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ABSTRACT

A new compressive spectral temporal imaging system is proposed to obtain a four

dimensional (4D) spectral and temporal image cube. A multi-spectral Light-Emitting Diode

(LED) array is applied for target illumination and spectral modulation while a digital micro-

mirror device (DMD) encodes the temporal image frames. High frame-rate spectral video is

recovered from successive compressed measurements captured on a RGB sensor. Computer

simulations are performed based on the developed forward model. The imaging system is

optimized through the design of the DMD patterns. A laboratory implementation is further

conducted to validate the performance of the proposed imaging system.
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Chapter 1

INTRODUCTION

High frame-rate video recording poises challenging hardware requirements such as

faster acquisition, larger memory buffers, and broader bandwidths. These demands are only

amplified if, in addition, the spectral content in the video scenes are also of interest. Multi-

spectral sensing usually requires spatial or spectral scanning thus temporal resolution is

seriously sacrificed. Compressive sensing (CS) has recently been used to overcome these

limitation without increasing the system volume or power requirements [1]. Compressive

sampling is based on the a-priori knowledge that the underlying signals are sparse or com-

pressible in some transform domain, allowing the entire signal to be reconstructed from

relatively few measurements. Spectral video streams not only exhibit strong inter-voxel cor-

relation in space and time but along the spectral dimension as well and thus are amenable to

compressive sampling.

Fundamental to the principles of CS are coded projections where high-dimensional

data streams are coded and projected onto detectors spanning lower dimensions. Coding

strategies, as such, play a key role in any CS imaging system. Several coding mechanisms

have been proposed to sample video signals including spatial light modulators [2] that enable

dynamic coded apertures, strobe shutters [3] to temporally code the incoming optical field,

and dispersive elements [4, 5] used in concert with coded apertures to code spectral data

cubes.

Compressive measurements for dynamic imaging, record a coded dynamic scene into

a sequence of detector array snapshots, from which many more video frames can be recov-

ered. The coded aperture compressive temporal imager (CACTI) [6] was introduced recently

which uses a harmonically driven binary coded aperture during the exposure of a video cap-

ture. In this way, each temporal frame in the video sequence is modulated by a shifted
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version of the code. Decoding of the signal is subsequently done using one of many recon-

struction algorithms available in compressive sensing where multiplexed temporal frames

are separated from the compressed measurements [1, 5, 7, 8, 9]. CACTI can be generalized

by using a dispersive element to spectrally modulate the optical source. Spectral coding is

done by a coded aperture and a dispersive element placed after coded aperture modulation.

The detection integrates the coded spectral planes. The video stream can be recovered by

isolating each spectral plane based on its local code structure.

Given that optical coding is at the heart of CACTI and its multi-spectral camera exten-

sion, one may ask if there are other efficient approaches to realize optical coded projections

of spectral video streams, in addition to mechanical movement of coded apertures. This is in

fact the case if one exploits light emitting diode (LED) structure illumination. In this case,

the coding builds on the concepts used in LED illumination multi-spectral cameras which

sequentially capture images of a scene under n different color LED lights, thus producing an

n-band spectral image of the scene. The multi-spectral data cube is thus built by sequentially

scanning the cube along the spectral dimension.

In this thesis, a novel compressive spectral temporal imaging system is proposed, op-

timized, and implemented for the high speed acquistion spectral temporal images. Different

from traditional compressive spectral imaging systems [5, 10, 11], the newly proposed LED-

based imaging systems [12, 13, 14] employ an active multi-spectral LED array without the

use of any dispersive element or spatially varying color filters. Multi-spectral LED has been

successfully implemented in spectral imaging systems for static scenes. Without dispersive

elements, each pixel in the sensor integrates the whole spectral range of the same pixel with-

out dispersive limitation. In [7], the spectral resolution is limited by the LED illumination

types. We compare the use of traditional discrete cosine transform (DCT) [5, 6, 10] spectral

basis and trained Munsell principal component analysis (PCA) [15] spectral basis. With the

help of Munsell PCA training, better reconstruction results can be achieved. Multi-spectral

LEDs, spectral-video was used to capture a reduced frame-rate sequence in [13]. To increase

the temporal resolution for dynamic scenes, a DMD is adopted in our system for spatial

temporal coding.
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The proposed imaging architecture consists of an active multi-spectral LED illumi-

nation, a DMD on the focal plane, an objective lens, a relay lens and a Bayer RGB sensor.

