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2.8 Navier-Lamé Equations: Rigid Motions, Pressure, and Shear Waves . 18
2.9 The Resolvent Elastic Equation and its Calderón Calculus . . . . . . 20
2.10 The Resolvent Acoustic Equation and its Calderón Calculus . . . . . 22

3 FULL DISCRETIZATION OF THE 2D ELASTODYNAMIC
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ABSTRACT

We study the discretization of the equations describing the propagation of elastic

waves through a homogeneous medium and the transient interaction between acoustic

waves traveling on free space and interacting with scatterers with different sorts of

elastic properties.

In the case of plane elastodynamic waves a simple and efficient method based

on deltaBEM is developed for scatterers with smooth boundaries. We provide mathe-

matical and numerical evidence that the proposed discretization is the only choice of

the one-parameter family of discretizations proposed in [31] that provides third order

consistency for the operators of linear elasticity.

The remaining chapters of the thesis study the scattering of acoustic waves by

obstacles with linearly elastic, piezoelectric, and thermoelastic behavior. The proposed

formulations use a boundary potential representation of the scattered acoustic wave,

resulting in systems of boundary integral equations, in the case of a homogeneous

elastic scatterer, or coupled integro-differential systems for non homogeneous solids.

The analysis is done in the Laplace domain, following [6, 82] where the systems are

semi-discretized in space and the well-posedness of the continuous and semidiscrete

problems is proven simultaneously.

The equations are fully discretized using second order multi-step Convolution

Quadrature [91] for time evolution. We prove that the resulting fully discrete meth-

ods obtained with BDF2-CQ are of second order and provide explicit dependence of

the error constants with respect to time. Numerical evidence is given to show that

Trapezoidal Rule Convolution Quadrature yields a second order method as well.

xv



Chapter 1

INTRODUCTION

This work deals with the analysis and implementation of numerical schemes

for the solution of a class of time domain problems arising from either the study of

elastic waves propagating on a medium containing bounded rigid inclusions that act as

scatterers, or the interaction between an acoustic wave impinging on a bounded elastic

body.

These situations result in systems of partial differential equations (PDEs) posed

on unbounded domains with boundary conditions prescribed on a bounded hyper-

surface that divides the space into disjoint regions. In this context, and when the

coefficients of the PDE are constant, the linearity of the problem and the knowledge

of the fundamental solution can be used advantageously to transfer the problem into

an integral equation posed only on the dividing hypersurface.

In many applications, though, the coefficients of the PDEs reflect varying phys-

ical properties and are therefore not constant throughout the entire space. For linear

problems it would still be possible to treat such a system in terms of integral relations,

but the resulting equations would now be posed on the entire space and would require

also the approximation of the fundamental solution. These drawbacks would hinder

the integral equation approach to the point of it not being competitive with other

methods available.

There are situations of interest, however, where a wave propagating through a

homogeneous medium interacts with a bounded obstacle with varying physical proper-

ties. In such cases, the homogeneity of the unbounded medium allows for an integral

representation of the impinging wave, whereas the behavior of the bounded inhomoge-

neous region can be dealt with non-integral methods. This treatment leads to coupled
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integro-differential systems and the largest part of this work is devoted to the study of

the discretization and analysis of such kinds of problems.

The use of integral equation techniques in frequency domain scattering has

a long and rich history, but the development of efficient tools for the analysis and

discretization of time domain integral equations is recent and less extensive. The

fundamental steps for the analysis of transient integral problems were laid out by

Bamberger and Ha-Duong in their 1986 foundational papers [6, 7]. Their technique,

which involves the passage through the Laplace domain, provides an elegant and unified

approach and will be heavily used through this work.

Almost simultaneously, Christian Lubich developed Convolution Quadrature

(CQ) as a tool to solve discrete convolution equations [56, 89, 90], and a few years later

applied it to the solution of evolutionary PDEs [93, 92, 91]. CQ constitutes a powerful

tool for the discretization of time domain integral equations which, in combination

with the Laplace domain analysis, provides a clean way to establish stability bounds,

convergence estimates, and regularity requirements for the problem data. In the current

work we will focus on the usage of second order multi step CQ methods and their

combined use with standard time-stepping techniques for our time discretizations.

The most frequently used techniques for space discretization of integral equa-

tions are Nyström methods, collocation methods, and Galerkin methods. The Nyström

methods are relatively simple to understand conceptually and lend themselves easily

to computational implementation but require the careful handling of singular integrals

and specialized quadrature formulas that change with the equation under considera-

tion. The Galerkin approach, while considered slightly more demanding computation-

ally speaking, is robust and lends itself more easily to rigorous mathematical analysis.

In the present work we study briefly a Nyström-like technique for the discretization

of the integral operators of 2D linear elasticity based on the ideas behind deltaBEM

developed in [31]. For the analysis of the coupled problems in the later parts of the

text, however, we rely on Galerkin discretizations.

The thesis is structured as follows. Chapter 2 serves as a starting point providing
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a very quick refresher of the main concepts that are used throughout the rest of the work

fixing notation and terminology along the way. A reader familiar with the concepts and

results summarized here is well prepared to follow the flow of the remaining chapters.

Chapter 3 deals with the aforementioned Nyström-like discretization of the inte-

gral operators of the 2D elastodynamic Calderón calculus for a smooth parameterizable

curve in the plane. The method relies on the usage of symmetricaly staggered grids

on the scatterer and exploits symmetry to yield third order accuracy. We provide nu-

merical evidence supporting the convergence rate and give mathematical evidence that

for elastodynamics this is the only method of the deltaBEM family that achives third

order accuracy. This was done jointly with Vı́ctor Domı́nguez and Francisco-Javier

Sayas and was published in the paper [34].

In the remaining chapters we focus on the study of wave structure interactions

of different sorts. Chapter 4 considers an acoustic wave interacting with a linearly

elastic solid. In the first part the object is considered to be homogeneous, leading to

a purely boundary integral equation treatment. The second part considers the more

general case of an inhomogeneous anisotropic body and results in the discretization

of an integro-differential system. We prove well-posedness of the semi-discrete and

continuous problems simultaneously and provide a full discretization of order two with

Convolution Quadrature. This chapter was the result of work done in collaboration

with George Hsiao and Francisco-Javier Sayas that appeared in [66].

We next study the interaction between an acoustic wave and a piezoelectric sc-

tatterer in Chapter 5. The piezoelectric effect breaks the isotropy of the elastic medium

and introduces a new variable into the sytem, namely the electric potential on the di-

electric, wich couples with the elastic displacement through a constitutive relation that

generalizes the elastic stress tensor. The resulting PDE system includes two hyperbolic

equations (for the acoustic potential and elastic displacement) and one elliptic equation

for the electric potential. The proposed formulation deals with the acoustic scattered

wave with boundary integral equations and with the displacement and electric poten-

tials variationally. We prove the well-posedness of the coupled discretization in the
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Laplace domain and show that the BDF2-based CQ discretization is stable and second

order accurate for smooth enough problem data. This part of the work was done with

Francisco-Javier Sayas and has been submitted for publication [110].

When the thermodynamics of elastic deformation are considered, the resulting

constitutive relation includes the effect of temperature gradients as sources of mechan-

ical stress and introduces the temperature variations as an additional unknown. The

final Chapter 6 considers the scattering of acoustic waves by thermoelsastic obstacles

of this sort. The new system now includes two hyperbolic equations and one parabolic.

The acoustic unknown is treated with integral equations and the thermal and elastic

variables are discretized variationally aiming for a coupled BEM-FEM numerical treat-

ment. Trapezoidal rule and BDF2 CQ are used for time discretization and we provide

numerical evidence supporting a global second order discrete scheme. The work on this

chapter is still in progress in collaboration with George Hsiao, Francisco Javier Sayas

and Richard Weinacht [67].

The thesis concludes with two short appendices with the basic results we bor-

row from the theory of Banach space-valued time domain tempered distributions and

their Laplace transforms (Appendix A) and a brief introduction to the ideas behind

Convolution Quadrature and a terse summary of the main theorems we applied to the

time discretizations on the main body of the thesis (Appendix B).
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Chapter 2

NOTATION AND BACKGROUND MATERIAL

This chapter serves the purpose of fixing the notation, terminology, and geomet-

ric assumptions that that will be used throughout the thesis. It is a brief reminder of

the basic results from Sobolev spaces, linear elasticity and boundary integral equations

that are considered the starting point for the work and it is in now way intended to be

exhaustive.

For a thorough treatment of Sobolev spaces we refer to the books by Adams and

Fournier [1], and Haroske [58]. A concise treatment of the theory of elasticity from the

point of view of theoretical physics can be found in the work of Landau and Lifschitz [84]

while the books by Marsden [98], and Valent [122] provide a mathematically rigorous

treatment. The books by Hsiao andWendland [69], and McLean [102] are very complete

references for the basic results on boundary integral equations on non-smooth domains.

2.1 Sobolev Space Notation

Consider an open domain O ⊂ R
d with boundary ∂O. For scalar, vector, and

matrix-valued L2(O) inner products we will use respectively the brackets

(a, b)O :=

∫
O
a b, (a,b)O :=

∫
O
a · b, (A,B)O :=

∫
O
A : B,

where in the latter the colon denotes the Frobenius inner product of matrices. We will

retain the same notation even in the case when the functions take complex values and

will conjugate quantities explicitly whenever needed. When boldface is used instead of

italic to denote a Sobolev or Lebesgue space it should be interpreted as the product

space of d copies of the italicized space. For example, L2(Ω) := L2(Ω)d.
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Let n be a non negative integer. We will denote

‖u‖2n,O :=
∑
|α|≤n

∫
O
|∂αu|2,

where the sum is defined over the multi-index α ∈ Z
d
+. We also define the spaces

Hn(O) := {u : O −→ R : ‖u‖n,O < ∞} ,
Hn

0 (O) :=D(O),

where differentiation is taken in the sense of distributions, and the closure is taken

with respect to the norm ‖ ·‖n,O. The space D(O) of smooth compactly supported test

functions is defined by

D(O) := {φ : O −→ R : φ ∈ C∞(O) and supp φ ⊂⊂ O} .

For functions in H1(O) we can define the trace operator γ : H1(O) −→ L2(∂O) which

is linear and bounded [1]. To represent the space of all functions ϕ ∈ L2(∂O) such that

ϕ = γu for some u ∈ H1(O) and its dual we will write

H1/2(∂O) and H−1/2(∂O)

respectively and will denote with the angled brackets 〈λ, ϕ〉∂O the duality pairing of

λ ∈ H−1/2(∂O) and ϕ ∈ H1/2(∂O) – similarly for λ ∈ H−1/2(∂O) and ϕ ∈ H1/2(∂O) .

2.2 Geometric Set Up

Throughout the text, we will consider a solid body which, in the absence of

any external stimulus, adopts a fixed reference configuration described by an open,

bounded, not necessarily simply connected region Ω− ⊂ R
d with Lipschitz boundary

∂Ω− := Γ. Surrounding the solid body and filling the unbounded region Ω+ := R
d \Ω−

we will consider a barotropic and irrotational flow of a homogeneous, inviscid and

compressible fluid.

The outward normal vector defined on Γ will be denoted by ν. The mass density

of the body will be given by the function ρΣ ∈ L2(Ω−) which will be assumed to be
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strictly positive almost everywhere in Ω−. A schematic representation of the geometric

setup is found in Figure 2.1. Unless explicitly stated otherwise, in the analysis d will

remain an arbitrary positive integer.

Given u ∈ H1(Rd \Γ), we consider its interior, exterior, averaged, and difference

traces:

γ−u, γ+u, {{γu}} := 1
2
(γ−u+ γ+u), [[γu]] := γ−u− γ+u.

We will define the space

H1
Δ(R

d \ Γ) := {u ∈ H1(Rd \ Γ) : Δu ∈ L2(Rd \ Γ)} ,
that becomes a Hilbert space when equipped with the norm

‖u‖2Δ := ‖u‖2
Rd + ‖∇u‖2

Rd\Γ + ‖Δu‖2
Rd\Γ.

For functions u ∈ H1
Δ(R

d \ Γ) we define the interior and exterior normal derivatives

∂±
ν : H1

Δ(R
d \ Γ) −→ H−1/2(Γ) using Green’s formula

〈∂∓
ν u, γv〉Γ := ±(Δu, v)Ω∓ ± (∇u,∇v)Ω∓ ∀v ∈ H1(Rd).

The following two operators related to the normal vector field

N : H1/2(Γ) −→ H−1/2(Γ)

φ �−→ φ · ν,
Nt : H1/2(Γ) −→ H−1/2(Γ)

φ �−→ φν,

will be used to give rigorous meaning to some elements appearing in the transmission

conditions the we will be dealing with later on. Averaged normal derivatives and jumps

are defined just as the traces; analogously two-sided traces and conormal derivatives

will be defined for vector-valued functions.

2.3 Deformation, Motion, and Displacement

A deformation of the reference configuration is a C1 injection

φ : Ω− −→ R
d
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for some b ∈ R
d and some matrix M ∈ R

d×d such that

detM > 0 and M� = M−1.

For any given a deformation, the points of the reference configuration undergo a dis-

placement described by the function

u := φ− IΩ− ,

where IΩ− is the restriction of the identity function to the closure of the reference

configuration.

A motion of Ω− is a mapping φt from the real line to the set of deformations of

Ω−. For every x ∈ Ω− we will consider that φt(x) is of class C1 and will say that φt is

a rigid motion if it is a rigid deformation for every t ∈ R.

2.4 Strain and Linearized Strain Tensors

To keep the notation as compact as possible, in what follows we will use the

index summation convention

xixi :=
d∑

i=1

xixi.

Following the treatment of Landau and Lifschitz [84], consider a pair of points p1 and

p2 infinitesimally close in a reference configuration Ω−. If their location is represented

by their coordinates in a Cartesian coordinate system, and we let x = (x1, . . . , xd)

Ω Ω̂

φ

Figure 2.2: Under the action of a deformation the control volume Ω− is mapped to a deformed

configuration Ω̂−.
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denote the vector connecting them, then length dl = ‖x‖Rd can be given in terms of

its components by

dl2 = dxi dxi, i = 1, . . . , d,

where we have used Einstein’s summation convention. In a similar fashion, if the solid

undergoes a deformation φ, the points will be mapped to new locations φ(p1) and

φ(p2) and the length of the vector connecting the images dl̂ = ‖φ(p2) − φ(p1)‖Rd is

connected to its components by

dl̂2 = dx̂i dx̂i, i = 1, . . . , d.

Since the deformed coordinates are connected to the reference coordinates through the

displacement

x̂ = x+ u,

then dx̂i = dxi + dui and we can write

dl̂2 =(dxi + dui)(dxi + dui)

=

(
dxi +

∂ui

∂xj

dxj

)(
dxi +

∂ui

∂xl

dxl

)
= dxi dxi +

∂ui

∂xl

dxi dxl +
∂ui

∂xj

dxi dxj +
∂ui

∂xj

∂ui

∂xl

dxj dxl

= dl2 +

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

)
dxi dxj.

To obtain the last equality we have relabeled carefully the dummy indices and substi-

tuted dl2 = dxi dxi. This expression gives the change experienced by an infinitesimal

length element after a deformation in terms of the reference coordinates x and the

displacement u. It can be written in the compact form

dl̂2 = dl2 + 2Sijdxi dxj (2.1)

by defining the strain tensor

Sij :=
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

)
. (2.2)
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As is clear from the definition, the strain tensor is symmetric, and therefore it can

be diagonalized, at least locally. This fact has the physical interpretation that, when

viewed locally, deformations are the product of independent strains along orthogonal

directions which are referred to as the principal axes of the tensor. After diagonal-

ization, the values along the diagonal, called the principal values, are related to the

reaction of the solid to simple extensions along the principal directions.

As can be inferred from (2.1), small displacement gradients imply small defor-

mations, but the converse statement is not necessarily true. This is usually the case for

bodies that are considerably thinner in one space dimension relative to the others, such

as long rods or thin plates. In most other instances, small displacements imply small

displacement gradients and then the term
∂uk

∂xi

∂uk

∂xj

in (2.2) can be neglected yielding

the linearized strain tensor

εij :=
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.3)

We emphasize that in order for this linearization to be valid, the assumption of small

displacements in not enough and the smallness of the displacement gradients has to

be taken as an extra hypothesis. In what follows we will always assume that this two

conditions hold and will use exclusively the linearized strain tensor, to which we will

refer to as simply strain tensor. The previous expression is a component description,

every time we refer to the tensor without referencing the components it will be denoted

with boldface ε.

We will say that a deformation is an infinitesimal rigid deformation if there

exists a skew symmetric matrix M such that φ(x) = Mx+ b for some b ∈ R
d and for

every x ∈ Ω−.

The components of the linearized strain tensor can be interpreted as the in-

finitesimal deformations of a solid undergoing a displacement. The diagonal terms εii

encode the infinitesimal extension in each coordinate direction Δui by unit length Δxi

Δui

Δxi

≈ ∂ui

∂xi

=
1

2
εii,
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Figure 2.3: The normal strain εyy is a measure of the infinitesimal extension in the y direction

per unit length (left) . The shear strain εzy measures the total infinitesimal angular

deviation induced by a deformation with respect to the rectangular control volume in

the planes normal to ŷ and ẑ (right).

known as uniaxial extension. On the other hand, the off-diagonal terms εij i �= j contain

information on the reaction of the solid to shear strain. Consider an infinitesimal

rectangular control volume aligned along the coordinate axes as in Figure 2.3. Let θi

and θj denote the infinitesimal angular deviation of the faces of the control volume

with respect to the hyperplanes orthogonal to the coordinate axes xi and xj, then

θi + θj ≈ tan(θi) + tan(θj) =
Δui

Δxj

+
Δuj

Δxi

≈
(
∂ui

∂xj

+
∂uj

∂xi

)
= εij i �= j.

2.5 Korn’s Inequalities

The Jacobian matrix of the displacement vector and the strain tensor are strongly

related. In fact, the displacement gradient can be split as the sum of the strain tensor

ε and an anti-symmetric part ω

∇φ = ε+ ω,

where

ωij :=
1

2

(
∂φi

∂xj

− ∂φj

∂xi

)
. (2.4)
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It is then natural to ask under what conditions the L2 norm of the gradient can be

controlled by that of the strain tensor. The following results establish some general

conditions under which this can be done and will prove vital in establishing the unique

solvability of the Dirichlet and Neumann boundary value problems that will occupy us

later on.

Lemma 2.1 (First Korn inequality). Let Ω− ⊂ R
d, be an open domain. The following

inequality holds

‖∇u‖Ω− ≤
√
2‖ε(u)‖Ω− , u ∈ H1

0(Ω−). (2.5)

Proof. Let φ ∈ D(Ω−). Decomposing ∇φ into its symmetric and anti-symmetric parts

–as defined in (2.3) and (2.5)– it is easy to see that

∇φ : ∇φ� = ε(φ) : ε(φ)− ω(φ) : ω(φ).

On the other hand, using the fact that φ is infinitely differentiable, some algebraic

manipulations show that

∇φ : ∇φ� = ∇ · (∇φφ− ∇ · φφ) + (∇ · φ) : (∇ · φ).

Therefore, integrating over Ω−, we get∫
Ω−

(ε(φ) : ε(φ)− ω(φ) : ω(φ)) =

∫
Ω−

(∇ · (∇φφ− ∇ · φφ) + (∇ · φ) : (∇ · φ))

=

∫
Γ

(∇φφ− ∇ · φφ) · ν +

∫
Ω−

(∇ · φ) : (∇ · φ)

=

∫
Ω−

(∇ · φ) : (∇ · φ)

≥ 0,

where an application of the divergence theorem and the fact that φ is supported away

from Γ have been used. This yields ‖ω(ϕ)‖2Ω ≤ ‖ε(ϕ)‖2Ω− , and as a consequence

‖∇φ‖2Ω− = ‖ε(ϕ)‖2Ω− + ‖ω(ϕ)‖2Ω− ≤ 2‖ε(ϕ)‖2Ω− .

The result extends to H1
0(Ω−) by density.
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The proof of the following result, that holds for the case of functions u ∈
H1(Ω−), is quite technical and we refer to [46, 25] for the details.

Lemma 2.2 (Second Korn inequality). Let Ω− ∈ R
d be open, bounded and with Lips-

chitz boundary. There exists CΓ > 0 depending only on the geometry such that

‖u‖21,Ω− ≤ CΓ

(‖u‖2Ω− + ‖ε(u)‖2Ω−

)
, u ∈ H1(Ω−). (2.6)

This result can be stated in many alternative (or slightly more general) ways.

2.6 The Stress Tensor and the Equations of Motion

When subject to a deformation, the constitutive elements of a solid will react

exerting forces on each other in an attempt to counter the external agents inducing

the deformation and return to its equilibrium configuration. These internal restoring

forces are known as internal stresses and vanish in the absence of a deformation. In

order to describe them, we introduce the stress tensor

σ : Ω− −→ R
d×d

which is a second rank tensor whose component σij describes, for each x ∈ Ω−, the

i-th component of the internal stress crossing through a unit surface anchored at x and

normal to the j-th coordinate axis (See Figure 2.4). The projection of the stress tensor

onto the normal direction is known as normal traction and will be denoted alternatively

by

t(u) := σ ν.

Integrating the normal traction over the surface Γ we can compute the total flux of

stress across Γ, known as traction

T = −
∫
Γ

σ ν.

The negative sign is merely a convention; it emphasizes the fact that the quantity

computed in such a way points towards the outward direction, thus leaving the system.
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Consider the vectors x,y ∈ R
d, and the matrix M ∈ R

d×d we will define the

tensor product ⊗ and wedge product ∧ respectively by

(x⊗ y)ij := xiyj (x⊗M)ijk := xiMjk i, j, k = 1, . . . , d.

(x ∧ y)ij := xiyj − xjyi (x ∧M)ijk := xiMjk − xjMik i, j = 1, . . . , d.

Note that the wedge product is twice the anti-symmetric part of the tensor product and

thus, for two vectors, has at most d2−d
2

different non-zero components. In the particular

case of the wedge product of two vectors in R
3 this reduces to only three independent

entries and, by mapping the pairs of indices (2, 3) → 1, (3, 1) → 2, and (1, 2) → 3 it

is possible to identify the independent non-zero terms of the wedge product with the

usual components of the cross product in R
3.

If we denote by f = (f1, . . . , fd) : Ω− → R
d the volumetric density of the external

forces, then the total force and torque acting on the solid would be given respectively

by

F =

∫
Ω−

f , and τ =

∫
Ω−

x ∧ f .

When the external forces acting on the solid do not balance with the internal stress,

the resulting net force induces is a change in the linear momentum P of the body given

by
d

dt
P =

∫
Ω−

ρΣü,

where the dots represent differentiation with respect to time. Hence, from the balance

of forces and momentum we get∫
Ω−

fi +

∫
Γ

σij νj −
∫
Ω−

ρΣüi =

∫
Ω−

fi +

∫
Ω−

∂jσij +

∫
Ω−

ρΣüi = 0.

where the second equality is an application of the divergence theorem and ∂i denotes

differentiation with respect to the i-th coordinate. The fact that the integration volume

could have been any open subset of Ω− leads to one of the fundamental equations of

the theory of elasticity

∇ · σ + f = ρΣü in Ω−, (2.7)
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which is just the mathematical expression of the balance of forces and the change of

momentum. Similarly, imposing the balance of torques we get∫
Ω−

ρΣ(xiüj − xjüi) =

∫
Ω−

(xifj − xjfi) +

∫
Γ

(xiσjk − xjσik)νk

=

∫
Ω−

(xifj − xjfi) +

∫
Ω−

∂k(xiσjk − xjσik)

=

∫
Ω−

(xifj − xjfi) +

∫
Ω−

(σji − σij + xi∂kσjk − xj∂kσik).

One more time, the integrals could have been taken over any arbitrary subset of Ω−

which leads to

x ∧ (f +∇ · σ − ρΣü) + σ� − σ = 0 in Ω−.

As a consequence of equation (2.7), the term in the parenthesis vanishes and we arrive

to the important fact that

σ� = σ,

i.e., the stress tensor is symmetric.

Figure 2.4: The components of the stress tensor measure the flux density force due to the internal

restoring forces. At any given point x the product σ v gives the internal stress crossing

a unit surface centered at x and oriented normally with respect to v. The figure shows

the x, y, and z components of the flux through the face of the cube normal to the

y-axis.

2.7 Hooke’s Law and Betti’s Formula

The way in which the internal stresses are connected to the external strains

applied to a body is known as a constitutive relation and depends entirely on the
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properties of the body in question. In some cases the stress tensor does not only

depend on the internal strains ε (as will be the case in Chapters 2 and 3) but also on

some other physical variables like the electric potential ψ (Chapter 4) or the internal

temperature θ (Chapter 5). The particular choice of functional dependence

σ = F (ε, ψ, θ, . . .)

is a question of modeling. Once the functional dependence has been determined it can

be substituted in equation (2.5) and the resulting PDE will describe the dynamics of

the system in terms of the physical parameters and the external forces. Many different

choices, applicable to a wide range of elastic solids have been tried in the literature.

Throughout this work explore three particular choices relating linearly the stress tensor

to the strain, the strain and the electric potential, and the strain and the temperature.

The simplest constitutive relation between the shear and the stress tensors for

a general inhomogeneous and anisotropic material is given by Hooke’s Law

σ = C ε. (2.8)

Here for every x ∈ Ω− the elastic stiffness tensor C(x) is a fourth order tensor that

will be assumed to satisfy the following properties

Cijkl ∈ L∞(Ω−) , Cijkl = Cjikl = Cklij, (i, j, k, l = 1, . . . , d),

and that for any symmetric matrix M ∈ R
d×d
sym there exists c0 > 0 such that for almost

every x ∈ Ω−

c0M : M ≤ C(x)M : M.

In analogy with the scalar case it will be useful to define the space

H1
Δ∗(Rd \ Γ) := {u ∈ H1(Rd \ Γ) : ∇ · σ(u) ∈ L2(Rd \ Γ)}

and endow it with the norm

‖u‖2Δ∗ := ‖u‖2
Rd + ‖∇u‖2

Rd\Γ + ‖∇ · σ(u)‖2
Rd\Γ.
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For functions from this space and under the above assumptions on C, a simple appli-

cation of the divergence theorem yields the following generalization of Green’s identity

which we use as a definition of the weak normal traction. Let Ω− ⊂ R
d be an open

domain with Lipschitz boundary Γ and let u ∈ H1
Δ∗(Rd \ Γ), then

〈σ(u)ν∓, γv〉Γ := ±(σ(u), ε(v))Ω∓ ± (∇ · σ(u),v)Ω∓ ∀v ∈ H1(Rd). (2.9)

This result, known as Betti’s formula, plays the role of an integration by parts formula

and will be used extensively.

2.8 Navier-Lamé Equations: Rigid Motions, Pressure, and Shear Waves

For the remaining of this chapter we will consider that the elastic medium is

isotropic. Under these conditions (see for instance [47, 77]), the stiffness tensor is

diagonal and can be expressed in terms of two independent parameters as

Cijkl = λδijδkl + μ(δikδjl + δilδjk), (2.10)

where the Kronecker symbol δij denotes the components of the d× d identity matrix,

and the parameters μ and λ (known as the shear modulus and Lamé’s second parameter

respectively) are functions in L∞(Ω−) satisfying almost everywhere in Ω−

μ > 0 and λ+ 2
3
μ > 0.

These quantities have physical interpretation: the shear modulus μ is a measure of the

medium’s resistance to shear strains, while the bulk modulus K := λ+ 2
3
μ measures the

resistance to uniform compression. Both of them have units of pressure.

With this assumption, Hooke’s law (2.8) reads

σij = 2μεij + λ∂kukδij,

and upon substitution of this expression into the equation of balance of forces (2.7) we

obtain the Navier-Lamé equations for the elastic displacement vector u

∇ · (2με(u) + λ∇ · u I) + f = ρΣü in Ω−. (2.11)
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The case of varying coefficients will be treated in Chapters 4 through 6, but for the

time being we will focus on a homogeneous solid for which both λ and μ are constant.

We would like to find out if in the absence of external forces (f = 0) equation (2.11)

admits traveling wave solutions, i.e. non trivial elastic displacements of the form

u(ct− x · d),

where c is the constant propagation speed and d is a unit vector pointing towards the

direction in which the wave propagates. Letting

u′ :=
du

ds
, s := ct− x · d,

a simple application of the chain rule yields for the components of the elastic displace-

ment

üi = c2u′′
i and ∂jui = −dju

′
i.

Substituting these expressions into (2.11), recalling that ‖d‖2 = didi = 1, and simpli-

fying it follows that the components of the traveling wave must satisfy

μu′′
i + (μ+ λ)didju

′′
j = ρΣc

2u′′
i . (2.12)

Multiplying both sides by di this implies

(2μ+ λ− ρΣc
2)dju

′′
j = 0.

We must consider three distinct cases:

(a) If u′′
j = 0 for all j = 1, . . . , d we have the simplest instance for which the last

equation holds. In this case

uj = aj(ct− xkdk) + bj

for constants aj, bj ∈ R and hence

u = −(a⊗ d)x+ cta+ b

is an infinitesimal rigid motion.
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(b) If dju
′′
j = 0 and the wave is not a rigid motion then the elastic displacement and the

propagation direction are orthogonal and we call the wave a shear wave. Moreover,

(2.12) becomes

μu′′
i = ρΣc

2u′′
i

and since we have excluded rigid motions we must have for the propagation speed

cT :=

√
μ

ρΣ
. (2.13)

The subscript T in the definition stresses the fact that shear waves are transversal.

(c) If 2μ+ λ = ρΣc
2, then we define

cL :=

√
λ+ 2μ

ρΣ
, (2.14)

and (2.12) implies that

u′′
i = didju

′′
j .

If u is not a rigid motion, then the last equality implies that the elastic displacement

is parallel to the direction of propagation. In this case we call the wave a pressure

wave; the subscript L on the definition of the wave speed stands for the fact that

pressure waves are longitudinal.

2.9 The Resolvent Elastic Equation and its Calderón Calculus

This section uses some non-standard language on vector-valued causal disti-

butions (see Appendix A). When the transient elastic wave equation (2.7) is consid-

ered in absence of forcing terms and in the sense of causal tempered distributions

CT(H1
Δ∗(Ω±)), its Laplace transform is given by

ρΣ s2 u = ∇ · σ(u). (2.15)

(We will use the same symbol for the unknown of the time domain and in the Laplace

domain, since the treatment will always be done separately.) The time-harmonic wave

equation is equation (2.15) with s = −ıω, where ω is the frequency. We note that when
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(2.15) is posed in an exterior domain like Ω+ it requires the Kupradze-Sommerfeld ra-

diation condition at infinity (see for instance [3, Section 2.4.3]), but when s takes values

in C+ := {s ∈ C : Re s > 0}, the radiation condition is substituted by demanding that

u ∈ H1(Ω+).

