from full to empty (i.e., battery life) if the scenario were executed
continuously using each version of its application. The duration of the scenario, D, is

presented in Table 4.13.

100 %

%cha'rge

x D (4.4)

tarain =

Table 4.15 shows the results of this computation for the scenarios where there
was a statistically significant change in energy usage. In the table, the first two columns,
Application and Name, show the scenario and the remaining columns, Galazy S5 and
Nezxus 4, the mean battery life in hours (h) when the base version is run continuously,

draining the battery from full to empty.

Table 4.15: Battery life when using a base version.

Battery life (h)

Application ~ Name Galaxy S5 Nexus 4
Calculator Advance 14.4 5.7
OpenSudoku Hard Level 1 10.2 5.6

Finally, we computed the changes in battery life for each scenario and perfor-
mance tip by subtracting the battery life of each modified version from the battery life
of the base version. Figure 4.16 shows the results of these computations. The layout
of this figure is similar to the layout of Figure 4.15: it is grouped by platform, the
y-axis shows the usage scenarios, and the x-axis shows the performances tips. The

content of each cell shows the change in battery life in minutes (min). Again, the color

87

Galaxy S5 Nexus 4

Calculator: Advance = - 33

Calculator: Standard =
Clock: Interval =
Clock: Stopwatch =

Clock: Timer = .
DailyMoney: Add Detail = Change in mean

DailyMoney: View Lists = battery life (mm)
. 10
Nim: Easy Al = -
) OlFileManager: Create File = 5
© OlFileManager: Play File - 0
@ OlFileManager: View File =
D OpenSudoku: Easy Level 1 = .
OpenSudoku: Hard Level 1 = 17 -10
SkyMap: Find Mars =
SkyMap: Move Zoom =
SkyMap: Show Component =
Tomdroid: Notes =

cenario

I I I I I I I I
Tip1 Tip 2 Tip 3 Tip4 Tip1 Tip 2 Tip 3 Tip4
Performance Tip

Figure 4.16: Change in mean battery life when using a modified version instead of a
base version.

of each cell indicates the direction and magnitude of the change. Blue cells indicate
cases where battery life is increased (i.e., changes that are beneficial for users); red cells
indicate cases where battery life decreased (i.e., changes that are detrimental to users),
which did not occur in our data; darker colors indicate larger values; and absent values
indicate cases where there is not a statistically significant difference in energy usage.
From the data shown in Table 4.15 and Figure 4.16, it is clear that, even in the
unlikely case when the performance tips cause a statistically significant difference in
energy usage, the impacts of the changes are unlikely to be noticed by typical mobile
application users. For the scenario with the largest change, Calculator: Advance run
on the Galaxy S5, the percentage change in mean battery life is ~ 1 % (864 min for the

base version compared to 873 min for the modified version).

4.6.3 Summary

In this section, we have presented an empirical study that investigated the im-
pact of commonly recommended performance tips on the energy usage of mobile appli-
cations. We considered eight commonly used Android applications, four performance

tips, 17 usage scenarios, and two platforms. In total, we ran 5100 executions on our

38

EMPs. The results of this study demonstrate that:

(1) Despite initial evidence to the contrary, considered performance tips that are
commonly recommended for Android applications are unlikely to impact the en-
ergy usage in a statistically significant manner.

(2) Even in the unlikely event that a performance tip changes energy usage in a
statistically significant manner, the impact of the performance tip on battery life

is negligible.

4.7 Related Work

This section describes the prior and more recent related work in investigating

the energy impacts of software engineering decisions that we considered in our studies.

4.7.1 Design Patterns

Prior to our work, the impacts of design patterns on energy usage were explored
by Litke et al. [71]. In their study, they examined three patterns (factory method,
observer, and adapter) and observed an increase in energy usage caused by the observer
and factory method patterns. However, their study is preliminary in nature and the
relation between design pattern and energy consumption is speculative rather than
based on empirical evidence.

In addition to our design pattern study, researchers have continued to investigate
energy impacts of design patterns by comparing energy consumption of applications us-
ing design patterns against applications not using design patters. For example, Bunse
and Stiemer [17] compared the energy consumption of six design patterns (facade, ab-
stract factory, observer, decorator, prototype, and template method) on Android-based
mobile phones. They executed small Android applications and measured energy con-
sumption via the PowerTutor app. Their results agree that some design patterns have
relatively high impacts on the energy consumption while some design patters have small
impacts. For example, decorator design pattern increased the energy consumption of

the application ~ 134 %.

89

Noureddine and Rajan [88] examined energy impacts of 21 design patterns in-
cluding design patterns that we considered in our study. They executed the applications
on Lenovo Thinkpad X220 laptop, estimated the energy consumptions by using Jolinar
2, and measured the CPU energy overhead (positive or negative) for each design pat-
tern. Their findings support our results, suggesting that applying design patterns can
decrease (6 out of 21) or increase (15 out of 21) energy consumption, and the impacts

of applying design patterns can vary greatly (up to ~ 30 %).

4.7.2 Code Refactorings

The prior study conducted by Silva et al. [26] and more recent studies [98, 100,
89] indicate that applying code refactorings can have impact on the energy usage of an
application.

More specifically, Silva et al. [26] measured the performance and energy im-
pacts of inlining methods on three embedded Java applications (an address book, a
game called Sokoban, and an MP3 audio decoder). While inlining decreased energy
consumption of the address book and Sokoban applications, it had the opposite effect
on the MP3 decoder, the most complex of the considered applications. The results of
our study agree with their observations; inlining methods can increase energy usage in
some instances while decreasing it in others.

Since our work, Park et al. [89] investigated energy impacts of 63 out of the 68
code refactoring techniques defined by Fowler [1]. For each refactoring technique, they
estimated power consumption of the original and refactored versions of the sample C++
code with XEEMU power estimation tool. The results of their study demonstrate that
code refactoring techniques may increase (30 techniques), decrease (26 techniques), or
not change (7 techniques) energy consumption. Although these results are not based on
empirical observations, they confirm that code refactoring techniques have the potential
to impact energy usage.

In object-oriented application development, particular patterns that negatively

impact an application quality in terms of nonfunctional attributes are called code

90

smells [1]. To eliminate code smells, developers typically apply refactorings. For exam-
ple, the God Class and Brain Method code smells are eliminated by applying Extract
Class and Extract Method refactorings, respectively. However, applying refactorings
may have detrimental impacts on the application’s energy consumption as we showed
in our work. Similarly, Prez-Castillo and Piattini [98] and Rodriguez et al. [100] sug-
gested that applying Extract Class and Extract Method refactorings to eliminate the
God Class and Brain Method code smells can lead to higher energy consumption due

to an increase of object creations and message exchanges.

4.7.3 Performance Tips

Prior studies indicate that applying performance tips—best practices oriented
towards runtime performance—can decrease energy usage from 10 % to 67 % for An-
droid applications [67, 114, 84]. These studies investigated the impacts of the perfor-
mance tips Tip 3 and Tip 4 (see Section 4.6.1.4) on kernels or micro-benchmarks. In
their experiments, Li and Halfond [67] used one mobile device and measured energy
consumption via a Monsoon power meter, which is similar to our energy measurement
platforms. Tonini et al. [114] and Mundody and K [84] used three mobile devices and
an emulator, respectively. Both of them measured energy consumption via the Power
Tutor app. Both the mobile devices and the emulator run Android version 4.2.2 or
older which uses the Dalvik runtime. Our study is different from those prior studies
in several ways. First, performance tips are applied to real applications instead of
small pieces of code that focus on the specific issue. Second, two additional commonly
suggested performance tips are examined. Third, our mobile devices run on newer An-
droid versions, Android 4.3 and 5.0. Lastly, ART runtime, which will be the default for

future Android versions, is also considered in our work as well as the Dalvik runtime.

91

Chapter 5
PREDICTION OF ENERGY TESTING REQUIREMENTS

To satisfy the demands and expectations of users, developers must consider the
energy efficiency of their applications. Therefore, in addition to allocating resources to
test for traditional requirements like correctness, developers must also allocate resources
to conduct energy testing to check their applications for energy consumption issues.

Unfortunately, energy testing is often more expensive than traditional types of
testing that aim to verify and validate an application’s correctness. The costs of energy
testing are due to its characteristic features. First, to collect accurate energy usage data
during an execution, energy tests should be run on real devices with specialized energy
measurement, hardware. Second, since the low sampling rates of energy measurement
hardware may affect the measurements, energy tests must have long running times.
Finally, energy tests have to be performed for each supported platform, which, in the
case of mobile applications, can be a significant number of devices.

The high costs of energy testing can adversely impact the planning process of
application evolution. Similar to traditional testing, energy testing should be performed
in response to code changes, which occur frequently in mobile applications. Currently,
developers plan code changes without knowing the energy test requirements of the
changes. To detect and prevent energy issues as early as possible, they must anticipate
conducting energy testing after each change by running all energy tests. However, a
proposed code change might not require all energy tests to be run or might not even
require any energy testing at all. This lack of information prevents developers from
making decisions on code changes such as ordering, postponing, or canceling them.
The majority of existing work on energy testing has focused on minimizing test suites

with respect to their energy consumption, finding energy bugs, and reducing the energy

92

consumption of test suites [56, 69, 11, 61]. To the best of our knowledge, none of the
existing work focuses on identifying the amount of energy testing required for proposed
changes.

In this chapter, we present a technique, Energy Retest Umpire (ERU), that
provides feedback on the energy test requirements of proposed code changes. This
feedback can help developers plan for changes and allocate testing resources. Basically,
ERU informs developers about whether energy testing is required for a proposed code
change before they actually make the change. It also identifies what energy tests need
to be executed when energy testing is necessary. At a high level, ERU leverages change
impact analysis and pre-computed API energy usage information.

To evaluate ERU, we implemented a prototype for Android applications. Using
the prototype, we performed a preliminary study on ten freely-available, open source
Android applications. The goal of the study is to investigate the feasibility of ERU
and how it performs when changes are expressed at differing granularity levels.