During a measurement snapshot, multi-spectral LEDs are selectively turned on for spectral

illumination, while the DMD rapidly alters its pattern for temporal coding. The RGB sensor

then compresses multiple coded temporal images into a single 2D projection. Compressive

sensing theory is then used to recover a high frame-rate spectral video from a set of succes-

sively collected low-rate measurement frames.

This sensing process is studied through the development of a forward model and its

corresponding sensing matrix. Based on the forward model, computer simulations with lab-

oratory measured data cube is then performed where random block-unblock DMD patterns

and random LED selections are applied. To improve the reconstruction quality, a good de-

sign on DMD and LED coding is necessary. Several DMD coding patterns are compared

in [2] for their performances in compressive temporal imaging systems. We further propose

the use of multi-frame blue noise patterns [16] for DMD coding in this spectral temporal

imaging system. Compared with traditional Bernoulli random coding patterns, the block-

ing and unblocking pixels on the multi-frame blue noise binary patterns are more evenly

distributed [17]. All the coding frames are complementary to each other which generates a

better conditioned sensing matrix [18]. The LED illumination pattern selection is then op-

timized based on the spectral distribution of each type of LED. The synchronization of the

LEDs, the DMD, and the camera sensor is then performed for a laboratory testbed implemen-

tation. High frame-rate spectral video is then recovered from these testbed measurements.

With the proposed imaging system, high temporal resolution spectral video can be recovered

with a common RGB video camera, aided by the DMD and the muti-spectral LEDs. This

enables several possible applications [14, 19, 20].

The main contributions of this thesis are summarized below: First, a novel compres-

sive spectral temporal imaging system is proposed to acquire a 4D spectral temporal image

cube. Second, the performance of different types of spectral sparse representations are com-

pared under the proposed imaging design. Third, the performance of the proposed system
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is analyzed through computer simulations and improved via the optimization on DMD cod-

ing patterns and the selection on LED types combinations. Finally, the synchronization of

field-programmable gate array (FPGA) controller is built to capture the continuous moving

target with a dynamic multi-spectral LED array, a multi-dimensional coding DMD and a

RGB camera. With the synchronization system, the newly proposed imaging system is im-

plemented in the optical testbed. Compressive sensing reconstruction is performed from the

raw measurement data.
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Chapter 2

SYSTEM FORWARD MODEL

2.1 Imaging via compressive sensing

Natural scenes usually have correlation between neighborhood spectral bands and

among video frames. As such it is possible to represent spectral and temporal images in

some given bases, with only a small number of non-zero coefficients are needed. The spar-

sity of the spectrum and the redundancy on temporal domain enables the applications of

compressive sensing in spectral and temporal imaging systems. The sensing procedure can

be written as:

g = Hf , (2.1)

where H is the forward matrix of the imaging system. Denote the vector f as the collection

of the desired image cube, and g as the vector formed by the CCD measurements. With a

fine selected basis Ψ, f can be represented as

f = Ψθ, (2.2)

where the coefficients vector θ is sparse. The imaging process can be rewritten as

g = HΨθ = Aθ, (2.3)

where, the sensing matrix A = HΨ.

To solve the inverse problem in Eq. (2.3), many reconstruction algorithms [1, 5, 7, 8,

9] can be applied.

Since LED illumination is used in the proposed imaging system, we will introduce

the LED array at Chapter 2.2. Then the forward sensing process of LCSTI is described

Chapter 2.3. The sparse representations are illustrated in Chapter 2.4. Finally, the system

resolution is discussed in Chapter 2.5.
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Figure 2.1: LED spectral distributions varying over wavelength. The spectra of LEDs over-
lap in the 420-680 nm wavelength range.

2.2 LED illumination

To obtain the spectral information of a scene, a multi-spectral LED array is applied as

illumination patterns in the imaging system. The LED illumination we prototyped consists

of 8 different types of LED with different visible spectral distributions. Thus, the LEDs

not only provides illumination, but also produces the spectral modulation. There are totally

thirty LED evenly distributed on a printed circuit board (PCB). Figure 2.1 shows the spectral

intensity distributions of 8 types of distributions.