Let us now consider for any s ∈ C+, the transmission problem

ρΣ s2 u =∇ · σ(u) in R
2 \ Γ,

[[γu]] =ψ ∈ H1/2(Γ), (2.16)

[[tu]] =η ∈ H−1/2(Γ),

admits a unique solution in the Sobolev space H1(R2 \ Γ), as follows from a simple

variational argument. The solution of this problem is a linear function of the densities

ψ and η and will be written in the form

u = S(s)η −D(s)ψ. (2.17)

The operators S(s) and D(s) are respectively called the single and double layer re-

solvent elastic potentials. For the particular case when s = −ik they reduce to the

elastodynamic Single and Double layer potentials. By definition,

[[γS(s)η]] = 0, [[tS(s)η]] = η, [[γD(s)ψ]] = −ψ, [[tD(s)ψ]] = 0, (2.18)

for arbitrary densities η and ψ. We then define the four associated boundary integral

operators

V(s)η := {{γS(s)η}}, Kt(s)η := {{tS(s)η}}, (2.19a)

K(s)ψ := {{γD(s)ψ}}, W(s)ψ := − {{tD(s)ψ}}. (2.19b)

Explicit integral expressions of the potentials and operators (2.17) and (2.19) in two

dimensions will be given in Chapter 2. The expressions in three dimensions can be

found in [76, 3]. Given (2.18)-(2.19) we can easily derive the jump relations:

γ±S(s) =V(s), t±S(s) = ∓ 1
2
I+Kt(s), (2.20a)

γ±D(s) = ± 1
2
I+K(s), t±D(s) = −W(s). (2.20b)
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The operators (2.19) receive the following respective names: single layer, transpose

double layer, double layer, and hypersingular operators.

2.10 The Resolvent Acoustic Equation and its Calderón Calculus

We now define the acoustic counterpart of the operators of the previous section

and some essential properties the will be used constantly on this work, a thorough

treatment and explicit expressions of the potentials and operators can be found in [69].

The single and double layer operators associated to the Laplace resolvent equation (the

Laplace transform of the wave equation) can be defined as the solution of a transmission

problem. For given (ϕ, η) ∈ H1/2(Γ)×H−1/2(Γ) and any s ∈ C+, the problem of finding

v ∈ H1(Rd \ Γ) satisfying

Δv − (s/c)2v = 0 in R
d \ Γ,

[[γv]] = ϕ, (2.21)

[[∂νv]] = η,

has a unique solution, which we write in terms of two linear operators, known as the

single (S) and double (D) layer potentials

v = S(s/c)η −D(s/c)ϕ. (2.22)

These potentials satisfy jump relations completely analogous to those of the elastic

operators, namely

[[γS(s)η]] = 0, [[∂νS(s)η]] = η, [[γD(s)ψ]] = −ψ, [[∂νD(s)ψ]] = 0. (2.23)

Associated to the potentials, we can define four integral operators

V(s) := {{γ · }}S(s) = γS(s), K(s) := {{γ · }}D(s), (2.24a)

Kt(s) := {{∂ν · }}S(s), W(s) := −{{∂ν · }}D(s) = −∂νD(s). (2.24b)

These operators satisfy the limit identities (jump relations)

γ±S(s) =V(s), ∂ν ± S(s)= ∓ 1
2
I + Kt(s), (2.25a)

γ±D(s) = ± 1
2
I + K(s), ∂±

ν D(s) = −W(s). (2.25b)

22



Chapter 3

FULL DISCRETIZATION OF THE 2D ELASTODYNAMIC
CALDERÓN CALCULUS

In this Chapter we deal with work that was published in the paper A fully

discrete Calderón calculus for the two-dimensional elastic wave equation [34], done in

collaboration with Vı́ctor Domı́nguez and Francisco-Javier Sayas, concerning the simul-

taneous discretization of all integral operators that appear in the Calderón projector

for the time-harmonic elastic wave equation on a smooth parameterizable curve in the

plane. We give experimental evidence that the method proposed is of order three for all

computed quantities in the boundary, and also for potential postprocessings. The work

is an extension of the deltaBEM method developed in [31] for the Helmholtz equation,

where a fully discrete Calderón calculus for the acoustic wave equation was developed.

Unlike that case, where a one-parameter family of discretizations was defined,

we will give mathematical evidence that for elastodynamics there is a single third-order

method of this family. To obtain a fully discrete method for transient problems we take

advantage of Lubich’s Convolution Quadrature techniques [89, 90, 91].

The chapter is structured as follows. We first provide a short background for

reduced quadrature methods for periodic integral equations on smooth plane curves. In

Section 3.2 we introduce the main discrete elements (sampling of the curve, mixing ma-

trices) and give a general interpretation of the methods to be defined as non-conforming

Petrov-Galerkin methods with very precisely chosen quadrature approximation. In

Sections 3.3 and 3.4 we present respectively the discrete layer potentials and integral

operators. In Section 3.5 we give mathematical justification of why the shape of the

testing devices (that were named “fork” and “ziggurat” in [31]) provides order three
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consistency errors for the periodic Hilbert transform, which is the only integral oper-

ator that appears in the set of boundary integral equations for elasticity and not for

acoustic waves. In Section 3.6 we give a treatment of smooth open arcs using a double

cosine sampling of the arc and repeating the same ideas of the previous sections. Fi-

nally, in 3.7 we present numerical experiments and convergence studies in the frequency

domain, the time domain (using Convolution Quadrature) and for crack problems.

Some background. Let us first give some context to this work. Quadrature

methods for periodic integral (and pseudo-differential) equations appeared in the work

of Jukka Saranen. In particular, in [111], it was discovered that logarithmic integral

equations can be given a very simple treatment providing methods of order two with

simple-minded discretization arguments, as long as some parameters were chosen in

a particular (and not easy to justify) way. Related references are [112], [119], and

[22]. Exploiting these ideas, an equally simple quadrature method of order three for a

system of integral equations, that combined the single layer and double layer operators,

was given in [33]. A recent article [32] opened new ways by offering an extremely

simple form of discretizing the hypersingular operator associated to the Helmholtz

equation in a smooth closed curve. As a consequence, there was a chance of creating

a full discretization of all operators for the Helmholtz equation [30], using O(N2)

evaluations of the kernels and obtaining second order approximations for all unknowns

in a wide collection of integral equations that could be discretized simultaneously. It

was then in [31] where it was discovered that a symmetrization process led to order

three discretizations. Consistency error estimates for the second order methods were

given in [30], taking advantage of already existing results. The consistency analysis of

the order three methods is the subject of current research.

There are two reasons why the extension of the techniques of [31] to the realm

of elastic waves is not straightforward. The first of them is the fact that the double

layer operator and its adjoint contain a strongly singular operator (a perturbation of

the periodic Hilbert transform) that makes the operators of the second kind much

more difficult to handle. We show (with experiments and with rigorous mathematical
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justification) that the consistency error of our type of discretizations when applied to

the periodic Hilbert transform has order three. The second difficult ingredient is the

need for a regularized formula (à la Nédélec-Maue) that is compatible with our way

of discretizing the other operators. While the regularized formula for static elasticity

is easy to find in the literature [103], the dynamic case is much more involved. For

instance, in [23] the authors opt for a subtraction technique, where the regularized

static hypersingular operator is used and then the difference between the time-harmonic

and the static operators is prepared for discretization. Here we will use a formula

due to Frangi and Novati [49], which we fully develop so that our results can be

easily replicated. For more literature on regularization of hypersingular operators in

elastodynamics we refer to [49].

Remark. In this chapter the adjoint double layer operator will be denoted by

J(s) instead of the usual notation Kt(s). This is due to the fact that the discretization

of K(s) and its adjoint will be done separately, in different discrete spaces and not by

transposition.

3.1 Problem Statement

The distributional version of the transmission problem (2.16)

ρΣ s2 u = ∇ · σ(u) in R
2 \ Γ, [[γu]] = ψ, [[tu]] = η,

will be considered for the case when Γ is a smooth 1-periodic parametrized curve and

the two parametrized densities ψ,η : R → C
2 are vector-valued smooth 1-periodic

functions. In this chapter we are not going to worry about the construction of well-

posed integral equations for different boundary value problems for the elasticity equa-

tion (2.15). Instead, following [30]-[31], we will simultaneously discretize the potentials

(2.17), the operators (2.19), and the two identity operators in (2.20) in a way that is

stable and compatible, so that all these elements can be used to build discrete coun-

terparts of well-posed boundary integral equations for elastic waves.
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We will assume that the closed simple curve Γ ⊂ R
2 separating a bounded

domain Ω− from its exterior Ω+ is given by a smooth, positively oriented, 1-periodic

parametrization

x = (x1, x2) : R → Γ

satisfying |x′(t)| > 0 for all t. For a given smooth enough vector field u : R2 \ Γ → R
2,

we will define its parametrized traces (in the style of [75, Section 8.2])

γ±u := u± ◦ x : R → R
2.

The parametrized normal tractions on both sides of Γ are defined by

t±u := (σ(u) ◦ x)ν : R → R
2.

Note that the choice for a non-normalized normal vector field simplifies a boundary-

parametrized version of Betti’s formula (2.9)∫
Ω±

(
σ(u) : ∇v + (∇ · σ(u)) · v

)
= ∓

∫ 1

0

(t±u)(τ) · (γ±v)(τ)dτ,

where the divergence operator acts row-wise when applied to a matrix-valued function.

3.2 Discrete Elements and Mixing Operators

The curve Γ will be sampled three times, once for the location for densities

(sources) and twice for the location of collocation points (targets). The sampling is

exactly the same as in [31]. We choose a positive integer N , define h := 1/N and

sample midpoints, breakpoints, and normals on the main grid (sources):

mj := x(j h), bj := x((j − 1
2
)h), νj := hν(j h). (3.1)

This is done for j ∈ ZN , that is, the points are indexed modulo N . We then repeat

the same process by shifting the uniform grid in parametric spaces ±h/6:

m±
i := x((i± 1

6
)h), b±

i := x((i− 1
2
± 1

6
)h), ν±

i := hν((i± 1
6
h). (3.2)

This is all the information that is needed from the parametric curve Γ. Once these

elements are sampled, we do not need the parametrization of the curve any longer. It
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is important to emphasize that all the following constructions can be easily extended

to multiple scatterers. The details are given in [31]. As explained in that reference, we

only need to create a next-index counter. The choice of the ±1/6 shifting parameter

is justified in [31, Section 4] by an argument that chooses the optimal shifting of a

trapezoidal rule applied to periodic logarithmic operators. This idea can be traced

back to [111]. In short, if log#(t) := log(4 sin2(πt)) is a periodic logarithmic function,

then for a smooth enough 1-periodic function φ∫ 1

0

log#(t−τ)φ(τ)dτ−h
N∑
j=1

log#(t−j h)φ(j h) = O(h2) ⇐⇒ t = (i± 1
6
)h. (3.3)

In order to introduce some matrices relevant to the method, we will use the following

notation: TC(a1, . . . , aN) is the Toeplitz Circulant matrix whose first row is the vector

(a1, . . . , aN).

We first introduce a block-diagonal matrix with circulant tridiagonal blocks:

Q :=

⎡⎣ Qsc 0

0 Qsc

⎤⎦ , Qsc :=
1
24
TC (22, 1, 0, . . . , 0, 1) . (3.4)

The coefficients of the ‘scalar’ operator Qsc are related to a look-around quadrature

formula ∫ 1
2

− 1
2

φ(t)dt ≈ 1

24
(φ(−1) + 22φ(0) + φ(1)), (3.5)

which has degree of precision three. We also need two matrices that will be used

for averaging the information on the two observation grids. Both of them are block

diagonal with circulant bidiagonal blocks:

P± :=

⎡⎣ P±
sc 0

0 P±
sc

⎤⎦ , P+
sc :=

1
12
TC(5, 0, . . . , 0, 1), P−

sc := (P+
sc)

t. (3.6)

The matrices P±
sc are particular cases of a one-parameter dependent construction of

numerical schemes in [31]. As we will justify in Section 3.5, this is the right choice of

parameters to sample correctly some periodic Hilbert transforms that appear in the

double layer operator and its transpose.
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In this context, the identity operator will be approximated by the block-diagonal

matrix

M :=

⎡⎣ Msc 0

0 Msc

⎤⎦ , Msc :=
1
9
TC(7, 1, 0, . . . , 0, 1). (3.7)

The final matrix to be introduced in this section corresponds to differentiation:

D :=

⎡⎣ Dsc 0

0 Dsc

⎤⎦ , Dsc := TC(−1, 1, 0, . . . , 0). (3.8)

A formal explanation. After parametrization (see the formulas in Sections

3.3 and 3.4), potentials and integral operators for two-dimensional linear elasticity

can be seen as acting on periodic functions and, in the case of the integral opera-

tors, outputting periodic functions. In the variational theory for boundary integral

equations, traces take values in the Sobolev space H1/2(Γ) and normal stresses in its

dual H−1/2(Γ). These spaces are used as trial spaces and also as test spaces. The

main idea behind the methods in [31] (a paper devoted to acoustic waves) is using a

non-conforming discretization for the spaces H±1/2, which are the 1-periodic Sobolev

spaces we obtain after parametrizing Γ in H±1/2(Γ). Let now δt denote the periodic

Dirac delta concentrated at the point t, or, better said, the Dirac comb concentrated

at t+ Z. There are four kinds of elements in the discrete Calderón calculus:

• The unknowns that live in H−1/2 are approximated by linear combinations of δjh.

• Whenever H−1/2 plays the role of a test space (i.e., the output of the operator is in

H1/2), we use a testing device made of symmetric combinations of Dirac deltas in

the companion meshes:

a

2
(δ(i−1/6)h + δ(i+1/6)h) +

1− a

2
(δ(i−5/6)h + δ(i+5/6)h). (3.9)

As we have already mentioned, the choice of moving the grid ±1/6h is forced by the

need to correctly sample the logarithmic kernel singularities (3.3). By periodicity,

the grids displaced ±5/6h are the same as those displaced ∓1/6h, and therefore,

all Dirac deltas in the testing device (3.9) satisfy the second order condition (3.3).

Third order is actually attained thanks to symmetry in (3.9).
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• For unknowns in H1/2, we use piecewise constant functions, spanned by the periodic

characteristic functions defined by χ′
j = δ(j−1/2)h − δ(j+1/2)h.

• When H1/2 is used as a test space (i.e., the operator has output in H−1/2), we test

the equation by the piecewise constant functions ξi defined by

ξ′i =
a

2
(δ(i−1/2−1/6)h + δ(i−1/2+1/6)h) +

1− a

2
(δ(i−1/2−5/6)h + δ(i−1/2+5/6)h)

−a

2
(δ(i+1/2−1/6)h + δ(i+1/2+1/6)h)− 1− a

2
(δ(i+1/2−5/6)h + δ(i+1/2+5/6)h).

Whenever a Dirac delta acts on a kernel (as input or as a test), this one is automat-

ically evaluated and there is no need for further approximation. Nevertheless, if a

piecewise constant function is used, there are still integrals to be approximated. These

are decomposed as combinations of integrals of the kernels on intervals of length h and

then approximated using the look-around formula (3.5). As shown in [31], all values

of a ∈ [1/2, 1] give order three methods valid for the acoustic Calderón calculus. The

choice a = 1 gives the simplest test functions. The choice a = 5/6 gives the linear

combinations that produce the mixing matrices (3.6). The corresponding testing de-

vices were named the fork and the ziggurat (see Figure 3.1). We will see in Section 3.5

that this choice is the only one that provides order-three discretizations of the Hilbert

transform-style operators that appear in elastodynamics and not in scalar waves.

3.3 Layer Potentials

Densities will be discretizations of 1-periodic vector fields. At the discrete level,

these will become vectors in C
2N ≡ C

N × C
N . In principle, we will think of discrete

densities as vectors of 2N entries, where the first N entries discretize the first com-

ponent of the continuous vector field, and are followed by N entries for the second

component. Consider then an operator C2N → C
2M , given through left-multiplication

by a (2M) × (2N) matrix, say A. This matrix can be decomposed in four M × N
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1
6
h

i− 2 i− 1 i i+ 1 i+ 2 i− 2 i− 1 i i+ 1 i+ 2

i− 2 i− 1 i i+ 1 i+ 2 i− 2 i− 1 i i+ 1 i+ 2

Figure 3.1: Left: A sketch of a sampled geometry and the companion grids on the scatterer (top)

and on parametric space (bottom). The collocation points are shown as white dots,

while the quadrature points are shown as crosses. Top Row : A sketch of the shapes

of the fork and the ziggurat, the main testing devices of the fully discrete Calderón

calculus. Bottom Row: The delta and piecewise trial functions for H−1/2 and H1/2

respectively.

blocks. Alternatively, in can be presented by MN blocks of 2 × 2 size. Thus, we will

write

Aij :=

⎡⎣ aij ai,j+N

ai+M,j ai+M,j+N

⎤⎦
to make a simpler transition from the continuous expressions to the discrete ones.

In the expression for the fundamental solution of equation (2.15) we use of the

definitions of the longitudinal and transversal speeds cL and cT given in (2.13), and

(2.14) and will further denote

ξ :=
cT
cL

=

√
μ

λ+ 2μ
.

We will make ample use of the modified Bessel function of the second kind and order

n, Kn, for non-negative integer n. To translate from the Laplace domain notation to

frequency domain notation, recall that s = −ıω and

Kn(s) =
πı

2
e

nπı
2 H(1)

n (ıs) =
πı

2
e

nπı
2 H(1)

n (ω).
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The following two functions

ψ(r) := K0(r/cT ) +
cT
r
(K1(r/cT )− ξK1(r/cL)) , (3.10a)

χ(r) := K2(r/cT )− ξ2K2(r/cL), (3.10b)

and their first derivatives will also be used.

The fundamental solution of the elastic wave equation (2.15) is given by:

E(r; s) :=
1

2πμ

(
ψ(s r)I2 − χ(s r)

r2
r⊗ r

)
, r := |r|, r⊗ r :=

⎡⎣ r21 r2r1

r1r2 r22

⎤⎦ .
(3.11)

The parametrized single layer potential is given by

S(s; z)η :=

∫ 1

0

E(z− x(τ); s)η(τ)dτ, z ∈ R
2 \ Γ, (3.12)

for a (1-periodic) density η : R → C
2. A discrete density η ∈ C

2N (or, in functional

notation, η : ZN → C
2) can be presented by pairs of entries

ηj :=

⎡⎣ ηj

ηj+N

⎤⎦ .
The associated discrete single layer potential is then defined by

Sh(s; z)η :=
N∑
j=1

E(z−mj; s)ηj z ∈ R
2 \ Γ. (3.13)

The kernel function for the elastic double layer potential

D(s; z)ψ :=

∫ 1

0

T (z− x(τ),ν(τ); s)ψ(τ)dτ, z ∈ R
2 \ Γ, (3.14)

is the function

T (r,ν; s) := −s ψ′(s r)
2πr

(
(r · ν)I2 + ν ⊗ r+

λ

μ
r⊗ ν

)
(3.15)

+
1

2π
χ(s r)

(
−4r · ν

r4
r⊗ r+

1

r2
ν ⊗ r+

r · ν
r2

I2 +
1

ξ2r2
r⊗ ν

)
+

s

2π
χ′(s r)

(
2r · ν
r3

r⊗ r+
λ

μ r
r⊗ ν

)
.
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The discrete double layer operator is thus related to the vector fields T (z−mj,νj; s)

but, instead of this kernel being used as in (3.13), it requires to plug the mixing matrix

Q of (3.4) between the kernel and the density (recall the arguments given under the

title A formal explanation in Section 3.2):

Dh(s; z)ψ :=
N∑
j=1

T (z−mj,νj; s)ψ
eff
j , ψeff := Qψ. (3.16)

Let uinc be an incident wave, be it a plane pressure or shear wave, or a cylindrical

wave. We first sample it and its associated normal traction on both companion grids,

creating four vectors (β±
0 ∈ C

2N and β±
1 ∈ C

2N) with blocks

β±
0,i := uinc(m±

i ), β±
1,i := (σ(uinc)(m±

i )
)
ν±
i . (3.17)

The final version of the sampled incident wave involves the mixing operators the Section

3.2:

β0 := P+β+
0 + P−β−

0 , β1 := Q(P+β+
1 + P−β−

1 ). (3.18)

3.4 Boundary Integral Operators

The parametrized integral expressions for the operators V(s), K(s), and J(s)

in (2.19) use the fundamental solution (3.11) and the kernel (3.15):

(V(s)η)(t) :=

∫ 1

0

E(x(t)− x(τ); s)η(τ)dτ, (3.19a)

(K(s)ψ)(t) :=

∫ 1

0

T (x(t)− x(τ),ν(τ); s)ψ(τ)dτ, (3.19b)

(J(s)η)(t) :=

∫ 1

0

T (x(τ)− x(t),ν(t); s)tη(τ)dτ. (3.19c)

Discretization is carried out in two steps. In a first step, two one-sided operators are

produced for each operator:

V±
ij(s) := E(m±

i −mj; s), (3.20a)

K±
ij(s) := T (m±

i −mj,νj; s) (3.20b)

J±ij(s) := T (mj −m±
i ,ν

±
i ; s)

t. (3.20c)
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Then the operators are mixed using the matrices (3.4) and (3.6):

Vh(s) := P+V+
h (s) + P−V−

h (s), (3.21a)

Kh(s) := (P+K+
h (s) + P−K−

h (s))Q, (3.21b)

Jh(s) := Q(P+J+h (s) + P−J−h (s)). (3.21c)

Here V±
h (s), K

±
h (s), and J±h (s) are the matrices defined in (3.20).

The logic for the placement of Q in the above formulas can be intuited using

the non-conforming Petrov-Galerkin interpretation of the method given at the end of

Section 3.2 (see also [31]).

The hypersingular operatorW(s) will be discretized after using a decomposition

stemming from a regularization formula in [49]. In order to write it concisely we need

to introduce some notation. The function

G(r) :=
1

2πρΣ
(K0(r/cT )−K0(r/cL))

plays a key role in the formula. Four functions are derived from it:

G1(r) :=

(
1

r

d

dr
+

d2

dr2

)
G(r), (3.22a)

G2(r) :=

(
1

r

d

dr
+

d2

dr2

)
G1(r)=

(
d4

dr4
+

2

r

d3

dr3
− 1

r2
d

dr2
+

1

r3
d

dr

)
G(r), (3.22b)

A(r) :=
1

r2
G′′(r)− 1

r3
G′(r) =

1

r2

(
d2

dr2
− 1

r

d

dr

)
G(r), (3.22c)

B(r) :=
1

r
G′(r) (3.22d)

Note that the differential operators in (3.22a) and (3.22b) are the radial part of the

two dimensional Laplacian and bi-Laplacian respectively. We will also use the matrix-

valued functions

H(r; s) := s2A(s r)r⊗ r+B(s r)I2, r := |r|, (3.23a)

M (r,ν, ν̃) := (ν̃ ⊗ ν)(r⊗ r) + (r⊗ r)(ν̃ ⊗ ν), (3.23b)

M(r,ν, ν̃) := (ν̃ ⊗ ν) : r. (3.23c)
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Translating carefully the formulas in [49], we can write the hypersingular operator for

the elastic wave equation in integro-differential (regularized) form

(W (s)ψ)(t) :=− d

dt

∫ 1

0

W0(x(t)− x(τ); s)
d

dτ
ψ(τ)dτ (3.24)

+

∫ 1

0

W1(x(t)− x(τ),ν(t),ν(τ); s)ψ(τ)dτ,

where

W0(r; s) := 4μ2G1(sr)−H(r; s),

and

W1(r,ν, ν̃; s) :=
λ+ 2μ

λ+ μ
s2

(
μG2(sr)

(
λν̃ ⊗ ν + μν ⊗ ν̃ + μ(ν̃ · ν) I2

)
− 1

c2L

(
λ2G1(sr)ν̃ ⊗ ν

+ s2A(sr)
(
2λμM (r,ν, ν̃)+μ2M(r,ν, ν̃)I2+μ2M (r, ν̃,ν)

)
+B(sr)

(
4λμν̃ ⊗ ν + μ2(ν̃ · ν)I2 + μ2sν ⊗ ν̃

)
+ μ2(ν̃ · ν)H(r; s)

))
.

For discretization, we separate the two integral operators that appear in (3.24), building

the blocks

W±
ij,0(s) := W0(b

±
i − bj; s), (3.25a)

W±
ij,1(s) := W1(m

±
i −mj,ν

±
i ,νj; s), (3.25b)

and then mix them using the expression

Wh(s) := D(P+W+
0,h(s) + P−W−

0,h(s))D
t +Q(P+W+

1,h(s) + P−W−
1,h(s))Q. (3.26)

For the sake of completeness we give here explicit expressions of all the functions

that are involved in the definitions of the potentials and integral operators. First of

all, we give the derivatives of the functions (3.10):

ψ′(r) = − 1

cT
K1(r/cT )− 2cT

r2
(K1(r/cT )− ξK1(r/cL))− 1

r

(
K0(r/cT )− ξ2K0(r/cL)

)
,

χ′(r) = − 1

2cT

(
K1(r/cT ) +K3(r/cT )− ξ3 (K1(r/cL) +K3(r/cL))

)
.
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The functions (3.22) are combinations of the following derivatives:

G′(r) =
−1

2πρΣcT

(
K1(r/cT )− ξK1(r/cL)

)
,

G′′(r) =
1

4πρΣc2T

(
K0(r/cT ) +K2(r/cT )− ξ2(K0(r/cL) +K2(r/cL))

)
,

G′′′(r) =
−1

8πρΣc3T

(
3K1(r/cT ) +K3(r/cT )− ξ3(3K1(r/cL) +K3(r/cL))

)
,

G(iv)(r) =
1

2πρΣc4T

((
3c2T
r2

+ 1

)
K2(r/cT )− ξ4

(
3c2L
r2

+ 1

)
K2(r/cL)

)
.

3.5 Discrete Treatment of Hilbert Transforms

In this section we justify the choice of parameters that are implicit to the def-

inition of the mixing matrices (3.6). We recall that the paper [31] allowed for a one-

parameter dependent family of test functions. The choice that produced the fork-and-

ziggurat testing elements is the only one that works for the elasticity problem. The

main element that appears in the elasticity integral operators K and J and does not

appear in their acoustic counterparts is the periodic Hilbert transform:

(Hφ)(t) := p.v.

∫ 1

0

cot(π(t− τ))φ(τ)dτ. (3.27)

(We note that it is customary to multiply this transform by the imaginary unit to

relate it to the Hilbert transform on a circle.) For properties of this operator, we

refer to [113, Section 5.7]. We will use that the periodic Hilbert transform commutes

with differentiation, i.e., (Hφ)′ = Hφ′, which follows from an easy integration by parts

argument. A key result related to trapezoidal approximation of the Hilbert transform

is given next. It is an easy consequence of a Lemma 3.3 proved at the end of this

section.

Proposition 3.1. Let tj := j h with h := 1/N and consider the following subspaces of

trigonometric polynomials

Th := span{en : −N/2 ≤ n < N/2}, en(t) := exp(2πınt).

Then

h

N∑
j=1

cot(π(t− tj))φ(tj) = (Hφ)(t) + cot(πt/h)φ(t) ∀φ ∈ Th. (3.28)
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Note that both sides of (3.28) blow up when t/h ∈ Z. We now specialize this

formula to t = t±i := (i± 1
6
)h. For simplicity we will write α = cot(π/6) =

√
3. Using a

density argument and Proposition 3.1, it is easy to see that for φ ∈ D := {φ ∈ C∞(R) :

φ(1 + ·) = φ}, we have

h
N∑
j=1

cot(π(t±i − tj))φ(tj) = (Hφ)(t±i )± αφ(t±i ) +O(hm) ∀m ∈ Z. (3.29)

In (3.29) and in the sequel, the Landau symbol will be used with the following precise

meaning: ai = bi +O(hm) denotes the existence of C > 0 independent of h such that

that maxi |ai − bi| ≤ Chm.

Motivated by the quadrature formula (3.5), we introduce the averaging operator

Δhφ := 1
24
φ(· − h) + 11

12
φ+ 1

24
φ(·+ h),

and note that

(Δhφ)(tj) = φ(tj) +
h2

24
φ′′(tj) +O(h4) ∀φ ∈ D. (3.30)

Additionally, we consider the space of periodic piecewise constant functions

Sh := {φh : R → R : φh(1 + ·) = φh, φh|(ti−h/2,ti+h/2) ∈ P0 ∀i}

and the operator Dh : D → Sh given by

Dhφ ∈ Sh, D̂hφ(μ) = φ̂(μ), −N/2 ≤ μ < N/2. (3.31)

This operator is well defined since periodic piecewise constant functions on a regular

grid can be determined by any sequence ofN consecutive Fourier coefficients. (This fact

seems to be known since at least the 1930s [109], as mentioned in [5].) In particular, this

operator has excellent approximation properties in a wide range of negative Sobolev

norms (see [4, Theorem 5.1]). In [35, Corollary 3.2] it is proved that

(Dhφ)(tj) = φ(tj)− h2

24
φ′′(tj) +O(h4) ∀φ ∈ D. (3.32)
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The following approximations of the periodic Hilbert transform

(Hhφ)(t) := h

N∑
j=1

cot(π(t− tj))(Δhφ)(tj) (3.33)

are relevant for our method, since for φh ∈ Sh, we can write and approximate with

(3.5):

(Hφh)(t) =
N∑
j=1

φh(tj)p.v.

∫ tj+h/2

tj−h/2

cot(π(t− τ))dτ

≈ h
N∑
j=1

φh(tj)(Δh cot(π(t− ·)))(tj) = (Hhφh)(t) t/h �∈ Z.

This means that using piecewise constant functions as trial functions, and following

the idea of using look-around quadrature for integrals over intervals of length h leads

naturally to the operator Hh. Note now that

max
j

| cot(π(t±i − tj))| = O(h−1). (3.34)

Therefore

(HhDhφ)(t
±
i ) =(Hhφ)(t

±
i )−

h2

24
(Hhφ

′′)(t±i ) +O(h3) (by (3.32) and (3.34))

=h

N∑
j=1

cot(π(t±i − tj))φ(tj) +O(h3) (by (3.30) and (3.34))

=(Hφ)(t±i )± αφ(t±i ) +O(h3), (by (3.29))

which, using Taylor expansions, implies that

1
2
(HhDhφ)(t

−
i ) +

1
2
(HhDhφ)(t

+
i ) =

1
2
(Hφ)(t−i ) +

1
2
(Hφ)(t+i ) +

1
6
hαφ′(ti) +O(h3).

