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The theoretical analysis of topological insulators (TIs) has been traditionally focused on infinite homogeneous
crystals with band gap in the bulk and nontrivial topology of their wave functions, or infinite wires whose
boundaries host surface or edge metallic states. Such infinite-length edge states exhibit quantized conductance
which is insensitive to edge disorder, as long as it does not break the underlying symmetry or introduce energy
scale larger than the bulk gap. However, experimental devices contain finite-size topological region attached to
normal metal (NM) leads, which poses a question about how precise is quantization of longitudinal conductance
and how electrons transition from topologically trivial NM leads into the edge states. This particularly pressing
issue for recently conjectured two-dimensional (2D) Floquet TI where electrons flow from time-independent NM
leads into time-dependent edge states, the very recent experimental realization [J. W. McIver et al., Nat. Phys. 16,
38 (2020)] of Floquet TI using graphene irradiated by circularly polarized light did not exhibit either quantized
longitudinal or Hall conductance. Here, we employ a charge-conserving solution for Floquet-nonequilibrium
Green functions of irradiated graphene nanoribbon to compute longitudinal two-terminal conductance, as well as
spatial profiles of local current density as electrons propagate from NM leads into the Floquet TI. For comparison,
we also compute conductance of graphene-based realization of 2D quantum Hall, quantum anomalous Hall, and
quantum spin Hall insulators. Although zero-temperature conductance within the gap of these three conventional
time-independent 2D TIs of finite length exhibits small oscillations due to reflections at the NM-lead/2D-TI
interface, it remains very close to perfectly quantized plateau at 2e2/h and completely insensitive to edge
disorder. This is due to the fact that inside conventional TIs there is only edge local current density which
circumvents any disorder. In contrast, in the case of Floquet TI both bulk and edge local current densities
contribute equally to total current, which leads to longitudinal conductance below the expected quantized plateau
that is further reduced by edge vacancies. We propose two experimental schemes to detect coexistence of bulk and
edge current densities within Floquet TI: (i) drilling a nanopore in the interior of irradiated region of graphene
will induce backscattering of bulk current density, thereby reducing longitudinal conductance by ∼28%; (ii)
imaging of magnetic field produced by local current density using diamond nitrogen-vacancy centers.
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I. INTRODUCTION

The defining property of topological insulators (TIs) [1] is
the band gap in the energy spectrum of the bulk material and
gapless conducting boundary states. They are edge states in
the case of two-dimensional (2D) systems or surface states
in the case of three-dimensional ones [2]. The paradigmatic
cases which gave rise to the main concepts [3,4] in this
field are (i) quantum Hall insulator (QHI) in 2D electron
gas which requires an external magnetic field to break the
time-reversal invariance and whose edge states are chiral by
allowing spin-unpolarized electron to propagate in only one
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direction; and (ii) quantum spin Hall insulator (QSHI) [5]
which is time-reversal invariant, thereby requiring strong spin-
orbit coupling effects instead of external magnetic field, and
whose edge states appear in pairs with different chirality and
spin polarization. The last experimentally discovered mem-
ber of 2D TI family is quantum anomalous Hall insulator
(QAHI), which requires both nonzero magnetization to break
the time-reversal invariance and strong spin-orbit coupling
effects, with its edge states allowing only one spin species to
flow unidirectionally [6].

In theoretical analysis, edge states are found as eigenfunc-
tions �kx (x, y) = eikxxψ (y) of the Hamiltonian of an infinite
wire (periodic along the x axis, so that eigenfunctions are
labeled by the wave vector kx) made of 2D TIs. The cor-
responding eigenenergies ε(kx ) form subbands crossing the
band gap [7,8]. The width of the edge states is defined by
the spatial region where the probability density is nonzero,
|ψ (y)|2 �= 0, while decaying exponentially fast toward the
bulk of the wire. Interestingly, their width [9,10] can also
depend on the arrangement of atoms along the edge, such as
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BAJPAI, KU, AND NIKOLIĆ PHYSICAL REVIEW RESEARCH 2, 033438 (2020)

FIG. 1. Schematic view of a two-terminal device where an infi-
nite ZGNR is attached to two macroscopic reservoirs with chemical
potentials μL and μR on the left and right, respectively, so that μL −
μR = eVb is externally applied dc bias voltage. In (a), the scattering
region (blue shaded) in the middle of finite length L = 30

√
3a and

width W = 29a is Floquet TI generated by irradiating [31] segment
of ZGNR by circularly polarized light of intensity z and frequency
ω [Eq. (2)]. In (b), the scattering region (shaded green) is quantum
Hall, quantum anomalous Hall, or quantum spin Hall insulator with
their parameters tuned to produce the same topologically nontrivial
band gap �g [Fig. 2(a)] in the bulk of all such conventional time-
independent TIs.

in the case of graphene wires where edge states of QHI and
QAHI or QSHI are narrower in the case of zigzag arrangement
of carbon atoms along the edge than in the case of their arm-
chair arrangement [9–11]. In paradigmatic three-dimensional
TIs like Bi2Se3, surface states actually have spatial extent of
about ∼2 nm [12].

The zigzag edge, which is employed in devices in Fig. 1,
can also introduce a kink in the subband of edge state [11],
so that the subband intersects with the Fermi energy EF at
NR points with positive velocity and NL points with nega-
tive velocity. However, only the difference NR − NL = |C| is
topologically protected according to the bulk-boundary cor-
respondence [3,4]. Here, C is an integer topological invariant
(like the Chern number in the case of QHI and QAHI) asso-
ciated with band structure in the bulk. This makes electronic
transport through edge states of infinite length perfectly quan-
tized in a robust way [13]: the zero-temperature two-terminal
conductance is G(EF ) = GQ|C| for EF swept through the bulk
band gap and insensitive to both magnetic and nonmagnetic
disorder in the case of QHI and QAHI [11], or only non-
magnetic disorder in the case of QSHI. Although infinite
ballistic wires, including those with topologically trivial edge
states [14–16], also exhibit integer G(EF )/GQ, this is easily
disrupted by disorder introduced around the edges or even
within the bulk [16]. Here, GQ = 2e2/h or GQ = e2/h is the
conductance quantum for spin-degenerate or spin-polarized
edges states, respectively.

