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ABSTRACT 

 

 Recent advances in low cost sensor technologies and nonlinear estimation 

techniques are applicable to the navigation of gun-launched projectiles.  A method for 

attitude (i.e. angular orientation) estimation is presented that uses magnetometers 

aided by angular rate sensors.  Nonlinear state estimators provide the filtering 

mechanisms to combine the measurements based on their levels of accuracy.  Results 

are presented using the extended Kalman filter (EKF) and the unscented Kalman filter 

(UKF), and the UFK is shown to outperform the EKF.  The proposed method is 

demonstrated to provide a full attitude solution while satisfying the stringent 

requirements of gun-launched projectiles. 
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Chapter 1 

INTRODUCTION 

Over the years, the guidance, navigation, and control (GNC) of munitions 

has advanced considerably due to the introduction of high accuracy navigation devices 

such as GPS and semi-active laser seekers.  The GNC for a missile, that is a rocket 

propelled munition, is quite mature, and several books currently exist that describe 

high accuracy navigation and the design of the guidance and control systems for 

missiles [1,2,3].  However, the GNC of a projectile, that is a gun-launched munition, is 

far from mature. The challenges of extremely high accelerations due to gun-launch 

and the unique dynamics of flight have rendered much of the missile GNC 

technologies inapplicable to projectiles, especially when it comes to sensors. Recent 

advances in micro-electrical mechanical systems (MEMS) have produced sensors that 

function onboard projectiles.  However, their nonlinearities and inaccuracies present 

new challenges for the navigation problem. 

Unlike a rocket, a projectile is a fairly accurate open-loop system.  That is, 

projectiles can attain an acceptable level of accuracy system over long distances 

without any guidance.  Specifically, artillery systems are accurate to about 100 meters 

at a range of several kilometers.  Improving the precision of an unguided artillery 

round is highly desirable for two primary reasons.  First, with the use of higher 

precision rounds, less rounds are required to destroy the target.  Not only does 

improved precision provide a tactical advantage, but also minimizes the amount of 

rounds that must be carried.  Second, a more accurate system minimizes collateral 
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damage.  This has become significantly relevant in the current conflicts where the risk 

of collateral damage prohibits the use of long range systems. 

Despite the enormous gains of higher precision, GNC systems for 

projectiles must satisfy some steep requirements in order to be of any practical use.  

GNC components must survive gun launch and have a form factor small enough to fit 

in the available space inside a projectile.  These two essential requirements are 

capable of being met by current technology.  Gun hardened munition components 

have been extensively developed.  And, miniaturization of electronics is a goal shared 

by several markets.  Cost is by far the most important requirement driving the design 

of projectile GNC systems. Most “dumb” bullets cost only a few hundred dollars each. 

Therefore, million dollar guidance systems for these rounds are unrealistic. 

High accuracy missile navigation systems typically do not satisfy these 

requirements.  To achieve a high accuracy level with inaccurate sensors, robust 

estimation techniques are required.  However, sensors well suited for projectile 

navigation such as magnetometers have outputs that are nonlinearly related to the 

attitude (i.e. angular orientation) states.  Therefore, traditional linear filtering 

techniques are inapplicable and nonlinear techniques must be used. 

Magnetometers have been shown to satisfy the above requirements and 

provide a measurement of attitude information onboard projectiles [4].  The magnetic 

field vector can be matched in both the earth-fixed and body-fixed coordinate systems, 

thus providing information about the rotation between the two.  The problem of 

solving for the attitude of a rotating body by matching two or more non-zero, non-

collinear vectors in multiple coordinate frames was first published by Wabha in 1965 

[5].  (Two vector matches are required for a complete attitude solution.)  Since then, 
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several methods have been proposed to solve the vector-matching problem (for 

examples, see references [6,7,8]).  Santoni and Bolotti devised an attitude 

determination system using magnetometers and solar panels [9].  These approaches 

were created for satellite applications when two or more vectors were known in the 

navigation and body frames.  Psiaki [10] and Michalareas et al. [11] have spacecraft 

attitude determination systems that use only magnetometers.  However, the filters used 

in these systems require the torques to be known and therefore do not apply to 

projectiles.   