The remainder of this chapter is organized as follows: Section 5.1 introduces nec-
essary background information about energy testing; Section 5.2 presents a motivating
example; Sections 5.3 and 5.4 describe the technique and prototype implementation,

respectively; and Section 5.5 discusses the evaluation of the technique.

5.1 Background

Software bugs that lead to energy inefficiencies in applications are known as
energy bugs. These energy bugs cause excessive battery drain, which is a main user
complaint about applications. Different types of energy bugs can be found in mobile
applications including resource overuse and misuse bugs, no-sleep bugs, sleep conflicts
bugs, loop bugs, immortality bugs, activity bugs, and event bugs [90, 52, 11]. For exam-
ple, no-sleep bugs keep at least one component of the mobile device awake erroneously.
This prevents the mobile device from going to a lower power state and increases the

battery drain significantly.

93

To combat energy issues in applications, developers need to perform energy
testing. Energy testing differs from traditional testing in several ways. In particular,
it often requires developers to execute energy tests on real devices and collect energy
usage data by using a special energy measurement device. In general, the energy testing
process works as follows. Developers install the application under test on a real device.
Then, they run the application and execute energy tests while energy usage data is
collected by the energy measurement device. The collected data is analyzed to detect
energy issues. This manual, labor intensive process is then repeated several times for
each supported platform.

Functional tests that are designed to test correctness of the applications are
generally not usable as energy tests for several reasons. First, energy tests should have
long running times, due to the low sampling rates of energy measurement hardware.
Second, they should focus on energy bugs and features of the application that use
energy-greedy hardware components in the device to detect energy issues. In addition,
energy tests need to be user interaction scenarios for mobile applications since they are
interactive and event-driven. Developers can generate deterministic scenarios manually
or generate random scenarios via an automatic event generator (e.g., Monkey [81]).
These generated scenarios are recorded and reproduced by using capture/replay tools
(e.g., RERAN [40]). Manually reproducing scenarios can influence energy consumption
because developers can perform the same sequence of actions (e.g., enter text into a
textbox or click a button) but cannot maintain the same timing between the actions.

Since energy tests are user interaction scenarios for mobile applications, each
energy test has different event and action ordering with a focus on some application
features. For example, adding a note and deleting a note might be two different energy
tests for Tomdroid, a note-taking application. Because energy tests focus on application
features instead of individual source code units of the application, executing all energy
tests that cover the modified source code unit is needed to obtain good accuracy in

energy testing.

94

To accomplish high accuracy in energy measurement, special energy measure-
ment devices are used. These devices measure actual power consumption externally
and do not introduce any measurement overhead. In Section 3.3.3, we have presented
two custom-built energy measurement platforms that are appropriate for energy testing

of Android applications.

5.2 Motivating Scenario

Developers frequently need to evolve their applications to add new features,
enhance or adjust existing features, fix bugs, meet new requirements, improve perfor-
mance, restructure the source code, etc. The process of evolving an application most
likely involves code changes and testing in response to those code changes. When de-
velopers make code changes, they perform traditional and energy testing since both
correctness and energy-efficiency of the application are important. Due to lack of infor-
mation about the energy testing requirements of the proposed code changes, developers
plan to conduct energy testing after each change and run all energy tests. This might
negatively affect the application evolution timeline and restrict the number of changes
that developers plan to include in a release.

Knowing the energy test requirements of proposed code changes can help devel-
opers to develop a realistic and effective application evolution timeline. For example,
some changes may not require energy testing, and thus the allocated time for energy
testing can be used to add more changes in a release. When developers are up against
a deadline and have to decide what code changes are made in this release, they may
postpone code changes that require energy tests to a later release. They can even
decide to cancel changes that require enormous amount of energy testing efforts. As
a hardware-based testing environment is needed to perform energy testing, developers
can order the changes to reduce setup costs. In addition, there are usually various
ways to implement a feature or functionality. Comparing the energy test requirements

of different implementations can also help developers to decide which choice to apply.

95

5.3 Approach: Energy Retest Umpire (ERU)

ENERGY
GREEDY APls
(eGreedy)

,,

APPLICATION
(App) 5 fimpactSet

PROPOSED ; Phase 1:
CHANGE R o CALCULATE
(pChange) ; IMPACT SET

Phase 2:
DETERMINE
ENERGY TESTS

REQUIRED
ENERGY TESTS

knownlmpact

THRESHOLD
()

TEST
COVERAGE
(tCoverage)

Figure 5.1: High-level overview of Energy Retest Umpire Technique.

This section presents our approach (ERU) for providing feedback on the energy
test requirements of proposed code changes to developers. Figure 5.1 shows a high-
level view of ERU. The main insight behind ERU is that energy test requirements of a
proposed change depend on the energy greedy API usage of the proposed change and
the source code units impacted by the change. ERU takes the following as input:

* Application (App): Source code of an application.

* Proposed Change (pChange): Potential change that the developer plans to make
to the input application. It can be expressed at different source code unit gran-

ularities (e.g., package, file, method, etc.).

* Energy Greedy APIs (eGreedy): API methods that are known, a priori, to con-
sume significant amounts of energy. ERU uses a standard set, but developers can

also provide additional methods.

Test Coverage (tCoverage): Coverage information indicating which application
source code units (expressed at the same granularity as the proposed changes)
are executed by each energy test. For example, at the method level ¢; +—

{my, ms, m3} indicates that energy test 1 covers methods 1, 2, and 3.

96

* Threshold («): Confidence threshold used to filter the impact set of the proposed

change (see Section 5.3.2).
ERU produces the following as output:

* Required Energy Tests: A list of energy tests that need to be run for the proposed

change. In general, there are three possible outcomes.

— No Energy Tests: The proposed change does not require any energy tests

to be run (i.e., the list of tests is empty).

— Partial Energy Tests: The proposed change requires some energy tests be

run (i.e., the list contains some, but not all, energy tests).

— All Energy Tests: The proposed change requires all energy tests to be run

(i.e., the list contains all energy tests).

To decide whether energy testing is required, and if so, which energy tests need
to be run, ERU is divided into two main phases: the Calculate Impact Set phase and
the Determine Energy Tests phase.

The first phase, Calculate Impact Set, identifies the potential impacts of the
proposed change on the correctness of other source code units, requiring that they be
changed to maintain correctness. It takes as input the application, proposed change,
and threshold and generates knownlImpact—a flag that indicates whether the impact
of the proposed change is known and fImpactSet—the source code units that will likely
be changed along with the proposed change for the given threshold. These source code
units are at the same granularity with respect to the proposed change. For example,
if the proposed change is an application method, then its flmpactSet contains the
potentially impacted application methods, which are the co-changes of the proposed
change.

The second phase, Determine Energy Tests, takes as input the outputs of the
first phase as well as the Energy Greedy APIs (eGreedy) and Test Coverage (tCoverage)

97

information. It uses these inputs to determine the energy test requirements of the

proposed change.

5.3.1 Example Scenarios

As intuitive examples of how ERU determines the energy test requirements of a
proposed change, consider the scenarios shown in Figures 5.2a, 5.2b, and 5.2c. These
scenarios represent the possible outputs of ERU.

In each figure, the left subfigure, (a), shows the API method calls of the applica-
tion’s source code units such as application’s method, files, classes, etc. Nodes inside the
rectangle represent application source code units and nodes outside the rectangle repre-
sent API methods. The application source code unit where the developer plans to make
code changes (pChange) is solid black. The right subfigure, (b), illustrates impacted
application source code units (flmpactSet), energy greedy API methods (eGreedy), and
knownImpact flag computed by Calculate Impact Set and the Determine Energy Tests
phases. Source code units in flmpactSet are lightly shaded if flmpactSet #). API
methods that are marked with a cross (‘X’) show the eGreedy methods that consume
high energy. They can influence application energy consumption.

Figure 5.2a shows the scenario where pChange does not require energy testing.
The impact of pChange is known as the knownImpact flag is set to true. It means that,
depending on the use of eGreedy methods, energy testing may or may not be required.
In this case, since none of the application source code units in flmpactSet and pChange
call any of the eGreedy methods, no energy tests needed to be run for pChange.

Similarly to Figure 5.2a, the impact of the pChange is known in Figure 5.2b.
The difference is that some of the source code units in flmpactSet and pChange call
eGreedy methods. Therefore, energy testing is required and the energy tests that
cover any of these application source code units should be run for pChange. Note that,
depending on the specific coverage of the tests, they may or may not all need to be

rumn.

98

Figure 5.2a: No energy tests scenario.

Figure 5.2¢: All energy tests scenario.

Finally in Figure 5.2¢, the knownlImpact flag is false because the impact of the
proposed change is unknown. In this case, all energy tests should be run for pChange

whether pChange uses eGreedy methods or not.

5.3.2 Phase 1: Calculate Impact Set

The goal of the Calculate Impact Set phase is to identify the impacts of the
proposed change on other application source code units. One way to achieve this goal
is to use change impact analysis [14]. Change impact analysis computes the impact
set of the proposed change, formulated as a set of pairs < n,p >, where each pair is
composed of a source code unit name n and the probability p of the source code unit
being impacted by the proposed change. The probability ranges from 0 to 1, where 1
is the highest probability of being impacted.

The Calculate Impact Set phase outputs a flag called knownlImpact that in-
dicates whether the impact set is empty because no other changes are anticipated or
because there is insufficient information to make a prediction. The flag is set to false
when there is insufficient information. The other output of the Calculate Impact Set
phase, fImpactSet, is a filtered version of the impact set that only includes pairs where
the probability is greater than or equal to the selected threshold («). Source code units
in fImpactSet are considered co-changes of the proposed change that will be changed
along with the proposed change. We also add the proposed change into its fImpactSet
with the probability of 1. For example, assume A is the proposed change, and B and
C are impacted with probabilities of 0.9 and 0.8, respectively. The impact set of A
is (< B,0.9 >, < C,0.8 >). Then, the fImpactSet of the proposed change becomes
(< A,1.0 >, < B,0.9 >) for threshold 0.85 and (< A4,1.0 >, < B,0.9 >, < C,0.8 >)
for threshold 0.8.