Thus, it has been considered that the key experimental
signature of topology in 2D condensed matter is conduc-
tance quantization in transport through edge states, which
persists even in the presence of disorder as long as it does
not break underlying symmetries of the topological phase

or generate energy scales larger than the bulk band gap.
However, for QHI, QAHI, and QSHI of finite length, the zero-
temperature longitudinal conductance G = I/Vb, also denoted
as “two terminal” since current I and small bias voltage Vb

are measured between the same normal metal (NM) leads,
oscillates in Fig. 2 just below the quantized plateau at 2e2/h
while remaining very close to it. We use zigzag graphene
nanoribbon (ZGNR) within which 2D TI of finite length
[Fig. 1(b)] is established using sufficiently large external mag-
netic field [17], or additional terms of the Haldane [18] or the
Kane-Mele [5] models, to generate QHI, QAHI, and QSHI,
respectively. Their parameters are tuned so that all three ex-
amples of conventional time-independent 2D TIs in Fig. 2(a)
have identical topologically nontrivial bulk band gap �g. Even
though G(EF ), for EF swept through bulk band gap �g, is
not perfectly quantized in Fig. 2(a), its oscillations zoomed in
Figs. 2(b)–2(g) are insensitive to nonmagnetic edge disorder
(ED) introduced in the form of edge vacancies (illustrated in
Fig. 4).

It is worth mentioning that imperfectly quantized two-
terminal G(EF ) was observed in early experiments on QSHI
[19], provoking a lively search for exotic many-body in-
elastic effects [20–26] which can circumvent band-topology
constraints and introduce backscattering of electrons as they
propagate through edge states. On the other hand, Fig. 2
demonstrates that imperfectly quantized G(EF ) can be due
to a much simpler mechanism: backscattering at the NM-
lead/TI-region interface.

Lacking perfectly quantized two-terminal conductance
G(EF ) as the experimental signature of 2D TI phase of finite
length, one can resort to direct imaging of spatial profiles
of local current density that should confirm electronic flux
confined to a narrow region defined by the edge states. Contin-
uous experimental advances have made this possible, such as
by using superconducting interferometry in Josephson junc-
tion setup [14,15] or scanning superconducting quantum in-
terference device (SQUID) [27]. In the latter case, one images
magnetic field produced by the current from which one can
reconstruct the local current density with ∼μm spatial resolu-
tion [27]. Even higher resolution, with reconstructed images
having spatial resolution of ∼10 nm, has been achieved by
using scanning tip based on electronic spin of a diamond
nitrogen-vacancy (NV) center [28–30]. Particularly intriguing
questions that such images can answer are how electron flux
transitions from topologically trivial NM lead present in every
experimental device into the region of 2D TI of finite length
where the flux is confined within narrow edge currents, as well
as how processes at the NM-lead/2D-TI interface affect the
total current and the corresponding conductance.

Imaging of local current density could also offer a new
avenue for resolving a crucial issue for a recently conjectured
new class of 2D TIs, the so-called Floquet TI [31–34], which
is the connection between the Floquet quasienergy spectrum
and experimentally measurable dc transport properties. The
Floquet TI phase arises in 2D electron systems driven out
of equilibrium by strong light-matter interaction. For exam-
ple, graphene [31–34], as well as other 2D materials with
honeycomb lattice structure like transition-metal dichalco-
genides [35], subject to a spatially uniform and circularly
polarized light are predicted to transmute into Floquet TI with
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FIG. 2. (a) The zero-temperature two-terminal conductance vs the Fermi energy EF of device in Fig. 1(b) where central scattering region
hosts finite-length conventional 2D time-independent TIs, such as QHI, QAHI, and QSHI. The TIs are defined on pristine or edge disordered
(denoted by ED) ZGNR due to vacancies illustrated in Figs. 4(d), 4(f), and 4(h). The zoom-in of conductance values within the rectangle in
(a) is shown in (b)–(d) for pristine ZGNR, and (e)–(g) for edge-disordered ZGNR. The two NM leads, from which electrons are injected into
the topologically protected edge states of finite length with the corresponding local current density profiles shown in Figs. 4(c)–4(h), are also
made of ZGNR of the same width as the scattering region [Fig. 1(b)]. The gap in the bulk of all three 2D TIs is tuned to �g = 0.54γ and
marked in (a).

quasienergy spectrum [36,37]. Its multiple gaps share [32]
the same topological properties as the band gap of QAHI
described by the Haldane model [18]. This means that the
laser-induced band gaps, such as �0 in Fig. 3(a) emerging at
the charge-neutral point (CNP) of graphene and �1 away from
CNP, are crossed by subbands of chiral edge states [38,39].
The eigenfunctions of these subbands decay exponentially
toward the bulk with a decay length that depends only on the
ratio of the laser frequency and its intensity.

The �1 gaps are called dynamical gaps [40] and they occur
at energy h̄ω/2 above/below the CNP. They can be reached
using experimentally accessible parameters. For example, the
very recent experiment [41] has been interpreted in terms of
creation of a transient Floquet TI by driving graphene flake
by 500 fs laser pulse at a frequency of ω = 46 THz, so
that the photon energy is h̄ω ≈ 191 meV and its wavelength
is λ ≈ 6.5 μm. However, the experiment of Ref. [41] did
not observe either quantized longitudinal or transverse (Hall)
conductance. Instead, they found that at the peak laser pulse
fluence the transverse conductance within �0 gap saturated at
plateau around Gxy = (1.8 ± 0.4)e2/h, while no such plateau
of Gxy was observed within the �1 gap.