The proposed method relies on nonlinear estimation techniques and a 

coordinate system transformation that allows angular rate sensors to naturally assist 

the attitude determination while keeping the system heavily dependent on 

magnetometers.  The angular rate sensors provide additional attitude measurements, 

but are in general much less accurate than magnetometers.  The filtering approach 

allows the accuracy of the sensor to influence the reliance of the state estimate on that 

sensor.  Therefore, the states are estimated in a more robust fashion then simply by 

solving the equations. 

This thesis is organized as follows: Chapter 2 presents the background 

material in sensor models and flight parameters.  Chapter 3 describes the nonlinear 

filtering techniques that will be used.  Chapter 4 describes the desired states to be 

estimated in detail and provides the equations used in the filter for state propagation 

and the measurements.  Chapter 5 shows the results of applying the nonlinear 

estimation techniques with a real ballistic trajectory.  Chapter 6 concludes the thesis. 
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Chapter 2 

SENSOR MODELS AND FLIGHT PARAMETERS 

Coordinate Systems and Flight Parameters 

Denote the earth-fixed Cartesian frame as { , , }X Y Z .  This system is 

usually chosen to be the north, east, down system:  the X  axis points northward in a 

local plane tangential to the earth’s surface.  Likewise, the Y  axis points eastward.  

The right-handed system is completed with the Z  axis pointing toward the center of 

the earth.  Denote the body-fixed frame { , , }x y z  with the x  axis along the body’s axis 

of symmetry or spin axis pointed in the direction of motion and the y  and z  axes 

oriented to complete the orthogonal right-handed system.  Figure 1 shows both 

coordinate systems and the Euler angle relations between them. 

The earth-fixed and body-fixed frames are related by an Euler rotation 

sequence beginning with first rotating the earth-fixed frame about the Z  axis through 

the yaw angle ψ .  The system is then rotated about the new Y  axis through the pitch 

angle θ .  Finally, the system is rotated about the new X  axis through the roll angle φ .  

The two systems are related by the direction cosine matrix (DCM), ( )beL ε , 

parameterized by the three Euler angles, ( ), , Tψ θ φ=ε , with the subscript denoting 

earth-fixed to body-fixed.  The form of this DCM is 

 ( )be

c c s c s
c s s s c s s s c c c s
c s c s s s s c c s c c

ψ θ ψ θ θ

ψ θ φ ψ φ ψ θ φ ψ φ θ φ

ψ θ φ ψ φ ψ θ φ ψ φ θ φ

 −
 = − + 
 + − 

L ε , (1.1) 
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where c•  is cos( )• , and s•  is sin( )• .  Let the angular velocity vector of the projectile-

fixed system with respect to the earth-fixed system be denoted as ( ), , Tp q r=ω , in 

which p is the angular velocity of the y  and z  axes about the x  axis; q is the angular 

velocity of the z  and x  axes about the y  axis; r is the angular velocity of the x  and 

y  axes about the z  axis.  The derivatives of the Euler angles are related to the angular 

rates by 

 
1
0
0 / /

s t c t p
c s q

s c c c r

φ θ φ θ

φ φ

φ θ φ θ

φ
θ
ψ

    
    = −    

       

�
�

�
, (1.2) 

where t•  is tan( )• . 

XY

Z

zy

x

 

Figure 1: Navigation and Body-Fixed Frames 
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Sensor Models 

A magnetometer is a device that produces a voltage output proportional to 

the applied magnetic field in the direction of the magnetometer’s sensitive axis.  If the 

magnetometer’s sensitive axis is given by the unit vector,  

 1 2 3( , , )Tv v v=v , (1.3) 

and the local magnetic field applied to the magnetometer is 

 1 2 3( , , )TB B B=B , (1.4) 

then, for a perfect sensor, the magnetometer output, m , is essentially the inner product 

(dot product) of v  and B : 

 ,idealm = v B . (1.5) 

Of course, the magnetometer output is actually scaled and shifted by 

analog circuitry.  Therefore, the actual sample taken from a scaled and shifted 

magnetometer voltage output on an ADC is modeled as 
 ,actualm s b= +v B  (1.6) 

where s  is the scale factor, b  is the bias offset, and the effects of quantization 

introduced by the ADC are ignored. 