The LED illumination is controlled by a FPGA controller. The intensity can be

changed through voltage level change for each type of LED. In our system, the LED control

unit turns on certain types when each image frame is sensed.

2.3 System model

The proposed compressive imaging architecture is described below. LED illumi-

nation provides the illumination on the target with the spectral modulations. The spectral

modulation is created through random selection of few types of LEDs. The reflections of

a scene reach the DMD through the objective lens. The DMD projections modulate each

6



Figure 2.2: The testbed of LCSTI system.

temporal frame with a different set of block-unblock coding patterns. The DMD reflection

is then collected by a RGB sensor. In the testbed of Fig. 2.2, a monochrome sensor is used.

Thus, Red, Green and Blue filters are placed sequentially before imaging lens to simulate a

Bayer filter. Through the whole sensing process, the system compresses a 4D scene onto a

2D Bayer measurement.

In the sensing process, shown in Fig. 2.3, we denote the 4D scene as data cube

f(x, y, λ, t), where x and y are the dimensions on spatial domain, λ is the dimension on

spectral domain and t represents time. As the LED illumination and DMD patterns change

over time, the LED illumination can be modeled as S(λ, t), while the DMD coding is repre-

sented as C(x, y, t). B(x, y, λ) is the Bayer filter distribution for the RGB sensor. The DMD

and RGB sensor shares the same pixel size in our system. A compressed measurement on

the sensor is given by

g(x, y) =

∫
t

∫
λ

f(x, y, λ, t)S(λ, t)C(x, y, t)B(x, y, λ) dλ dt. (2.4)

The discrete representation of the 4D data cube can be written as

fmnkj =

∫ tj+1

tj

∫ λk+1

λk

∫∫
Ωmn

f(x, y, λ, t) dx dy dλ dt, (2.5)
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where m and n show the coordinate of the sensor. Ωmn is the pixel size at sensor (m,n),

while k indicates the spectral bands, and j represents temporal frame. The LED modulation

can be written as

skj =

∫ tj+1

tj

∫ λk+1

λk

S(λ, t) dλ dt. (2.6)

Similarly, the DMD coding is represented in discrete form as

cmnj =

∫ tj+1

tj

∫∫
Ωmn

C(x, y, t) dx dy dt. (2.7)

Additionally, the discrete form of the Bayer filter is written as

bmnk =

∫ λk+1

λk

∫∫
Ωmn

B(x, y, λ) dx dy dλ. (2.8)

Based on Eq. (2.5) - (2.8), the Eq. (2.4) can be discretized as

gmn =

∫∫
Ωmn

∫
λ

B(x, y, λ)

∫
t

S(λ, t)C(x, y, t)

f(x, y, λ, t) dt dλ dx dy

=

∫∫
Ωmn

∑
k

∫ λk+1

λk

B(x, y, λ)
∑
j

∫ tj+1

tj

f(x, y, λ, t)S(λ, t)C(x, y, t) dt dλ dx dy

=
F∑
j

L∑
k

fmnkjskjcmnjbmnk, (2.9)

where gmn represents the sensing data collected by the sensor. F and L indicate the number

of spectral bands in our system and number of frames per measurement respectively.

After vectorizing the data cube and the measurement data as f and g, the sensing

process in one measurement can be written in the form of Eq. (2.1). Here the forward matrix

H represents the effects of the LED, DMD and Bayer modulations. The vector form of the

DMD coding is represented as

cj = [c11j, c21j, ..., c12j, ..., cMNj]
T . (2.10)

Similarly, the vector form of the Bayer filter is written as

bk = [b11k, b21k, ..., b12k, ..., bMNk]
T . (2.11)
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Figure 2.3: Compressive sensing process with spectral modulation, binary coding and Bayer
filter. The scene is modulated in its spectral and temporal dimensions from t1 to t4 and
compressed onto the Bayer sensor.