The calculations of two-terminal [as in Figs. 2 and 3(b)]
or multiterminal conductance typically employ the Landauer-
Büttiker setup [13,42] depicted in Fig. 1 where finite-size
scattering region, time-dependent due to light irradiation in
Fig. 1(a) or conventional time-independent in Fig. 1(b), is
attached to semi-infinite NM leads terminating at infinity into
the macroscopic particle reservoirs. This is highly appropriate
for Floquet TI since time-dependent potential applied in ex-
periments [41] is confined to a finite region, either because of
a finite laser spot or the screening inside metallic contacts. On
the conceptual side, such setup ensures well-defined asymp-
totic states and their occupation far away from the irradiated
region, thereby evading technical difficulties when using time-
dependent leads or reservoirs [43]. It also ensures continuous

energy spectrum of the whole system which plays a key role
in both the Landauer-Büttiker and Kubo [44] formulations of
quantum transport because it effectively introduces dissipa-
tion at infinity and thereby steady-state transport [45], while
not requiring [46] to explicitly model many-body inelastic
scattering processes responsible for dissipation [42].

However, for the same two-terminal Landauer-Büttiker
setup with irradiated scattering region, a plethora of con-
flicting theoretical conclusions have been reached [34]. For
example, Refs. [47,48] predict quantization of longitudinal dc
conductance within a few percent of 2e2/h, while Ref. [49]
finds its anomalous suppression. To recover the quantized
value, Ref. [50] proposed an ad hoc summation procedure
over different energies in the lead. Without utilizing such
“Floquet sum rule” [51–53], both Refs. [52,54] confirm non-
quantized G < 2e2/h within �0 gap and G < 4e2/h within �1

gap which, however, are largely insensitive to disorderlike va-
cancies or onsite impurities. The precise quantization could be
disrupted by dc component of pumping current [55,56], which
appears [54] even at zero-bias voltage due to time-dependent
potential in the Hamiltonian whenever the left-right symmetry
of the device is broken statically or dynamically [57,58].

The absence of quantization is explained [34,46,52,54] by
the mismatch between nonirradiated electronic states in the
NM leads and edge states within the gaps of the Floquet
TI. The mismatch between states in topologically trivial NM
leads and TI scattering region exists also in conventional time-
independent TI devices, but without significant disruption of
quantized conductance in Fig. 2. However, specific to Floquet
TIs is the possibility of Floquet replicas to couple to bulk
bands [54,59]. That is, although edge states within the gap �0

are primarily built from states near the CNP of nonirradiated
graphene, they also contain harmonic components near ±nh̄ω

which open the possibility for electronic photon-assisted tun-
neling into or out of states in the NM leads whose energies are
far away from the CNP. Thus, engineering the density of states
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FIG. 3. (a) Quasienergy spectrum ξQE(kx ) for an infinite ZGNR
that is irradiated by circularly polarized monochromatic laser light
of frequency h̄ω = 3γ and intensity z = 0.5 over its whole length.
The spectrum is obtained by diagonalizing the corresponding Floquet
Hamiltonian [Eq. (7)] truncated to −Nph < n < Nph Floquet replicas
where Nph = 7 is chosen. The yellow shaded region marks the topo-
logical gap �0 around ξQE = 0 corresponding to CNP, while the red
shaded region marks the dynamical topological gap �1 around ξQE =
±h̄ω/2. (b) The zero-temperature two-terminal conductance vs EF

(computed using Nph = 7) of two-terminal device in Fig. 1(a) whose
scattering region is Floquet TI of finite length due to irradiation by
circularly polarized light. The pristine irradiated ZGNR is marked
by FTI and irradiated edge-disordered ZGNR is marked by FTI-ED.
The conductance of an infinite nonirradiated (NIR) pristine ZGNR is
also shown as a reference. (c) Total DOS for the same device marked
by FTI in (b). (d) Convergence of lead currents IL and IR vs Nph at
EF = h̄ω/2 .

of the leads, in order to connect Floquet TI and macroscopic
reservoirs through a narrow band of filter states, can recover
longitudinal dc conductance within a few percent of 2e2/h
[46].

The issue of experimentally detectable quantized conduc-
tance can be examined without resorting to time-independent
Floquet formalism, that is, by performing direct time-
dependent quantum transport simulations [43]. Due to high
computational demand, such calculations are rarely pursued,
but some attempts yield longitudinal conductance reaching
close to quantized value after sufficiently long time [60]. This
then poses a question on the accuracy of truncation proce-
dure that is inevitably done to reduce infinite matrices in the
Floquet formalism where artifacts [61] can be introduced.
One such artifact is dc current which is not conserved (i.e.,
different in the left and right leads) [48,62], or insufficient
number of Floquet replicas are retained for achieving con-
verged results.

In this study, we employ a charge-conserving solution [61]
for the Floquet-nonequilibrium Green functions (Floquet-
NEGF) [48,61,62] which ensures that dc current in the left (L)

and the right (R) leads are identical at each level of truncation
of matrices in the Floquet formalism, i.e., the number of
“photon” excitations Nph retained. As an overture, Fig. 3(d)
demonstrates |IL| ≡ |IR| at each Nph, as well as that dc com-
ponent of current converges at Nph = 7. Nevertheless, the
conductance in Fig. 3(b) remains nonquantized in both �0

and �1 gaps. We then proceed to compare spatial profiles of
local current density in conventional and Floquet TIs in Fig. 4
which offers detailed microscopic insight on how electrons
propagate from one to another carbon atom as they transition
from topologically trivial NM leads into the TI region, or
within the TI region with possible edge or bulk vacancies
introduced as disorder.

The paper is organized as follows. Section II A describes
the Hamiltonian of Floquet TI defined on ZGNR, as well
as charge-conserving Floquet-NEGF from Ref. [61], which
is extended here to nonzero-bias voltage and to obtain lo-
cal current density. The same ZGNR is used in Sec. II B to
define Hamiltonians for the conventional time-independent
QHI, QAHI, and QSHI, where we also provide steady-state
NEGF expressions for local current density in these systems.
Section III A presents results for two-terminal conductance of
these four TIs, and Sec. III B compares spatial profiles of local
current density as it flows from the NM leads into those four
TIs. In Sec. III C we discuss experimental schemes to quantify
bulk vs edge contributions to total current within Floquet TI
using either a nanopore [10,63,64] drilled in the interior of
irradiated ZGNR, whose effect on the conductance is also
explicitly calculated, or magnetic field imaging via diamond
NV centers [30]. We conclude in Sec. IV.

