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The multiple-site visitation problem has afflicted travel cost models since their 

inception. Over the years, several approaches have been proposed to address the issue 

of allocating travel costs when multiple-site visitations are involved; however, these 

approaches have proven to be problematic for generalized application. I propose a new 

method for analyzing multiple-destination recreation trips and apply it to visitation to 

national parks in the southwestern United States, including well-known parks such as 

the Grand Canyon and Zion National Parks. I use conventional random utility theory 

and treat groups of parks (portfolios) as choice alternatives. I consider one choice 

occasion per respondent and condition that choice on the person visiting at least one 

park in the choice set, so the participation decision (go/no-go) is not modeled. Trip 

cost includes time, travel, lodging, and food cost for visiting all sites in the portfolio. 

Variation in trip cost is generated by where individuals enter and exit the region and 

by variation in the specific set of parks in each portfolio. Specialized sampling weights 

are used in the model to correct for on-site sampling. I estimated three empirical 

versions of this choice model: Standard Logit with Additive Site Utilities (SL), Mixed 

Logit with Additive Site Utilities (MXL), and Portfolio Specific Constants as Utilities 

(PSC). I found that the PSC model performs relatively better than the SL model in 

terms of accounting for the complementary effects among parks. MXL model with a 

constrained distribution of the random parameters provides more behaviorally 

reasonable estimates compared to other traditionally assumed distributions. Finally, I 

provide estimates of values for closing individual parks or groups of parks. The loss-
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to-trip ratios (per trip value) for individual park closures range from $143 to $255 for 

Additive Site Utility Models. The aggregated welfare losses for individual park 

closures over the season (June 2002) range from $2.4 million for Canyonlands to 

$40.9 million for Grand Canyon. 
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INTRODUCTION 

National parks in the U.S. are well known for their breathtaking views. Each 

year, they attract millions of visitors from across the nation and around the world. 

According to the National Park Service (NPS), in 2014 the overall visitations to 

national parks, seashores, monuments, or historical sites hit a record-high of 292.8 

million. National park visits alone reached 68.9 million. Among the 59 national parks 

in the U.S., the ones in the Southwestern region are famous for their unique landscapes 

and their cultural and historic significance. According to the NPS Annual Recreation 

Visitation Report, in 2014 over 30% of national park visits were to southwestern 

parks1. Each year, millions of people with a variety of tastes and preferences visit 

southwestern national parks due to these parks’ diverse characteristics. Countless 

fascinating hiking trails, wild backcountry experiences, and breathtaking contrasting 

colors and landscapes provide visitors numerous choices amongst different sites.  

One of the purposes of this study is to obtain estimates of the damages the 

public would incur in the event of a short-term closure of one or more national parks 

in the southwestern United States. This study is mainly focusing on seven relatively 

popular national parks in the “Four Corners” states (Utah, Colorado, Arizona, and 

New Mexico), specifically Arches National Park, Bryce Canyon National Park, 

                                                 

 
1 See National Park Service Stats Reports: National Park Service Visitor Use Statistics 

https://irma.nps.gov/Stats/Reports/National 
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Canyonlands National Park, Grand Canyon National Park, Mesa Verde National Park, 

Petrified Forest National Park, and Zion National Park.  

Trips to these national parks differ from the trips modeled in most recreational 

demand analyses in a number of ways. First, for most individuals, trips to these parks 

are usually taken no more than once a year and for many they may represent a once or 

twice in a lifetime event. Given that no more than one trip is taken by most people 

who visit these parks, little about individual preferences can be learned with trip 

frequency information. Relating the number of trips taken to the trip’s cost, as has 

been done in most single-site demand analyses, is not feasible. Second, a visit to one 

of these national parks tends to be a non-single-site trip. This is due to the fact that a 

majority of visitors travel a considerable distance to reach these parks and most 

national parks in this four state region are located fairly close to one another. People 

visiting southwestern national parks usually take week- or even month-long trips and 

they often choose to visit multiple parks. In many cases, their trips also involve visits 

to other, non-park, destinations in the area. This makes the recreational “commodity” 

being consumed more complex than a usual recreational trip. Third, because visitors to 

these national parks come from all over the U.S. (and the world), the possibility of 

contacting a visitor who has been to any of these seven national parks in a general 

population survey is rather small. Therefore, collecting enough information about the 

dichotomous decision to take one or more of these trips by sampling the population 

randomly from certain off-site regions or even nationwide is very challenging.  

The other purpose of this study is to develop new method that can overcome 

the issue of multiple-site visitations in the traditional travel cost model. To address the 

multiple-site visitation problem, I frame the site choice problem using a portfolio-
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based approach. Each visitor is considered to choose one or multiple parks in the four-

state region to visit, conditioned on taking at least one trip to one of the seven national 

parks. In other words, I argue that it can be assumed that individuals face a choice 

among a set of park portfolios. Each portfolio contains a unique combination of the 

national parks in the region. For instance, if there were only three national parks (A, B, 

and C) in the region, then the visitor can choose to visit one park or two parks or three 

parks in a single trip, and the possible portfolios for the visitor to choose from are 

{A}, {B}, {C}, {AB}, {AC}, {BC}, and {ABC}. Given that I focus on seven 

southwestern national parks, individuals will be choosing between 127 different 

portfolios. Following traditional random utility maximization theory, individuals have 

utilities for all alternative recreation portfolios and are assumed to choose the portfolio 

that maximizes their utility. The utility from each portfolio depends on the sites 

included in the portfolio, trip costs, characteristics of the decision-makers, and random 

factors that are unobservable to the researchers. A person's trip costs for visiting a 

portfolio consist of two parts; out-of-pocket costs and the opportunity cost. Out-of-

pocket costs include park entrance fees, driving, lodging, and dining costs, while the 

opportunity cost is mainly the cost of travel time. I estimated three empirical versions 

of this choice model: Standard Logit with Additive Site Utilities (SL), Mixed Logit 

with Additive Site Utilities (MXL), and Portfolio Specific Constants as Utilities 

(PSC). For the MXL model, I also tested different random parameter distributions and 

compared the results. I found that the PSC model performs relatively better than the 

SL model in terms of accounting for the substitution/complementary effects among 

parks. The flexible nature of the MXL model allows for correlation among error terms, 

thus is considered to be a better fit for the portfolio-based model where portfolios 
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sharing the same park(s) are likely to have correlated error terms. Also, I found that 

MXL model with a constrained distribution of the random parameters provides more 

behaviorally reasonable estimates compare to other traditionally assumed 

distributions. 

The data to study national park portfolio choices was collected in a two-step 

process. First, participants were randomly recruited on-site at each of the seven 

national parks during a two-week period in June 2002. In the second step, Southwest 

National Park Visitor Surveys were mailed to all recruits in July 2002 to follow up on 

their trip detail information. It is worth noting that this analysis is entirely conditional 

on the individual making a trip to at least one national park in this region. Therefore, 

the question that can be answered in this dissertation is: What are the losses to 

individuals who have planned a trip to at least one of the seven major national parks in 

the southwest, if they learn, after they have committed to the trip, that one of those 

parks is closed to the public during their trip? These losses can be considered short-

term losses, since the study design excludes any cases when individuals find out about 

the closure in advance and cancel their entire trips. The per party per trip welfare 

losses for closing individual parks range from $12 for the least popular park –  

Canyonlands to $161 for the most popular park – Grand Canyon (2002$). The loss-to-

trip ratios for individual park closures range from $143 to $255 for Additive Site 

Utility Models. 

This dissertation is organized as follows. Chapter 2 provides a brief literature 

review on previous studies regarding travel cost model, recreational demand for 

multiple-destination/multiple-purpose trips, as well as a review of studies on portfolio-

based discrete choice model in different contexts.   
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Chapter 3 presents the survey design and data collection process. Summary 

statistics for the data are presented in this chapter. 

Chapter 4 describes the theoretical models. It first provides an overview of 

Random Utility Theory and then explains in depth how the site-portfolio models are 

formed. In addition, it lays out the different types of Random Utility Models (RUMs) 

used for recreational demand estimation.  

Chapter 5 presents how the on-site sample is adjusted using exogenous 

population choice weights. Details on weights computation and examples are 

presented in this chapter.  

Chapter 6 presents the estimation results from the random utility models 

presented in Chapter 4. Then, it offers estimated welfare losses to the public due to 

hypothetical single or multiple park closures in the U.S. southwest.  

Finally, Chapter 7 provides conclusions and potential questions for future 

research. 
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LITERATURE REIVEW 

In this chapter, I will first briefly review traditional travel cost models. The 

main focus will then shift to the different approaches for modeling demand for 

multiple-destination recreation trips before finally reviewing portfolio-based discrete 

choice studies.  

2.1 Traditional Travel Cost Models and Recreation Literatures 

When it comes to measuring the economic value of recreational use of non-

market resources, the Travel Cost Model (TCM) is the most commonly used method. 

The idea of the travel cost method was first proposed by Hotelling (1949) in an 

unpublished letter to the National Park Service regarding the recreational use of U.S. 

national parks. The basic idea behind this method is that although there is no price for 

any non-market resources, such as trips to national parks, the cost of reaching the site 

can serve as a good proxy “price” for this non-market good. Given this assumption, a 

traditional demand function based on this “price” and the number of trips taken and/or 

sites chosen to visit can be easily forged, allowing measurement of individuals’ 

willingness to pay for the recreational use of non-market resources. Travel cost models 

are thus generally used when measuring the economic value of site access and quality 

changes in recreational sites.  

 

Chapter 2 
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The earlier and simpler version of the travel cost model is a single-site model, 

which is still widely used in the modern literature. The single-site model examines the 

demand for the recreational trips to a given site over a period of time. Just like the 

demand for market goods, it assumes that when trip costs increase the quantity 

demanded (the number of trips taken to the given site) decreases. Earlier applications 

of the TCM model were almost exclusively based on zonal data (Trice & Wood 1958; 

Clawson & Knetsch 1966). Areas around a single site were first defined as different 

geographic zones and then the travel costs from the center of each zone to the site 

were treated as the proxy “price” of the recreational use of the site. Over the years, the 

TCM has developed considerably. Starting in the 1970s researchers began to replace 

aggregated zonal data with individual-level data (Brown and Nawas 1973). This 

allows a more precisely measured insight into individual demand. In the late 1980s, 

single-site models took another leap when researchers began using truncated 

dependent variables, treating the trip counts as a continuous variable (Shaw 1988; 

Hellerstein & Mendelsohn 1993; Haab & McConnell 1996). 

Another commonly used type of travel cost model is the RUM model. This 

approach became popular in the 1980s (Bockstael et al. 1984; Carson et al. 1986). 

Instead of estimating a demand function, the RUM model begins with a utility 

function. It focuses on an individual’s choice of which site to visit among a number of 

possible sites. The site choice is based on the attributes of all sites and trip costs to get 

to each site, with each individual choosing the site that maximizes their utility. In this 

way, a full set of sites is incorporated, instead of focusing on only one site’s 

characteristics. Phaneuf, Herriges and Kling (2000) present a generalized version of 

the RUM model. Their generalized corner solution model not only accounts for 
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recreationist site choices but also the number of trips taken to each site. Over the years 

other authors presented refinements of the RUM model. For example, Train (1998) 

introduced simulated probability models and mixed logit/random parameter logit into 

this framework. As discussed in more detail in Chapter 4, this greatly reduces the 

restrictions from the independence of irrelevant alternatives (IIA) assumption and 

allows for preference heterogeneity. 

2.2 Approaches for Modeling Multi-Destination/Multi-Purpose Trips 

Over the years, numerous studies attempted to measure the economic value of 

recreational sites using the TCM. When using the TCM, the accuracy of the estimates 

relies on the validity of the assumption that individuals only make single destination 

trips and that the recreation site visited is the sole purpose for their trip. Therefore, 

single-site/single-purpose trips has been the main focus of this section of the literature.  

However, in many cases multi-destination or multi-purpose trips, during which 

travelers visit more than one site or have purposes other than just visiting a 

recreational site, are quite common, especially when visitors travel considerable 

distances to reach the area. A survey conducted by the National Park Services in 1982 

on visitation to Bryce Canyon National Park shows that 71% of Bryce Canyon visitors 

also visited Zion National Park and that 58% of them also visited the Grand Canyon 

(Haspel & Johnson 1982).  

Potential violations of the single-site/single-purpose trip assumption in the 

TCM model have made it difficult to truly estimate the value of some recreation sites. 

Many studies have avoided this issue by either simply excluding multi-

destination/multi-purposes trips from the sample or by treating them as single 

destination trips. Smith and Kopp (1980) discuss the spatial limits of the travel cost 
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recreational demand model. They point out that as more origin zones are included in 

the sample, the assumption that each trip is single-purpose/single-destination, along 

with several other assumptions, becomes increasingly untenable. They suggest that a 

formal test for the stability of the estimated parameters should be performed in order 

to identify the spatial limits to the model, and that the sample should then be restricted 

to only the origin zones within these spatial limits to exclude all potential multi-

destination/multi-purpose trips.  

This sort of ad hoc solution only works if the proportion of multi-destination 

visitors is relatively small. Previous studies suggest that simply omitting multi-

destination/multi-purpose or treating all recreational trips as single-site/single-purpose 

oriented could easily produce biased estimates of the consumer surplus derived from 

recreation sites. Haspel and Johnson (1982) showed that treating multi-destination 

trips as single-destination trips tends to overstate the value of the site. Loomis et al. 

(2000) also found that estimated consumer surplus per person per trip increases when 

multiple destination trips are included. Although their 95% confidence intervals 

suggest that the increase in estimated per trip consumer surplus is not significant, there 

is still a significant overestimation of total site values. Mendelsohn et al. (1992) note 

the importance of finding the correct way to measure the value of multi-destination 

trips when this type of trip is prevalent in the sample. The omission of close 

substitutes tends to underestimate the value for any site that is frequently part of a 

multi-destination trip.   

In addition to these issues, Kuosmanen, Nillesen and Wesseler (2004) point out 

a subtler problem that arises from ignoring multi-destination trips. They believe that 

single destination vacationers may have different demographic profiles than multi-
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destination travelers. People who make single-destination trips are mostly people who 

live closer to the recreation spot, who may be systematically different from people 

who live further away. Therefore, omitting multiple-destination groups may leave 

some important demographic features under-represented.  

The extant literature has suggested several ways to solve the multi-destination 

trips problem. One potential solution is to correct the estimation bias by assigning a 

fraction of the total travel cost to the evaluated site and then using weighted/adjusted 

travel costs for demand estimation. Haspel and Johnson (1982) divide the round-trip 

travel cost by the number of stops within the trip, assuming that all major destinations 

are equally spaced and valued, and then use the average willingness to pay (WTP) to 

travel to all destinations within the trip as the proxy travel cost to Bryce Canyon. They 

estimate the per-vehicle WTP for visiting Bryce Canyon is $91.   

However, this method of disaggregating total joint costs is very arbitrary and 

cannot be consistently applied in most cases. For instance, compared to the rest of the 

sites individual might visit during a trip to Bryce Canyon, Zion National Park and 

Grand Canyon National Park are located considerably closer to Bryce Canyon. 

Therefore, most visitors choose to pay a visit to those two parks when visiting Bryce 

Canyon. Simply dividing the total trip cost by the number of stops would greatly 

overestimate the demand for Bryce Canyon because some of the demand for a stop at 

Bryce Canyon is derived from demand for the other two sites. To overcome this, 

Haspel and Johnson grouped the three national parks as one single destination, which 

brought the estimated consumer surplus of visiting Bryce Canyon down to $69 per 

trip.  
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Finding the correct proportion of the trip costs to allocate to the evaluated site 

is inevitably a challenge for this approach. It is necessary to define some systematic 

way to allocate trip costs across sites. Some authors recognized that the importance of 

each stop to an individual depends on far more than just the distance between stops. 

They suggest using some quantifiable variable, such as time spent at each 

site/objective, to value the importance of individual sites within a trip and allocate the 

trip costs accordingly (Knapman & Stanley 1991; Yeh, Haab & Sohngen 2006). Other 

studies use subjective values such as visitors’ stated preferences for different sites as a 

measure of the importance of each site (Kuosmanen, Nillesen & Wesseler 2004; 

Martinez-Espineira & Amoako-Tuffour 2009). However, both of these methods have 

their limitations. Given that there’s no uniform measure for consumers’ subjective 

values, it is very difficult to accurately estimate site values based on their provided 

information. Conversely, quantifiable variables, such as nights spent on site, may not 

accurately reflect the importance of each site. Certain sites might be the main reason 

that individuals decided to make the trip at all while still not being the site at which 

they spent the largest amount of time.  

Parsons and Wilson (1997) propose another approach to multi-purpose/multi-

destination trips. They develop a single recreation demand model that incorporates 

multi-destination/ multi-purpose trips. In their model, incidental trips are treated as 

complements to primary purposes trips. Parsons and Wilson included a dummy 

variable in their regression to indicate trips with incidental consumption. The dummy 

indicator is able to capture the shift of the demand curve that occurs when there are 

multi-destination/multi-purpose trips involved. Their estimation results suggest that 

omitting the incidental consumption variable tends to slightly underestimate the value 
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of the lost sites. Loomis et al. (2000) further expanded Parsons and Wilson’s 

recreation demand model by separating joint consumption trips from incidental trips. 

2.3 Portfolio-Based Discrete Choice 

Instead of assigning the portion of travel costs to each stop of the trip and 

estimating the demand for each site separately, Mendelsohn et al. (1992) suggest an 

alternative way of analyzing multi-destination trips. They develop a demand system in 

which each combination of major sites visited is treated as a single commodity with its 

own demand function. They sampled at one site only (among four possible sites) and 

worked with zonal data. They estimate an inverse demand function for each site 

combination using the trip costs to all sites in the bundle and number of trips taken. By 

including the prices of different single sites and combinations of multiple sites in the 

same demand function, they are able to capture the substitution effects from 

consumers choosing between alternative site bundles. The authors emphasize that the 

loss of a single site will affect the prices of all the alternative bundles that included the 

closed site. Shutting down one site means removing all choice alternatives that include 

that site. Similar to the approach we adopt in this study, they measure the value of a 

given site as the value of the demand system with the site less what the value of the 

demand system would have been without the site, in effect measuring how much the 

site “adds” to the system. Their estimation results show that omitting alternative 

multiple trip choices can lead to a sizeable underestimation of site values. Consumer 

surplus from Bryce Canyon per trip per person increases from $9.47 dollars to $16.8 

dollars when multiple sites bundles are taken into consideration, a roughly 77% 

increase.  
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The main limitation of Mendelsohn’s method is the difficulty of deciding 

which sites should be included in the empirical work. Exactly which sites are feasible 

options for a trip is not always obvious, which means the set of alternatives can be 

hard to identify. More practically, some authors have pointed out that the size of the 

alternatives set increases exponentially as the number of individual sites increases, 

which can make estimation of the inverse demand system very challenging 

(Kuosmanen, Nillesen & Wesseler 2004). Unlike their analysis, mine is done in a 

discrete-choice setting using random utility theory, has sampling at all relevant sites 

and is based on individual level data instead of zonal data.  

One of the studies that proposed the concept of bundling in a discrete choice 

model setting is the work by Tay, McCarthy and Fletcher (1996). They conceive 

household recreational decisions as a choice between numerous portfolios, each of 

which encompasses several individual choice dimensions. They point out that 

individual’s travel decisions involve a complex process of simultaneous or sequential 

choices amongst different destinations, trip lengths, trip frequencies, and travel modes. 

Before Tay, McCarthy and Fletcher, Adler and Ben-Akiva(1979) considered a 

portfolio-based discrete choice model in a transportation context and Atherton, Ben-

Akiva and McFadden(1990) and Train, McFadden and Ben-Akiva(1987) did so in a 

phone-services context.  
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SAMPLE, SURVEY AND DATA  

In this chapter, I discuss the design of this study, the data collection 

procedures, and provide descriptive statistics for the participation data.   

3.1 Study Design  

As noted in Chapter 1, trips to National Parks have three distinct characteristics 

that separate them from other recreation trips: (i) trips to national parks are usually 

taken no more than once in a year, and many are even once- or twice-in-a-life-time 

events, (ii) they are mostly multi-destination/multi-purpose trips, and (iii) visitors to 

these parks come from all over the U.S. (and the world), thus even sampling 

throughout the entire U.S would only have an extremely small probability of 

successfully contacting a potential visitor on a random phone call or mail survey. In 

order to collect a sufficient amount of data for the analysis, it is necessary to rely on 

on-site sampling methods. As discussed at length in the existing literature, on-site 

sampling can easily cause sampling bias if not treated correctly. Thus, the data 

gathering process faced not only the challenge of getting an acceptable distribution of 

respondents across the parks of interest but also the challenge of collecting data that 

would make it possible to control for selection bias arising from on-site sampling. 

The preliminary on-site reconnaissance was first taken in nine national parks 

and monuments in the four states region. During this reconnaissance, the research 

team conducted informal interviews with visitors, rangers, and park managers in order 

Chapter 3 
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to determine the general nature of trips to national parks in the southwest. Based on 

the information this reconnaissance gathered on sampling logistics and visitation 

patterns, the research team decided on sampling at seven national parks: Grand 

Canyon, Arches, Bryce Canyon, Zion, Mesa Verde, Petrified Forest, and Canyonlands. 

Figure 3.1 shows the geographic distribution of these parks.  
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Figure  3.1: National Parks Sampled in the Four States Region 

 



 17 

These are major national parks in the region; they are well known for their 

spectacular scenic vistas and offer a variety of additional attractions including 

archeological sites, geological features, hiking trails, and opportunities for wildlife 

viewing and nature appreciation. In addition, as shown in figure 3.1, these parks are 

spatially clustered together and therefore form natural bundles that are often chosen to 

visit by travelers during a single trip to the region. After the survey was designed, the 

research team first pre-tested it at Arches National Park, where visitors were randomly 

intercepted while entering the visitor center and were asked questions about the clarity 

of individual questions and the general flow of the survey. Eighty-six respondents 

completed this pre-test and the survey instruments were revised based on their 

comments. 

The final survey was 13 pages and 54 questions long and contained 6 sections 

and one foldout map of the Four States Region. The survey is presented in full in 

Appendix A. Section A of the survey gathered general information on the respondents’ 

trips. Respondents were asked to focus only on the trip they were taking when the 

research group interviewed them. This section gathered information about the 

respondents’ arrival and departure dates in the Four States Region, as well as whether 

they currently lived in the Four States Region and the type(s) of vehicles used during 

the trip. If they were residents in the region, they were asked to circle the day they left 

home to begin the trip and the day they returned home at the end of the trip. Along 

with the travel dates, people were also asked to mark their entry and exit point in the 

region on the foldout map (O for entry, X for exit). If they made any brief side trips 

outside the region during the visit, they were instructed to only mark the final 

departure date and point from the region. Finally, respondents were asked to report the 
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total number of days they spend in the region, excluding days spent on side trips 

outside the region. In this analysis, a “trip” is defined by the entry and exit into the 

four states region – time and money spent on the trip, parks visited on the trip, and 

other activities involved. Time and money spent to reach the region (e.g. airfare, 

bus/train expenses) were excluded.  

The second section (B) of the survey focused on the details of visits to the 

seven National Parks in our analysis. Respondents were asked to report whether they 

paid a visit to the park, the number of separate times they entered the park, and the 

number of days spent onsite. The third section (C) of the survey collected information 

on respondents’ visits to places other than the seven National Parks. This section 

provided lists of other national parks, national monuments, national historical parks, 

and national recreation areas in the Four States Region by state and asked respondents 

to identify which (if any) they had visited. Respondents were also asked if they had 

visited any of the 13 major cities in the area as part of their trip – Santa Fe, Las Vegas, 

Salt Lake City, Park City, etc. The fourth section (D) gathered information on any side 

trips (e.g. visiting friends or relatives or business/work stops) that respondents may 

have taken. This helped to provide a complete picture of any multi-destination/multi-

purpose trips.  

The fifth section (E) collected information on the characteristics of the 

respondents’ parties during their trips. Respondents were first asked to describe the 

group they traveled with – whether they were traveling alone, with family, with 

friends, or with business associates. They were then asked about the number of people 

in the vehicle when they were interviewed and the age composition of their groups. 

This section also asked questions on lodging choices (e.g. hotels, camping, or stayed 
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with friends/relatives) and the number of nights camping to help with calculations on 

lodging expenses. This section also included a small bank of questions on the 

importance of different activities during the trip to the region, such as biking, viewing 

scenery, driving scenic highways, nature study, exploring the visitor centers, and 

hiking. This section finishes with contingent valuation questions on respondents’ 

maximum willingness to pay to visit the park. Respondents were first presented with 

the current entry fee for that park and were assured that the Park Service was not 

thinking of increasing the fee; they were asked to choose the highest amount they 

would have paid to visit the park during this trip, given a payment card (a list of 

numbers) starting from the current entrance fee. The following question then 

examined the factor that was the most important to the respondents when they chose 

this amount. 