Three magnetometers whose sensitive axes are linearly independent (i.e. 

not any two in the same direction) provide outputs that span three-dimensional space.  

Thus, using a 3-axis magnetometer or magnetometer triad provides the ability to 

measure completely the applied magnetic field in any direction.  Consider three 

magnetometers whose outputs are 
 ,i i i im s b= +v B  (1.7) 

 ,j j j jm s b= +v B  (1.8) 

 ,k k k km s b= +v B  (1.9) 
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Equations (1.7) through (1.9) can be rewritten in matrix form by defining the 

following: 
 ( , , )T

i j km m m=m  (1.10) 

 ( , , )T
i j kb b b=b  (1.11) 

 
1 2 3

1 2 3

1 2 3

i i i

j j j

k k k

d d d
d d d
d d d

 
 =
 
 

D  (1.12) 

and tu t tud s v=  where { , , }t i j k=  and {1,2,3}u = .  The matrix equation is therefore 

 = +m DB b  (1.13) 

that when solved for B  yields 

 ( )−= −1B D m b . (1.14) 

Equation (1.14) represents the value of the applied magnetic field in the body-fixed 

coordinate system as a function of the magnetometer outputs and the calibration 

parameters D  and b .  Therefore, there are 12 calibration parameters that must be 

determined in order to account for bias, scale, and alignment of a 3-axis 

magnetometer.  See [12] for details on determining these parameters.  The more 

complex models and calibrations required to account for material effects and 

electromagnetic interference are beyond the scope of this thesis.   

 The SNR for a magnetometer is usually very high; however, some amount 

of random noise is always present.  Therefore, the final model considered for a 

magnetometer is 

 m m= + +m D B b v  (1.15) 

where v  is zero mean Gaussian distributed with covariance matrix vvR . 

 Angular rate sensors are modeled in the same manner as magnetometers.  

Essentially, the projectile’s angular rate vector is projected onto the sensor axes.  A 

three-axis sensor is modeled as 
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 r m= + +r D ω b η  (1.16) 
where η  is zero mean Gaussian distributed with variance ηηR . 
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Chapter 3 

NONLINEAR STATE ESTIMATION 

Problem Definition 

Let n  be a discrete-time index and ( )nx  be a state vector ( 1)xN ×  that 

evolves in time according to 

 [ ]( ) ( 1), ( 1)n n n= − −x f x w , (3.1) 

where ( )nw  is the process noise sequence.  Also let ( )ny  be a vector ( 1)yN ×  of 

measurements or observations that are related to the state vector by 

 [ ]( ) ( ), ( )n n n=y h x v , (3.2) 

where ( )nv  is the measurement noise.  In general, optimal estimates of ( )nx  could be 

found using the conditional probability density function (pdf), [ ]( ) | np n Yx , where nY  

is the set of all measurements up to and including time n .  However, closed form 

solutions for this pdf rarely exist, and suboptimal methods must be considered. 

 It is well known that when f  and h  are linear and w  and v  are Gaussian 

distributed, the Kalman filter is the optimal solution in the mean square error sense.  

When f  and h  are nonlinear, there are several filtering methods available, the 

simplest being to linearize f  and h  when required in the Kalman filter equations 

resulting in the extended Kalman filter (EKF).  If the linearization is a poor 

approximation to the actual functions, an unscented Kalman filter (UKF) can be used.  

In what follows, P̂  is the covariance matrix of the state estimate and its recursive 
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formulation is presented below.  Both the EKF and UKF are recursive and begin with 

the initial conditions 

 ˆˆ (0 | 0), (0 | 0)x P . (3.3) 
In what follows, the notation ( | )x n m  means the value of x  at time n  given all the 
information up to and including time m .  For a complete description of both nonlinear 
filters, see [13]. 