II. MODELS AND METHODS

A. Hamiltonian and quantum transport formalism
for Floquet TI

The semi-infinite leads and the scattering region in Fig. 1
combined constitute, prior to introducing light or exter-
nal magnetic field or spin-orbit coupling into the scattering
region, an infinite homogeneous ZGNR described by the
nearest-neighbor tight-binding Hamiltonian

ĤZGNR = −
∑
〈i j〉

γi j ĉ
†
i ĉ j . (1)

Here, 〈i j〉 indicates the sum over the nearest-neighbor sites;
ĉ†

i (ĉ j) creates (annihilates) an electron on site i of the honey-
comb lattice hosting a single pz orbital 〈r|i〉 = π (r − Ri ); and
γi j = γ = 2.7 eV is the nearest-neighbor hopping from site i
to j. The width of the ZGNR is chosen as W = 29a, where a
is the distance between two nearest-neighbor carbon atoms
in graphene. It is well known that, in general, TIs thinner
than twice the width of their boundary states will experience
hybridization of those states and opening of a topologically
trivial mini gap [3,4,12] at the crossing point. For Floquet
TI studied in Fig. 3(a) this would happen if W � 14a, so
that our choice of W evades such size artifacts. This is also
ensured in the cases for QHI, QAHI, and QSHI in Fig. 4 where
ZGNR is always wider than the width of edge currents. The
ZGNR terminates at infinity into the macroscopic reservoirs
of electrons whose chemical potentials are μL = EF + eVb/2

033438-4

Version of record at: https://doi.org/10.1103/PhysRevResearch.2.033438



ROBUSTNESS OF QUANTIZED TRANSPORT THROUGH … PHYSICAL REVIEW RESEARCH 2, 033438 (2020)

FIG. 4. Spatial profiles of local current density in two-terminal devices of Fig. 1 where the scattering region (dotted rectangle) of finite
length is (a) irradiated pristine ZGNR hosting Floquet TI; (b) irradiated edge-disordered ZGNR; (c) pristine QHI; (d) edge-disordered QHI; (e)
pristine QAHI; (f) edge-disordered QAHI; (g) pristine QSHI; and (h) edge-disordered QSHI. In (a) and (b) we use h̄ω = 3γ , z = 0.5, Nph = 7,
and EF = h̄ω/2 corresponding to the middle of �1 gap in Fig. 3(a). In (c)–(h), EF = 0.2γ , and in (g) and (h) tSO = 0.1γ . The black solid
arrows are guide to the eye to indicate the spatial region with large flux of local current density.

and μR = EF − eVb/2 for EF as the Fermi energy and Vb

as the applied dc bias voltage. Note that zero-temperature
two-terminal conductance G(EF ) of an infinite homogeneous
ZGNR described by Hamiltonian in Eq. (1) is plotted for
comparison in Fig. 3(b) and labeled as nonirradiated (NIR).

In the case of Floquet TI, circularly polarized monochro-
matic laser light irradiates the scattering region (shaded blue)
of finite length L = 30

√
3a in Fig. 1(a). The electromag-

netic field of light is introduced into the Hamiltonian through
the vector potential A(t ) = A0(ex cos ωt + ey sin ωt ), where
ex (ey) is the unit vector along the +x axis (+y axis). The
corresponding electric field generated by A(t ) is E(t ) =
−∂A(t )/∂t . We neglect the relativistic magnetic field of light,
so that electronic spin degree of freedom maintains its de-
generacy and it is excluded from our analysis. The vector
potential modifies the Hamiltonian in Eq. (1) via the standard
Peierls substitution [65]

ĉ†
i ĉ j 	−→ exp[i2z(ex cos ωt + ey sin ωt ) · ri j]ĉ

†
i ĉ j, (2)

which is rigorously proven [66] to be sufficient to capture
the leading-order effects due to the presence of the vector
potential A(t ). Here, z = eaA0/2h̄ is a dimensionless measure
of intensity of the circularly polarized light; ω is the frequency
and ri j is the position vector connecting site i with site j. The
new Hamiltonian Ĥ (t ) with time-dependent hopping between

sites i and j, γi j (t ) = γ exp [i2z(ex cos ωt + ey sin ωt ) · ri j] is
time periodic, Ĥ (t + T ) = Ĥ (t ), with period T = 2π/ω.

Any solution of the Schrödinger equation ih̄∂�(t )/∂t =
Ĥ (t )�(t ) with time-periodic Hamiltonian Ĥ (t ) = Ĥ (t + T )
can be expressed as a linear combination �(t ) = ∑

α cαφF
α (t )

of the so-called Floquet functions [36,37]

φF
α (t ) = e−iξα

QEt/h̄uα (t ). (3)

Here, ξα
QE is the Floquet quasienergy and uα (t + T ) = uα (t )

are periodic functions which can, therefore, be expanded into
a Fourier series

uα (r, t ) =
∞∑

n=−∞
einωt uα

n (r). (4)

The time-periodic Hamiltonian Ĥ (t ) = Ĥ (t + T ) can also be
expanded into a Fourier series

Ĥ (t ) =
∞∑

n=−∞
Ĥneinωt , (5)

where Ĥn is given in terms of the Bessel functions Jm(z) of the
first kind

exp(iz sin x) =
∞∑

m=−∞
Jm(z)eimx, (6a)

exp(iz cos x) =
∞∑

m=−∞
imJm(z)eimx. (6b)

Using the matrix representation of the Fourier coefficients
Ĥn in Eq. (5) in the basis of orbitals |i〉, we construct the
Floquet Hamiltonian [36,37]

ȞF =

⎛⎜⎜⎜⎜⎜⎝
. . .

