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Municipal Solid Waste (MSW) is a valuable energy resource that is 

underutilized by today’s society.  Waste-to-Energy (WTE) is a low-hanging fruit in a 

multifaceted energy landscape that incorporates conventional fuels and a plethora of 

renewable alternatives. From an environmental standpoint, WTE reduces the storage 

of MSW in landfills which can contaminate groundwater and release methane, a 

potent greenhouse gas. The most attractive WTE technology is gasification, a process 

where nonstoichiometric amounts of oxygen or air are fed to a high temperature 

reactor. The output from gasification is syngas, a ubiquitous product that can be used 

for a range of purposes, including liquid fuel synthesis and conversion to electricity 

via combustion. Plasma-arc gasification is an extension of conventional gasification 

that utilizes a plasma torch to obtain extreme reactor temperatures. The solid by-

product from plasma gasification is an inert vitrified slag, which is usable as a 

construction material. Plasma-arc gasification successfully utilizes the entire MSW 

feedstock, thereby removing the need for landfills. However plasma-arc gasification is 

a relatively new WTE technology, and there is a need to better understand the 

underlying chemistry in order to optimize process parameters. 

Molecular-level kinetic modeling has proven valuable in gaining insight on 

process chemistries ranging from naphtha reforming to biomass pyrolysis. To this end, 

this dissertation focuses on the development and application of a molecular-level 

kinetic model for MSW gasification. For model development, the MSW stream was 

divided into plastics and biomass. Kinetic models were constructed separately for the 
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gasification of each of these streams, using literature data. These models were then 

combined to construct the MSW gasification model. This model was used to simulate 

a 1000 metric ton per day plasma-arc gasifier that was divided into three zones for 

MSW: combustion, gasification, and freeboard. The reactor model was utilized to 

study the effects of process parameters on syngas quality and tar formation. Increasing 

the relative oxygen flow to the bed was found to reduce tar formation at the cost of 

syngas quality. Variations in MSW composition affected the oxygen content in tar 

molecules but had little impact on syngas quality. Lastly, the localized extreme 

temperatures in the combustion zone had a potentially negative impact on both syngas 

quality and tar production due to the oxidation of CO. 

While studying MSW gasification, modeling approaches were developed for 

the depolymerization of both linear and cross-linked polymers that could be applied to 

other complex feedstocks and processes. In particular, this dissertation focuses on 

heavy oil resid pyrolysis. Resid pyrolysis is an attractive field for modeling due to 

recent advances in experimental techniques. This study highlighted the ability of 

molecular-level kinetic models to predict >50,000 molecules from detailed mass 

spectrometry measurements. 

Orthogonal to kinetic model development, this thesis focused on the 

construction of software tools. Software tool development highlighted the interface 

between molecular-level kinetic models and users. There are three types of users of 

kinetic models: model developers, research collaborators, and process engineers. Each 

user has their own goals while using the model. For instance, software tools for model 

developers or research collaborators might focus on organizing the incredible amount 

of information contained in a molecular-level kinetic model. To address this aim, one 



 xxix 

tool focused on the visualization of the reaction network to understand the network 

structure. In contrast, software tools designed for process engineers target measured 

inputs and outputs while abstracting the underlying molecular detail. This allows a 

process engineer, regardless of training in detailed kinetics, to reap the benefits of a 

molecular model and study the effects of operation parameters such as temperature or 

feed variation. These examples showcase the ability of software tools to increase the 

accessibility of detailed kinetics by molding the user-model interface to correspond to 

the user’s needs.  

This dissertation focused on gasification of waste, and culminated in a reactor 

model for the most environmentally friendly of WTE option: plasma-arc gasification. 

This work was then taken one step further by developing the software necessary to 

increase the accessibility of the model to a wider audience, ranging from process 

engineers to model developers. This accessibility makes the model not only 

fundamental, but also practical for industrial partners. Gasification and other WTE 

technologies have been, and will continue to be, a future topic of research. 

Undoubtedly, detailed kinetic models will play a central role in the future conversion 

of waste to energy 
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INTRODUCTION 

1.1 Municipal Solid Waste: Burden or Resource? 

By its very designation, municipal solid waste (MSW) is viewed as a problem 

in today’s society. The term waste, as defined by the Oxford dictionary, is a “material 

that is not wanted; the unusable remains or byproducts of something.” Historically, 

this term was valid; according to the Environmental Protection Agency (EPA), 

essentially all MSW in the United States was placed in landfills before 1960, as shown 

in Figure 1.1[1]. Landfills can have issues in terms of the environment and public 

perception. First, waste stored in landfills can contaminate groundwater. Second, 

waste degradation by microbes in landfills produces methane[2], a greenhouse gas 

with a global warming potential roughly 25 times higher than carbon dioxide[3]. 

Additionally, in terms of public perception, landfills are an eyesore. They are one of 

the most common examples of the NIMBY, or “not in my backyard”, effect. MSW 

that is discarded in landfills truly merits being called waste. 
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Figure 1.1: MSW management technologies from 1960-2013. Figure from source 

material[1]. 

Beginning around 1970, society began ways to utilize MSW. Between 1970 

and 2000, there was a gradual increase in the fraction of waste recovered for recycling. 

Furthermore, in this time period, industry began to realize that MSW contains 

considerable energy, giving rise to combustion as the first waste-to-energy technology 

to be used at the industrial scale. Today, around half of MSW still goes to landfills, 

where this energy source is left untapped. The energy landscape in a modern society is 

quickly becoming multi-faceted, involving renewables, traditional fuels, and nuclear 

power. In this landscape, waste-to-energy is a low-hanging fruit requiring little 

research to obtain significant results. Other countries have utilized this resource; for 

example, Sweden made news in 2015 because they transport trash to fuel waste-to-

energy facilities from surrounding countries[4].  If this is any indication of the future 

of MSW in the United States, it will be considered a resource, rather than waste. 
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1.2 Waste-to-Energy Technologies 

There are numerous waste-to-energy (WTE) technologies that are currently 

feasible. These technologies include methane recovery from landfills, incineration, 

gasification, and plasma-arc gasification. Each of these technologies has advantages 

and disadvantages in terms of environmental concerns, energy obtained, and ease of 

implementation. 

Methane recovery from landfills, also called landfill gas, is a WTE technology 

that focuses on waste after it has been deposited in landfills. There are two benefits. 

First, the methane can be burned to generate energy. Second, capturing and burning 

methane produces CO2, a much less potent greenhouse gas. This technology is being 

actively pursued in the United States. According to the EPA, 645 landfills have been 

retrofitted to recover methane for energy production (as of March 2015), generating 

power for 1.2 million homes with 440 candidate landfills for future development[3].  

Landfill gas recovery is a good short-term technology for obtaining energy 

from landfilled MSW; however, there are many drawbacks. First, all other 

disadvantages of landfills (e.g., potential groundwater contamination) still exist. It is 

difficult to compare the energy obtained from landfill gas to other WTE technologies 

due to differences in timescales. Methane recovery is dependent on the rate at which 

microbes break down the material, which is significantly longer than the other 

techniques. Intuitively, the total energy recovered from a slow, partial breakdown via 

microbes is lower than a fast, near-complete breakdown by any other WTE 

technology. For these reasons, WTE technologies that minimize, or even exclude, the 

use of landfills are better long-term solutions. 

The oldest, and currently most popular, WTE technology is incineration. This 

process entails the complete combustion of waste: excess oxygen is fed to the process, 
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which converts the waste entirely to CO2. The heat from this process is utilized to 

generate electricity. The inherent simplicity of this process is compromised by the 

production of ash and pollutants. Of the original waste, 20-30% is categorized as non-

hazardous ash and 2-6% as hazardous ash[5]. Incinerator ash is typically deposited in 

landfills[6]. The excess oxygen also promotes the formation of SOx, NOx, dioxins, and 

furans[7]. Laws such as the Clean Air Act[8] regulate the release of pollutants into the 

atmosphere, and incineration facilities must be designed to meet these standards.  

 

Figure 1.2: Net energy to grid per ton of MSW. Figure reproduced from source 

material[6]. 

Gasification addresses many of the issues with incineration by reducing the 

oxygen flow to the bed. The final product is a syngas—or synthesis gas—stream 

predominantly composed of CO and H2. This ubiquitous outlet can be used to create 

chemicals or liquid fuel. Most often, however, the syngas stream is burned to generate 

electricity. Gasification has been applied extensively to more conventional feedstocks, 

e.g., coal[9]–[12] or biomass[13]–[20]. This process is more efficient than 
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incineration, which is reflected in the larger net energy to grid per ton of MSW, as 

shown in Figure 1.2[6]. In conventional gasification, the final solid by-product of 

gasification is an ash material that ends up in landfills. 