Extended Kalman Filter 

 In this method, a Kalman filter is implemented with linearizations of f  

and h  where appropriate.  Essentially, the functions are approximated with a first 

order Taylor series in the covariance propagation and measurement weighting.  The 

two required Jacobians are defined as 
 { }( 1)

ˆ( 1) ( 1| 1)
( 1) [ ( 1)]

TT
n

n n n
n n−

− = − −
− = ∇ −x

x x
F f x  (3.4) 

 { }( )
ˆ( ) ( | 1)

( ) [ ( )]
TT

n
n n n

n n
= −

= ∇x
x x

H h x  (3.5) 

where 

 ( )
1( ) ( )

x

T

n
Nx n x n

 ∂ ∂
∇ =  

∂ ∂  
x … . (3.6) 

 
At each time step, the state vector and its covariance is predicted (propagated) forward 
using 

 ˆ ˆ( | 1) [ ( 1 | 1)]n n n n− = − −x f x  (3.7) 

 ˆ ˆ( | 1) ( 1) ( 1 | 1) ( 1)T
wwn n n n n n− = − − − − +P F P F R . (3.8) 

Next, the innovation is computed with its associated covariance as 

 ˆ( ) ( ) [ ( | 1)]n n n n= − −e y H x  (3.9) 

 ˆˆ ˆ( ) [ ( | 1)] ( | 1) [ ( | 1)]T
ee vvn n n n n n n= − − − +R H x P H x R . (3.10) 

The gain matrix is computed as 

 1ˆ ˆ( ) ( | 1) [ ( | 1)] ( )T
een n n n n n−= − −K P H x R . (3.11) 

Finally, the state estimate and its covariance is corrected using the measurements 

 ˆ ˆ( | ) ( | 1) ( ) ( )n n n n n n= − +x x K e  (3.12) 



 11

 { }ˆ ˆˆ( | ) ( ) [ ( | 1)] ( | 1)n n n n n n n= − − −P I K H x P . (3.13) 

Unscented Kalman Filter 

The UKF relies on the principle that it is easier to approximate a pdf then 

an arbitrary nonlinear function [14].  Therefore, the UKF uses a set of weighted 

“sigma” points to estimate the states and covariances.  At each step define the set of 

sigma points and associated weights as 

 0 0ˆ ( 1 | 1),
x

n n W
N
κ
κ

= − − =
+

χ x  (3.14) 

 
{ }/

/

ˆˆ ( 1 | 1) ( )[ ( 1 | 1) ]

1
2( )

x

x

i i N x ww
i

i i N
x

n n N n n

W
N

κ

κ

+

+

= − − ± + − − +

=
+

χ x P R
. (3.15) 

where κ  is a tuning parameter and { }
i

i  is the ith column of the matrix square root.  

Essentially, the sigma points are samples of the state space, one at the expected mean, 

and the others at fixed variances away from the mean.  Each sigma point is then 

propagated forward, and the state prediction and covariance are formed as weighted 

sums, 

 ( | 1) [ ( 1 | 1)]i in n n n− = − −χ f χ  (3.16) 

 
2

0

ˆ ( | 1) ( | 1)
xN

i i
i

n n W n n
=

− = −∑x χ  (3.17) 

 
2

0

ˆ ˆ ˆ( | 1) [ ( | 1) ( | 1)][ ( | 1) ( | 1)]
xN

T
i i i

i

n n W n n n n n n n n
=

− = − − − − − −∑P χ x χ x . (3.18) 

By doing so, the effect of the nonlinearity on the state is approximated by 

the sigma points.  Next, each sigma point is used to predict the measurements and the 

cross-covariance and covariance are calculated, 

 ( | 1) [ ( | 1)]i in n n n− = −ξ f χ  (3.19) 
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2

0

ˆ ( | 1) ( | 1)
xN

i i
i

n n W n n
=

− = −∑y ξ  (3.20) 

 
2

ˆ ˆ
0

ˆ ˆ( | 1) [ ( | 1) ( | 1)][ ( | 1) ( | 1)]
xN

T
yy i i i

i

n n W n n n n n n n n
=

− = − − − − − −∑R ξ y ξ y  (3.21) 

 
2

ˆˆ
0

ˆ ˆ( | 1) [ ( | 1) ( | 1)][ ( | 1) ( | 1)]
xN

T
xy i i i

i

n n W n n n n n n n n
=

− = − − − − − −∑R χ x ξ y . (3.22) 