...
...

... ···
· · · Ĥ0 Ĥ1 Ĥ2 · · ·
· · · Ĥ−1 Ĥ0 Ĥ1 · · ·
· · · Ĥ−2 Ĥ−1 Ĥ0 · · ·
··· ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠, (7)

which is time independent but infinite.
The time-dependent NEGF formalism [43] operates with

two fundamental quantities [67], the retarded Gr (t, t ′) and
the lesser G<(t, t ′) Green functions (GF), which describe the
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density of available quantum states and how electrons occupy
those states in nonequilibrium, respectively. They depend on
two times, but solutions can be sought in other representa-
tions, such as the double-time Fourier-transformed [61,62]
GFs Gr,<(E , E ′). In the case of periodic time-dependent
Hamiltonian, they must take the form [68]

Gr,<(E , E ′) = Gr,<(E , E + nh̄ω) = Gr,<
n (E ), (8)

in accord with the Floquet theorem [36,37]. The coupling
of energies E and E + nh̄ω (n is integer) indicate “multi-
photon” exchange processes. In the absence of many-body
(electron-electron or electron-boson) interactions, currents
can be expressed using solely the Floquet-retarded GF Ǧr (E ),

[E + �̌ − ȞF − �̌
r
(E )]Ǧr (E ) = 1̌, (9)

which is composed of Gr
n(E ) submatrices along the diagonal. Here, we use notation

�̌ =

⎛⎜⎜⎜⎜⎜⎝
. . .

...
...

... ···
· · · −h̄ω1 0 0 · · ·
· · · 0 0 0 · · ·
· · · 0 0 h̄ω1 · · ·
··· ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠, (10)

and �̌
r
(E ) is the retarded Floquet self-energy matrix

�̌
r
(E ) =

⎛⎜⎜⎜⎜⎜⎝
. . .

...
...

... ···
· · · �r (E − h̄ω) 0 0 · · ·
· · · 0 �r (E ) 0 · · ·
· · · 0 0 �r (E + h̄ω) · · ·
··· ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠, (11)

composed of the usual self-energies of the leads [69] �r (E ) = ∑
p=L,R �r

p(E ) on the diagonal. All matrices labeled as Ǒ are
representations of operators acting in the Floquet-Sambe [37] space, HF = HT ⊗ He, where He is the Hilbert space of electronic
states spanned by localized orbitals |i〉 and HT is the Hilbert space of periodic functions with period T = 2π/ω spanned by
orthonormal Fourier vectors 〈t |n〉 = exp(inωt ).

The charge current Ip(t ) in the lead p = L, R is time dependent due to Eq. (2), and it also has periodicity T = 2π/ω like the
Hamiltonian itself. The dc component of current, either due to pumping by time-dependent potential [55–58] or due to applied
bias voltage Vb or both, is given by

Ip = 1

T

∫ t+T

t
Ip(t ′)dt ′. (12)

Such dc component, or time-averaged current over one period T , that is injected into the lead p is obtained from the following
NEGF expression [61]:

Ip = e

2Nph

∫ +∞

−∞
dE Tr

[
�̌pf̌pǦr�̌Ǧa −

∑
α=L,R

�̌pǦr�̌α f̌αǦa

]
. (13)

In our convention, Ip > 0 indicates that charge current is flowing into the lead. Here, f̌p is the Floquet Fermi matrix

f̌p(E ) =

⎛⎜⎜⎜⎜⎜⎝
. . .

...
...

... ···
· · · fp(E − h̄ω)1 0 0 · · ·
· · · 0 fp(E ) 0 · · ·
· · · 0 0 fp(E + h̄ω)1 · · ·
··· ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠, (14)

where fp(E ) is the Fermi function of the macroscopic particle
reservoir attached to lead p; �̌p(E ) = i[�̌

r
p(E ) − (�̌

r
p(E ))†] is

the Floquet level broadening matrix; �̌(E ) = ∑
p=L,R �̌p(E );

the Floquet-advanced GF is defined as Ǧa(E ) = [Ǧr (E )]†;
and 1 is the unit matrix in He space. We note that Eq. (13) is a
generalization of the expression for charge current in Ref. [61]
to include the applied bias voltage Vb. The linear-response

two-terminal conductance is then given by

G = IR

Vb
, (15)

for small applied bias voltage eVb � EF .
While the space He is finite dimensional, with dimension

equal to the number of sites Ne within the scattering region,
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the space HT is infinite dimensional and has to be truncated
using |n| � Nph. For truncation we employ the following con-
vergence criterion:∣∣∣ Ip(Nph ) − Ip(Nph − 1)

Ip(Nph − 1)

∣∣∣ × 100 < δ, (16)

where δ is the convergence tolerance. Since the operators act-
ing in He are represented by matrices of dimension Ne × Ne,
the operators Ǒ acting on the truncated Floquet-Sambe space
HF are represented by matrices of dimension (2Nph + 1)Ne ×
(2Nph + 1)Ne. Note that the trace in Eq. (13), Tr ≡ TreTrT , is
summing over contributions from different subspaces of HT

so that the denominator includes 2Nph to avoid double count-
ing. The part of the trace operating in HT space ensures that at
each chosen truncation Nph of Floquet replicas charge current
is conserved, IL = −IR, unlike other types of solutions [48,62]
of the Floquet-NEGF equations where current conservation is
ensured only in the limit Nph → ∞.

The bond current operator [70] between sites i and j is time
dependent due to Eq. (2) and it is given by [43]

Ji j (t ) = e

ih̄
[γi j (t )ĉ†

i ĉ j − γ ji(t )ĉ†
j ĉi]

=
∞∑

n=−∞
Ji j

n einωt .