Similarly

1
2
(HhDhφ)(t

−
i+1)+

1
2
(HhDhφ)(t

+
i−1)=

1
2
(Hφ)(t−i+1) +

1
2
(Hφ)(t+i−1)− 5

6
hαφ′(ti)+O(h3).

If we then denote (see (3.9))

〈ϕ, δ�i 〉 :=
a

2
(ϕ(t−i ) + ϕ(t+i )) +

1− a

2
(ϕ(t+i−1) + ϕ(t−i+1)), (3.35)
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it follows that

〈HhDhφ, δ
�
i 〉 = 〈Hφ, δ�i 〉+ αh

6a− 5

6
φ′(ti) +O(h3),

which shows that a = 5/6 is the only choice that provides third order approximation.

In the above we have made use of the following technical results, in which for a

given positive integer N we will write h := 1/N and tj := j h for j ∈ Z. We also let

log# t := log(4 sin2(πt)).

Lemma 3.2. For all N and t

N∑
j=1

log#(t− tj) = log#(t/h), t/h �∈ Z. (3.36)

Proof. We recall the Fourier expansion of the periodic logarithm

log# t = lim
M→∞

N∑
0 �=n=−M

1

|n|en(t), en(t) := exp(2πınt). (3.37)

Also

N∑
j=1

en(t− jh) = en(t)
N∑
j=1

exp

(
−2πıjn

N

)
= en(t)

⎧⎨⎩ N, if n/N ∈ Z,

0, otherwise.
(3.38)

Combining (3.37) and (3.38) it is easy to see that

N∑
j=1

log#(t− jh) = lim
M→∞

M∑
0 �=n=−M

1

|nN |NenN(t)

= lim
M→∞

M∑
0 �=n=−M

1

|n|en(t/h) = log#(t/h).

This finishes the proof.

Lemma 3.3. For all N ∈ Z and |n| ≤ N − 1,

h

N−1∑
j=1

cot(π(t− tj))en(tj) = p.v.

∫ 1

0

cot(π(t− τ))en(τ)dτ + cot(πt/h)en(t), t/h �∈ Z.
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Proof. Differentiating (3.36) we obtain

h

N−1∑
j=1

cot(π(t− tj)) = cot(πt/h), t/h �∈ Z, (3.39)

which is the case n = 0. Consider now the function

sn(τ ; t) := cot(π(t− τ))(en(τ)− en(t)) = en(t) cot(π(τ − t))(1− en(τ − t)).

Note now that for n ≥ 1,

ı cot(πτ)(1− en(τ)) = (1 + e1(τ))
1− en(τ)

1− e1(τ)

= (1 + e1(τ))(1 + e1(τ) + e2(τ) + . . .+ en−1(τ))

= 1 + 2e1(τ) + 2e2(τ) + . . .+ 2en−1(τ) + en(τ),

and therefore

sn(·; t) ∈ span{em : 0 ≤ m ≤ n} n ≥ 1.

By conjugation, it is easy to see then that

sn(·; t) ∈ TN−1 := span{em : |m| ≤ N − 1}, |n| ≤ N − 1. (3.40)

It is well known that ∫ 1

0

φ(τ)dτ = h
N∑
j=1

φ(tj) ∀φ ∈ TN−1.

Therefore, by (3.40),

p.v.

∫ 1

0

cot(π(t− τ))en(τ)dτ =

∫ 1

0

sn(τ ; t)dτ = h

N∑
j=1

sn(tj; t)

= h
N∑
j=1

cot(π(t− tj))en(tj)− en(t)h
N∑
j=1

cot(π(t− tj))

= h
N∑
j=1

cot(π(t− tj))en(tj)− en(t) cot(πt/h),

where in the last equality we have used (3.39).
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3.6 The Treatment of Open Arcs

In the same spirit as the previous sections, smooth open arcs can be incorpo-

rated into the fully discrete Calderón Calculus for elastic waves. The idea is simple:

instead of using a traditional cosine change of variable to modify the integral equation

into a periodic integral equation, we will use the cosine change of variables to sample

geometric features from the open arc and then define the discrete elements (the two

layer potentials and the operators V and W) using the same formulas as in the case of

closed curves. Note that the operators K and J are not meaningful in the case of open

arcs.

Let x : [0, 1] → R
2 be a regular parametrization of a smooth simple open arc.

Let us also consider the 1-periodic even function φ : R → [0, 1] given by

φ(t) := 1
2
+ 1

2
cos(π(2t− 1)).

We then define a(t) := x(φ(t)) and note that a(0) = x(0) = a(1), a(1
2
) = x(1), and

a(1− t) = a(t) for all t. The normal vector field

ν(t) := a′(t)⊥ = −π sin((π(2t− 1))x′(φ(t))⊥, where (c1, c2)
⊥ := (c2,−c1),

satisfies ν(0) = ν(1
2
) = 0, and ν(1 − t) = −ν(t) for all t. This means that the

normal vector has different signs depending on whether we are moving from the first

tip to the second or back. We now choose a positive even integer N = 2M , define

h := 1/N = 1/(2M), and create the main discrete grid:

mj := a((j− 1
2
)h), bj := a((j−1)h), νj := hν((j− 1

2
)h), j ∈ ZN . (3.41)

Let us first comment on these formulas. In comparison with (3.1) the breakpoints

and midpoints are displaced 1
2
h in parametric space. Whereas in the case of closed

curves this is not relevant, for open arcs it will be essential that the ends of the arc are

breakpoints of the discrete grid: b1 = b2M+1 = x(0), bM+1 = x(1). Also, note that

points are sampled twice and we actually have:

mN+1−j = mj, bN+2−j = bj, νN+1−j = −νj.
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The companion grids are similarly collected from the curve:

m±
j := a((j − 1

2
± 1

6
)h), b±

j := a((j − 1± 1
6
)h),

ν±
j := hν((j − 1

2
± 1

6
)h), j ∈ ZN . (3.42)

The duplication in the cosine sampling will have some effects in the structure of

the discrete Calderón Calculus. Let ξ ∈ C
2N be a vector with blocks ξj. We will write

ξ ∈ C
2N
even when ξN+1−j = ξj for all j, and we will write ξ ∈ C

2N
odd when ξN+1−j = −ξj

for all j. Even vectors are those in the nullspace of the matrix

H :=

⎡⎣ Hsc 0

0 Hsc

⎤⎦ , Hsc :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

. . . . .
.

1 −1

−1 1

. .
. . . .

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.43)

while odd vectors are in the nullspace of the matrix |H|, obtained by taking the absolute

value of the elements of H. Additionally Hξ = 2ξ if ξ ∈ C
2N
odd and |H|ξ = 2ξ if

ξ ∈ C
2N
even. Finally if we sample an incident wave on an open arc using (3.17)-(3.18), it

is not difficult to prove that

β0 ∈ C
2N
even and β1 ∈ C

2N
odd.

We first study a Dirichlet crack. Let Γ be the smooth open curve given in

parametric form at the beginning of this section, we look for solutions of ρΣ∂
2
t u =

∇ · σ(u) in R
2 \ Γ, with the corresponding radiation condition at infinity (see the

comments after formula (2.15)), and the Dirichlet condition γu+ γuinc = 0 on Γ. We

assume that the discrete data have already been sampled with (3.41)-(3.42) and that

the incident wave has been observed using (3.17)-(3.18), outputting a vector β0 ∈ C
2N
even.

We now use the fact that

Vh(s)η ∈ C
2N
even ∀η ∈ C

2N , and Vh(s)η = 0 ∀η ∈ C
2N
odd.
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(These properties are not difficult to prove.) Therefore, if we solve

(Vh(s) + H)η = −β0,

we are guaranteed that η ∈ C
2N
even. This density is used to build the discrete elastic

wavefield uh(z) = Sh(s; z)η.

In the case of a Neumann crack, we substitute the Dirichlet boundary con-

dition on the open curve Γ by t(u) + t(uinc) = 0. Using a similar argument as in the

Dirichlet case, we solve the discrete integral equation

(Wh(s) + |H|)ψ = β1,

obtain a unique ψ ∈ C
2N
odd and input it in a double layer potential representation

uh(z) = Dh(s; z)ψ.

3.7 Numerical Experiments

Studies in the frequency domain. In this section we show two numerical

experiments, based on different integral equations, for the interior Dirichlet problem.

The domain is the ellipse (x
4
)2 + (y

3
)2 = 1 and we choose λ = 5, μ = 3, and ρΣ = 2.5

as physical parameters. We fix the wave number to be k = 3 (s = −3ı in our Laplace

domain based notation) and take data so that the exact solution is the sum of a pressure

and a shear wave:

u(z) :=
(
eık(z·d)/cL + eık(z·d

⊥)/cT
)
d, d = ( 1√

2
, 1√

2
), d⊥ = (− 1√

2
, 1√

2
). (3.44)

The solution will be observed in ten interior points zobsi , i = 1, . . . , 10, randomly chosen

in the circle x2 + y2 = 4. The Dirichlet data is sampled using (3.17)-(3.18) to a vector

β0. We are going to use a direct formulation, where the discrete elastic wave-field is

given by the representation

uh(z) = Sh(s; z)λ−Dh(s; z)ϕ. (3.45)

Since we are dealing with the Dirichlet problem, the computation ofϕ is rather straight-

forward: we just need to solve the sparse linear system (recall (3.7)),

Mϕ = β0, (3.46)
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which is then postprocessed to create the effective density (see (3.16))

ϕeff := Qϕ. (3.47)

The vector λ (which approximates the normal traction) will be computed using a first

kind discrete integral equation (based on the first integral identity provided by the

Calderón projector)

Vh(s)λ = (1
2
M+Kh(s))ϕ, (3.48)

or a second kind integral equation (based on the second integral identity)

(−1
2
M+ Jh(s))λ = −Wh(s)ϕ. (3.49)

We compute the following errors:

Eu
h :=

max10i=1 |uh(z
obs
i )− u(zobsi )|

max10i=1 |u(zobsi )| , (3.50a)

Eλ
h :=

maxNi=1 |λi − σ(u)(mi) · νi|
maxNi=1 |σ(u)(mi) · νi| , (3.50b)

Eϕ
h :=

maxNi=1 |ϕeff
i − u(mi)|

maxNi=1 |u(mi)| . (3.50c)

The expected convergence orders are

Eu
h = O(N−3), Eλ

h = O(N−3), Eϕ
h = O(N−4),

where it has to be noted that ϕ is not obtained as a solution of an integral equation,

but just projected from sampled data, which explains the higher order of convergence.

The errors are reported in Tables 3.1 and 3.2 and plotted in Figures 3.2 and 3.3.

Studies in the time domain. In this section we show some tests on how to

use the previously devised Calderón calculus for elastic waves in the Laplace/frequency

domain to simulate transient waves by using a Convolution Quadrature method. We

will be using an order two (BDF2-based) Convolution Quadrature strategy. For a

brief introduction to the theoretical aspects of multistep CQ methods applied to wave

propagation, and its algorithmic usage we refer to Appendix B.
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N Eu
h e.c.r. Eλ

h e.c.r. Eφ
h e.c.r.

30 1.836 — 2.185 — 5.057 ×10−3 —
60 3.338 ×10−2 5.761 2.682 ×10−2 6.348 1.212 ×10−4 5.382
120 2.941 ×10−3 3.542 2.705 ×10−3 3.309 1.451 ×10−5 3.063
240 4.352 ×10−4 2.757 3.224 ×10−4 3.069 1.011 ×10−6 3.843
480 5.640 ×10−5 2.948 3.983 ×10−5 3.017 6.484 ×10−8 3.963
960 7.020 ×10−6 3.006 4.958 ×10−6 3.006 4.077 ×10−9 3.991
1920 8.783 ×10−7 2.998 6.199 ×10−7 3.000 2.552 ×10−10 3.998

Table 3.1: Relative errors (3.50) and estimated convergence rates in the frequency domain for u,

λ and φ using equation (3.48).

N Eu
h e.c.r. Eλ

h e.c.r. Eφ
h e.c.r.

30 3.317 ×10−1 — 5.806 ×10−1 — 5.057 ×10−3 —
60 5.785 ×10−2 2.519 6.836 ×10−2 3.086 1.212 ×10−4 5.382
120 7.271 ×10−3 2.993 7.620 ×10−3 3.165 1.451 ×10−5 3.063
240 8.923 ×10−4 3.026 8.635 ×10−4 3.142 1.011 ×10−6 3.843
480 8.087 ×10−5 3.464 1.030 ×10−5 3.068 6.484 ×10−8 3.963
960 1.004 ×10−5 3.009 1.256 ×10−6 3.035 4.077 ×10−9 3.991
1920 1.473 ×10−6 2.769 1.605 ×10−7 2.969 2.552 ×10−10 3.998

Table 3.2: Relative errors (3.50) and estimated convergence rates in the frequency domain for u,

λ and φ using equation (3.49).

We use the same geometry and physical parameters as in the experiments of

Section 3.7. We solve an interior problem with prescribed Dirichlet (resp. Neumann)

boundary condition taken so that the exact solution is the plane pressure wave

u(z, t) = H(cL(t− t0)− z · d) sin(2(cL(t− t0)− z · d))d, (3.51)

with d = (1/
√
2, 1/

√
2) and t0 = 2.3. Here

H(t) := t5(1−5(t−1)+15(t−1)2−35(t−1)3+70(t−1)4−126(t−1)5)χ[0,1](t)+χ[1,∞)(t) (3.52)

is a smooth version of the Heaviside function. The problem is integrated from 0 to

T = 3, on a space grid with N points, with M time steps of length T/M : tn = nT/M .

Relative errors for the solution are computed at the observation points zobsi (those of

Section 3.7). In this experiment we fix a space discretization with n = 500 points
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Figure 3.2: Errors corresponding to Table 3.1. The error Eu
h has been rescaled to separate the

error graphs.

and refine in the number of time steps M . The results are reported in Table 3.3.

The expected order two convergence of CQ is observed until the error due to space

discretization dominates. Similar results refining in time and space can be produced

in the same way.

M Eu
h Dirichlet e.c.r. Eu

h Neumann e.c.r.

50 2.828 ×10−1 — 2.676 ×10−1 —
100 1.711 ×10−1 0.725 1.662 ×10−1 0.686
200 5.181 ×10−2 1.724 5.205 ×10−2 1.675
400 1.420 ×10−2 1.878 1.401 ×10−2 1.893
800 3.070 ×10−3 2.199 2.983 ×10−3 2.232
1600 6.171 ×10−4 2.313 6.124 ×10−4 2.284

Table 3.3: Relative errors and estimated convergence rates in the time domain for the displacement

at the final time T = 3 with Dirichlet and Neumann boundary conditions. The first

column shows the number of time steps, 500 discretization points in space were used.

Cracks. We use the half circle Γ = {x2 + y2 = 1} ∩ {y ≥ 0} as the scattering

arc. The physical parameters of the surrounding unbounded elastic medium are those

of Section 3.7. The incident wave is the pressure part of the function defined in (3.44).

The solution is observed at ten random points on a circle of radius 5. Since the exact

solution is not know, we use a three grid principle to estimate convergence rates.
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Figure 3.3: Errors corresponding to Table 3.2. The error Eu
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N e.c.r. Dirichlet e.c.r. Neumann
10 — —
20 — —
40 3.449 4.446
80 3.120 3.512
160 3.030 3.318
320 3.008 3.010

Table 3.4: Estimated convergence rates in the frequency domain Dirichlet and Neumann cracks.

Given the fact that the solution is not known, a three grid principle is used to estimate

convergence rates.

Illustrative experiments. We next show the capabilities of the method for the

discretization of time domain scattering problems. We will denote by CQfwd(A(s), ηn)

the discrete approximation of the convolution (L−1{A}∗η)(tn) and by CQeqn(A(s), ηn)

the discrete approximation of the convolution with the inverse operator (L−1{A−1} ∗
η)(tn), where tn := nκ (see Appendix B). The first example shows the scattering of an

elastic wave by multiple obstacles. The obstacles are three disks with boundaries:

(x− 1)2 + (y − 1)2 = 1, (x− 3)2 + (y − 3)2 = 1, (x− 3.5)2 + (y − 0.4)2 = 1.

For an incident wave uinc(z, t), we use the pressure wave given in (3.51). We look for

a causal displacement field satisfying the elastic wave equation (2.11) with boundary
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condition γu+γuinc = 0 at all times. We use a direct formulation that we next explain

in the Laplace domain. Data are sampled in space (with 200 points per obstacle) using

(3.17)-(3.18) at equally spaced time-steps of length k = 28/1200 and stored in vectors

βn
0 . These data have first to be projected on a space of traces ϕn = −M−1βn

0 and then

run through a second hand integral operator in order to build the right-hand side of

the equations (2.11),

ξn = −1
2
Mϕn + CQfwd(Kh(s),ϕ

n).

(Compare with (3.46) and (3.48) and note the different sign due to the fact that we

are solving an exterior problem.) An approximation of the normal stresses is then

computed by solving

λn = CQeqn(Vh(s), ξ
n).

Finally the solution is evaluated at a large number of observation points zi using two

potentials

un(zi) = CQfwd(Dh(s; zi),ϕ
n)− CQfwd(Sh(s; zi),λ

n).

Figure 3.4 shows four snapshots of the solution, which is asymptotically reaching the

time-harmonic regime. We plot the absolute value of the displacement. The scattered

pressure and shear waves can be distinguished by the different speeds of propagation

that appear already after the wave hits the first obstacle.

The second example shows the scattering of a pressure wave by a non-convex

kite-shaped rigid obstacle. The simulation parameters are the same as those for the

previous example, Figure 3.5 shows snapshots of the process.
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Figure 3.4: Four images of the scattering of a plane pressure wave by three rigid obstacles. The

solution transitions to a time-harmonic regime. The absolute value of the displacement

field is shown in a gray scale (black is no-displacement).
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Figure 3.5: Scattering of a plane pressure wave by a kite-shaped obstacle. The absolute value of

the displacement field is shown in a heat scale (black is no-displacement).
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Chapter 4

ACOUSTIC SCATTERING BY LINEARLY ELASTIC OBSTACLES

This chapter presents the work done in collaboration with George Hsiao and

Francisco-Javier Sayas published in the paper Boundary and coupled boundary-finite

element methods for transient wave-structure interaction [66] regarding the scattering

of acoustic waves by a linearly elastic obstacle. The contribution strives to fill the

gap in the mathematical analysis of the time domain wave-structure problem for the

cases when the scatterer is either a homogeneous isotropic solid or the case of a general

inhomogeneous anisotropic linearly elastic body. Despite the fact that each problem

requires a formulation which results in a very different numerical discretization, the

techniques and tools required to carry out the theoretical study are surprisingly similar.

After a brief survey of the previous related work in Section 4.1 we proceed in Sec-

tion 4.2 to the study of the pure boundary integral formulation –which arises naturally

when dealing with homogeneous acoustic and elastic domains– and leads to a numerical

treatment where only Boundary Elements are used for space discretization. Section

4.3 then studies the more general case of an inhomogeneous, anisotropic solid which

requires a combined boundary integral/variational treatment where integral equations

are used only for the acoustic dynamics. This formulation is naturally suited for a cou-

pled Boundary Element/Finite Element implementation. Finally, Section 4.4 shows

numerical experiments and convergence studies for both problems.

Following [82, 115, 9] the analysis is done in the Laplace domain aiming for a

Convolution Quadrature treatment similar to that done for the purely acoustic case

in [12, 42, 43]. We deal simultaneously with the continuous and discrete cases by

posing the problems in a general closed subspace of the appropriate function spaces.

Well-posedness is proved in the Laplace domain via an equivalent exotic transmission
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problem for which a variational formulation is found. The resulting stability bounds

are written carefully in terms of the Laplace parameter s in order to apply results from

[116] which give explicit time domain estimates. Error bounds in the time domain are

obtained following a similar approach for the semi-discrete problem. Full discretization

and convergence estimates are given for the case of BDF2-CQ.

4.1 Background

The study of acoustic/elastic scattering has been a subject of interest in both

the mathematical and engineering community for some years now. In the case of

time-harmonic regime, the study of the existence and uniqueness of solutions dates

back at least to 1986 [57]. The well-posedness of several purely boundary integral

formulations was analyzed in [65, 63, 94] by assuming that the scatterer had at least

a boundary of class C2. Later on, in the 2000’s, combined boundary integral and

variational formulations were proposed in [64, 39] and proven to be well posed also

for smooth scatterers. In these works the elastic response is modeled variationally and

the unbounded acoustic scattering is treated with either a boundary integral equation

or by introducing an artificial boundary where an absorbing condition is imposed.

Recently, the more general case of a Lipschitz scatterer was dealt with in [16] within

the framework of a variational formulation with a fictitious boundary.

On the computational side, the coupling of Boundary Elements and hp-Finite

Elements was studied in [27] where the Burton-Miller equation is used to model the

acoustic wave-field; the authors provide a posteriori error bounds aiming for an adap-

tive implementation. The fictitious boundary approach with finite elements has been

thoroughly investigated in [97, 51, 52] and a DG-like implementation was carried out

recently in [15].

The transient regime, on the other hand, has not enjoyed so much attention

–at least in the mathematical community– as its frequency domain cousin. In [44, 45]

the problem is posed in a slab-like unbounded domain imposing first order absorbing
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boundary conditions, while in [68] well-posedness is established for the coupled bound-

ary integral/variational formulation also in a slab-like region. Within the engineering

community, the time domain case has attracted attention at least since 1991. Numerous

approaches have been attempted without much theoretical justification but with satis-

factory results. To cite some examples, BE/FE coupling with Convolution Quadrature

was employed in [41, 108], BE/BE coupling using Newmark time integration was the

preferred treatment in [96] and FE/FE coupling with an absorbing boundary condition

and Newmark time integration were used in [48]. A comprehensive list of related work

can be found in [120].

4.2 Homogeneous Isotropic Solids: BIE Formulation

Within the geometric setting developed in Chapter 2, our problem can be ex-

plained as follows: an incident acoustic field vinc traveling in Ω+ arrives at an obstacle

at time t = 0 and interacts with a homogeneous isotropic elastic body occupying Ω−;

part of the incident wave is scattered and part of it excites an elastic wave within the

obstacle. We are interested in finding the unknown scattered field v and the elastic dis-

placement u induced by this interaction. These unknown variables satisfy the following

system

ρΣü =Δ∗u in Ω− × [0,∞), (4.1a)

c−2v̈ =Δv in Ω+ × [0,∞), (4.1b)

−u̇ · ν = ∂ν(v + vinc) on Γ× [0,∞), (4.1c)

t(u) = − ρf (v̇ + v̇inc)ν on Γ× [0,∞). (4.1d)

Here ρf and ρΣ are the respective constant densities of the fluid and elastic media, and

the upper dot denotes differentiation with respect to time. The coupling conditions at

Γ can be interpreted physically as follows: (4.1c) expresses the fact that the difference

in the normal components of the speed of the fluid and that of the solid at the interface

is due to the normal speed of the incident acoustic wave; (4.1d) expresses the condition

of equilibrium of pressure at the interface. A derivation of this model can be found in
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[70, Section 1.3]. This system is complemented with homogeneous initial conditions for

u and v (and their time derivatives), and a causality condition that can be expressed

as: for all t > 0, v ≡ 0 except in a bounded region (that changes with time).

Ω−

Ω+

Γ

vinc

v

u

ν

Figure 4.1: A cartoon of the geometric setting: the solid (brown) is surrounded by the unbounded

medium (blue).

For the sake of completeness we will now give the weak form of the equations

(4.1). Note that all the estimates that we will produce will be developed using the

Laplace transformed equations, and it will be only those equations that we will need

to deal with rigorously. We look for a pair of causal distributions (the definition of the

spaces CT(X) can be found in Appendix A)

(u, v) ∈ CT(H1
Δ∗(Rd \ Γ)×H1

Δ(R
d \ Γ)),

such that

ρΣü =Δ∗u (in L2(Ω−)), (4.2a)

c−2v̈ =Δv (in L2(Ω+)), (4.2b)

−γ−u̇ · ν = ∂+
ν v + α0 (in H−1/2(Γ)), (4.2c)

t−(u) = − ρf (γ
+v̇ + β̇0)ν (in H1/2(Γ)). (4.2d)

In (4.2), the upper dots are now used for distributional differentiation and the paren-

theses in the right-hand sides tell where the distributions are compared. Full details
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on how to understand wave equations in the sense of vector-valued distributions can

be found in [116]. Also, we have used α0 and β0 to denote general causal distributions

with values in H−1/2(Γ) and H1/2(Γ) respectively. Existence and uniqueness of solution

to (4.2) can be proved with some additional constraints: we have to assume that the

data and the solution are Laplace transformable with Laplace transforms defined in a

subset of the form {s ∈ C : Re s > σ0} for some σ0.

Let us now consider a slightly different problem. Now λ0 ∈ H−1/2(Γ) and

φ0 ∈ H1/2(Γ) are data, and we look for (u, v) ∈ H1(Ω−)×H1(Ω+) such that

ρΣs
2u =Δ∗u in Ω−, (4.3a)

(s/c)2v =Δv in Ω+, (4.3b)

−sγ−u · ν = ∂+
ν v + λ0 on Γ, (4.3c)

t−(u) = − ρfs(γ
+v + φ0)ν on Γ. (4.3d)

This problem will be studied for all s ∈ C+ := {s ∈ C : Re s > 0}. The relation

between (4.3) and (4.2) is simple: if λ0 = L{α0}(s) and φ0 = L{β0}(s), then the

solution of (4.3) is the Laplace transform of the solution of (4.2).

The boundary integral system equivalent to (4.3) is derived by choosing φΣ :=

γ−u and φf := γ+v as unknowns, using the representation formulas for v and u and

finally imposing the transmission conditions. The process is quite standard and we will

only sketch the main steps. We introduce the matrices of operators

L(s) :=

⎡⎣ W(s) + ρfs
2NtV(s/c)N ρfs(N

tK(s/c)−Kt(s)Nt)

ρfs(NK(s)−Kt(s/c)N) (ρfs)
2NV(s)Nt + ρfW(s/c)

⎤⎦
and

R(s) :=

⎡⎣ −ρfsN
tV(s/c) ρfs(−1

2
I+Kt(s))Nt

ρf (
1
2
I + Kt(s/c)) −(ρfs)

2NV(s)Nt

⎤⎦ .
The operator

N : H1/2(Γ) −→ H−1/2(Γ)

φ �−→ φ · ν
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has been defined in Section 2.1. Denoting

H
±1/2(Γ) := H±1/2(Γ)×H±1/2(Γ),

it is easy to show that by well known properties of the boundary integral operators on

Lipschitz domains (see the general theory in [102])

L(s) :H1/2(Γ) → H
−1/2(Γ),

R(s) :H−1/2(Γ)×H1/2(Γ) → H
−1/2(Γ),

are bounded. For the sake of notational simplicity, we will write L(s)(φ, φ), under-

standing that the vector (φ, φ) is first transformed into a column vector and then

left-multiplied by L(s).

Theorem 4.1. If (u, v) solves (4.3), then (φΣ, φf ) := (γ−u, γ+v) satisfies

L(s)(φΣ, φf ) = R(s)(λ0, φ0). (4.4)

Reciprocally, if (φΣ, φf ) is a solution of (4.4), then

u := − ρfsS(s)N
t(φ0 + φf )−D(s)φΣ, (4.5a)

v := S(s/c)(λ0 + sNφΣ) + D(s/c)φf , (4.5b)

define a solution of (4.3).

Proof. If (u, v) satisfies (4.3a)-(4.3b), then we have the representation formulas

u = S(s)t−(u)−D(s)γ−u and v = −S(s/c)∂+
ν v +D(s/c)γ+v, (4.6)

and the boundary integral identities (see Sections 2.9 and 2.10)

1
2
γ−u = V(s)t−(u)−K(s)γ−u, 1

2
t−(u) = Kt(s)t−(u) +W(s)γ−u, (4.7a)

1
2
γ+v = −V(s)∂+

ν v +K(s)γ+v, 1
2
∂+
ν v = −Kt(s)∂+

ν v −W(s)γ+v. (4.7b)

If we define (φΣ, φf ) := (γ−u, γ+v) the transmission conditions (4.3c)-(4.3d) become

t−(u) = −ρfsN
t(φf + φ0) and ∂+

ν v = −(sNφΣ + λ0). (4.8)
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Substituting (4.8) in (4.7) and adding the two equations in (4.7a) and the two in (4.7b)

gives the integral equations (4.4).

Reciprocally, let (u, v) be defined by (4.5) where (φΣ, φf ) solve (4.4). Since (u, v)

are defined with potentials, it follows that (4.3a) and (4.3b) are satisfied. Applying the

limit formulas (4.7) in (4.5), we see that

t−(u) + ρfsN
t(γ+v + φ0) =− 1

2
ρfsN

t(φ0 + φf )− ρfsK
t(s)Nt(φ0 + φf ) +W(s)φΣ

+ ρfsN
tV(s/c)(λ0 + sNφΣ) + ρfsN

t(1
2
φf +K(s/c)φf )

=(W(s)+ρfs
2NtV(s/c)N)φΣ+ρfs(N

tK(s/c)−Kt(s)Nt)φf

+ ρfsN
tV(s/c)λ0 + ρfs(

1
2
Ntφ0 −Kt(s)Ntφ0)

= 0,

by the first equation in (4.4). This proves the first transmission condition (4.3c).

Similarly (4.3d) is proved using the second equation in (4.4).

4.2.1 Stability of the Galerkin Semidiscretization in Space

We next consider a Galerkin discretization of the integral equations (4.4). Note

that when returning to the time domain (by taking inverse Laplace transforms, see

Proposition A.1), this is simply a Galerkin semidiscretization in space of the system of

delayed integral equations whose Laplace transform is (4.4). Following [82], the study

of solvability for (4.4) is done at the same time as the study of Galerkin stability. We

then choose two closed subspaces Yh ⊂ H1/2(Γ) and Yh ⊂ H1/2(Γ). For Galerkin

semidiscretization, these spaces are taken to be finite dimensional. In the case of non-

discretization (analysis of well-posedness of (4.4)) we just take Yh = H1/2(Γ) and

Yh = H1/2(Γ).