The covariances then determine the gain, and the measurement update is computed as 
 ˆˆ ˆ ˆ( ) ( | 1) ( | 1)xy yyn n n n n= − −K R R  (3.23) 

 ˆ ˆ ˆ( | ) ( | 1) ( )[ ( ) ( | 1)]n n n n n n n n= − + − −x x K y y  (3.24) 

 ˆ ˆ
ˆ ˆ( | ) ( | 1) ( ) ( | 1) ( )T

yyn n n n n n n n= − − −P P K R K . (3.25) 
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Chapter 4 

STATE DYNAMICS AND MEASUREMENT MODELS 

Magnetic Pitch and Roll Angles 
A magnetic roll angle, magφ , is defined as the angle in the j k−  ( )y z−  

plane between the k -axis and the earth’s magnetic field projected into the j k−  plane 

(see Figure 2).  magφ  can also be viewed as the third angle in an aerospace Euler 

sequence with an arbitrary yaw angle and a pitch angle 
 1cosmag iBθ −= . (4.1) 

magφ  can be estimated with uncalibrated radial magnetometers; however, the 

magnetometers must be gain matched and without bias.  Fortunately, this can be 

achieved through processing of the radial magnetometers’ sinusoidal output. 

 

Figure 2: Magnetic roll angle 
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Figure 3 shows the output of radial magnetometers over a short period of 

time for a trajectory.  Notice the sinusoidal output as a result of the projectile spin, and 

the two sensors are 90 degrees out of phase.  Each sensor, in general, has a different 

scale factor and bias as demonstrated in the figure.   

 

Figure 3: Radial magnetometer signals 

Because of the geometry of the problem, the peak-to-peak amplitude of 

both sensors should be the same, and both sensors should oscillate about zero.  

Therefore, the bias from each sensor can be removed, and the resulting signals can be 
gain matched, resulting in the signals, 'jm  and 'km , shown in Figure 4.  Thus, magφ  is 

estimated as 
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 � 1 '
tan

'
j

mag
k

m
m

φ −  
=  

 
 (4.2) 

This estimate could also be achieved via a phase lock loop (PLL) to track 
the phase of either 'jm , 'km , or both. 

 

Figure 4: Radial magnetometers' output after gain matching and bias removal 

For small yaw, the temporal derivative of the magnetic roll angle, magφ� , 

can be estimated by the frequency of the sine waves generated by the radially oriented 

magnetometers.  This is usually achieved by measuring the times between zero 

crossings or extrema points; however, any frequency estimation technique can be 

applied. 
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magφ�  is related to other flight parameters of interest such as the spin rate, 

p , and the roll Euler angle in the aerospace sequence, φ .  The derivatives of the Euler 

angles are related to the body-fixed angular rates as 

 
1
0
0 / /

s t c t p
c s q

s c c c r

φ θ φ θ

φ φ

φ θ φ θ

φ
θ
ψ

    
    = −    

       

�
�

�
 (4.3) 

The first line of (4.3) relates p  to some φ  in an Euler sequence.  However, p  is also 

a function of q , r , and θ .  Therefore, a measurement of magφ  or any other Euler 

sequence roll angle, is not a direct measurement of p  but does have a strong 

functional dependence on the spin rate if it is high relative to the other angular rates.  

Inverting (4.3) yield p  as a function of the Euler angle derivatives: 

 sin( )p φ ψ θ= −� � . (4.4) 

Using equation (4.4) to relate p  to magφ  yields 

 sin( )mag mag magp φ ψ θ= −� � . (4.5) 

in which magθ  was defined in (4.1) and magψ�  is the rate of rotation about the earth’s 

magnetic field vector.  Also, setting (4.4) (with the Euler sequence φ ) and (4.5) equal 

to each other and solving for φ�  yields 

 sin( ) sin( )mag mag magφ φ ψ θ ψ θ= − +� � � �  (4.6) 

Notice that magφ  could deviate from φ  because of projectile overturning causing a 

nonzero magψ� .  This effect is greatest when the spin axis of the projectile passes close 

to the earth’s magnetic field vector when sin( )magθ ≈ 1.  Also, disturbances such as 

wind and maneuvers create a nonzero ψ� , causing the same effect. 