5.3.3 Phase 2: Determine Energy Tests
Algorithm 1 shows how ERU determines the energy test requirements of a pro-

posed change in the Determine Energy Tests phase.

100

Algorithm 1 Determine Energy Tests

Input: flmpactSet - Filtered impact set.
Input: eGreedy - Set of methods of interest.
Input: tCoverage - Desired coverage of energy tests.
Input: knownImpact - Flag indicating whether the proposed change impact is known.
Output: Required Energy Tests
1: procedure DETERMINE ENERGY TESTS(fImpactSet, eGreedy, tCoverage,

knownImpact)
2: List RequiredEmnergyTests
3: if knownImpact == False then
4: RequiredEnergyTests <—all energy tests
5: else
6: for source code unit e fImpactSet do
7 for callee in Callees(source code unit) do
8: if callee € eGreedy then
9: for energy test € tCoverage do
10: if source code unit C energy test then
11: RequiredEnergyTests <—energy test
12: end if
13: end for
14: break
15: end if
16: end for
17: end for
18: end if

19: return RequiredEnergyTests
20: end procedure

This phase takes as input the flmpactSet, eGreedy, tCoverage, and knownlm-
pact. It first checks the knownImpact flag, and adds all energy tests to Required EnergyTests
if the knownImpact flag is False, which means there is insufficient information. If not,
all callee API methods of each source code unit in flmpactSet are examined. When
any of the callee API methods is in eGreedy, energy tests in tCoverage that cover the
source code unit are added to RequiredEnergyTests. This process continues until all
source code units in flmpactSet are inspected. Finally, RequiredEnergyTests, which
consists of energy tests that should be run for testing energy impact of the proposed

change is returned as output.

101

5.4 Implementation

This section describes the prototype implementation of ERU designed for An-
droid applications. Since energy greedy APIs (eGreedy) is a necessary input for ERU,
we used pre-computed Android API energy usage information to obtain this input. To
generate the impact set of a proposed change (pChange) in Calculate Impact Set phase,
the prototype leverages Historical Change Impact Analysis. Additionally, identifying
the callees of the Android application source code units is needed in the Determine
Energy Tests phase to determine required energy tests. Therefore, we integrated De-
pendencyFinder into Determine Energy Tests phase [31]. We provide more details

about the implementation in following subsections.

5.4.1 Energy Greedy APIs

The set of energy greedy APIs that we considered in our prototype is derived
from two sources. First, we used the results of the findings of an empirical study
conducted to find the most energy-greedy Android API methods [70]. This study
examined the energy consumption of 55 Android apps from different domain categories
by using real-usage scenarios and analyzed 807 Android API methods. Based on the
results of their study, they categorized 131 methods as energy greedy.

In addition, we also considered recent studies that show wakelock, GPS, and
GSM related APIs can cause battery drain because of either misuses of APIs such
as wakelock APIs or uses of energy greedy hardware components such as GPS and
GSM [20, 92, 91, 120]. However, these studies did not investigate API methods indi-
vidually, therefore we added wakelock, GPS, and GSM API packages with all of their

methods to our eGreedy set.

5.4.2 Change Impact Analysis
Software change impact analysis (CIA) estimates co-changes that need to be

made to accomplish a change [14]. Change impact analysis approaches use different

102

scopes, including source code, formal models, and miscellaneous artifacts [65]. Source-
code based CIA approaches focus mainly on identifying the part of the code that needs
to be modified along with the proposed change. These approaches can be static or
dynamic [66]. Dynamic CIA techniques require execution of the source code to collect
information after a change while static CIA techniques analyze information about the
source code before a change. Source-code based CIA techniques generate impact sets
at different granularity levels such as file, class, method, field, or statement. Further,
both dynamic and static techniques can be divided into subtypes. Dynamic CIA can
use either offline or online analyses. Static CIA can perform historical, textual, or
structural static analyses.

In our prototype implementation, we chose to use historical CIA. Historical
change impact analysis (HCIA) is a static, source-code based analysis that extracts
co-change couplings by mining changes in the source code repository of an application.
HCIA computes a confidence value with the predicted changes. We chose to use HCTA
in our implementation for several reasons. First, HCIA is the most used technique
among the source-code based change impact analysis approaches [66]. Second, it does
not require actually applying changes and executing application source-code to generate
an impact set. Finally, HCIA can generate an impact set at different granularity levels
as a set of pairs composed of source code unit name and its probability of being
impacted (< n,p >).

There are several ways to compute the probability of a source code unit be-
ing impacted. For example, the association rule shown in Equation 5.1, proposed by
Zimmermann et al. [121], can be used to compute the probability.

P(A— B) = YANBE) %‘(Q)B)

In Equation 5.1, A and B are source code units in an application. N(AN B)

(5.1)

represents the support value, which is the number of times A and B have been changed
together in the source code repository of the application. N(A) represents the frequency

of A, which is the number of times A has been changed. P(A — B) denotes the

103

probability that B will be changed if A is changed and is also called the confidence
value.

Although Equation 5.1 is effective, it assumes that the support value term only
includes intentional co-changes, that is, co-changes where A and B are modified to-
gether for the same reason. In many cases, this assumption may not hold. For example,
A and B may be related to separate features that are included in the same release. For
instance, assume that N(A)=1, N(B)=10, and N(ANB) = 1. If A is the location
of the proposed change, P(A — B) = 1 which means that the change in A impacts
B and B also needs to be changed. However, it is possible that A and B have been
changed together incidentally in the past since B has been changed many times. As a
result, changing A might not necessitate changing B. To avoid such bias, Equation 5.1
can be modified to require a minimum support value (i.e., only co-changes that occur

a sufficient number of times are considered) as shown in Equation 5.2.

m N(ANB MinSuppV alue
P(A—B)={ N&A Ane= o (5.2)

0 otherwise
A second method for calculating probabilities, proposed by Jashki et al. [58], is

to use the Jaccard similarity coefficient [57]. This method is shown in Equation 5.3.

N(ANB)
N(A)+ N(B) — N(ANn B)
In Equation 5.3, N(A) and N(B) again represent the number of times that these

P(A— B) =

(5.3)

source code units have been changed in the source code repository of the application.
The support value is divided by the frequency of A plus the frequency of B minus the
support value. This equation considers the closeness of the methods to calculate the
probability.

In our prototype implementation, developers are easily able to select any of the

three equations or define any minimum support value for the probability calculation.

104

5.4.3 Identifying the Callees of the Source Code Units

Almost all Android applications are Java-based. Thus, we use Dependen-
cyFinder in our prototype to identify the callees of the Android application source
code units [31]. The callee relationships are used to specify whether a source code unit
calls any of the eGreedy methods. The use of eGreedy methods necessitates energy
testing for the source code unit.

DependencyFinder analyzes compiled Java codes and builds dependency graphs.
In the dependency graph, a dependency indicates that one element requires the pres-
ence of another element to function. DependencyFinder has 3 different element types:

package, class, and feature.

Table 5.1: Dependencies.

Elements Package Class Feature

Package v v v
Class v v v
Feature v v v

Table 5.1 shows dependencies that DependencyFinder can infer with a check-
mark (v'). As the table shows, there are 9 dependency options including “package to
package”, “package to class”, “package to feature”, etc. We selected the “feature to
feature” option of DependencyFinder to obtain dependencies at different granularity
levels. With this option, it is possible to identify the callees of the application packages,
files, and methods by parsing the dependency graph.

5.5 Evaluation
We designed three case studies in which we use the prototype of ERU on ten

Android applications to investigate the following research questions:

o RQ1I: Usability — Can ERU help to plan the application evolution process?

105

o RQ2: Energy Testing — Do proposed single source code unit changes ever result
in not requiring energy testing for real applications using energy-greedy API

methods?

e RQ3: Impact — How does the choice of history granularity, threshold («) and
equation for computing confidence values affect the energy testing requirement

of proposed code changes?

o RQ4: Cost — What is the cost of getting feedback regarding the required energy

tests?

The remainder of this section provides information about the selected applica-

tions, explains the experimental procedure that we followed, and discusses the results.

5.5.1 Subject Applications

Table 5.2 lists the applications that we used in our evaluation. The first two
columns, Application and Description, list the name of each application and a brief
description of its functionality, respectively. The third and fourth columns, # Releases
and # Commits, show the number of releases and commits that we used to create
release history and commit history of each application from the application’s source
code repository, respectively. Note that, we only considered the commits that con-
tain source code changes that occurred in the current source code directory structure.
Commits with only non-code changes (e.g., changes in user interface, Android SDK
version, non-Java files, etc.) or within a different directory structure (e.g., before mi-
grating Eclipse to Android Studio) were ignored. The fifth column, Version, indicates
the latest version number of each application that was analyzed in our evaluation. The
next two columns, # Files and # Methods, provide the number of source files and the
number of methods in the latest version of each application, respectively. To gather
all method and file names, and the number of methods and files in the application,
we used DependencyFinder. The number of lines of code, LoC) is reported in the final

column and only counts lines of code in the source files of the application. For example,

106

6871 ¢S LYV 6I1¢ 09T¥'C V1CT e uoryeotjdde erpadiqip [P erpadiipy
9¢0 G2 0001 g ¢r o1 7811 8¢ 1oferd oSNy OISNIN B[[IUBA
ee1el)77 0¢ G0 V.G T uoryedrdde unye) 930N proIpuog,
LV961 616 96 8T LT 0T T9SMOIq I\ TOSMOITIULT,
6686 60¢ 6S 1'6°¢ evl 1% SN 9WIT} JYSIU 10} I9Y UDAIDG UOOIN poy
002 ST 90. @) 91°¢S I8¢ 71 eIpaul [ed0] ut sojoyd yoresg I9Seur]y 0307
219 L€ L11T 0€% 0C¢ €99 e I9SMOIq pIeoq dFeull ueydy T9A0[D)
7966 cog 8¢ a7 % 1 IoXoRI) [RIOURUL] 18png
902 69 L20¢ 0G¢ LG 298 4 pre Apnjs paseq-preoysey y proiqmuy
12¥6 L1¢ Gg z1e 37 61 I9Y0[q PY Lemypy

DOT SPOYIOIN # SO[I] # TUOISIoA SHWWO)) # Sosea[dy # uondrosa(] uoryeorddy

suoryeorjdde 10slqng :z°G a(qe],

107

TintBrowser is a web browser application and it has 10 releases and 171 commits in
its source code repository. Version 1.8 of TintBrowser consists of 96 Java files, 919
methods, and 19647 lines of code.