The ash byproduct from gasification has been addressed in a more recent type 

of gasifier that utilizes a plasma torch. This technique, termed “plasma-arc 

gasification”, melts the ash at extreme temperatures in the gasification bed, that can 

exceed 7000 °F[6]. The final solid byproduct is a vitrified slag which passes 

groundwater leach tests (shown in Table 1.1) and can be utilized as a construction 

material. The major disadvantages of plasma-arc gasification are capital costs for a 

new facility and the risks associated with new technologies. Plasma-arc gasification is 

the only technology currently in use that completely removes the need for landfills. 

Table 1.1: Leach tests on vitrified slag. Table reproduced from source material. [6] 

 

EPA Permissible 

Conc. (mg/L) 

Vitrified Slag Conc. 

(mg/L) 

Arsenic 5 <0.1 

Barium 100 0.47 

Cadmium 1 <0.1 

Chromium 5 <0.1 

Lead 5 <0.1 

Mercury 0.2 <0.1 

Selenium 1 <0.1 

Silver 5 <0.1 

1.3 Plasma-Arc Gasification 

A general plasma-arc gasification reactor is depicted in Figure 1.3. MSW is fed 

near the middle of the gasifier. The waste falls and forms a bed in the gasification 

zone. Along the height and circumference of this bed are inlets for the gasification 
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agent: typically air, oxygen-enriched air, or pure O2[21]. The zone of open space 

above the MSW bed is called the freeboard zone, where primarily equilibrium 

reactions, such as water-gas shift, occur. After the freeboard zone, syngas leaves the 

top of the reactor. The other output is the vitrified slag, which exits the bottom of the 

gasifier and is molten at reactor conditions. In the diagram, the plasma torch is shown 

inside the gasifier; however, it can also be separate. In this scenario, a vapor stream 

carries the heat from the torch to the gasifier bed[22].  

There are multiple categories of plasma-arc gasification units, but they 

generally fall into two categories: one-stage and two-stage. The category described 

here, and studied in this thesis, is an example of a one-stage gasifier. Two-stage 

examples include multi-reactor designs where the initial waste is fed to a conventional 

gasification unit. The plasma gasifier can then be used to convert the tar molecules in 

syngas or vitrify the ash into slag.  

The primary product from the process is syngas. Depending on reactor 

conditions, this syngas can contain measurable amounts of tar molecules, defined here 

as molecules with higher boiling points than benzene. These tar molecules must be 

processed in downstream units[23]. The quality of the syngas is dependent on the 

gasification medium. The energy content, on a per volume basis, can be doubled with 

oxygen-enriched air or pure oxygen instead of natural air. This increased energy 

density allows for the use of a wider range of gas turbines to make electricity[21]. 

Syngas composition is dependent on the original feedstock[24], MSW. Most of the 

complexity and variability of the process is in the MSW inlet stream. 
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Figure 1.3: Alter NRG Plasma Gasifier. Image from source[6]. 

The main inlet to the plasma-arc gasifier is MSW, a mixed feedstock that can 

be broken down into a number of categories as shown in Figure 1.4. The most 

interesting thing about this composition is that it is inherently variable. This is 

demonstrated using the breakdown of United Kingdom (UK) waste in Figure 1.5[25]. 

The composition of UK waste is different than the US. Specifically, plastics are a 

much higher fraction of waste in the US. This is important as plastics, which are 

derived from oil, have lower oxygen content than biomass and therefore have a higher 

energy content. Also, even within the UK, the waste composition changes in urban 

and rural settings. The complexity and variability of MSW as a feedstock is a major 

motivator for process modeling of MSW gasification. 
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Figure 1.4: MSW breakdown in 2013 for the United States[1]. This composition 

represents the discarded (i.e., post-recycling) MSW. 

 

Figure 1.5: Urban and rural MSW waste descriptions in the United Kingdom[25]. 

1.4 MSW Gasification Modeling 

The aim of mathematically modeling of a chemical process is twofold: 

practical and scientific. The practical application of modeling is in the design and 
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control of the commercial reactor. For MSW gasification, the goal of process 

engineers is to control syngas production and composition. Modeling can help guide 

the choice of process parameters such that the energy content is maximized while high 

molecular weight tar molecules are minimized. The scientific application of modeling 

is in the understanding of the physics and chemistry of the process. This is more 

important to researchers and future projects as it can answer bigger questions about the 

process. For example, scientific understanding can be used to design a MSW stream to 

increase syngas energy content or control the composition of tar molecules. 

The simplest model for gasification is a model based on the assumption of 

thermodynamic equilibrium [13], [16], [25]–[32]. By assuming the system reaches 

equilibrium, these models assume a reactor outlet composition based on the 

temperature of the system. Equilibrium models can handle changes in MSW feedstock 

through ultimate analyses. Returning to the aims of modeling gasification, there are a 

number of issues with equilibrium models. Equilibrium models do not contain detailed 

reactions and cannot help with understanding the underlying chemistry of the 

gasification process. Also, at the temperatures in a plasma-arc gasifier, tar molecules 

are not predicted at equilibrium. If tar molecules are observed, then the system is not 

at thermodynamic equilibrium and reaction kinetics must be taken into account. 

The most basic type of kinetic models are lumped models[34], [35]. An 

example of a lumped model is given below in Equation 1.1[34], where chemical 

reactions are represented simply between lumped categories. A major advantage of 

lumped models is the model simplicity; these models are easy to build and understand. 

The mathematical solution is also fast, thereby allowing the kinetics to be easily paired 

with more complex descriptions of heat and mass transfer. The limitation of lumped 
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models is that they lack detail beyond the definition of the lumps. Each lump in the 

model might represent hundreds or thousands of chemical species. For instance, the 

model in Equation 1.1 would have trouble answering questions about the effects of 

MSW composition on predicted tar composition. In terms of scientific understanding, 

lumped models are based on experimental observations; however, they are ill-

equipped to answer molecular-level questions about the formation of particular 

product molecules.  

 

𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 → 𝑔𝑎𝑠 + 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑎𝑟 + 𝑐ℎ𝑎𝑟 
𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑡𝑎𝑟 → 𝑔𝑎𝑠 + 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑡𝑎𝑟 

(1.1) 

  

Artificial neural nets (ANNs) are kinetic models that are based on how neurons 

form connections in the brain[36]. Applied to a chemical process, ANN models have 

connections from measured inputs to measured outputs as shown in Figure 1.6[37]. 

The connections formed are based entirely on the data, and ANNs are ideal in the 

scenario where there is no knowledge in how inputs become outputs. This 

characteristic is also the key weakness of ANN models. Because there is no chemistry 

in the model, the model cannot help explain the underlying science of the physical 

process.  
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Figure 1.6: Artificial Neural Net from Xiao and coworkers. Image directly from 

source material[37]. 

Molecular models address the weaknesses of lumped and ANN models by 

tracking observable molecules in the reactor. The feed is represented as a set of 

molecules and mole fractions. These molecules undergo chemical reactions based on 

mechanistic and pathways levels of process chemistry. The reaction integration 

utilizes the reaction network to obtain the molecular outputs. This type of modeling 

inherently addresses the aims of modeling MSW gasification. First, the model can 

inform a process engineer of how process conditions impact measured quantities such 

as syngas and tar compositions. Second, because the input is molecular, it can account 

for the variable nature of MSW. Third, because the reaction network is based on 

reaction chemistry, the model conveys an understanding of the underlying science of 

gasification.   
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1.5 Research Objectives 

There are two orthogonal sets of objectives in this dissertation: developing 

models and model-building tools. Due to the relative scarcity of data on plasma-arc 

gasification, model development focused primarily on a general reaction model for the 

gasification of MSW. This model was later applied to a specific reactor configuration 

of a plasma-arc gasification unit. Similar modeling methods were also utilized for the 

development of a kinetic model for the pyrolysis of heavy oil. In terms of model-

building tools, this dissertation work has exposed the importance of the user-model 

interface for detailed kinetic models.  