To demonstrate the deviation of the Euler roll angle and the magnetic roll 

angle, a gun-fixed navigation frame is considered as shown in Figure 5.  Three 

simulations of the same trajectory were run with different magnetic field directions as 
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indicated in Figure 5.  The magnetic field vectors all lie in the X-Y plane.  The spin 
axis of the projectile makes its closest approach (largest magθ ) at the apogee.  The 

closer the alignment of the magnetic field vector with the X-axis, the more severe the 

effect of overturning will be on the change in the difference between the roll angles. 

 

Figure 5: Sample magnetic field vector directions 

This effect is demonstrated in Figure 6 where the difference in the Euler 

roll angle and the magnetic roll angle is plotted for the different magnetic field 

vectors.  Because the values are angles, the maximum difference between them is 180 

degrees.  The flat portion of the curves indicates that roll angle derivatives are 

approximately equal.  For the green curve ( B  aligned with the X-axis), the effect of 

overturning is dramatic but occurs over a short interval close to apogee.  For the red 

curve ( B  45 degrees off the X-axis), the effect is less severe but occurs over a wider 

time scale. 
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Figure 6: Roll angle difference for various magnetic field orientations 

The Magnetic Coordinate Frame 

The earth’s magnetic field in the body frame is related to the earth-fixed 

frame as 

 
x X

y Y

z Z

B c c s c s B
B c s s s c s s s c c c s B
B c s c s s s s c c s c c B

ψ θ ψ θ θ

ψ θ φ ψ φ ψ θ φ ψ φ θ φ

ψ θ φ ψ φ ψ θ φ ψ φ θ φ

 −   
    = − +    

    + −    

. (4.7) 

Let { , , }m m mX Y Z  be a “magnetic” frame where the mZ  axis is the earth’s magnetic 

field vector.  Also, for the remainder of this paper, assume the magnetic field vector is 

normalized to a unit vector.  Equation (4.7) can be rewritten for the magnetic frame as 
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0
0
1

x

y

z

B c c s c s s
B c s s s c s s s c c c s c s
B c s c s s s s c c s c c c c

ψ θ ψ θ θ θ

ψ θ φ ψ φ ψ θ φ ψ φ θ φ θ φ

ψ θ φ ψ φ ψ θ φ ψ φ θ φ θ φ

   − −   
      = − + =      

      + −      

. (4.8) 

It is now obvious that the pitch and roll angles in (4.8) are the magnetic pitch and roll 

angles described by (4.1) and (4.2).  In this magnetic coordinate system, the 

magnetometer measurements are simply related to the magnetic pitch and roll angles.  

This frame will be used as an intermediate frame to perform the estimation. 

Dynamic Equations and States 

Typical six degree-of-freedom (6DOF) aeroballistic trajectory simulations 

actually require twelve states.  This is due to the fact that the angular motion of the 

projectile is nonlinearly coupled to the translational motion.  Since the estimators 

considered here are for attitude, position or velocity sensors are not considered.  

Therefore, a simplified model of the dynamics is required that essentially will allow 

coupling between magnetometer and angular rate sensor data. 

A geomagnetic sensor cannot distinguish a rotation about the earth’s 
magnetic field vector, magψ .  magθ  and magφ  therefore provide a complete description 

of the information that is able to be sensed by a magnetometer.  These two parameters 

are the states of the estimator, and are related to angular rate sensor outputs through 

(4.3).  Discretizing with a simple Euler numerical integration technique yields the 

following state propagation equations 

 { }
( 1) ( )

( ) sin[ ( )] tan[ ( )] ( ) cos[ ( )] tan[ ( )] ( )
mag mag

mag mag mag mag

n n

t p n n n q n n n r n

φ φ

φ θ φ θ

+ =

+∆ + +
 (4.9) 

 { }( 1) ( ) cos[ ( )] ( ) sin[ ( )] ( )mag mag mag magn n t n q n n r nθ θ φ φ+ = +∆ −  (4.10) 

where t∆  is the time interval between each sample (assumed constant).  In this 

manner, the angular rate sensors are used to smooth and correct the magnetometers.  
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Since magψ  is not observable through magnetometer measurements, it directly 

computed via numerical integration as 

 
sin[ ( )] cos[ ( )]

( 1) ( ) ( ) ( )
cos[ ( )] cos[ ( )]

mag mag
mag mag

mag mag

n n
n n t q n r n

n n
φ φ

ψ ψ
θ θ

  + = + ∆ + 
  

. (4.11) 

With all three magnetic Euler angles, the complete attitude is defined, and a 

coordinate transformation is executed into any earth-fixed, navigation frame of 

interest. 