The last section (F) of the survey gathered information on basic demographic 

characteristics, such as age, gender, education, employment status, and household 

income, as well as the amount of flexibility that the respondents had in planning their 

trips.  

3.2 Sampling and Survey Implementation 

The survey was implemented in two stages. First, individuals were interviewed 

at entrances to all seven national parks in order to identify the eligibility of the 

respondents for the survey. Second, a survey was mailed to eligible individuals who 

had agreed to participate in the study.  

Recruitment for the survey was done at the entrances to each park between 

June 15 and June 23, 2002. Each of the seven parks was sampled on two weekdays 

and two weekend days (except for the Grand Canyon which was sampled on three 



 20 

weekdays and three weekends) during this nine-day period. Appendix C Table C1 

presents a more detailed description of this interview process. The first-stage survey 

presented during this recruitment stage consisted of a brief set of questions designed to 

evaluate the respondent’s eligibility for a mail survey (see Appendix B for more 

detail). Respondents were randomly selected at each park entrance and all non-

commercial vehicles entering the park were considered eligible for this initial survey. 

The goal was to target 200 people per day at each park entrance. The target sampling 

rate at each gate varied according to traffic flow and safety concerns (full target 

sampling rates are presented in Appendix C Table C2). At the gates of the relatively 

less popular National Parks (for example, Canyonlands and Petrified Forest) the target 

was to interview every vehicle (i.e., the sampling rate is 1-in-1). At the more popular 

National Parks, interviewing every vehicle was practically impossible and the target 

sampling rates are set to 1 in every 3 or 4 vehicles. The lowest target sampling rate (1 

in every 9 vehicles) is at one of the entrances to Grand Canyon National Park, where 

the traffic flow is the highest among all of the parks in our analysis. For some parks, 

the target sampling rates also varied depending on the number of gates open to 

vehicles entering the park. The actual sampling rates varied from the target ones due to 

a variety of reasons, but can be calculated using information collected by the National 

Park Service throughout the course of the initial survey; specifically, the total number 

of vehicles passing through each park entrance on each day and daily summaries of 

cash register data from each park entrance (full details are presented in Appendix C 

Table C3 - Table C15). Obtaining actual sampling rates is crucial for on-site sampling 

correction (a topic covered in more detail in Chapter 5). 



 21 

The eligible respondents recruited for the next stage of the survey were the 

adults (18 or older) in the vehicle with the most recent birthdays, who had to be U.S. 

citizens. The overall response rate (the number of recruits over the total number of 

eligible respondents) for the initial survey is 96%, with Grand Canyon and 

Canyonlands as the highest at 99% and Mesa Verde as the lowest at 92%. In total, 

4,836 respondents were recruited to participate in the next stage of the survey.  

The mail survey was conducted in July and August 2002. The first contact was 

done on July 17, 2002, when survey booklets and introduction letters were mailed to 

all 4,836 individuals who agreed to participate. On July 24, a reminder postcard was 

sent to all respondents and a second set of survey and introduction letters were mailed 

on August 14 to the 2,654 participants who had not yet responded. Among the 4,836 

participants, 3,311 completed the mail survey, giving a response rate of 68%. The 

response rate by park ranged from a low of 63% for Petrified Forest to a high of 75% 

for Arches. The overall response rate for the survey (the total number of completed 

surveys over the total number of eligible individuals interviewed at the gates) was 

65%. Among all parks, Arches had the highest overall response rate, 72%, while 

Petrified Forest had the lowest overall response rate, 60% (see Appendix C Table C16 

for more detail). Of the 3,311 unique mail surveys, 592 were dropped due to 

respondents staying in second homes or with friends/relatives, having missing 

information on any critical variable (including entry/exit points, household income, 

national parks visited during the trip, or flexibility on planning the trip), or having 

non-adult respondents, unusual travel modes, an unusually long time spend on site 

(more than 60 days), or repeated respondents from the same vehicle, leaving 2,719 

completed surveys used in our analysis.  
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3.3 Summary Statistics and Data Preparation  

In this section, I present an overview of the data, including individual 

characteristics and trip statistics and then discuss the data preparation process. To 

correct for choice-based sampling bias, all data in our analysis are weighted so that 

observations may be interpreted as coming from a random draw of visits to the region 

(see Chapter 5 for a detailed discussion on this weighting process).  

3.3.1 Summary Statistics - Participation Data 

Table 3.1 presents a set of frequency distributions for the demographic data – 

age, education, employment, income, and gender. It shows that most (30%) National 

Park visitors are in their 40s, with an average age of 48. More than half of the sampled 

population has an education level of college graduate and above (36% college 

graduate and 26% graduate school). Most of the respondents are employed full time 

(62%) although there is also a large share of retirees (18%). 55% of the respondents 

are male and the most reported household income is in the range of $50,000-75,000. 

Table 3.2, table 3.3 and table 3.4 present park visitation statistics. Table 3.2 

presents a frequency distribution for the number of sites (among our set of seven) 

visited by respondents. As the table shows, around 38% of the respondents choose to 

visit more than one national park during a single trip, and 4 respondents visited all 

seven national parks on their trip. Table 3.3 shows the rank of visitation by Park. 

Grand Canyon is the most popular park among the seven with visitations by 63% of 

the sample, followed by Zion with visitations by 31% of the sample. Conversely, 

Canyonlands was the least popular site, with visitations by only 8% of the 

respondents. Table 3.4 ranks the popularity of the chosen portfolios, restricting the 

table to the top 25 most popular portfolios. A trip to Grand Canyon by itself is the 
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most chosen portfolio (39%), followed by Zion (9%). The most popular multiple-park 

portfolio is a combination of Bryce Canyon and Zion (6%). As the table shows, the top 

chosen portfolios are mostly groups of parks that are located substantially close to one 

another, for example, Portfolio – Bryce Canyon and Zion, Portfolio – Grand Canyon 

and Petrified Forest, and Portfolio - Bryce Canyon, Grand Canyon and Zion.  

In our analysis, time and money spend on the trip, starting at the entry point of 

the region and ending at the exit point of the region, constituted a respondent’s travel 

cost. All of the other costs of reaching the region were excluded. Therefore, entry and 

exit points to the region are crucial for travel cost calculation. Table 3.5 presents a 

simple summary statistics of entry and exit points reported by state. 72% of the 

sampled population is from outside the region. Most respondents entered and exited 

the region in Arizona (respectively 32% and 30%). 

Table 3.6 presents summary statistics of other relevant trip data. The average 

trip length for visiting the national parks in the region was 6.6 days. The average 

number of national parks (among the seven in our study) visited was 1.7 parks and the 

average number of other national parks visited is only 0.2, showing that the set of 

seven national parks in our study is a good reflection of visitors’ choices. Table 3.6 

also shows that respondents tended to stop by at other national attractions or cities in 

the region, with the average number of sites visited as, respectively, 0.9 and 1.5. The 

trip statistics also suggest that most people were traveling in groups. The average party 

size is 3.2, with an average of 2.4 adults and 0.8 children in the group. 82.2% of the 

visitors were traveling with family and 16.9% were with friends. Most respondents 

chose to stay in hotels overnight (71.7%). 32.9% of respondent visited family or 

friends during the trip and 9.6% of respondents claimed that they also made stops for 
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work or business reasons in the region, which suggests that some trips in our sample 

are also multi-purpose trips. Finally, these data also show that 15.5% of respondents 

potentially rented cars for their trip. This is based on the assumption that if the 

reported entry and exit points are cities (suggesting that individuals arrived in the 

region either by train, bus, or airplane), then they would have needed to rent cars to 

travel between the national parks during their visits.  

3.3.2 Data Preparation – Travel Cost 

Travel cost is a critical variable for any travel cost model, as it explicitly 

converts the subjective values people have for trips to national parks into monetary 

terms. The construction of travel costs, in most cases, involves a number of judgment 

calls. In this section, I explain how travel cost is measured in this study in detail. First, 

recall that the unit used in this study is a party/household (a group of individuals in an 

interviewed vehicle) with an average of 2.4 adults and 0.8 children. Each party is 

making a single trip to visit at least one of the seven national parks in the four states 

region. Due to the setting of the portfolio model (explained in more detail in the 

following chapter), travel costs in this study focus only on the expenses incurred 

within the region. In other words, the travel cost for each party is computed from the 

time they enter until they depart the region. Any travel expenses incurred outside of 

the region (i.e., airfare to reach and depart from the region) is considered to be 

constant across all portfolios for a given party. From tables 3.5 and 3.6, we can see 

that 28% of the sample lives in the region, about 15.5% took mass transportation (bus, 

train, or airplane) to enter the region, and the remaining 56.5% drove to the area. The 

variation in entry and exit points generates variation in travel cost across the 

portfolios, as does the number of sites in a portfolio. There are 41 unique entry/exit 
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points marked by respondents on the survey. See Appendix C Table C17 for more 

detail.  

The travel cost for household i visiting portfolio k (where m = 1, … , 7 denotes 

individual parks) is measured as follows: 

 

    𝑇𝑟𝑎𝑣𝑒𝑙 𝐶𝑜𝑠𝑡𝑖𝑘 = 𝛼𝑣𝑖∙
∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘                                             (𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝐶𝑜𝑠𝑡 )  

   +∑ 𝛿𝑚
𝐸7

𝑚=1 ∙ 𝑑𝑚𝑘                                                    (𝐸𝑛𝑡𝑟𝑎𝑛𝑐𝑒 𝐹𝑒𝑒𝑠) 

   + {𝑖𝑛𝑐𝑜𝑚𝑒𝑖/250/3} ∙ 𝑡𝑖𝑚𝑒𝑖𝑘                               (𝑇𝑖𝑚𝑒 𝐶𝑜𝑠𝑡) 

   + 𝜃𝑘
𝐹 ∙ [𝑎𝑑𝑢𝑙𝑡𝑠𝑖 + 𝑘𝑖𝑑𝑠𝑖/2] ∙ 𝑙𝑜𝑑𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑖  (𝐹𝑜𝑜𝑑 𝐶𝑜𝑠𝑡) 

   + θ𝑘
𝐿 ∙ 𝑟𝑜𝑜𝑚𝑠𝑖 ∙ 𝑙𝑜𝑑𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑖                          (𝐿𝑜𝑑𝑔𝑖𝑛𝑔 𝐶𝑜𝑠𝑡) 

 (1) 

 

𝛼𝑣𝑖
= 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 𝑣 𝑢𝑠𝑒𝑑 𝑏𝑦 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖  

𝛿𝑚
𝐸 = 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 𝑓𝑒𝑒 𝑓𝑜𝑟 𝑝𝑎𝑟𝑘 𝑚 

𝜃𝑘
𝐹 = 𝑝𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛 𝑓𝑜𝑜𝑑 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘 (see equation 3 below)  

𝜃𝑘
𝐿 = 𝑝𝑒𝑟 𝑟𝑜𝑜𝑚 𝑙𝑜𝑑𝑔𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘 (see equation 4 below)  

𝑑𝑚𝑘 = 1 𝑖𝑓 𝑠𝑖𝑡𝑒 𝑚 𝑖𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘, 𝑎𝑛𝑑 0 𝑖𝑓 𝑛𝑜𝑡  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑘 = 𝑡𝑟𝑎𝑣𝑒𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑟𝑘𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘 𝑓𝑜𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖  

𝑖𝑛𝑐𝑜𝑚𝑒𝑖 = 𝑎𝑛𝑛𝑢𝑎𝑙 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒 𝑖𝑛 2002$ 

𝑡𝑖𝑚𝑒𝑖𝑘  =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡 𝑖 𝑠𝑝𝑒𝑛𝑡 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑘𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘  

                  (𝑠𝑒𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 𝑏𝑒𝑙𝑜𝑤) 

𝑎𝑑𝑢𝑙𝑡𝑠𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑢𝑙𝑡𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔 𝑖𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖 

𝑘𝑖𝑑𝑠𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (< 18 𝑦𝑒𝑎𝑟𝑠 𝑜𝑙𝑑) 𝑡𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔 𝑖𝑛 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖 

𝑟𝑜𝑜𝑚𝑠𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑜𝑚𝑠 𝑟𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖.  
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𝑙𝑜𝑑𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑖 = 1 𝑖𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡 𝑖 𝑐ℎ𝑜𝑠𝑒 ℎ𝑜𝑡𝑒𝑙 , 𝑎𝑛𝑑 0.5 𝑖𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡 𝑖 𝑐ℎ𝑜𝑠𝑒 𝑐𝑎𝑚𝑝𝑖𝑛𝑔 

 

For each respondent who lived in the four states region, the driving distances and 

times are calculated for the 127 feasible portfolios using the routing software 

Milemaker and the respondent’s zip code. For respondents who are non-residents in 

the region, the driving distances and times for each portfolio are calculated using 

Milemaker, conditioned on their reported entry point into the region and exit point 

from the region. The times and distances were calculated for the fastest driving route 

that would allow the respondents to minimize their transit costs to visit all parks in 

their portfolio. I consider the specific order in which the parks are visited to be 

irrelevant. The per-mile vehicle costs are computed based on the type of vehicles they 

used for their trip. For respondents who chose more than one type of vehicles during 

the trip (< 2%), the per-mile vehicle cost is calculated using the sum across all of the 

vehicle types selected, implicitly assuming that these vehicles are used as a group, 

rather than switching between them. It appears that most of the second/third vehicles 

accompanied are RVs (69%). The rates used for the per-mile vehicle cost computation 

are from 2002 American Automobile Association (AAA) data, which include fuel, 

maintenance and tire wear (see table 3.7 for details). The AAA driving costs data do 

not include data for vehicle types such as motorcycles and RVs. For those, it is 

assumed that the driving cost of a motorcycle is 8/11 of the cost of a small car and that 

an RV’s driving cost is 3 times the driving cost of a small car. Table 3.7 shows that 

most parties traveled in trucks or SUVs (33%). 

 The second part of the travel cost is from park entrance fees. Each party is 

assumed to pay the relevant entrance fee (𝛿𝑚
𝐸 ) for one vehicle for each park in the 

portfolio (see table 3.8 for the entrance fee for each park). If the sum of the total costs 
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across all parks visited exceeds $50 for a portfolio, we assume that the party instead 

purchased a single $50 group park pass. The entrance fee varies among different 

portfolios but stays constant for all individuals with the same portfolio.  

The total cost also included the opportunity cost of time spent on the trip. To 

convert the time cost into monetary terms, we assume the opportunity cost of a day to 

be one-third of the household’s annual income (𝑖𝑛𝑐𝑜𝑚𝑒𝑖) divided by the assumed 

number of working days per year (50 weeks × 5 days per week=250 days). The length 

of a trip in days to visit portfolio k is  

 

 𝑡𝑖𝑚𝑒𝑖𝑘 =
{∑ 𝑑𝑎𝑦𝑠𝑚

7
𝑚=1 ∙𝑑𝑚𝑘} ∙ 8 + 𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑘

10
 (2) 

 
𝑑𝑎𝑦𝑠𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 𝑠𝑡𝑎𝑦𝑒𝑑 𝑎𝑡 𝑝𝑎𝑟𝑘 𝑚 𝑤ℎ𝑖𝑙𝑒 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 

𝑑𝑚𝑘 = 1 𝑖𝑓 𝑝𝑎𝑟𝑘 𝑚 𝑖𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘, 𝑎𝑛𝑑 0 𝑖𝑓 𝑛𝑜𝑡  

𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑘 = 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑎𝑟𝑘𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘 𝑓𝑜𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖 

 

Respondents reported their number of days at each park in ½ day increments (½ day, 1 

day, 1 ½ days, etc.). The average number of days at each park (𝑑𝑎𝑦𝑠𝑚) is the average 

for all trips to that park by all respondents. We assume 8 hours for each day of onsite 

time, thus {∑ 𝑑𝑎𝑦𝑠𝑚
7
𝑚=1 ∙ 𝑑𝑚𝑘} ∙ 8 gives the total amount of hours spent onsite for all 

parks in each portfolio.  𝑇𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑘 is also computed using Milemaker and is 

measured in hours. The total amount of time spent during the trip (onsite time + travel 

time between parks) is divided by 10 to convert hours to days, assuming that a full day 

of traveling and onsite time cannot be a full 24-hour day (in this case I assume it 

contains 10 hours). In other words, I assume one overnight stay for every 10 hours of 

onsite plus travel time.  
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The last two components of the travel cost are meal expenses and lodging 

expenses. These are computed using the federal government’s per diem rates for 

nearby cities (see table 3.8 for details). The per diem rate is a good proxy for costs in 

these areas and accurately picks up variation in the costs across all parks.  

The per person food cost for portfolio k, shown as 𝜃𝑘
𝐹 in equation (1), is 

 

 𝜃𝑘
𝐹 =

∑ 𝛿𝑚
𝐹 ∙𝑑𝑎𝑦𝑠𝑚∙𝑑𝑘𝑚

7
𝑚=1

𝑆𝑢𝑚𝐷𝑎𝑦𝑠𝑘
  ∙  𝑡𝑖𝑚𝑒𝑖𝑘      

OR 

 𝜃𝑘
𝐹 = ∑ 𝛿𝑚

𝐹7
𝑚=1 ∙

𝑑𝑎𝑦𝑠𝑚∙𝑑𝑚𝑘

𝑆𝑢𝑚𝐷𝑎𝑦𝑠𝑘
 ∙  𝑡𝑖𝑚𝑒𝑖𝑘 (3) 

 
𝛿𝑚

𝐹 = 𝑓𝑒𝑑𝑒𝑟𝑎𝑙 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑑𝑖𝑒𝑚 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑓𝑜𝑜𝑑 𝑓𝑜𝑟 𝑡𝑜𝑤𝑛 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑝𝑎𝑟𝑘 𝑚  

𝑑𝑎𝑦𝑠𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 𝑠𝑡𝑎𝑦𝑒𝑑 𝑎𝑡 𝑝𝑎𝑟𝑘 𝑚 𝑤ℎ𝑖𝑙𝑒 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 

𝑑𝑚𝑘 = 1 𝑖𝑓 𝑝𝑎𝑟𝑘 𝑚 𝑖𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘, 𝑎𝑛𝑑 0 𝑖𝑓 𝑛𝑜𝑡 

 𝑆𝑢𝑚𝑑𝑎𝑦𝑠𝑘 = ∑ 𝑑𝑎𝑦𝑠𝑚 ∙ 𝑑𝑚𝑘
7
𝑚=1   

𝑡𝑖𝑚𝑒𝑖𝑘 = 𝑇ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑡𝑟𝑖𝑝 𝑖𝑛 𝑑𝑎𝑦𝑠 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘   

 

The per diem per person food cost by portfolio is first weighted by average onsite time 

at each park. Then, I use total trip length for each portfolio (onsite time + travel time) 

times the per diem per person food cost to compute the per person food cost for each 

portfolio. As shown in equation (1), adults are assumed to pay the full meal per diem 

and children pay ½ the meal per diem over days spent visiting portfolio k.  Also, 

respondents staying in hotels/motels are assumed to pay full per diem while campers 

pay ½ per diem. 

The per room lodging cost for portfolio k, noted as θ𝑘
𝐿  in equation (1) can be 

expressed as 
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  𝜃𝑘
𝐿 =

∑ 𝛿𝑚
𝐿 ∙𝑑𝑎𝑦𝑠𝑚∙𝑑𝑘𝑚

7
𝑚=1

𝑆𝑢𝑚𝐷𝑎𝑦𝑠𝑘
  ∙  𝑛𝑖𝑔ℎ𝑡𝑠𝑖𝑘     

OR 

 𝜃𝑘
𝐿 = ∑ 𝛿𝑚

𝐿7
𝑚=1 ∙

𝑑𝑎𝑦𝑠𝑚∙𝑑𝑚𝑘

𝑆𝑢𝑚𝐷𝑎𝑦𝑠𝑘
 ∙  𝑛𝑖𝑔ℎ𝑡𝑠𝑖𝑘 (3) 

 
𝛿𝑚

𝐿 = 𝑓𝑒𝑑𝑒𝑟𝑎𝑙 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑑𝑖𝑒𝑚 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑙𝑜𝑑𝑔𝑖𝑛𝑔 𝑓𝑜𝑟 𝑡𝑜𝑤𝑛 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑝𝑎𝑟𝑘 𝑚 

𝑑𝑎𝑦𝑠𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠 𝑠𝑡𝑎𝑦𝑒𝑑 𝑎𝑡 𝑝𝑎𝑟𝑘 𝑚 𝑤ℎ𝑖𝑙𝑒 𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 

𝑑𝑚𝑘 = 1 𝑖𝑓 𝑝𝑎𝑟𝑘 𝑚 𝑖𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘, 𝑎𝑛𝑑 0 𝑖𝑓 𝑛𝑜𝑡 

𝑆𝑢𝑚𝑑𝑎𝑦𝑠𝑘 = ∑ 𝑑𝑎𝑦𝑠𝑚 ∙ 𝑑𝑚𝑘
7
𝑚=1   

𝑛𝑖𝑔ℎ𝑡𝑠𝑖𝑘 =  𝑖𝑛𝑡(𝑡𝑖𝑚𝑒𝑖𝑘) =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑖𝑔ℎ𝑡𝑠 𝑠𝑝𝑒𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎 𝑡𝑟𝑖𝑝 𝑡𝑜 𝑣𝑖𝑠𝑖𝑡 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘 

 

Lodging cost per room per diem is also weighted using the average onsite time at each 

park. The per room lodging cost for each portfolio can be computed by multiplying 

this cost by the average total number of nights households are in the area when visiting 

portfolio k.  The number of nights is the integer of number of days spent during a trip 

to visit portfolio k. Assuming that two adults share one room and the number of 

children does not to affect the number of rooms, 𝑟𝑜𝑜𝑚𝑠𝑖 can then be computed as 

𝑐𝑒𝑖𝑙(𝑎𝑑𝑢𝑙𝑡𝑠𝑖/2) (i.e. < 2 adults implies 1 room, 2 to 4 adults implies 2 rooms, 4 to 6 

adults implies 3 rooms, and so forth). Similar to the method used for meal expenses, I 

assume that respondents staying in hotels/motels pay full per diem and campers pay ½ 

per diem. 

Table 3.9 shows the decomposition of the resulting total travel cost. As the 

table shows, the mean travel cost to all portfolios across all parties in the sample is 

$1,698. The possible total costs among all portfolios range from $40 to $9,978. The 

mean travel cost across all chosen portfolios is $897. Among all costs, the opportunity 
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time cost account for the largest share of the average travel cost at 32%, followed by 

food cost at around 30%.  
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Table 3.1: Demographic Data (n = 2719)1 

 
Mean or Percent 

of sample 

Number of 

Respondents 

Percentage of 

Respondents 

Age 48 years  

<=20 years 

 

24 1% 

21~30 years 277 11% 

31~40 years 441 17% 

41~50 years 776 30% 

51~60 years 567 22% 

61~70 years 328 13% 

71~80 years 132 5% 

81~90 years 18 1% 

Education Level   

Less than high school 

 

3 <1% 

Some high school 22 1% 

High school or GED 251 9% 

Technical or trade school degree 118 4% 

Some college 637 23% 

College graduate 975 36% 

Graduate school 711 26% 

Employment Status   

Full time 

 

1695 62% 

Part time 249 9% 

Work in household 145 5% 

Unemployed 58 2% 

Retired 501 18% 

Student 71 3% 

Other 1 <1% 

Household Income2 $ 72481  

Less than $15,000 per year  91 3% 

$15,000 to $20,000 per year  54 2% 

$20,000 to $30,000 per year  198 7% 

$30,000 to $40,000 per year  281 10% 

$40,000 to $50,000 per year  291 11% 

$50,000 to $75,000 per year  676 25% 
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Table 3.1 continued 

1 Households with missing income are excluded from the sample because income is needed to estimate the value of 

time in our models – 215 observations were dropped for this reason.  Also, the number of observations is less than 

2716 for some of the other variables due to item non-response. 
2 The mean is calculated using the midpoints of the income categories (using $150,000 for the highest group). 
3 Due to rounding some percentages may not add up to 100%. 