The primary objective of this research was the development of a molecular-

level kinetic model for MSW gasification. Due to the complexity of MSW as a 

feedstock, a three-stage approach was adopted. In the first stage, a kinetic model was 

constructed for common mixed plastics; this model was optimized and validated using 

literature gasification data on each of the polymers. The second stage of MSW model 

development was the construction of a model for biomass gasification. This model 

utilized literature data to optimize and probe the predictive ability of the model. The 

final stage of MSW gasification model development focused on merging together the 

plastics and biomass models. At this stage, the merged model was a general 

gasification reaction model and contained the major components of MSW. This 

general model was then applied to a specific MSW plasma-arc gasification process. 

The resulting reactor model was utilized to perform trending studies on important 

process parameters.  

The development of the MSW gasification model led to advances in the 

modeling framework for linear and cross-linked polymers. These advances are 

applicable to other high molecular weight feedstocks such as coal or heavy oil. 
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Although the chemical makeup and physical properties for these feedstocks are 

different from MSW, the polymeric complexity can be approached using the same 

mathematical tools. Specifically, this dissertation also focuses on the development of a 

model for the pyrolysis of a vacuum residue.  

The second set of objectives for this dissertation pertained to software tool 

development. There are three users of kinetic models: model developers, research 

collaborators, and process engineers. Each type of these users has a different aim, and 

effective software tools must address these needs. For example, a tool for a process 

engineer focuses on measured inputs and outputs to a process. In contrast, tools for 

model developers might focus on enhancing the scientific and mathematical 

understanding of the model. An example of this is the visualization of a reaction 

network to gain in-depth understanding of the network structure. Through this logic, a 

completely different style of tool development has arisen. Rather than focusing on 

major software packages with many features, this dissertation focuses on single-

purpose ‘apps.’ This style minimizes the learning curve for a given tool and allows for 

more fluid and personalized development for users. 

1.6 Dissertation Scope 

Chapter 2 provides a background on the Kinetic Modeler’s Toolkit (KMT) and 

how it is utilized for building kinetic models. The focus of the chapter is on the system 

of material balance differential equations that represent the kinetic model. The chapter 

discusses the three main steps of molecular modeling: feedstock composition, reaction 

network generation, and kinetic model solution.  

Chapter 3 develops a kinetic model for the gasification of mixed plastics, 

including polyethylene, polyvinyl chloride, polyethylene terephthalate, and 
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polystyrene. Each polymer was simulated as linear with a constant repeat unit 

structure. Statistical methods are utilized for the initial breakdown of the polymeric 

macromolecules. A pyrolysis and gasification network is developed for the reaction of 

small oligomers. The model parameters are optimized for literature data, and 

comparisons are made. 

Chapter 4 discusses the construction of a kinetic model for the gasification of 

biomass. The focus of the work is on three biopolymers: cellulose, hemicellulose, and 

lignin. Cellulose and hemicellulose are approximated as linear polymers, and similar 

methods are utilized as in the plastics model. Lignin is modeled as a cross-linked 

polymer and the structure is modeled using structural attributes. The model is tuned to 

literature data across different biomass types. The predictive ability of the model was 

probed using additional data. 

Chapter 5 combines the kinetic models of plastics and biomass gasification to 

develop a model for MSW gasification. A model for coke gasification is also 

developed. The MSW and coke reaction models are applied to a plasma-arc gasifier. 

The resulting reactor model is organized in an app called the MSW Gasification I/O 

Converter. This app allows for trending studies to examine key operation parameters 

such as the effect of waste composition. 

Chapter 6 demonstrates the use of similar modeling methods to the pyrolysis of 

heavy oil resid. Specifically, resid was modeled using the attribute methodologies 

utilized in lignin modeling. This study showcased the ability of the attribute reaction 

modeling to simulate systems with hundreds of thousands of molecules. 

Chapter 7 examines the theory of ‘app’ development for kinetic modeling and 

showcases the apps developed over the course of this dissertation. This chapter 
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highlights the goals of the different types of users of kinetic models: developers, 

research collaborators, and process engineers. Apps were divided into three categories. 

The first category targeted the comprehension of the scientific and mathematical 

aspects of a kinetic model. The second category focuses on measured inputs and 

outputs to a process, while abstracting other complexity away from the user. The third 

category of apps aims to increase the capabilities of the Kinetic Modeler’s Toolkit. 

Chapter 8 summarizes the findings of this dissertation and discusses target 

areas of future work for both experimentalists and modelers in the areas of MSW 

gasification.  
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MOLECULAR-LEVEL KINETIC MODELING IN THE KINETIC 

MODELER’S TOOLKIT 

2.1 Material Balance 

At the heart of a kinetic model is a system of material balances, given in 

Equation 2.1. The derivation of the mass balance is straightforward; the amount of 

each component can change from inlet or outlet flow and consumption or production 

by chemical reactions. There is one mass balance equation for every molecular 

species.  Assuming no accumulation, this equation describes the change in amount of 

each species as a function of time.  When applied to every species, the model is 

system of ordinary differential equations (ODE). This system is the basis for a kinetic 

model; the focus of this chapter is how the Kinetic Modeler’s Toolkit (KMT) builds 

the system of material balances. Other complexities, such as the inclusion of the 

overall energy balance are within the capabilities of the software, but outside the scope 

of this chapter. 

𝑑𝑦

𝑑𝑡
=  𝑟𝑖𝑛 − 𝑟𝑜𝑢𝑡 + ∑ 𝜈𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 

𝑦(0) = 𝑓𝑒𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

(2.1) 

 

In the system of material balances, �̅�  is a vector denoting the molar flow of 

every molecular species in the system. The flow in and out of the reactor is denoted 

using the vectors 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡, respectively. The reaction term is summed over all 

reactions, and for each reaction, a vector of stoichiometric coefficients, 𝜈𝑖, is 

Chapter 2 
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multiplied by the rate of the reaction. For example, if the reaction is 𝐶𝐻4 + (
3

2
)𝑂2 →

2𝐻2𝑂 + 𝐶𝑂 then the consumption of methane would be equal to the reaction rate and 

the production of water would be twice the reaction rate. 

KMT is an in-house software suite, developed over the last twenty years[38]–

[45], that builds molecular-level kinetic models. Each piece of software addresses 

different terms in Equation 2.1. First, the Composition Model Editor (CME) gives the 

initial conditions. Next, the Interactive Network Generator (INGen) writes the reaction 

list[44]. Finally, the Kinetic Model Editor (KME) writes out the system of differential 

equations[40]. In this final step, the user specifies the rate laws and reactor types. At 

this stage, all terms have been completely defined and KME integrates the system of 

equations. 

2.2 Initial Conditions from the Composition Model Editor 

The solution of a reactor model is an initial value problem (IVP) as shown in 

Equation 2.2. For a molecular-level kinetic model, the initial values are the molar flow 

rates of the feed stream to the reactor. For simple processes, such as ethane pyrolysis, 

the feed stream is known and can be exactly defined. For more complex systems, such 

as the pyrolysis of heavy oil resid, the feed composition itself must be modeled as it 

can obtain O(105)1 uniquely identifiable molecular structures. 

 

 

 

                                                 

 
1 O(105) means ‘on the order of’10,000 
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𝑑𝑦

𝑑𝑡
=  𝑟𝑖𝑛 − 𝑟𝑜𝑢𝑡 + ∑ 𝜈𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 

𝑦(0) = 𝑓𝑒𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 

(2.2) 

Compositional models of complex feedstocks are found using the Composition 

Model Editor, or CME. In general, CME takes available experimental measurements 

and uses an optimization loop to find a molecular composition that best represents the 

data. A simplified optimization diagram is shown below in Figure 2.1. CME predicts a 

composition then uses quantitative structure property relationships (QSPRs) to obtain 

a list of simulated properties. These properties are compared with experimental values 

to obtain a value of an objective function. The composition is adjusted to calculate a 

new simulated composition that can restart the optimization loop until a satisfactory 

objective function value is obtained. After optimization, the feed composition consists 

of a list of molecular structures and mole fractions. Much more information can be 

found in the literature on CME that goes into more depth on the optimization 

procedure and how CME has been applied to a wide variety of feedstocks[5],[9]–[12]. 

 

 
 

Figure 2.1: CME Optimization loop which converts available experimental 

measurements to a molecular composition. 
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2.2.1 Computational Representation of Molecules 

In the process of modeling composition, a fundamental concept is the 

representation of molecular structures on a computer. To represent these structures, 

KMT utilizes the concept of bond electron matrices. An example is shown for propan-

1-ol in Figure 2.2. In this matrix, 1 entries represent single bonds between the row and 

column intersection and 0 entries represent the absence of a bond. The matrix is 

symmetric as every atom is listed as a column and a row. Every molecule in the 

composition model has a unique bond-electron matrix. 