We chose these specific applications because they have available source code
repositories and they are representative of common Android application types. These
applications also vary in the number of releases, commits, files, methods, and lines of

code.

5.5.2 Experimental Procedure

We evaluated the prototype of ERU to determine whether energy testing is
required for the proposed changes in ten Android applications. We conducted three
case studies and followed the same procedure for each study. The first step was to select
the source code unit granularity of the study and to identify the proposed changes.
Because we are interested in source code changes, all source code units at the selected
granularity level were considered as possible proposed changes. Then, the energy test
requirements of each proposed change were investigated using each of the equations
described in Section 5.4.2 with different thresholds, 0.5, 0.6, 0.7, 0.8, and 0.9. The

details of the case studies are presented below:

* Case Study 1 - Method Level with Release History: The first case study was
conducted at method level, and each application method was considered as a
proposed change. The impact sets of the proposed changes were generated based

on the release history of the application.

Case Study 2 - File Level with Release History: The second case study was
conducted at the file level, and each source file was considered as a proposed
change. The impact sets of the proposed changes were generated based on the

release history of the application.

* Case Study 3 - File Level with Commit History: Similar to the second study, the

third case study was conducted at the file level. The difference is that the impact

108

sets of the proposed changes were generated based on the commit history of the

application.

We have not conducted a case study at the method level with commit history.
The only way we could find to obtain modified application methods in a commit is to
use SVN repository although all of our considered applications are in Git repository.
The underlying reason is the difficulty of migrating application’s Git repository to SVN
repository due to many branching-outs and merges in Git that SVN cannot handle.
Therefore, we manually created SVN repository for each application by committing
only source code of the application in its releases with respect to release order for the
first case study. To use same release history in the second case study, we automatically
converted application SVN repositories to Git repositories. Lastly, we used existing

application Git repositories in the third case study.

5.5.3 Data Analysis and Discussion

In this section we describe results of our study in terms of our research questions.

RQ1: Usability

Table 5.3 shows the data used to answer the first research question. We gathered
data the ERU prototype produces and uses internally to determine the energy test
requirements of the proposed changes. The first column, Application, lists the name of
each application. The remaining columns, % Use eGreedy and % Known Impact, show
the percentage of proposed changes that use energy greedy API methods in eGreedy
and the percentage of proposed changes whose impact is known, respectively. For
example, in Tomdroid, 10.1 % of the proposed changes at the method level and 32.0 %
of the proposed changes at the file level use energy greedy API methods. 20.9 %, 50.0 %,
and 84.0 % of the proposed changes’ impact are known at the method level with release
history, at the file level with release history, and at the file level with commit history,

respectively.

109

e 999 L'9¢ e 66 oFeIAY
0°GL G99 091 V'€e ¢'€ eIpadn{I
LY8 G9. '8y 8°LC 98 JTSUIAL B[[TUeA
078 0°0¢ 0°¢ce 6°0¢ 1ot proIpmog,
G'L8 709 g€y Vel I'TT TOSMOICIUL],
VL6 'e8 6°G€ G'¢a G'L UOOIN POy
¢'6L 7769 84y €Le 80T ToZeue]\ 0307
87L 8y G GG Vel ey I9A0TD)
1°G6 409 6°LS €03 8¥T 1e8png
9°€9 879 8V¢ G 6¢ G'q proiquuy
9¢8 L8 0°0% 1°¢T 61 Aemypy
1oedw] umousy 9, joeduw] umouwy] 9 Apoorno os() 9, joedw] UMOUY o ApPodrnd as() ¥ uoryeorddy

AIO)ST HTWIwio))

KIO)ST] osed[oy

KIO)STH osea[dy

[0A7] O[1,]

[0AT POTIOIN

‘saguerd pasodol] :¢°G 9[qe],

110

From the data shown in Table 5.3, we can observe that Android applications
often use energy greedy API methods as all of the considered applications invoke some
energy greedy API. However, the use of energy greedy API methods varies from appli-
cation to application and ranges from 3.2 % (Wikipedia) to 19.2% (AdAway) with an
average value of 9.5% for method level proposed changes. At the file level, it ranges
from 16.0 % (Wikipedia) to 57.9 % (Budget) with an average of 36.7 %. As code changes
may have an effect on the energy consumption of the applications since they contain
energy greedy API methods, this data motivates the necessity of energy testing after
the changes.

Developers currently anticipate performing energy tests after each source code
change. However, a proposed change might not require all energy tests to be run,
and time can be wasted on unnecessary energy tests. Therefore, providing feedback
on energy test requirements of the proposed changes helps to improve the planning
process of application evolution. ERU achieves this for the proposed changes whose
impact is known.

Based on the data in Table 5.3, the percentage of proposed changes whose
impact is known varies from application to application. For example, it ranges from
13.4% (Tomdroid and TintBrowser) to 37.3 % (Photo Manager) with an average value
of 22.3% for the proposed changes at the method level with release history. More
importantly, selected source code unit granularity and history have influence on the
known impact.

When we compare studies at method level and file level with release history, it
is clear that the percentage of known impact increases significantly at the file level for
the same application. This is an expected result since a file might consist of several
methods and has a higher chance of being changed than a method. In addition, some
of the application methods may not need to be changed once they have been defined
(e.g., getter/setter methods). This may lower the percentage of known impact at the
method level.

Studies at the file level with release history and commit history show that release

111

history sometimes provides higher percentage of known impact than commit history
(e.g., AdAway and AnkiDroid). This is possible when the source code directory struc-
ture has been changed in the existing application repository as we only examined the
application source code changes in the current source code directory structure for com-
mit history. For example, migrating Android applications built with Eclipse to Gradle
causes directory structure changes. For release history, directory structure changes are
not a constraint because release history that we created is independent from the direc-
tory structure since it only includes the source code of the application in its releases.
Besides this exception, commit history provides a higher percentage of known impact

than release history, as expected.

RQ2: Energy Testing

One of the major criteria that developers take into account to plan their appli-
cation evolution process is the total cost of testing. In response to code changes, both
traditional and energy testing should be performed, especially for mobile applications.
However, the high cost of energy testing significantly increases the total testing cost,
which can adversely impact the planning process of application evolution. In our eval-
uation, we investigated whether a proposed single source code unit change can ever
result in not requiring energy testing.

Figures 5.3, 5.4, and 5.5 show the result of our investigation at method level
with release history, file level with release history, and file level with commit history,
respectively. These figures are faceted by the considered applications. In each facet,
the y-axis shows the percentage of proposed changes that require energy testing, and
the x-axis shows the selected threshold. The plot lines indicate the equation that is
used to calculate the probability of being changed.

As the figures show, in the majority of cases, energy testing is not always re-
quired for some of the proposed changes in an application. Although the result may
vary in each study depending on selected threshold and equation, there is no case in

which all of the proposed changes in an application require energy testing regardless of

112

Equation:

-8 Association Rule -/ Association Rule with Minimum Support Value of 2 -4 Jaccard Similarity Coefficient

AdAway

AnkiDroid

Clover

Photo Manager

100 -

¢}
8
1

F——a—8—¢g
A

- - - -"3-';'-&-...5

B—8—p a1

== 0= =0 ——o——0

HM

e B

= NN Wb O o N
O O O O O O O o o
1 1 1 1 1 1 1 1 1

Tomdroid Vanilla Music Wikipedia

E—w—us ¢

Red Moon TintBrowser

100_ D\S\B‘e_g

90 A... .4
o] ¥ubeci s

70+
60 -
50 -
40 -
30
20+

=== — = -

(%) Proposed Changes That Require Energy Testin

0_

[R . [N N . [N .
05 06 07 08 09 05 06 07 08 09 05 06 07 08 0.9

Selected Threshold («)

[N . [R .
05 06 07 08 09 05 06 07 08 09

Figure 5.3: Energy Testing Feedback for Case Study 1: Method Level with Release
History.

the selected threshold and equation except the Budget application for the association
rule equation at the file level with release history. The underlying reason might be that

the Budget application has limited release history and small number of source files.

RQ3: Impact

We examined the data in Figures 5.3, 5.4, and 5.5 again to address the third
research question.

History: Studies at the file level can be comparable in terms of history effect
on the energy testing requirement of proposed code changes because the only differ-
ence between these studies is that the impact sets are generated based on release or

commit history. When we compare the Figures 5.3, 5.4, and 5.5, we can observe that

113

Equation:

-8 Association Rule -/ Association Rule with Minimum Support Value of 2 -4 Jaccard Similarity Coefficient

AdAway

AnkiDroid

Budget

Clover

Photo Manager

100 -

¢}
8
1

—8—8——&—=¢
A'.

- —"A- -0 - 0=-=o

.

P Y Y

B—s—8—8— 5
A,
o~ —"-'AT.—o- - o=,

A-eeA-eeA

~
o o
1 1

~ A A AL - -
~ A"-.A ~o~

y Testin
3
1

= D w bs g
o O O O o o
1 1 1 1 1 1

Wikipedia

3_—9—9—& —8—8—8—_
e e e I
. ~
A----A,..v A ~~ A
‘A ® T m —em — o

"A~--.A....A....A .‘A.,

Red Moon TintBrowser Tomdroid Vanilla Music

i

P D WS 0o N 0w o
O O O O O O O O o o o
1 1 1 1 1 1 1 1 1 1 1

DA A

(%) Proposed Changes That Require Energ

[R . [N N . [N .
05 06 07 08 09 05 06 07 08 09 05 06 07 08 0.9

Selected Threshold («)

[N . [R .
05 06 07 08 09 05 06 07 08 09

Figure 5.4: Energy Testing Feedback for Case Study 2: File Level with Release History.

using commit history most likely decreases the amount of required energy testing for
the proposed changes. On average, the difference ranges from 9.0 % to 26.1 % in the
threshold and equation, which is used to compute confidence values, configurations.
The underlying reason is the possibility of over estimating the energy testing require-
ments due to coarse-grained release history. For example, modified application files
between two releases are assumed to have been changed at the same time. However,
it is possible that files have been changed and committed at different commits within
two releases. While using fine-grained commit history may provide a more accurate
change impact analysis result, using release history is still beneficial, as the result in
Figure 5.4 shows that energy testing is not always required.