The Galerkin discretization of (4.4) seeks (φh
Σ, φ

h
f ) ∈ Yh × Yh satisfying

〈L(s)(φh
Σ, φ

h
f ), (μ

h, μh)〉Γ = 〈R(s)(λ0,φ0), (μ
h, μh)〉Γ ∀(μh, μh) ∈ Yh × Yh. (4.9)
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The angled bracket is the duality product of H−1/2(Γ) with H
1/2(Γ). We can also write

(4.9) in the very condensed form

L(s)(φh
Σ, φ

h
f )− R(s)(λ0,φ0) ∈ Y◦

h × Y ◦
h ≡ (Yh × Yh)

◦, (4.10)

where X◦ denotes the polar set of X, that is, the set of elements of the dual space

that vanish on X. Following the same techniques of [82] we first rewrite the Galerkin

equations (4.9) as an exotic transmission problem. Note that in the new transmission

problem, the elastic and the acoustic fields are defined on both sides of the boundary.

Proposition 4.2 (Transmission problem for Galerkin equations). Let (φh
Σ, φ

h
f ) ∈ Yh×

Yh satisfy (4.9) and let

uh := −ρfsS(s)N
t(φ0 + φh

f )−D(s)φh
Σ, (4.11a)

vh := S(s/c)(λ0 + sNφh
Σ) + D(s/c)φh

f . (4.11b)

Then (uh, vh) ∈ H1(Rd \ Γ)×H1(Rd \ Γ) satisfies:

Δ∗uh − ρΣs
2uh = 0 in R

d \ Γ, (4.12a)

Δvh − (s/c)2vh = 0 in R
d \ Γ, (4.12b)

sN[[γuh]]− [[∂νv
h]] = −λ0, (4.12c)

[[t(uh)]]− ρfsN
t[[γvh]] = −ρfsN

tφ0, (4.12d)

([[γuh]], [[γvh]]) ∈ Yh × Yh, (4.12e)

(sNγ+uh + ∂−
ν v

h, t+(uh) + ρfsN
tγ−vh) ∈ Y◦

h × Y ◦
h . (4.12f)

Reciprocally, given a solution of (4.12) the functions

(φh
Σ, φ

h
f ) := ([[γuh]],−[[γvh]]) ∈ Yh × Yh (4.13)

satisfy (4.9).
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Proof. It is clear that the functions defined by (4.11) satisfy (4.12a) and (4.12b). More-

over, [[γuh]] = φh
Σ and [[γvh]] = −φh

f , and therefore (4.12e) is satisfied. At the same

time,

[[t(uh)]] = −ρfsN
t(φ0 + φh

f ) = −ρfsN
t(φ0 − [[γvh]]),

[[∂νv
h]] = λ0 + sNφh

Σ = λ0 + sN[[γuh]],

which proves (4.12c) and (4.12d). Finally, using the jump properties of the potentials,

it is easy to verify that

(sNγ+uh + ∂−
ν v

h, t+(uh) + ρfsN
tγ−vh) = L(s)(φh

Σ, φ
h
f )− R(s)(λ0, φ0), (4.14)

which proves (4.12f) (see (4.10)).

Reciprocally, if we are given a solution of (4.12) and we define (φh
Σ, φ

h
f ) with

(4.13), then by the representation formulas and (4.12c)-(4.12d), it follows that we can

write the fields (uh, vh) as in (4.11). We can then use (4.14) again and prove that

(4.12f) implies (4.9).

The next step consists of finding a variational formulation for (4.12). This will

be done in the space

Hh := {(uh, vh) ∈ H1(Rd \ Γ)×H1(Rd \ Γ) : ([[γuh]], [[γvh]]) ∈ Yh × Yh},

which incorporates the only homogeneous essential transmission conditions of (4.12).

Proposition 4.3 (Equivalent variational formulation). Problem (4.12) is equivalent

to finding

(uh, vh) ∈ Hh s.t. B((uh, vh), (w, w); s) = �((w, w); s) ∀(w, w) ∈ Hh, (4.15)
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where

B((u, v), (w, w); s) := (σ(u), ε(w))Rd\Γ + ρΣs
2(u,w)Rd

+ρf (∇v,∇w)Rd\Γ + ρf (s/c)
2(v, w)Rd

+ρfs
(〈γ+v,Nγ−w〉Γ − 〈γ−v,Nγ+w〉Γ
+〈Nγ+u, γ−w〉Γ − 〈Nγ−u, γ+w〉Γ

)
,

�((w, w); s) := ρf
(〈λ0, γ

+w〉Γ − s〈Ntφ0, γ
−w〉Γ

)
.

Proof. The definition of the normal traction for u and the normal derivative for v, plus

simple algebraic manipulations, show that

ρf (Δv, w)Rd\Γ + ρf (∇v,∇w)Rd\Γ + (Δ∗u,w)Rd\Γ + (σ(u), ε(w))Rd\Γ

=〈[[t(u)]], γ−w〉Γ + 〈t+(u), [[γw]]〉Γ + ρf〈∂−v, [[γw]]〉Γ + ρf〈[[∂νv]], γ+w〉Γ
=〈t+(u) + ρfsN

tγ−v, [[γw]]〉Γ + ρf〈∂−
ν v + sNγ+u, [[γw]]〉Γ

+ 〈[[t(u)]]− ρfsN
t[[γv]], γ−w〉Γ + ρf〈[[∂νv]]− sN[[γu]], γ+w〉Γ

+ ρfs
(〈Ntγ−v, γ+w〉Γ − 〈Ntγ+v, γ−w〉Γ + 〈Nγ−u, γ+w〉Γ − 〈Nγ+u, γ−w〉Γ

)
,

or, equivalently,

B((u, v), (w, w); s) + (Δ∗u− ρΣs
2u,w)Rd\Γ + ρf (Δv − (s/c)2v, w)Rd\Γ

=〈t+(u) + ρfsN
tγ−v, [[γw]]〉Γ + ρf〈∂−

ν v + sNγ+u, [[γw]]〉Γ (4.16)

− ρf〈sN[[γu]]− [[∂νv]], γ
+w〉Γ + 〈[[t(u)]]− ρfsN

t[[γv]], γ−w〉Γ.

From here it is clear that a solution of (4.12) satisfies (4.15). Reciprocally, if we have

a solution of (4.15), testing with smooth functions with compact support in R
d \Γ, we

can easily recover equations (4.12a) and (4.12b). Therefore, by (4.16) it follows that

−ρf〈sN[[γuh]]− [[∂νv
h]] + λ0, γ

+w〉Γ + 〈[[t(uh)]]− ρfsN
t([[γvh]] + φ0), γ

−w〉Γ
+〈t+(uh) + ρfsN

tγ−vh, [[γw]]〉Γ + ρf〈∂−
ν v

h + sNγ+uh, [[γw]]〉Γ = 0
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for all (w, w) ∈ Hh. The transmission conditions (4.12c), (4.12d), and (4.12f) follow

from the simple observation that the map

Hh −→ H1/2(Γ)×H1/2(Γ)×Yh × Yh

(w, w) �−→ (γ+w, γ−w, [[γw]], [[γw]])

is surjective.

The third step in the analysis is the proof of well-posedness of the variational

problem (4.15). Following [82], we define the energy norm

|||(u, v)|||2|s| := (σ(u), ε(u))Rd\Γ + ‖s√ρΣu‖2Rd + ρf‖∇v‖2
Rd\Γ + ρfc

−2‖s v‖2
Rd .

We will also write σ := Re s > 0 (for all s ∈ C+) and σ := min{σ, 1}. To shorten some

of the forthcoming expressions, we will denote:

‖(u, v)‖21,Rd\Γ := (σ(u), ε(u))2
Rd\Γ + ‖√ρΣu‖2Rd + ρf‖∇v‖2

Rd\Γ + ρfc
−2‖v‖2

Rd ,

‖(φ, φ)‖21/2,Γ := ‖φ‖21/2,Γ + ‖φ‖21/2,Γ,
‖(λ, ϕ)‖2−1/2,1/2,Γ := ‖λ‖2−1/2,Γ + ‖ϕ‖21/2,Γ.

Note that the energy norm and the first of the above norms are related by

σ‖(u, v)‖1,Rd\Γ ≤ |||(u, v)||||s| ≤ |s|
σ

‖(u, v)‖1,Rd\Γ. (4.17)

Finally, the expression independent of h will be used to mean independent of the choice

of the spaces Yh and Yh.

Proposition 4.4 (Well-posedness). Problem (4.15) is uniquely solvable for any

(λ0, φ0) ∈ H−1/2(Γ)×H1/2(Γ) and s ∈ C+.

Moreover, there exists C > 0, independent of h, such that

|||(uh, vh)||||s| ≤ C
|s|
σ σ

‖(λ0, sφ0)‖−1/2,1/2,Γ. (4.18)
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Proof. A simple computation shows that

Re (sB((u, v), (u, v); s)) = σ|||(u, v)|||2|s|, (4.19)

and that

|�((u, v); s)| ≤ Cρf‖(λ0, sφ0)‖−1/2,1/2,Γ‖(u, v)‖1,Rd\Γ, (4.20)

which proves well-posedness of (4.15) by the Lax-Milgram lemma. The estimate (4.18)

is a direct consequence of (4.19) and (4.20), using (4.17) to relate the norms.

The final step wraps up the analysis by collecting information from the previous

results.

Corollary 4.5. Equations (4.9) are uniquely solvable for all s ∈ C+ and any choice

of the closed spaces Yh and Yh. Moreover, if (uh, vh) are defined using (4.11) from the

solution of (4.9), the following bounds hold with C > 0 independent of h:

‖(uh, vh)‖1,Rd\Γ ≤ C
|s|
σ2σ

‖(λ0, sφ0)‖−1/2,1/2,Γ, (4.21a)

‖(φh
Σ, φ

h
f )‖1/2,Γ ≤ C

|s|
σ2σ

‖(λ0, sφ0)‖−1/2,1/2,Γ. (4.21b)

Proof. Propositions 4.2 and 4.3 relate the discrete integral system (4.9) to the varia-

tional problem (4.15), which is shown to be uniquely solvable in Proposition 4.4. The

estimate (4.21a) follows from (4.18) and (4.17). Finally, the bound (4.21b) follows from

(4.21a) and (4.13).

We end this section by noting that Corollary 4.5 implies the unique solvability

of the semidiscrete equations that are obtained by taking the inverse Laplace transform

of (4.9). They can also be translated into a time domain estimate that bounds norms

of the solution in terms of bounds for the data (Proposition 4.12 below).

4.2.2 The Effect of Galerkin Semidiscretization

In this section we analyze the effect of space semidiscretization, that is, we

estimate the difference between the solution of (4.4) and (4.9). The analysis follows
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a very similar pattern to the one displayed in Section 4.2.1. We start by writing the

error equations:

L(s)(φh
Σ − φΣ, φ

h
f − φf ) ∈ Y◦

h × Y ◦
h . (4.22)

We will develop the analysis in terms of the variables

eh := uh − u and eh := vh − v,

from which the error of the boundary unknowns can be recovered:

(φh
Σ − φΣ, φ

h
f − φf ) = ([[γeh]],−[[γeh]]). (4.23)

The potential representation for (eh, eh) is obtained by subtracting (4.5) from (4.11)

eh = −ρfsS(s)N
t(φh

f − φf )−D(s)(φh
Σ − φΣ), (4.24a)

eh = sS(s/c)N(φh
Σ − φΣ) + D(s/c)(φh

f − φf ). (4.24b)

The proofs of the following results are quite similar to those of Propositions 4.2, 4.3,

and 4.4. We will only point out the main differences.

Proposition 4.6. The error potentials eh := uh − u and eh := vh − v satisfy:

Δ∗eh − ρΣs
2eh = 0 in R

d \ Γ, (4.25a)

Δeh − (s/c)2eh = 0 in R
d \ Γ, (4.25b)

sN[[γeh]]− [[∂νe
h]] = 0, (4.25c)

[[t(eh)]]− ρfsN
t[[γeh]] = 0, (4.25d)

([[γeh]], [[γeh]]) + (φΣ,−φf ) ∈ Yh × Yh, (4.25e)

(sNγ+eh + ∂−
ν e

h, t+(eh) + ρfsN
tγ−eh) ∈ Y◦

h × Y ◦
h . (4.25f)

Reciprocally, given a solution of (4.25), the quantities defined in (4.23) satisfy (4.22).

Proposition 4.7. Problem (4.25) is equivalent to the variational problem: find

(eh, eh) ∈ H1(Rd \ Γ)×H1(Rd \ Γ)
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such that

([[γeh]] + φΣ, [[γe
h]]− φf ) ∈Yh × Yh, (4.26a)

B((eh, eh), (w, w); s) = 0 ∀(w, w) ∈ Hh. (4.26b)

We note that, in comparison with (4.15), problem (4.26) has homogeneous right-

hand side but incorporates a side restriction (4.26a). This compares with how the

conditions (4.12c)-(4.12d) have become homogeneous in (4.25c)-(4.25d), while the ho-

mogeneous condition (4.12e) is now non-homogeneous (4.25e).

Proposition 4.8. Problem (4.26) is uniquely solvable for any (φΣ, φf ) ∈ H
1/2(Γ) and

s ∈ C+. Moreover, there exists C > 0 independent of h such that

|||(eh, eh)||||s| ≤ C
|s|2
σσ

‖(φΣ, φf )‖1/2,Γ. (4.27)

Proof. Using the definition of the bilinear form B (see Proposition 4.3) and (4.17), we

can easily bound

|B((u, v), (w, w); s)| ≤ |||(u, v)||||s||||(w, w)||||s| + C|s| ‖(u, v)‖1,Rd\Γ‖(w, w)‖1,Rd\Γ

≤C
|s|
σ

‖(u, v)‖1,Rd\Γ|||(w, w)||||s|. (4.28)

Take now (w, w) ∈ H1(Rd \ Γ)×H1(Rd \ Γ) such that

[[γw]] = φΣ, [[γw]] = −φf , ‖(w, w)‖1,Rd\Γ ≤ C‖(φΣ, φf )‖1/2,Γ. (4.29)

By the energy identity (4.19), the fact that (eh+w, eh+w) ∈ Hh, and (4.28), it follows

that

|||(eh +w, eh + w)|||2|s| ≤ |s|
σ

|B((eh +w, eh + w), (eh +w, eh + w); s)|

=
|s|
σ

|B((w, w), (eh +w, eh + w); s)|

≤ C
|s|2
σσ

‖(w, w)‖1,Rd\Γ|||(eh +w, eh + w)||||s|.

Therefore, using (4.17)

|||(eh, eh)||||s| ≤ C
|s|2
σσ

‖(w, w)‖1,Rd\Γ,
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and the result follows from (4.29). For readers who are acquainted with this kind

of Laplace domain estimates, let us clarify that the use of the optimal |s|-dependent
lifting of Bamberger-HaDuong [6, Lemma 1] (see also [116, Proposition 2.5.1]), instead

of the plain lifting used in (4.29), does not improve the estimate. This is principally

due to the s factor in the boundary terms of the bilinear form B (see (4.28)).

Corollary 4.9. Let (φΣ, φf ) and (φh
Σ, φ

h
f ) be the respective solutions of (4.4) and (4.9).

Let then (u, v) and (uh, vh) be defined through (4.5) and (4.11) respectively. Then there

exists C > 0 independent of h such that

‖(uh − u, vh − v)‖1,Rd\Γ ≤ C
|s|2
σσ2

‖(φΣ, φf )‖1/2,Γ,

‖(φh
Σ − φΣ, φ

h
f − φf )‖1/2,Γ ≤ C

|s|2
σσ2

‖(φΣ, φf )‖1/2,Γ.

Proof. The result is a direct consequence of Propositions 4.6, 4.7, and 4.8.

Using the results obtained in the previous two subsections it is possible to es-

tablish error estimates in the time domain. Data will be taken in the Sobolev spaces

W k
+(H

±1/2(Γ)) :={ξ ∈ Ck−1(R;H±1/2(Γ)) : ξ ≡ 0 in (−∞, 0), ξ(k)∈L1(R;H±1/2(Γ))},

for k ≥ 1. A straightforward application of the inversion theorem of the Laplace

transform [37, Theorem 7.1] (see also Proposition A.1) starting with the bounds of

Corollary 4.5 yields the following:

Corollary 4.10. If the data of the problem satisfy

λ0 ∈ W 3
+(H

−1/2(Γ)) and φ0 ∈ W 4
+(H

1/2(Γ)),

then (φΣ, φf ) and (uh, vh) are continuous causal functions of time and for all t ≥ 0

‖(φΣ, φf )(t)‖1/2,Γ ≤ D1t
2

t+ 1
max{1, t2}

∫ t

0

‖P3(λ0, φ̇0)(τ)‖−1/2,1/2,Γ dτ,

‖(uh, vh)(t)‖1,Rd\Γ ≤ D2t
2

t+ 1
max{1, t2}

∫ t

0

‖P3(λ0, φ̇0)(τ)‖−1/2,1/2,Γ dτ,
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where D1 and D2 depend only on Γ and

(Pkf)(t) :=
k∑

l=0

(
k

l

)
f (l)(t).

In a similar fashion, a combined application of Proposition A.1 and Corollary

4.9, provides the following estimate for the errors of semidiscretization in time. Note

that we are allowed to insert the best approximation operators in the right-hand side

of the bound of Corollary 4.11 because the error produced by trying to compute the

exact solution and the difference of the exact solution with its best approximation is

the same.

Corollary 4.11. If the exact solution of (4.4) satisfies

(φΣ, φf ) ∈ W 4
+(H

1/2(Γ))×W 4
+(H

1/2(Γ)),

then

(eh, eh) := (u− uh, v − vh) ∈ C(R,H1(Rd \ Γ)×H1(Rd \ Γ)),

and for all t ≥ 0 we have the bound

‖(eh, eh)(t)‖1,Rd\Γ ≤ Dt2

t+ 1
max{1, t2}

∫ t

0

‖P4(φΣ −ΠhφΣ, φf − Πhφf )(τ)‖1/2,Γ dτ,

where Πh and Πh are the best approximation operators in Yh and Yh, and D depends

only on Γ.

4.2.3 Full Discretization with BDF2-CQ

A fully discrete method can be obtained by using any of the many Convolution

Quadrature schemes (See Appendix B). We next give an estimate for the BDF2-based

CQ method, based on the stability bound in the Laplace domain obtained in Propo-

sitions 4.4 and B.2 (a slight refinement of one of the main convergence theorems in

[91]).

Proposition 4.12. Let � = 6 and (λ0, φ0) be causal problem data such that

λ0 ∈ W �
+(H

−1/2(Γ)) and φ0 ∈ W �+1
+ (H1/2(Γ)),
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and (uh
κ, v

h
κ) be the BDF2-based CQ discretization of (uh, vh). Then, for t ≥ 0

‖(uh, vh)(t)− (uh
κ, v

h
κ)(t)‖1,Rd\Γ ≤ Dκ2(1 + t2)

∫ t

0

‖(λ(�)
0 , φ

(�+1)
0 )(τ)‖−1/2,1/2,Γ dτ.

It is important to note that the high-order regularity � = 6 is only required to

achieve optimal convergence of order κ2. For problem data with regularity as low as

� = 3, reduced convergence of order κ3/2 is achieved (see [116]).

4.3 Coupling BEM-FEM for General Linear Elastic Materials

Going back to the system of equations (4.3), an alternate approach aiming for a

finite element solution of the elastic wavefield and a boundary element solution of the

acoustic wavefield is to use a direct boundary integral representation of the acoustic

wave while keeping the partial differential equation for the elastic displacement in

variational form. This approach is particularly well suited for the case of variable

elastic density and Lamé coefficients, and also for heterogeneous anisotropic materials.

We will still use the Hooke’s Law (2.8) relating stress and strain and will require the

stiffness tensor C to satisfy all the assumptions made on Section 2.7.

The derivation of the model employs standard arguments of boundary integral

equations and is presented with careful detail in [68], with the resulting equivalent

system being

ρΣs
2u−Δ∗u =0 in Ω−, (4.30a)

t−(u) + ρfsN
tφ = − ρfsN

tφ0 on Γ, (4.30b)

V(s/c)λ+
(
1
2
I−K(s/c)

)
φ =0 on Γ, (4.30c)(−1

2
I + Kt(s/c)

)
λ+W(s/c)φ− sNγu =λ0 on Γ. (4.30d)

For notational convenience, we introduce the interior elastodynamic bilinear form in

the Laplace domain

a(u,w; s) := (σ(u), ε(w))Ω− + s2(ρΣu,w)Ω− ,

so that the variational formulation of (4.30a)-(4.30b) reads

a(u,w; s) + s〈ρf (φ+ φ0), γw · ν〉Γ = 0 ∀w ∈ H1(Ω−).
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We note that the operator Nγw = γw · ν appears in this weak formulation, while Nt

will not be used any longer in this section. Since the language of this section is less

heavy on the side of operators, we will keep the explicit form of the combined operator

Nγ as a trace operator dotted with the normal vector field.

4.3.1 Galerkin Semidiscretization in Space

Just as in Section 4.2.1, the solvability and stability of (4.30) are studied simul-

taneously. In order to do so, we define the closed subspaces

Vh ⊂ H1(Ω−), Xh ⊂ H−1/2(Γ), Yh ⊂ H1/2(Γ).

The following result establishes the connection between the discrete counterpart of

problem (4.30) and a non-standard transmission problem. Note that the ‘Finite Ele-

ment’ form is a discretization of the interior Navier-Lamé equation, and therefore, the

elastic operator has been discretized, as opposed to what happens with the ‘Boundary

Element’ counterpart, where only transmission conditions are discretized.

Proposition 4.13 (Transmission problem for Galerkin equations). If

(uh, φh, λh) ∈ Vh × Yh ×Xh

satisfies the Galerkin equations

a(uh,w; s) + s〈ρf (φh + φ0), γw · ν〉Γ = 0 ∀w ∈ Vh, (4.31a)

−sγuh · ν +W(s/c)φh +
(−1

2
I + Kt(s/c)

)
λh − λ0 ∈ Y ◦

h , (4.31b)(
1
2
I−K(s/c)

)
φh +V(s/c)λh ∈ X◦

h, (4.31c)

and

vh := D(s/c)φh − S(s/c)λh, (4.32)
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then the pair (uh, vh) ∈ Vh ×H1(Rd \ Γ) satisfies the transmission problem

a(uh,w; s) + s〈ρf (−[[γvh]] + φ0), γw · ν〉Γ =0 ∀w ∈ Vh, (4.33a)

−Δvh + (s/c)2vh =0 in R
d \ Γ, (4.33b)

[[γvh]] ∈Yh, (4.33c)

[[∂νv
h]] ∈Xh, (4.33d)

sγuh · ν + ∂+
ν v

h + λ0 ∈Y ◦
h , (4.33e)

γ−vh ∈X◦
h. (4.33f)

Conversely, given a solution of (4.33), the triplet

(uh, φh, λh) := (uh,−[[γvh]],−[[∂νv
h]]) ∈ Vh × Yh ×Xh (4.34)

satisfies (4.31).

Proof. Equations (4.33b), (4.33c), and (4.33d) are simple consequences of the definition

of vh and the jump relations of the double and single layer potentials. Moreover, using

the definition of vh and the identities (2.25)

∂−
ν S(s) =

1
2
I + Kt(s) , γ−D(s) = −1

2
I + K(s),

it is easy to verify that (4.33e) and (4.33f) are just restatements of (4.31b) and (4.31c).

To prove the converse, note that (4.33b) and the definition of (φh, λh) in (4.34)

imply the integral representation (4.32). Then (4.31b) is equivalent to (4.33e) and

(4.31c) is equivalent to (4.33f).

Proposition 4.14 (Equivalent variational formulation). Consider the space

Vh := {v ∈ H1(Rd \ Γ) : [[γv]] ∈ Yh , γ
−v ∈ X◦

h}.

The problem (4.33) is equivalent to finding (uh, vh) ∈ Vh × Vh such that

A ((uh, vh), (w, w); s
)
= f ((w, w); s) ∀(w, w) ∈ Vh × Vh, (4.35)
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where

A ((u, v), (w, w); s) := (σ(u), ε(w))Ω− + s2 (ρΣu,w)Ω−

+ ρf (∇v,∇w)
Rd\Γ + ρf (s/c)

2 (v, w)
Rd\Γ

+ ρfs〈γu · ν, [[γw]]〉Γ − ρfs〈[[γv]], γw · ν〉Γ,
f ((w, w); s) :=− ρfs〈φ0, γw · ν〉Γ − ρf〈λ0, [[γw]]〉Γ.

Proof. Let (uh, vh) be a solution pair for (4.33). Then, for all w ∈ Vh,

〈∂+
ν v

h, [[γw]]〉Γ = 〈∂−
ν v

h, γ−w〉Γ − 〈∂+
ν v

h, γ+w〉Γ − 〈[[∂νvh]], γ−w〉Γ
= (∇vh,∇w)Rd\Γ + (s/c)2(vh, w)Rd ,

after applying (4.33b) and (4.33f). Therefore, testing (4.33e) with [[γw]] for w ∈ Vh,

and substituting the above, it follows that

(s/c)2(vh, w)Rd +(∇vh,∇w)Rd\Γ+s〈γuh ·ν, [[γw]]〉Γ = −〈λ0, [[γw]]〉Γ ∀w ∈ Vh. (4.36)

However, the pair of equations (4.33a) and (4.36) are equivalent to (4.35).

To prove the converse statement, note that we need to show that a solution

of (4.36) satisfies (4.33b), (4.33d), and (4.33e). Equation (4.36) applied to a general

compactly supported w ∈ C∞(Rd \ Γ) is the distributional form of (4.33b). Therefore,

(4.36) (after integration by parts) implies

〈∂−
ν v

h, γ−w〉Γ − 〈∂+
ν v

h, γ+w〉Γ + 〈sγuh · ν + λ0, [[γw]]〉Γ = 0 ∀w ∈ Vh,

which, after some simple algebra, is shown to be equivalent to

〈∂+
ν v

h + sγuh · ν + λ0, [[γw]]〉Γ + 〈[[∂νvh]], γ−w〉Γ = 0 ∀w ∈ Vh. (4.37)

However, the operator Vh � w �−→ ([[γw]], γ−w) ∈ Yh ×X◦
h is surjective, and therefore

(4.37) is equivalent to (4.33d) and (4.33e).

For the analysis of (4.35), we need to redefine the energy norm

|||(u, v)|||2|s| := (σ(u), ε(u))Ω− + ‖s√ρΣu‖2Ω− + ρf‖∇v‖2
Rd\Γ + ρf‖(s/c) v‖2Rd ,
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due to the fact that the elastic field is not handled with a potential representation

and, therefore, it does not extend to the other side of the interface. Note that ||| · |||1 is

equivalent to the H1(Ω−)×H1(Rd \ Γ) norm and that, similarly to (4.17),

σ|||(u, v)|||1 ≤ |||(u, v)||||s| ≤ |s|
σ

|||(u, v)|||1. (4.38)

Proposition 4.15 (Well-posedness). Problem (4.35) is uniquely solvable for any

(φ0, λ0) ∈ H1/2(Γ)×H−1/2(Γ) and s ∈ C+.

Moreover, there exist C1, C2 > 0, independent of h, such that

|||(uh, vh)|||1 + ‖φh‖1/2,Γ ≤C1
|s|
σσ2

‖(sφ0, λ0)‖1/2,−1/2,Γ, (4.39)

‖λh‖−1/2,Γ ≤C2
|s|3/2
σσ3/2

‖(sφ0, λ0)‖1/2,−1/2,Γ. (4.40)

Proof. It is straightforward to verify that

Re (sA ((u, v), (u, v); s)) = σ|||(u, v)|||2|s|, (4.41)

and

|f ((w, w); s) | ≤ C‖(sφ0, λ0)‖1/2,−1/2,Γ|||(w, w)|||1,

where the constant depends only on ρf and Γ. Hence, by (4.38) and the Lax-Milgram

lemma, we have unique solvability of (4.35) and the following bound in the energy

norm:

|||(uh, vh)||||s| ≤ C
|s|
σσ

‖(sφ0, λ0)‖1/2,−1/2,Γ. (4.42)

The estimate (4.39) can be easily derived from (4.42) and (4.38) and the fact that

φh = −[[γvh]]. Finally, recalling that λh = −[[∂νv
h]] and using [82, Lemma 15], namely

if Δv − s2v = 0 in an open set O with Lipschitz boundary, then

‖∂νv‖−1/2,∂O ≤ C

( |s|
σ

)1/2

(‖sv‖O + ‖∇v‖O), (4.43)

it can be shown that (4.40) follows from (4.39).
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4.3.2 Semidiscretization Error

We now study the difference between the solutions to the exact problem and

their finite dimensional approximations. It is important to stress that uh − u /∈ Vh,

and therefore we will not be able to write a transmission problem for the error uh − u

in the style of (4.33). Instead, we will work with the difference

eh := uh −Phu,

where Ph : H1(Ω−) → Vh is an elliptic projection that will be defined below. We first

need to introduce the finite dimensional space of infinitesimal rigid motions

M :=
{
m ∈ H1(Ω−) : (σ(m), ε(m))Ω− = 0

}
.

From now on we will assume that M ⊂ Vh. The operator Ph is given by the solution

of the problem

(σ(Phu), ε(w))Ω− =(σ(u), ε(w))Ω− ∀w ∈ Vh, (4.44a)

(Phu,m)Ω− =(u,m)Ω− ∀m ∈ M. (4.44b)

Using Korn’s inequality it is easy to show that Ph is well defined and that the approx-

imation error ‖u − Phu‖1,Ω− is equivalent to the H1(Ω−)-best approximation on Vh.

In order to shorten notation, we will write rh := Phu− u.