 

 
C1 C2 C3 O1 H1 H2 H3 H4 H5 H6 H7 H8 

C1 0 1 0 1 0 1 1 0 0 0 0 0 

C2 1 0 1 0 0 0 0 1 1 0 0 0 

C3 0 1 0 0 0 0 0 0 0 1 1 1 

O1 1 0 0 0 1 0 0 0 0 0 0 0 

H1 0 0 0 1 0 0 0 0 0 0 0 0 

H2 1 0 0 0 0 0 0 0 0 0 0 0 

H3 1 0 0 0 0 0 0 0 0 0 0 0 

H4 0 1 0 0 0 0 0 0 0 0 0 0 

H5 0 1 0 0 0 0 0 0 0 0 0 0 

H6 0 0 1 0 0 0 0 0 0 0 0 0 

H7 0 0 1 0 0 0 0 0 0 0 0 0 

H8 0 0 1 0 0 0 0 0 0 0 0 0 
 

 

 

Figure 2.2 Bond electron matrix representation of propan-1-ol from Moreno[45]. 

Figure from source material. 

2.3 Reaction Network Constructed using the Interactive Network Generator 

The core of a molecular-level kinetic model is the process chemistry which 

defines the conversion from molecular input to output. Chemistry is the underlying 

science for a kinetic model. A correct understanding of chemistry allows for model 

robustness, and the ability of the model to be used as a predictive tool. In KMT, the 
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software responsible for utilizing our chemical knowledge to build a reaction network 

is the Interactive Network Generator, or INGen.  

𝑑𝑦

𝑑𝑡
=  𝑟𝑖𝑛 − 𝑟𝑜𝑢𝑡 + ∑ 𝜈𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 

𝑦(0) = 𝑓𝑒𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 

(2.3) 

In the kinetic model, the reaction network appears in two locations in the 

material balances, reproduced in Equation 2.3. First, the reaction network defines the 

entire species footprint, or the size of the �̅� vector. Second, the reaction network gives 

the number of reactions and the stoichiometry vector, 𝜈𝑖. The size of this network 

depends on the complexity of the process chemistry. The most detailed networks have 

thousands to tens of thousands of reactions. 

2.3.1 Reaction Families 

 

Even the most detailed, largest reaction networks contain many instances of a 

few reaction types, or reaction families. For instance, take alcohol dehydration as a 

reaction type, shown in Figure 2.3. This one reaction can be applied to any molecule 

in the system with an alcohol group and a hydrogen on an adjacent carbon. For 

example, alcohol dehydration can occur on ethanol or propanol but not methanol. 

Some molecules could even have multiple reaction sites for alcohol dehydration. For 

instance, glucose, the monomeric unit of cellulose, has five sites for alcohol 

dehydration. If the feedstock is biomass, it’s easy to imagine hundreds of alcohol 

dehydration reactions, each occurring with the exact same underlying chemical 

mechanism.  
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Figure 2.3: Generalized Alcohol Dehydration Reaction. 

 

 

Figure 2.4: Cellulose monomer, glucose. 

The most important step in building the reaction network is the correct 

selection of reaction families. Reaction family selection is process-dependent; for 

example, naphtha reforming would not include the same reaction families as a MSW 

gasification. To build a chemically-relevant model, the user must have an 

understanding of the chemistry that can occur in the system based on prior knowledge 

and/or the open-literature. 

After selecting the process chemistry, the second requirement for network 

generation are the seed molecules, or the starting point from which to build a reaction 

network. The logical starting point for the network, in most cases, is the feed to the 

system. For example, if the model represents the pyrolysis of ethane, then a good seed 

molecule would be ethane. In more complex systems, the identities of the seed 

molecules come from the output of CME.   
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Network generation is an iterative process of finding reactive sites and adding 

to the reaction list. The species list begins as the set of seed molecules. Generation 

proceeds by searching the first seed molecule and writing all reactions that can occur. 

Next, the products of these reactions are checked for any new species. These new 

species are added to the species list. Network generation continues through the list of 

seeds and product molecules, each time searching for sites and adding valid reactions. 

When the end of the species list is reached, all products of all reactions have been 

searched for reactive sites. This process has been automated using INGen which has 

been developed over many years of research. 

2.3.2 History of Reaction Network Generation in KMT 

In the Klein research group, automatic generation of molecular-level reaction 

networks was originally a tool called NetGen, or Network Generator. This tool was 

originally developed by Linda Broadbelt and Scott Stark[38]. NetGen laid out the 

groundwork in terms of the representation of molecules and reactions computationally. 

At this stage, many features such as reaction types were hard-coded. As such, each 

project required expertise in computer science and a deep understanding of the 

NetGen tool. 

INGen, written by Craig Bennett[44], is the current network-generating 

software in KMT. While it is fundamentally based on NetGen, it has many 

improvements in terms of the user-interface, the list of pre-made reaction chemistries, 

and the simplicity of adding new chemistry. The user-interface is a simple, easy-to-use 

Excel interface written in VBA (Visual Basic for the Excel Application). This 

interface communicates/runs the back-end program (written in C), which is the 
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workhorse behind network creation.  This communication allows a user with minimal 

programming experience to build reaction networks.  

The interface also allows the user to select reaction chemistries, set reaction 

rules (e.g., max carbon number), and select seed molecules from which to begin 

network creation. Because of the sheer magnitude of pre-built reaction chemistries, 

many kinetic models can be constructed using INGen without program modifications. 

Table 2.1 shows the reaction families currently in INGen. Many of the hydrocarbon, 

radical, and ion chemistries were added by Bennett in his doctoral thesis. More 

recently, the work of Brian Moreno on biomass pyrolysis greatly expanded INGen’s 

capabilities by adding new hydrocarbon, nitrogen, sulfur, and radical reaction families. 

Most significantly, this work added oxygen chemistry. 

INGen contains reaction families at both the mechanistic and pathways levels. 

Mechanistic reaction families involve reactive intermediates. In comparison, the 

pathways-level reaction families are based on implied mechanisms, such that the steps 

involving immeasurable reactive intermediates are lumped into the overall pathway. 

Depending on the desired complexity of the reaction network, the user can select 

mechanistic or pathways reaction families. Despite the long list of reaction families, 

new kinetic models sometimes require the addition of new chemistries. INGen has 

streamlined the process of this addition; an expert user can add a new reaction family 

in a matter of a few hours.  
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Table 2.1: Reaction families added by Bennett[44] and Moreno[45] to INGen. 

Hydrocarbon  Methyl Shift Keto-Enol Taut. 

Paraffin Methyl Shift β-scission Enol-Keto Taut. 

Path A Par. Methyl Shift Hydrogen Abstraction Alkyl Oxidation 

Path B1 Par. Methyl Shift Protonation/Deprotonation Aldehyde Oxidation 

Path B2 Par. Methyl Shift 5-Member Ring Closure Alcohol Oxidation 

Path C Par. Methyl Shift Ring Expansion Hydroperoxide Rearr. 

Olefin Methyl Shift Addition Pyran Ring Saturation 

Path A Olefin Methyl Shift 

 

Furan Ring Saturation 4H 

Path B1 Ole. Methyl Shift Sulfur Decarbonylation 

Path B2 Ole. Methyl Shift Desulfonation Decarboxylation 

Path C Olefin Methyl Shift Thiopyran Ring Sat. Depolymerization 

Aromatic Methyl Shift Thiophene Ring Sat. 2H Hydrolysis 

Acyclic Thermal Cracking Thiophene Ring Sat. 4H Ester Hydrolysis 

Cyclic Thermal Cracking Hydrodesulfurization Olefin Hydration 

Hydrogenation Sulfur Saturation Aldehyde Hydration 

Double Bond Shift 

 

Ketone Hydration 

Isomerization Oxygen  O-O Hydrogenolysis 

Cyclization Oxide Thermal Cracking C-O Hydrogenolysis 

Hydrogenolysis Retro-Aldol Condensation C-O Hydrogenolysis 5 

Cracking Aldol Condensation C-O Hydrogenolysis 6 

Dehydrogenation Alcohol Condensation C-O Hydrogenolysis 7 

 
Peracid Condensation Aldehyde Cycl. 5 

Nitrogen Water Gas Shift Aldehyde Cycl. 6 

Pyrrole Ring Sat. 2H Hydroxyl Shift Ketone Cyclization 5 

Pyrrole Ring Sat.4H Alcohol Dehydration Ketone Cyclization 6 

Pyridine Ring Sat. 2H Pinacol Rearrangement Carboxyl Cycl. 5 

Pyridine Ring Sat. 6H Ortho Acid Dehydration Carboxyl Cycl. 6 

Denitrogenation Alcohol Dehydrogenation Alcohol Cyclization 5 

 

Primary Alcohol Dehydro. Alcohol Cyclization 6 

Radical Secondary Alcohol Dehydro. Alcohol Cyclization 7 

CX Bond Fission Carbonyl Hydrogenation Alcohol Ring Closure 5 

HX Bond Fission Aldehyde Hydrogenation Alcohol Ring Closure 7 

OX Bond Fission Ketone Hydrogenation O Ring Isomerization 

Rad Beta-Scission Carboxyl Hydrogenation Esterification 

Rad H-Abstraction Ester Hydrogenation Transesterification 

Rad Oxidation Lactone Hydrogenation  

 

Tautomerization 

 Ion Alde-Enol Tautomerization 

 Hydride Shift Enol-Alde Tautomerization 
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2.3.2.1 Computational Representation of Reactions 

In building reaction networks, INGen represents reactions on a computer. As in 

CME, the molecules in INGen are represented using bond-electron matrices. 