  

 
Mean or Percent 

of sample 

Number of 

Respondents 

Percentage of 

Respondents 

    
$75,000 to $100,000 per year  541 20% 

$100,000 to $150,000 per year  403 15% 

More than $150,000 per year  184 7% 

Male 55%  
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Table 3.2: Number of Parks (Among Set of Seven) Visited  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Number of Parks Visited 

 by Respondent 

Number of 

Respondents 

Percent of the 

Sample 

1 1695 62% 

2 547 20% 

3 260 10% 

4 128 5% 

5 61 2% 

6 25 1% 

7 4 <1% 

Total 2719 100% 
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Table 3.3: Visitation by Park 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parks Visitors 
% of the Sampled 

Visitors 

Grand Canyon 1715 63% 

Zion 851 31% 

Bryce Canyon 590 22% 

Arches 430 16% 

Mesa Verde 419 15% 

Petrified Forest 338 12% 

Canyonlands 216 8% 
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Table 3.4: Most Frequently Chosen Portfolios1 

Portfolio Group Visitors 
Percent of the 

Sample 

Grand Canyon 1070 39% 

Zion 243 9% 

Mesa Verde 191 7% 

Bryce Canyon, Zion 153 6% 

Grand Canyon, Petrified Forest 131 5% 

Bryce Canyon, Grand Canyon, Zion 118 4% 

Arches 103 4% 

Grand Canyon, Zion 66 2% 

Arches, Canyonlands 51 2% 

Bryce Canyon 46 2% 

Petrified Forest 33 1% 

Grand Canyon, Mesa Verde 32 1% 

Bryce Canyon, Grand Canyon 25 1% 

Grand Canyon, Mesa Verde, Petrified Forest 24 1% 

Bryce Canyon, Grand Canyon, Petrified Forest, Zion 23 1% 

Arches, Grand Canyon 20 1% 

Arches, Bryce Canyon, Canyonlands, Grand Canyon, Zion 19 1% 

Arches, Bryce Canyon, Zion 18 1% 

Arches, Bryce Canyon, Grand Canyon, Zion 18 1% 

Arches, Canyonlands, Mesa Verde 18 1% 

Arches, Mesa Verde 17 1% 

Arches, Zion 16 1% 

Bryce Canyon, Grand Canyon, Mesa Verde, Zion  12 <1% 

Arches, Bryce Canyon, Grand Canyon, Mesa Verde, Zion  11 <1% 

Arches, Bryce Canyon, Canyonlands, Zion 10 <1% 

All others 253 9% 

Total 2719 100% 
 1Only 111 out of 127 possible portfolios were chosen by respondents.  
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Table 3.5: Entry and Exit Points in the Four State Region 

* Due to rounding percentages may not add up to 100%. 

  

Entry/Exit States 

Entry Points Exit Points 

Number of 

Respondents 

% of the 

Respondents 

Number of 

Respondents 

% of the 

Respondents 

Arizona 861 32% 817 30% 

Colorado 69 3% 68 3% 

New Mexico 362 13% 352 13% 

Utah 654 24% 708 26% 

Residents in the Four 

States Region 
774 28% 774 28% 

Total 2719 100% * 2719 100%* 
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Table 3.6: Trip Statistics 

1 There is no direct information on whether the respondents rented cars. It is assumed that if respondents took mass 

transportation (bus, train, airplane, etc.) to enter the region, then most likely they rented cars to visit parks in the 

region. 

  

 Min Mean Max SD 

Number of Days in Area 1 6.6 148 5.7 

Number of National Parks  (Among the 7 parks) 

Visited 
1 1.7 7 1.1 

Number of Other National Parks Visited 0 0.2 4 0.5 

Number of Other National Attractions Visited 0 0.9 15 1.5 

Number of Other Cities Visited 0 1.5 10 1.4 

Party – Size  1 3.2 16 1.4 

Number of Children in Party 0 0.8 14 1.2 

% Renting Cars1 - 15.5% - 0.4 

% Staying in Hotels - 71.7% - 0.4 

% Visiting family/friends during the trip - 32.9% - 0.5 

% Business trips - 9.6% - 0.3 

% Traveling alone - 5.3% - 0.2 

% Traveling with family - 82.2% - 0.4 

% Traveling with friends - 16.9% - 0.4 

% Traveling with business associates - 1.2% - 0.1 
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Table 3.7: Vehicle Cost Per-Mile1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1American Automobile Association. (2002). Your Driving Cost 2002 [Pamphlet]. Costs include fuel, maintenance 

and tires.  
2Some respondents chose more than one type of vehicles; therefore the percentages in the sample do not necessarily 

add up to 100%. 

  

Type of Vehicle  % of Sample2 2002 Cost-per-mile (cents) 

Small Car 10% 10.6 

Mid-sized Car 20% 11.8 

Full-sized Car 14% 13.0 

Van 19% 11.0 

Truck/SUV 33% 11.6 

Motorcycle < 1% 7.7  (8/11 × Small Car) 

RV 6% 31.8 (3 × Small Car) 
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Table 3.8: Lodging, Food Cost, Entrance Fees and Average Time on Site by 

Park 

1 Federal government per diem rates for the towns closest to each park. U.S. General Services Administration –  Per 

Diem Rates Look-Up in 2002 (http://www.gsa.gov/portal/category/100120).  
2If total entrance fee for a portfolio is greater than $50, then we assume they purchased a $50 park pass. 

 

Parks 
2002 Lodging Per-

Day1 

2002 Food Per-

Day1 

2002 Entrance 

Fees 

Per Vehicle2 

Average Time 

on Site 

Arches  $87 $38 $10 0.9 days 

Bryce Canyon 57 38 20 1.2 

Canyonlands 87 38 10 0.9 

Grand Canyon 103 46 20 1.6 

Mesa Verde 67 34 10 1.0 

Petrified Forest 65 38 10 0.6 

Zion 57 38 20 1.3 



 

 

4
0

 

Table 3.9: Per Party Travel Cost 

 Total Cost Transit Cost Lodging Cost Food Cost Entrance Fee Time Cost1 

All Portfolios 

Mean $1698 $178 $421 $510 $42 $547 

Min 40 2 0 13 10 8 

Max 9978 1616 4178 4473 50 2586 

SD 843 117 286 322 11 366 

% of Total2 100% 10% 25% 30% 2% 32% 

Chosen Portfolios 

Mean $897 $92 $212 $281 $26 $287 

Min 82 2 0 20 10 9 

Max 8999 1616 2785 4327 50 2555 

SD 653 104 192 226 13 254 

% of Total3 100% 10% 24% 31% 3% 32% 

 

1 Time costs are opportunity costs calculated using travel time (transit time between parks + on site time) times 1/3 of household income.  
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THEORY AND METHEDOLOGY 

In this chapter, I present the theoretical foundations of and methodology 

behind this study on national park visitors’ choice behavior. General park visitation 

choices can be represented as a standard discrete choice, where individuals are 

considered to be facing a choice among a set of alternatives, including the alternative 

of choosing no item from the set. From the decision maker’s perspective, all of these 

alternatives are mutually exclusive. In other words, when the decision maker chooses 

one alternative none of the other alternatives can be chosen. In addition, the set of 

alternatives is both finite and exhaustive (i.e., all possible alternatives are included in a 

finite set). Each alternative in the set can be described by a set of attributes. When 

making the choice, the individual evaluates all the attributes, making their decisions 

based on the implied trade-offs between each alternative. Given the nature of this type 

of situation, discrete choice modeling is the optimal methodology for this analysis. 

In the following sections, I first explain Random Utility Theory – the 

underlying assumption behind discrete choice modeling. I then present the method 

used in this analysis to address the multi-destination issue in this discrete choice 

framework, followed by the empirical specifications for these models.  

4.1 Random Utility Theory 

Random Utility Maximization Theory (RUM) is the most fundamental 

assumption underlying the discrete choice models. It argues that people are always 

Chapter 4 



 

 42 

governed by utility-maximization behavior when making consumption decisions. 

According to RUM theory, decision makers receive different levels of utility from 

different alternatives in the choice set, and it is always in their best interests to choose 

the one yield the highest possible utility. The utilities they derive from each alternative 

may depend on different attributes of the alternatives as well as the unique 

characteristics of the decision makers. 

Random Utility Models, in a functional form, can be specified as follows. A 

decision maker, denoted by 𝑖, faces a set of 𝐽 alternatives, with the quantity of these 

alternatives denoted by vector 𝐴𝑖. Let 𝑝𝑖 denote the vector of prices for each 

alternative for individual 𝑖. Let 𝐵𝑖 denote a vector of the quantities of other 

commodities consumed (with the price vector for other commodities normalized to 1) 

and 𝑦𝑖 denote the total income of individual 𝑖. Given the information set, decision 

maker 𝑖 faces the following problem to maximize her utility (𝑈𝑖) from consuming 𝐴𝑖 

and 𝐵𝑖: 

𝑀𝑎𝑥 𝑈𝑖(𝐴𝑖, 𝐵𝑖) 

     𝑠. 𝑡.    𝑝𝑖 ∙ 𝐴𝑖  + 𝐵𝑖 ≤ 𝑦𝑖    (4) 

 

The conditional indirect utility function is the solution to the above constrained 

utility maximization problem and is given by:  

 

  𝑉𝑖 = 𝑚𝑎𝑥{𝑈(𝐴𝑖 , 𝐵𝑖) | 𝑝𝑖 ∙ 𝐴𝑖  + 𝐵𝑖 ≤ 𝑦𝑖, 𝐴𝑖  ≥ 0, 𝐵𝑖 ≥ 0}.   (5) 

 

As established in the beginning of the chapter, for discrete choice problems all 

alternatives in the choice set are mutually exclusive, so one and only one alternative 
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can be chosen per choice occasion. 𝐴𝑖, therefore, is a vector of (𝐽 − 1) 0s for all of the 

non-chosen alternatives and a 1 for the chosen alternative 𝑗 (𝑗 = 1, 2, … , 𝐽). Solving 

the utility maximization problem, conditioning on alternative 𝑗 being chosen and 

applying Roy’s identity, the conditional indirect utility function can be written as:   

 

    𝑉𝑖𝑗 = V(𝐴𝑖𝑗, 𝑦𝑖  − 𝑝𝑖𝑗) ∀ 𝑗 ,    (6) 

 

where 𝐴𝑖𝑗 represents the chosen alternative 𝑗 (𝑗 = 1, 2, … , 𝐽) and (𝑦𝑖  − 𝑝𝑖𝑗) represents 

the residual disposable income available after spending 𝑝𝑖𝑗 on alternative 𝑗. As 

established earlier, each alternative in the choice set can be described as a set of 

attributes and characteristics of that alternative and consumers derive their utility from 

the attributes of the alternative instead of the alternative itself (Lancaster 1966). 

Therefore, equation (6) can be specified as:   

 

    𝑉𝑖𝑗 = V(𝑞𝑖𝑗, 𝑦𝑖  − 𝑝𝑖𝑗) ∀ 𝑗 ,    (7) 

 

where 𝑞𝑖𝑗  ∀ 𝑗  is the vector of characteristics associated with alternative 𝑗. The 

conditional indirect utility function is thus a function of the attributes of alternative 𝑗 

exclusively (note that no other alternative’s attributes are present in 𝑉𝑖𝑗). This indicates 

that once alternative j is chosen, other alternatives’ attributes would have no effect on 

an individual’s utility (Bockstael & McConnell, 2007).  

Consider now the problem faced by the researcher. The decision maker’s 

utility function is known only by the decision maker; it cannot be directly observed by 

the researcher. The researcher observes some attributes, 𝑥𝑖𝑗  𝜖 𝑞𝑖𝑗 ∀ 𝑗, that affect the 
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individual’s decision making (but not all attributes) and some characteristics of the 

decision maker, 𝑧𝑖 (other than income 𝑦𝑖). This makes it possible for the researcher to 

specify a function that relates these observed attributes/characteristics to the decision 

maker’s utility: 

 

    𝑉𝑖𝑗 = V(𝑥𝑖𝑗, 𝑦𝑖  − 𝑝𝑖𝑗,  𝑧𝑖)   ∀ 𝑗 .   (8) 

 

This utility function is often called the representative utility or the deterministic 

component of the utility function. Since there are aspects that the researches cannot 

observe easily, we denote all the unknown factors as 𝜀𝑖𝑗. Therefore, the true utility 

function can be expressed as  

 

     𝑉𝑖𝑗
∗ = 𝑉𝑖𝑗 + 𝜀𝑖𝑗     ∀ 𝑗 .    (9) 

 

where 𝑉𝑖𝑗 = V(𝑥𝑖𝑗 , 𝑦𝑖  − 𝑝𝑖𝑗 ,  𝑧𝑖)   . 

From equation (9), we can see that the decision maker would only choose 

alternative 𝑗 if and only if 𝑉𝑖𝑗
∗ > 𝑉𝑖𝑘

∗  ∀ 𝑘 ≠ 𝑗. Since 𝜀𝑖𝑗 is the stochastic component of 

the utility function, the researcher’s prediction on whether the decision maker chooses 

alternative 𝑗 is a probabilistic matter rather than a deterministic one. The distribution 

of the random component 𝜀𝑖𝑗 will therefore have a great effect on the prediction’s 

accuracy. Denote the joint density of the random component as 𝑓 (𝜀𝑖𝑗) ∀ 𝑗. The 

probability of individual 𝑖 chooses alternative 𝑗 is then given by: 

 

𝑃𝑖𝑗 =  𝑃𝑟𝑜𝑏(𝑉𝑖𝑗
∗ > 𝑉𝑖𝑘

∗  ∀ 𝑘 ≠ 𝑗) 
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      = 𝑃𝑟𝑜𝑏 (𝑉𝑖𝑗 + 𝜀𝑖𝑗  >  𝑉𝑖𝑘 + 𝜀𝑖𝑘∀ 𝑘 ≠ 𝑗) 

      =  𝑃𝑟𝑜𝑏 (𝜀𝑖𝑘 − 𝜀𝑖𝑗 < 𝑉𝑖𝑗 − 𝑉𝑖𝑘 ∀ 𝑘 ≠ 𝑗) 

      =  𝑃𝑟𝑜𝑏 (𝜀𝑖𝑘 − 𝜀𝑖𝑗 <  V(𝑥𝑖𝑗 , 𝑦𝑖  − 𝑝𝑖𝑗,  𝑧𝑖) − V(𝑥𝑖𝑘, 𝑦𝑖  − 𝑝𝑖𝑘,  𝑧𝑖) ∀ 𝑘 ≠ 𝑗) (10) 

 

Assume that the representative utility function takes a linear form (i.e., the attributes 

and individual characteristics are linearly additive). The representative utility function 

then becomes: 

   𝑉𝑖𝑗 =  𝛽 ∙ 𝑥𝑖𝑗 +  𝛼 ∙ (𝑦𝑖 − 𝑝𝑖𝑗) + 𝛿 ∙  𝑧𝑖 ∀ 𝑖, 𝑗,   (11) 

 

where 𝛽 and 𝛿 are vectors of parameters for the alternative’s attributes and individual 

characteristics respectively, and 𝛼 is the marginal utility of income. By substituting 

equation (11) into equation (10), the probability of choosing alternative 𝑗 becomes: 

 

𝑃𝑖𝑗 = 𝑃𝑟𝑜𝑏 (𝜀𝑖𝑘 − 𝜀𝑖𝑗

< (𝛽 ∙ 𝑥𝑖𝑗 + 𝛼 ∙ (𝑦𝑖  − 𝑝𝑖𝑗) + 𝛿 ∙ 𝑧𝑖)  

− (𝛽 ∙ 𝑥𝑖𝑘 + 𝛼 ∙ (𝑦𝑖  − 𝑝𝑖𝑗) + 𝛿 ∙ 𝑧𝑖) ∀ 𝑘 ≠ 𝑗) 

    = 𝑃𝑟𝑜𝑏 (𝜀𝑖̂ < 𝛽 ∙ 𝑥𝑖̂ + 𝛼 ∙ 𝑝̂𝑖 ),     (12) 

 

where 𝜀𝑖̂ is the difference in the unobserved utility, 𝑥𝑖̂ is the differences between the 

alternatives’ attributes, and 𝑝̂𝑖 is the difference between alternatives’ prices.  

As equation (12) shows, the probability of choosing alternative 𝑗 is the probability that 

𝜀𝑖̂ is less than (𝛽 ∙ 𝑥𝑖̂ + 𝛼 ∙ 𝑝̂)𝑖. Using the density function 𝑓 (𝜀𝑖𝑗), this probability can 

be specified as a cumulative distribution: 
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  𝑃𝑖𝑗 =  𝑃𝑟𝑜𝑏(𝜀𝑖̂ < 𝛽 ∙ 𝑥𝑖̂ + 𝛼 ∙ 𝑝̂𝑖) 

         = ∫ 𝐼(𝜀𝑖̂ < 𝛽 ∙ 𝑥𝑖̂ + 𝛼 ∙ 𝑝̂𝑖)  ∙  𝑓 (𝜀𝑖)  ∙  𝑑𝜀𝑖
    (13) 

 

where 𝐼(∙) is an indicator function, which equals 1 if 𝜀𝑖̂ < 𝛽 ∙ 𝑥𝑖̂ + 𝛼 ∙ 𝑝̂𝑖, or, in a more 

general form, 𝜀𝑖𝑘 − 𝜀𝑖𝑗 < 𝑉𝑖𝑗 − 𝑉𝑖𝑘 ∀ 𝑘 ≠ 𝑗, and 0 otherwise.  

Equation (13) shows that the choice probabilities depend on two factors – the 

differences among the alternatives’ attributes (𝑥𝑖̂ 𝑎𝑛𝑑 𝑝̂𝑖) and the distribution of the 

random component, 𝑓(𝜀𝑖). Note that it is the differences among alternative 

characteristics, rather than their absolute values, which affect the probability of 

selecting any alternative. In other words, attributes that do not vary across alternatives 

have no effect on the probabilities of selecting between those alternatives (Haab & 

McConnell, 2002). The choice probabilities also depend on the specification of the 

density function 𝑓 (𝜀𝑖). That is, different discrete choice models can be developed 

using different assumptions about the distribution of the error term 𝜀𝑖 (Train, 2009). 

The specifications of different discrete choice models will be discussed in the later 

sections of this chapter.  

4.2 Site-Portfolio Approach 

In this section, I present the theoretical model that not only describes a party’s 

choice on national park visitation, but also addresses the multi-destination issue in 

trips to southwestern national parks. Unlike traditional site choice models which 

model people’s decision when facing a set of single parks, we consider that each party 

is making a choice among a set of portfolios of parks drawn from the set of seven 

national parks. As established in Chapter 3, due to the characteristics of trips to 

national parks in the southwest the sample for this study is randomly selected onsite, 
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which suggests that the choice of the observed portfolios is conditioned on the party’s 

taking a recreational trip to at least one of the seven parks. An adjustment for the 

choice based sampling will be discussed in the next chapter.  

While people do visit other parks and make side trips, this study focuses on 

these seven national parks, which are major destinations in the four states region. The 

portfolios may contain only one park, all seven parks, or any other combination of the 

seven parks. When constructing the portfolios, only the combinations of parks matter. 

The sequence of parks being visited is assumed to be irrelevant. This assumption is 

necessary due to practical limitations. It was possible to learn the sequence of sites 

visited by asking respondents to map out the route they had or would take in the 

survey. However, considering all combinations of parks and all possible routes to visit 

these parks would make it infeasible to make the set of choices/portfolios exhaustive. 

Instead, it is assumed that the party will simply visit the parks in the order that 

minimizes travel cost. Therefore, if there are M national parks in the region, the set of 

portfolios can be described as: 

 

  𝐴 = [{1}, {2},… {𝑀}, {1,2}, {1,3},… , {1,… ,𝑀}].    (14) 

 

There are thus in total 𝐾 = 2𝑀 − 1 (for notational purposes, alternatives in this set of 

possible portfolios will be indexed by “k” instead of “j” in the previous section) 

portfolios from which the party can choose from. In this study, as there are seven 

parks of interest, the choice set is a set of 127 portfolios. 
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According to Random Utility Theory, the party chooses the portfolio of parks 

that maximizes its utility subject to its budget constraint. The conditional indirect 

utility function for party 𝑖 choosing portfolio 𝑘 (𝑘 = 1, 2, … , 127) can be specified as: 

 

   𝑉𝑖𝑘
∗ = V(𝑥𝑘, 𝑦𝑖  − 𝑝𝑖𝑘,  𝑧𝑖) + 𝜀𝑖𝑘  ∀ 𝑘,    (15) 

 

where 𝑦𝑖 is the party’s relevant income constraint,  𝑧𝑖 is a vector of the demographic 

characteristics of respondent 𝑖, 𝑝𝑖𝑘 is the travel cost of portfolio 𝑘 for party 𝑖 

conditional on a particular entry and exit point to the region, 𝑥𝑘 represents a vector of 

observed attributes associated with the 𝑘𝑡ℎ portfolio (note that the attributes are only 

associated with the portfolio, not with the individuals; a full definition of 𝑥𝑘 will be 

presented in the following section), and 𝜀𝑖𝑘 is a stochastic component that captures all 

the unobserved factors that may contribute to the decision making. The travel cost 

here includes transit cost, time cost, lodging and food cost, and entrance fee(s). Since 

the fixed cost of entering and exiting the region does not vary across portfolios for any 

given party, it is not included in the travel cost.  

When each party faces a choice among the K (=127) portfolios, they compare 

among the set of K conditional indirect utility functions and choose the alternative that 

yields the highest utility. Each party 𝑖′𝑠 choice is then defined as if they are solving the 

following problem: 

 

 𝑀𝑎𝑥
𝑘∈𝑆

   𝑉𝑖𝑘(𝑥𝑘 , 𝑝𝑖𝑘, 𝑦𝑖, 𝑧𝑖), (16) 

 

where S is the set of K portfolios.  
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4.3 Specific Models 

Different choice models can be derived by using different assumptions about 

the distribution of the unobserved component 𝜀𝑖. In this section, I present the three 

empirical versions of choice models used in this study: (i) Standard Logit with 

Additive Site Utilities (ASU-SL), (ii) Mixed Logit with Additive Site Utilities (ASU-

MXL), and (iii) Portfolio Specific Constants as Utilities (PSC). 

4.3.1 Additive Site Utilities Models – SL Model and MXL Model 

Recall from the previous section that individual 𝑖′𝑠 choice can be specified as 

𝑉𝑖𝑘
∗ = V(𝑥𝑘, 𝑦𝑖  − 𝑝𝑖𝑘,  𝑧𝑖) + 𝜀𝑖𝑘  ∀ 𝑘. For the standard logit model with additive site 

utilities, it is important to understand how each park contributes to the indirect utility. 

Therefore, the alternative attributes vector 𝑥𝑘 is specified as a vector (𝑥𝑘∙) of M (= 7 

parks in this study) index variables, where:  

 

   𝑥𝑘∙ = (𝑥𝑘1, … , 𝑥𝑘𝑚)′        (17) 

 

and 𝑥𝑘𝑚 = 1 if park 𝑚 is in the 𝑘𝑡ℎ portfolio, and 0 otherwise.  

Assuming that the park index variables are additively separable from the 

remaining deterministic components of the indirect utility, the conditional indirect 

utility function of individual 𝑖 choosing portfolio 𝑘 can be written as: 

 

 𝑉𝑖𝑘
∗ (𝛽, 𝛾) = 𝛽𝑥𝑘∙ + 𝑓( (𝑦𝑖  − 𝑝𝑖𝑘),  𝑧𝑖, 𝛾) + 𝜀𝑖𝑘  ∀ 𝑘,    (18) 
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where 𝛽 and  𝛾 are vectors of unknown parameters, with 𝛽𝑥𝑘∙ = ∑ 𝛽𝑚𝑥𝑘𝑚
𝑀
𝑚=1 . As 

𝑥𝑘𝑚 is a vector of index variables which only equals 1 if park m is in portfolio k, the 

conditional indirect utility function simplifies to:  

 

 𝑉𝑖𝑘
∗ (𝛽, 𝛾) = ∑ 𝛽𝑚𝑚∈𝑆𝑘

+ 𝑓( (𝑦𝑖  − 𝑝𝑖𝑘),  𝑧𝑖, 𝛾) + 𝜀𝑖𝑘  ∀ 𝑘,   (19) 

 

where 𝑆𝑘 is the set of parks in portfolio k. In this way, each park m contributes to an 

individual’s utility by adding its parameter 𝛽𝑚 to the total utility when park 𝑚 is in the 

𝑘𝑡ℎ portfolio; this is why the model is named “Additive Site Utilities.” Consider the 

following example; for portfolio 𝑘 = 1 which includes only Arches (𝑚 = 1), the 

utility entry for individual 𝑖 visiting this portfolio is 𝑉𝑖1
∗ = 𝛽1 + 𝑓( (𝑦𝑖  − 𝑝𝑖1),  𝑧𝑖, 𝛾) +

𝜀𝑖1 , so the portfolio utility includes a “utility hit” only from Arches. Say, if individual 

𝑖 visited portfolio 𝑘 = 10, which contains both Arches (𝑚 = 1) and Grand Canyon 

(𝑚 = 4), then the utility entry for individual 𝑖 visiting portfolio 10 is 𝑉𝑖10
∗ = 𝛽1 + 𝛽4 +

𝑓( (𝑦𝑖  − 𝑝𝑖10),  𝑧𝑖, 𝛾) + 𝜀𝑖10 . In this case, there are two “utility hits,” from Arches and 

Grand Canyon separately.  