 The angular rates themselves are too dependent on the translational 

motion to attempt to correct with an aerodynamic model.  However, the general 

nonlinear estimation techniques presented here could be extended to include position 

and/or velocity sensors. 

Measurements 

The angular rate sensor measurements are “hard coupled” into the state 

propagation equations.  From a filtering perspective, the magnetometers are the only 

measurements considered and are given by (4.8). 
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Chapter 5 

RESULTS 

A typical artillery projectile’s trajectory with a low gun elevation (to 

minimize trajectory length) was simulated.  Figure 7 plots the Euler angles, Figure 8 

plots the angular rates, Figure 9 plots the magnetometer outputs, and Figure 10 is an 

alpha/beta plot that shows the motion of the tip of the nose of the projectile around its 

velocity vector.  Note the typical symmetric epicyclic motion typical of spin stabilized 

projectiles.  See [15] for a complete description of the motion of symmetric 

projectiles. 
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Figure 7: Euler angles 
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Figure 8: Angular rates 
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Figure 9: Magnetometer outputs 
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Figure 10: Angular motion of the tip of the projectile around the velocity vector 

The filtering methods described in Chapter 3 where implemented using 

the equations, states, and measurements described in Chapter 4.  In the simulations, 

(0.5774,0.5774,0.5774)T
e =B , 810ww

−=R I , 610vv
−=R I , which was also the 

covariance of the noise added to the simulated magnetometer outputs, and 
100 0 0

0 0.01 0
0 0 0.01

ηη

 
 =  
 
 

R  

was the covariance of the noise added to the angular rate sensor outputs.  The number 

of sigma points used in the UKF was 2 1 5xN + = . 
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 Figure 11 shows the first 2000 samples of the filtered magnetic pitch angle 

estimates compared with the actual values.  The green curve is a direct computation of 

the pitch angle using the noisy magnetometer measurements.  The plot demonstrates a 

significant improvement using the filtering techniques.  It is not clear from the plot but 

shown in Table 1 that the UKF outperforms the EFK.  The table shows the mean 

square error in the estimates of the magnetic pitch and roll angles over the entire 

trajectory.  Figure 12 shows the entire trajectory estimates from the UKF for the 

navigation pitch and yaw angles.  Since these angles are a function of all of the 

magnetic Euler angles, the drift in the magnetic yaw angle causes the estimate values 

to deviate from the actual later in the trajectory. 
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Figure 11: Magnetic pitch angle estimates from EKF, UKF, and direct computation 
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         Table 1: Mean square errors for EKF and UKF 
Mean Square Error Magnetic Pitch Angle Magnetic Roll Angle 
EKF 5.3055e-7 4.9876e-6 
UKF 3.6824e-7 1.8480e-6 
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Figure 12: UKF estimates of pitch and yaw angles 
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Chapter 6 

CONCLUSION 

Nonlinear state estimation techniques have been applied to attitude 

estimation using magnetometers and angular rate sensors.  The noise powers used in 

the simulations reflect the inaccuracies of currently available sensor systems that can 

be used with gun-launched projectiles.  The filtering techniques were demonstrated to 

perform significantly better in estimating the states than direct calculation.  The UKF, 

which approximates the pdfs instead of the nonlinear functions, showed superior 

performance over the EKF. 

The filtering techniques considered are general and could be modified to 

include additional states and measurements.  With the successful estimation of the 

attitude, position and velocity sensors such as a Global Positioning System (GPS) 

receiver could be included in the filter along with the additional states.  The filter 

could also include a full model of the aerodynamic forces and moments and the 

controlled maneuvers. 
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