The triplet (eh, φh, λh) ∈ Vh × Yh ×Xh satisfies the following error equations:

a(eh,w; s) + s2
(
ρΣr

h,w
)
Ω−

+ ρfs〈(φh − φ), γw · ν〉Γ = 0 ∀w ∈ Vh

(4.45a)

−sγ(eh + rh) · ν +W(s/c)(φh − φ)− (1
2
I−Kt(s/c)

)
(λh − λ) ∈ Y ◦

h , (4.45b)(
1
2
I−K(s/c)

)
(φh − φ) + V(s/c)(λh − λ) ∈ X◦

h. (4.45c)

For this system there is a corresponding non-standard transmission problem as the

following proposition shows.
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Proposition 4.16. If (eh, λh, φh) satisfies (4.45) and we define

eh := D(s/c)(φh − φ)− S(s/c)(λh − λ),

then the pair then (eh, eh) is a solution of the transmission problem

a(eh,w; s)− s〈ρf [[γeh]], γw · ν〉Γ =− s2
(
ρΣr

h,w
)
Ω−

∀w ∈ Vh, (4.46a)

−Δeh + (s/c)2eh =0 in R
d \ Γ, (4.46b)

[[γeh]]− φ ∈Yh, (4.46c)

[[∂νe
h]]− λ ∈Xh, (4.46d)

sγ(eh + rh) · ν + ∂+
ν e

h ∈Y ◦
h , (4.46e)

γ−eh ∈X◦
h. (4.46f)

Conversely, if (eh, eh) is a solution of (4.46) then

(eh, φh, λh) := (eh, φ− [[γeh]], λ− [[∂νe
h]]),

solves (4.45).

Proof. Starting with a solution of (4.45), we see that (4.46b) is a consequence of the

definition of eh, while (4.46a) follows readily from (4.45a), noting that ([[γeh]], [[∂νe
h]]) =

(φ− φh, λ− λh). The equations (4.46c) and (4.46d) can also be verified from the last

observation, since Yh ×Xh � (φh, λh) = (φ− [[γeh]], λ− [[∂νe
h]]). Finally, using

∂−
ν (S(s)λ) = (1

2
I + Kt(s))λ , γ−(D(s)φ) =

(−1
2
I + K(s)

)
φ,

we see that (4.45b) and (4.45c) imply (4.46e) and (4.46f).

The proof of the converse statement is very similar.

Proposition 4.17. The system (4.46) is equivalent to the variational problem of find-

ing (eh, eh) ∈ H1(Ω−)×H1(Rd \ Γ) such that

(γ−eh, [[γeh]]− φ) ∈ X◦
h × Yh, (4.47a)

A((eh, eh), (w, w); s) = b ((w, w); s) ∀(w, w) ∈ Vh × Vh, (4.47b)
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where the bilinear form A is defined in the statement of Proposition 4.14 and

b ((w, w); s) := ρf〈λ, γ−w〉Γ + sρf〈γrh · ν, [[γw]]〉Γ − s2
(
ρΣr

h,w
)
Ω−

.

Proof. The proof is very similar to the one of Proposition 4.14. Details are omitted.

Proposition 4.18. Problem (4.47) is uniquely solvable for any

(u, φ, λ) ∈ H1(Ω−)×H1/2(Γ)×H−1/2(Γ), and s ∈ C+.

Moreover, there exist constants C1, C2 > 0 independent of h such that

|||(eh, eh)|||1 + ‖φ− φh‖1/2,Γ ≤C1
|s|
σσ2

(
‖(s φ, λ)‖1/2,−1/2,Γ + ‖srh‖1,Ω− + ‖s2rh‖Ω−

)
,

(4.48)

‖λ− λh‖1/2,Γ ≤C2
|s|3/2
σσ3/2

(
‖(s φ, λ)‖1/2,−1/2,Γ + ‖srh‖1,Ω− + ‖s2rh‖Ω−

)
.

(4.49)

Proof. The existence and uniqueness of the solution to (4.47) is proven in a way analo-

gous to that used in Proposition 4.15. We will next prove a bound in the energy norm

|||(eh, eh)||||s| ≤ C1
|s|
σσ

(
‖(s φ, λ)‖1/2,−1/2,Γ + ‖srh‖1,Ω− + ‖s2rh‖Ω−

)
. (4.50)

The estimate (4.48) follows from (4.50) and (4.38). In order to get to (4.49) we make

use of (4.50), the fact that λ− λh = [[∂νe
h]], and (4.43).

To prove (4.50) we proceed as follows. We first obtain an upper bound for the

bilinear form

|A((u, v), (w, w); s)| ≤ C
|s|
σ

|||(u, v)|||1|||(w, w)||||s|, (4.51)

by the same argument that was used in Proposition 4.8. Also

|b ((w, w); s) | ≤ C

σ

(‖λ‖−1/2,Γ + ‖srh‖1,Ω− + ‖s2rh‖Ω−
) |||(w, w)||||s|. (4.52)

The constants in (4.51) and (4.52) depend only on the geometry. Now, for φ ∈ H1/2(Γ),

pick a lifting wφ ∈ H1(Rd \ Γ) such that γ+wφ = φ, γ−wφ = 0, and

‖wφ‖1,Rd\Γ ≤ C‖φ‖1/2,Γ. (4.53)
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Since (eh, eh + wφ) ∈ Vh × Vh we can use (4.41), (4.47b), (4.51), and (4.52) (i.e.,

coercivity, the variational equation, and boundedness of the bilinear form and right-

hand side) to estimate

|||(eh, eh + wφ)|||2|s| ≤
|s|
σ

|A ((eh, eh + wφ), (e
h, eh + wφ); s

) |
=

|s|
σ

|b ((eh, eh + wφ); s
)
+A ((0, wφ), (e

h, eh + wφ); s
) |

≤ C
|s|
σσ

|||(eh, eh + wφ)||||s|

× (|s|‖wφ‖1,Rd\Γ + ‖λ‖−1/2,Γ + ‖srh‖1,Ω− + ‖s2rh‖Ω−
)
.

This bound, together with

|||(0, ωφ)||||s| ≤ C

σ
‖s φ‖1/2,Γ

(see (4.38) and (4.53)) prove (4.50).

4.3.3 Estimates in the Time Domain

Using the bounds for the error operators derived in the previous section, we can

prove explicit time domain estimates. Just like in the BEM/BEM case, we can use

Proposition A.1 and combine it with the Laplace domain estimates from Propositions

4.15 and 4.18 to obtain the following results.

Corollary 4.19. Consider causal problem data

φ0 ∈ W 4
+(H

1/2(Γ)) and λ0 ∈ W 3
+(H

−1/2(Γ)).

Then uh, vh, φh, λh are continuous causal functions of time and for all t ≥ 0

|||(uh, vh)(t)|||1 + ‖φh(t)‖1/2,Γ ≤D1 max{1, t2} t2

t+ 1

∫ t

0

‖P3(φ̇0, λ0)(τ)‖1/2,−1/2,Γ dτ,

‖λh(t)‖−1/2,Γ ≤D2 max{1, t3/2} t
√
t√

t+ 1

∫ t

0

‖P3(φ̇0, λ0)(τ)‖1/2,−1/2,Γ dτ,

where D1 and D2 depend only on Γ.
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To abbreviate the following statement, we will use the following shorthand for

approximation errors

ah(t) :=

∫ t

0

(
‖P3(φ̇− ΠY

h φ̇)(τ)‖1/2,Γ + ‖P3(λ− ΠX
h λ)(τ)‖−1/2,Γ

)
dτ

+

∫ t

0

(‖P3(u̇−Phu̇)(τ)‖1,Ω− + ‖P3(ü−Phü)(τ)‖Ω−
)
dτ,

where ΠY
h : H1/2(Γ) → Yh and ΠX

h : H−1/2(Γ) → Xh are orthogonal projections and

Ph is the elliptic elastic projection onto Vh defined in (4.44).

Corollary 4.20. If the solution triplet satisfies

(u, φ, λ) ∈ W 3
+(H

1(Ω−))×W 4
+(H

1/2(Γ))×W 3
+(H

−1/2(Γ)),

then (eh, eh) ∈ C(R,H1(Ω−)×H1(Rd \Γ)) is causal and we have constants D1 and D2

depending only on Γ such that for t ≥ 0

|||(eh, eh)(t)|||1 + ‖(φ− φh)(t)‖1/2,Γ ≤ D1 max{1, t2} t2

t+ 1
ah(t),

‖(λ− λh)(t)‖−1/2,Γ ≤ D2 max{1, t3/2} t3/2√
t+ 1

ah(t).

4.3.4 Full Discretization with BDF2-CQ

The purely boundary integral formulation treated in the first part of this chapter

lent itself naturally to a full discretization using one of the many Convolution Quadra-

ture schemes for the time evolution. For the current variational/boundary integral for-

mulation it would seem that an independent treatment with traditional time-stepping

for the Finite Element part and Convolution Quadrature for the discretized bound-

ary integral equations would be the best way to proceed, and for our computational

implementation we will proceed in this fashion.

However, it turns out that the separate application of time stepping and CQ to

different parts of the system is equivalent to the application of CQ globally, as long

as the time stepping method used for the FEM part coincides with the one giving rise

to the CQ family used for the implementation (see Proposition B.3). This observation
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will allow us to analyze the fully discrete method as if the whole discretization were

done with CQ.

We present results for the coupled schemes based on BDF2. In the following

section we will show numerical experiments for BDF2-CQ and Trapezoidal Rule-CQ.

(We note that the general analysis of Trapezoidal Rule CQ applied to wave propagation

problems was done by Lehel Banjai in [8], although it does not give explicit behaviour

of bounds with respect to t.) We will use (uh
κ, v

h
κ) to denote the fully discrete ap-

proximation of (u, v) using a CQ method with constant time-step κ. In parallel to

the corresponding result in Section 4.2.3 (Proposition 4.12), the next estimate follows

from the Laplace domain estimates in Proposition 4.18 and an application of [116,

Proposition 4.6.1].

Proposition 4.21. Let � = 6 and (φ0, λ0) be causal problem data such that

(φ0, λ0) ∈ W �+1
+ (H1/2(Γ))×W �

+(H
−1/2(Γ)),

and let (uh
κ, v

h
κ) be the BDF2-based CQ discretization of (uh, vh). Then, for t ≥ 0, it

holds that

|||(uh, vh)(t)− (uh
κ, v

h
κ)(t)|||1 ≤ Dκ2(1 + t2)

∫ t

0

‖(φ(�+1)
0 , λ

(�)
0 )(τ)‖1/2,−1/2,Γ dτ.

It is important to note that the high-order regularity � = 6 is only required to

achieve optimal convergence of order κ2. For problem data with regularity as low as

� = 3, reduced convergence of order κ3/2 is achieved (see [116, Chapter 4]).

4.4 Numerical Experiments

In this section, we show some experiments for fully discrete methods applied to

the BEM and BEM/FEM formulations we have analyzed. For general ideas of what

CQ time-discretization means and how it is used, we refer to Appendix B. Algorithms

for BEM/FEM applied to acoustic transmission problems are explained in [61].

Boundary integral method. In order to test the convergence properties of

the implementation the following synthetic problem was solved in R
2. The interior
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elastic domain will be the unit disk Ω− = {x : x2
1 + x2

2 < 1}, and its exterior will be

the acoustic domain. If we let

H(t) := t5(1−5(t−1)+15(t−1)2−35(t−1)3+70(t−1)4−126(t−1)5)χ[0,1](t)+χ[1,∞)(t) (4.54)

be a C5 piecewise polynomial approximation to the Heaviside function, then the elastic

causal pressure wave

u(x, t) = H(cLt− x · d) sin (3(cLt− x · d))d, d =
(

1√
2
, 1√

2

)
, cL =

√
2μ+ λ

ρΣ
,

and the cylindrical acoustic wave

v(x, t) = L−1
{
ıH

(1)
0 (ıs|x|)L{H(t) sin(2t)}

}
solve equations (4.2a) and (4.2b) respectively. Here L is the Laplace transform. In

order for them to satisfy the entire IBVP (4.2), equations (4.2c) and (4.2d) were used

to define the boundary data α0 := ∂νv
inc and β0 := vinc.

The boundary data was sampled accordingly and the Laplace transformed equiv-

alent system (4.4) was discretized in space with deltaBEM (the reader is referred to

[34, 31] for further details on the computational aspects of deltaBEM), which can be con-

sidered as a Galerkin P1 method with reduced quadrature, while Convolution Quadra-

ture was used for time stepping on increasingly finer space/time discretizations with

N space points and the same number of time steps. The approximated solutions were

then sampled in 20 random points on the circle of radius r = .7 for the elastic wave and

r = 2 for the acoustic wave and compared against the exact solutions. The maximum

difference in the final time

Ev
h,k :=

max20i=1 |v(xi, tf )− vh,k(xi, tf )|
max20i=1 |v(xi, tf )| ,

Eu
h,k :=

max20i=1 |u(xi, tf )− uh,k(xi, tf )|
max20i=1 |u(xi, tf )| ,

is used as the error measure. Trapezoidal Rule CQ and BDF2-CQ were both imple-

mented and compared. Tables 4.1 and 4.2 summarize the results, while convergence
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N Eu
h,k e.c.r. Ev

h,k e.c.r.

20 0.5202 — 3.1119 —
40 0.1068 2.2837 1.8104 0.7815
80 0.0289 1.8864 0.4133 2.1310
160 0.0113 1.3556 0.1242 1.7342
320 0.0041 1.4753 0.0307 2.0187
640 0.0012 1.7503 0.0066 2.2228

Table 4.1: Relative errors and estimated convergence rates in the time domain for the BDF2 Con-

volution Quadrature with lowest order Galerkin discretization (with reduced quadra-

ture): N represents the number of space discretization points (elements) and timesteps.

The errors are measured at the final time T = 1.5.

N Eu
h,k e.c.r. Ev

h,k e.c.r.

20 1.1536 — 5.0725 —
40 0.2517 2.1964 0.9693 2.3876
80 0.0680 1.8879 0.2968 1.7077
160 0.0199 1.7711 0.0847 1.8081
320 0.0053 1.9207 0.0191 2.1525
640 0.0013 2.0377 0.0040 2.2597

Table 4.2: Relative errors and estimated convergence rates in the time domain for the Trapezoidal

Rule Convolution Quadrature with the same space discretization as in Table 4.1: N

represents the number of space discretization points and timesteps. The errors are

measured at the final time T = 1.5.

plots can be seen in Figure 4.2. The values λ = 9, μ = 15, ρΣ = 1.5, ρf = 1 and

c =
√
5 were used, and the final time was T = 1.5.

Coupled boundary-field method. The FEM-BEM discretization of the bi-

linear form A in (4.35) (the transfer function for the time domain operator we are

discretizing) is a matrix of the form:

A(s) :=

⎛⎝ S + s2M −sρfR

sρfR
t ρfBEM(s)

⎞⎠ .

Here S and M are the sparse FEM elastic stiffness and mass matrices. The BEM block

BEM(s) :=

⎛⎝ V(s) − (−1
2
I + K(s)

)(−1
2
I + K(s)

)t
W(s)

⎞⎠
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Figure 4.2: Relative errors for the BDF2 and TR implementations of CQ. The maximum difference

between the approximate and exact solutions on the sampled points.

includes Galerkin discretizations of all integral operators of the Calderón projector and

the matrix I contains the L2(Γ) inner products of pairs of basis functions in Yh ×Xh.

Finally the rectangular matrix R has the form
(

0 T
)
, where T contains the L2(Γ)

inner products of elements of the normal components of basis functions of Vh by basis

functions of Yh. As explained in [61] for a purely acoustic problem, there are several

strategies to implement a fully implicit CQ-FEM-BEM coupled scheme: (a) apply CQ

to the monolithic operator A(s) using a parallel strategy [13, 14], which amounts to

solving systems with associated matrix A(sj) for many complex frequencies sj; (b)

use time stepping, which requires solving a system with matrix A( 3
2κ
) on each time

step, and computing the memory terms for the integral equation part; (c) use the

parallel strategy of [13] on the Schur complement ρfBEM(s) + s2ρ2fR
t(S + s2M)−1R,

which amounts to condensing the FEM solves on the boundary interface and formally

working on a pure boundary problem. The numerical experiments have been performed

using this third strategy.

The previous coupling scheme was implemented using Galerkin Boundary El-

ements (using hierarchical polynomial bases and well known quadrature techniques
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based on Duffy transformations [114]) for the acoustic wave field and Lagrangian Fi-

nite Elements for the interior elastic wavefield. The convergence studies were carried

out for polynomial degrees k = 1 and k = 2 using the rectangle [1, 3] × [1, 2] as the

elastic domain, which was triangulated using Matlab-produced unstructured meshes.

Known solutions were imposed for the interior and exterior problems; a plane pressure

wave on the interior

u = ψ(cLt− x · d)d, ψ(t) := H(t) sin(2t), cL :=

√
λ+ 2μ

ρΣ
,

and a cylindrical acoustic wave on the exterior

v = L−1
{

i
4
H

(1)
0 (3|x− x0|)L{ϕ(t)}

}
, ϕ(t) := H(t) sin(3t)

where x0 = (1.5, 1.5) is the location of the source of the cylindrical wave, H(t) is the

smoothened Heaviside function defined in (4.54), and λ = 2, μ = 3 and ρΣ = 5.

These two functions satisfy equations (4.3a) and (4.3b). In order to force them

to solve the problem in question, the boundary data was manufactured using (4.3c)

and (4.3d) as the definitions for (λ0, φ0). The relevant information was sampled from

the known solution, combined according to (4.3c) and (4.3b) and the resulting pair

(λ0, φ0) was then fed to the discrete system as boundary data.

The experiment was run with succesive refinements on both the time step size

and on the FEM and BEM grids. For the sake of comparison, both BDF2 and Trape-

zoidal Rule time discretizations were used. The errors were measured for the final time,

for the finite element solution Eu
h,k,L2 in the L2(Ω−) norm and Eu

h,k,H1 in the H1(Ω−)

norm. For the acoustic wavefield the discrete solution was postprocessed, sampled and

compared to the exact solution in 20 random points in the acoustic domain, with the

-normalized- maximum discrepancy Ev
h,k being considered as the error. The results are

shown in Tables 4.3 to 4.6 and Figures 4.3 and 4.4.
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Figure 4.3: Convergence studies for the coupled FEM/BEM scheme with BDF2-based time evo-

lution. On the left, space discretization is done with P1 elements were used for the

finite element solution and P1/P0 elements for the boundary element solution. On

the right the polynomial degree is increased to P2 for the FEM part and P2/P1 for

the BEM part.

Time step
10 -2 10 -1

E
rr

or

10 -4

10 -3

10 -2

10 -1

Acoustic error
Elastic L 2 error
Elastic H 1 error
Order 1
Order 2

Time step
10 -2 10 -1

E
rr

or

10 -4

10 -3

10 -2

10 -1

Acoustic error
Elastic L 2 error
Elastic H 1 error
Order 1
Order 2

Figure 4.4: Convergence studies for the Trapezoidal Rule-based time evolution. Simultaneous

space/time refinements were done. Left: P1 elements were used for the finite element

solution and P1/P0 elements for the boundary element solution. Right: P2 elements

were used for the finite element solution and P2/P1 elements for the boundary element

solution.
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M/N Ev
h,k e.c.r. Eu

h,k,L2 e.c.r. Eu
h,k,H1 e.c.r.

20/1 3.478 E-3 — 1.131 E-2 — 1.469 E-1 —
40/2 1.864 E-3 0.900 3.632 E-3 1.639 7.290 E-2 1.011
80/3 5.856 E-4 1.670 1.032 E-3 1.815 3.591 E-2 1.022
160/4 1.552 E-4 1.915 2.719 E-4 1.925 1.775 E-2 1.016
320/5 3.960 E-5 1.971 6.937 E-5 1.971 8.843 E-3 1.006

Table 4.3: Relative errors and estimated convergence rates in the time domain for the BDF2

Convolution Quadrature. Space discretization was done with P1 elements for the FEM

part and P1/P0 for the BEM part. M is the number of timesteps, N defines the

refinement level of the mesh h = 0.52× 2−N . Final time T = 1.5.

M/N Ev
h,k e.c.r. Eu

h,k,L2 e.c.r. Eu
h,k,H1 e.c.r.

20/1 2.722 E-3 — 9.354 E-3 — 5.572 E-2 —
40/2 1.646 E-3 0.726 2.920 E-3 1.679 2.077 E-3 1.424
80/3 5.289 E-4 1.638 8.266 E-4 1.821 6.523 E-3 1.671
160/4 1.410 E-4 1.907 2.188 E-4 1.917 1.807 E-3 1.852
320/5 3.604 E-5 1.968 5.605 E-5 1.965 4.702 E-4 1.943

Table 4.4: Relative errors and estimated convergence rates in the time domain for the BDF2

Convolution Quadrature. The table shows the case where P2 is used for the FEM part

and P2/P1 for the BEM part. M is the number of timesteps, the mesh parameter is

given in terms of N by h = 0.52× 2−N . Final time T = 1.5.

M/N Ev
h,k e.c.r. Eu

h,k,L2 e.c.r. Eu
h,k,H1 e.c.r.

10/1 3.412 E-3 —– 1.382 E-2 —– 1.555 E-1 —–
20/2 1.929 E-3 0.823 4.112 E-3 1.749 7.467 E-2 1.058
40/3 5.113 E-4 1.915 1.088 E-3 1.917 3.604 E-2 1.051
80/4 1.281 E-4 1.996 2.763 E-4 1.978 1.776 E-2 1.021
160/5 3.202 E-5 2.000 6.935 E-5 1.994 8.843 E-3 1.006

Table 4.5: Relative errors and estimated convergence rates in the time domain for the Trapezoidal

Rule Convolution Quadrature with P1/P0 boundary elements and P1 finite elements.

h = 0.52 × 2−N is the maximum lenght of the triangulation and M is the number of

timesteps. Final time T = 1.5.
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M/N Ev
h,k e.c.r. Eu

h,k,L2 e.c.r. Eu
h,k,H1 e.c.r.

10/1 3.395 E-3 —– 1.205 E-2 —– 7.369 E-2 —–
20/2 1.925 E-3 0.819 3.364 E-3 1.841 2.581 E-2 1.513
40/3 5.108 E-4 1.912 8.799 E-4 1.935 7.316 E-3 1.819
80/4 1.281 E-4 1.996 2.223 E-4 1.981 1.896 E-3 1.948
160/5 3.201 E-5 2.000 5.591 E-5 1.995 4.783 E-4 1.987

Table 4.6: Relative errors and estimated convergence rates in the time domain for the Trapezoidal

Rule Convolution Quadrature with P2/P1 boundary elements and P2 finite elements.

h = 0.52 × 2−N is the maximum lenght of the triangulation and M is the number of

timesteps. Final time T = 1.5.
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Chapter 5

ACOUSTIC SCATTERING BY PIEZOELECTRIC OBSTACLES

This chapter extends the analysis tools developed in the previous chapter to the

study of the interaction between an acoustic wave and a piezoelectric elastic obstacle

and reflects the work in the paper Boundary-Finite Element discretization of time

dependent acoustic scattering by elastic obstacles with piezoelectric behavior written in

collaboration with Francisco-Javier Sayas [110].

The chapter is structured as follows. After a brief review of previous work on

this area, the general problem is presented in Section 2, where the time domain PDE

model and the geometry are introduced along with the required notation and assump-

tions on physical parameters. Section 3 introduces the Laplace-transformed problem.

Using standard BIE techniques we derive an equivalent integro-differential system and

pose it variationally. The error equations satisfied by the resulting Galerkin space

semi-discretization and the required elliptic projector are then presented. The core

of the analysis is done in Section 4, where a slightly more general discrete system –

encompassing both the discrete-in-space problem and the error equations– is shown to

be uniquely solvable by studying the variational formulation of an equivalent trans-

mission problem; stability bounds are obtained in terms of the Laplace parameter s.

The main results in the time domain are presented in Section 5, where the estimates

obtained in the previous section are translated into the time domain and the system

is fully discretized with BDF2-based Convolution Quadrature; for sufficiently smooth

problem data second-order-in-time convergence is proven. Section 6 is dedicated to

numerical experiments, some remarks pertaining the implementation of CQ and the

coupling of boundary and finite elements are followed by experiments confirming con-

vergence for the methods based in BDF2 and Trapezoidal Rule.
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5.1 Background

The study of the interaction between acoustic waves and elastic structures has

been subject of much work in recent decades. Many of the recent modeling and com-

putational efforts have been driven by the need to develop and improve techniques for

vibration control and reduction. Passive techniques rely on the use of sound absorbing

materials that dissipate the energy of the acoustic wave and have been successfully used

to damp high-frequency vibrations. On the other hand, active techniques employing

piezoelectric materials exploit the adaptability of the piezoelectric solid to react to the

vibrations in order to cancel them. Active materials are used to provide extra control

in the low frequency range.

In the frequency domain, works like [28, 29] have derived mathematical models

and variational formulations suitable for numerical treatment of the process, their

approach uses an effective load to model the action of the incident acoustic wave on

the piezoelectric material and is geared towards a finite element solution of all the

unknowns involved in the problem. In the time domain, [2] is a classic reference for

finite element simulation of waves in piezoelectrics, and a thorough review of the work

done on this area up until the early 2000’s can be found in [17]. The propagation

of plane waves waves in layered piezoelectric media has been addressed recently in

[107, 125], using analytical methods to study the reflection and transmission of plane

waves at the interface of media with different material coefficients. Within the context

of dynamic crack propagation in piezoelectric solids, finite element formulations have

been explored in [40, 104], while Boundary Integral Equations (BIE) have been treated

in [106, 78, 53]. Time domain BIE’s for a purely piezoelectric problem have been used

in recent works like [50, 126], where a Nyström approach is followed for the space

discretization and Convolution Quadrature is used in time. In both cases the model

concerns only the propagation of the wave inside the piezoelectric material and no

interaction with an acoustic wave is considered.

The present Chapter describes, discretizes, and analyzes the complete interac-

tion problem, considering an acoustic wave that impinges upon a piezoelectric scatterer
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inducing an elastic wave within the piezoelectric obstacle and a scattered acoustic wave

traveling in a homogeneous unbounded domain. The system of PDE’s used to model

the problem combines the acoustic/elastic coupling conditions presented in [66] for

wave structure interaction, with the PDE’s used in [29] to describe the time evolution

of the relevant variables. Aiming for a Finite Element discretization of the elastic and

electric variables and a boundary element treatment of the acoustic wave, the system

is translated into an integro-differential problem in the Laplace domain, the analysis is

carried out following the techniques systematized in [82] and originated in the seminal

work [6]. Galerkin discretization in space is used for all the variables, while Convolution

Quadrature combined with time stepping are used for the time evolution.

We prove that the resulting fully discrete problem is well posed and determine

stability and error bounds with explicit time dependence for the time discretization

based on second order backwards differentiation formulas (BDF2). A similar study

with the backward Euler method is easy to obtain, while a Trapezoidal Rule CQ

method is also available [8], but knowledge of the behavior of constants with respect

to time is not known at current time.

5.2 Problem Statement

Constitutive relations. In the interior domain Ω− the problem variables will

be the elastic displacement field u and the electric potential ψ

u : Ω− × [0,∞) −→ R
d, ψ : Ω− × [0,∞) −→ R.

We will use the following constitutive relations [121] to define the piezoelectric stress

tensor σ and the electric displacement vector D

σ := Cε(u) + e∇ψ , D := etε(u)− ε∇ψ. (5.1)

In the above definition ε(u) and C are the linearized elastic strain tensor and the

stiffness tensor defined on (2.3) and (2.8). The piezoelectric tensor e and dielectric
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tensor ε encode the electric properties of the material. For a real symmetric matrix

M ∈ R
d×d
sym and for a vector, d ∈ R

d we define

(e(x)d)ij :=
∑
k

ekijdk ,

(et(x)M)k :=
∑
ij

ekijMij ,

(ε(x)d)i :=
∑
j

εij(x)dj.

Due to physical considerations, these tensors exhibit the following symmetries [79]:

elij = elji , εil = εli. (5.2)

As we did earlier with the stiffness tensor, we will require that the components of e

and ε belong to L∞(Ω−) and that for any d ∈ R
d there exists a positive constant d0

such that for almost every x ∈ Ω−

ε(x)d · d ≥ d0 d · d.

The presence of an electric field inside of the scatterer will require one more geometric

assumption on the boundary Γ which now will be partitioned in two non-overlapping

parts where Dirichlet and Neumann boundary conditions for the electric potential will

be imposed. The two subdomains ΓD and ΓN will be open relative to Γ and such that

Γ = ΓD ∪ ΓN and ΓD �= ∅. A schematic of the physical setup is shown in Figure 5.1.

The PDE model. Under all the above considerations, and recalling the defi-

nitions (5.1), the interaction between the incident acoustic wave and the piezoelectric

scatterer is governed by the following system of PDE’s:
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c−2v̈ =Δv in Ω+ × [0,∞), (5.3a)

ρΣü =∇ · σ in Ω− × [0,∞), (5.3b)

∇ ·D =0 in Ω− × [0,∞), (5.3c)

u̇ · ν + ∂νv = − αd on Γ× [0,∞), (5.3d)

σ ν + ρf v̇ν = − ρf β̇dν on Γ× [0,∞), (5.3e)

D · ν = ηd on ΓN × [0,∞), (5.3f)

ψ =μd on ΓD × [0,∞), (5.3g)

with homogeneous initial conditions for v, v̇, u, and u̇. See, for instance, [70] for the

coupling of elastic and acoustic interactions, in [71] the authors provide mathematical

justification for the use of a quasi-static piezoelectric approximation employed by [29],

where an effective load vector is used to represent the acoustic interaction.

The problem data is

αd := ∂νv
inc|Γ : Γ× [0,∞) −→ R, ηd : ΓN × [0,∞) −→ R,

βd := vinc|Γ : Γ× [0,∞) −→ R, μd : ΓD × [0,∞) −→ R.

This system can be given a rigorous form using causal distributions taking values in

Sobolev spaces as in [66, 82], etc. For the time being we will deal only with the Laplace

transform of this system and will come back to the time domain only at the time of

giving stability and error estimates.

5.3 A Laplace Domain Semidiscrete Problem

For (u, ψ) ∈ H1(Ω−) × H1(Ω−) such that ∇ · σ(u, ψ) ∈ L2(Ω−) we define the

weak interior traction field in analogy to the purely elastic normal stress with the

formula

〈σν, γw〉Γ := (Cε(u), ε(w))Ω− + (e∇ψ, ε(w))Ω− + (∇ · σ,w)Ω− ∀w ∈ H1(Ω−).
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represent a function and its Laplace transform without ambiguity. Let s ∈ C+ :=

{s ∈ C : Re s > 0} and let

(αd, βd, ηd, μd) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)×H1/2(ΓD)

be problem data. We look for (v,u, ψ) ∈ H1(Ω+)×H1(Ω−)×H1(Ω−) such that

(s/c)2v −Δv =0 in Ω+, (5.4a)

ρΣs
2u− ∇ · σ =0 in Ω−, (5.4b)

∇ ·D =0 in Ω−, (5.4c)

sγu · ν + ∂+
ν v = − αd on Γ, (5.4d)

σν + ρfsγ
+vν = − ρfsβdν on Γ, (5.4e)

D · ν = ηd on ΓN , (5.4f)

γψ =μd on ΓD, (5.4g)

where σ and D are defined by (5.1).