4.3.1.1 Standard Logit Model 

The easiest and most widely used discrete choice model is the standard logit 

model. The logit formula was first developed by Luce (1959) based on the assumption 

of independence from irrelevant alternatives (IIA) property, and then completed by 

McFadden (1974). It is derived under the assumption that the unobserved components 

(𝜀𝑖) are independently and identically distributed (IID) type-I extreme values, which 

suggests that the unobserved components are uncorrelated over all alternatives and 
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have the same variance. The density function for each unobserved component of 

utility is then given by: 

 

   𝑓(𝜀𝑖𝑘) =  𝑒−𝜀𝑖𝑘𝑒−𝑒−𝜀𝑖𝑘 ,      (20) 

 

and the cumulative distribution is then given by: 

 

   𝐹(𝜀𝑖𝑘) =  𝑒−𝑒−𝜀𝑖𝑘 .       (21) 

 

The probability of individual 𝑖 choosing portfolio 𝑘, based on the choice 

probability derived in the first section of this chapter, can be written as: 

 

𝑃𝑖𝑘 =  𝑃𝑟𝑜𝑏 (𝜀𝑖𝑗 − 𝜀𝑖𝑘 < 𝑉𝑖𝑘 − 𝑉𝑖𝑗 ∀ 𝑗 ≠ 𝑘) 

       =  𝑃𝑟𝑜𝑏 (𝜀𝑖𝑗 < 𝜀𝑖𝑘 + 𝑉𝑖𝑘 − 𝑉𝑖𝑗 ∀ 𝑗 ≠ 𝑘) 

       = ∫ 𝐼(𝜀𝑖𝑗 < 𝜀𝑖𝑘 + 𝑉𝑖𝑘 − 𝑉𝑖𝑗∀ 𝑗 ≠ 𝑘)  ∙  𝑓 (𝜀𝑖𝑘)  ∙  𝑑𝜀𝑖𝑘
. (22) 

 

Since the error terms are independent from one another, the probability that 𝜀𝑖𝑗 <

𝜀𝑖𝑘 + 𝑉𝑖𝑘 − 𝑉𝑖𝑗 is true for all 𝑗 ≠ 𝑘 is the product of the individual cumulative 

distribution for each 𝜀𝑖𝑗 (𝑗 ≠ 𝑘) evaluated at 𝜀𝑖𝑘 + 𝑉𝑖𝑘 − 𝑉𝑖𝑗, or: 

 

  𝐼(∙) = ∏ 𝐹 (𝜀𝑖𝑗 < 𝜀𝑖𝑘 + 𝑉𝑖𝑘 − 𝑉𝑖𝑗)𝑗≠𝑘 = ∏ 𝑒−𝑒
−(𝜀𝑖𝑘+𝑉𝑖𝑘−𝑉𝑖𝑗)

𝑗≠𝑘 .  

(23) 
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By substituting equations (20) and (23) into equation (22) and engaging in some 

algebraic manipulation, a closed form expression of the choice probability can be 

written as2: 

 

    𝑃𝑖𝑘 = 
𝑒𝑉𝑖𝑘

∑ 𝑒
𝑉𝑖𝑗

𝑗

 

           =  
𝑒𝛽𝑥𝑘∙+𝑓( (𝑦𝑖 −𝑝𝑖𝑘), 𝑧𝑖,𝛾)

∑ 𝑒
𝛽𝑥𝑗∙+𝑓( (𝑦𝑖 −𝑝𝑖𝑗), 𝑧𝑖,𝛾)

𝑗

.    (24) 

 

The indirect utility functions are usually considered to be linear; that is, it is assumed 

that the individual characteristics and disposable income are linearly additive in 

𝑓( (𝑦𝑖  − 𝑝𝑖𝑗),  𝑧𝑖 , 𝛾). Thus the choice probability can be written as: 

  

𝑃𝑖𝑘 = 
𝑒𝛽𝑥𝑘∙+𝛾1(𝑦𝑖 −𝑝𝑖𝑘)+ 𝛾2𝑧𝑖

∑ 𝑒𝛽𝑥𝑗∙+𝛾1(𝑦𝑖 −𝑝𝑖𝑗)+ 𝛾2𝑧𝑖
𝑗

 

        =  
𝑒𝛽𝑥𝑘∙+𝛾1𝑝𝑖𝑘

∑ 𝑒
𝛽𝑥𝑗∙+𝛾1𝑝𝑖𝑗

𝑗

.     (25) 

 

Equation (25) shows that the choice probability of individual 𝑖 choosing portfolio 𝑘 

only depends on the portfolio attributes (the parks in portfolio 𝑘 and the price of 

visiting portfolio 𝑘) and not on any individual characteristics.  

As the logit choice probability takes a closed form, equation (19) can be 

estimated using the traditional maximum – likelihood method. Assuming that the 

sample is an exogenous random draw3 and that visitors’ choices on which portfolio to 

                                                 

 
2 Derivation of these logit probabilities can be found in Trains (2009). 

3 As noted in Chapter 3, the sample selected for this study is not exogenous. It is 

instead a choice-base sample. However, after the weighting procedure to correct for 
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visit are independent from one another, the probabilities of each visitor in the sample 

choosing the portfolio she was observed to choose is: 

 

      𝐿(𝛽∗)   =  ∏ ∏ (𝑃𝑖𝑘)
𝐼𝑖𝑘

𝑘
𝐼
𝑖=1 ,    (26) 

 

where 𝛽∗ is a vector of all the parameters in the model and 𝐼𝑖𝑘 is an index variable 

which equals 1 if visitor 𝑖 chose portfolio 𝑘 and 0 otherwise. Since only one portfolio 

can be chosen at each choice occasion, ∏ (𝑃𝑖𝑘)
𝐼𝑖𝑘

𝑘  is simply the probability of the 

chosen alternative. The log likelihood function is thus: 

 

     𝐿𝐿(𝛽∗)   =  ∑ ∑ 𝐼𝑖𝑘𝑙𝑛(𝑃𝑖𝑘)𝑘
𝐼
𝑖=1 .   (27) 

 

and 𝐿𝐿(𝛽∗)  is maximized with respect to 𝛽∗ to obtain the parameter estimates for the 

model.  

The IID type-I extreme value assumption on the error term makes the 

calculation of the choice probabilities much simpler. This is almost certainly why the 

logit model is the most popular basic choice model. However, this simplicity and 

convenience come at a cost of restrictions on modeling realistic choice occasions 

(Train, 2009). First, the logit model implies proportional substitution across 

alternatives. The independent irrelative alternatives assumption implies that the ratio 

of choice probabilities between two alternatives always remains the same regardless of 

changes in the attributes of any alternatives other than the two, or 𝑃𝑖𝑘 𝑃𝑖𝑛⁄ =

                                                 

 

choice-based issue (will be discussed in Chapter 5), the weighted sample can be 

considered an exogenous random draw.  
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𝑒𝑉𝑖𝑘

∑ 𝑒
𝑉𝑖𝑗

𝑗

𝑒𝑉𝑖𝑛

∑ 𝑒
𝑉𝑖𝑗

𝑗

⁄ = 𝑒𝑉𝑖𝑘 𝑒𝑉𝑖𝑛⁄ = 𝑒𝑉𝑖𝑘− 𝑉𝑖𝑛  . This is very unrealistic in any real choice 

scenarios. Second, the IID assumption suggests that unobserved factors are 

independent over time in repeated choice situations, that is, multiple decisions made 

by the same choice makers are uncorrelated over time. In this study, we only model a 

one-time choice decision among visitation decisions; thus, this limitation would not 

have a great effect on our results. Last but not the least, the basic logit model fails to 

capture taste varieties among individuals. It assumes all choice makers have 

homogeneous preferences; that is, individuals have the exact same tastes over each 

attribute of the alternatives. This is very unrealistic when it comes to real decision-

making scenarios. For example, low-income households may be more concerned 

about trip costs than high-income households. People who have more flexible time 

may also be more sensitive to trip costs. Another limitation of the standard logit model 

is that it cannot account for the correlation among error terms associated with 

portfolios that have common sites. For example, having Bryce Canyon (BC) in the 

portfolio almost certainly matters more to some visitors than others. There may be 

certain features in Bryce Canyon which greatly appeal to some visitors, in which case 

having it in the portfolio will have a more substantial impact on their utility than it 

would for other visitors. Then for these parties, all portfolios containing BC will have 

a higher than average “utility hit” of BC and therefore higher than average error terms 

for all these portfolios. Therefore, all portfolios that contain BC will have correlated 

error, which violates the IIA assumption.  

One simple way to solve the heterogeneous taste issue is to modify the 

standard logit model by including interaction terms. The most commonly used method 

is to interact alternative attributes with individual characteristics. Consider the 
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possibility that the variables in 𝑓( (𝑦𝑖  − 𝑝𝑖𝑘),  𝑧𝑖 , 𝛾) are no longer linearly additive, 

instead taking the form γ ∙ 𝑝𝑖𝑘 ∙ 𝑧′𝑖 , where  𝑧′𝑖 is a vector of [1, 𝑦𝑖,  𝑧𝑖] and γ is the 

corresponding coefficient vector [𝛾𝑝, 𝛾𝑝𝑦, 𝛾𝑝𝑧]. The conditional indirect utility function 

can then be specified as: 

 

 𝑉𝑖𝑘
∗ (𝛽, 𝛾) = 𝛽𝑥𝑘∙ + γ ∙ 𝑝𝑖𝑘 ∙ 𝑧′𝑖 + 𝜀𝑖𝑘  ∀ 𝑘,    (28) 

 

and the choice probability of individual 𝑖 choosing portfolio 𝑘 becomes: 

 

       𝑃𝑖𝑘  =  
𝑒𝛽𝑥𝑘∙+γ∙𝑝𝑖𝑘∙𝑧′𝑖

∑ 𝑒
𝛽𝑥𝑗∙+γ∙𝑝𝑖𝑗∙𝑧′𝑖

𝑗

.    (29) 

 

Introducing this interaction term into the utility function can capture heterogeneous 

preferences on alternative prices due to certain individual characteristics. In this way, 

the preference heterogeneity is explained systematically. For instance, consider the 

interaction term between household income and portfolio prices, 𝛾𝑝𝑦 (𝑝𝑖𝑘 ∙ 𝑦𝑖). This 

will capture any heterogeneous preference on the alternative price due to differences 

in household income. The marginal utility of portfolio prices is 

 

 
𝜕𝑉𝑖𝑘

∗

𝜕𝑝𝑖𝑘
⁄ = 𝛾𝑝 + γ𝑝𝑦 ∙ 𝑦𝑖,     (30) 

 

where 𝛾𝑝 captures the average marginal utility of portfolio prices over all parties and 

γ𝑝𝑦 ∙ 𝑦𝑖 adjust the average marginal utility due to household incomes. We would 

expect that higher income parties are less sensitive to portfolio prices. Therefore, γ𝑝𝑦 

should be negative.  
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Although the standard logit model with interaction terms can accommodate 

some taste variances and capture the heterogeneities that relate to observed 

characteristics of the decision makers, it still does not solve the issue of having 

correlation among the error terms due to common parks in the portfolios. Several more 

flexible models have been developed to avoid the limitations of standard logit, such as 

the probit model, nested logit model, and mixed logit model (McFadden & Train, 

2000). 

4.3.1.2 Mixed Logit Model 

The Mixed logit (or random parameter logit) model is a highly flexible model 

which further generalizes the logit model while relaxing some of the restrictions of the 

standard logit model’s IIA assumption for the error terms. The technique behind it was 

developed by McFadden and Train (2000) and is by far the most widely accepted 

generalized form of the logit model. It allows for full preference heterogeneity and 

correlation in error terms, and under this version of the logit model the substitution 

pattern is no longer necessarily a fixed proportion.  

MXL Model Specification 

To allow for full preference heterogeneity and correlation in error terms, the 

mixed logit model allows the parameters associated with the explanatory variables to 

vary across the population according to some probability distribution. Recasting the 

standard logit model (28) within a mixed logit framework, the conditional indirect 

utility function changes very subtly by adding a party-specific subscript to 𝛽𝑚, giving 

a condition utility function of: 
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  𝑉𝑖𝑘
∗ (𝛽, 𝛾) = ∑ 𝛽𝑖𝑚𝑥𝑘𝑚

𝑀
𝑚=1 + γ ∙ 𝑝𝑖𝑘 ∙ 𝑧′𝑖 + 𝜀𝑖𝑘  ∀ 𝑘,    (31) 

 

where 𝜀𝑖𝑘 is still a random term that is IID extreme value. Instead of estimating an 

average “utility hit” 𝛽𝑚 which is constant across parties, the mixed logit model 

estimates a 𝛽𝑖𝑚 which is variable by party 𝑖. This specification allows the contribution 

of a particular park to the conditional indirect utility to vary over parties, thus 

capturing tastes variations for each park. Each party is still assumed to know their own 

preference 𝛽𝑖𝑚. The researcher, however, while aware of variation in preferences, 

cannot directly observe 𝛽𝑖𝑚. The variation can be represented as a mean effect plus a 

deviation from the mean, where the deviation varies over parties. The preference 

heterogeneity of travel cost is still systematically represented using the interaction 

terms defined in the previous section. The coefficients of travel cost and travel cost 

interaction terms are fixed across parties, assuming that parties’ travel cost preference 

variations only come from the observed individual characteristics.  

As the error term is IID extreme value, the choice probability of individual 𝑖 

choosing portfolio 𝑘 conditional on knowledge of the vector 𝛽𝑖∙ = [𝛽𝑖1, … , 𝛽𝑖𝑀] still 

follows the traditional logit specification:  

 

𝑃𝑖(𝑘 | 𝛽𝑖∙, 𝛾) =  
𝑒𝑉𝑖𝑘

∑ 𝑒𝑉𝑖𝑗
𝑗

 =  
𝑒𝛽𝑖𝑥𝑘∙+γ∙𝑝𝑖𝑘∙𝑧′𝑖

∑ 𝑒𝛽𝑖𝑥𝑗∙+γ∙𝑝𝑖𝑗∙𝑧′𝑖
𝑗

 .                      (32) 

 

However, since the researcher does not know 𝛽𝑖∙, the choice probability cannot be 

conditional on 𝛽𝑖∙. 𝛽𝑖∙ is a random variable with a density function of 𝑓(𝛽𝑖∙|𝜓), where 

𝜓 is a set of parameters representing the distribution of 𝛽𝑖∙. The unconditional choice 
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probability of individual 𝑖 choosing portfolio 𝑘 can now be specified as an integral of 

the conditional choice probability over all possible values of the unknown 𝛽𝑖∙: 

 

𝑃𝑖(𝑘 | 𝜓, 𝛾)  = ∫𝑃𝑖(𝑘 | 𝛽𝑖∙, 𝛾) 𝑓(𝛽𝑖∙|𝜓)𝑑𝛽𝑖∙.   (33) 

 

Intuitively, this is the probability that party 𝑖 chooses portfolio 𝑘 conditional on a prior 

knowledge of the distribution of 𝛽𝑖∙.  

The researcher must specify a distribution for the coefficients that satisfies his 

expectation of the choice behavior. The most commonly used distributions are the 

normal, lognormal, triangular, and uniform distributions. The lognormal distribution is 

generally used when the same sign of the parameter is expected for every decision 

maker; for example, travel cost coefficient is usually expected to be negative for all 

decision makers. When the sign is uncertain, the normal distribution is usually used, 

with 𝛽𝑖∙ ~ (𝑏, 𝜎) where mean b and standard deviation 𝜎 are estimated. The triangular 

and uniform distribution are normally applied to cases where the researcher needs to 

bound both sides of the distributions to avoid unreasonably large coefficients draw 

from the tails for some decision makers (Hensher & Greene, 2003; Train, 2009). With 

the uniform or triangular distribution, the coefficients were bounded between 𝑏 − 𝑠 

and 𝑏 + 𝑠 in both cases, where b and s are, respectively, the mean and spread. The 

only difference is that with the uniform density, the coefficients are distributed 

uniformly within the bounds, while with the triangular distribution, the coefficients 

first rises linearly from 𝑏 − 𝑠 to 𝑏 and then decreases linearly to 𝑏 + 𝑠. Hensher & 

Greene (2003) and Train (2009) both discussed the choice of density functions in more 

detail.  
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Since parties’ preferences on having certain parks included in the portfolio are 

not necessarily positive or negative, it is reasonable to assume that the random 

parameters 𝛽𝑖∙ follows a normally distributed density function of 𝑓(𝛽𝑖∙|𝑏, 𝜎), where 𝑏 

is a vector of means for each park and 𝜎 is the standard deviation that varies across 

parties. This mixed logit model framework allows a pattern of correlation across the 

portfolios sharing common site(s). At the same time, this framework allows the 

“utility hit” for a given park in the portfolio to vary stochastically across decision 

makers.  

We can specify equation (31) in a slightly different form to illustrate the 

correlations across portfolios. Note that while the utility specification in (31) is written 

as a random parameters model, it can equivalently be viewed as an error component 

specification (Train, 2009). Given that 𝛽𝑖𝑚 is randomly distributed, it can be 

decomposed as the following: 

 

     𝛽𝑖𝑚 = 𝑏𝑚 + 𝜇𝑖𝑚    (34) 

where 𝑏𝑚 is the mean and 𝜇𝑖𝑚 is the deviation from the mean. The indirect utility 

function can then be rewritten as: 

 

  𝑉𝑖𝑘
∗ (𝛽, 𝛾) = ∑ 𝑏𝑚𝑥𝑘𝑚

𝑀
𝑚=1 + γ ∙ 𝑝𝑖𝑘 ∙ 𝑧′𝑖 + ∑ 𝜇𝑖𝑚𝑥𝑘𝑚

𝑀
𝑚=1 + 𝜀𝑖𝑘  ∀ 𝑘, 

    = ∑ 𝑏𝑚𝑥𝑘𝑚
𝑀
𝑚=1 + γ ∙ 𝑝𝑖𝑘 ∙ 𝑧′𝑖 + 𝜀𝑖𝑘 ̃  ∀ 𝑘,    (35) 

 

where 

  𝜀𝑖𝑘 ̃ = ∑ 𝜇𝑖𝑚𝑥𝑘𝑚
𝑀
𝑚=1 + 𝜀𝑖𝑘 = ∑ 𝜇𝑖𝑚𝑚∈𝑆𝑘

+ 𝜀𝑖𝑘 ,   (36) 
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where, again, 𝑆𝑘 denotes the set of sites in portfolio 𝑘. Written in this form, it is clear 

that 𝜀𝑖𝑘 ̃ `s are no longer independent; they are correlated across the portfolios that 

include the same site 𝑚. All portfolios with site 𝑚 share the same component 𝜇𝑖𝑚. A 

positive random component 𝜇𝑖𝑚 suggests that the unobserved characteristics of party 𝑖 

make it prefer site 𝑚 more than the average party does. Conversely, a negative 𝜇𝑖𝑚 

suggests that their unobserved characteristics make party 𝑖 enjoy site 𝑚 less than the 

average party does. 

A simple specification of this mixed logit model is to assume that within each 

portfolio, there is no correlation across sites, i.e., 𝜇𝑖𝑚~ 𝑁(0, 𝜎𝑚
2 ) with 

𝐶𝑜𝑣(𝜇𝑖𝑚, 𝜇𝑖𝑛) = 0 ∀ 𝑛 ≠ 𝑚. In this case, the variance of the indirect utility associated 

with the choice of portfolio 𝑘 comes from two stochastic components, 𝜀𝑖𝑘 ~ 𝑁 (0, 𝜎𝜀
2) 

and ∑ 𝜇𝑖𝑚𝑥𝑘𝑚
𝑀
𝑚=1 . For the system as a whole, the disturbance covariance matrix is 

equal to: 

 

 Ω𝑖𝑘 = 𝜎𝜀
2 ∙ Ι𝑇 + 𝑋𝑘∙ ∙ 𝑊 ∙ 𝑋𝑘∙

′  ,   (37) 

 

where Ι𝑇 is an identity matrix, 𝑋𝑘∙is a vector of the portfolio’s attributes, and the 

variance covariance matrix 𝑊 = [
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑀

2
]. The variance can be expressed as 

 

 𝑉𝑎𝑟(𝑉𝑖𝑘) = ∑ 𝜎𝑚
2𝑀

𝑚=1 𝑥𝑘𝑚
2 + 𝜎𝜀

2 = ∑ 𝜎𝑚
2

𝑚∈𝑆𝑘
+ 𝜎𝜀

2,   (38) 

 

Thus, even though 𝜎𝜀
2 remains identical across portfolios, the variances of the whole 

stochastic term are no longer identical due to ∑ 𝜎𝑚
2

𝑚∈𝑆𝑘
. With different set of sites 
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included in the portfolios, ∑ 𝜎𝑚
2

𝑚∈𝑆𝑘
 changes based on the specific portfolio, causing 

the overall variance to change along with it.  

Beyond simply having nonidentical variance terms, this specification also 

allows the covariances across portfolio to no longer equal to zero, even though it is 

assumed that there is no correlation across sites (i.e., 𝐶𝑜𝑣(𝛽𝑖𝑚, 𝛽𝑖𝑛) = 0 ∀ 𝑛 ≠ 𝑚) and 

𝐶𝑜𝑣(𝜀𝑖𝑘, 𝜀𝑖𝑗) = 0∀ 𝑗 ≠ 𝑘). Any pair of portfolios that contain common sites will have 

non-zero covariances. The covariance between portfolios is given by: 

 

 𝐶𝑜𝑣(𝑉𝑖𝑘,  𝑉𝑖𝑗) = ∑ 𝜎𝑚
2 𝑥𝑘𝑚𝑥𝑗𝑚

𝑀
𝑚=1 = ∑ 𝜎𝑚

2
𝑚∈𝑆𝑘⋂𝑆𝑗

 .   (39) 

 

Consider the following simple example. Suppose that there were three sites 

available to visit; then, the matrix of correlations among the (23 − 1) portfolios would 

be as follows: 

 

{1}
{2}

{3}

{1,2}

{1,3}

{2,3}
{1,2,3} [

 
 
 
 
 
 
 
𝜎1

2 + 𝜎𝜀
2    

0 𝜎2
2 + 𝜎𝜀

2  

0 0 𝜎3
2 + 𝜎𝜀

2

  

𝜎1
2          𝜎2

2         0

𝜎1
2          0          𝜎3

2

0          𝜎2
2          𝜎3

2

𝜎1
2 + 𝜎2

2 + 𝜎𝜀
2   

𝜎1
2  𝜎1

2 + 𝜎3
2 + 𝜎𝜀

2  

𝜎2
2 𝜎3

2 𝜎2
2 + 𝜎3

2 + 𝜎𝜀
2

 

𝜎1
2          𝜎2

2          𝜎3
2 𝜎1

2 + 𝜎2
2            𝜎1

2 + 𝜎3
2         𝜎2

2 + 𝜎3
2 𝜎1

2 + 𝜎2
2 + 𝜎3

2 + 𝜎𝜀
2]
 
 
 
 
 
 
 

(40) 

 

In general, the more common sites the two portfolios share, the greater the correlation 

is between the portfolios. For instance, 𝐶𝑜𝑣(𝑉𝑖,{1,2},  𝑉𝑖,{2,3}) = 𝜎2
2 and 

𝐶𝑜𝑣(𝑉𝑖,{1,2,3},  𝑉𝑖,{2,3}) = 𝜎2
2 + 𝜎3

2. Portfolios that share no common park, portfolio {1} 

and portfolios {3} for example, have a correlation equal to 0. From the correlation 

matrix, we can see the innovation of the portfolio choice model. The correlation 

structure of a traditional site choice model, where only one site is chosen at a time, is 
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simply the left top corner of (40), [
𝜎1

2 + 𝜎𝜀
2 0 0

0 𝜎2
2 + 𝜎𝜀

2 0

0 0 𝜎3
2 + 𝜎𝜀

2

]. The rest of the correlation 

matrix (40) results from the combined choices of multiple sites.  

The simple specification thus far suggests that the portfolios are only 

correlated when they share at least one common site, under the assumption that the 

𝜇𝑖𝑚’s themselves are uncorrelated across sites. However, it is possible that preferences 

over sites may be correlated due to common features in those sites. For instance, some 

national parks in the choice set provide well-designed hiking trails compared to other 

parks. A group of hikers would then prefer all these parks with good hiking 

opportunities and so the positive deviation 𝜇𝑖 associated with each of these good 

hiking sites should be correlated. This feature can be integrated into this mixed logit 

model by allowing for correlations among sites. The variance – covariance matrix of 

𝜇𝑖𝑚 now becomes 𝑊 = [
𝜎11

2 ⋯ 𝜎1𝑀
2

⋮ ⋱ ⋮
𝜎𝑀1

2 ⋯ 𝜎𝑀𝑀
2

]. Herriges and Phaneuf (2002), modeling 

single site trips, use an error components approach to induce pair wise correlation 

among alternative sites. 