Reactions extend the matrix analogy and are simply matrix transformations. For 

example, the alcohol dehydration of propan-1-ol is given in Figure 2.5. In this 

representation, the conversion of reactant to product molecules is governed by the 

alcohol dehydration reaction matrix. This matrix and the matrix operation is shown in 

Figure 2.6. First, the reduced reactant matrix are atoms whose connectivities will 

change in the reaction. The reaction matrix defines how the atomic connectivities 

change in the reaction. All reactions within a given reaction family have the same 

reaction matrix. Finally, the updated values are represented in the reduced product 

matrix. A key concept is that all reactions in the reaction family have the same 

reduced reactant matrix, reaction matrix, and reduced product matrix. The reduced 

product matrix is used to update the full product matrix as shown in Figure 2.7. In this 

case, the full product matrix is split into two separate molecules. 

 

 

 →  

 

+  

  

Reactant Bond 

Electron Matrix 
 

Alcohol Dehydration 

Reaction Matrix 
 

Product Bond Electron 

Matrices 

  

Figure 2.5: alcohol dehydration of propan-1-ol to propene and water. 
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O1 C1 C2 H4  

O1 0 1 0 0  

C1 1 0 1 0  

C2 0 1 0 1  

H4 0 0 1 0  
 

+ 

 
O1 C1 C2 H4  

O1 0 -1 0 1  

C1 -1 0 1 0  

C2 0 1 0 -1  

H4 1 0 -1 0  
 

= 

 
O1 C1 C2 H4  

O1 0 0 0 1  

C1 0 0 2 0  

C2 0 2 0 0  

H4 1 0 0 0  
 

Reduced Reactant Matrix  Reaction Matrix  Reduced Product Matrix 

Figure 2.6: Chemical reaction as a matrix operation for propan-1-ol dehydration. 

Figure from source material[45]. 

 
O1 C1 C2 H4 C3 H1 H2 H3 H5 H6 H7 H8 

O1 0 0 0 1 0 1 0 0 0 0 0 0 

C1 0 0 2 0 0 0 1 1 0 0 0 0 

C2 0 2 0 0 1 0 0 0 1 0 0 0 

H4 1 0 0 0 0 0 0 0 0 0 0 0 

C3 0 0 1 0 0 0 0 0 0 1 1 1 

H1 1 0 0 0 0 0 0 0 0 0 0 0 

H2 0 1 0 0 0 0 0 0 0 0 0 0 

H3 0 1 0 0 0 0 0 0 0 0 0 0 

H5 0 0 1 0 0 0 0 0 0 0 0 0 

H6 0 0 0 0 1 0 0 0 0 0 0 0 

H7 0 0 0 0 1 0 0 0 0 0 0 0 

H8 0 0 0 0 1 0 0 0 0 0 0 0 
 

→ 

 
C1 C2 C3 H2 H3 H5 H6 H7 H8 

C1 0 2 0 1 1 0 0 0 0 

C2 2 0 1 0 0 1 0 0 0 

C3 0 1 0 0 0 0 1 1 1 

H2 1 0 0 0 0 0 0 0 0 

H3 1 0 0 0 0 0 0 0 0 

H5 0 1 0 0 0 0 0 0 0 

H6 0 0 1 0 0 0 0 0 0 

H7 0 0 1 0 0 0 0 0 0 

H8 0 0 1 0 0 0 0 0 0 
 

+ 

 
O1 H1 H4 

O1 0 1 1 

H1 1 0 0 

H4 1 0 0 
 

Figure 2.7: Separation of the full bond electron matrix post-reaction into product 

molecules.  

2.4 Equations Written, Solved, and Optimized using the Kinetic Model Editor 

The Kinetic Model Editor (KME) first defines the remaining terms on the 

material balance, and, then, it writes, solves, and optimizes the kinetic model. There 

are two remaining groups of terms in the mass balance, reproduced in Equation 2.4. 

The first set of terms is a function of reactor type and represents inlet flows and the 

form of the differential equation. The second term represents the reaction rates, 

determined by rate laws and underlying rate constants. To write the equations, KME 

first utilizes the reaction network produced by INGen. After the equations are written, 
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solution proceeds as an initial value problem where the feed composition is provided 

by CME. Finally, KME optimizes rate parameters by comparing model results with 

experimental data. 

𝑑𝑦

𝑑𝑡
=  𝑟𝑖𝑛 − 𝑟𝑜𝑢𝑡 + ∑ 𝜈𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖,𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 

𝑦(0) = 𝑓𝑒𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

 

(2.4) 

2.4.1 Reactor Type 

Reactor type is among the most important design decision in developing a 

chemical process model. The type of reactor determines the residence time of 

reactants, the effective concentrations of reactants and products, and the temperature 

profile in the reactor. Often when modeling a process, idealized reactors are used 

individually or in a configuration that mimics the real system. Within KME, the 

following reactor types are available: batch reactor, plug-flow reactor (PFR), 

continuous stir-tank reactor (CSTR), radial flow reactor (RFR), semibatch reactor, 

PFR with sidestream, and continuous catalytic reformer (CCR).   

In the material balance equation, reactor type affects the differential term and 

the inlet-outlet flows. For example, in a batch reactor, the flow terms are zero and drop 

out of the equation. Alternatively, in a PFR, the differential equation is in terms of 

reactor length rather than time. The rate expressions are invariant with reactor type, 

but reaction rates can be drastically affected as different reactor types affect the 

effective concentrations of reactants and products. 
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2.4.2 Rate Laws and Linear Free Energy Relationships2 

For every reaction in the network there is a rate law, which is a mathematical 

model that predicts the rate at which reactants are consumed and products are 

produced. The rate law must be determined from experiments and cannot be inferred 

simply by looking at the reaction equation.  A few rate law types that have proven 

value for many chemistries include the law of mass-action (or micro-kinetic model), 

power-law, and Langmuir-Hinshelwood-Hougen-Watson (LHHW) model. KME 

builds the rate laws for each reaction based on the user-selected option. Regardless of 

rate law, every reaction has a rate constant. 

ln 𝑘𝑖 = ln𝐴𝑖 −
𝐸𝑖
∗

𝑅𝑇
 (2.5) 

Rate constants expressed using the Arrhenius equation, shown in Equation 2.5 

for reaction 𝑖. For complex systems like coal or biomass, a molecular-level kinetic 

model can contain as many as O(105) reactions. Equation 2.5 shows that there are two 

parameters 𝐴𝑖 and 𝐸𝑖
∗ for each reaction. Optimizing tens of thousands of parameters is 

intractable due to both amount of required data and computational complexity.  An 

interesting phenomenon, observed in the literature[49], [50], is that, for a given 

reaction type, there is a linear relationship between the rate constants and the enthalpy 

change on reaction, as shown in Figure 2.8, for molecules that have a similar 

functional group. Linear free energy relationships (LFERs) make use of this 

observation to reduce parameter complexity of each rate law. The basic assumption of 

                                                 

 
2 Material paraphrased with permission from Horton, S.R. and Klein, M.T. “Reaction 

and Catalyst Families in the Modeling of Coal and Biomass Hydroprocessing 

Kinetics” Energy & Fuels. 2013, 28, 37-40. DOI: 10.1021/ef401582c. Copyright 

2014. American Chemical Society. [47] 
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LFERs is that the rate constants of mechanistically similar reactions of similar 

molecules are dependent on the thermodynamic properties of the reactants and 

products. The Bell-Evans-Polanyi[51], [52] LFER, for example, is shown as Equation 

2.6. The Polanyi relation correlates the activation energy of a given reaction 𝑖 in a 

reaction family 𝑗, 𝐸𝑖,𝑗
∗ , to the change in enthalpy of reaction, Δ𝐻𝑖.  