A coupled integro-differential system. If (v,u, ψ) is a solution of (5.4),

then v can be represented as

v = D(s/c)φ− S(s/c)λ, (5.5)

where φ := γ+v and λ := ∂+
ν v. Note that this representation can be extended to Ω−,

yielding v ≡ 0 in Ω−. Therefore if we use the limit identities (2.25) to write γ−v, we

arrive at

V(s/c)λ− (−1
2
I + K(s/c)

)
φ = 0 on Γ. (5.6a)

Additionally, (5.4d) and (2.25) imply

(−1
2
I + Kt(s/c)

)
λ+W(s/c)φ− sγu · ν = αd on Γ. (5.6b)

Finally, (5.4e) can be written in terms of φ

σν + ρfsφν = −ρfsβdν on Γ. (5.6c)
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Reciprocally, if the integro-differential equations (5.6a) through (5.6c) are satisfied, if

(u, ψ, λ, φ) satisfies (5.4b), (5.4c), (5.4f), and (5.4g), and we define v with the repre-

sentation formula (5.5), it follows that λ = ∂+
ν v, φ = γ+v, and we recover the system

(5.4).

A variational formulation. We next define the elastodynamic bilinear form

b(u,w; s) := (Cε(u), ε(w))Ω− + s2(ρΣu,w)Ω− , (5.7a)

and the coupled elastic-electric bilinear form

B((u, ψ), (w, ϕ); s) := b(u,w; s) + (e∇ψ, ε(w))Ω−

− (ε(u), e∇ϕ)Ω− + (ε∇ψ,∇ϕ)Ω− , (5.7b)

which is bounded in H1(Ω−) × H1(Ω−). We also collect all the integral operators in

(5.6a)-(5.6b) in a single matrix of operators

D(s) :=

⎡⎣ V(s) +1
2
I−K(s)

−1
2
I + Kt(s) W(s)

⎤⎦ : H−1/2(Γ)×H1/2(Γ) → H1/2(Γ)×H−1/2(Γ).

(5.7c)

For the sake of notational simplicity, we will write D(s)(λ, φ) for the action of D(s) on

the column vector (λ, φ)t. We now present the continuous variational formulation of

the problem which reads:

Given data

(αd, βd, ηd, μd) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)×H1/2(ΓD),

find

(u, ψ, λ, φ) ∈ H1(Ω−)×H1(Ω−)×H−1/2(Γ)×H1/2(Γ)

such that

γDψ = μd, (5.8a)

and for all (w, ϕ) ∈ H1(Ω−)×H1(Ω−) and (ξ, χ) ∈ H−1/2(Γ)×H1/2(Γ)

B((u, ψ), (w, ϕ); s) + ρfs〈φ, γw · ν〉Γ =− ρfs〈βd, γw · ν〉Γ + 〈ηd, γϕ〉ΓN
, (5.8b)

−s〈γu · ν, χ〉Γ + 〈D(s/c)(λ, φ), (ξ, χ)〉Γ =〈αd, χ〉Γ. (5.8c)
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Discrete formulation. In order to discretize the system (5.8) a few definitions

are in order. We consider finite dimensional subspaces

Vh ⊆ H1(Ω−), Vh ⊆ H1(Ω−), Vh,D := Vh ∩H1
D(Ω−),

Xh ⊆ H−1/2(Γ), Yh ⊆ H1/2(Γ).

(Following [82], the theoretical treatment of the s-dependent discrete problem only

uses that these spaces are closed. This has the advantage of simultaneously providing

a well-posedness analysis of the continuous problem.) It will be assumed that the set

M :=
{
m ∈ H1(Ω−) : ε(m) = 0 ∀w ∈ H1(Ω−)

}
of elastic rigid motions is always contained in Vh. In the discrete case, the Dirichlet

boundary condition will be approximated in the space γDVh :=
{
γDv

h : vh ∈ Vh

}
. With

all this in mind, we can now pose the discrete counterpart of (5.8).

Given problem data

(αd, βd, ηd, μ
h
d) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)× γDVh,

find (uh, ψh, λh, φh) ∈ Vh × Vh × Yh ×Xh such that

γDψ
h = μh

d , (5.9a)

and for all (w, ϕ) ∈ Vh × Vh,D and (ξ, χ) ∈ Xh × Yh

B((uh, ψh), (w, ϕ); s)+ρfs〈φh, γw · ν〉Γ =−ρfs〈βd, γw · ν〉Γ+〈ηd, γϕ〉ΓN
, (5.9b)

−s〈γuh · ν, χ〉Γ + 〈D(s/c)(λh, φh), (ξ, χ)〉Γ = 〈αd, χ〉Γ. (5.9c)

A shorthand form of (5.9c) can be given using polar sets as done in the previous chapter

in the form

−(0, sγuh · ν) + D(s/c)(λh, φh)− (0, αd) ∈ X◦
h × Y ◦

h ≡ (Xh × Yh)
◦.

Trace liftings. By definition, the restriction of the trace to the Dirichlet bound-

ary

γD : H1(Ω−) −→ H1/2(ΓD)
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is a surjective operator, and so is

γh,D := γD|Vh
: Vh −→ γDVh.

Note that there exists a bounded right-inverse of γD (or lifting) which will be denoted

by γ†
D. For the discrete counterpart, the existence of a right-inverse of γh,D that is

bounded uniformly in h will be assumed (see [36]) and will be denoted γ†
h,D.

An elliptic projector. A projection operator will be required in order to

project the solid-electric component of the exact solution on the discrete space. Given

(u, ψ, μh
d) ∈ H1(Ω−)×H1

D(Ω−)×γDVh we will write (Phu,Phψ) ∈ Vh×Vh,D to denote

the pair satisfying

γDPhψ = μh
d , (5.10a)

the discrete variational equation

B((Phu,Phψ), (w, ϕ); 0) = B((u, ψ), (w, ϕ); 0) ∀(w, ϕ) ∈ Vh × Vh,D, (5.10b)

and the ‘grounding condition’

(Phu,m)Ω− = (u,m)Ω− ∀m ∈ M. (5.10c)

Note that the bilinear form in (5.10) does not contain the s-dependent term (we have

set s = 0), which is the kinetic part of the elastic-electric bilinear form B. Note also

that both Phu and Phψ depend on (u, ψ) as well as on the discrete data μh
d . We will

keep the simplified (and somewhat misleading) notation for the sake of simplicity. The

next lemma shows that this elliptic projection is quasioptimal.

Lemma 5.1. Problem (5.10) is uniquely solvable and there exists C > 0 such that

‖u−Phu‖1,Ω− + ‖ψ − Phψ‖1,Ω− ≤C
(

inf
w∈Vh

‖u−w‖1,Ω− + inf
ϕ∈Vh

‖ψ − ϕ‖1,Ω−

+ ‖γDψ − μh
d‖1/2,Γ

)
.

Proof. The bilinear form B(·, ·; 0) is coercive in the space

{u ∈ H1(Ω−) : (u,m)Ω− = 0 ∀m ∈ M} ×H1
D(Ω−),
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as follows from the second Korn and Poincaré-Friedrichs inequalities, since ΓD �= ∅. If

{mi : i = 1, . . . , Nd} is a basis for the space M, then a simple compactness argument

shows that the bilinear form

B((u, ψ), (w, ϕ); 0) +

Nd∑
i=1

(u,mi)Ω−(w,mi)Ω−

is coercive in H1(Ω−)×H1
D(Ω−). Therefore, when μh

D = 0, it is simple to see that (5.10)

is just a Galerkin discretizations inVh×Vh,D of a coercive problem, and therefore a Céa

estimate holds. The consideration of non-homogeneous boundary conditions, leading

to an estimate like the one on the statement of the Lemma, can be approached using

standard arguments based on the hypothesis of the existence of an h-uniform lifting of

γh,D (see [36]).

Error equations. The error will be analyzed using the variables

ehu :=Phu− uh, ehψ :=Phψ − ψh,

ehλ :=λ− λh, ehφ :=φ− φh,

which satisfy

γDe
ψ
h = 0, (5.11a)

and for all (w, ϕ) ∈ Vh × Vh,D

B((ehu, ehψ), (w, ϕ); s) + ρfs〈ehφ, γw · ν〉Γ − s2(ρΣ(Phu− u),w)Ω− = 0, (5.11b)

−(0, sγehu · ν) + D(s/c)(ehλ, e
h
φ)− (0, sγ(Phu− u) · ν) ∈ X◦

h × Y ◦
h , (5.11c)

(ehλ − λ, ehφ − φ) ∈ Xh × Yh.

(5.11d)

5.4 Laplace Domain Analysis

We consider a slightly more general problem from which both stability and error

estimates for (5.9) will be obtained. Data are

(αd, βd, ηd, μ
h
d) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)× γDVh, (5.12a)
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and

(θd, θd, λd, φd) ∈ H1(Ω−)× L2(Γ)×H−1/2(Γ)×H1/2(Γ), (5.12b)

and we look for

(ûh, ψ̂h) ∈ Vh × Vh,D and (λ̂h, φ̂h) ∈ H−1/2(Γ)×H1/2(Γ)

such that

γDψ̂
h =μh

d , (5.13a)

B((ûh, ψ̂h), (w, ϕ); s) + ρfs〈φ̂h, γw · ν〉Γ = − ρfs〈βd, γw · ν〉Γ + 〈ηd, γϕ〉ΓN

+ s2(ρΣθd,w)Ω− (5.13b)

∀ (w, ϕ) ∈ Vh × Vh,D,

−(0, sγûh · ν) + D(s/c)(λ̂h, φ̂h)− (0, αd + sθd) ∈X◦
h × Y ◦

h , (5.13c)

(λ̂h, φ̂h)− (λd, φd) ∈Xh × Yh. (5.13d)

Note that if the first group of data (5.12a) is set to be zero and we take

(θd, θd, λd, φd) = (Phu− u, γ(Phu− u) · ν, λ, φ),

the system (5.13) reduces to the error equations (5.11), while if the second group of

data (5.12b) is identically zero then the discrete equations (5.9) are recovered.

Two equivalent problems. Using the Galerkin equations (5.13) as the start-

ing point, the analysis will proceed as in [82] by finding an equivalent transmission

problem that can then be studied variationally. Solvability will then be established

for the variational formulation and the stability constants will be obtained from the

variational problem as well.

Proposition 5.2 (Transmission problem). If (ûh, ψ̂h, λ̂h, φ̂h) solves (5.13), and

v̂h := D(s/c)φ̂h − S(s/c)λ̂h, (5.14)
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then (v̂h, ûh, ψ̂h) ∈ H1(Rd \ Γ)×Vh × Vh,D satisfies

−Δv̂h + (s/c)2v̂h =0 in R
d \ Γ, (5.15a)

γDψ̂
h =μh

d on Γ, (5.15b)

B((ûh, ψ̂h), (w, ϕ); s)− ρfs〈[[γv̂h]], γw · ν〉Γ = − ρfs〈βd, γw · ν〉Γ + 〈ηd, γϕ〉ΓN

+ s2(ρΣθd,w)Ω− (5.15c)

∀ (w, ϕ) ∈ Vh × Vh,D,

−(0, sγûh · ν) + (γ−v̂h, ∂+
ν v̂

h)− (0, αd + sθd) ∈X◦
h × Y ◦

h , (5.15d)

([[∂ν v̂
h]] + λd, [[γv̂

h]] + φd) ∈Xh × Yh. (5.15e)

Conversely, given a solution triplet (v̂h, ûh, ψ̂h) to (5.15) and defining

λ̂h := −[[∂ν v̂
h]], φ̂h := −[[γv̂h]],

the functions (ûh, ψ̂h, λ̂h, φ̂h) solve (5.13).

Proof. Given a solution of (5.13) and defining v̂h as in (5.14), it follows from the

properties of the layer potentials that (5.15a) is satisfied. Another consequence of this

definition is that [[γv̂h]] = −φ̂h and [[∂ν v̂
h]] = −λ̂h, which shows that equations (5.15c)

and (5.15e) follow readily from (5.13b) and (5.13d) by substitution of the above terms.

Moreover, using the identities (4.7b) to compute γ−v̂h and ∂+
ν v̂

h, it can be seen that

(5.13c) and (5.15d) are equivalent.

The proof of the converse is very similar and requires only to observe that (5.15a)

allows for the layer potential representation of the acoustic field

v̂h = D(s/c)γ+v̂h − S(s/c)∂+
ν v̂

h.

Thus, defining λ̂h and φ̂h as in the statement all the above arguments can be repeated

to show that equations (5.13) hold.

The system (5.15) can now be treated variationally. To do this we introduce

the space

V ∗
h :=

{
w ∈ H1(Rd \ Γ) : [[γw]] ∈ Yh, and γ−w ∈ X◦

h

}
.
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The following proposition gives the equivalent variational formulation from which the

solvability and stability bounds of the entire problem will be deduced.

Proposition 5.3 (Variational formulation). Consider the bilinear and linear forms

A((v,u, ψ), (w,w, ϕ); s) := (∇v,∇w)Rd\Γ + (s/c)2(v, w)Rd\Γ

+ B((u, ψ), (w, ϕ); s)

+ ρfs〈γu · ν, [[γw]]〉Γ − ρfs〈[[γv]], γw · ν〉Γ,
� ((w,w, ϕ); s) := − 〈λd, γ

−w〉Γ + 〈αd + sθd, [[γw]]〉Γ
+ s2(ρΣθd,w)Ω− − ρfs〈βd, γw · ν〉Γ
+ 〈ηd, γϕ〉ΓN

.

The system (5.15) is equivalent to the problem of finding

(v̂h, ûh, ψ̂h) ∈ H1(Rd \ Γ)×Vh × Vh,D

such that

γDψ̂
h = μh

d , (5.16a)

([[γv̂h]] + φd, γ
−v̂h) ∈ Yh ×X◦

h, (5.16b)

A((v̂h, ûh, ψ̂h), (w,w, ϕ); s) = � ((w,w, ϕ); s) ∀(w,w, ϕ) ∈ V ∗
h ×Vh × Vh,D. (5.16c)

Proof. Given a solution (v̂h, ûh, ψ̂h) to (5.15) we note that (5.16b) is equivalent to the

first component of (5.15d) and the second component of (5.15e). Moreover, testing

∂+
ν v̂ with [[γw]] for w ∈ V ∗

h , we obtain

〈∂+
ν v̂

h, [[γw]]〉Γ = 〈∂−
ν v̂

h, γ−w〉Γ − 〈∂+
ν v̂

h, γ+w〉Γ − 〈[[∂ν v̂h]], γ−w〉Γ
=(∇v̂h,∇w)Rd\Γ + (Δv̂h, w)Rd\Γ − 〈[[∂ν v̂h]], γ−w〉Γ
=(∇v̂h,∇w)Rd\Γ+(s/c)2(v̂h, w)Rd\Γ−〈[[∂ν v̂h]]+λd, γ

−w〉Γ+〈λd, γ
−w〉Γ

=(∇v̂h,∇w)Rd\Γ + (s/c)2(v̂h, w)Rd\Γ + 〈λd, γ
−w〉Γ, (5.17)
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where we have used the definition of the weak normal derivative ∂±
ν v̂

h in conjunction

with equations (5.15a), (5.15d) and the first component of (5.15e). Therefore, for

w ∈ V ∗
h it follows from the second component of (5.15e) and (5.17) that

(∇v̂h,∇w)Rd\Γ + (s/c)2(v̂h, w)Rd\Γ + 〈λd, γ
−w〉Γ + 〈sγûh · ν + αd + sθd, [[γw]]〉Γ = 0.

The combined application of this last expression with equation (5.15c) is equivalent to

(5.16c).

To verify the converse statement, we expand the bilinear form in (5.16c) and

rewrite it in terms of the interior/exterior normal derivatives of v̂h and its Laplacian

to show that

0 = (Δv̂h, w)Ω− − (s/c)2(v̂h, w)Ω−

+ B((ûh, ψ̂h), (w, ϕ); s)−s2(ρΣθd,w)Ω−−ρfs〈[[γv̂h]]+βd, γw · ν〉Γ − 〈ηd, γϕ〉ΓN

+ 〈ρfsγûh · ν + αd + sθd, [[γw]]〉Γ
+ 〈[[∂ν v̂h]] + λd, γ

−w〉Γ.

Once the equation is rewritten in this form, it is enough to notice that the mapping

V ∗
h ×Vh × Vh,D −→ V ∗

h ×Vh × Vh,D ×X◦
h × Yh

(w,w, ϕ) �−→ (w,w, ϕ, γ−w, [[γw]])

is surjective to conclude that every line of the above expression must vanish indepen-

dently, which implies –line by line– equations (5.15a), (5.15c), the second component of

(5.15d), and the first component of (5.15e). The boundary condition (5.15b) is given

and the remaining two components of (5.15d) and (5.15e) are imposed strongly by the

choice of function spaces.

Well-posedness and stability. For s ∈ C+ we write as usual

σ := Re s > 0 , σ := min{σ, 1}.
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To shorten some of the forthcoming expressions, we will denote:

‖(v,u, ψ)‖21 := ρf‖∇v‖2
Rd\Γ + ρfc

−2‖v‖2
Rd

+ (Cε(u), ε(u))Ω− + (ρΣu,u)Ω− + (ε∇ψ,∇ψ)Ω− .

Following the program laid out in [82], we define the energy norm

|||(v,u, ψ)|||2|s| := ρf‖∇v‖2
Rd\Γ + ρfc

−2‖sv‖2
Rd

+ (Cε(u), ε(u))Ω− + ‖s√ρΣu‖2Ω− + (ε∇ψ,∇ψ)Ω− ,

which includes kinetic and potential contributions from the acoustic and elastic fields,

and the potential energy from the dielectric field. Notice that, since ΓD �= ∅, this

defines a norm in V ∗
h ×Vh × Vh,D. A simple computation shows that

σ‖(v,u, ψ)‖1 ≤ |||(v,u, ψ)||||s| ≤ |s|
σ

‖(v,u, ψ)‖1. (5.18)

Proposition 5.4 (Well-posedness). Problem (5.16) is uniquely solvable for any

(αd, βd, ηd, μ
h
d) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)× γDVh,

(θd, θd, λd, φd) ∈ H1(Ω−)× L2(Γ)×H−1/2(Γ)×H1/2(Γ),

and s ∈ C+. Moreover, there exists C > 0 independent of h and s such that

‖(v̂h, ûh, ψ̂h)‖1 + ‖φ̂h‖1/2,Γ ≤C
|s|
σσ2

A(data, s), (5.19a)

‖λ̂h‖−1/2,Γ ≤ C
|s|3/2
σσ3/2

A(data, s), (5.19b)

where

A(data, s) :=‖αd‖−1/2,Γ + ‖sβd‖1/2,Γ + ‖ηd‖−1/2,Γ + ‖sμh
d‖1/2,Γ

+ ‖s2θd‖Ω− + ‖sθd‖Γ + ‖λd‖−1/2,Γ + ‖sφd‖1/2,Γ.

Proof. It is easy to check that∣∣∣Re sA((v,u, ψ), (v,u, ψ); s)∣∣∣ = σ|||(v,u, ψ)|||2|s|.
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This observation implies the existence and uniqueness of the solution by the Lax-

Milgram lemma. In order to prove the stability bounds we first note that

|A ((v,u, ψ), (w,w, ϕ); s)| ≤C1
|s|
σ

|||(w,w, ϕ)||||s|‖(v,u, ψ)‖1, (5.20)

|� ((w,w, ϕ); s)| ≤ C2

σ
|||(w,w, ϕ)||||s|

(
‖αd‖−1/2,Γ + ‖sβd‖1/2,Γ + ‖ηd‖−1/2,Γ

+ ‖s2θd‖Ω− + ‖sθd‖Γ + ‖λd‖−1/2,Γ

)
,

(5.21)

where C1 and C2 depend only on the geometry, and in the second inequality we have

employed (5.18) to bound the energy norm. Next, we pick liftings of the boundary

data γ†φd ∈ H1(Rd \ Γ) and γ†
h,Dμ

h
d ∈ Vh such that

γ−γ†φd = 0 , −γ+γ†φd = φd , ‖γ†φd‖1,Ω− ≤C‖φd‖1/2,Γ, (5.22a)

γγ†
h,Dμ

h
d = μh

d , ‖γ†
h,Dμ

h
d‖1,Ω− ≤C‖μh

d‖1/2,Γ. (5.22b)

Since v̂h + γ†φd ∈ V ∗
h and ψ̂h + γ†

h,Dμ
h
d ∈ Vh,D, we can use (5.16c) to show that

|||(v̂h+γ†φd, û
h, ψ̂h+γ†

h,Dμ
h
d)|||2|s|

≤|s|
σ

∣∣∣A((v̂h+γ†φd, û
h, ψ̂h+γ†

h,Dμ
h
d), (v̂

h+γ†φd, û
h, ψ̂h+γ†

h,Dμ
h
d); s)

∣∣∣
=
|s|
σ

∣∣∣�((v̂h + γ†φd, û
h, ψ̂h + γ†

h,Dμ
h
d); s)

+A((γ†φd,0, γ
†
h,Dμ

h
d), (v̂

h + γ†φd, û
h, ψ̂h + γ†

h,Dμ
h
d); s)

∣∣∣
≤|s|

σ
|||(v̂h + γ†φd, û

h, ψ̂h + γ†
h,Dμ

h
d)||||s|

×
(
C2

σ

(
‖αd‖−1/2,Γ + ‖sβd‖1/2,Γ + ‖ηd‖−1/2,Γ + ‖s2θd‖Ω−

+ ‖sθd‖Γ + ‖λd‖−1/2,Γ

)
+C1

|s|
σ

)
‖γ†φd‖1,Ω− + ‖γ†

h,Dμ
h
d‖1,Ω−

))

≤C
|s|
σσ

|||(v̂h + γ†φd, û
h, ψ̂h + γ†

h,Dμ
h
d)||||s|A(data, s),
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where (5.20), (5.21), and (5.22a) have been used. This implies

|||(v̂h + γ†φd, û
h, ψ̂h + γ†

h,Dμ
h
d)||||s| ≤ C

|s|
σσ

A(data, s). (5.23)

The inequality (5.19a) follows from (5.23) with an application of (5.18). The estimate

(5.19b) can be derived from (5.23) by recalling that λ̂h = −[[∂ν v̂
h]] and applying [82,

Lemma 15] which states that, if Δv−s2v = 0 in an open set O with Lipschitz boundary,

then

‖∂νv‖−1/2,∂O ≤ C

( |s|
σ

)1/2

(‖sv‖O + ‖∇v‖O). (5.24)

This finishes the proof. (See Proposition 4.15 which uses a similar argument.)

5.5 Time Domain Estimates

Just as we did in Section 4.2.1, for the time domain estimates, data and solutions

will be assumed to be in spaces of the form

W k
+(X) := {ξ ∈ Ck−1(R; X) : ξ ≡ 0 in (−∞, 0), ξ(k) ∈ L1(R; X)},

for k ≥ 1. We will also use the linear differential operator (cf. Appendix A.)

(Pkf)(t) :=
k∑

l=0

(
k

l

)
f (l)(t).

The stability bounds and semi-discrete error estimates obtained in the previous section

can be translated into the following time domain results. Taking the second group of

data (5.12b) to be identically zero and setting

(θd, θd, λd, φd) = (Phu− u, γ(Phu− u) · ν, λ, φ),

an application of [37, Theorem 7.1] combined with Proposition 5.4 yields the following

result

Corollary 5.5 (Stability in the time domain). For causal problem data

(αd, βd, ηd, μ
h
d) ∈ W 3

+(H
−1/2(Γ))×W 4

+(H
1/2(Γ))×W 3

+(H
−1/2(Γ))×W 4

+(H
1/2(Γ))
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then the solutions of (5.13) λh, φh,uh and ψh are continuous causal functions of time

and there exist constants D1, D2 > 0 such that, for t ≥ 0:

‖(vh,uh, ψh)(t)‖1+‖φh(t)‖1/2,Γ≤ D1t
2

t+ 1
max{1, t2}

∫ t

0

‖P3(α̇d, βd, ηd, μ̇
h
d)(τ)‖±1/2,Γ dτ,

‖λh(t)‖−1/2,Γ≤ D2t
3/2

√
t+ 1

max{1, t3/2}
∫ t

0

‖P3(α̇d, βd, ηd, μ̇
h
d)(τ)‖±1/2,Γ dτ,

where D1 and D2 depend only on Γ.

We introduce the approximation error

ah(t) :=

∫ t

0

(
‖P3(φ̇− ΠY

h φ̇)(τ)‖1/2,Γ + ‖P3(λ− ΠX
h λ)(τ)‖−1/2,Γ

)
dτ

+

∫ t

0

(‖P3(ü−Phü)(τ)‖Ω− + ‖P3(u̇−Phu̇)(τ)‖1,Ω−
)
dτ,

where ΠY
h and ΠX

h are the orthogonal projections onto Yh and Xh respectively, and Ph

is part of the elliptic projector defined in (5.10). Note that Phu depends on u, ψ, and

μh
d and that Lemma 5.1 states that

‖u−Phu‖1,Ω− ≤ C
(‖u− Πh

Vu‖1,Ω− + ‖ψ − Πh
V ψ‖1,Ω− + ‖μd − μh

d‖1/2,Γ
)
,

where ΠV
h and ΠV

h are the respective H1 best approximation operators on Vh and Vh.

Taking the data (5.12a) as in Proposition 5.4 and applying [37, Theorem 7.1] we can

prove the following result

Corollary 5.6 (Semi-discrete error). If the solution (λ, φ,u, ψ) is such that

λ ∈W 3
+(H

−1/2(Γ)), φ ∈ W 4
+(H

1/2(Γ)),

u ∈W 5
+(H

1(Ω−)) ∩W 4
+(L

2(Ω−)), ψ ∈W 5
+(H

1(Ω−)) ∩W 4
+(L

2(Ω−)),

then, for every t ≥ 0

‖(ehv , ehu, ehψ)(t)‖1 + ‖ehφ(t)‖1/2,Γ ≤ D1t
2

t+ 1
max{1, t2}ah(t),

‖(ehλ)(t)‖1/2,Γ ≤ D2t
3/2

√
t+ 1

max{1, t3/2}ah(t),
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where D1, D2 > 0 depend only on Γ,

ehv := Dc ∗ (φ− φh)− Sc ∗ (λ− λh) = v − Dc ∗ φh + Sc ∗ λh.

Here Dc and Sc are the operator-valued causal distributions whose Laplace transforms

are D(s/c) and S(s/c), and ∗ is the symbol for distributional convolution in the time

variable.

Just as in the previous chapter, we will make use of a resut that will allow us to

carry out all the time domain analysis using CQ based tools even if our computational

implementation involves traditional time stepping for the finite element discretization.

As is shown in [82, Proposition 12], [61] as long as the time stepping method used for

the FEM part coincides with the one giving rise to the CQ algorithm in use this split

treatment of different parts of a system is equivalent to the application of CQ globally.

The approximation error between the fully discrete solution (vhκ,u
h
κ, ψ

h
κ) ob-

tained using BDF2-CQ with a time step size κ and the semi-discrete approximation

(vh,uh, ψh) can be estimated from Propostion 5.4 using [116, Proposition 4.6.1] (a

slight variant of a result in [91]).

Corollary 5.7. Let � = 6 and (αd, βd, ηd, μ
h
d) be causal problem data satisfying

(αd, βd, ηd, μ
h
d) ∈ W �+1

+ (H1/2(Γ))×W �
+(H

−1/2(Γ))×W �
+(H

−1/2(Γ))×W �
+(H

1/2(Γ)).

For t ≥ 0, the difference between the semi-discrete solution and fully discrete solution

obtained using BDF2-based Convolution Quadrature is bounded like

‖(vh,uh, ψh)(t)− (vhκ,u
h
κ, ψ

h
κ)(t)‖1 ≤ D(1 + t2)κ2

∫ t

0

‖(α̇d, βd, η0, μ
h
0)

(�)(τ)‖Γ dτ,

where D depends only on Γ. Reduced convergence of order 2/3 is achieved for � = 3.

5.6 Numerical Experiments

In order to test the convergence results proven in the previous section, the

formulation was implemented using standard Lagrangian finite elements for the elastic
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and electric fields and Galerkin boundary elements for the acoustic field. We take

Vh and Vh to be continuous Pk finite elements on a triangular mesh of Ω−. On the

inherited mesh on Γ, we consider the space Xh of discontinuous piecewise Pk−1 and

the space Yh of continuous piecewise Pk functions.

About the implementation. One of the advantages of the formulation we

propose is that it lends itself to a highly modular implementation, in the sense that

pre-existing FEM code for piezoelectricity and BEM code for acoustics can be used

to solve the coupled problem in the frequency domain without any modification. The

only requirement is the addition of a “discrete trace” which translates boundary FEM

degrees of freedom into BEM degrees of freedom. Formally, the structure of the discrete

system (5.8) can be represented as

⎡⎣ FEM(s) sρf (NΓ)
t
h

−sρf (NΓ)h ρfBEM(s)

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣ uh

ψh

⎤⎦
⎡⎣ λh

φh

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣−sρfΓ
t
hβ

h

ηh

⎤⎦
⎡⎣ 0

ρfα
h

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where: (a) the finite element block FEM(s) contains sparse s-independent elastic stiff-

ness, material mass, piezoelectric, and electric stiffness-like matrices, the material mass

matrix being multiplied by s2 (see (5.7a) and (5.7b)); (b) the boundary element block

BEM(s) contains Galerkin discretizations of the operators of the Calderón projector

(see (5.7c)); (c) the sparse matrix (NΓ)h corresponds to the discretization of the bilin-

ear form Vh×Yh � (uh, χh) �→ 〈uh ·ν, χh〉Γ with added zero blocks for the interactions

of all other spaces. We note that the trace space for Vh is a vector-valued version of

Yh, which means that, apart from rearrangements of degrees of freedom (and possible

changes of local polynomial bases), the only matrix connecting the BEM and FEM

codes is simple to implement.

In a similar way, the transition from Laplace domain to time domain can be done

modularly, either by implementing a CQ routine that inverts the full operator matrix,

or a time stepping routine where s is replaced with a discrete approximation of the

differentiation operator, or using a Schur complement strategy as was first suggested
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in [13] and outlined in [61] for a purely acoustic system or as in [66] for a coupled

acoustic/elastic problem. The latter approach, which results in a decoupling of the

boundary integral part of the system, is well suited for parallelization and was the

chosen strategy for the following numerical experiments.