(17)

We define the Floquet bond current matrix as

J̌i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... ···

· · · Ji j
0 Ji j

−1 Ji j
−2 · · ·

· · · Ji j
1 Ji j

0 Ji j
−1 · · ·

· · · Ji j
2 Ji j

1 Ji j
0 · · ·

··· ...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (18)

which yields the nonequilibrium part [70] of dc bond (or local)
charge current flowing between site i and j as

Jneq
i j = 1

2π i

Nph∑
n=−Nph

∫ EF +nh̄ω+eVb/2

EF +nh̄ω−eVb/2
dE Tr[Ǧ<(E )J̌i j], (19)

where Ǧ<(E ) = ∑
p=L,R iǦr (E )�̌p(E )f̌p(E )Ǧa(E ).

B. Hamiltonian and quantum transport formalism for QHI,
QAHI, and QSHI

The two-terminal setup in Fig. 1(b) hosts one of the three
conventional time-independent TIs as the scattering region
(shaded green) of finite length L = 30

√
3a. The QHI is real-

ized by applying an external time-independent magnetic field
perpendicular to ZGNR. The magnetic field is described by
a static vector potential A = (By, 0, 0) in the Landau gauge,
which is then included into the Hamiltonian in Eq. (1) via the
Peierls substitution [65,66]

ĉ†
i ĉ j 	−→ exp

[
i
β

a2
0

(xi − x j )(yi + y j )

]
ĉ†

i ĉ j . (20)

Here, (xi, yi ) indicates the position vector of a carbon atom at
site i, and β = eBa2

0/
√

3h̄ ≈ 0.07 is a dimensionless measure
of the magnetic field strength.

The QAHI [6] is described by the Haldane model [2,18] on
the honeycomb lattice

ĤQAHI =
∑
〈i j〉

−γi j ĉ
†
i ĉ j +

∑
〈〈i j〉〉

γ̃i j ĉ
†
i ĉ j

+
∑
i∈A

mĉ†
i ĉi +

∑
i∈B

(−m)ĉ†
i ĉi. (21)

Here, 〈〈i j〉〉 indicates the sum over the next-nearest-neighbor
sites, and γ̃i j = −γ̃ ji = iγ̃ where we use γ̃ = 0.14γ . The
last two mass terms on the right-hand side have different
sign on the triangular sublattices A and B of the honeycomb
lattice, where m = 0.2γ specifies the “mass” term. Note that
circularly polarized light employed in Eq. (2) is mandatory
for Floquet TI to mimic QAHI phase of the Haldane model.
In contrast, linearly polarized light, which is made of equal
superposition of clockwise and anticlockwise circular polar-
izations, does not break time-reversal symmetry and cannot
lead to Haldane “mass” term.

Finally, the QSHI is described by the Kane-Mele model [5]

ĤQSHI =
∑
〈i j〉

−γi jc
†
i c j +

∑
〈〈i j〉〉

itSOc†
i σ · (dk j × dik )c j, (22)

whose edge states crossing the topological nontrivial band gap
are both chiral and spin polarized [3,4]. Here, c†

i = (ĉ†
i↑, ĉ†

j↓)

is a row vector of creation operators ĉ†
iσ that create an electron

on site i with spin σ =↑, ↓; ci is the corresponding column
vector of annihilation operators; dik is the unit vector pointing
from site k to i; σ = (σ̂x, σ̂y, σ̂z ) is the vector of the Pauli
matrices; and tSO is the strength of the intrinsic spin-orbit
coupling [5,10].

The zero-temperature two-terminal conductance G(EF ) =
GQT (E ) of the setup in Fig. 1(b) is calculated using the
Landauer transmission function [42,67]

T (E ) = Tr[�R(E )Gr (E )�L(E )Ga(E )], (23)

where the conductance quantum is GQ = 2e2/h for QHI
and QAHI and GQ = e2/h for QSHI. Here, the retarded
GF of the scattering region is given by Gr (E ) = [E −
H − �r (E )]−1; the advanced GF is Ga(E ) = [Gr (E )]†; and
�p(E ) = i[�r

p(E ) − �a
p(E )] are the level-broadening matri-

ces. To compute the nonequilibrium bond current between
sites i and j we use [71]

Jneq
i j = eVb

2π
Tr[Gr (EF )�L(EF )Ga(EF )Ji j], (24)

where Ji j is the bond current operator in Eq. (17) but with
time-independent hopping γi j .

III. RESULTS AND DISCUSSION

A. Conductance within the topological gap:
FTI vs conventional TIs

By diagonalizing ȞF in Eq. (7) for an infinite ZGNR that
is periodic along the x axis and irradiated by circularly po-
larized light over its whole length, we obtain the quasienergy
spectrum ξQE(kx ) shown in Fig. 3(a). The chiral edge states
crossing the light-induced gap �0 at ξQE = 0 (shaded yel-
low) and �1 at ξQE = ±h̄ω/2 (shaded red) suggest naively
that upon applying small bias voltage, the zero-temperature
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FIG. 5. Spatial profile of local current density in Figs. 4(a) and
4(b) over the transverse cross section within: (a) pristine Floquet TI
or (b) Floquet TI with edge disorder. The position of the transverse
cross section is marked by dashed vertical line in Figs. 4(a) and 4(b),
respectively. The horizontal dashed line in both panels marks the
extent of the edge state.

linear-response two-terminal conductance in Eq. (15) should
be quantized: G(EF ) = 2e2/h for EF within �0 gap; and
G(EF ) = 4e2/h for EF within �1 gap due to one or two
spin-degenerate conduction channels provided by the edge
states, respectively. This is in analogy with chiral edge states
of conventional time-independent TIs and their quantized
conductance in Fig. 2. In contrast, the average conductance
in Fig. 3(b) is G(EF ) ≈ 0.73 × 2e2/h within �0 gap and
G(EF ) ≈ 1.87 × 2e2/h within �1 gap. We emphasize that
these results are not an artifact of truncation of the Floquet
Hamiltonian ȞF in Eq. (7) since the current in the L and R
leads in Fig. 3(d) converge at Nph = 7 using δ = 1% criterion
in Eq. (16). Also, our Floquet-NEGF formalism [61] ensures
|IL| ≡ |IR| in Fig. 3(d) at each chosen Nph.