  

𝐸𝑖,𝑗
∗ = 𝐸0 (𝑗) + 𝛼𝑗 ∗ Δ𝐻𝑖 (2.6) 

The second parameter in Arrhenius Equation is the pre-exponential factor, 𝐴𝑖. 

As a first-order approximation, this factor is assumed to be only a function of reaction 

family, or 𝐴𝑗. The substitution of the LFER relationship into the Arrhenius equation 

allows for a more general form of the equation to be written for the rate constant, as 

shown in Equation 2.7.  

ln 𝑘𝑖,𝑗 = ln𝐴𝑗 −
𝐸0 (𝑗) + 𝛼𝑗 ∗ Δ𝐻𝑖

𝑅𝑇
 (2.7) 
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Figure 2.8: Figure from Horton and Klein[47]. (a) Figure reproduced Mochida and 

Yoneda[49] showing the dealyklation of alkylaromatics reaction family 

on a SA-1-Na-3 catalyst. The numbers represent experimental rates of 

dealkylation on different alkyl aromatics.  

The major impact of using LFERs for reaction families is the massive 

reduction in the number of adjustable parameters in the kinetic model. Relating back 

to the original mass balance equation, the adjustable parameters in a molecular-level 

kinetic model are within the rate constants for each of the reactions where there are 

two rate parameters per rate constant. As it was shown, LFERs reduce the number of 

adjustable parameters down to three per reaction family. This drastically reduces the 

experimental data and computational time required to optimize a kinetic model. 

 

2.4.3 Model Solution 

At this stage, the material balance equations have been completely defined. 

KME takes these concepts and automatically writes the material balance differential 

equations[2],[3],[42]. Within KME, the differential equation solver suite is the open-
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source Livermore Solver for Ordinary Differential Equations (LSODE)[53]. LSODE 

is a robust solver that allows for the solution of both stiff and non-stiff systems of 

differential equations. The output from the model is a list of molecules and molar 

flows. This output can be used to calculate output bulk properties. Molar flows and 

bulk properties allow for comparison with a wide variety of experimental information 

which becomes the basis for kinetic parameter optimization. 

2.4.4 Kinetic Parameter Optimization 

In parameter optimization, the objective function, F, is a measure of model 

goodness of fit. For the case of a kinetic model, the objective function is a measure of 

how well the output stream matches experimental measurements, as shown in 

Equation 2.8.  The output stream is a function of the conditions in the reactor, the 

reactor type, the reaction network, and the rate parameters. Of these terms, the reactor 

conditions, reactor type and sizing are likely preset for these measurements. Assuming 

the reaction network adequately models the process chemistry, the only parameters 

upon which to optimize are the rate parameters.  

 

𝐹 =  ∑ (
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖  (𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑤𝑖
)
2

𝑖,𝑚𝑒𝑎𝑠

  

 

 

(2.8) 

The measurements in the objective function come in two forms: direct 

measurements of the molar flow of species and measurements of the bulk properties as 

shown in Table 2.2. For measurements that yield data on individual species, such as 

gas chromatography, the model comparison is calculated directly. For bulk properties, 
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the comparison is made implicitly by converting the product composition to predicted 

properties via structure property correlations. 

Table 2.2: The two types of measurements in the objective function. 

Overall 

Objective 

Function 

𝑀𝑜𝑙𝑎𝑟 𝐹𝑙𝑜𝑤 𝑇𝑒𝑟𝑚𝑠 + 𝐵𝑢𝑙𝑘 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑇𝑒𝑟𝑚𝑠 

Molar 

Flow 

Terms 

∑ (
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑙𝑜𝑤)𝑖 − (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑙𝑜𝑤)𝑖

𝑤𝑖
)

2

𝑖,   𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

Bulk 

Property 

Terms 

∑ (
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)𝑖 − (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)𝑖

𝑤𝑖
)

2

𝑖,   𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠

 

 

Using the objective function, KME optimizes the model to experimental data. 

The major optimization routine is simulated annealing, a global optimization 

algorithm.  Global optimization techniques are specifically designed to find the global 

minimum in a problem with a high number of parameters. Most global optimization 

algorithms rely on randomly sampling new parameter values from the range of 

allowable parameter values. Another characteristic of global optimizers is that they 

have some probability of allowing uphill steps, or steps that increase the value of the 

objective function. This may seem counter-intuitive, but it is this characteristic which 

allows the solution to escape local minima. Global optimizers are the only feasible 

way to solve high-parameter optimization problems. 

Once the numerical optimizer reaches a satisfactory objective function value, 

the result is a list of tuned kinetic parameters and the corresponding comparison of 

predicted to measured experimental results. A common plot drawn to analyze the fit of 

these results is a parity plot as shown in Figure 2.9. In parity plots, the model 
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predictions are on the y-axis, and experimental measurements are on the x-axis. The 

line y=x corresponds then to a perfect model prediction. 

 

Figure 2.9: Example parity plot for the pyrolysis of naphtha for an experimental 

carbon number distribution. Figure from source material[42]. 

2.5 Summary 

In summary, a molecular-level kinetic model is fundamentally a system of 

material balance differential equations with one equation per species. The three 

software tools that make up KMT each build different terms in the differential 

equations. CME finds the initial value of the system by finding the optimal feed 

composition for a set of experimental measurements. INGen builds a reaction network 

by utilizing the feed composition and an understanding of process chemistry. With this 

reaction network, KME writes the material balances using user-defined rate laws and 

reactor types.  After constructing the system of equations, KME solves the reactor 

model. The adjustable parameters are reaction family LFER parameters. Comparison 
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with experimental measurements allows for an optimization of the kinetic parameters. 

The results from optimization are a set of tuned LFER parameters. The optimization 

results can be analyzed using a parity plot showing model predictions and 

experimental measurements. 
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3.1 Abstract 

A molecular-level kinetic model was developed for the gasification of common 

plastics including poly-ethylene (PE), polyethylene terephthalate (PET), polyvinyl 

chloride (PVC), and polystyrene (PS). Model development was divided into three 

steps: molecular characterization of the feed, generation of a pathways-level reaction 

network, and creation of the material balance differential equations (DEs). The 

structure of all polymers was modeled as linear with known repeat units. For PE, PVC, 

and PET Flory-Stockmayer statistics were used to describe the initial polymer size 

distribution; PS was described using a two-parameter gamma distribution. The 

parameters of all polymer size distributions were tuned using data from the open 

literature.  

The chemistry of plastics gasification contains depolymerization, pyrolysis, 

and gasification reactions. The initial depolymerization of PE and PET was modeled 

using random scission and Flory-Stockmayer statistics. A statistical method was 

created extending random scission to a generalized polymer size distribution and 

applied here to the breakdown of polystyrene. The depolymerization of PVC was 

modeled as two-step: poly-ene formation followed by benzene production. Pyrolysis 

reactions were included on small oligomers and were broken down into two 

categories: cracking and formation of tar and char molecules. For gasification, 

incomplete combustion and steam reforming were included to break down oligomers, 

tar, and char molecules. Also, light gas reactions, e.g., water-gas shift, were added to 

the network. The final network contained 283 reactions and 85 species.  

After construction of the material balance DEs, kinetic parameters were tuned 

using literature data on each plastic. These studies involved gasification, pyrolysis, 
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and TGA experiments each probing different aspects of depolymerization, pyrolysis, 

and gasification kinetics. Model results matched experimental data well.  

3.2 Introduction 

Plastics made up 35 million tons, or 12.8%, of municipal solid waste (MSW) 

in the United States in 2013 as shown in Figure 3.1[1]. Of this waste, just 9% or 3 

million tons were recovered directly for recycling. Therefore, plastic degradation is a 

key aspect in waste-to-energy technologies such as MSW gasification. In a MSW 

gasification unit, plastics are broken down into light gas molecules and higher-

molecular weight tar and char molecules. In the design and operation of a gasification 

process, a primary goal is to minimize tar and char production while maximizing the 

energy content of light gases. In order to probe the gasification performance of a 

variety of plastics, mathematical models are needed to predict the breakdown from 

long-chain polymers to light gases, char, and tar molecules. 