Geometric setup and physical parameters. In all the convergence studies

(frequency and time domain), the rectangle

Ω− := (1, 3)× (1, 2) ⊂ R
2

was used as the piezoelectric domain. The double-indices used in our general presen-

tation of tensor in the piezoelectric domains will be reduced to a single index using the

simple convention:

(1, 1) ↔ 1 (2, 2) ↔ 2 (1, 2) ↔ 3.

(By symmetry, the pair (2,1) can be avoided in the tensor representations.) We choose

the following constant Lamé parameters, mass density, and acoustic speed of sound:

λ = 2, μ = 3, ρΣ = 5, c = 1. (5.25a)

We will use Young’s modulus and Poisson’s ratio

E :=
2μ(1 + λ)

2μ+ λ
, ν :=

λ

2μ+ λ
(5.25b)

to express the entries of the elastic compliance tensor C

C11 = C22 =
E

1− ν2
, C33 =

E

2(1 + ν)
, C12 =

Eν

1− ν2
, C13 = C23 = 0. (5.25c)

For the piezoelectric tensor e the values used were

e11 = e22 = e33 = 1, e12 = e13 = e23 = 5, (5.25d)

while for the dielectric tensor ε the entries were

ε11 = ε22 = 4, ε12 = 1. (5.25e)

We take ΓD = Γ and ΓN = ∅.
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Convergence studies in the frequency domain. The elastic plane pressure

wave

u(x) = e−scLx·dd, d =
(

1√
2
, 1√

2

)
, cL =

√
2μ+ λ

ρΣ

with s = −2.5ı was imposed as a solution alongside the electric field

ψ(x) = x3
1 + x3

1x2 − 3x1x
2
2 − 1

3
x3
2.

In the acoustic domain, the cylindrical acoustic wave

v(x) = ı
4
H

(1)
0 (ıs|x− x0|), x0 = (2, 1.5) ∈ Ω−

was used. Right-hand sides are added to equations (5.4b) and (5.4c)

∇ · σ = ρΣs
2u+ f1 ∇ ·D = f2

so that (u, ψ) is a solution. Boundary data for ψ and transmission data in (5.4d)-(5.4e)

are built so that the equations are satisfied.

The experiment was ran using k = 1, 2 for the Pk finite elements and Pk/Pk−1

boundary elements. The acoustic wave was sampled in twenty random points in the

exterior of the piezoelectric domain and compared to the exact solution, using the

maximum discrepancy as the measure of the acoustic error Ev
h. For the elastic and

electric unknowns both L2(Ω−) and H1(Ω−) errors were computed. Tables 5.1 and 5.2

as well as Figure 5.2 show the outcome of the convergence tests.

k = 1 L2(Ω−) H1(Ω−)
h Ev

h e.c.r. Eu
h e.c.r. Eψ

h e.c.r. Eu
h e.c.r. Eψ

h e.c.r.
0.2 7.110 E-2 — 1.167 E-1 — 4.140 E-2 — 7.835 E-1 — 1.718 —
0.1 1.760 E-2 2.014 3.146 E-2 1.891 1.047 E-2 1.984 2.646 E-1 1.566 8.544 E-1 1.007
0.05 4.615 E-3 1.931 8.138 E-3 1.951 2.632 E-3 1.991 9.372 E-2 1.497 4.263 E-1 1.003
0.025 1.171 E-3 1.978 2.059 E-3 1.983 6.599 E-4 1.996 3.734 E-2 1.327 2.130 E-1 1.001

Table 5.1: Relative errors and estimated convergence rates in the time frequency domain with P1

finite elements and P1/P0 boundary elements. h represents the maximum length of

the panels used to discretize the boundary.
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k = 2 L2(Ω−) H1(Ω−)
h Ev

h e.c.r. Eu
h e.c.r. Eψ

h e.c.r. Eu
h e.c.r. Eψ

h e.c.r.
0.2 5.545 E-5 — 3.542 E-4 — 3.927 E-4 — 1.350 E-2 — 1.805 E-2 —
0.1 4.161 E-6 3.736 3.949 E-5 3.024 4.872 E-5 3.024 3.083 E-3 2.130 4.450 E-3 2.020
0.05 3.146 E-7 3.725 4.555 E-6 3.116 5.991 E-6 3.010 7.153 E-4 2.108 1.105 E-3 2.009
0.025 2.379 E-8 3.725 5.455 E-7 3.062 7.463 E-7 3.005 1.710 E-4 2.064 2.753 E-4 2.005

Table 5.2: Relative errors and estimated convergence rates in the time frequency domain with P2

finite elements and P2/P1 boundary elements. h represents the maximum length of

the panels used to discretize the boundary.
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Figure 5.2: Convergence studies for the frequency domain problem are shown for P1/P0 boundary

elements and P1 finite elements (left) and P2/P1 boundary elements and P2 finite

elements (right).

Convergence studies in the time domain

Experiments were carried out using matching time stepping (for the FEM part)

and CQ (for the BEM part) based on both Trapezoidal Rule and BDF2 for time

evolution. The fully discrete method based on the trapezoidal rule can analyzed in the

same way as BDF2, using results from [8]. Note that the only difference is the lack of

knowledge of how the error constants depend on the time variable.

Just as in the frequency domain case, the rectangle

Ω− := (1, 3)× (1, 2) ⊂ R
2
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was used as the piezoelectric domain where the elastic plane pressure wave

u(x, t) = H(cLt− x · d) sin (3(cLt− x · d))d, d =
(

1√
2
, 1√

2

)
, cL =

√
2μ+ λ

ρΣ
,

and the causal electric field

ψ(x, t) = H(t)(x3
1 + x3

1x2 − 3x1x
2
2 − 1

3
x3
2),

were imposed. In the acoustic domain, the cylindrical acoustic wave

v(x, t) = L−1
{
ıH

(1)
0 (ıs|x− x0|)L{H(t) sin(2t)}

}
,

centered at x0 = (2, 1.5), was imposed. In all cases H is the piecewise polynomial

approximation to Heaviside’s step function given in (4.54).

Analogously to the frequency domain experiments, right-hand sides were added

so that (u, ψ) are solutions to the system and the appropriate Dirichlet data was

sampled at the boundary using Equations (5.3d). (5.3e), and (5.3g) to define the

boundary data.

The experiment was ran using k = 1, 2 for the Pk finite elements and Pk/Pk−1

boundary elements. The time step and mesh size were refined simultaneously and the

final time was t = 1.5. All errors are measured at the final time: Ev
h,κ measures the

maximum error on twenty randomly chosen points in the exterior domain, while elastic

and electric fields errors are measured in the L2(Ω−) and H1(Ω−) norms. Tables 5.3

and 5.4 along with Figure 5.3 show the outcome of the convergence tests.

A sample simulation

As an example, we consider the interaction between the acoustic plain wave

vinc = 3χ[0,0.3](τ)(88τ) sin (88τ), τ := t− r · d, r := (x, y), d := (1, 5)/
√
26,

and a pentagonal piezoelectric scatterer with mass density given by

ρΣ = 5 + 25e−100r2 r := |r|.
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k = 1 L2(Ω−) H1(Ω−)
h/κ Ev

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r.

2 E-1/7.5 E-2 2.054 E-2 — 6.363 E-2 — 4.179 E-2 — 5.714 E-1 — 1.702 —
1 E-1/3.75 E-2 7.864 E-3 1.385 1.726 E-2 1.882 1.034 E-2 2.015 2.067 E-1 1.467 8.515 E-1 0.999
5 E-2/1.875 E-2 1.831 E-3 2.102 4.537 E-3 1.928 2.590 E-3 1.997 8.600 E-2 1.265 4.258 E-1 1.000
2.5 E-2/9.375 E-3 4.485 E-4 2.030 1.159 E-3 1.969 6.485 E-4 1.997 3.912 E-2 1.136 2.129 E-1 1.000

Table 5.3: Relative errors and estimated convergence rates in the time domain for the Trapezoidal

Rule Convolution Quadrature with P1 finite elements and P1/P0 boundary elements:

h represents the maximum length of the panels used to discretize the boundary, κ is

the size of the timesteps. The errors are measured at the final time T = 1.5.

k = 2 L2(Ω−) H1(Ω−)
h/κ Ev

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r.

2 E-1/7.5 E-2 3.422 E-2 — 4.627 E-2 — 1.544 E-2 — 6.323 E-1 — 1.495 E-1 —
1 E-1/3.75 E-2 2.329 E-2 0.555 1.242 E-2 1.898 3.722 E-3 2.052 1.821 E-1 1.795 3.260 E-2 2.197
5 E-2/1.875 E-2 5.836 E-3 1.997 3.128 E-3 1.989 9.194 E-4 2.017 4.607 E-2 1.983 7.735 E-3 2.076
2.5 E-2/9.375 E-3 1.444 E-3 2.015 7.826 E-4 1.999 2.288 E-4 2.007 1.151 E-2 2.001 1.907 E-3 2.020

Table 5.4: Relative errors and estimated convergence rates in the time domain for the Trapezoidal

Rule Convolution Quadrature with P2 finite elements and P2/P1 boundary elements:

h represents the maximum length of the panels used to discretize the boundary, κ is

the size of the timesteps. The errors are measured at the final time T = 1.5 .

The remaining physical parameters of the solid were taken to be those defined by (5.25)

and the entire solid/fluid interface was taken as Dirichlet boundary, where a grounding

potential ψ ≡ 0 was imposed as boundary condition for all times. The simulation was

carried out using P2 Lagrangian finite elements and P2/P1 continuous/discontinuous

Galerkin boundary elements with Trapezoidal Rule-based time discretization using a

time step κ = 0.005. Figures 5.5 to 5.7 show snapshots of the process at different times.
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Figure 5.3: Convergence studies for the Trapezoidal Rule-based time stepping in the case of P1/P0

boundary elements and P1 finite elements (left) and P2/P1 boundary elements and

P2 finite elements (right).

k = 1 L2(Ω−) H1(Ω−)
h/κ Ev

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r.

2 E-1/7.5 E-2 2.805 E-2 — 9.448 E-2 — 4.772 E-2 — 7.683 E-1 — 1.709 —
1 E-1/3.75 E-2 2.543 E-2 0.141 3.401 E-2 1.474 1.377 E-2 1.793 3.931 E-1 0.967 8.546 E-1 1.000
5 E-2/1.875 E-2 1.571 E-2 0.694 1.010 E-2 1.749 3.689 E-3 1.900 1.513 E-1 1.378 4.264 E-1 1.003
2.5 E-2/9.375 E-3 4.650 E-3 1.757 2.655 E-3 1.930 9.379 E-4 1.975 5.231 E-2 1.532 2.130 E-1 1.001

Table 5.5: Relative errors and estimated convergence rates in the time domain for the BDF2-

based Convolution Quadrature with P1 finite elements and P1/P0 boundary elements:

h represents the maximum length of the panels used to discretize the boundary, κ is

the size of the timesteps. The errors are measured at the final time T = 1.5 .

k = 2 L2(Ω−) H1(Ω−)
h/κ Ev

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r. Eu
h,κ e.c.r. Eψ

h,κ e.c.r.

2 E-1/7.5 E-2 2.959 E-2 — 9.368 E-2 — 2.999 E-2 — 8.178 E-1 — 2.287 E-1 —
1 E-1/3.75 E-2 3.047 E-2 -0.041 3.884 E-2 1.270 1.247 E-2 1.265 4.699 E-1 0.799 1.097 E-1 1.059
5 E-2/1.875 E-2 1.958 E-2 0.638 1.186 E-2 1.712 3.566 E-3 1.806 1.664 E-1 1.498 3.084 E-3 1.832
2.5 E-2/9.375 E-3 5.680 E-3 1.785 3.099 E-3 1.936 9.102 E-4 1.970 4.511 E-2 1.883 7.617 E-3 2.018

Table 5.6: Relative errors and estimated convergence rates in the time domain for the BDF2-

based Convolution Quadrature with P2 finite elements and P2/P1 boundary elements:

h represents the maximum length of the panels used to discretize the boundary, κ is

the size of the timesteps. The errors are measured at the final time T = 1.5 .
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Figure 5.4: Convergence studies for the BDF2-based time stepping in the case of P1/P0 boundary

elements and P1 finite elements (left) and P2/P1 boundary elements and P2 finite

elements (right).
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Figure 5.5: The total acoustic wave shown at times t = 0.175, 0.7, 1.225, 1.75.
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Figure 5.6: Close up of the norm of the elastic displacement at times t =

0.35, 0.525, 0.7, 0.875, 1.05, 1.225.
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Figure 5.7: Close up of the electric potential at times t = 0.35, 0.525, 0.7, 0.875, 1.05, 1.225.
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Chapter 6

ACOUSTIC SCATTERING BY THERMOELASTIC OBSTACLES

This chapter includes work in progress in collaboration with George Hsiao,

Franciso-Javier Sayas and Richard Weinacht for the paper A time-depended wave-

thermoelastic solid interaction [67]. The interaction of acoustic waves with elastic

bodies is revisited, but this time taking into account the thermodynamics of elastic

deformation. These results in the introduction of a new problem unknown, the tem-

perature difference between the reference configuration and the deformed configuration.

The resulting system of PDE’s couples two hyperbolic equations with one parabolic

equation describing the evolution of the thermal field.

From the physical perspective, considering the thermodynamical aspects of elas-

tic deformation when deriving the equations of linear elasticity is a very natural thing

to do. In fact, the constitutive relation connecting the elastic stress and strain with

the temperature gradients induced in a deformed solid dates back to 1837 in the pio-

neering work of Duhamel [38] on thermoelastic materials thus predating the study of

the piezoelectric effect –that wasn’t discovered experimentally until 1881 by Pierre and

Jacques Curie and formalized mathematically by Tiersten in 1969 (as cited in [100]).

Kupradze’s encyclopedic work [76] can be considered the standard reference

for a modern mathematical treatment of the purely thermoelastic problem and [62]

is an up to date treatise of thermoelasticity. More recent works [105, 123] revisit

the matrix of fundamental solutions for the dynamic equations of thermoelasticity or

provide generalized Kirchhoff-type formulas for thermoelastic solids [72, 73] .

In the case of the scattering of thermoelastic waves, major theoretical contri-

butions have been made by Cakoni and Dassios in works like [18] where the unique
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solvability of a boundary integral formulation is established or [26] where the inter-

action of elastic and thermoelastic waves is explored for homogeneous materials. The

study of time-harmonic interaction between a scalar field and a thermoelastic solid has

been the subject of works like [86] where the interface is taken to be a plane, or [85, 74]

where time-harmonic scattering by bounded obstacles is considered.

The problem is introduced in Section 6.1, along with the physical assumptions

and the constitutive relation under consideration leading to the time domain system of

governing equations. We then move on to Section 6.2 where we introduce the Laplace

domain system and the equivalent integro-differential problem that will be formulated

variationally for discretization. The closing section 6.4 shows convergence estimates for

test problems in both frequency and time domains with BDF2 and Trapezoidal Rule

CQ, providing evidence that the approximation is stable and of second order globally.

Time domain illustrative experiments using the proposed formulation are included.

6.1 Formulation of the Problem

The problem in question is the time-dependent scattering of an acoustic wave by

a thermoelastic solid, which can be simply described as follows: a given acoustic wave

vinc propagates in a fluid domain of infinite extent Ω+ in which a bounded thermoelastic

body, described by a Lipschitz bounded domain Ω−, is immersed. The boundary of

the solid, Γ is considered to be Lipschitz continuous and is split in two disjoint parts

Γ = ΓD ∪ΓN where thermal Dirichlet and Neumann boundary conditions are imposed.

Under the assumption of irrotational, isotropic flow of a homogeneous inviscid

and compressible fluid, the velocity and pressure fields can be represented by a scalar

velocity potential v. The problem is then to determine the scattered velocity potential

in the fluid domain as well as the deformation of the solid u and the variation of the

temperature in the obstacle with respect to an equilibrium temperature θ0 which will

be denoted by θ and will be assumed to be small |θ/θ0| << 1.

Constitutive relations. Consider a thermoelastic solid in an undeformed ref-

erence configuration and at thermal equilibrium at temperature θ0. Under the action
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of external forces the body will be subject to internal stresses that will induce local

variations of temperature. Reciprocally, if a heat source induces a change in tempera-

ture, the body will react by dilating or contracting and this will create internal stresses

and deformations. In the classical linear theory [77, 84], the coupling between the

mechanic strain and the thermic gradient is modelled by the Duhamel-Neumann law

which defines the thermoelastic stress σ(u, θ) and the thermoelastic heat flux F(u, θ)

(also known as free energy)

σ :=Cε(u)− ζθ , (6.1a)

F := − η u̇+ κ∇θ. (6.1b)

Here the upper dot represents differentiation with respect to time, C is the elastic stiff-

ness tensor defined in (2.8), κ is the thermal conductivity tensor, which from physical

principles [55] is required to be non-singular, symmetric and positive definite, ζ is the

thermal expansion tensor which is symmetric, and is related to the tensor η by the

relation

η = θ0κ
−1ζ. (6.2)

In addition of the above physical requirements, we will assume that the components of

κ, ζ, and η are all functions in L∞(Ω−).

The governing equations. Under the above assumptions and definitions

and in the absence of external forces or heat sources, the governing equations of the

interaction between the scattered acoustic wave v, the elastic displacement field u and
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temperature field θ are

ρΣü =∇ · (Cε(u)− ζθ) in Ω− × (0,∞), (6.3a)

θ̇ =∇ · (−η u̇+ κ∇θ) in Ω− × (0,∞), (6.3b)

c−2v̈ =Δv in Ω+ × (0,∞), (6.3c)

u̇ · ν + ∂νv = − ∂νv
inc on Γ× (0,∞), (6.3d)

(Cε(u)− ζθ)ν + ρf v̇ ν = − ρf v̇
incν on Γ× (0,∞), (6.3e)

(−η u̇+ κ∇θ) · ν =0 on ΓN × (0,∞), (6.3f)

θ =h on ΓD × (0,∞), (6.3g)

where c is the speed of sound in the fluid and ρf is the constant fluid density. The

system is closed by requesting the causality of all the unknowns, which yields with

homogeneous initial conditions for u, u̇, v, v̇, and θ and should be understood in the

sense of time domain causal tempered distributions defined in Appendix B.

Regarding the transmission boundary conditions we remark that equation (6.3d)

is the statement of the equilibrium of pressure at the solid fluid interface (the combined

elastic stress, thermal stress and total acoustic pressure field add up to zero), and

equation (6.3e) encodes the continuity of the velocity fields in the normal direction, so

that no vacuum is created at the interface.

6.2 Continuous Problem in the Laplace Domain

From this point on we will deal exclusively with the Laplace-transformed version

of (6.3) and will abuse notation by using the same symbol for the functions u, θ, and

v and their Laplace domain counterparts.

After transformation, the thermoelastic stress and heat flux are given by

σ := Cε(u)− ζθ , F := −sη u+ κ∇θ. (6.4)
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For (u, θ) ∈ H1(Ω−) × H1(Ω−) such that (∇ · σ,∇ · F) ∈ L2(Ω−) × L2(Ω−) we can

define weakly the normal components of the stress and the flux by

〈σ ν, γw〉Γ := (ε(u), ε(w))Ω−−(ζθ,∇w)Ω−+(∇ · σ,w)Ω− ∀w ∈ H1(Ω−),

(6.5a)

〈F · ν, γw〉Γ := − (sη u,∇w)Ω−+(κ∇θ,∇w)Ω−+(∇ · F, w)Ω− ∀w ∈ H1(Ω−).

(6.5b)

These weak normal fluxes are elements of the dual spaces H−1/2(Γ) and H−1/2(Γ)

respectively. In order to deal with the boundary conditions we will define the spaces

H1/2(ΓD) := {γDu : u ∈ H1(Ω−)}, H1
D(Ω−) := {u ∈ H1(Ω−) : γDu = 0},

H̃1/2(ΓN) := {γNu : u ∈ H1
D(Ω−)}, H−1/2(ΓN) :=

(
H̃1/2(ΓN)

)′
.

In these definitions the traces at the Dirichlet and Neumann boundaries are the re-

strictions

γDu := γu|ΓD
, γNu := γu|ΓN

,

and the brackets 〈·, ·〉Γ are used to denote the duality pairing of H−1/2(ΓN) with

H̃1/2(ΓN).

Two equivalent systems. The Laplace domain problem that we will study is

then that of, given problem data

(αd, βd, ηd, μd) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)×H1/2(ΓD),

finding (u, θ, v) ∈ H1(Ω−)×H1(Ω−)×H1(Ω+) satisfying the equations

s2ρΣu− ∇ · (Cε(u)− ζθ) =0 in Ω−, (6.6a)

sθ − ∇ · (−sη u+ κ∇θ) = 0 in Ω−, (6.6b)

(s/c)2v −Δv =0 in Ω+, (6.6c)

sγu · ν + ∂+
ν v = − αd on Γ, (6.6d)

(Cε(u)− ζθ)ν + ρfsγ
+v ν = − ρfsβdν on Γ, (6.6e)

(−sη u+ κ∇θ) · ν = ηd on ΓN , (6.6f)

γθ =μd on ΓD. (6.6g)
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This system can be stated in an equivalent integro differential form using the

Calderón calculus for the acoustic resolvent equation. Since v satisfies the wave equa-

tion (6.6c) we can represent it in terms of a combination of double and single layer

potentials

v = D(s/c)φ− S(s/c)λ (6.7)

for two unkown densities (λ, φ) ∈ H−1/2(Γ) × H1/2(Γ). This representation can be

extended by zero to Ω− by requiring that γ−v = 0. The last condition in combination

with the jump identities of the layer potentials implies that [[γv]] = γ+v = φ, therefore

(6.6e) can be written in terms of φ yielding

σ ν + ρfsφν = −ρfsβdν on Γ.

Moreover, the requirement that the interior trace of the acoustic wave must vanish can

be written using (2.25) in the form

V(s/c)λ− (−1
2
I + K(s/c))φ = 0 on Γ.

In a similar fashion, the potential representation of v and the limit identities (2.25)

can be combined with the boundary condition (6.6d) yielding

(−1
2
I + Kt(s/c))λ+W(s/c)φ− sγu · ν = αd on Γ.

Therefore a solution triplet (u, θ, v) of the system (6.6) determines the solution

(u, θ, λ, φ) ∈ H1(Ω−)×H1(Ω−)×H−1/2(Γ)×H1/2(Γ)

120



of the integro-differential system

s2ρΣu− ∇ · (Cε(u)− ζθ) =0 in Ω−, (6.8a)

sθ − ∇ · (−sη u+ κ∇θ) = 0 in Ω−, (6.8b)

V(s/c)λ− (−1
2
I + K(s/c))φ =0 on Γ, (6.8c)

(−1
2
I + Kt(s/c))λ+W(s/c)φ− sγu · ν =αd on Γ, (6.8d)

(Cε(u)− ζθ)ν + ρfsγ
+v ν = − ρfsβdν on Γ, (6.8e)

(−sη u+ κ∇θ) · ν = ηd on ΓN , (6.8f)

γθ =μd on ΓD. (6.8g)

Reciprocally, given a solution (u, θ, λ, φ) to the above system (6.8), we can define v

using the integral representation (6.7) and use the properies of the layer potentials and

their limit identities (2.25) to show that with this definition the triplet (u, θ, v) satisfies

the PDE system (6.6).

A variational formulation. The integral operators appearing on equations

(6.8c) and (6.8d) can be expressed succintly in matrix form by defining

D(s) :=

⎡⎣ V(s) +1
2
I−K(s)

−1
2
I + Kt(s/c) W(s)

⎤⎦ : H−1/2(Γ)×H1/2(Γ) → H1/2(Γ)×H−1/2(Γ).

(6.9)

The action D(s)(λ, φ) should be understood as the action of D(s) on the column vector

(λ, φ)t. The integro-differential system (6.8) can be formulated variationally through

Galerkin testing. In order to do that we define the thermoelastic bilinear form

B ((u, θ), (w, w); s) := s2(ρΣu,w)Ω− + (Cε(u), ε(w))Ω− (6.10)

+ s(θ, w)Ω− + (κ∇θ,∇w)Ω−

− s(ηu,∇w)Ω− − (ζθ, ε(w))Ω− ,

which is easily shown to be bounded in H1(Ω−)×H1(Ω−). The system (6.8) is equiv-

alent to the variational problem of, given data

(αd, βd, ηd, μd) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)×H1/2(ΓD),

121



finding

(u, θ, λ, φ) ∈ H1(Ω−)×H1(Ω−)×H−1/2(Γ)×H1/2(Γ)

such that the following are satisfied

γθ =μd on ΓD, (6.11a)

B ((u, θ), (w, w); s)+sρf〈γw · ν, φ〉Γ = − sρf〈γw · ν, βd〉Γ+〈ηd, γw〉ΓN
, (6.11b)

−s〈γu · ν, χ〉Γ+〈D(s/c)(λ, φ), (ξ, χ)〉Γ = 〈αd, χ〉Γ, (6.11c)

for every (w, w, ξ, χ) ∈ H1(Ω−)×H1(Ω−)×H−1/2(Γ)×H1/2(Γ).

6.3 Laplace Domain Semidiscretization

We now proceed to discretize the variational formulation (6.11). In order to do

so, we will consider the finite dimensional subspaces

Vh ⊆ H1(Ω−), Vh ⊆ H1(Ω−), Vh,D := Vh ∩H1
D(Ω−),

Xh ⊆ H−1/2(Γ), Yh ⊆ H1/2(Γ).

Following the analysis from Chapter 5, we will further assume that the space of elastic

rigid motions

M :=
{
m ∈ H1(Ω−) : ε(m) = 0 ∀w ∈ H1(Ω−)

}
is contained in the finite element space Vh. Finally, to approximate the Dirichlet

boundary condition for θ in the discrete case we will use the discrete space of traces

γDVh := {γDvh : vh ∈ Vh}.

The discrete version of (6.11) reads: given data

(αd, βd, ηd, μ
h
d) ∈ H−1/2(Γ)×H1/2(Γ)×H−1/2(ΓN)× γDVh,

find

(uh, θh, λh, φh) ∈ Vh × Vh ×Xh × Yh
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such that the following are satisfied

γθh =μh
d on ΓD, (6.12a)

B
(
(uh, θh), (w, w); s

)
+sρf〈γw · ν, φh〉Γ= 〈ηd, γw〉ΓN

−sρf〈γw · ν, βd〉Γ, (6.12b)

−s〈γuh · ν, χ〉Γ+〈D(s/c)(λh, φh), (ξ, χ)〉Γ=〈αd, χ〉Γ, (6.12c)

for every (w, w, ξ, χ) ∈ Vh × Vh,D ×Xh × Yh.

Remark. The study of the well-posedness of (6.8) (or equivalently (6.11)) and

the discrete problem (6.12) are the aim of current work. At this time some preliminary

results for the case when ζ and η are constant diagonal matrices have been proven

[67].

6.4 Numerical Experiments

Computational considerations. In order to test numerically the formula-

tions of the previous section, convergence studies were performed in both frequency

and time domains. The interior domain Ω− where the thermoelastic equations were

imposed was the general polygon depicted in Figure 6.1. The domain was generated

and meshed using Matlab’s pdetool and the refinements were done using the refinement

capabilities of the pde toolbox.

The linear system arising from the discretization has a very similar structure to

that from the Chapter 5 and can be depicted by the block matrix

⎡⎣ FEM(s) sρf (NΓ)
t
h

−s(NΓ)h BEM(s)

⎤⎦
⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣ uh

θh

⎤⎦
⎡⎣ λh

φh

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣−sρfΓ
t
hβ

h

ηh

⎤⎦
⎡⎣ 0

αh

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦ .
The main difference is that the sparse Finite Element block

FEM(s) := s2

⎡⎣ (ρΣuj,ϕi)Ω− 0

0 0

⎤⎦+ s

⎡⎣ 0 0

−(ηuj,∇ϕi)Ω− (θj, ϕi)Ω−

⎤⎦
+

⎡⎣ (Cε(uj), ε(ϕi))Ω− −(ζθj, ε(ϕi))Ω−

0 (κ∇θj,∇ϕi)Ω−

⎤⎦
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now contains first order terms in both space and time. The boundary element block

BEM(s) contains the Galerkin discretization of the operators of the acoustic Calderón

calculus and the coupling trace matrix (NΓ)h is the discretization of the bilinear form

arising from the duality pairing 〈uh · ν, χh〉Γ.
Physical parameters. The following values of the physical parameters are

functions only of space and were used equally for both series of experiments, they are

chosen for validation and expository purposes only and do not correspond with any

relevant physical material. For the entries of the tensors we make use of the symmetries

and of Voigt’s notation to shorten the subscripts.

1. Density of the elastic solid and Lamé parameters

ρΣ = 5 + sin (x) sin (y), λ = 2, μ = 3. (6.13)

2. The entries of the elastic stiffness tensor can be written compactly in terms of

Young’s modulus E and Poisson’s ratio ν

E :=
2μ(1 + λ)

2μ+ λ
, ν :=

λ

2μ+ λ
. (6.14)
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Figure 6.1: Interior geometry used in the numerical experiments for both frequency and time

domain studies. The domain was generated and meshed using Matlab’s pdetool and

refined uniformly using pde tool’s refinement capabilities.
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3. Elastic stiffness tensor C:

C1 ↔C1111 =
E

1− ν2
,

C2 ↔C2222 =
E

1− ν2
,

C3 ↔C1212 = C2121 =
E

1− ν2
, (6.15)

C4 ↔C2212 = C2221 = C1222 = C2122 =
Eν

1− ν2
,

C5 ↔C1112 = C1121 = C1211 = C2111 = 0,

C6 ↔C1122 = C2211 = 0.

4. Thermal expansion tensor ζ:

ζ1 ↔ ζ11=sin (x) + cos (y), ζ2 ↔ ζ22=− sin (y), ζ3 ↔ ζ12=ζ21=cos (x).

(6.16)

5. Thermal diffusivity tensor κ:

κ1 ↔ κ11 = 10 + x2, κ2 ↔ κ22 = 10 + y, κ3 ↔ κ12 = κ21 = 0. (6.17)

6. The reference temperature was chosen to be θ0 = 1 and the tensor η was deter-

mined through the relation (6.2).