Threshold: Based on the data in Figures 5.3, 5.4, and 5.5, it is clear that the

114

Equation: |8 Association Rule —- Association Rule with Minimum Support Value of 2 -4 Jaccard Similarity Coefficient

AdAway AnkiDroid Budget Clover Photo Manager

o 90- B
c .
= 80- AT

=
o
S 60 "

x i SN e o mem =
9 A4 0 °
0]

c

L

(0]

Red Moon TintBrowser Tomdroid Vanilla Music Wikipedia

I I
05 06 07 08 09 05 06 07 08 09 05 06 07 08 09 05 06 07 08 09 05 06 0.7 08 09
Selected Threshold («)

Figure 5.5: Energy Testing Feedback for Case Study 3: File Level with Commit History.

effect of the threshold varies according to application and equation used to compute
confidence values. In general, we expected that selecting a higher threshold value
would decrease the percentage of energy testing required for the proposed changes.
However, it is not always the case. For example, the percentage of required energy
testing for the proposed changes in AdAway application is steady for the thresholds
0.7, 0.8, and 0.9 at the file level with commit history. Conversely, in some cases,
selecting higher threshold significantly decreases the percentage of proposed changes
that require energy testing. For example, increasing the threshold from 0.5 to 0.6 at
the file level with commit history decreases the percentage of proposed changes that
require energy testing 13.5% for TintBrowser application.

Equation: Different equations can be used to calculate the probability of being

115

impacted for source code units due to the proposed change in historical change impact
analysis. From the data in Figures 5.3, 5.4, and 5.5, the plot lines are very similar for
association rule and association rule with minimum support value of 2 in each study.
The difference is that defining a minimum support value decreases the percentage of
proposed changes that require energy testing. More interestingly, the Jaccard similarity
coefficient equation is not consistent in and across case studies. It suggests more or
less energy testing than association rule with minimum support value of 2 equation,

although it most likely suggests less energy testing than the basic association equation.

RQ4: Cost

The cost of getting feedback regarding the energy test requirements is an impor-
tant criteria of usability of ERU. The amount of time needed by the prototype of ERU
to provide energy testing feedback of the proposed changes depends on several factors.
These factors are the number of considered source code units as proposed changes and
number of releases or commits in the application source code repository. In our case
studies, time spent by the prototype was a few minutes for all proposed changes in
an application. This time is negligible compared to the time that would have been

unnecessarily spent performing expensive energy testing.

5.5.4 Potential Threats to Validity

One of the most significant threats to the validity of our results is that we
considered 131 API methods and all methods in 3 API packages as energy greedy.
There might exist other energy greedy API methods. However, we believe that we
added all known energy greedy API methods into our Energy Greedy APIs (eGreedy).
eGreedy is also extendable and developers can freely add API methods that are energy
greedy.

A more specific concern is the possibility of over estimating the required energy
testing due to the coarse-grained release history of considered applications. While

using application commit history eliminates this threat, it might not be applicable all

116

the time. For example, we are not able to use commit history at the method level.
Additionally, using release history is still beneficial since results of our case studies with
release history show that some of the proposed changes do not require energy testing.

There are several additional threats to validity of our evaluation. First, con-
sidered applications do not have energy tests and test coverage information publicly
available. As a result, the prototype of ERU could only determine whether energy
testing is required. Second, dynamic impact analysis can be more precise than static
impact analysis. However, dynamic impact analysis does require actually applying
changes and executing application source code to generate an impact set. Therefore,
we chose to use a static impact analysis. Third, we only considered ten Android appli-
cations. Although we selected these applications to cover different application types,

it is possible that they may not be representative of all applications.

5.6 Related Work

Unlike our approach, which determines energy test requirements before making
any code changes in a source code unit, the majority of existing work on energy testing
has focused on minimizing the test suite with energy consideration [56, 69], finding
energy bugs [11], and reducing the energy consumption of test suite [61].

For example, Jabbarvand et al. [56] propose an energy-aware test suite mini-
mization approach to test the energy properties of an Android application with the
minimum set of tests. They used integer programming and a greedy algorithm to
reduce the test suite size while maintaining the test suite coverage for energy-greedy
segments of an application that consume more energy. Similar to our study, they con-
sider energy greedy APIs to determine energy-greedy segments of an application [70].
Their result shows that they are able to minimize test suite size without losing effec-
tiveness of the test suite in revealing most of the energy bugs such as wakelock bugs,
recurring callback bugs, and loop bugs.

Li et al. [69] optimize a test suite in terms of energy. They measure the energy

consumption of the test cases using hardware and uses this information to generate

117

energy-efficient test suites by applying integer programming. While energy-efficient
test suites that can be performed post-deployment testing on mobile and embedded
systems have reduced energy consumption, their test coverage is equally effective with
traditionally generated minimized test suites.

Banerjee et al. [11] present an automated test generation framework. Their
framework systematically generates tests to detect energy hotspots and bugs in Android
applications by combining a graph-based search algorithm and guidance heuristics.
After generating a test that is a user interaction scenario, the framework executes
the test on a smartphone and measures energy consumption simultaneously using a
power meter. Then, the framework examines energy bugs and hotspots in different
categories such as hardware resources, sleep-state transition heuristics, background
services, and defective functionality. While it detects an energy bug based on the
statistical dissimilarities in energy consumption of the device before and after executing
the respective application with the test, it determines an energy hotspot that causes
anomalous energy consumption by using an anomaly detection technique.

Kan [61] presents a technique to reduce the energy consumption of the CPU
via the Dynamic Voltage and Frequency Scaling (DVFS) during the regression testing.
This technique is conducted on the assumption that over the versions of a program that
do not have significant changes in functionality, CPU-bound tests remain CPU-bound.
Therefore, optimizing CPU frequency for execution of CPU-bound tests saves energy

and helps to reduce the energy consumption of the test suite.

5.7 Summary

In this chapter, we have presented a new approach, ERU, that provides feedback
on energy test requirements of the proposed code changes for helping developers plan
their application evolution timeline effectively. ERU leverages change impact analysis
and pre-computed API energy usage information. To evaluate the prototype of ERU,

we used ten Android applications to determine energy testing requirements of the

118

proposed changes at different source code unit granularities with release or commit
history. The results of this study demonstrate that:
(1) ERU can provide feedback on energy testing requirements of the proposed code
changes.
(2) Android applications most likely use energy greedy API methods.
(3) Energy testing is not always required for proposed single source code unit changes.
(4) The percentage from proposed changes that required energy testing varies appli-
cation to application, and it is affected by selected history granularity, threshold,
and equation used to compute confidence values.
(5) The cost of the prototype implementation of ERU will allow it to be run as part
of the application evolution cycle.
As such, we believe that getting feedback on energy test requirements of the pro-
posed code changes is positive news for application developers. By using the feedback
information, developers can plan the application evolution process and make decisions

on code changes more informatively.

119

Chapter 6

CONCLUSION

The overall goal of my research is to enable and support software engineers in de-
veloping and maintaining energy-efficient applications. My dissertation work addresses
this goal by first gathering knowledge about how software engineering decisions impact
the overall energy usage of an application and second by developing a technique for
supporting the software engineering process. This chapter summarizes contributions

of the dissertation and discusses the potential future work.

6.1 Summary of Contributions

The main contributions of this dissertation are as follows:

(1) Guidelines to design and conduct high-quality empirical studies
on software engineering decisions with energy consideration. The quality
of empirical studies is important to make accurate observations. By following each
step of the methodology in our empirical studies, researchers can acquire the skills
and experience necessary to empirically investigate the energy impacts of software
engineering decisions.

(2) Data generated by four empirical studies of major software engi-
neering decisions including design patterns, code refactorings, code obfus-
cations, and performance tips. The experimental data is generated to investigate
how the considered software engineering decisions impact the energy consumption of
applications. In empirical studies, 15 design patterns, six code refactorings, 18 code ob-
fuscations, and four performance tips were considered. In total, approximately 75000

executions were run on a suitable hardware-based energy measurement platform.

120

(3) Analyses of the generated data to determine how software en-
gineering decisions impact energy usage. To analyze the generated data, we
used appropriate statistical approaches. In general, this means using non-parametric
methods (e.g., Mann-Whitney-Wilcoxon test, the Kruskal-Wallace test, Vargha and
Delaney’s Ay, statistic, etc.). The analyses of data demonstrate that all of the de-
cisions have the potential to both increase and decrease energy usage of applications
except performance tips. This finding confirms that given a better understanding of
the implications of software engineering decisions with regard to energy consumption,
software engineers can play an important role in reducing the energy usage of the
applications they write.

(4) A technique to predict energy testing requirements of proposed
code changes. We have presented a new approach to provide developers with feed-
back on the energy testing requirements of proposed code changes. Our technique
leverages change impact analysis and pre-computed API energy usage information.
More specifically, for a proposed change, the technique predicts whether energy testing
will be required, and if so, which energy tests will need to be run. Such information
allows developers to develop an effective application evolution timeline. Because they
have more accurate information about the amount of energy testing that is required,
time that would have been unnecessarily used for energy testing can be allocated to
performing additional changes in a release.