 

 

Figure 3.1: Plastics generation and recovery from the EPA report on Municipal Solid 

Waste (MSW)[1].  
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Prior work in the mathematical modeling of depolymerization of plastics can 

be divided into two categories: pyrolysis and gasification. For pyrolysis, there have 

been some very detailed studies of chemical kinetics at the radical level for individual 

common polymers. For example, polystyrene has been studied extensively by 

Broadbelt and coworkers[55],[56]. Similarly, there is a mechanistic understanding of 

the pyrolysis of ethane[57]; which is directly applicable to polyethylene. There has 

also been detailed work on the pyrolysis of plastic mixtures[58]. The detail of 

mathematical models in the gasification literature is far less prevalent and complex. 

Some studies fit lumped kinetic parameters to Thermogravimetric Analysis (TGA) 

data[59],[60]; however, complex kinetic models at the molecular-level are missing 

from the plastic gasification literature.   

The current modeling work is the first representation in the open literature of a 

molecular-level kinetic model for the gasification of common plastics; specifically, 

PE, PET, PVC, and PS. Modeling kinetics at the molecular-level requires molecular 

detail at every step in the model-building process. First, the feed is modeled as a 

collection of molecules and mole fractions. Next, the reaction network utilizes 

fundamental chemistry to describe the mapping from reactant to product molecules. 

This network is used to construct a set of material balance differential equations for 

each molecular species. The feed composition specifies the initial values of these 

differential equations. The kinetic model can be integrated for a given set of reactor 

conditions and reactor type. The adjustable parameters in the model are the kinetic 

parameters to each reaction chemistry. Experimental data from the open literature 

allows for both kinetic parameter tuning and model evaluation.  
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3.3 Molecular Representation of Plastics 

The first step in building a molecular-level kinetic model is the molecular 

representation of the feedstock. If the polymers are assumed to be linear, then the 

composition is defined by the repeat unit structure and a polymer-size distribution. 

The repeat unit structures for the polymers in this study are shown below in Figure 

3.2. In this report, the polymers were described using two types of polymer size 

distributions. A single-parameter Flory distribution is used for PE, PVC, and PET, and 

a two-parameter gamma distribution is used for polystyrene.  The adjustable 

parameters in the composition model are then the parameters of the distribution; these 

parameters were optimized using literature data on each of the polymers.  

The molecular structure of a polymer can also be conceptualized as cores with 

inter-core linkage (IL) and side chain (SC) substituents. Cores are connected by ILs to 

form polymers, and SCs are terminal end groups. For example, in polyethylene, the 

core identity is C2H4, the IL is the bond between cores, and a SC is a terminal bond to 

hydrogen. Each core has two binding sites for substituents, filled by either ILs or SCs. 

Because SCs are terminal, each linear polymer chain only has two SCs. In a linear 

polymer, an i-mer contains i cores, i-1 ILs, and 2 SCs. 

 

 

  
 

 

Figure 3.2: Repeat Unit Structures for PE, PVC, PET, and PS (Left to Right). 
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3.3.1 Flory-distributed Linear Polymers 

One of the most commonly used polymer-size distributions is the single-

parameter Flory distribution[61], given in Equation 3.1. The p used in this equation is 

commonly the extent of polymerization, and is equivalently the fraction of core 

binding sites contained within linkages, given in Equation 3.2. A common measure of 

linear polymers is the number average degree of polymerization, 𝑋𝑛̅̅̅̅ , which is 

calculated directly from p using Equation 3.3. The composition of a Flory-distributed 

linear polymer is therefore defined by repeat unit structure and average degree of 

polymerization. 

 

𝑥𝑖 = (1 − 𝑝) ∗ 𝑝
𝑖−1 (3.1) 

𝑝 =
2 ∗ [𝐼𝐿]

2 ∗ [𝐼𝐿] + [𝑆𝐶]
 

(3.2) 

𝑋𝑛̅̅̅̅ =
1

1 − 𝑝
 

(3.3) 

For each Flory-distributed linear polymer, literature ultimate analyses were 

used to find optimal values of 𝑋𝑛̅̅̅̅ . For these optimizations, an in-house software tool 

called Linear Polymer Composition Editor was utilized. Further detail on this tool can 

be found in prior work[54]. The results for the composition models are summarized 

below in Table 3.1.  In these results, PE and PET matched well with experimental 

data. The minor discrepancies in polyvinyl chloride could be explained by the 

presence of plasticizers, a common PVC additive[62], in the experimental sample that 

are absent in the composition model. The role of these plasticizers in the composition 

and subsequent kinetic model is assumed to be a second-order effect, but is an 

opportunity for future work. Although more detailed distribution information, such as 

polydispersity index (PDI), was not measured experimentally, the agreement with 
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available data suggests the Flory distribution is applicable to PE, PET, and PVC in the 

composition model. 

Table 3.1: Experimental and predicted ultimate analyses for PE, PVC, and PET. The 

literature values are from Arena et al.[23] for PE, Heikkinen et al[63] for 

PET, and Zhu et al. for PVC[64]. The 𝑋𝑛̅̅̅̅ ′𝑠 for these results are 291, 998, 

and 5 for PE, PET, and PVC respectively. 

Element Polyethylene Polyethylene 
Terephthalate 

Polyvinyl Chloride 

 Experimental Predicted Exp. Pred. Exp. Pred. 
C 85.0 85.6 62.51 62.49 41.55 38.1 
H 13.8 14.4 4.19 4.20 4.81 5.44 
O 0.00 0.00 33.30 33.3 0.00 0.00 
Cl 0.00 0.00 0.00 0.00 52.95 56.38 

 

The Flory distribution is not well-suited as a composition model for all 

polymers; this is exemplified by polystyrene. At the lab scale, polystyrene is often 

synthesized via anionic polymerization with typical PDI values of 1.05[65], [66]. 

These samples were found to behave similarly to commercial polystyrene under 

pyrolysis conditions[65].  At long chains, the Flory distribution converges on a 

polydispersity index (PDI) of 2.00. Due to the discrepancy in PDI, polystyrene was 

instead modeled using a 2-parameter gamma distribution. 

3.3.2 Gamma-distributed Linear Polymers 

The two-parameter gamma distribution is given in Equation 3.4 where a and d 

are shape and scale factors, respectively. Experimental measurements were used to 

optimize the parameters for the distribution. In this case, the data for polystyrene are 

the number average molecular weight, 𝑀𝑛̅̅ ̅̅ ,  and weight average molecular weight, 

𝑀𝑤̅̅ ̅̅̅. After finding optimal gamma parameters, a comparison of experimental results 
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and predictions are given below in Table 3.2. The results fit the data well suggesting 

that the gamma distribution is appropriate for polystyrene. 

𝑥𝑖(𝑎, 𝑑) =
𝑖𝑑−1 ∗ 𝑒−

𝑖
𝑎

𝑎𝑑 ∗ Γ(𝑑) 
 

(3.4) 

Table 3.2: Literature measurements for polystyrene and corresponding gamma 

predictions. 𝑀𝑤̅̅ ̅̅̅ was reported in Liu et al[67], approximate literature PDI 

values were used to approximate  𝑀𝑛̅̅ ̅̅ . The gamma parameters for these 

values were calculated to be: 𝑎 = 13037.43, 𝑑 = 20. 

 

 

 

 

 

 

3.4 Reaction Chemistry of Gasification of Plastics 

The second step of building a molecular-level kinetic model is the generation 

of the reaction network. This network contains the fundamental process chemistry for 

the gasification of plastics. In this model, first the long-chain polymers are 

depolymerized into smaller oligomers via depolymerization reactions. The small 

oligomers then react further via more detailed pyrolysis and gasification chemistry to 

form light gas, tar, and char molecules.  

3.4.1 Depolymerization 

Depolymerization chemistry breaks down the initial polymer backbone. 

Although these chemistries are polymer specific, there are common types of 

Parameter Experimental 

Value 

Value from 

Gamma 

Distribution 

 𝑴𝒏
̅̅ ̅̅ (

𝒈

𝒎𝒐𝒍
) 260749 260637 

𝑴𝒘
̅̅ ̅̅ ̅ (

𝒈

𝒎𝒐𝒍
) 273786 273571 

𝑷𝑫𝑰 = 𝟏. 𝟎𝟓 1.05 1.049 
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depolymerization. For example, many mechanisms occur randomly along the polymer 

backbone and are known as random scission mechanisms. Due to the random nature of 

the mechanism, it is possible to predict the changes in the polymer size distribution 

over the course of depolymerization. This allows the model to account for large mers 

without the unnecessary computational burden of individually tracking hundreds to 

thousands of mers over the course of depolymerization.  