Convergence studies in the frequency domain. We first verify the results in the

frequency domain. We proceed by the method of manufactured solutions using the

functions

u := (x3 + xy + y3, sin (x) cos (y)), θ := sin2 (πx) sin2 (y), (6.18a)

v := i
4
H

(1)
0 (isr), r =

√
x2 + y2, (6.18b)

together with the parameters defined in (6.13) through (6.17). Right-hand side load

vectors were constructed accordingly and boundary conditions were sampled using

(6.6c) through (6.6g) so that (6.18) solve the system (6.5) with the manufactured

right-hand sides.
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k = 1 L2(Ω−) H1(Ω−)
h Ev

h e.c.r. Eu
h e.c.r. Eθ

h,κ e.c.r. Eu
h e.c.r. Eθ

h e.c.r.

1 E-1 1.787 E-2 — 3.999 E-2 — 2.015 E-3 — 2.011 E-1 — 7.430 E-2 —
5.016 E-2 7.292 E-3 1.293 1.675 E-2 1.255 6.397 E-4 1.656 8.733 E-2 1.203 3.746 E-2 0.988
2.508 E-2 2.272 E-3 1.683 5.344 E-3 1.648 1.837 E-4 1.799 3.297 E-2 1.405 1.876 E-2 0.976
1.254 E-2 6.099 E-4 1.897 1.447 E-3 1.885 4.824 E-5 1.929 1.314 E-2 1.327 9.383 E-3 0.996
6.27 E-3 1.556 E-4 1.971 3.703 E-4 1.966 1.223 E-4 1.980 5.961 E-3 1.141 4.692 E-3 1.000

Table 6.1: The experiments were ran using Pk Lagrangian finite elements and Pk/Pk−1 boundary

elements. This table shows the relative errors and estimated convergence rates in the

frequency domain for k = 1. The maximum length of the panels used to discretize the

boundary is denoted by h.

k = 2 L2(Ω−) H1(Ω−)
h Ev

h e.c.r. Eu
h e.c.r. Eθ

h,κ e.c.r. Eu
h e.c.r. Eθ

h e.c.r.

1 E-1 7.926 E-5 — 1.284 E-4 — 9.742 E-5 — 3.514 E-3 — 6.446 E-3 —
5.016 E-2 6.676 E-6 3.570 1.181 E-5 3.442 1.214 E-5 3.004 8.708 E-4 2.013 1.630 E-3 1.983
2.508 E-2 5.590 E-7 3.578 1.207 E-6 3.290 1.517 E-6 3.000 2.172 E-4 2.003 4.093 E-4 1.993
1.254 E-2 4.630 E-8 3.594 1.331 E-7 3.181 1.897 E-7 2.999 5.426 E-5 2.001 5.426 E-5 1.997
6.27 E-3 3.793 E-9 3.609 1.550 E-8 3.103 2.373 E-8 2.999 1.356 E-8 2.001 2.566 E-5 1.999

Table 6.2: The experiments were ran using Pk Lagrangian finite elements and Pk/Pk−1 boundary

elements. This table shows the relative errors and estimated convergence rates in the

frequency domain for k = 2. The maximum length of the panels used to discretize the

boundary is denoted by h.

Lagrangian Pk finite elements were used for the elastic and thermal unknowns,

while Galerkin Pk/Pk−1 continuous/discontinuous Boundary Elements were used for

the acoustic potential v. Tables 6.1 to 6.3 and Figure 6.2 show the results of the time

harmonic experiment with s = 2.8i and succesive refinements of the grid shown in

Figure 6.1 for polynomial degrees k = 1, 2, and 3.

Convergence studies in the time domain. In a way analogous to the previ-

ous section, the numerical experiments were carried out using the physical parameters

and coefficients given in (6.13) through (6.17) and with manufactured solutions using

the functions

u :=T(t)(x3 + xy + y3, sin (x) cos (y)), θ := T(t) sin2 (πx) sin2 (y), (6.19a)

v :=L−1
{
iH

(1)
0 (isr)L{H(t) sin(3t)}

}
, r :=

√
x2 + y2, (6.19b)
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Figure 6.2: Convergence studies in the frequency domain for polynomial degrees k = 1, 2, and 3.

The mesh was refined uniformly on every succesive iteration.

,
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k = 3 L2(Ω−) H1(Ω−)
h Ev

h e.c.r. Eu
h e.c.r. Eθ

h,κ e.c.r. Eu
h e.c.r. Eθ

h e.c.r.

1 E-1 6.847 E-7 — 1.726 E-6 — 4.564 E-6 — 9.540 E-6 — 4.018 E-4 —
5.016 E-2 3.869 E-8 4.145 9.804 E-8 4.138 2.886 E-7 3.983 7.701 E-7 3.631 5.044 E-5 2.994
2.508 E-2 2.279 E-9 4.085 5.794 E-9 4.081 1.810 E-8 3.995 7.600 E-8 3.341 6.312 E-6 2.998
1.254 E-2 1.375 E-10 4.051 3.502 E-10 4.048 1.132 E-9 3.999 8.504 E-9 3.160 7.892 E-7 3.000
6.27 E-3 8.468 E-12 4.021 2.141 E-11 4.032 7.076 E-11 4.000 1.011 E-9 3.072 9.866 E-8 3.000

Table 6.3: The experiments were ran using Pk Lagrangian finite elements and Pk/Pk−1 boundary

elements. This table shows the relative errors and estimated convergence rates in the

frequency domain for k = 3. The maximum length of the panels used to discretize the

boundary is denoted by h.

where L{·} is the Laplace transform, the time factor T(t) is given by

T := H(t)(t2 + 2t), (6.19c)

and H(t) is the C5 approximation to Heaviside’s step function (4.54)

The experiments were carried out using the same geometry as in the frequency

domain with a fixed spatial mesh, namely the second level of refinement used for the

frequency domain experiments. Starting with 40 time steps for time discretization and

polynomial degree k = 1 for space discretization, the number of time steps was doubled

and the polynomial degree increased by one in every succesive refinement. The L2(Ω−)

and H1(Ω−) errors were measured for a final time t = 1.5.

The performance of BDF2 and Trapezoidal Rule Convolution Quadrature was

compared, Table 6.4 shows the error and estimated convergence rates for BDF2 based

time stepping, while Table 6.5 shows the results of the experiment using Trapezoidal

Rule. The convergence graphs of the experiments is shown in Figure 6.3.

Examples. We now present a couple of illustrative examples simulation the

interaction of an incident acoustic wave with thermoelastic obstacles. The first example

shows the interaction between the plane wave

vinc = 3χ[0,0.3](88τ) sin (88τ), τ := t− r · d, r := (x, y), d := (1, 5)/
√
26,

and a pentagonal scatterer with mass density given by ρΣ = 15 + 40e−49 r2 where

r :=
√

x2 + y2.
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Figure 6.3: Time domain convergence studies for Trapezoidal Rule (Left) and BDF2 (Right) based

convolution quadrature. In every refinement the number of time steps was boubled

and the polynomial degree of the spatial discretization increased by one.

BDF2 L2(Ω−) H1(Ω−)
κ/Ndof Ev

h e.c.r. Eu
h e.c.r. Eθ

h,κ e.c.r. Eu
h e.c.r. Eθ

h e.c.r.

3.75 E-2 / 108 7.793 E-3 — 1.231 E-2 — 5.184 E-3 — 2.975 E-1 — 2.222 E-1 —
1.875 E-2 / 394 2.775 E-3 1.489 7.725 E-4 3.994 3.275 E-4 3.984 1.258 E-2 4.563 1.940 E-2 3.518
9.375 E-3 / 859 7.955 E-4 1.803 1.980 E-4 1.964 4.061 E-5 3.012 1.916 E-3 2.715 1.265 E-3 3.938
4.687 E-3 / 1503 2.072 E-4 1.941 5.035 E-5 1.975 9.408 E-6 2.110 4.905 E-4 1.966 1.125 E-4 3.489
2.344 E-3 / 2326 5.258 E-5 1.978 1.267 E-5 1.991 2.329 E-6 2.014 1.236 E-4 1.988 2.355 E-5 2.259
1.172 E-3 / 3328 1.323 E-5 1.991 3.175 E-6 1.996 5.795 E-7 2.007 3.100 E-5 1.995 5.825 E-6 2.015

Table 6.4: Time domain convergence results for BDF2-based CQ. The experiments were ran with

a fixed mesh using Pk Lagrangian finite elements and Pk/Pk−1 boundary elements. In

every successive refinement level the size of the time step was halved and the polynomial

degree of the space refinement increased by one. The table shows the relative errors

and estimated convergence rates measured for a final time t = 1.5.
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Trapezoidal Rule L2(Ω−) H1(Ω−)
κ/Ndof Ev

h e.c.r. Eu
h e.c.r. Eθ

h,κ e.c.r. Eu
h e.c.r. Eθ

h e.c.r.

3.75 E-2 / 108 5.620 E-3 — 1.218 E-2 — 5.213 E-3 — 2.976 E-1 — 2.221 E-1 —
1.875 E-2 / 394 8.283 E-4 2.762 2.713 E-4 5.489 2.934 E-4 4.151 1.064 E-2 4.805 1.934 E-2 3.522
9.375 E-3 / 859 2.107 E-4 1.975 5.085 E-5 2.416 1.660 E-5 4.144 4.958 E-4 4.424 1.209 E-3 4.000
4.687 E-3 / 1503 5.278 E-5 1.997 1.272 E-5 1.999 2.349 E-6 2.821 1.242 E-4 1.997 6.549 E-5 4.206
2.344 E-3 / 2326 1.320 E-5 1.996 3.184 E-6 1.999 5.770 E-7 2.026 3.107 E-5 1.999 6.286 E-6 3.381
1.172 E-3 / 3328 3.300 E-6 2.000 7.956 E-7 2.000 1.442 E-7 2.001 7.770 E-6 2.000 1.451 E-6 2.115

Table 6.5: Time domain convergence results for Trapezoidal Rule-based CQ. The experiments

were ran with a fixed mesh using Pk Lagrangian finite elements and Pk/Pk−1 boundary

elements. In every successive refinement level the size of the time step was halved and

the polynomial degree of the space refinement increased by one. The table shows the

relative errors and estimated convergence rates measured for a final time t = 1.5.

The values of the stiffness C, thermic diffusivity κ, thermoelastic expansion

tensors ζ and η were the same as those used for the convergence experiments in the

previous paragraphs and given in equations (6.14)-(6.17). The simulation used P2

Lagrangian finite elements on a grid with mesh parameter h = 7 × 10−3 and 36096

elements. The inherited boundary element grid had 496 panels and a grid parameter

of h = 9.1 × 10−3, and P2/P1 continuous/discontinuous Galerkin boundary elements

were used. Trapezoidal rule-based discretization was applied in time with a relatively

coarse time step κ = 1× 10−2. Some snapshots of the simulation are shown in Figures

6.4-6.6.

The second example is a trapping geometry with density ρΣ = 20 + |x| + |y|
and physical parameters given by (6.14)-(6.17). For this example P5 Lagrangian ele-

ments were used on a grid with 2992 elements and mesh parameter h = 1.72 × 10−2,

the acoustic equations were discretized with P5/P4 continuous/discontinuous Galerkin

boundary elements on a mesh with 236 panels and mesh parameter h = 2.5 × 10−2.

For time discretization trapezoidal rule-bvased CQ was used with a time step size of

κ = 2××10−3. Figures 6.7-6.9 show snapshots of the acoustic, elastic and temperature

fields.
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Figure 6.4: Snapshots of the total acoustic field at times t = 0.25, 0.6, 0.95, 1.3, 1.65, 2. The

interior domain shows the norm of the elastic displacement.
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Figure 6.5: Close up of the norm of the elastic displacement for times t = 0.25, 0.6, 0.95, 1.3, 1.65, 2.

Black represents no displacement.
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Figure 6.6: Close up of the norm of the temperature variations with respect to the reference

configuration for times t = 0.25, 0.6, 0.95, 1.3, 1.65, 2. Black represents zero, whereas

shades of red and blue represent positive and negative variations respectively.
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Figure 6.7: Snapshots of the total acoustic field at times t = 0.3, 0.6, 0.9, 1.2, 1.5, 1.8. The interior

domain shows the norm of the elastic displacement.

134



Figure 6.8: Close up of the norm of the elastic displacement for times t = 0.3, 0.6, 0.9, 1.2, 1.5, 1.8.

Black represents no displacement.
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Figure 6.9: Close up of the norm of the temperature variations with respect to the reference

configuration for times t = 0.3, 0.6, 0.9, 1.2, 1.5, 1.8. Black represents zero, whereas

shades of red and blue represent positive and negative variations respectively.
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Chapter 7

CONCLUSIONS

We have presented an array of formulations to describe and simulate the tran-

sient propagation of elastic waves through media with different elastic properties. In or-

der to deal with homogeneous, inhomogeneous, and unbounded media advantageously,

the formulations proposed combine the use of boundary integral equations in the ho-

mogeneous regions with that of variational forms in the inhomogeneous parts of the

domain. As a result we have analyzed problems involving only boundary integral

equations (BIEs) as well those involving combined integro-differential systems. The

systems studied range from single hyperbolic equations (as in Chapter 3) from cou-

pled systems of the form hyperbolic-hyperbolic (wave-structure interaction Chapter

4), hyperbolic-hyperbolic-elliptic (scattering by piezoelectric obstacles on Chapter 5)

and hyperbolic-hyperbolic-parabolic (when the thermodynamics of the deformation is

considered as in Chapter 6).

Following the fundamental works of Bamberger and Ha-Duong [6, 7], and Laliena

and Sayas [82], our approach to treat the time dependence of the problems involves

the passage through the Laplace domain where the well-posedness of the semidiscrete

resolvent problem is established. The resulting estimates can then be used to establish

time domain bounds of the fully discretized problem. This novel method of analysis

for time domain problems has recently been developed into a unified framework by

Francisco-Javier Sayas and thoroughly presented in [116].

Christian Lubich’s Convolution quadrature is used all throughout for time dis-

cretization. In the current work we have only considered CQ schemes based on second

order multistep methods, but a whole wealth different options are available amongst

which high order Runge-Kutta methods seem to be the most promising [92, 10, 11]. A
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comprehensive, and readable, introduction to the ideas and algorithms behind CQ and

the computational implementations used for this work can be found in [60]. Our stance

with respect to CQ in this work has been that of a user but the topic is on itself an ex-

citing and active field of research; some of the latest developments include the study of

fast and memory efficient algorithms, adaptive and non-uniform time-stepping and the

thorough analysis of Runge-Kutta schemes, application to electromagnetic problems,

hybrid CQ/Galerkin approaches, etc [87, 9, 88, 24, 124].

For space discretization of the resulting boundary integral equations we have

explored techniques from both the Nyström and Galerkin families. On the former

side, the thesis studies the discretization of the integral operators associated to the 2-

dimensional elastodynamic equation. We proposed an efficient Nyström-like technique

yielding third order accuracy by employing a combination of reduced order quadrature

(as laid out in [111]) with symmetrization of the companion grids and regularization

of the hypersingular operator in the spirit of deltaBEM [31]. On the latter, a great

deal of this work has explored the discretization of integro-differential equations whose

numerical treatment leads to the coupling of Galerkin boundary elements with finite

elements.

The analysis and discretization techniques developed here provide a guide to

the study of similar problems in multi-physics wave propagation. Many interesting

questions remain to be studied in the realm of wave-structure interactions. Our analysis

of the acoustic scattering by thermoelastic obstacles remains in progress; the use of a

pure BIE approach to deal with homogeneous materials (not included on this work)

has been completed [67] but the question is still subject of ongoing research for the

general materials considered numerically on the closing chapter. Attempting a similar

approach for the study of interactions with poroelastic materials would seem to be

natural as well.

Another very interesting path to further develop the current work is the use

of alternative analysis tools that sidestep the passage through the Laplace domain.

Despite the fact of constituting a very powerful and elegant framework in which time
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domain problems of this class can be analyzed with relative ease and simplicity, the

journey through the Laplace domain is not a lossless process. The stability bounds

and the regularity requirements for problem data obtained with this framework are

not sharp. As has been recently shown in [59] for the acoustic wave equation, ap-

proaching the PDEs from the abstract point of view of dynamical systems in Banach

spaces and applying results from functional calculus and semi-group theory results in

sharper stability estimates and reduced regularity requirements for problem data. The

application and extension of the techniques developed in that paper to the equations

of wave-structure interaction studied in this thesis promises to yield improved results.

Last but not least, the development of deltaBEM methods for three dimensional

integral equations and their implementation is yet another open problem. The de-

velopment of an effective symmetrization scheme analogous to the usage of staggered

grids in the plane and the analysis of the consistency and accuracy properties of such

a scheme remains a challenge, but one well worth tackling. The possibility of attaining

increased order of accuracy with the use of lowest order approximants and quadrature

rules, and the resulting decrease in the size of linear systems involved in the process

would seem to make it a viable approach to 3D problems.

The intellectual journey through each and every subject touched upon this work

has been an exciting and instructive personal process, full of discoveries learning expe-

riences. Interesting and challenging problems remain to be addressed in all the subjects

touched upon in this work, but hopefully our contribution will constitute a solid start-

ing point for those interested in further developing the results presented in this work.

Rather than being a conclusion, I think of this work as the starting point for further

mathematical explorations in the years to come.
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Appendix A

VECTOR-VALUED CAUSAL DISTRIBUTIONS
AND THEIR LAPLACE TRANSFORMS

The equations we have considered throughout this work should be understood

in the sense of vector-valued causal distributions. We briefly define them and their

Laplace transform in what follows and give a brief summary of the main results used

throughout the text. Further details can be found in [80, 116].

A.1 Causal Tempered Distributions

Let X be a Banach space, P the space of polynomials with complex coefficients

and S(R) the Schwartz class of rapidly decreasing functions

S(R) := {ϕ ∈ C∞(R) : pϕ(q) ∈ L∞(R) ∀ q ≥ 0 and p ∈ P} .
When endowed with an appropriate metric, S(R) is known to be a Fréchet space. If f

is a continuous linear map f : S(R) −→ X with the property

〈f, ϕ〉 = 0 ∀ϕ ∈ S(R) such that suppϕ ⊂ (−∞, 0]

we will call f a causal tempered distribution with values in X and for brevity will write

simply f ∈ CT(X). Within this context, time differentiation is defined by transposi-

tion. Given f ∈ CT(X) we define for every ϕ ∈ S(R)

〈 d
dt
f, ϕ〉 := −〈f, d

dt
ϕ〉 ∈ CT(X).

Hence, time differentiation maps CT(X) continuously into itself. The composition of

vector-valued causal tempered distributions with steady-state operators can also be
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defined in a natural way. Let X and Y be Banach spaces and f ∈ CT(X), then for a

bounded linear operator D : X −→ Y we define the distribution Df ∈ CT(Y ) by

〈Df, ϕ〉 := D〈f, ϕ〉 ∀ϕ ∈ S(R).

Therefore by letting X and Y be given Sobolev spaces and D a steady state partial

differential operator the previous definitions give a precise meaning to the distributional

version of a time dependent PDE.

A.2 Laplace Transform

For distributions f ∈ CT(X) and complex numbers s in the positive half plane

C+ := {s ∈ C : Re s > 0}

it is possible to define the Laplace transform as the function

s �−→ L{f}(s) = F(s) := 〈f, exp (−s ·)〉.

Note that, despite the fact that t �→ exp (−st) does not belong to the Schwartz class, the

causality of f ensures that the above duality product is well defined and the definition

still makes sense. Alternatively, the definition can be done by a density argument as

F(s) := lim
n→∞

〈f, hn exp (−s ·)〉,

where {hn}n≥1 is a sequence of smooth approximations to the Heaviside function.

For distributions in CT(X) and steady state operators A ∈ B(X, Y ), the fol-

lowing three key properties are easy to verify:

1. L{ d
dt
f
}
= sF(s).

2. If f ∈ CT(X) is such that F(s) = 0 ∀ s ∈ C+ then f ≡ 0.

3. L{Af}(s) = AF(s).
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A.3 Inverse Laplace Transform

Let μ ∈ R and X be a Banach space. We say that an analytic function F :

C+ −→ X belongs to the class of symbols A(μ,X) if it satisfies

‖F(s)‖ ≤ CF(Re s)|s|μ

for some μ ∈ R and some non-increasing function CF : R −→ R such that

CF(σ) ≤ C

σm
, ∀ σ ∈ (0, 1], (A.1)

for some C > 0. We will define the TD(X) as the set of all f ∈ CT(X) such that

F satisfies the above conditions for some μ and CF. In particular, if F ∈ A(μ,X) for

some μ < −1 then Mellin’s strong inversion formula can be used to define the inverse

Laplace transform of F

f(t) :=
1

2πi

∫ σ+i∞

σ−i∞
estF(s) ds.

It is possible to show [59, Theorem 2.2] that the operators of the Calderón projector

for the Laplace resolvent equation satisfy

S ∈ A(1,B(H−1/2(Γ), H1(Rd))), D ∈ A(3/2,B(H1/2(Γ), H1(Rd \ Γ))),
V ∈ A(1,B(H−1/2(Γ), H1/2(Γ))), W−1 ∈ A(1,B(H−1/2(Γ), H1/2(Γ))),

K ∈ A(3/2,B(H1/2(Γ), H1/2(Γ))), Kt ∈ A(3/2,B(H−1/2(Γ), H−1/2(Γ))),

W ∈ A(2,B(H1/2(Γ), H−1/2(Γ))), V−1 ∈ A(2,B(H1/2(Γ), H−1/2(Γ))).

An analogous result can be proven for the Navier-Lamé operators. The following result

[116, Proposition 3.2.2] is used for translating the stability estimates obtained in the

Laplace domain into stability and regularity estimates in the time domain

Proposition A.1. Let A = L{a} ∈ A(μ,B(X, Y )) with μ ≥ 0 and

k := �μ+ 2 ε := k − μ− 1 ∈ (0, 1].

Let g ∈ Ck−1(R, X) be a causal function such that g(k) ∈ L1(R, X). Then a∗g ∈ C(R, Y )

is causal and

‖(a ∗ g)(t)‖ ≤ 2μCε(t)CA(t
−1)

∫ 1

0

‖Pkg(τ)‖ dτ,
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where CA is the bound of the form (A.1) associated to A,

Cε(t) :=
1 + ε

πε

tε

(1 + t)ε
, and Pkg(t) :=

k∑
�=0

(
k

�

)
g(�)(t).
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Appendix B

CONVOLUTION QUADRATURE

B.1 Some Background

Convolution Quadrature (CQ) was developed by Christian Lubich in the late

80’s and early 90’s [56, 89, 90, 91] as a way to approximate causal convolutions and con-

volution equations based on the knowledge of the Laplace transform of the convolution

kernel and time domain data.

Since then it has been enriched greatly by works like [117, 21, 54, 8, 10, 11, 12]

and –due to its stability properties, the advantage of requiring only Laplace domain

fundamental solutions and the possibility to take damping effects into account with

relative ease – has become one of the preferred tools for the numerical analysis and

simulation of evolutionary problems arising from wave propagation and diffraction. A

thorough review of results and properties of CQ applied to boundary integral equations

can be found in [14], while [60] gives a detailed explanation of the computational and

algorithmic subtleties involved in its implementation.

B.2 CQ as a Black Box

For the purposes of exposition we can present CQ as two blackboxes. In the

forward CQ, a sequence of vectors βn ∈ R
n1 (for n ≥ 0) is input, a C

n2×n1-valued

transfer operator A(s) is given, and another sequence of vectors δn ∈ R
n2 is output.

We will denote this as

δn = CQfwd(A(s),βn),

with the implicit understanding that a particular time value δn depends on the past of

the input βm for m ≤ n. We note that even if CQ can be understood and implemented
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as a time-stepping (marching-on-in-time) method, these small experiments are carried

out using an all-times-at-once strategy [14] involving evaluations of the transfer function

A(s) at many different complex frequencies. The second kind of CQ blackbox takes

input βn ∈ R
r, uses a invertible transfer operator A(s) ∈ C

r×r, and outputs another

sequence δn ∈ R
r. This convolution equation process is equivalent to the forward

process applied to the inverse transfer function

δn = CQeqn(A(s),βn) = CQfwd(A(s)−1,βn),

and can be implemented in different ways, either by solving equations related to A(s)

at many complex frequencies or by repeatedly inverting A(c0) for a large positive value

c0 (which corresponds to a highly diffusive equation).

B.3 A Formal Explanation

The following informal discussion is meant just to give an idea of the way in

which CQ works and to state the main results used throughout this work. For a rigorous

explanation the reader is referred to [60]. For some σ > 0, and causal functions f , g

with enough regularity (see A) we can write

(f ∗ g) (t) = 1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

F (s)esτg(t− τ) dτ ds =
1

2πi

∫ σ+i∞

σ−i∞
F (s)y(t; s) ds, (B.1)

where y(t; s) is the unique solution of

ẏ(t)− sy(t) = g(t), y(0) = 0. (B.2)

This differential equation can be approximately solved by any ODE-solving procedure

using time domain information from g. The numerical solution can then be used

to approximate the complex contour integral, therefore, in the heart of every CQ

implementation lies an ODE solver which determines its analytic and convergence

properties and gives rise to different families of CQ algorithms.

We consider briefly the particular case of multi-step backwards differentiation

formulas with constant time-step κ. We will denote by zn the translation operator

zny(t) := y(t− nκ)
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and by δ, the characteristic function associated to the multi-step method in question.

In this context the approximation to the solution of (B.2) can be written -at least

formally- in terms of the time domain data g(t) as

y(tn) ≈
(
δ(z)

κ
− s

)−1

g(tn−m).

We can then substitute this expression into (B.1) yielding

(f ∗ g) (tn) = 1

2πi

∫ σ+i∞

σ−i∞
F(s)y(tn; s) ds

≈ 1

2πi

∫ σ+i∞

σ−i∞
F(s)

(
δ(z)

κ
− s

)−1

g(tn−m) ds

=F

(
δ(z)

κ

)
g(tn−m)

=
∞∑

m=0

ωF
m(κ)z

m g(tn),

where we have made use of Cauchy’s integral representation formula and the fact that

F is analytic. Therefore, if the first m coefficients ωF
i (κ) of the power series expansion

of F
(

δ(z)
κ

)
are known, we can approximate

(f ∗ g)(tn) ≈
n∑

m=0

ωF
m(κ)z

m g(tn). (B.3)

This can be done using once more the analyticity of F and Cauchy’s integral formula

since

ωF
n(κ) =

1

2πi

∮
γ

z−n−1F( 1
κ
δ(z)) dz,

where γ is a closed curve contained in the region of analiticity of F. This integral can

be approximated accurately and efficiently choosing the circle

γ = {s ∈ C : s = Re2πiθ, θ ∈ [0, 1)}

and exploiting the convergence properties of the trapezoidal rule for periodic functions

(zn = e2πi/n). The trapezoidal rule approximation of the coefficients is

ωF
n(κ) ≈

R−n

N + 1

N∑
�=0

zn�N+1F
(
1
κ
δ(Rz−�

N+1)
)
.

Finally, the final step on the approximation of (f ∗ g)(tn) involves evaluating discrete

convolution (B.3) which can be done efficiently with using a fast Fourier transform.
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B.4 Important Theorems and Convergence Estimates

The following proposition, a simplified version of [116][Proposition 4.5.2, Propo-

sition 4.5.4], guarantees that the BDF apporximations

Fκ(s) := F

(
δ(e−sκ)

κ

)
≈ F(s)

Is indeed a symbol (and thus it is the Laplace transform of a causal tempered distri-

bution) and also gives the rate of convergence in terms of the rate of the multi step

method associated to δ(z).

Proposition B.1. For A(μ,X) with μ ≥ 0, Fκ is a symbol of order μ with bounding

function independent of κ and fκ := L−1{Fκ(s)} ∈ TD(X). Moreover

‖F(s)− Fκ(s)‖ ≤ C(F, σ)κq|s|μ+q+1 ∀ s ∈ C+,

where q is the degree of the multistep formula associated with δ and C(F, σ) depends

only on CF (see (A.1)) and on σ := Re s.

For the results concerning time domain convergence of the approximate convo-

lution (fκ ∗ g)(t) we have used the following result [116][Proposition 4.6.1] for which

we define the following Sobolev spaces in time

W �
+(R, X) := {g ∈ C�−1(R, X) : g(t) = 0 ∀t ≤ 0 and g(�) ∈ L1(R, X)}.

Proposition B.2 (Uniform convergence with L1 regularity). Let F ∈ A(μ,B(X, Y ))

with μ ≥ 0 and define DF(σ) := CF(Cσ). If g ∈ W �
+(R, X) for � > μ+ 1, then

‖(f ∗ g)(t)− (fκ ∗ g)(t)‖ ≤ D × error(κ)h(t)

∫ t

0

‖g(�)(τ)‖ dτ,

where D depends only on μ, � and the degree of the multi step approximation q used to

obtain fκ,

error(κ) := κ(�−μ−1) q
q+1 + δ�,μ+q+2κ

q| log κ|+ κq,

δi,j here is the Kronecker symbol and

h(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t�−μDF(t

−1) t ≥ 1

DF(1)t
�−μ−q−1 t ≤ 1 and � ≥ μ+ q + 1

DF(1) t ≥ 1 μ+ 1 < � < μ+ q + 1.
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Optimal convergence of order q is obtained for � > μ+ q + 2.

Finally, the key resut that will allow us to carry out all the time domain analysis

using CQ based tools –even if our computational implementation involves traditional

time stepping for the finite element discretization– is that this split treatment of dif-

ferent parts of a system is equivalent to the application of CQ globally, as long as the

time stepping method used for the FEM part coincides with the one giving rise to the

CQ algorithm in use.

Proposition B.3. If the CQ method based on

p(z) :=
α(z)

β(z)
=

α0 + α1z + . . .+ αNz
N

β0 + β1z + . . .+ βNzN

to an equation of the form

(δ0 ⊗ A) ∗ g + (δ′ ⊗ B) ∗ g = h,

where A and B are bounded operators the result is the same as that obtained when

applying the multistep method to the implicit differential equation

Ag +
d

dt
(Bg) = h.
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The contents of Chapter 4 is based on a pre-copyedited, author-produced PDF of

an article accepted for publication in IMA Journal of Numerical Analysis following peer

review. The version of record Boundary and Coupled Boundary-Finite Element Meth-

ods For Transient Wave-Structure Interaction by George C. Hsiao, Tonatiuh Sánchez-

Vizuet and Francisco-Javier Sayas published by IMA Journal of Numerical Analysis,

Oxford University Press (DOI: 10.1093/imanum/drw009) is available online at:

http://imajna.oxfordjournals.org/content/early/2016/05/09/imanum.drw009.full.pdf+html.

Furhter inclusion under a Creative Commons license or any other open-access

license allowing onward reuse is prohibited.
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