Then, the matrix H is written as

H = [s11diag(c1 ∗ b1), s21diag(c1 ∗ b2), ..., sLFdiag(cF ∗ bL)], (2.12)

where cj is vectorized spatial coding for a temporal frame j, and bk is the Bayer filter

distribution on a spectral band k. cj ∗ bk represents the element-wise product of cj and

bk. M,N are the spatial resolution of sensor and DMD, and L, F are the number of bands

and number of frames. Let V = M × N , then H has the dimensions of V × V LF . In

order to visualize the matrix H, a test data cube with 6 × 6 (M = 6, N = 6) pixels, three

spectral bands (L = 3) and two temporal frames (F = 2) is used. The corresponding H

matrix is shown in Fig. 2.4. The values in this figure are between 0 and 1. The Bayer filter

arrangement can be found in Fig. 2.3. The LED modulations vary by spectral bands and

frames. The spatial codings for each frame are changed by the DMD.

2.4 Sparse representations and data cube recovery

As discussed in Chapter 2.1, the data cube f can be represented as f = Ψθ. Here

we apply a Kronecker basis Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 ⊗Ψ4, where Ψ1 ⊗Ψ2 provides the 2D

Wavelet basis in spatial domain, Ψ3 and Ψ4 represent discrete cosine transform (DCT) in

the temporal domain and Munsell PCA in the spectral domain.

While many compressive spectral imaging systems use the DCT basis for spectral

sparse representations, a spectral sparse basis trained by PCA is used here to reach higher

resolution and spectral precision. The PCA spectral basis can be trained by color sets in the
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Figure 2.4: Forward matrix H for a 6 by 6 spatial area with 3 spectral bands and 2 temporal
frames. In a forward matrix, a 6 by 6 spatial modulation at a temporal frame, with 3 bands
spectral modulations by a LED pattern and a Bayer filter, is vectorized and diagonalized in
a 36 × 36 area. In a temporal frame, all three bands share the same spatial coding, but with
different spectral modulations. The first and second frame show different spatial modulations
and different LED modulations.

visible range [15]. The Munsell color with 1269 color chips shown in Fig. 2.5(a) [15] and its

spectral distributions are shown in Fig. 2.5(b). The Munsell spectra set [21] is used for PCA

calculation. The spectral mean µ and the sparsity basis Ψ4 are generated from the training

data set. µ is used for centering the spectrum of targets. After the employment of PCA, the

representation of f in Eq. (2.2) can be rewritten as

f = µ+ Ψθ. (2.13)

Substituting Eq. (2.13) in Eq. (2.3),

g = Hµ+ Aθ. (2.14)

The sensing process expressed in Eq. (2.14), can be solved inversely as

θ̂ = arg min
θ
||y −Hµ−Aθ||2 + λ|θ|1, (2.15)

where θ is recovered to minimize this l1 − l2 cost function, λ is a regularization constant.

We applied the gradient projection sparse reconstruction (GPSR) [8] algorithm to solve the

equation above in our system.

2.5 Discussion on the system resolution

Compressive imaging systems usually capture dimensionality reduced measurements.

In these imaging systems, the capability of resolution reconstruction becomes critical. For
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(a) (b)

Figure 2.5: (a) The Munsell 1269 color chips. (b) The reflection spectra of 1269 colors.
The spectral mean is generated by the average of these 1269 color spectra, and the principal
components are calculated and used as spectral sparse basis Ψ4.

example, DMD based compressive imaging systems [3, 22] have their spatial resolution lim-

ited by the resolution of DMD and sensor. In our system, the digital devices play a more

important role since they also control the temporal coding speed, and the detail timing se-

quences are shown in Chapter 5.2. Thus, the temporal resolution, or called the frame-rate in

video system, is limited by the control system’s frequency speed, sensor speed, LED speed

and DMD speed. If we assume the frame-rate of the sensor is Rs, From Eq. (2.9) we know

that the system frame-rate

R = Rs × F. (2.16)

In dispersive element-based imaging systems, the continuous spectrum is divided into

spectral bands, according to the dispersion onto sensor pixels. Multi-spectral LED-based

imaging systems sense the whole spectrum in each pixel. Several approaches using a small

number of LED types reconstructed a large number of spectral bands [13, 12], relying on

the smoothness of spectrum. To further verify the spectral recovery capability of the multi-

spectral LED system, we compare the Munsell PCA spectral basis with DCT in Chapter