(5) A prototype implementation of the technique for Android ap-
plications. We have implemented a prototype for Android applications to evaluate
the technique. The prototype leverages Historical Change Impact Analysis and pre-
computed Android API energy usage information. Using the prototype, we performed
a preliminary study on ten Android applications to investigate the feasibility of the
technique and how it performs when changes are expressed at differing granularity lev-
els. The results of the evaluation are promising and show that the technique is feasible

and able to provide useful feedback.

121

6.2 Future Work

In the future, it is likely that developing and maintaining energy-efficient ap-
plications will be continue to be an important research area. Since the work in this
dissertation benefits both researchers and developers, it can be extended in several
ways.

(1) Replicate and improve existing empirical studies. Although repli-
cation is not as common for studies in the software engineering community as it is in
other areas, we believe that replication is an important part of the research process.
Replicating our studies by using additional platforms (e.g., tablets), architectures (e.g.,
Windows phone), and applications written in different programming languages (e.g.,
Python) enlarges the scope of studies and helps to generalize or limit our observations.

(2) Investigate the energy impacts of additional software engineering
decisions. Empirical studies on other software engineering decisions that possibly
impact the energy consumption can be conducted to provide more knowledge and
satisfy the expectations of developers [76]. Such decisions might include removing and
adding layers of abstraction, using different algorithms (e.g., incorporating parallelism),
offloading or moving computation to the cloud or other accelerators (e.g., GPUs), using
alternative data representations, and using alternative architectural styles (e.g., event-
driven architecture instead of polling).

(3) Build and release tool implementation of the technique. We believe
that, with further research and development, our technique has the potential to become
a practical tool for planning application evolution. For the first tool release of the
technique, we plan to improve prototype implementation of the technique for Android
applications and implement it as a tool. To improve the prototype, we will first develop
a way to use commit history of the application at the method level. Then, we will
investigate the best choice of the threshold and equation used to compute confidence
values for the prototype by analyzing real code changes and interviewing developers.

(4) Develop decision support tools. Developing decision support tools that

help managing energy consumption at all levels of the development process, from design

122

to implementation to maintenance, can be the most promising approach in the future.
These tools can enable developers to discover and apply right choices for reducing the
energy usage of their applications without the low-level, tedious work in analyzing

software, applying changes, and monitoring the resulting impacts to energy usage.

123

BIBLIOGRAPHY

[1] Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[2] http://www.allatori.com.

[3] Jean Alzieu, Hassan Smimite, and Christian Glaize. Improvement of intelligent
battery controller: State-of-charge indicator and associated functions. Journal
of Power Sources, 67(1-2):157-161, 1997.

[4] Nadine Amsel, Zaid Ibrahim, Amir Malik, and Bill Tomlinson. Toward sustain-
able software engineering (nier track). In Proceedings of the 33rd International
Conference on Software Engineering, pages 976-979, 2011.

[5] Nadine Amsel and Bill Tomlinson. Green tracker: A tool for estimating the
energy consumption of software. In Proceedings of the 28th International Con-
ference on Human Factors in Computing Systems: Fxtended Abstracts, pages
3337-3342, 2010.

[6] Android performance tips. http://developer.android.com/training/
articles/perf-tips.html, 2013. Accessed 30 October 2014.

[7] Users reveal top frustrations that lead to bad mobile
app reviews. http://apigee.com/about/pressrelease/
apigee-survey-users-reveal-top—-frustrations-lead-bad-mobile-app-reviews,
2012.

[8] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Proceedings of the 33rd
International Conference on Software Engineering, pages 1-10, 2011.

[9] Sarala Arunagiri, Victor J. Jordan, Patricia J. Teller, Joseph C. Deroba, Dale R.
Shires, Song J. Park, and Lam H. Nguyen. Stereo matching: Performance study
of two global algorithms. SPIE Proceedings, 8021:802117-802117Z-17, 2011.

[10] Woongki Back and Trishul M. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approximation. In Proceedings
of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 198-209, 2010.

124

http://www.allatori.com
http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/training/articles/perf-tips.html
http://apigee.com/about/pressrelease/apigee-survey-users-reveal-top-frustrations-lead-bad-mobile-app-reviews
http://apigee.com/about/pressrelease/apigee-survey-users-reveal-top-frustrations-lead-bad-mobile-app-reviews

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roy-
choudhury. Detecting energy bugs and hotspots in mobile apps. In Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 588-598, 2014.

Thomas W. Bartenstein and Yu David Liu. Green streams for data-intensive
software. In Proceedings of the 2013 International Conference on Software Engi-
neering, pages 532-541, 2013.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: A prac-
tical and powerful approach to multiple testing. Journal of the Royal Statistical
Society. Series B (Methodological), 57(1):289-300, 1995.

Shawn A. Bohner and Robert S. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings of the 27th
annual International Symposium on Computer Architecture, pages 83-94, 2000.

C. Bunse, H. Hopfner, S. Roychoudhury, and E. Mansour. Choosing the "best’
sorting algorithm for optimal energy consumption. In Proceedings of the 4th

International Conference on Software and Data Technologies, pages 199-206,
2009.

Christian Bunse and Sebastian Stiemer. On the energy consumption of design
patterns. In Proceedings of the 2nd Workshop EASED@BUIS Energy Aware
Software- Engineering and Development, pages 7-8, 2013.

http://www.businessinsider.com/android-piracy-problem-2015-1.

Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKinley. The
yin and yang of power and performance for asymmetric hardware and managed
software. In Proceedings of the 39th International Symposium on Computer Ar-
chitecture, pages 225-236, 2012.

Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-
phone. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, pages 21-21, 2010.

M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, Marco Torchiano,
and P. Tonella. The effectiveness of source code obfuscation: An experimental
assessment. In Proceedings of 17th IEEE International Conference on Program
Comprehension, pages 178-187, 2009.

125

http://www.businessinsider.com/android-piracy-problem-2015-1

[22]

[23]

[24]
[25]

[20]

[27]
[28]

[29]

[30]

[31]
[32]

[33]

[34]

Mariano Ceccato, Andrea Capiluppi, Paolo Falcarin, and Cornelia Boldyreff. A
large study on the effect of code obfuscation on the quality of Java code. Empirical
Software Engineering, pages 1-39, 2014.

C.-F. Chiasserini and R. R. Rao. Energy efficient battery management. IEEFE
Journal on Selected Areas in Communications, 19(7):1235-1245, 2001.

https://www.atlassian.com/software/clover/overview.

Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David Liu. Energy
types. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, pages 831-850, 2012.

Wellisson G. P. da Silva, Lisane Brisolara, Ulisses B. Correa, and Luigi Carro.
Evaluation of the impact of code refactoring on embedded software efficiency. In
Proceedings of the 1st Workshop de Sistemas Embarcados, pages 145-150, 2010.

http://www.preemptive.com/products/dasho.

Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Chris-
tian Le. Rapl: Memory power estimation and capping. In Proceedings of the
16th ACM/IEEE International Symposium on Low Power Electronics and De-
sign, pages 189-194, 2010.

J. W. Davidson and S. Jinturkar. Memory access coalescing: A technique for
eliminating redundant memory accesses. In Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, pages
186-195, 1994.

V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J.
Irwin. DRAM energy management using software and hardware directed power
mode control. In Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, pages 159-169, 2001.

http://depfind.sourceforge.net/, 2016. Accessed 1 June 2016.

Mian Dong and Lin Zhong. Self-constructive, high-rate energy modeling for
battery-powered mobile systems. In Proceedings of the 9th International Confer-
ence on Mobile Systems, Applications, and Services, pages 335-348, 2011.

F. Douglis, P. Krishnan, and B. N. Bershad. Adaptive disk spin-down policies for
mobile computers. In Proceedings of the 2nd Symposium on Mobile and Location-
Independent Computing, pages 121-137, 1995.

M. Doyle and J. S. Newman. Analysis of capacity-rate data for lithium batteries
using simplified models of the discharge process. Journal of Applied Electrochem-
istry, 27(7), 1997.

126

https://www.atlassian.com/software/clover/overview
http://www.preemptive.com/products/dasho
http://depfind.sourceforge.net/

[35]
[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

http://www.eclipse.org/org/usagedata.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architec-
ture support for disciplined approximate programming. In Proceedings of the
Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 301-312, 2012.

K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance setting for dy-
namic voltage scaling. In Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking, pages 260-271, 2001.

C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a simple, efficient
code-generator generator. ACM Letters on Programming Languages and Systems,
1:213-226, 1992.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. RERAN:
Timing- and touch-sensitive record and replay for Android. In Proceedings of the
2013 International Conference on Software Engineering, pages 72-81, 2013.

http://developer.android.com/tools/help/proguard.html.

J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond. Truth in advertising:
The hidden cost of mobile ads for software developers. In Proceedings of the 37th
International Conference on Software Engineering, pages 100-110, 2015.

Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, N. Vijaykr-
ishnan, Mahmut Kandemir, Tao Li, and Lizy Kurian John. Using complete
machine simulation for software power estimation: The SoftWatt approach. In
Proceedings of the 8th International Symposium on High-Performance Computer
Architecture, pages 141-151, 2002.

Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. Estimating
Android applications’” CPU energy usage via bytecode profiling. In Proceedings

of the First International Workshop on Green and Sustainable Software, pages
1-7, 2012.

Shuai Hao, Ding Li, William G. J. Halfond, and Ramesh Govindan. Estimating
mobile application energy consumption using program analysis. In Proceedings of
the 35th International Conference on Software Engineering, pages 92-101, 2013.

S. Heo, K. Barr, and K. Asanovi¢. Reducing power density through activity
migration. In Proceedings of the 2003 International Symposium on Low Power
Electronics and Design, pages 217-222, 2003.

127

http://www.eclipse.org/org/usagedata
http://developer.android.com/tools/help/proguard.html

[47]

[48]

[49]

[50]

[51]

[57]

Abram Hindle. Green mining: A methodology of relating software change to
power consumption. In Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories, pages 7887, 2012.

Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow, Joshua Charles
Campbell, and Stephen Romansky. Greenminer: A hardware based mining soft-
ware repositories software energy consumption framework. In Proceedings of the
11th Working Conference on Mining Software Repositories, pages 12-21, 2014.