Estimating MXL Model 

Recall that for the standard logit model, the typical approach is to estimate the 

unknown parameters of the model by maximizing the log likelihood function in (27), 

where the probability of individual choosing alternative 𝑘, 𝑃𝑖𝑘  =  
𝑒𝛽𝑥𝑘∙+γ∙𝑝𝑖𝑘∙𝑧′𝑖

∑ 𝑒
𝛽𝑥𝑗∙+γ∙𝑝𝑖𝑗∙𝑧′𝑖

𝑗

, takes 

a closed form. In principle, we would want to take the same approach with the mixed 

logit model. However, consider the log likelihood function for the mixed logit model, 

which is given by: 
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  𝐿𝐿(𝜓, 𝛾)   =  ∑ 𝐼𝑖𝑘 ln 𝑃𝑖(𝑘 |𝜓, 𝛾)𝑁
𝑖=1  

            = ∑ 𝐼𝑖𝑘ln (∫𝑃𝑖(𝑘 |𝛽𝑖∙, 𝛾) 𝑓(𝛽𝑖∙|𝑏,𝑊)𝑑𝛽𝑖∙)
𝑁
𝑖=1 ,   (41) 

 

where 𝑁(= 𝑖 ×  𝑘) is the total number of observations, 𝜓, again, is the set of 

parameters (𝑏,𝑊) that defines the normal distribution of 𝛽𝑖∙, and 𝑃𝑖(𝑘 |𝛽𝑖∙, 𝛾) =
𝑒𝛽𝑖𝑥𝑘∙+γ∙𝑝𝑖𝑘∙𝑧′𝑖

∑ 𝑒
𝛽𝑖𝑥𝑗∙+γ∙𝑝𝑖𝑗∙𝑧′𝑖

𝑗

. It will not be possible to maximize the log-likelihood in this form 

because there is no closed form for the integral. To address this problem, researchers 

have found several simulation methods that can satisfactorily evaluate this integral 

form (Gourieroux & Monfort, 1996; Greene, 2008; Train, 2009). In this analysis we 

use the following simulation estimation technique, known as maximum simulated 

likelihood estimation (MSL). MSL replaces the integral probability with an 

approximation simulated for any given value of 𝜓. It first randomly draws a value 

from the given distribution 𝑓(𝛽𝑖∙|𝑏,𝑊) and then uses this value to calculate the choice 

probability 𝑃𝑖(𝑘 |𝛽𝑖∙
𝑟 , 𝛾). This process is then repeated many times and finally the 

results are averaged to get the simulated probability: 

 

   𝑃𝑖̌(𝑘 |𝜓, 𝛾) =  
1

𝑅
∑  𝑃𝑖(𝑘 |𝛽𝑖∙

𝑟 , 𝛾)𝑅
𝑟=1 ,    (42) 

 

where 𝑅 is the number of random draws and 𝛽𝑖∙
𝑟 is the random drawing value from 

𝑓(𝛽𝑖∙|𝑏,𝑊), where 𝑟 = 1 refers to the first draw. With a sufficient number of random 

draws, 𝑃𝑖̌(𝑘 |𝜓, 𝛾) is an unbiased estimator of 𝑃𝑖(𝑘 |𝜓, 𝛾)4. The properties of this 

                                                 

 
4 Note that although 𝑃𝑖̌(𝑘 |𝜓, 𝛾) is an unbiased simulator of 𝑃𝑖(𝑘 |𝜓, 𝛾), ln 𝑃𝑖̌(𝑘 |𝜓, 𝛾) 

is not unbiased to ln 𝑃𝑖(𝑘 |𝜓, 𝛾). This is due to the fact that the log operation is not a 

linear transformation. The biased log estimator will enter the simulated log-likelihood 

function and cause biased estimates. Gourieroux and Monfort (1996) point out that if 
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unbiased approximation are very desirable: its variance decreases as R increases, it is 

strictly positive, it is twice differentiable in the parameters 𝜓 and the variables 𝑥, and, 

finally, it always sums to one over alternatives (Train, 2009).  

Inserting 𝑃𝑖̌(𝑘 |𝜓, 𝛾) into equation (41), the MSL then maximizes the following 

simulated likelihood function with respect to 𝜓 and 𝛾: 

 

   𝑆𝐿𝐿(𝜓, 𝛾)   =  ∑ ∑ 𝐼𝑖𝑘 ln 𝑃𝑖̌(𝑘 |𝜓, 𝛾)𝑘
𝐼
𝑖=1 .   (43) 

 

The maximum simulated likelihood estimator (MSLE) is the solution to the 

maximization problem. It is found by equating the derivatives to zero.  

4.3.2 Portfolio Specific Constant Model (PSC) 

An alternative model used to estimate the portfolio choices is the alternative 

specific constant model, in this case, the portfolio specific constant model. As 

discussed in the previous section, in choice utility models utility is only impacted by 

the differences between the alternative attribute levels, rather than the absolute levels 

themselves. The same applies to the alternative specific constants. Therefore, when 

including the constants for each alternative, one should be normalized to zero as the 

baseline, and the rest of the alternative constants can be interpreted relative to that 

                                                 

 

the number of random draws 𝑅 rises at the same rate with the square root of the 

sample size 𝑁, then the simulation bias disappears and MSL is consistent. Train 

(2009) also mentions that if 𝑅 rises faster than √𝑁 then the MSL is not only consistent 

but also efficient. However, if R is fixed, then the MSL is no longer consistent, which 

is the main limitation of the MSL method.  
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normalized alternative. In other words, with 𝐾 alternatives, there can only be 𝐾 − 1 

constants in the model.  

The reason to model portfolio specific utility is to introduce the unobserved 

correlation across sites in each portfolio. The conditional indirect utility function of 

party 𝑖 choosing alternative 𝑘 can be written as: 

 

  𝑉𝑖𝑘
∗ (𝛼, 𝛾) = ∑ 𝛼𝑘𝐴𝑘

𝐾−1
𝑘=1  + γ ∙ 𝑝𝑖𝑘 ∙ 𝑧′𝑖 + 𝜀𝑖𝑘  ∀ 𝑘.   (44) 

 

where 𝐴𝑘 is a dummy variable for alternative 𝑘 and 𝛼𝑘 is the corresponding 

parameter. Since only one alternative can be chosen per choice occasion, the 

summation of the multiple alternatives can be reduced to a single constant, equal to 𝛼𝑘 

– the portfolio specific constant. 

In the additive site utility models, i.e., the SL and MXL, the utilities are 

additive in a sense that each park in portfolio 𝑘 contributes to the overall utility of 

choosing portfolio 𝑘 by adding a “utility hit” of 𝛽𝑚 (or 𝛽𝑖𝑚 in the MXL model). The 

size of the “hit” from park 𝑚 is irrelevant to the presence of other parks in the 

portfolio. However, this may not hold in real site choice scenarios. For example, if two 

parks which have features that complement each other are in the same portfolio, the 

combination of the two should give a bigger “utility hit” than the sum of the two 

parks’ separate “hits.” On the other hand, if two parks happen to be substitutes to one 

another, then having both of them in the same portfolio may lower the utility of that 

portfolio, i.e., the combined “utility hit” may be less than the sum of the two separate 

“hits.” The complementarity case might include sites that satisfy a diversity of 

interests, for instance, one that has canyons and another that has special wildlife. The 
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substitution case might have sites that both include canyons or are otherwise similar. 

The PSC specification introduces combined sites effects in the utility function and let 

the combination of sites interact in such a way that the “utility hit” for one site varies 

depending on the other sites in the portfolio.  

The estimation of the PSC model follows the traditional maximum log-

likelihood method for the standard logit model. The log-likelihood function is given 

by: 

 

   𝐿𝐿(𝜃)   =  ∑ ∑ 𝐼𝑖𝑘 ln
𝑒𝛼𝑘+ γ∙𝑝𝑖𝑘∙𝑧′𝑖

∑ 𝑒
𝛼𝑘+γ∙𝑝𝑖𝑗∙𝑧′𝑖

𝑗
𝑘

𝐼
𝑖=1  ,   (46) 

 

where 𝜃 is the set of parameters. At the maximum of the likelihood function, the 

derivative with respect to each parameter equals zero. For the alternative specific 

constants, the first-order condition is: 

 

     ∑ ∑ (𝐼𝑖𝑘 − 𝑃𝑖𝑘)𝑘𝑖 = 0.     (47) 

 

Rearranging and dividing both sides by the number of observation 𝑁, equation (47) 

becomes: 

 

     
1

𝑁
∑ ∑ 𝐼𝑖𝑘𝑘𝑖 =

1

𝑁
∑ ∑ 𝑃𝑖𝑘𝑘𝑖 .    (48) 

 

The left hand side of the equation is the share of people in the sample who are 

observed choosing alternative 𝑘, while the right hand side of the equation is the 

predicted share for alternative 𝑘. This brings up one of the shortcomings of the PSC 
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model, which is it can only estimate the constants associated with the portfolios that 

have been chosen by at least one decision maker (Newman, Ferguson & Garrow, 

2012).  



 

 68 

CHOICE-BASED SAMPLING  

The previous discussion on logit model estimations was based on an 

assumption of an exogenous or random sample. However, the sample collected for this 

national park visitation study is not entirely exogenous. As explained in Chapter 3, due 

to the fact that visitors to these national parks are from all over the U.S. (and the 

world) and are mostly one-time visitors, the probability of contacting a real visitor 

through random phone calls or mail is extremely small. A random sample would thus 

need to be extremely large and prohibitively costly to assure a reasonable amount of 

park visitors being selected. Therefore, instead of randomly sampling people all over 

the U.S., the sample was selected on-site at each national park of interest, which 

makes the sample endogenously stratified. This type of sample is usually referred to as 

a choice-based sample.  

The concept of choice-based sampling was first considered by Warner (1963) 

in the context of transportation demand. He pointed out that in the case of a 

hypothetical choice of transportation mode problem, the sample selected are usually 

from the group of existing travelers who had chosen one of the modes being 

considered. This sampling method is considerably less costly and can efficiently 

collect sufficient amount of data for those infrequently chosen alternatives. The 

application of choice-based sampling has become widely used in areas other than 

transportation decision problems. 

Chapter 5 
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However, as Warner (1963) cautioned, even though choice-based sampling is 

less costly and more efficient in certain ways, it can be problematic when it comes to 

estimation. In a choice-based sample, the probability of a member entering the sample 

now depends on the outcome of the decision makers’ choice, instead of being fully 

random. Take this national parks study as an example, since the data collection was 

done on-site at each national park gate, the probability of an individual being recruited 

for the survey is based on the portfolio of parks the person chose to visit. A person 

who picks the portfolio of visiting all seven parks and spends a day at each park 

during the two-week survey period is more likely to be included in the sample than 

someone who chose to visit only one park for a day and then left the region. This 

means that the correct likelihood function will depend upon both the standard choice 

probability and the probability that a given observation enters the sample. Thus, the 

sampled parties’ visitation behaviors are derived from a different probability 

distribution from the one that exists for the general population. The sampling 

distributions associated with these observations are no longer random, but rather 

weighted/size-biased. If not treated carefully, this type of endogenous stratification 

can result in biased parameter estimates and misleading welfare measures (Shaw 1988; 

Englin & Shonkwiler 1995).  

Most site choice studies encounter choice-based sampling in a relatively 

simpler context than the Southwestern National Park study. Traditionally, the 

alternatives in a site choice study are individual sites instead of portfolios of sites. In 

the rest of this section, I first outline the problem in the simpler case where the 

alternatives are single sites, along with treatments designed for this type of choice-
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based sampling. I then present the modified method used to correct for our choice-

base sampling, where the alternatives are portfolios of sites. 

5.1 Choice-based Sampling When the Alternatives Are Single Sites 

Consider a simple case where decision makers are facing a choice between 

only two sites, A and B, and suppose that 85% of the population choose A and 15% 

choose B. Now suppose that for practical reasons, 50% of the sample is randomly 

selected from people who choose A and 50% of the sample is randomly chosen from 

people who choose B. The selected sample is therefore not an accurate reflection of 

the population; people who choose B are over-sampled by 0.5/0.15, while people who 

choose A are under-sampled by 0.5/0.85. 

One straightforward way to correct for this type of sampling is to use the 

weighted exogenous sampling maximum likelihood (WESML) estimator designed by 

Manski and Lerman (1977). The WESML estimator is simply: 

 

   𝑤(𝑗) =
𝐻(𝑗)

𝑆(𝑗)⁄ ,     (49) 

 

where 𝐻(𝑗) is the population probability of choosing alternative 𝑗, and 𝑆(𝑗) represents 

sample share who choose alternative j. The weights 𝑤(𝑗) are therefore non-negative 

constants. To make this estimator more specific to a simple site choice problem, define 

𝐻(𝑗) = 𝑁𝑗 𝑁⁄ , where 𝑁𝑗 is the total number of choices of site 𝑗 in the population and 

𝑁 is the total number of choices made in the population among all sites and define 

𝑆(𝑗) = 𝑆𝑗 𝑆⁄  where 𝑆𝑗 is the number of individuals sampled at site 𝑗 and 𝑆 is the total 

number of individual sampled at all sites. If 𝑆(𝑗) = 𝐻(𝑗), there is no bias introduced 

by on-site sampling. However, when 𝑆(𝑗) ≠ 𝐻(𝑗), as one would expect with on-site 
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sampling, the sample choices share does not accurately reflect the actual pattern of 

choices in the general population. At sites where 𝑆(𝑗) > 𝐻(𝑗), visitors are over-

sampled and at sites where 𝑆(𝑗) < 𝐻(𝑗), visitors are under-sampled. To fix the 

over/under-sampling, it is necessary to re-weight each observation by the WESML 

estimator 𝑤(𝑗). Continuing the example defined at the beginning of this section, 

people who choose B are over-sampled by a factor of 0.5/0.15 and therefore will be 

corrected by “weighting down” by 0.3 = 𝐻(𝑗) 𝑆(𝑗) ⁄ = 0.15/0.5. Similarly, those who 

choose A are under-sampled by 0.5/0.85 and therefore need to be “weighted up” by a 

factor of 1.7 = 𝐻(𝑗) 𝑆(𝑗) ⁄ = 0.85/0.5. The weight estimator then directly enters the log 

likelihood function. The weighted log likelihood function can be stated as: 

 

    𝐿𝐿(𝜃) = ∑
𝐻(𝑗𝑖)

𝑆(𝑗𝑖)
ln 𝑃(𝑗𝑖|𝑧𝑖𝑗, 𝜃)𝑆

𝑖=1 ,   (50) 

 

where 𝑃(𝑗𝑖|𝑧𝑖𝑗, 𝜃) is the probability of individual i choosing alternative j. The 

estimates obtained through maximizing this log likelihood function are consistent and 

asymptotically normal (Manski & Lerman, 1977). To use this approach, it is important 

that both the sampling shares 𝑆(𝑗) and the population probabilities 𝐻(𝑗) are either 

already known or, if not known, can be acquired through interviews with a random 

sample of the population. 

5.2 Choice-based Sampling When Alternatives Are Portfolios of Sites 

The basic approach to the portfolio-choice based sampling is the same as the 

site-choice based sampling, where the weight is now defined as 𝐻(𝑘) 𝑆(𝑘)⁄ ,with 𝑘 =

1, … ,127 indexing the 127 portfolios. The sample shares 𝑆(𝑘) are simply the share of 

parties surveyed that choose portfolio 𝑘. However, when it comes to computing the 
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population choice probabilities, the portfolio choice model faces a more complex 

choice-based sampling issue. The fact that alternatives in the choice set are no longer 

singles sites but combinations of sites (portfolios), makes it much harder to obtain the 

population probability 𝐻(𝑘) for two reasons. First, we do not directly observe which 

portfolios parties chose, only the sites where they were interviewed. Second, parties 

choosing multiple-sites portfolios, by definition, can show up at any sites in their 

portfolios.  

To deal with this complex portfolio-choice based sampling problem consider 

the following approach. First, assume that parties were interviewed at all parks on the 

same day5. With cash register data - a summary of the cash register tallies maintained 

by National Park Service at park entrances - the probability of a party in our 

population (group of parties that visited one of the seven national parks on “the day of 

sampling”) being at site 𝑚, denoted  𝐺(𝑚), can be computed. Specifically, 𝐺(𝑚) can 

be expressed as: 

 

 𝐺(𝑚) =  ∑ 𝜙(𝑚|𝑘) ∙ 𝐻(𝑘)𝐾
𝑘∈𝑍𝑚

,   (51) 

 

where 𝑍𝑚 is the set of all portfolios that contain site 𝑚, 𝜙(𝑚|𝑘) is the likelihood of 

the party who choose portfolio 𝑘 being counted as a visitor at site 𝑚 on a given day 

during its trip, and 𝐻(𝑘) is (again) the proportion of the population choosing portfolio 

𝑘 that we ultimately want to obtain.  

                                                 

 
5 Even though this is not the actual interview procedure we took during the survey 

period, the adjustment for this is minor and will be discussed later.  
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Now consider the term within the summation sign, i.e. 𝜙(𝑚|𝑘) ∙ 𝐻(𝑘). This 

term represents the joint probability of the occurrence of both events – choosing 

portfolio 𝑘 and being counted as a visitor at site 𝑚 on the sampling day. Using Bayes 

Rule, one can show that: 

 

   𝜙(𝑚|𝑘) ∙ 𝐻(𝑘) =  𝜏(𝑘|𝑚) ∙ 𝐺(𝑚),    (52) 

 

where 𝜏(𝑘|𝑚) is proportion of parties choosing portfolio 𝑘 conditioned on being 

observed entering site 𝑚 on a given day. By rearranging equation (52), one can 

estimate the population proportion 𝐻(𝑘) as: 

 

    𝐻(𝑘) =  
𝜏(𝑘|𝑚)∙𝐺(𝑚)

𝜙(𝑚|𝑘)
.     (53) 

 

Now, the whole problem boils down to obtaining the values of 𝐺(𝑚), 𝜏(𝑘|𝑚), and 

𝜙(𝑚|𝑘). All three are obtainable using a combination of data collected through mail 

surveys and cash register counts at all entrances of all seven parks. 𝐺(𝑚) can be 

obtained by determining how many parties in our population of national park visitors 

on the sampling day entered park 𝑚; given this data, 𝐺(𝑚) is simply the total number 

of entrants to park 𝑚 on the given day divided by the total population. 𝜏(𝑘|𝑚) is the 

proportion of parties at site 𝑚 on the sampling day that chooses portfolio 𝑘. This is 

fairly easy to obtain since people sampled at site 𝑚 indicate their choices of portfolios 

(the combination of sites visited) in their mailing surveys. Finally, 𝜙(𝑚|𝑘) is the 

probability of parties being observed on site 𝑚 conditioned on the choice of portfolio 
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𝑘. The computation for 𝜙(𝑚|𝑘) may not seem straightforward at this point but can be 

explained using the following simple example.  

Assume there are only 2 sites of interest, A and B. The set of portfolio choices 

therefore is {A, B, AB}. To simplify the matter, assume that when site A is visited 

people always stay for 2 days and when site B is visited 3 days are spent on site. 

Assume our population is N=10,000, and among those 20% choose portfolio 

{A}(𝐻(1) =  .2), 50% choose portfolio {B}(𝐻(2) =  .5), and the remaining 30% 

choose portfolio {AB} (𝐻(3) =  .3). Individuals are assumed to visit the region over 

the course of a season, 𝑇 = 100 days. Assume that the start days of these trips are 

spread evenly over the region; therefore, on any random day, the number of parties 

starting a trip to portfolio 𝑘 should be 𝑁𝑘 = 𝑁 ∗ 𝐻(𝑘)/𝑇. The actual trip pattern 

would be settled after day 5, and the visitations to the three portfolios would look as 

follows: 
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Table 5.1: Example Visitation Patterns - Population  

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

Portfolio 1 

 (A 
20* 

A) 
20 

      (A 
20 

A) 
20 

      (A 
20 

A) 
20 

       … 

   (A 
20 

A) 
20 

      (A 
20 

A) 
20 

      (A 
20 

A) 
20 

      

     (A 
20 

A) 
20 

      (A 
20 

A) 
20 

      (A 
20 

A) 
20 

    

       (A 
20 

A) 
20 

      (A 
20 

A) 
20 

      (A 
20 

A) 
20 

  

         (A 
20 

A) 
20 

      (A 
20 

A) 
20 

      (A 
20 

A) 
20 

Portfolio 2 

 (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

     … 

   (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

    

     (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

  

       (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

         (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

B) 
50 

    (B 
50 

B 
50 

Portfolio 3 

 (A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

 … 

   (A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

     (A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

       (A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

         (A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

B 
30 

B 
30 

B) 
30 

(A 
30 

A 
30 

* The numbers underneath are 𝑁𝑘 – the number of parties in the population taking trips to portfolio k. 

 

 

On any random sampling day, using day 8 (the highlighted column) as a 

specific example, the number of parties one would see at each site and for each 

portfolio is summarized in table 5.2. 
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Table 5.2: Visitations On A Given Sampling Day  

 
Portfolio 

1 (A) 2 (B) 3 (AB) Subtotal 

Site 

A 40 0 60 100 

B 0 150 90 240 

Subtotal 40 150 150 340 

 

 

Using table 5.2 and the population numbers one can easily compute the 

probabilities of interest, as shown in tables 5.3-5.5:  

1) The population probability of entering site m on the sampling day: 𝐺(𝑚) =
𝑁𝑚

𝑁
, where 𝑁𝑚 is the number of parties that enter site 𝑚 on the sampling day and 𝑁 is 

the population number; 

2) The proportion of parties at site 𝑚 on the sampling day that chooses 

portfolio 𝑘: 𝜏(𝑘|𝑚) =
𝑁𝑘𝑚

𝑁𝑚
, where 𝑁𝑘𝑚 is the number of parties that both choose 

portfolio 𝑘 and entered site 𝑚 on the sampling day;  

3) The probability of parties entering site 𝑚 on the sampling day conditioned 

on the choice of portfolio 𝑘: 𝜙(𝑚|𝑘) =
𝑁𝑘𝑚

𝑁∗𝐻(𝑘)
=

𝐷𝑚𝑘∗𝑁𝑘/𝑇

𝑁∗𝐻(𝑘)
=

𝐷𝑚𝑘∗(
𝑁∗𝐻(𝑘)

𝑇
)

𝑁∗𝐻(𝑘)
=

𝐷𝑚𝑘

𝑇
, 

where 𝐷𝑚𝑘 is the number of days spend on site 𝑚 in portfolio 𝑘. 

Table 5.3: 𝑮(𝒎) 

 𝐺(𝑚) 

𝑚 = 𝐴 100/10000 = 0.01 

𝑚 = 𝐵 240/10000 = 0.024 
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Table 5.4:  𝝉(𝒌|𝒎) 

 

𝜏(𝑘|𝑚) 

𝑘 = 1 𝑘 = 2 𝑘 = 3 

𝑚 = 𝐴 40/100 = 0.4 0 60/100 = 0.6 

𝑚 = 𝐵 0 150/240 = 0.625 90/240 = 0.375 

 

 

Table 5.5:  𝝓(𝒎|𝒌) 

 

𝜙(𝑚|𝑘) 

𝑚 = 𝐴 𝑚 = 𝐵 

𝑘 = 1 40/2000 = 0.02 0 

𝑘 = 2 0 150/5000 = 0.03 

𝑘 = 3 60/3000 = 0.02 90/3000 = 0.03 

 

 

The equality in equation (52) should hold for all sites in portfolio 𝑘. Since 

there are multiple estimates (when portfolio 𝑘 contains more than one site) of 𝐻(𝑘), 

one can use an average 𝐻̅(𝑘) instead of 𝐻(𝑘). 

 

   𝐻̅(𝑘) =  
1

𝑐𝑘
∑

𝜏(𝑘|𝑚)∙𝐺(𝑚)

𝜙(𝑚|𝑘)𝑚∈𝐴𝑘
,   

 (54)  

 

where 𝐴𝑘 is the set of sites in portfolio 𝑘 and 𝑐𝑘 is the number of sites in portfolio 𝑘. 

According to tables 5.3-5.5, 𝐻̅(1) =  
0.4∗0.01

0.02
= 0.2, 𝐻̅(2) =  

0.625∗0.024

0.03
= 0.5, 𝐻̅(3) =

 
1

2
∗ (

0.6∗0.01

0.02
+

0.375∗0.024

0.03
) =

1

2
∗ (0.3 + 0.3) = 0.3. These estimates perfectly match 
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the hypothetical probabilities established in this example. As a matter of fact, equation 

(54) can be simplified to:  

 

𝐻̅(𝑘) =
1

𝑐𝑘
∑

𝜏(𝑘|𝑚)∙𝐺(𝑚)

𝜙(𝑚|𝑘)𝑚∈𝐴𝑘
=

1

𝑐𝑘
∑

𝑁𝑘𝑚
𝑁𝑚

 ∙ 
𝑁𝑚
𝑁

𝐷𝑚𝑘
𝑇

𝑚∈𝐴𝑘
=

1

𝑐𝑘
∑ (

𝑁𝑘𝑚

𝐷𝑚𝑘
𝑚∈𝐴𝑘

∙
𝑇

𝑁
), (55) 

 

Since all that matters in terms of weighted sample maximum likelihood 

(WESML) is the relative weights and 
T

N
 is a constant term that does not vary over 

individuals, portfolios, or site, the computation of H̅(k) can be further simplified to: 

 

𝐻̅(𝑘) =
1

𝑐𝑘
∑

𝑁𝑘𝑚

𝐷𝑚𝑘
𝑚∈𝐴𝑘

,    (56) 

 

This example demonstrates the general steps required to compute the weights. 