3.4.
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Chapter 3

SIMULATION

3.1 Data cube acquisition process

To study the performance of the LCSTI system, a 4D data cube was acquired by

illuminating the scene with a visible monochromator. Figure 2.1 shows the multi-spectral

LED illumination distributions from 420 to 680 nm wavelength. Therefore, twenty-seven

spectral image bands are captured from 420 to 680 nm central wavelength at 10 nm interval

on a 9.9 µm monochrome CCD camera. In the temporal domain, the dynamics of the scene

are simulated by smoothly moving a toy with a nanopositioner for 32 frames. The resulting

data cube has 256 × 256 pixels of spatial resolution, 27 spectral bands and 32 temporal

frames. In this way, a 256×256×27×32 data cube is obtained. Figure 3.1(a)-(c) show three

images, in the same temporal frame and selected spectral bands. The central wavelength is

used to represent each band. Figure 3.1(d)-(f) show 520 nm spectral band images in three

different frames.

3.2 Simulated process

The simulated measurements are constructed by employing random DMD mask pat-

terns with 50% transmittance. Four different types of multi-spectral LEDs illuminate the

scene at each temporal frame. The Bayer RGB sensor captures measurements at video rate

from 15 frames per second (fps). Note that the Bayer sensor is simulated using real RGB

curves [23]. Since all L spectral bands are integrated on the focal plane array (FPA), the

spectral compression is L : 1. From each snapshot, F temporal frames are recovered. Then

the compression rate in the temporal domain is F : 1. Thus, the imaging system has a com-

pression of LF : 1. In the simulations, if K = 4 snapshots were applied to recover Nft = 32

12



Figure 3.1: (a)-(c) Selected 3 spectral band images from total of 27 spectral bands at 18th
temporal frame. Colors have different intensity at different bands. (d)-(f) Selected 3 images
at 570 nm spectral band of different temporal frames. The Lego figure moves from left to
right in an uniform speed.

temporal frames in L = 27 spectral bands, the compression is then Nft/K ∗L : 1 = 216 : 1.

Figure 3.2 illustrates 2 measurement snapshots captured on the FPA.

3.3 Reconstruction

Reconstruction results are shown in Fig. 3.3 with selected spectral bands and selected

temporal frames. Four snapshots are applied for 32 temporal frames. The scene is assumed

being measured at 15 fps, with random LED selections and random DMD codings. The

average PSNR for the reconstruction is 26.66 dB with 120 fps. The system can achieve a

higher frame-rate of 240 fps with higher compression 432:1, when setting F = 16. This

provides an average PSNR 24.19 dB. With further compression to 864:1, 480 fps spectral

video is recovered at 22.56 dB average PSNR. Both spectral and temporal image bands are

successfully separated. However, spatial blur can be observed on the edges of the moving

targets. To overcome these blurring artifacts, complementary blue noise aperture coding is

further proposed in Chapter 4.
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Figure 3.2: Two selected FPA measurement snapshots. The clear Bayer coding texture can
be observed. The Lego figure shows blur, because of several temporal frames are compressed
in a measurement, but the still background targets show clear edges.

3.4 Comparation of different spectral sparse bases

To test the capability of spectral reconstruction, Munsell PCA basis compares with

DCT spectral basis with a data cube having a peak at 490 nm. The comparisons are con-

ducted with frame-rate F = 8, with same LED selections and DMD codings. The reduced

spectral resolution data cube is created by averaging neighbor spectral bands. Two points

P1, P2 in Fig. 3.4 of the 4th temporal frame image are selected to compare the results for

spectral responses, one is at the moving target of the Lego helmet, another one is at the still

target of the toy sun. Spectrum responses of these two points are compared in Fig. 3.5 with

basis, DCT, Munsell PCA and peak added Munsell PCA. The peak is added in Munsell spec-

tra data by the same method as in the data cube to train the spectral basis. According to the

spectral responses in Fig. 3.5(b), Munsell PCA basis can relative recognize the added peak,

when only 8 bands are reconstructed. However, the peak can be reconstructed with higher

spectral resolution trained by the peak added Munsell data set. In Fig. 3.5(d), peak only can

be reconstructed by the spectral basis trained by the peak added Munsell data set. Thus, the