C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of a com-
piler algorithm for CPU energy reduction. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, pages
38-48, 2003.

C. Hu, D. A. Jiménez, and U. Kremer. Efficient program power behavior char-
acterization. In Proceedings of the 2nd International Conference on High Perfor-
mance Embedded Architectures and Compilers, pages 183-197, 2007.

C. Hu, D. A. Jiménez, and U. Kremer. Combining edge vector and event counter
for time-dependent power behavior characterization. In Transactions on High
Performance Embedded Architectures and Compilers II, pages 85—104. Springer-
Verlag, 2009.

Cuixiong Hu and Iulian Neamtiu. Automating gui testing for android appli-
cations. In Proceedings of the 6th International Workshop on Automation of
Software Test, pages 77-83, 2011.

P.-K. Huang and S. Ghiasi. Efficient and scalable compiler-directed energy opti-
mization for realtime applications. ACM Transactions on Design Automation of
Electronic Systems, 12:27:1-27:16, 2008.

N. Hunt, P.S. Sandhu, and L. Ceze. Characterizing the performance and energy
efficiency of lock-free data structures. In Proceedings of the 15th Workshop on
Interaction between Compilers and Computer Architectures, pages 63-70, 2011.

A. Iyer and D. Marculescu. Power aware microarchitecture resource scaling. In
Proceedings of the 2001 Design, Automation and Test in FEurope, Conference and
Ezxhibition, pages 190-196, 2001.

Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek.
Energy-aware test-suite minimization for android apps. In Proceedings of the

25th International Symposium on Software Testing and Analysis, pages 425-436,
2016.

https://en.wikipedia.org/wiki/Jaccard_index, 2016. Accessed 30 October
2016.

128

https://en.wikipedia.org/wiki/Jaccard_index

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

Mohammad-Amin Jashki, Reza Zafarani, and Ebrahim Bagheri. Towards a more
efficient static software change impact analysis method. In Proceedings of the Sth

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 84-90, 2008.

http://junit.org.

I. Kadayif, M. Kandemir, G. Chen, N. Vijaykrishnan, M. J. Irwin, and A. Siva-
subramaniam. Compiler-directed high-level energy estimation and optimization.
ACM Transactions in Embedded Computing Systems, 4:819-850, 2005.

E. Y. Y. Kan. Energy efficiency in testing and regression testing a comparison of
dvfs techniques. In Proceedings of the 15th International Conference on Quality
Software, pages 280283, 2013.

Miryung Kim, Dongxiang Cai, and Sunghun Kim. An empirical investigation
into the role of api-level refactorings during software evolution. In Proceedings
of the 33rd International Conference on Software Engineering, pages 151-160,
2011.

R. Kravets and P. Krishnan. Power management techniques for mobile com-
munication. In Proceedings of the jth ACM/IEEE International Conference on
Mobile Computing and Networking, pages 157168, 1998.

U. Kremer. Low power/energy compiler optimizations. Low-Power Electronics
Design, pages 2-5, 2005.

Steffen Lehnert. A review of software change impact analysis. 2011.

Bixin Li, Xiaobing Sun, Hareton Leung, and Sai Zhang. A survey of code-based
change impact analysis techniques. Journal of Software Testing, Verification and
Reliability, 23(8):613-646, 2013.

Ding Li and William G. J. Halfond. An investigation into energy-saving pro-
gramming practices for android smartphone app development. In Proceedings of
the 3rd International Workshop on Green and Sustainable Software, pages 4653,
2014.

Ding Li, Shuai Hao, Jiaping Gui, and William G. J. Halfond. An empirical study
of the energy consumption of android applications. In Proceedings of the 2014
IEEFE International Conference on Software Maintenance and Evolution, pages
121-130, 2014.

Ding Li, Cagri Sahin, James Clause, and William G. J. Halfond. Energy-directed
test suite optimization. In Proceedings of the 2Nd International Workshop on
Green and Sustainable Software, pages 62-69, 2013.

129

http://junit.org

[70]

[71]

[72]

[73]

[74]

[79]

Mario Linares-Vasquez, Gabriele Bavota, Carlos Eduardo Bernal Cardenas,
Rocco Oliveto, Massimiliano Di Penta, and Denys Poshyvanyk. Mining energy-
greedy API usage patterns in Android apps: an empirical study. In Proceedings
of the 11th Working Conference on Mining Software Repositories, pages 2—11,
2014.

Andreas Litke, Kostas Zotos, Alexander Chatzigeorgiou, and George
Stephanides. Energy consumption analysis of design patterns. In Proceedings
of the International Conference on Machine Learning and Software Engineering,
pages 86-90, 2005.

Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn.
Flikker: Saving dram refresh-power through critical data partitioning. In Pro-
ceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 213-224, 2011.

Yu David Liu. Energy-efficient synchronization through program patterns. In
Proceedings of the First International Workshop on Green and Sustainable Soft-
ware, pages 3540, 2012.

Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Requester-aware power
reduction. In Proceedings of the 13th International Symposium on System Syn-
thesis, pages 18-23, 2000.

Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged functional
programming for sensor networks. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, pages 335346, 2008.

Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin
Sadowski, Lori Pollock, and James Clause. An empirical study of practitioners’
perspectives on green software engineering. In Proceedings of the 38th Interna-
tional Conference on Software Engineering, pages 237-248, 2016.

Irene Manotas, Cagri Sahin, James Clause, Lori Pollock, and Kristina Win-
bladh. Investigating the impacts of web servers on web application energy usage.
In Proceedings of the Second International Workshop on Green and Sustainable
Software, 2013.

H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh. Techniques for
low energy software. In Proceedings of the 1997 International Symposium on Low
Power FElectronics and Design, pages 72-75, 1997.

http://www.microsoft.com/en-us/download/details.aspx?id=7490.

130

http://www.microsoft.com/en-us/download/details.aspx?id=7490

[30]

[31]

[82]
[83]

[84]

[85]

[36]

[87]

3]

[39]

[90]

[91]

Matteo Monchiero, Ramon Canal, and Antonio Gonzalez. Design space explo-
ration for multicore architectures: A power/performance/thermal view. In Pro-
ceedings of the 20th Annual International Conference on Supercomputing, pages
177-186, 2006.

https://developer.android.com/studio/test/monkey.html, 2016. Accessed
19 January 2016.

https://www.msoon.com/LabEquipment/PowerMonitor/.

T. Mudge, T. Austin, and D. Grunwald. The reference manual for the Sim-
Panalyzer version 2.0. http://web.eecs.umich.edu/~panalyzer/.

Sona Mundody and Sudarshan K. Evaluating the impact of android best prac-
tices on energy consumption. [JCA Proceedings on International Conference on
Information and Communication Technologies, (8):1-4, 2014.

Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. How we refactor, and
how we know it. In Proceedings of the 31st International Conference on Software
Engineering, pages 287-297, 2009.

E. Musoll. A thermal-friendly load-balancing technique for multi-core processors.
In Proceedings of the 9th International Symposium on Quality Electronic Design,
pages 549-552, 2008.

A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. A preliminary study of
the impact of software engineering on GreenlT. In First International Workshop
on Green and Sustainable Software, pages 21-27, 2012.

Adel Noureddine and Ajitha Rajan. Optimising energy consumption of design
patterns. In Proceedings of the 37th International Conference on Software Engi-
neering - Volume 2, pages 623-626, 2015.

Jae Jin Park, Jang-Eui Hong, and Sang-Ho Lee. Investigation for software power
consumption of code refactoring techniques. In The Twenty-Sixth International
Conference on Software Engineering and Knowledge Engineering (SEKE 2014),
2014.

Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Bootstrapping energy debug-
ging on smartphones: A first look at energy bugs in mobile devices. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, pages 5:1-5:6, 2011.

Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent
inside my app?: Fine grained energy accounting on smartphones with eprof. In In

Proceedings of the Tth ACM FEuropean Conference on Computer Systems, pages
29-42, 2012.

131

https://developer.android.com/studio/test/monkey.html
https://www.msoon.com/LabEquipment/PowerMonitor/
http://web.eecs.umich.edu/~panalyzer/

[92]

[93]

[94]

[95]

[96]

[97]
98]

[99]

[100]

[101]

[102]

103]

Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff. What is
keeping my phone awake?: Characterizing and detecting no-sleep energy bugs in
smartphone apps. In Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, pages 267-280, 2012.

T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. In Proceedings of the 1998 International Symposium
on Low Power Electronics and Design, pages 76-81, 1998.

T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the IpARM micro-
processor system. In Proceedings of the 2000 International Symposium on Low
Power Electronics and Design, pages 96-101, 2000.

N. Pettis, J. Ridenour, and Y.-H. Lu. Automatic run-time selection of power
policies for operating systems. In Proceedings of the Conference on Design, Au-
tomation, and Test in Europe, pages 508-513, 2006.

J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-
power microprocessor. In Proceedings of the 7th International Conference on
Mobile Computing and Networking, pages 251-259, 2001.

http://proguard.sourceforge.net.

R. Prez-Castillo and M. Piattini. Analyzing the harmful effect of god class refac-
toring on power consumption. IEEE Software, 31(3):48-54, 2014.

Arun Rangasamy, Rahul Nagpal, and Y.N. Srikant. Compiler-directed frequency
and voltage scaling for a multiple clock domain microarchitecture. In Proceedings
of the 5th Conference on Computing Frontiers, pages 209-218, 2008.

Ana Rodriguez, Mathias Longo, and Alejandro Zunino. Using bad smell-driven
code refactorings in mobile applications to reduce battery usage. In Simposio
Argentino de Ingenieria de Software, pages 56-68, 2015.

C. Sahin, F. Cayci, I. L. M. Gutirrez, J. Clause, F. Kiamilev, L. Pollock, and
K. Winbladh. Initial explorations on design pattern energy usage. In First
International Workshop on Green and Sustainable Software (GREENS), pages
55-61, 2012. http://dx.doi.org/10.1109/GREENS.2012.6224257.