We additionally plot the total density of states (DOS)
D(E ) = ∑

j D j (E ) in Fig. 3(c) which is nonzero within the
gaps �0 and �1 due to contributions from the local DOS
(LDOS) Dj (E ) originating [Fig. 6(a)] from both edges and
bulk of ZGNR. The LDOS is extracted from the Floquet-
retarded GF in Eq. (9) using

Dj (E ) = i

2π
〈 j| TrT [Ǧr (E ) − Ǧa(E )] | j〉 , (25)

where TrT is the partial trace over states in HT . The issue
of positivity of DOS and LDOS obtained from the Floquet-
retarded GF has been discussed extensively [34,72].

Even though Floquet TI in irradiated ZGNR does not
exhibit quantized conductance plateau in Fig. 3(b), its con-
ductance is largely insensitive to ED. For example, G(EF )
is reduced by ∼2% within �0 gap and by ∼15% within �1

gap upon introducing edge vacancies. Nevertheless, this is
still less robust than conventional time-independent TIs whose
conductance within the topologically nontrivial band gap is
completely insensitive to ED, as shown in Figs. 2(e)–2(g).
The disorder is introduced by removing carbon atoms on the
top and bottom edges of the scattering region, as illustrated
in Fig. 4(b), while imposing the following conditions: (i) ED
introduced in NIR ZGNR leads to complete conductance sup-
pression G(EF ) → 0 within the same energy interval defined
by �0 gap; (ii) ED preserves the left-right symmetry of the
device, so that charge pumping is absent when the ED ZGNR

FIG. 6. (a) The LDOS [Eq. (25)] evaluated at E = h̄ω/2 in the
center of �1 gap in Fig. 3(a) for irradiated pristine ZGNR. (b) The
LDOS evaluated at E = h̄ω/2 for irradiated ZGNR with a nanopore
drilled in the interior of the nanoribbon. (c) Time-averaged local
bond current [Eq. (19)] in the same irradiated ZGNR with a nanopore
as in (b). (d) Zero-temperature two-terminal conductance G(EF ) of
irradiated ZGNR with a nanopore (orange line) vs conductance of
irradiated pristine ZGNR (blue line) within the gap �1 in Fig. 3(a).
The former is reduced by ∼28% with respect to the latter. In all
panels we use h̄ω = 3γ , z = 0.5, and Nph = 7.

is irradiated with circularly polarized light [54,57,58] in the
absence of dc bias voltage Vb = 0.

Note that in the case of vacancies at the edges of QSHI,
our tight-binding Hamiltonian in Eq. (22) does not capture
possibility of formation of a localized magnetic moment at
the vacancy site which requires first-principles Hamiltonians
[73]. This opens a possibility of backscattering involving spin
flip which will disrupt [73] (nearly) quantized conductance in
Fig. 2(g).

B. Spatial profiles of local current density: Floquet TI vs QHI,
QAHI, and QSHI

The spatial profiles of local current density, i.e., bond cur-
rent Jneq

i j defined in Eqs. (19) and (24) for Floquet TI and
conventional time-independent TIs, respectively, allows us to
visualize how electrons transition from topologically trivial
NM leads into chiral edge states within the TI region. Fig-
ures 4(c), 4(e), and 4(g) show that bulk states contribute to
current density within the leads, but current density becomes
confined to narrow flux near the edges of QHI, QAHI, and
QSHI. The width of the flux corresponds to spatial extent of
the edge state. As expected due to chirality of edge states,
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current flows only along the top edge in QHI and QAHI, while
in QSHI it flows on both the top and bottom edges [27]. This is
because boundaries of QSHI host a pair of spin-polarized edge
states [5], so that on the top edge electrons with spin σ =↑
move from left to right while at the bottom edge electrons with
spin σ =↓ move from left to right. Upon introducing ED in
Figs. 4(d), 4(f), and 4(h), topological protection and quantized
transport through edge states manifest by local current density
circumventing the disorder since any backscattering would
require to cross over to the other edge which is forbidden due
to the absence of bulk states [13].

In contrast, local current density is nonzero within the
whole Floquet TI in Fig. 4(a), with larger flux near the edges
[Fig. 5(a)]. Upon introducing ED, the edge flux circumvents
the disorder but due to general nonlocality of quantum trans-
port bulk flux is also reduced [Fig. 5(b)] which explains slight
reduction of conductance in Fig. 3(b) within gaps �0 and �1.

Interestingly, SQUID-based imaging of QSHI made from
HgTe quantum wells has found that gate tuning of bulk con-
ductivity can lead to transport regime where edge and bulk
local current densities coexist [27]. The trace of local current
density is scanned by detecting its magnetic field produced ac-
cording to the Biot-Savart law, which is possible even through
the top gate is employed to tune the carrier density. In this
regime, experimental images were analyzed to quantify con-
tribution of edge and bulk local currents to the total current.
We perform similar analysis in Fig. 5 which shows that in pris-
tine Floquet TI from Fig. 4(a), edge current contributes 44%
and bulk current contributes 56% to the total current over the
transverse cross section [marked by dashed line in Fig. 4(a)].
Conversely, in the presence of edge disorder in Fig. 4(b), edge
current contributes 52% and bulk current contributes 48% to
the total current over the same transverse cross section.