PCA basis can achieve better spectral responses when the spectra are smooth. Second, if

the training data is similar enough with spectrum in the scenes, a much better result can be

achieved. In visible spectral range, Munsell color set is sufficient to train the spectral basis.
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Figure 3.3: Selected 6 spectral bands, 4 temporal frames images from 27 spectral bands
32 temporal frames 4D image reconstruction, and corresponding 4 temporal RGB images
merged by reconstruction image cube to compare with 4 temporal RGB images merged by
original image cube. The scene is successfully measured by LCSTI system.
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Figure 3.4: Two selected points for spectral comparisons.

Figure 3.5: The spectral response comparisons for different spectral sparse bases, DCT,
Munsell PCA, and Peak added trained PCA. (a) The comparison of the spectral responses
with 8 bands. The capability of Munsell PCA as good as DCT. (b) The comparison of the
spectral responses with peak added 8 bands data cube. Munsell PCA basis with peak add
data training best reconstructed on spectral. (c) The comparison of the 27 bands spectral
responses. Munsell PCA basis gives us higher precision than DCT. (d) The comparison
of peak added data cube with 27 bands. Munsell PCA basis with peak add data training
perfectly reproduce the spectral response.

16



Chapter 4

DMD CODING DESIGN

In Fig. 3.3, the recovered results show strong blur on the edge of the moving target.

It is because that, in Fig. 4.1(a), the spatial coding with large clusters fail to distinguish the

sharp changes between neighbor pixels in a single compressed snapshot, resulting in poor

edge reconstruction.

Blue noise coding is one kind of high frequency coding and well recognized for its

use in halftoning [24]. In coded aperture compressive imaging systems, efforts have been

made on designing aperture coding with fewer clusters. In compressive temporal imaging,

the normalized aperture codings are proposed against random codings [25]. These normal-

ized codings guarantee uniform sensing for each spatial pixel, however they do not maximize

the power of high frequency information. On the other hand, blue noise binary patterns re-

serve both randomness and high frequency properties, making them as a good alternative to

the random white noise aperture coding. Pixel sensing uniformity is achieved through the ap-

plication of multi-layer blue noise [16]. These blue noise binary patterns were applied in the

design of spatial-polarization and spatial-spectral coding patterns [26, 27] to outperform the

random coding in different compressive spectral imaging systems. The comparison of a 50%

white coding and a blue noise coding are shown in Fig. 4.1. In the Fig. 4.1(b), the clusters

are obviously reduced. Furthermore, the implementation of multi-layer blue noise produces

complementary blue noise codings. For instance, if there are 8 temporal frames compressed

in a snapshot, 8 unique and not overlapped blue noise codings with 12.5% transmittance are

produced.

One compressed snapshot is simulated with blue noise aperture coding to compare

with the random ones. The reconstruction results with complementary blue noise coding

gives us 1.94 dB better PSNR compared with 50% white coding ones. To further show the
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(a) (b)

Figure 4.1: The comparison of (a) a 50% white coding and (b) a complementary blue noise
coding. Compare (b) to (a), instead of crowing together, the opening points are even dis-
tributed.

benefit of blue noise coding, the 4th temporal frame’s mean-square error (MSE) is compared

between 50% white noise coding and complementary blue noise coding in Fig. 4.2. Compare

Fig. 4.2(d) to Fig. 4.2(c), the error around the edge of moving target is significantly reduced

by using complementary blue noise coding.
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(a) (b)

(c) (d)

Figure 4.2: (a) The 4th temporal frame reconstruction with 50% white noise codings. .
Motion blur occurs in the zoomed part. (b) The 4th temporal frame reconstruction with
complementary blue noise codings. And the motion blur is highly reduced in the zoomed
part. The comparison of (c) MSE of white noise coding between (d) MSE of complementary
blue noise coding shows the error reduced around edges.
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Chapter 5

EXPERIMENT

5.1 Experimental testbed setup

The experimental testbed setup is shown in Fig. 2.2. LUXEON R© Rebel Color LEDs

are used in our system. The PCB boards in Fig. 5.1(a) are designed to align the LEDs,

giving the system illumination with spectral modulations. The DMD model is LC4500, from

Keynote PhotonicsTM. The monochrome sensor is BOBCAT B2021M from IMPERXTM Inc.,

supporting synchronization control. The color filters are the common RGB color filters. To

repeat experiments with different filters, an accurate rotating rotor from Thorlabs Inc. is

adopted in the system as a target, which is shown in Fig. 5.1(b).