Cagri Sahin, Lori Pollock, and James Clause. How do code refactorings affect
energy usage? In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, pages 36:1-36:10, 2014.
http://dx.doi.org/10.1145/2652524.2652538.

Cagri Sahin, Lori Pollock, and James Clause. From benchmarks to real apps: Ex-
ploring the energy impacts of performance-directed changes. Journal of Systems

132

http://proguard.sourceforge.net
http://dx.doi.org/10.1109/GREENS.2012.6224257
http://dx.doi.org/10.1145/2652524.2652538

[104]

105

[106]

107]

[108]

[109]

[110]

[111]

[112]

and Software, 117:307-316, 2016. http://dx.doi.org/10.1016/j.jss.2016.
03.031.

Cagri Sahin, Mian Wan, Philip Tornquist, Ryan McKenna, Zachary Pearson,
William G. J. Halfond, and James Clause. How does code obfuscation impact
energy usage? Journal of Software: Evolution and Process, 28(7):565-588, 2016.
http://dx.doi.org/10.1002/smr.1762.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general
low-power computation. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 164-174, 2011.

H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C-H. Hsu, and
U. Kremer. Energy-conscious compilation based on voltage scaling. In Proceed-
ings of the Joint Conference on Languages, Compilers, and Tools for Embedded
Systems: Software and Compilers for Embedded Systems, pages 2-11, 2002.

Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An energy consumption
framework for distributed Java-based systems. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering, pages
421-424, 2007.

Chiyoung Seo, Sam Malek, and Nenad Medvidovic. Component-level energy con-
sumption estimation for distributed Java-based software systems. In Proceedings
of the 11th International Symposium on Component-Based Software Engineering,
pages 97-113, 2008.

Digvijay Singh, Peter A. H. Peterson, Peter L. Reiher, and William J. Kaiser. The
Atom LEAP platform for energy-efficient embedded computing: Architecture,
operation, and system implementation. 2010.

Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan,
Mark D. Corner, and Emery D. Berger. Eon: A language and runtime sys-
tem for perpetual systems. In Proceedings of the 5th International Conference
on Embedded Networked Sensor Systems, pages 161-174, 2007.

V. Srinivasan, G. R. Shenoy, S. Vaddagiri, D. Sarma, and V. Pallipadi. Energy-
aware task and interrupt management in Linux. In Proceedings of the Linux
Symposium, volume 2, 2008.

C.-L. Su, C.-Y. Tsui, and A. M. Despain. Low power architecture design and
compilation techniques for high-performance processors. In Compcon Spring ’94,
Digest of Papers, pages 489-498, 1994.

133

http://dx.doi.org/10.1016/j.jss.2016.03.031
http://dx.doi.org/10.1016/j.jss.2016.03.031
http://dx.doi.org/10.1002/smr.1762

[113]

114]

[115]

[116]

[117]

18]

[119]

[120]

[121]

[122]

V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: A
first step towards software power minimization. In Proceedings of the 1994
IEEE/ACM International Conference on Computer-aided Design, pages 384-390,
1994.

Aline Tonini, Leonardo Fischer, Julio Mattos, and Lisane Brisolara. Analysis
and evaluation of the Android best practices impact on the efficiency of mobile
applications. In Brazilian Symposium on Computing Systems Engineering, pages
157-158, 2013.

Andras Vargha and Harold D. Delaney. A critique and improvement of the
“CL” common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics, 25(2):101-132, 2000.

Antonio Vetro, Luca Ardito, Giuseppe Procaccianti, and Maurizio Morisio. Def-
inition, implementation and validation of energy code smells: an exploratory
study on an embedded system. In Proceedings of the Third International Confer-
ence on Smart Grids, Green Communications and I'T Energy-aware Technologies,
pages 34-39, 2013.

https://www.wattsupmeters.com/secure/index.php.

Zhenchang Xing and E. Stroulia. Refactoring practice: How it is and how it
should be supported—an Eclipse case study. In Proceedings of the 22nd IEEE
International Conference on Software Maintenance, pages 458-468, 2006.

H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: Managing energy
as a first class operating system resource. ACM SIGOPS Operating Systems
Review, 36:123-132, 2002.

Jack Zhang, Ayemi Musa, and Wei Le. A comparison of energy bugs for smart-
phone platforms. In Proceedings of the 1st International Workshop on the Engi-
neering of Mobile-Enabled Systems, pages 25—30, 2013.

Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller.
Mining version histories to guide software changes. In Proceedings of the 26th
International Conference on Software Engineering, pages 563-572, 2004.

http://www.zelix.com/klassmaster/.

134

https://www.wattsupmeters.com/secure/ index.php
http://www.zelix.com/klassmaster/

Appendix
PERMISSIONS

JOHN WILEY AND SONS LICENSE

TERMS AND CONDITIONS

Jul 02, 2017

License Number
License date

Licensed Content
Publisher

Licensed Content
Publication

Licensed Content Title

Licensed Content Author

Licensed Content Date
Licensed Content Pages
Type of Use

Requestor type

Format

Portion

Will you be translating?

Title of your thesis /
dissertation

Expected completion date

Expected size (number of
pages)
Requestor Location

Publisher Tax ID

This Agreement between Cagri Sahin ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and
the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

4141100296668
Jul 02, 2017
John Wiley and Sons

Journal of Software Maintenance and Evolution: Research and Practice

How does code obfuscation impact energy usage?

Cagri Sahin,Mian Wan,Philip Tornquist,Ryan McKenna,Zachary Pearson,William G. J.
Halfond,James Clause

Jan 6, 2016

24

Dissertation/Thesis

Author of this Wiley article

Print and electronic

Full article

No

Empirically Investigating Energy Impacts of Software Engineering Decisions

Aug 2017
140

Cagri Sahin
101 Smith Hall
University of Delaware

NEWARK, DE 19716
United States

Attn: Cagri Sahin
EU826007151

135

ELSEVIER LICENSE
TERMS AND CONDITIONS

Jul 02, 2017

License Number
License date

Licensed Content
Publisher

Licensed Content
Publication

Licensed Content Title
Licensed Content Author
Licensed Content Date
Licensed Content Volume
Licensed Content Issue
Licensed Content Pages
Start Page

End Page

Type of Use

Portion

Format

Are you the author of this
Elsevier article?

Will you be translating?
Order reference number

Title of your
thesis/dissertation

Expected completion date

Estimated size (number of
pages)
Elsevier VAT number

Requestor Location

Publisher Tax ID

This Agreement between Cagri Sahin ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions
provided by Elsevier and Copyright Clearance Center.

4141091360469
Jul 02, 2017
Elsevier

Journal of Systems and Software

From benchmarks to real apps: Exploring the energy impacts of performance-directed changes
Cagri Sahin,Lori Pollock,James Clause
Jul 1, 2016

117

n/a

10

307

316

reuse in a thesis/dissertation

full article

both print and electronic

Yes

No

Empirically Investigating Energy Impacts of Software Engineering Decisions

Aug 2017
140

GB 494 6272 12

Cagri Sahin

101 Smith Hall
University of Delaware

NEWARK, DE 19716
United States

Attn: Cagri Sahin
98-0397604

136

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background and State of Art
	2.1 System-Level Strategies for Energy Efficiency
	2.2 Programming Language Level Strategies for Energy Efficiency
	2.3 Investigating Software Level Impacts

	3 Energy Measurement
	3.1 Power & Energy
	3.2 Energy Measurement Approaches
	3.3 Energy Measurement Infrastructure
	3.3.1 Embedded System
	3.3.2 Desktop System
	3.3.3 Mobile System

	4 Empirical Studies on Software Engineering Decisions
	4.1 General Methodology
	4.2 Potential Threats to Validity
	4.3 Studies of Design Patterns
	4.3.1 Experiment-Specific Methodology
	4.3.1.1 Experimental Variables
	4.3.1.2 Studied Design Patterns
	4.3.1.3 Experimental Procedure

	4.3.2 Data Analysis and Discussion
	4.3.3 Summary

	4.4 Studies of Code Refactorings
	4.4.1 Experiment-Specific Methodology
	4.4.1.1 Experimental Variables
	4.4.1.2 Considered Applications
	4.4.1.3 Studied Code Refactorings
	4.4.1.4 Considered Platforms
	4.4.1.5 Experimental Procedure

	4.4.2 Data Analysis and Discussion
	4.4.3 Summary

	4.5 Studies of Code Obfuscations
	4.5.1 Experiment-Specific Methodology
	4.5.1.1 Experimental Variables
	4.5.1.2 Considered Applications
	4.5.1.3 Considered Usage Scenarios
	4.5.1.4 Studied Code Obfuscations
	4.5.1.5 Additional Energy Measurement Platforms (EMPs)
	4.5.1.6 Experimental Procedure

	4.5.2 Data Analysis and Discussion
	4.5.3 Summary

	4.6 Studies of Performance Tips
	4.6.1 Experiment-Specific Methodology
	4.6.1.1 Experimental Variables
	4.6.1.2 Considered Applications
	4.6.1.3 Considered Usage Scenarios
	4.6.1.4 Studied Performance Tips
	4.6.1.5 Experimental Procedure

	4.6.2 Data Analysis and Discussion
	4.6.3 Summary

	4.7 Related Work
	4.7.1 Design Patterns
	4.7.2 Code Refactorings
	4.7.3 Performance Tips

	5 Prediction of Energy Testing Requirements
	5.1 Background
	5.2 Motivating Scenario
	5.3 Approach: Energy Retest Umpire (ERU)
	5.3.1 Example Scenarios
	5.3.2 Phase 1: Calculate Impact Set
	5.3.3 Phase 2: Determine Energy Tests

	5.4 Implementation
	5.4.1 Energy Greedy APIs
	5.4.2 Change Impact Analysis
	5.4.3 Identifying the Callees of the Source Code Units

	5.5 Evaluation
	5.5.1 Subject Applications
	5.5.2 Experimental Procedure
	5.5.3 Data Analysis and Discussion
	5.5.4 Potential Threats to Validity

	5.6 Related Work
	5.7 Summary

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Future Work

	Bibliography
	 Permissions