C. Proposed experimental schemes for probing edge vs bulk
transport within Floquet TI: Graphene nanopore and magnetic

field imaging

The spatial profiles of local current density of conventional
time-independent TIs in Figs. 4(c)–4(h) indicate that any dis-
order introduced in the interior of ZGNR will have no effect
on the two-terminal conductance in Fig. 2. This was explic-
itly demonstrated in Ref. [10] for the case of QSHI (based
on graphene plus heavy adatoms). Therefore, we propose to
employ a nanopore in the ZGNR interior as the simplest
technique that can detect the presence of bulk current den-
sity in Figs. 4(a) and 4(b) in the case of Floquet TI. We
introduce nanopore in Figs. 6(b) and 6(c) in such a way that
it preserves the left-right symmetry of the device in order
to avoid any charge pumping by time-dependent potential
of light [54,57,58]. In experiments, nanopores are routinely
drilled, without disrupting the surrounding honeycomb lattice
of graphene, for applications like DNA sequencing [63], and
they could also be deployed to block phonon transport in ther-
moelectric applications [10,64]. Figures 6(a) and 6(b) confirm
that nanopore does not impair high LDOS [Eq. (25)] near
the edges of the Floquet TI, which correspond to chiral edge
states from Fig. 3(a). Figure 6(c) shows that local transport
in the presence of nanopore utilizes both left-to-right moving
chiral edge states and bulk states. Since electrons flowing

through the bulk are backscattered by the nanopore, presence
of nanopore reduces conductance by about �28% in Fig. 6(d)
within the gap �1.

A more detailed probing of edge vs bulk transport in ∼μm-
sized devices, such as those employed in recent experiments
[41] to convert graphene into Floquet TI, could be achieved
using diamond NV centers. The device can be fabricated on a
diamond containing high-density, near-surface NV ensemble
[28,30], along with a graphite top gate separated by hexagonal
boron nitride to tune the carrier density [30]. The spin state
of NV centers, which serves as the sensor of magnetic field
produced by local current density, can be optically initialized
and readout via imaging the NV photoluminescence onto a
camera. Such a setup has the advantages of being able to
operate over a wide range of temperatures, from cryogenic to
room temperature (e.g., the experiment in Ref. [41] was done
at 80 K); it can be readily integrated with an optical cryostat
necessary for experiments involving THz radiation; and it has
less stringent vibrational requirement compared to scanning
setups. We note that THz radiation is far detuned from any of
the NV orbital/spin transitions and hence it will not affect NV
centers at all.

In Ref. [41], a constant dc bias generates a current I �
125 μA, and THz pulses drive the system into Floquet TI state
for about 3 ps at ∼210 kHz repetition rate. Hence, one has
a time-averaged typical current density J̄F ∼ 80 pA/μm in a
1-μm-wide device. This corresponds to a typical stray mag-
netic field μ0J̄ ∼ 0.1 nT, where μ0 is the permeability of free
space. While it is a small field, its measurement is attain-
able with existing NV sensing technologies. For example, a
single NV can sense ∼nT field with a Hahn-echo sequence
over 100-s signal averaging at room temperature [74]. De-
tection of ∼0.1 nT field is attainable in combination with
entanglement-assisted repetitive readout [75,76], as well as
with enhanced coherence at cryogenic temperatures and with
dynamical decoupling sequences [77]. One can measure the
differential current density �J (x, y) ≡ JFTI(x, y) − JNIR(x, y),
where JFTI(x, y) [JNIR(x, y)] is current density within the Flo-
quet TI (nonirradiated normal phase), by pulsing on the THz
radiation during one free precession time of the Hahn echo
and keeping the THz drive off during the other free precession.
The current density JNIR(x, y) can be measured separately in
a Hahn-echo measurement without any THz pulses to enable
one to extract JFTI(x, y). Diffraction-limited optical imaging
of magnetic field has resolution ∼400 nm [30], which is
enough to resolve edge currents separated by a width of 1 μm.
With further improvement in spatial resolution, we anticipate
that ∼10-nm resolution can be achieved by using Fourier
gradient imaging [78].

IV. CONCLUSIONS

In conclusion, using steady-state NEGF formalism applied
to two-terminal Landauer-Büttiker setup [Fig. 1(b)] with
scattering region consisting of conventional time-independent
TIs, such as QHI, QAHI, and QSHI defined on graphene
nanoribbon in order to generate chiral edge states of finite
length, we demonstrate that their conductance is never
perfectly quantized (Fig. 2). This is due to backscattering at
the NM-lead/2D-TI interface. Nevertheless, it remains very
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close to perfect plateau at 2e2/h within the topologically
nontrivial band gap, and it is completely insensitive to edge
disorder. The spatial profiles of local current density visualize
how electrons flow from bulk states within topologically
trivial NM leads into the narrow flux defined by edge states
within the TI region, while circumventing any edge disorder
within the TI region.

In contrast, when the scattering region is converted into the
Floquet TI by irradiating graphene nanoribbon by circularly
polarized light, conductance within light-induced topologi-
cally nontrivial band gaps is not quantized, but it changes
little with edge disorder. These results confirm previous
findings in the literature [52,54] while ensuring proper con-
vergence and charge current conservation in the solution of
Floquet-NEGF equations [61]. Furthermore, we employ such
charge-conserving Floquet-NEGF formalism to compute spa-
tial profiles of local current density. They are higher along
the edges [Fig. 5(a)], following high LDOS near the edges
[Fig. 6(a)], but they remain nonzero also in the interior of the
Floquet TI [Fig. 4(a)]. Such spatial profiles make it also pos-
sible to refine previous qualitative estimates of edge vs bulk
contribution to current through Floquet TI [46] with precise
measure from Figs. 4(a), 4(b), and 5 which show that edge
currents and bulk currents contribute nearly equally to the

total current. Thus, observing quantized transport in Floquet
TI would require to minimize coupling to bulk states.

We propose a very simple experimental technique to de-
tect presence or absence of bulk states in quantum transport
through Floquet TI, conductance measurements under laser
irradiation should be performed using uniform graphene flake,
as in the very recent experiments [41], as well as repeated
after a nanopore [63] is drilled in the interior of the flake. If
local current density is nonzero in the bulk, it will be scattered
by the nanopore which leads to �28% reduction [Fig. 6(d)]
of the two-terminal conductance when compared to graphene
nanoribbon without the nanopore. Finally, we delineate more
sophisticated experimental schemes for direct imaging [30]
of magnetic field produced by edge and bulk local current
densities based on diamond NV centers whose orbital/spin
transitions are far detuned from THz radiation employed [41]
in recent experiments to convert graphene into Floquet TI.
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