5.2 The synchronized sensing

The LCSTI system relies on several electrical controllable devices listed in Chapter

5.1. To capture a continuous moving target, a synchronization system needs to accurately

control the devices on time. Hence, a high speed FPGA controller is used to send spectral

coding patterns (a binary code) to the LEDs, to send raising and falling sync signals to the

DMD, the sensor and the target. The devices start to work at the raising signal and stop

working at the falling signal. The timing sequences for one snapshot having 4 temporal

frames are shown in Fig. 5.2. Before starting the procedure, binary spatial codings need to

download in DMD. First, all signals from the controller to the devices are set to 0, and the

LED pattern coding 0 means, no LEDs are lighted. Then, the rotating target is commanded

to move, and the sensor starts to collect light. The LED illumination controls the exposure

time Te and idling time Ti, resulting in a reconstructed frame rate of 1/Tf = 1/(Te + Ti) .

In each temporal frame, LEDs illuminate a different pattern. To avoid the refreshing noise,

DMD loads a new coding by the raising signal, before the LED illumination start and clear
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(a) (b)

Figure 5.1: (a) The designed LED illumination board with even distributed LEDs. (b) A
color target mounted on a precision rotation platform.

current coding with falling signal after LED illumination closed. The loaded coding was

downloaded before the measuring. At last, the sensor is closed after last temporal frame

exposure of a measurement ending. Then, the sensor will process the sensing data and save

the data in disks. The target will be closed, after all the measurements are finished. To easily

control the system, a Windows interface is built for sending configuration parameters to the

controller.

5.3 Lab measurements and reconstruction

In an experiment, the exact measuring procedure needs to repeat 3 times with dif-

ferent RGB filters. Then the combined measurement with Bayer modulation is used as the

input of the reconstruction algorithm described in Chapter 3.

The experiments are only performed for the compressive temporal imaging currently.

High frame-rate video is recovered from reduced frame-rate measurements. The selected

measurements measured in the Lab are shown in Fig. 5.3. The selected frames of recon-

struction are shown in Fig. 5.4. In this experiment, 8 temporal frames are compressed in a

snapshot and 10 snapshots are captured sequentially.
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Figure 5.2: Timing sequences of signals from controller to devices for one snapshot with 4
temporal frames. With the rising signal, the target starts to rotate, while the DMD loads a new
coding, and the sensor starts the integration. With the falling signal, the target stops moving,
the DMD clears current coding, and the sensor stops collecting the light. Corresponding
spectral patterns P1 to P4 are sent to LEDs in different temporal frame exposure time. Te is
exposure time and Ti is the idling time.

Figure 5.3: Two Lab measurement snapshots captured using the compressive temporal imag-
ing system. The spatial modulation texture can be observed in each measurement.
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Figure 5.4: 80 temporal frame images are reconstructed, from which 12 frame images are
shown. Different frames are successfully separated.
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Chapter 6

CONCLUSION

A LED-based compressive spectral temporal imaging system was developed, ana-

lyzed and tested in this thesis. A 4D scene (spatial, spectral and temporal) was measured by

a 2D compressive measurement onto the FPA. A detailed mathematical model of the imager

was presented, and l1− l2 norm algorithm was implemented for reconstruction. Moreover, a

comparison between DCT and Munsell PCA is conducted for their performance as the spar-

sity basis in spectrum. Then a complementary blue noise coding was designed to enhance

the edges pixels reconstruction base on simulations. The laboratory experiments demonstrate

accurate reconstruction in spatial, spectral, and temporal domains.

Future study may concentrate on quality improving and faster reconstruction algo-

rithm. In the experiment, spectral information need be added in the compressive system, to

further verify the system capability.
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