In practice, there are a number of other adjustments needed to account for other 

aspects of the sampling approach: 

1) Differential Sampling Rates. As noted in Chapter 3, all seven national parks 

were sampled over a nine-day period with various sampling rates. At some parks, 

people were sampled at more than one gate and the sampling rates may vary across 

these different gates. See Table C2 for more detail. Given these differential sampling 

rates, the actual observed number of parties on the sampling day cannot be directly 

used for computing the three probabilities of interest. For instance, continuing the 

previous example, suppose that the sampling rate at site A is 1/4 and sampling rate at 

site B is 1/5. On an average day, given the sampling rate, the actual observed 

visitations would be: 
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Table 5.6: Example Visitation Patterns – Observed (Sample) 

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

Portfolio 1 

 (A 
5 

A) 
5 

      (A 
5 

A) 
5 

      (A 
5 

A) 
5 

       … 

   (A 
5 

A) 
5 

      (A 
5 

A) 
5 

      (A 
5 

A) 
5 

      

     (A 
5 

A) 
5 

      (A 
5 

A) 
5 

      (A 
5 

A) 
5 

    

       (A 
5 

A) 
5 

      (A 
5 

A) 
5 

      (A 
5 

A) 
5 

  

         (A 
5 

A) 
5 

      (A 
5 

A) 
5 

      (A 
5 

A) 
5 

Portfolio 2 

 (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

     … 

   (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

    

     (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

  

       (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

         (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

B) 
10 

    (B 
10 

B 
10 

Portfolio 3 

 (A 
7.5 

A 
7.5 

B 
6 

B 
6 

B) 
6 

(A 
7.5 

A 
7.5 

B 
6 

B 
6 

B) 
6 

(A 
7.5 

A 
7.5 

B 
6 

B 
6 

B) 
6 

 … 

   (A 
7.5 

A 
7.5 
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* The numbers underneath are 𝑆𝑘 – the number of parties in the sample taking trips to portfolio k. 

 

 

Given that the target sampling rates for the interviewed survey varied at 

different parks and entrances from 1-in-1 to 1-in-7 and the actual sampling rates 

inevitably varied from the target sampling rates due to various practical issues, it is 
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more accurate to use the averaged actual sampling rates at seven parks. The actual 

sampling rates 𝑟𝑚𝑔𝑡
𝑎  can be calculated as: 

 

 𝑟𝑚𝑔𝑡
𝑎 = 

𝑁∙𝑚𝑔𝑡

𝑁̃∙𝑚𝑔𝑡
,     (55) 

 

where 𝑚 represents parks 𝑚 = 1,… ,7, 𝑔 represents different gates, and 𝑡 is the day on 

which the on-site sampling was conducted. 𝑁∙𝑚𝑔𝑡 denotes the total number of vehicles 

actually interviewed on that day and 𝑁̃∙𝑚𝑔𝑡 denotes the total number of vehicles 

entering each site/gate on a given day that were eligible for interview. 𝑁̃∙𝑚𝑔𝑡 can be 

obtained using the cash register data from the NPS. Using 𝑟𝑚𝑔𝑡
𝑎  and the observed 

(sample) counts of parties following portfolio 𝑘 at each site (gate) on different days, 

one can easily recover the population number of individuals visiting site 𝑚 (gate 𝑔) on 

day 𝑡 who choose portfolio 𝑘, given by: 

 

 𝑁̃𝑘𝑚𝑔𝑡 = 
𝑁𝑘𝑚𝑔𝑡

𝑟𝑚𝑔𝑡
𝑎 .     (56) 

 

2) Different Sampling Days. As established in Chapter 3, the national park on-

site samplings were done on different days over a nine-day period. They did not occur 

on the same day, in the contrast to the assumption made earlier in this chapter. Each of 

the seven parks was sampled on two weekdays and two weekend days, except for 

Grand Canyon, which was sampled on three weekdays and three weekends. To adjust 

for this, it was necessary to simply aggregate all 𝑁̃𝑘𝑚𝑔𝑡 over time and take the 

average, or: 
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𝑁̅𝑘𝑚𝑔∙ =
1

𝑇∙𝑚𝑔
∑ 𝑁̃𝑘𝑚𝑔𝑡

𝑇∙𝑚𝑔

𝑡=1 ,    (57) 

 

where 𝑇∙𝑚𝑔 denotes the number of days where interviews occurred for site 𝑚 (gate 𝑔). 

I considered a more complex adjustment, such as accounting for weather conditions. 

However, I decided such adjustments were not necessary, given that all sampling days 

were in a relatively short time period (9 days) and each park had an equal number of 

week and weekend days.  

3) Multiple Locations for Site Sampling. For parks that were sampled at more 

than one gate, the number for counts are aggregated over all gates to obtain overall site 

visitation numbers, i.e., 𝑁̅𝑘𝑚∙∙ = ∑ 𝑁̅𝑘𝑚𝑔∙𝑔 .  

4) Variation of Park Entrances. Before adjusting for the variation in park 

entrances, it is worth emphasizing a number of assumptions in this work. First, parties’ 

travel time during the trip were neglected, instead assuming that individuals do not 

spend a full day outside of one of the parks in the choice set. In other words, each 

party enters at least one park per day during its trip. Second, it is not only assumed that 

each party enters at least one park a day, but also that they enter only one park a day. 

Therefore, there are no multiple parks in a single day.  

Even with the above assumptions, there is still another issue that needs to be 

taken into consideration, which is the number of entrances to the same park. In some 

cases, parties may enter multiple times to the same park within a day, while in other 

cases, parties may enter a park only once in an overnight or multiple-day visitation. 

When parties enter the same park multiple times in a day, they inflate the counts of 

visitations for park 𝑚 and portfolio 𝑘. Conversely, if a party stays overnight or for 
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multiple days at a park and only enter the park once at the beginning, the chance of 

observing them at the entrance on a random day decreases. 

The following modification undoes the inflation/deflation of visitation counts 

due to the variation of park entrances and ensures that the visitation counts follow the 

“one and only one entrance” condition. In brief, a “weight” is introduced to correct for 

the variation of park entrances. Let 𝜔̅𝑘𝑚∙ denotes the average ratio of 𝑑𝑘𝑚∙(the number 

of days at the park) to 𝜂𝑘𝑚∙ (the number of park entrances) for each park/portfolio 

combination. Then: 

 

𝑁̌𝑘𝑚𝑔∙ = 𝜔̅𝑘𝑚∙ ∙  𝑁̅𝑘𝑚𝑔∙ =
𝑑𝑘𝑚∙

𝜂𝑘𝑚∙
∙  𝑁̅𝑘𝑚𝑔∙.    (58) 

 

For cases in which multiple-night stays are prevalent (i.e. 𝑑𝑘𝑚∙ > 𝜂𝑘𝑚∙), 𝜔̅𝑘𝑚∙ 

will inflate the number of counts to correct for the fact that there was a reduced chance 

of interviewing these parties. Conversely, for cases which involve multiple entrances 

on the same day to the same park (i.e. 𝑑𝑘𝑚∙ < 𝜂𝑘𝑚∙), 𝜔̅𝑘𝑚∙ deflates the number to 

account for the possibility of double-counting.  

After all of these adjustments, the resulting estimates of 𝐻̅(𝑘) could then be 

used in the WESML procedure to account for portfolio choice-based sampling. The 

likelihood function, with weights 𝐻̅(𝑘)/𝑆(𝑘), becomes: 

 

    𝐿𝐿(𝜃) = ∑
𝐻̅(𝑘)

𝑆(𝑘)
ln 𝑃(𝑘𝑖|𝑧𝑖𝑘, 𝜃)𝑆

𝑖=1 ,   (59) 
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where 𝑆(𝑘) is the proportion of individuals surveyed that are found choosing portfolio 

𝑘 (i.e. 𝑆(𝑘) =  𝑆𝑘/𝑆) and 𝑃(𝑘𝑖|𝑧𝑖𝑗, 𝜃) is the relevant probability expression in the 

absence of choice-based sampling. 

Figure 6.1 and Figure 6.2 show the trip patterns before and after the sample is 

weighted. In figure 6.1, number of parks visited changes significantly after weighting 

the sample. The sample selected on-site shows that only 29% of the trips to these 

national parks are single site trips and the remaining 71% are all multiple-site trips. 

With the weighted sample, which may be interpreted as coming from a random draw 

of visitors to the region during the two-week period in June, the percentage of single 

site trips significantly increases to 62%. This is primarily due to that there is a lower 

chance of sampling a visitor when he/she visits only one versus many sites. Therefore, 

in the weighted sample, all single site trips are “weighted up” and multiple-site trips 

are “weighted down” to represent the general population. Figure 6.2 shows the 

visitation by parks. The percentage of Grand Canyon visitations increases after the 

weighting while the percentage of visitations to other parks decreases. This is partially 

because many trips to Grand Canyon are single-site trips.  
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Figure 5.1: Number of Parks Visited 

 

Figure 5.2: Visitation by Parks 
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ESTIMATION RESULTS AND WELFARE ANALYSIS 

In this chapter, I present the results of estimating the models discussed in 

Chapter 4 along with a welfare analysis based on those results. I estimate three 

models: (i) Standard Logit with Additive Site Utilities (ASU-SL), (ii) Mixed Logit 

with Additive Site Utilities (ASU-MXL), and (iii) Portfolio Specific Constants as 

Utilities (PSC). In Section 6.1, I briefly lay out the specification of the three models, 

and then present the coefficient estimates for each model separately. Section 6.2 

presents the results of a welfare analysis based on the estimation results. This welfare 

analysis is one of the main purposes of this study; quantifying the true welfare losses 

to the public (potential park visitors) due to park closures. The welfare losses are 

calculated across a range of different scenarios, including single park closures and 

groups of park closures. 

6.1 Model Specification  

In Chapter 4 I discussed in detail the methodologies behind the models and 

their econometric properties. Therefore, here, I simply specify the composition of each 

model’s indirect utility function. All three models include a travel cost variable and 

individual characteristics interacted with travel cost to pick up the heterogeneity in 

sensitivity to travel cost across user groups. The individual characteristics included are 

household income, flexible time (a dummy variable indicating when planning the trip 

to national parks in the southwestern region, whether the party could have chosen a 

Chapter 6 
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longer trip or if they faced time constraints), whether the party visited recreational 

sites or cities other than the seven national parks6, and potential car renter (a dummy 

variable indicating whether the party was likely to have rented a car given their entry 

and exit points to the region). In addition to the travel cost and demographic 

interaction variables, the ASU models include a set of site-specific constants for each 

park and the PSC model includes a set of portfolio-specific constants for each 

portfolio (see equations (28), (31), and (44)). Table 6.1 provides a list of variables 

used in the models with definitions for each variable.  

  

                                                 

 
6 I considered an alternative method for accounting for the effects of visiting sites 

other than the seven national parks. Using the survey responses, it is possible to 

compute the number of other recreational sites and cities visited, a number which 

ranges from 0-23. The number of secondary sites visited could be grouped into four 

categories: visit no other places, visit 1-5 secondary sites, visit 6-10 secondary sites, 

and visit more than 10 secondary sites. Consider now that each party would then be 

facing a choice of a set of national parks (seven of our interest) and the number of 

secondary sites to visit (one of the four categories). An individual’s choice set is then 

expended to 508 choices (127 x 4). These expended choice set models and the original 

choice set models provide qualitatively and quantitatively similar results. Therefore, I 

decided to proceed with the original 127 choice set models.  
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Table 6.1: Variable Definitions 

  

Variable Definition  

Travel Cost 
See Chapter 3 Section 3.3.2 for a detailed discussion of travel cost 

(thousands of 2002 dollars)  

Flextime 
= 1 if visitors could have chosen a longer trip to the Four States 

Region  

Car Renter 

= 1 if respondent did not live in the four states region and took mass 

transportation to enter and exit the Four States Region (a potential 

car renter) 

Visited Other Sites =1 if visited other recreational sites or cities 

Income  Annual household income (thousands of 2002 dollars) 

Arches = 1 If Arches is included in the portfolio  

Bryce Canyon = 1 If Bryce Canyon is included in the portfolio 

Canyonlands = 1 If Canyonlands is included in the portfolio  

Grand Canyon = 1 If Grand Canyon is included in the portfolio  

Mesa Verde = 1 If Mesa Verde is included in the portfolio  

Petrified Forest = 1 If Petrified Forest is included in the portfolio  

Zion = 1 If Zion is included in the portfolio  

PSC 1 ~ 127 Portfolio specific constant for each portfolio 
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6.1.1 ASU – Standard Logit Model 

Table 6.2 presents the estimation results for the Standard Logit Additive Site 

Utility model. Most of the parameter estimates are significant with the expected signs. 

The significant negative coefficient of travel cost suggests that the probability of a 

party choosing a portfolio decreases when the associated trip expense is high. The 

interactive terms of travel cost with demographic variables further examine the travel 

cost effects, accounting for preference heterogeneity across visitors. These coefficient 

estimates also have the expected signs. Visitors with higher income or who also visit 

recreational sites and cities other than the seven national parks tend to be less sensitive 

to travel costs. In other words, the effect of travel cost on the probability of choosing a 

portfolio decreases for higher income groups or for those who visit secondary sites. 

Visitors who potentially rented cars during their visit are more sensitive to travel costs. 

As explained in more detail in Chapter 3, travel cost includes transit cost, but not any 

car rental cost. Travel cost increases with the number of parks visited and number of 

days spent on the trip. For car renters, the increase in total cost would be even higher 

with an increase of days or parks visited, due to the extra (unaccounted for) rental 

costs. However, the size of the car renter and income interactive terms are small 

relative to the absolute size of the travel cost coefficient, suggesting that the 

magnitude of these effects are not large. Whether visitors have more flexible time (i.e., 

could have taken a longer trip) does not have a significant effect on their sensitivity to 

travel cost.  

The site-specific variables are all significant and the relative size of the 

coefficient estimates follows the order of observed visitation counts. Portfolios that 

contain Grand Canyon have relatively higher probabilities of being selected, followed 

by portfolios containing Zion. Canyonland is the least popular site with the lowest 
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coefficient. Unexpectedly, some parks have negative signs on their site-specific 

parameters. As discussed in Chapter 4, each site in the portfolio is expected to 

contribute to the overall utility of the portfolio; relatively unpopular sites were 

expected to have small coefficients, not negative coefficients. Although travel costs 

increase as more sites are added, visits to national parks should generate utility that 

serves to offset these money and time costs. If certain site parameters are negative, the 

combination of these sites with any other sites causes a lower utility. For instance, 

Grand Canyon by itself ranks higher than the combination of Grand Canyon and 

Arches, and this (smaller) combination ranks higher than the grouping of Grand 

Canyon, Arches and Bryce Canyon. This could be due to the fact that the dominant 

type of trips observed are single park trips (62%), or it could be caused by certain 

substitute or complement effects among parks that are not well captured in the 

standard additive site utility model.  

  



 

 90 

Table 6.2: Standard Logit Additive Site Utilities Model (SL Model)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variable Coefficients    z-statistics  

Travel Cost (in $1000) -6.493 -16.86 

Cost * Flextime 0.045 0.34 

Cost * Car Renter -0.326 -1.88 

Cost * Income (in $1000) 0.014 7.56 

Cost * Visited Other Sites 2.622 10.44 

Arches -0.622 -6.72 

Bryce Canyon -0.330 -3.68 

Canyonlands -1.336 -13.64 

Grand Canyon 1.953 15.79 

Mesa Verde -0.613 -6.24 

Petrified Forest -1.246 -16.04 

Zion 0.156 1.8 

Log-likelihood -8237.0122 

Sample size 2719 
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6.1.2 ASU – Mixed Logit Model 

As explained in Chapter 4, the mixed logit model has the same specification as 

the standard logit model, except that the site-specific parameters are considered to be 

random with certain distributions. Random parameters can not only account for 

preference heterogeneity across visitors, but, more importantly, also accommodate 

correlations across alternatives. When site-parameters are treated as random variables, 

the mixed logit models account for correlation among portfolios that share the same 

national parks.  

To determine if mixing is necessary, or in other words, if there is correlation 

among portfolios, I perform a Lagrange Multiplier (LM) test. The LM test for this 

purpose was first proposed by McFadden and Train (2000) and later summarized by 

Brownstone (2001). To perform this LM test, one needs to first construct a set of 

artificial variables (𝑧𝑖𝑘) for the variables that are assumed to have random coefficients. 

𝑧𝑖𝑘 is constructed using the following formula: 

 

 𝑧𝑖𝑘 = (𝑥𝑖𝑘 − 𝑥𝑖̅)
2, with 𝑥𝑖̅ = ∑ 𝑥𝑖𝑘𝑃𝑖𝑘

127
𝑘=1    (60) 

 

where 𝑥𝑖𝑘 is a vector of variables that have random parameters relating to individual 𝑖 

and alternative 𝑘 (in this study, site-specific variables vary only across portfolios and 

not individuals) and 𝑃𝑖𝑘 is the choice probability of the conditional logit model. One 

then re-estimates the conditional logit model with the set of artificial variables 𝑧𝑖𝑘. The 

null hypothesis of no mixing of the variable is rejected if 𝑧𝑖𝑘 is significant.  

After performing this LM test, I found that all z variables are highly 

significant, suggesting that all seven site-specific variables should have random 

parameters. I also conducted a Likelihood Ratio test to test the joint significance of the 



 

 92 

z variables, and the result suggests the z variables are jointly significant. Tables 6.3 

and 6.4 present results for these tests.  

Table 6.3: Standard (Conditional) Logit Model with Z variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Variable Coefficient z-statistics 

Travel Cost (in $1000) -4.524 -8.47 

Cost * Flextime 0.063 0.5 

Cost * Car Renter -0.209 -1.24 

Cost * Income (in $1000) 0.010 5.25 

Cost * Visited Other Sites 2.135 7.58 

Arches 2.448 7.7 

Bryce Canyon 0.910 3.24 

Canyonlands 6.909 7.03 

Grand Canyon 1.366 6.17 

Mesa Verde 2.463 6.38 

Petrified Forest 2.437 3.15 

Zion 0.479 2.71 

Z - Arches -5.596 -10.12 

Z - Bryce Canyon -3.178 -5.73 

Z - Canyonlands -10.699 -8.57 

Z - Grand Canyon 0.917 3.06 

Z - Mesa Verde -5.428 -8.93 

Z - Petrified Forest -5.541 -5.18 

Z - Zion -2.336 -4.44 

Log-likelihood -8073.513  

Sample size 2719  
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Table 6.4: Likelihood Ratio Test  

Model df LL(null) LL(model) AIC BIC 

SL 12 -13181.74 -8237.012 16498.02 16627.05 

SL with Zs 19 -13181.74 -8073.513 16185.03 16389.32 

Likelihood-ratio test  LR chi2(7) = 327.00 (Prob > chi2 = 0.0000) 

 

The next step for estimating the mixed logit model is to specify the distribution 

of the random parameters. As discussed in Chapter 4, random parameters can take a 

number of predefined functional forms, such as the normal, lognormal, triangular, and 

uniform distributions. Since none of the random parameters in this model are expected 

to have a specific sign, the lognormal distribution would not be appropriate. I thus 

restricted my tests to the normal, triangular, and uniform distributions.  

The normal distribution is most commonly chosen distribution for random 

parameters without expected signs. As the result will not necessarily be independent of 

the number of random draws in the simulation, I estimated the model using different 

number of Halton draws, ranging from 100 to 1000. The differences between the 

parameter estimates became quantitatively smaller as the number of draws increased. 

Between 750 and 1000 draws, the difference was almost negligible. The result of the 

mixed logit model with normal distribution and 1000 Halton draws is presented in 

table 6.5, column 1. Travel cost is again highly significant with a negative sign. All of 

the interaction terms also have the same signs as the standard logit model. The only 

thing that changes is the order of the site-specific dummies and their significance. 

Grand Canyon is still the site with the highest “utility hit”. Petrified Forest, however, 

takes the place of Canyonlands as the least popular site, with the least (or most 

negative) “utility hit”. Among the mixing parameters, only Grand Canyon and 

Petrified Forest have significant standard deviations, suggesting that only portfolios 
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that both have Grand Canyon or both have Petrified Forest are correlated. The 

weakness of the normal distribution is the unbounded tails. This creates the possibility 

of behaviorally unacceptable draws for the coefficient from the tails. Note that the 

standard deviation of Grand Canyon is almost twice the size of its mean. This creates 

even longer tails and causes the sign of parameter estimates of Grand Canyon to 

change frequently with different draws. As a result, the welfare estimates for Grand 

Canyon with different numbers of random draws vary more compared to other park 

welfare estimates.  

One of the commonly used method to constrain the draws to more reasonable 

and behaviorally acceptable ranges is to use the triangular distribution, where both 

ends of the distribution are bounded. With mean 𝑏 and spread 𝑠, the distribution is 

bounded within the range of [𝑏 − 𝑠, 𝑏 + 𝑠] and reaches its peak of 1/𝑠 at 𝑏. Random 

draws from this distribution can be created as 𝛽 = 𝑏 + 𝑠(√2𝜇 − 1) if 𝜇 < 0.5 and 

𝛽 = 𝑏 + 𝑠(1 − √2(1 − 𝜇)) if 𝜇 > 0.5, where 𝜇 is a random draw from a standard 

uniform distribution. However, when applying the triangular distribution to all seven 

site-specific dummies, the model fails to converge.  

The uniform distribution is another way to bind the upper and lower bound of 

the distribution and is often used when the variable is a dummy variable. Since the 

seven site-specific variables are all dummies, I also tested the uniform distribution and 

found that the parameter estimates are very similar to the estimates of normal 

distribution. Although the ends of the distribution are bounded, the spread of the 

Grand Canyon estimates becomes even bigger (a standard deviation almost three times 

the mean).  
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To further constrain the ranges of the coefficients, one may use truncated or 

constrained distributions (Hensher and Greene, 2003). Truncated distributions restrict 

the standard deviation or spread to be a function of the mean. The constraint 

specification can be applied to any distribution. For example, a triangular distribution 

specified as 𝛽𝑖 = 𝑏 + 𝑠𝑣𝑖, where 𝑣𝑖 is the random variable, can be constrained by 

setting 𝑠 = 𝑧𝑏, where 𝑧 is a coefficient of variation taking any positive value. The 

distribution then becomes 𝛽𝑖 = 𝑏 + 𝑧𝑏𝑣𝑖. 𝑧 is generally expected to lie between 0 and 

1. One commonly used 𝑧 value is 1, which set the standard deviation or spread equal 

to the mean. With a truncated triangular distribution, constraining 𝑏 = 𝑠 binds the 

parameter estimates to be consistent with the same sign. The range is [0, 2𝑏] if 𝑏 is 

positive, and [2b, 0] if 𝑏 is negative.  

In the mixed logit model, Grand Canyon is the only site-specific dummy with a 

standard deviation significantly larger than its mean. Since every random parameter 

may have its own distribution, I choose to constraint only the distribution of the Grand 

Canyon coefficient, while allowing the other sites to have normal distributions. With a 

truncated triangular distribution with 𝑏 = 𝑠, the sign of the Grand Canyon coefficient 

is constrained to be either always positive or negative. The estimation result is 

presented in table 6.5, column 2. The parameter estimates become more similar to the 

standard logit model.  

I also tested the extreme case of constraining the Grand Canyon coefficient by 

fixing it. Column 3 of table 6.5 presents the estimates of the model where Grand 

Canyon is treated as having a fixed parameter while others are random and follow 

normal distributions. The estimation results turn out to be almost identical to the 

standard logit model, with all standard deviations being insignificant. This could be 
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due to the fact that a large percentage of our population (63%) visited Grand Canyon 

and 62% of our population visited only one national park during their trip.  
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Table 6.5: Mixed Logit Additive Site Utilities Model (MXL Model)1 

Variable 

All Random 
(Normal)2 

All Random 
 (Uniform)3 

All Random 
 (Normal + Triangular)4 

Grand Canyon Fixed 

Coef. z-stat Coef. z-stat Coef. z-stat Coef. z-stat 

Travel Cost (in $1000) -9.258 -16.57 -9.255 -23.02 -7.326 -22.03 -6.493 -16.86 

Cost * Flextime 0.246 1.29 0.244 1.88 0.073 0.67 0.045 0.34 

Cost * Car Renter -0.419 -1.67 -0.417 -2.49 -0.332 -2.3 -0.326 -1.88 

Cost * Income (in $1000) 0.024 8.96 0.024 13.17 0.016 10.78 0.014 7.56 

Cost * Visited Other Sites 3.266 8.11 3.283 11.57 2.809 13.15 2.622 10.44 

Grand Canyon 6.542 2.87 6.530 3.78 2.373 18.85 1.953 15.79 

Arches -0.155 -1.45 -0.161 -1.84 -0.442 -5.28 -0.622 -6.72 

Bryce Canyon 0.144 1.32 0.131 1.24 -0.154 -1.95 -0.33 -3.68 

Canyonlands -0.843 -7.58 -0.851 -7.01 -1.148 -11.68 -1.336 -13.64 

Mesa Verde -0.087 -0.76 -0.093 -1.01 -0.419 -4.81 -0.613 -6.24 

Petrified Forest -2.755 -3.29 -4.682 -2.37 -1.096 -14.17 -1.246 -16.04 

Zion 0.644 5.92 0.639 7.72 0.336 4.35 0.155 1.8 

SD         

Grand Canyon 12.94 1.9 16.715 2.6 2.373 18.85 - - 

Arches 0.001 0.1 0.008 0.02 0.002 0.01 0.002 0.9 

Bryce Canyon 0.076 0.7 0.346 0.28 0.001 0 0.005 0.75 

Canyonlands 0.04 0.25 0.149 0.08 0.009 0.02 0.001 0.13 
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Table 6.5 Continued 

Mesa Verde 0.003 0.42 0.044 0.11 0.006 0.02 0.002 0.28 

Petrified Forest 2.967 3.57 7.689 2.75 0.014 0.03 0.017 1.14 

Zion 0.015 1.21 0.007 0.02 0.005 0.02 0.016 0.91 

Log-likelihood -8151.35  -8150.20  -8217.14   -8237.01   

Sample size 2719   2719  2719   2719   

Note: 1. All mixed logit models are estimated using 1000 halton draws. 2. All random parameters assumed to follow normal distribution 3. In this mixed logit model, 

the random parameter of Grand Canyon is assumed to follow triangular distribution with mean equals to its spread, while the random parameters of other parks are 

assumed to follow normal distribution.  
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6.1.3 Portfolio Specific Constant Model 

As explained in Chapter 4, the Portfolio Specific Constant Model includes a set 

of portfolio specific constants instead of site-specific dummies. Compared to the 

Additive Site Utility models, the Portfolio Specific Constant model is relatively less 

constrained. For the ASU models each individual site is considered to contribute 

independently to a person’s overall trip utility. In other words, the effect of any single 

park on utility is constant, regardless of the presence of any other parks in the 

portfolio. For instance, the contribution of visiting Grand Canyon during the trip is 

identical, regardless of whether one also visited Arches, Zion, or any other parks. 

However, this would not be true if the parks included in the portfolio are either 

substitutes or complements to one another. With the PSC model, each portfolio is 

represented by its own constant term, which implicitly allows for interactive effects 

between parks. Consider the following example; if both Zion and Arches provide 

similar “services” (e.g., both offer opportunities to view wildlife or hike canyons), 

then one park would easily be viewed as the substitute of the other. In that case, 

having both parks in the portfolio should generate less overall utility than the addition 

of the two individual “utility hits.” Therefore, if parks in a portfolio are substitute for 

each other, one should expect the PSC constant to be lower than the sum of same 

utilities from the ASU Model. If the parks have features that complement each other, 

the PSC constant should be higher than the sum. If the effect is negligible, the sum 

from the ASU Model should be close to the corresponding constant from the PSC 

Model.  

The estimation results are presented in table 6.6. To keep the table manageable, 

table 6.6 only lists the range of the estimates of the 111 observed portfolios’ specific 
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constants7. Note that the travel cost coefficient (-4.985) is relatively lower (in absolute 

value) compared to the one in the ASU-Standard Logit Model (-6.493). This could be 

due to the fact that, with the PSC Model, the portfolio specific constants are able to 

pick up the complementary effects among parks that are located close to one another. 

The ASU models’ site-specific dummies cannot capture such effects, which thus may 

well be picked up in (or be contaminating) the travel cost coefficient for the ASU 

Model. For example, Bryce Canyon and Zion are located fairly close to one another 

and the portfolio {BC, ZI} is one of the top chosen portfolios. The closeness between 

the two parks causes the travel cost of the portfolio to be relatively lower compared to 

other combinations of two parks (all other factors held constant). Since ASU site 

dummies do not account for the complementary effects between the two sites, the 

model attempts to use travel costs to explain why portfolio {BC, ZI} is more popular, 

which biases the travel cost coefficient upwards. Another way of thinking about this 

issue is that there are synergies between nearby parks which are masked by the 

imposed additivity in the ASU Model. Finally, the demographic interaction terms are 

largely insensitive to whether the specification is PSC or ASU. The signs and 

significance of those coefficients in the PSC Model are similar to the ones in the ASU 

Model. 

 

  

                                                 

 
7 As shown in table 3.4, only 111 out of 127 portfolios were chosen by respondents. 

Therefore, only 111 portfolio specific constants are included in the model for 

estimation.  
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Table 6.6: 111 Portfolio Specific Constant Model (PSC Model) 

* The range of coefficient estimates of the 111 portfolio dummies, with PSC4 being the highest and PSC16 being 

the lowest. See Appendix C Table C18 for the full set of PSC estimates.  

 

 

Table 6.7 lists the top 20 PSC constant estimates. The additive site utility 

model suggests that in many cases combinations of several parks rank lower than 

single park portfolios (due to the negative coefficient estimates of several parks). 

However, with the PSC Model, the top ranking portfolio constant estimates are in fact 

mostly portfolios which contain more than one park. This could be taken as more 

evidence that the PSC Model does a better job catching complementary effects 

between parks. One consistency between the ASU and PSC models is that visiting 

Grand Canyon alone (PSC4) ranks the highest among all portfolios. 

To further explore the correlation between parks, I estimated the second stage 

regression of the fitted PSC’s on a model with dummies for the included sites and 

pairwise interactions between parks. These results are presented in table 6.8. Among 

the 21 pairwise dummies, 5 pairs are significant with positive signs, indicating that 

those pairs of parks are positively correlated (i.e., serve as complements to one 

Variable Coefficients z-statistics 

Travel Cost (in $1000) -4.985 -13.15 

Cost * Flextime 0.050 0.56 

Cost * Car Renter -0.227 -1.83 

Cost * Income (in $1000) 0.010 7.52 

Cost * Visited Other Sites 2.235 8.32 

PSC 2 ~ 127 (PSC1 as the baseline) -17.449~ 2.850 - 

Log-likelihood -7152.5593  

Sample size 2719 
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another). They are {Bryce Canyon, Zion}, {Arches, Canyonlands}, {Bryce Canyon, 

Canyonlands}, {Grand Canyon, Petrified Forest}, and {Mesa Verde, Petrified Forest}. 

If one checks the map of the Four States Region (Figure 3.1), all of these pairs appear 

to be the ones which are geographically located close to each other. Visiting a 

combination of parks near each other allows a household to spend more time onsite at 

each park instead of traveling between parks and as a result further boost visitors’ 

utility. 

Table 6.7: Top 20 Portfolio Specific Constant Estimates 

Portfolio Specific 

Constant 

Coefficient 

(Compare to PSC1) 

# of Parks in the 

Portfolio 

PSC4 2.792 1 

PSC121 2.357 6 

PSC50 2.023 3 

PSC101 1.935 5 

PSC122 1.877 6 

PSC127 1.836 7 

PSC107 1.417 5 

PSC24 1.301 2 

PSC92 1.216 4 

PSC18 1.170 2 

PSC7 0.932 1 

PSC91 0.878 4 

PSC70 0.842 4 

PSC124 0.774 6 

PSC25 0.715 2 

PSC118 0.628 5 

PSC5 0.572 1 

PSC60 0.503 3 

PSC106 0.477 5 

PSC67 0.394 4 
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Table 6.8: Second Stage OLS Regression of the PSC Model1 

 
Site-Specific and Pairwise Dummies 

Coefficient t-statistics 

Constant 0.700 0.5 

Arches -0.103 -0.08 

Bryce Canyon -2.878 -2.25 

Canyonlands -3.791 -2.95 

Grand Canyon 1.059 0.85 

Mesa Verde -3.172 -2.47 

Petrified Forest -2.133 -1.66 

Zion -0.475 -0.38 

Pairwise Dummies   

AR - BC 0.453 0.47 

AR - CA 2.746 2.76 

AR - GC -1.138 -1.14 

AR - MV 1.605 1.61 

AR - PF -0.194 -0.2 

AR - ZI -0.523 -0.53 

BC - CA 2.301 2.37 

BC - GC 0.795 0.82 

BC - MV -0.386 -0.4 

BC - PF 0.746 0.77 

BC - ZI 3.228 3.33 

CA - GC -0.207 -0.21 

CA - MV 0.394 0.4 

CA - PF -0.092 -0.09 

CA - ZI -0.016 -0.02 

GC - MV 0.247 0.25 

GC - PF 1.939 1.98 

GC - ZI 0.252 0.26 

MV - PF 1.740 1.76 

MV - ZI 1.395 1.43 

PF - ZI -1.146 -1.18 
1.  111 (the chosen portfolios) PSC estimates are used to fit the second stage regression.  
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6.2 Welfare Analysis 

The ultimate purpose behind estimating all of the above models is to provide a 

means for estimating the welfare losses associated with temporary closure of the 

national parks in this study. Note that any welfare loss estimate obtained from these 

data will be an underestimate of true losses, due to the population from which these 

losses are extrapolated. As this population only includes people who actually take trips 

to at least one of the seven national parks, there is no information on parties that were 

considering such a trip and changed their trip plans because they learned of the closure 

beforehand.  

In this section, I examine the welfare losses due to park closures using the 

estimation results from the models above. The first part of the welfare analysis 

concentrates on two types of scenarios: individual park closures and groups of parks 

closures. I estimate per-party, per-adult, and per-person welfare losses due to park 

closures. The second part of the analysis focuses on estimating the loss-to-trip ratio for 

individual park closures. Finally, I estimate the aggregated values of park closures 

using park data on visitation rates.  

6.2.1 Per-trip Welfare Loss for Park Closures 

In the RUM setting, welfare changes can be calculated using the indirect utility 

function. The indirect utility function is the maximized value of the utility function. 

Assuming the error term follows the IID type 1 extreme value distribution, the 

expected maximum utility can be expressed as: 

 

𝐸𝑖(max𝑘(𝑈𝑖𝑘)) = 𝐸𝑖(max𝑘(𝑉𝑖𝑘 + 𝜀𝑖𝑘)) = ln(∑ exp(𝑉𝑖𝑘)
127
𝑘=1 ) + 𝐶,  (60) 
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where C is the Euler’s constant8 from solving with the extreme value distributional 

assumption for the error term and can be ignored when measuring changes of utilities. 

The per-trip welfare loss can be calculated by assessing the change in utility 

(consumer surplus) that would occur if all feasible portfolios containing the closed 

parks were eliminated from the choice set. For instance, if Arches is closed then all 

portfolios containing Arches become unavailable. If more than one park is closed, 

portfolios containing any of the closed parks will be excluded from the choice set. To 

convert the utility to dollar terms (assuming that utility is linear in income), simply 

divide the difference in expected maximum utility by the marginal utility of income, 

which is the travel cost related coefficients in this model. This is a version of the well-

known log-sum-difference formula. For the standard logit model, the log-sum 

differences per party for the loss of one/multiple parks is: 

 

𝐸𝑉𝑖
𝑆𝐿 =

{𝑙𝑛 ∑ exp (∑ 𝛽𝑚𝑥𝑘𝑚
7
𝑚=1 +𝛾∙𝑝𝑖𝑘∙𝑧𝑖

′)𝑘∈𝐴−𝑛 −𝑙𝑛∑ exp (∑ 𝛽𝑚𝑥𝑘𝑚
7
𝑚=1 +𝛾∙𝑝𝑖𝑘∙𝑧𝑖

′)𝑘∈𝐴 }

−𝛾∙𝑧𝑖
′ , (62) 

 

where 𝐴 is the full set of 127 portfolios, 𝐴−𝑛 is the set of portfolios excluding the 

closed 𝑛 parks, 𝛾 is the travel cost coefficient, and 𝑧𝑖
′ is a vector of 1 and individual 

characteristics. For the PSC model the log-sum differences per party for the loss of 

one/multiple parks is: 

 

                                                 

 
8 A proof of equation (61) can be found in Haab and McConnell (2002). 
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𝐸𝑉𝑖
𝑃𝑆𝐶 =

{𝑙𝑛 ∑ 𝑒𝑥𝑝 (𝛼𝑘+𝛾∙𝑝𝑖𝑘∙𝑧𝑖
′)𝑘∈𝐴−𝑛 −𝑙𝑛∑ 𝑒𝑥𝑝𝑘∈𝐴 (𝛼𝑘+𝛾∙𝑝𝑖𝑘∙𝑧𝑖

′)}

−𝛾∙𝑧𝑖
′ .   (63) 

 

In the mixed logit model, all 𝛽𝑚s become variable across the population. 

Therefore, the log-sum term becomes: 

 

∫ ln(∑ 𝑒𝑥𝑝(∑ 𝛽𝑖𝑚𝑥𝑘𝑚
7
𝑚=1 + 𝛾 ∙ 𝑝𝑖𝑘 ∙ 𝑧𝑖

′)𝑘 ) 𝑓(𝛽|𝑏,𝑊)𝑑𝛽  (64) 

 

where 𝑓(𝛽|𝑏,𝑊) is the density function of the random parameter 𝛽𝑖𝑚. The welfare 

loss estimated based on the mixed logit model can be expressed as: 

 

𝐸𝑉𝑖
𝑀𝑋𝐿 =

{∫ ln(∑ 𝑒𝑥𝑝(𝛽𝑖∙𝑥𝑘∙+𝛾∙𝑝𝑖𝑘∙𝑧𝑖
′)𝑘∈𝐴−𝑛 )𝑓(𝛽|𝑏,𝑊)𝑑𝛽−∫ ln(∑ 𝑒𝑥𝑝(𝛽𝑖∙𝑥𝑘∙+𝛾∙𝑝𝑖𝑘∙𝑧𝑖

′)𝑘∈𝐴 )𝑓(𝛽|𝑏,𝑊)𝑑𝛽}

−𝛾∙𝑧𝑖
′ ,(65) 

 

where βi∙ and xk∙ are vectors of βim and xkm for m = 1,…7 respectively. Since there 

is no closed form for the equation above, welfare losses are usually computed as the 

average of the monetized log-sum differences over all sampled individuals over 

certain numbers of random draws. Equation (65) then becomes: 

 

𝐸𝑉𝑖
𝑀𝑋𝐿 =

1

𝑅
∑

{𝑙𝑛 ∑ 𝑒𝑥𝑝(𝛽𝑖∙
𝑟𝑥𝑘∙+𝛾∙𝑝𝑖𝑘∙𝑧𝑖

′)𝑘∈𝐴−𝑛 −𝑙𝑛∑ 𝑒𝑥𝑝(𝛽𝑖∙
𝑟𝑥𝑘∙+𝛾∙𝑝𝑖𝑘∙𝑧𝑖

′)𝑘∈𝐴 }

−𝛾∙𝑧𝑖
′

𝑅
𝑟=1 ,  (66) 

 

where R is the number of random draws and 𝛽𝑖∙
𝑟 is the vector of coefficients from the 𝑟th 

draw.  
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For all three equations, the numerator reflects the difference between the log 

sum over all portfolios except those including the park(s) being valued for loss and the 

log sum over all 127 portfolios. These values are all per trip welfare losses for each 

individual and conditional on the person making a trip to the four states region.  

Table 6.9 presents welfare loss estimates based on different models. It shows 

both individual park losses and groups of parks losses. For groups of parks closures, I 

picked three portfolios which contained popular groups of parks. 

The values are also reported in per-trip per-party, per-trip per-adult, and per-

trip per-person formats. The per-trip per-party values are calculated by simply using 

the sum of the individual per trip value divided by number of parties. The per-trip per-

adult and per-trip per-person values divide the values in equations (62), (63), and (66) 

by the number of adults/people (adults and children) in the party and are computed by 

enumerating over the sample. Having the values in different units is useful when 

transferring values to other parks, where aggregate visitation data may count all 

people, all adults, or all parties. Since the number of adults and children varies across 

parties, these averages are not simple transformations of each other. The per-adult 

values are about half as large as the per-party values, since the average number of 

adults per-party is near two, and the per-person values are about one third of the value 

of the per-party values, since the average number of people including children is about 

three.  

The PSC welfare estimates are larger than the SL estimates for every single 

park closure and group park closures. This result is primarily driven by the small 

absolute value of travel cost in the PSC Model. The values from the PSC Model range 

from a low of $21 per party for Canyonlands to $217 for Grand Canyon. Zion, as 
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expected, has the second largest value at $88. The group loss for closing the group of 

three parks – Grand Canyon, Zion and Bryce Canyon, runs the largest ($408). The 

estimates from the SL Model follow the same order as the ones from the PSC Model.  

For the MXL Model, I choose to use the estimates from the All Random 

(Normal + Triangular) model, where all site-specific parameters are random and 

Grand Canyon by itself has a different distribution (triangular) from the others 

(normal). The first two MXL Models in table 6.5 both have standard deviations for 

Grand Canyon which are significantly larger than their means, causing the unstable 

estimates of welfare loss for Grand Canyon with different number of random draws. 

The last MXL model, which constrains Grand Canyon to have a fixed parameter, gives 

almost exactly the same estimates as the SL Model.  

 



 

 

1
0
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Table 6.9: Per-trip Welfare Loss for Park Closures (2002$) 

Single Park Closures 

Per-Party Welfare Loss Per-Adult Welfare Loss Per-Person Welfare Loss 

SL 

Model 

PSC 

Model 

MXL 

Model1 

SL 

Model 

PSC 

Model 

MXL 

Model1 

SL 

Model 

PSC 

Model 

MXL 

Model1 

Arches $29 $42 $26 $15 $22 $14 $12 $17 $11 

Bryce Canyon 40 60 35 21 32 18 16 25 14 

Canyonlands 14 21 12 7 11 6 6 9 5 

Grand Canyon 159 217 161 84 113 85 65 88 66 

Mesa Verde 27 39 24 14 20 12 11 15 10 

Petrified Forest 20 31 18 10 16 9 8 13 7 

Zion 59 88 52 31 46 27 24 36 21 

Multiple Parks Closures2          

Group I - Bryce Canyon, Grand 

Canyon and Zion 

$295 $408 $279 $155 $211 $146 $120 $164 $114 

(258)2 (365) (248) (136) (191) (131) (106) (149) (102) 

Group II- Grand Canyon and 

Petrified Forest 

185 235 184 97 122 97 76 95 75 

(179) (248) (179) (94) (129) (94) (73) (101) (73) 

Group III - Arches and 

Canyonlands 

43 48 38 22 25 20 17 20 15 

(43) (63) (38) (22) (33) (20) (17) (26) (16) 

1. Calculated using the parameter estimates from the All Random (Normal + Triangular) Model in Table 6.5 with 5000 random draws. 2. Values in the parenthesis are 

the sum of corresponding individual park losses.  
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6.2.2 Loss-to-trip Ratio and Aggregated Welfare Loss for Park Closures 

In interpreting the values in table 6.9, it is important to keep in mind that these 

are “per trip to the four states region,” whether the trip destination includes the lost 

park or not. In aggregating these values to total annual losses over all users, the 

number of parties traveling to all seven parks should be multiplied by the per party 

value. Another welfare measure that is commonly used is the loss-to-trip ratio. These 

are “per trip to a specific park.” In this case, aggregating the per-trip value to total 

annual losses over all users is accomplished by multiplying by the total number of 

parties traveling to the park of interest. This is often used in natural resource damage 

assessment where one knows the total number of trips lost to a specific park or parks 

and seeks the per trip value for that park(s). The loss-to-trip ratio is calculated as: 

 

 𝑙𝑡𝑡𝑟𝑚 = ∑ 𝐸𝑉𝑖
2719
𝑖=1 /∑ 𝜆𝑚

2719
𝑖=1 ,   (67) 

 

where ∑ 𝐸𝑉𝑖
2719
𝑖=1  is the total welfare loss during the sampling period that resulted from 

single/multiple park closures and ∑ 𝜆𝑚
2719
𝑖=1  is the weighted total number of trips taken 

to site 𝑚 (in this case it’s also the number of parties/adults/people that visited site 𝑚 

during the sampling period). Table 6.10 shows the loss-to-trip values per-party/per-

adult/per-person. All parks have similar loss-to-trip values, expect for Grand Canyon.   
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Table 6.10: Loss-to-trips Ratio for Individual Park Closures (2002$) 

Single Park Closures 

Per-Party  

Loss-to-trips Ratio 

Per-Adult  

Loss-to-trips Ratio 

Per-Person  

Loss-to-trips Ratio 

SL 

Model 

PSC 

Model 

MXL 

Model1 

SL 

Model 

PSC 

Model 

MXL 

Model1 

SL 

Model 

PSC 

Model 

MXL 

Model1 

Arches $185 $265 $165 $83 $119 $74 $62 $89 $56 

Bryce Canyon 183 278 162 80 122 71 58 88 52 

Canyonlands 172 259 153 79 119 70 62 93 55 

Grand Canyon 252 345 255 111 152 113 80 110 81 

Mesa Verde 176 250 156 80 114 71 56 80 50 

Petrified Forest 161 248 143 71 109 63 50 77 44 

Zion 189 280 167 85 125 75 61 90 54 

1. Calculated using the parameter estimates from the All Random (Normal + Triangular) Model in Table 6.5 with 5000 random draws.  
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The last welfare measure considered in this study is the aggregated welfare 

loss for individual park closures over the season (June 2002). It can be calculated 

using park data on visitation rates: 

 

 𝐴𝑔𝑊𝐿𝑚 = 𝑙𝑡𝑡𝑟𝑚,𝑝𝑒𝑟−𝑝𝑒𝑟𝑠𝑜𝑛  ∗ 𝑁𝑚,   (67) 

 

where 𝑁𝑚 is the total visitors to park 𝑚 during the month of June 2002. Visitation data 

is obtained from National Park Service Use Statistics9. Table 6.11 presents aggregated 

welfare loss for each park based on the different model estimates. These values range 

from $4.1 million for Canyonlands to $55.2 million for Grand Canyon using the PSC 

Model estimates.  

  

                                                 

 
9 National Park Service Visitor Use Statistics. Recreation Visitors by Month by Parks. 

https://irma.nps.gov/Stats/SSRSReports/Park%20Specific%20Reports/Recreation%20

Visitors%20By%20Month%20(1979%20-%20Last%20Calendar%20Year). A detailed 

explanation of visitor use counting procedures is also available at the website of 

National Park Service Visitor Use Statistics 

https://irma.nps.gov/Stats/SSRSReports/Park%20Specific%20Reports/Recreation%20Visitors%20By%20Month%20(1979%20-%20Last%20Calendar%20Year)
https://irma.nps.gov/Stats/SSRSReports/Park%20Specific%20Reports/Recreation%20Visitors%20By%20Month%20(1979%20-%20Last%20Calendar%20Year)
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Table 6.11: Aggregated Welfare Loss for Individual Park Closures and Total 

Visitors by Park  

Single Park Closures 

Aggregate Loss in June 2002 

(Millions of 2002$) 
Total Visitors in 

June 2002 

(Thousands) SL Model PSC Model MXL Model1 

Arches $6.3 $9.0 $5.6 101.1 

Bryce Canyon 7.5 11.4 6.7 129.2 

Canyonlands 2.7 4.1 2.4 44.0 

Grand Canyon 40.4 55.3 40.9 502.2 

Mesa Verde 4.5 6.4 4.0 80.2 

Petrified Forest 4.2 6.5 3.7 84.3 

Zion 20.0 29.5 17.6 329.4 

1. Calculated using the parameter estimates from the Grand Canyon Random Model in Table 12 with 1000 random 

draws. 
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CONCLUSION 

The main objective of this dissertation is to provide a new methodology for 

addressing the multiple-site visitation issue in the Travel Cost Model. Since the 

inception of the TCM, multiple-site visitations have been an issue that has been 

neglected by most researchers. As Myrick Freeman mentioned in his book: 

“In implementing the CK technique10, it must be assumed that the 

primary purpose of the recreation trip is to visit that site. When trips 

involve purposes other than visiting the site11, at least some portion of 

the total travel cost is a joint cost which cannot be allocated 

meaningfully to the visit.” A. Myrick Freeman III (1979), pp. 202 

Over the years, several approaches have been proposed to address the issue of 

allocating travel costs when multiple-site visitations are involved; however, these 

approaches have proven to be problematic for generalized application. Rather than 

attempting to divide total travel cost among sites, the portfolio-based strategy I 

propose instead considers bundling the sites and treating each bundle/portfolio as a 

single choice. Compared to other approaches this approach makes the model relatively 

more applicable. In cases where the trips are dominantly single-site visits, such as day 

trips for fishing or beach recreation, conventional travel cost models continue to be a 

                                                 

 
10 The “CK technique” refers to the Clawson-Knetsch travel cost method of demand 

estimation. 

11 Visiting two or more sites or to visit a relative en route. 

Chapter 7 
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valid approach. However, the portfolio-based approach can be applied to a much 

broader swathe of potential trips. For example, this approach can estimate costs for 

day trips for bird-watching (where viewers often move from one viewing site to 

another during the day), overnight trips where multiple recreation locations are visited, 

or trips to national parks in other countries where parks also cluster in certain regions. 

Although the data collection necessary for this type of application is relatively more 

time and labor consuming (as it usually needs to be conducted on site) and the 

weighting of the data to correct for sampling presents a non-trivial complication 

relative to conventional travel cost modeling approaches, as this dissertation has 

demonstrated both issues can be overcome using conventional surveys and 

econometric methods. 

This dissertation also provides estimates for the welfare losses that park users 

would incur in the event of a short-term closure of one or more national parks in the 

four states region. This portfolio-based approach is conducted in a utility-theoretical 

framework capable of generating per trip measures of value for the closure of 

individual sites or group of sites. The per party per trip welfare losses for closing 

individual parks range from $12 for the least popular park - Canyonlands to $161 for 

the most popular park – Grand Canyon (in 2002 dollars). The estimated per party loss-

to-trip ratio of individual park closures ranges from $143 to $255 (in 2002 dollars). 

These results provide useful information to assist in the assessment of current 

management and policy actions regarding national park closures due to natural 

disasters or environment hazards, such as wildfires, avalanches, oil spills, health and 

safety issues raised by abandoned mine lands, etc. In many environmental hazards 

related cases, instead of shutting down the entire park only portions of the national 
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parks are closed. More research is necessary to determine the welfare losses from 

these partial closures. One simple solution is to adjust the full welfare losses using the 

trip cancelation rates due to partial park closures. 

There are a few potential improvements which can be made in future studies. 

First, the per-trip value estimated in this study is confined to short-term impacts. 

Given the data collection method, all participants in this study are individuals who 

actually traveled to one or more of the national parks of interest. Thus, the data 

exclude any individuals who find out about a park closure in advance and cancel their 

entire trips. For future studies, combining an onsite portfolio choice survey with an 

offsite national survey focusing on individuals’ participation decision to get the rates 

of use can successfully incorporate these individuals’ participation decisions into the 

model and thus obtain per-trip values that are no longer confined to “short term” 

impacts. Another option is to include stated preference (SP) questions in the survey to 

collect information on how visitors adjust their trips if they become aware of the park 

closures before starting the trip. Second, the portfolio model presented in this 

dissertation only included national park dummies. Future studies can incorporate an 

additional set of site characteristics to allow for values for characteristics – such as 

environmental quality (water, land cover, etc.), the presence of wildlife, the number of 

trails, and other amenities. This empirical improvement could be easily incorporated 

within the realm of random utility theory and feasible based on practical data 

collection.   
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  TABLES 

Table C1: Intercept Survey Recruitment Schedule  

 
  

SOUTHWESTERN PARKS INTERCEPT SURVEY RECRUITMENT SCHEDULE (2002)

6/15

Sat.

6/16

Sun.

6/17

Mon.

6/18

Tues.

6/19

Wed.

6/20

Thur.

6/21

Fri.

6/22

Sat.

6/23

Sun.

Arches X X X X

Canyonlands

Island Entrance
X X

Canyonlands

Needles Entrance
X X

Bryce X X X X

Zion - South Entrance X X

Zion - East Entrance X X

Mesa Verde X X X X

Petrified Forest

North Entrance
X X

Petrified Forest

South Entrance
X X

Grand Canyon

Desert View Entrance
X X

Grand Canyon

South Rim Entrance
X X

Grand Canyon

North Rim Entrance
X X

Appendix C 
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Table C2: Target Sampling Rates  

 
  

Exhibit A-1

TARGET SAMPLING RATES

Park Entrance Target Sampling Rate
a

Arches Main Entrance 1 in 4

Bryce Canyon Main Entrance 1 in 4, 1 in 5, or 1 in 6
b

Canyonlands Island Entrance 1 in 1

Canyonlands Needles Entrance 1 in 1

Grand Canyon South Rim Entrance 1 in 9

Grand Canyon Desert View Entrance 1 in 2

Grand Canyon North Rim Entrance 1 in 2

Mesa Verde Main Entrance 1 in 3

Petrified Forest North Entrance 1 in 1

Petrified Forest South Entrance 1 in 1

Zion East Entrance 1 in 3

Zion South Entrance 1 in 6 or 1 in 7
c

a
 These represent target sampling rates; the actual sampling rates may have varied from these target rates for a variety of reasons.  For

example, at some entrances, the intercept location designated by NPS staff did not provide sufficient parking to intercept vehicles at

the target sampling rate during high-visitation time periods.  TRA personnel recorded information that will allow us to calculate the

actual sampling rate at all entrances for the RUM analysis.
b
 The target sampling rate varied depending on the number of gates open to vehicles entering the park.  The target rate was 1 in 5

when one gate was open, the target rate was 1 in 4 when two gates were open, and the target rate was 1 in 6 when three gates were

open.
c
 The target sampling rate varied depending on the number of gates open to vehicles entering the park.  The target rate was 1 in 7 when

one gate was open and 1 in 6 when two gates were open.
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Table C3: Visitation Data – Arches  

 

 

Table C4: Visitation Data – Bryce Canyon  

 

 

Table C5: Visitation Data – Canyonlands Entrance 1 

 

Exhibit A-2

ARCHES NATIONAL PARK MAIN ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data
a

    Vehicles Eligible for Intercept 1,018 897 844 851 836 967 918 1,091 1,065

    Vehicles Eligible for Intercept

and Re-entering Park

106 81 56 78 78 83 66 114 126

    Vehicles Ineligible for

Intercept

7 10 4 5 6 7 5 8 12

Cash Register Total 1,131 988 904 934 920 1,057 989 1,213 1,203

Car Counter Total 1,406 1,253 1,175 1,212 1,223 1,223 1,221 1,507 1,487
a
 Arches National Park did not maintain detailed cash register data on June 22 and June 23, when NPS temporarily suspended park

entry fees.  We estimate vehicles for June 22 by assuming that the percentage change in vehicles between June 22 and June 15 (the

previous Saturday) is equal to the percentage change in the car counter total between the two days.  We estimate vehicles for June

23 in a similar manner.

Exhibit A-3

BRYCE CANYON NATIONAL PARK MAIN ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 1,030 1,001 945 937 995 1,028 988 1,170 1,110

    Vehicles Eligible for Intercept and

    Re-entering Park

318 334 290 348 311 327 303 389 407

    Vehicles Ineligible for Intercept 170 214 208 209 231 236 179 175 187

Cash Register Total 1,518 1,549 1,443 1,494 1,537 1,591 1,470 1,734 1,704

Car Counter Total 1,682 1,787 1,537 1,784 1,835 1,750 1,802 1,912 1,970

Exhibit A-4

CANYONLANDS NATIONAL PARK NEEDLES ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 75 60 76 82 40 57 58 87 82

    Vehicles Eligible for Intercept and

    Re-entering Park

13 13 12 6 4 7 3 5 1

    Vehicles Ineligible for Intercept 4 1 17 10 17 18 13 6 2

Cash Register Total 92 74 105 98 61 82 74 98 85

Car Counter Total 136 106 137 153 124 124 123 123 126
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Table C6: Visitation Data – Canyonlands Entrance 2 

 

 

Table C7: Visitation Data – Grand Canyon Entrance 1 

 

 

Table C8: Visitation Data – Grand Canyon Entrance 2 

 

 

 

Exhibit A-5

CANYONLANDS NATIONAL PARK ISLAND-IN-THE-SKY ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 222 230 194 242 209 246 178 222 232

    Vehicles Eligible for Intercept and

    Re-entering Park

10 6 9 6 5 3 7 8 3

    Vehicles Ineligible for Intercept 0 4 11 10 12 12 6 9 8

Cash Register Total 232 240 214 258 226 261 191 239 243

Car Counter Total 299 314 283 315 302 316 296 322 255

Exhibit A-6

GRAND CANYON NATIONAL PARK DESERT VIEW ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 477 505 485 523 547 564 484 541 491

    Vehicles Eligible for Intercept and

    Re-entering Park

20 29 14 23 31 34 31 30 19

    Vehicles Ineligible for Intercept 46 57 74 28 61 48 50 59 67

Cash Register Total 543 591 573 574 639 646 565 630 577

Car Counter Total 1,697 1,733 1,822 1,818 1,867 1,874 1,787 1,888 1,792

Exhibit A-7

GRAND CANYON NATIONAL PARK NORTH RIM ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 487 462 362 415 496 491 392 349 543

    Vehicles Eligible for Intercept and

    Re-entering Park

29 45 20 25 63 35 13 12 40

    Vehicles Ineligible for Intercept 23 40 37 31 32 48 20 18 25

Cash Register Total 539 547 419 471 591 574 425 379 608

Car Counter Total 1,161 1,190 1,222 1,214 1,395 1,266 1,155 1,193 1,259
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Table C9: Visitation Data – Grand Canyon Entrance 3 

 

 

Table C10: Visitation Data – Mesa Verde 

 

Table C11: Visitation Data – Petrified Forest Entrance 1 

 

 

 

 

Exhibit A-8

GRAND CANYON NATIONAL PARK SOUTH RIM ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 2,206 2,228 2,420 2,350 2,477 2,341 2,303 2,989 2,363

    Vehicles Eligible for Intercept and

    Re-entering Park

486 564 556 681 704 644 596 517 546

    Vehicles Ineligible for Intercept 547 539 792 709 764 735 576 573 482

Cash Register Total 3,239 3,331 3,768 3,740 3,945 3,720 3,475 4,079 3,391

Car Counter Total 13,264 11,895 13,280 14,172 13,964 13,554 13,500 14,566 12,873

Exhibit A-10

PETRIFIED FOREST NATIONAL PARK PAINTED DESERT ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 326 384 449 463 400 292 320 241 401

    Vehicles Eligible for Intercept and

    Re-entering Park

9 6 5 3 7 0 6 5 5

    Vehicles Ineligible for Intercept 0 1 1 2 2 0 0 1 1

Cash Register Total 335 391 455 468 409 292 326 247 407

Car Counter Total 430 412 466 480 503 346 370 337 423

Exhibit A-9

MESA VERDE NATIONAL PARK MAIN ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 675 665 729 824 773 678 686 753 665

    Vehicles Eligible for Intercept and

    Re-entering Park

17 1 15 25 23 18 28 21 8

    Vehicles Ineligible for Intercept 21 27 69 44 58 52 89 44 27

Cash Register Total 713 693 813 893 854 748 803 818 700

Car Counter Total 1,908 1,909 2,119 2,362 2,387 2,179 2,058 1,916 2,248
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Table C12: Visitation Data – Petrified Forest Entrance 2 

 

Table C13: Visitation Data – Zion Entrance 1 

 

Exhibit A-12

ZION NATIONAL PARK SOUTH ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data
a,b

    Vehicles Eligible for Intercept 1,119 1,224 1,030 998 1,103 1,331 1,395 1,236 1,367

    Vehicles Eligible for Intercept and

    Re-entering Park

195 159 198 199 212 232 243 215 178

    Vehicles Ineligible for Intercept 106 96 113 127 170 194 203 117 107

Cash Register Total 1,420 1,479 1,341 1,324 1,485 1,757 1,841 1,568 1,652

Car Counter Total 2,369 2,179 2,268 2,150 2,330 2,447 2,564 2,617 2,435
a
 The cash register data for June 18 and June 19 included totals for each of the three entrances to Zion National Park (South, East, and

River).  However, for June 15, 16, 17, and 20, the cash register data only included overall totals that combined the three entrances.

For these four days, entrance-specific totals were calculated by assuming that the distribution across entrances was equivalent to the

distribution across entrances for June 18 and 19.
b
 Zion National Park did not maintain detailed cash register data June 21 to June 23 (on June 22 and June 23, NPS temporarily

suspended park entry fees).  We estimate vehicles for June 21 by assuming that the percentage change in vehicles between June 21

and June 20 is equal to the percentage change in the car counter total between the two days.  We estimate vehicles for June 22 and

June 23 in a similar manner, but by using the percentage change from June 15 (the previous Saturday) and June 16 (the previous

Sunday), respectively.

Exhibit A-11

PETRIFIED FOREST NATIONAL PARK RAINBOW FOREST ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data

    Vehicles Eligible for Intercept 219 235 268 295 269 218 172 85 176

    Vehicles Eligible for Intercept and

    Re-entering Park

1 0 2 5 4 0 1 2 2

    Vehicles Ineligible for Intercept 0 0 0 1 2 0 0 0 0

Cash Register Total 220 235 270 301 275 218 173 87 178

Car Counter Total 321 315 400 466 365 294 261 181 260
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Table C14: Visitation Data – Zion Entrance 2 

 

 

Table C15: Visitation Data – Zion Entrance 3 

 
  

Exhibit A-13

ZION NATIONAL PARK RIVER ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data
a,b

    Visitors Eligible for Intercept 240 263 221 215 237 285 286 268 323

    Visitors  Eligible for Intercept and

    Re-entering Park

75 61 76 70 88 89 89 84 75

    Visitors Ineligible for Intercept 16 14 17 15 30 29 29 18 17

Cash Register Total 331 338 314 300 355 403 404 370 415

Car Counter Total
c

-- -- -- -- -- -- -- -- --
a
 The cash register data for June 18 and June 19 included totals for each of the three entrances to Zion National Park (South, East, and

River).  However, for June 15, 16, 17, and 20, the cash register data only included overall totals that combined the three entrances.

For these four days, entrance-specific totals were calculated by assuming that the distribution across entrances was equivalent to the

distribution across entrances for June 18 and 19.
b
 Zion National Park did not maintain detailed cash register data June 21 to June 23 (on June 22 and June 23, NPS temporarily

suspended park entry fees).  We estimate visitors for June 21 by assuming that the percentage change in visitors between June 21 and

June 20 is equal to the percentage change in the car counter total between the two days (using car counter data from the South and

East entrances).  We estimate vehicles for June 22 and June 23 in a similar manner, but by using the percentage change from June 15

(the previous Saturday) and June 16 (the previous Sunday), respectively.
c
 The River Entrance is for walk-in visitors only.

Exhibit A-14

ZION NATIONAL PARK EAST ENTRANCE:

VISITATION DATA FOR JUNE 15, 2002 THROUGH JUNE 23, 2002

June 15 June 16 June 17 June 18 June 19 June 20 June 21 June 22 June 23

Cash Register Data
a,b

    Vehicles Eligible for Intercept 606 663 558 517 621 721 653 690 1,008

    Vehicles Eligible for Intercept and

    Re-entering Park

62 50 63 66 64 73 66 71 76

    Vehicles Ineligible for Intercept 43 39 46 57 64 79 71 49 59

Cash Register Total 711 752 667 640 749 873 790 810 1,143

Car Counter Total 990 812 1,116 913 971 1,113 1,007 1,128 1,235
a
 The cash register data for June 18 and June 19 included totals for each of the three entrances to Zion National Park (South, East,

and River).  However, for June 15, 16, 17, and 20, the cash register data only included overall totals that combined the three

entrances.  For these four days, entrance-specific totals were calculated by assuming that the distribution across entrances was

equivalent to the distribution across entrances for June 18 and 19.
b
 Zion National Park did not maintain detailed cash register data June 21 to June 23 (on June 22 and June 23, NPS temporarily

suspended park entry fees).  We estimate vehicles for June 21 by assuming that the percentage change in vehicles between June 21

and June 20 is equal to the percentage change in the car counter total between the two days.  We estimate vehicles for June 22 and

June 23 in a similar manner, but by using the percentage change from June 15 (the previous Saturday) and June 16 (the previous

Sunday), respectively.
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Table C16: Survey Response Rate by Park 

 

RESPONSE RATE BY PARK

Intercept Survey
a

Mail Survey

Total Eligible

for Survey

Total

Recruits

Response

Rate
b

Total Surveys

Completed

Response

Rate
c

Overall response rate

(intercept survey

response rate times

mail survey response

rate)

Arches 682 654 96% 490 75% 72%

Bryce 625 585 94% 423 72% 67%

Canyonlands 413 407 99% 303 74% 73%

Grand Canyon 1,251 1,241 99% 819 66% 65%

Mesa Verde 760 697 92% 483 68% 63%

Petrified Forest 577 556 96% 349 63% 60%

Zion 735 696 95% 444 64% 61%

Total 5,043 4,836 96% 3,311 68% 65%
a
 The intercept survey consisted of a very brief set of questions designed to evaluate the respondent's eligibility for a longer

mail survey (see Appendix C).  Eligible respondents (U.S. citizens 18 or older) were recruited to participate in the longer mail

survey.
b
 The response rate for the intercept survey was calculated as the number of recruits divided by the total number of eligible

respondents.
c
 The response rate for the mail survey was calculated as the total completed surveys divided by the total number of recruits

from the intercept survey.
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Table C17: Entry and Exit Points in the Four States Region 

Border Access Point Name 
IEc- 
code 

Access Point Type LAT LONG 

 Salt Lake City, UT 1 city (bus, train, airplane) 40.7883878 -111.9777731 

 Denver, CO 2 city (bus, train, airplane) 39.8584081 -104.6670019 

 Grand Jct, CO 3 city (bus, train, airplane) 39.1224125 -108.5267347 

 Alburquerque, NM 4 city (bus, train, airplane) 35.0402222 -106.6091944 

 Santa Fe,NM 5 city (bus, train, airplane) 35.6171086 -106.0894228 

 Phoenix, AZ 6 city (bus, train, airplane) 33.4341667 -112.0080556 

 Flagstaff, AZ 7 city (bus, train, airplane) 35.1384547 -111.6712183 

 Tucson,AZ  8 city (bus, train, airplane) 32.1160833 -110.9410278 

NV/UT I  80 9 road crossing - Interstate 40.73 -114.03 

 I 15 10 road crossing - Interstate 42.01 -112.21 

WY/UT I 80 11 road crossing - Interstate 41.28 -111.05 

 I 25 12 road crossing - Interstate 41.01 -104.93 

 I 76 13 road crossing - Interstate 41.01 -102.22 

 I 70 14 road crossing - Interstate 39.33 -102.04 

TX/NM I 40 15 road crossing - Interstate 35.18 -103.03 

 I 10 16 road crossing - Interstate 31.84 -106.58 

 I 19  17 road crossing - Interstate 31.37 -110.96 

 I 8 18 road crossing - Interstate 32.73 -114.59 

 I 10 19 road crossing - Interstate 33.64 -114.52 

CA/AZ I 40 20 road crossing - Interstate 34.74 -114.48 

AZ/NV I 15 21 road crossing - Interstate 36.83 -114.04 

 US 6/50 22 road crossing - secondary road 39.07 -114.06 

UT/ID I 84 23 road crossing - Interstate 42 -112.85 

 US 191 24 road crossing - secondary road 41.02 -109.46 

 
SR-789(WY) / SR-
13(CO) 

25 road crossing - secondary road 41.01 -107.65 

 US 6 26 road crossing - secondary road 40.58 -102.07 
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Table C17 Continued 

 US 50 27 road crossing - secondary road 38.04 -102.05 

 US 87/64 28 road crossing - secondary road 36.45 -103.04 

 US 84 29 road crossing - secondary road 34.4 -103.04 

 US 62/180 30 road crossing - secondary road 32.74 -103.07 

 US 285 31 road crossing - secondary road 32.02 -104.06 

 US 191 32 road crossing - secondary road 31.37 -109.58 

  US 93 33 road crossing - secondary road 35.99 -114.86 

 Cedar City, UT 34 city (bus, train, airplane) 37.7009664 -113.0988458 

 Page, AZ 35 city (bus, train, airplane) 36.9261111 -111.4483611 

 Gunnison, CO 36 city (bus, train, airplane) 38.5339444 -106.9330278 

 Springs, CO  37 city (bus, train, airplane) 38.8058056 -104.700 

 Durango, CO  38 city (bus, train, airplane) 37.1515167 -107.7537692 

 Farmington, NM  39 city (bus, train, airplane) 36.74125 -108.230 

 Gallup, NM  40 city (bus, train, airplane) 35.5110583 -108.7893094 

 
Grand Canyon (So. 
Rim) 

41 city (bus, train, airplane) 35.9523539 -112.1469647 

Note: For Coded entries 1-8 and 34-41, we used the lat/long for the city's main airport (see www.airnav.com). For Coded entries 9-33, 
we estimated the Lat/Long using "mouse rollover" on GIS. 
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Table C18: 111 Portfolio Specific Constant Model (Full set of PSC coefficients) 

Variable Coefficients t-statistics 

Travel Cost (in $1000) -4.985 -13.15 

Cost * Flextime 0.050 0.56 

Cost * Car Renter -0.227 -1.83 

Cost * Income (in $1000) 0.010 7.52 

Cost * Visited Other Sites 2.235 8.32 

PSC2 -0.715 -3.95 

PSC3 -2.330 -9.56 

PSC4 2.850 23.85 

PSC5 0.578 4.79 

PSC6 -1.460 -8.43 

PSC7 0.929 6.59 

PSC8 -2.022 -5.38 

PSC9 -0.050 -0.36 

PSC10 0.078 0.3 

PSC11 -1.092 -5.27 

PSC12 -3.151 -6.13 

PSC13 -0.694 -2.68 

PSC14 -3.129 -5.29 

PSC15 -0.033 -0.14 

PSC16 -17.449 -131.21 

PSC17 -3.090 -4.31 

PSC18 1.284 8.98 

PSC19 -1.212 -2 

PSC20 -3.211 -7.58 

PSC21 -3.622 -3.6 

PSC22 -2.914 -4.06 

PSC23 0.428 1.98 

PSC24 1.439 9.46 

PSC25 0.861 4.71 

PSC26 -1.787 -6.55 

PSC27 -1.596 -4 

PSC28 -3.740 -3.71 

PSC29 -1.692 -5.28 

PSC30 -0.767 -1.97 

PSC31 -1.848 -3.86 

PSC32 -3.027 -2.98 



 

 149 

Table C18 Continued 

PSC33 -0.033 -0.14 

PSC34 -1.111 -3.43 

PSC35 -0.456 -2.46 

PSC36 -2.654 -5.66 

PSC37 -1.788 -4.99 

PSC38 -0.404 -1.08 

PSC39 -0.803 -2.45 

PSC40 -1.320 -3.07 

PSC41 -2.957 -4.09 

PSC44 -2.579 -3.49 

PSC47 -0.376 -0.83 

PSC48 -1.117 -2.62 

PSC49 -1.044 -3.39 

PSC50 2.200 11.15 

PSC52 -0.713 -1.97 

PSC53 -0.478 -1.39 

PSC54 -16.261 -72.86 

PSC55 -2.270 -3.71 

PSC56 -2.142 -2.9 

PSC59 -16.877 -96.6 

PSC60 0.681 2.84 

PSC61 -0.361 -1.02 

PSC62 -0.205 -0.67 

PSC63 -2.269 -4.3 

PSC64 -0.489 -1.17 

PSC65 -1.225 -2.46 

PSC66 -2.976 -4.02 

PSC67 0.565 1.99 

PSC68 -0.757 -1.75 

PSC69 -0.792 -1.44 

PSC70 1.016 3.58 

PSC71 -1.901 -1.86 

PSC72 -0.648 -1.5 

PSC73 -0.460 -1.13 

PSC74 -1.403 -2.5 

PSC75 -0.834 -2.12 

PSC76 -0.682 -1.6 

PSC78 -3.096 -3.03 

PSC79 -2.156 -3.51 

PSC80 0.085 0.2 
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Table C18 Continued 

PSC81 -0.688 -1.3 

PSC82 -0.471 -0.91 

PSC84 -1.658 -2.17 

PSC85 -2.060 -2 

PSC86 0.037 0.07 

PSC88 -0.777 -1.41 

PSC89 -1.484 -1.44 

PSC90 -1.304 -2.37 

PSC91 1.053 3.27 

PSC92 1.396 5.1 

PSC93 -1.526 -1.49 

PSC94 -2.040 -2 

PSC95 -1.252 -1.64 

PSC96 0.199 0.36 

PSC98 0.352 0.74 

PSC99 -0.063 -0.13 

PSC100 -0.347 -0.64 

PSC101 2.090 6.31 

PSC102 -3.173 -3.07 

PSC103 0.502 1.45 

PSC104 -0.258 -0.65 

PSC105 -0.720 -1.36 

PSC106 0.635 1.64 

PSC107 1.571 4.37 

PSC109 -0.598 -1.32 

PSC111 -1.471 -1.92 

PSC112 -2.449 -2.39 

PSC113 -0.610 -1.02 

PSC114 -0.454 -0.59 

PSC115 -0.989 -1.27 

PSC116 -1.688 -1.62 

PSC118 0.792 2.12 

PSC120 -0.713 -0.67 

PSC121 2.481 6.02 

PSC122 2.008 5.02 

PSC123 -0.439 -0.67 

PSC124 0.915 2.18 

PSC125 -0.247 -0.41 

PSC127 1.945 4.23 
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Table C18 Continued 

Log-likelihood -7152.5593   

Sample size 2719  

 