3.4.1.1 Random Scission of Flory Polymers 

Random scission depolymerization is most easily applied to Flory polymers. In 

polymerization, the Flory distribution assumes that all end-groups are equally reactive 

and therefore linkages are randomly formed in the system. Random scission is simply 

the reverse of this process, and the Flory distribution, given before in Equation 3.1, 

still applies to the product polymer. Because the distribution is still applicable, 

depolymerization simply decreases the value of p. 

Depolymerization can also be related to the concept of cores, ILs, and SCs. If 

depolymerization is represented using a single link cleavage reaction in Equation 3.5, 

then the change of ILs in the system can be related to the Flory parameter as shown in 

Equation 3.6. The constant, C, follows from the link cleavage reaction and represents 

the number of substituent sites in the system.  

𝐼𝐿 → 𝑆𝐶0 + 𝑆𝐶1 (3.5) 

𝑑𝑝

𝑑𝑡
=
2

𝐶
∗
𝑑[𝐼𝐿]

𝑑𝑡
, 𝐶 = 2 ∗ [𝐼𝐿] + [𝑆𝐶] 

(3.6) 

As described previously, this statistical description is utilized only for the 

initial breakdown, and more detailed pyrolysis and gasification chemistry will be 

utilized on small oligomers. The output from the statistical method, 
𝑑[𝐼𝐿]

𝑑𝑡
, must 

therefore supply the input to the explicit material balances for the oligomers in the 
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molecular model. The Flory distribution is scaled such that the boundary oligomers 

occur at i=1. This effectively transforms the 1-mer from a monomer to an oligomer in 

the distribution. The oligomer molar flow rate is then given in Equation 3.7 and 

represented by 𝑁1. Equation 3.8 gives the increase in 𝑁1 from depolymerization.  

𝑁1 =
𝐶

2
∗ (1 − 𝑝)2 

(3.7) 

𝑑𝑁1
𝑑𝑡

=
𝐶

2
∗ −2 ∗ (1 − 𝑝) ∗

𝑑𝑝

𝑑𝑡
= −2 ∗ (1 − 𝑝) ∗

𝑑[𝐼𝐿]

𝑑𝑡
 

 

(3.8) 

3.4.1.2 Random Scission Method for a Generalized Polymer Size Distribution 

For polymers modeled using more complex polymer size distributions, the 

random scission method is not as easily applied. For instance, in this work, 

polystyrene was represented using a gamma distribution. Rather than utilizing a 

method specific to gamma distributions, the far more interesting derivation is for a 

generalized polymer-size distribution. In the general case, consider the polymer size 

distribution as a histogram, as illustrated in Figure 3.3, where the mole fraction of 

every mer is independent. The goal, as before, is to correlate the changes in linkage 

concentration to the changes in molar flow rates of mers in the system. This allows for 

a prediction of the histogram after depolymerization. 
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Before Depolymerization 

 

During Depolymerization 

𝑑[𝐼𝐿]

𝑑𝑡
 

 
𝑑𝑁1
𝑑𝑡
,
𝑑𝑁2
𝑑𝑡
,
𝑑𝑁3
𝑑𝑡
, …  

After Depolymerization 

 

Figure 3.3: Conceptual goal of random scission for a generalized polymer size 

distribution. Top and bottom figures are representative n-mer 

distributions.  

The aim of this derivation is to map Δ𝑁𝐼𝐿(equivalently 
𝑑[𝐼𝐿]

𝑑𝑡
 ) to Δ𝑁𝑖 for all i-

mers. The probability of a bond breaking in the backbone is given in Equation 3.9 and 

is independent of polymer size due to the assumption of random scission. For a given 

i-mer, up to (i-1) bond breaking events can occur as shown in the 4-mer example in 

Table 3.3. The probability of each event follows a simple binomial distribution. The 

more general equation is given in Equation 3.10 for n bond breaking events. 

𝑝𝑏𝑟𝑒𝑎𝑘 =
Δ𝑁𝐼𝐿
𝑁𝐼𝐿

 
(3.9) 

1-mer 2-mer 3-mer 4-mer 5-mer 6-mer

1-mer 2-mer 3-mer 4-mer 5-mer 6-mer
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𝑝𝑏𝑛 = (1 − 𝑝𝑏𝑟𝑒𝑎𝑘)
𝑖−1−𝑛 ∗ 𝑝𝑏𝑟𝑒𝑎𝑘

𝑛 ∗ (
𝑖 − 1
𝑛
) (3.10) 

 

Table 3.3: Probability of bonds broken within a 4-mer.  

Bonds Broken Probability 

0 𝑝𝑏0 = (1 − 𝑝𝑏𝑟𝑒𝑎𝑘)
3 ∗ (

3
0
) 

1 𝑝𝑏1 = (1 − 𝑝𝑏𝑟𝑒𝑎𝑘)
2 ∗ 𝑝𝑏𝑟𝑒𝑎𝑘

∗ (
3
1
) 

2 𝑝𝑏2 = (1 − 𝑝𝑏𝑟𝑒𝑎𝑘) ∗ 𝑝𝑏𝑟𝑒𝑎𝑘
2 ∗ (

3
2
) 

3 𝑝𝑏3 = 𝑝𝑏𝑟𝑒𝑎𝑘
3 ∗ (

3
3
) 

 

After calculating the probability of bond breaking events in an i-mer, the next 

step is to calculate the amount of smaller mer production. For example, 4-mer 

breakdown is shown in Figure 3.4. If a single bond breaking event occurs in a 4-mer, 

there are three possible bonds to break. Two of the three bonds produce a trimer and a 

monomer, and the other bond produces 2 dimers. The expected production from one 

bond breaking event is therefore 
2

3
 of each smaller mer. This method is extended to 

multiple bond breaking events. The breakdown matrix format is easier to visualize, 

each row corresponds to a bond breaking event. The columns correspond to the 

relative amounts of each j-mer produced by that specific event. 
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Each i-mer has its own unique breakdown matrix; however, all breakdown 

matrices can be filled using a generalized formula, given in Equation 3.11. The terms 

of this equation are described using Table 3.4. The general logic is that each row in the 

matrix is filled sequentially. The first row is known, if zero bond breaking events 

occur, then the i-mer remains unreacted. For subsequent rows, each column (j-mer) is 

calculated using a standard balance format: (value from previous bond breaking event) 

– (consumption in this bond breaking event) + (production in this bond breaking 

event). 

𝑚𝑛+1,𝑗 = 𝑚𝑛,𝑗 −𝑚𝑛,𝑗 ∗
𝑗 − 1

𝑖 − 𝑗
+ ∑ 𝑚𝑛,𝑘 ∗

𝑘 − 1

𝑖 − 𝑛
∗ (

2

𝑘 − 1
)

𝑖−𝑛+1

𝑘=𝑗+1

 

(3.11) 

 
1-mer 2-mer 3-mer 4-mer  

𝑝𝑏0 0 0 0 1  

𝑝𝑏1 
2

3
 

2

3
 

2

3
 0  

𝑝𝑏2 2 1 0 0  

𝑝𝑏3 4 0 0 0  
 

Figure 3.4: Illustration (top) and breakdown matrix representation (bottom) 

of possible bond breaking events in a 4-mer. Values in the 

matrix are relative initial amount of 4-mer.  
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Table 3.4: Description of terms Equation 3.11. The notation is 𝑚𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛 for the 

breakdown matrix. The row corresponds to total number of bonds 

breaking in the i-mer. The column corresponds to the production of 

smaller j-mers from the breakdown of i-mer. 

Term Description 
𝒎𝒏+𝟏,𝒋  Breakdown matrix 

value for row (n+1), 
column j.  

𝒎𝒏,𝒋  Value from the 
previous break for 
j-mer. 

𝒎𝒏,𝒋 ∗
𝒋 − 𝟏

𝒊 − 𝒋
 

Amount of j-mer 
breaking down in 
this bond breaking 
event 

∑ 𝒎𝒏,𝒌 ∗
𝒌 − 𝟏

𝒊 − 𝒏
∗ (

𝟐

𝒌 − 𝟏
)

𝒊−𝒏+𝟏

𝒌=𝒋+𝟏

 
j-mer production 
from larger k-mers 

With the breakdown matrices filled for all i-mers, the remaining step is to 

calculate the new values for molar flow rates of each i-mer, 𝑁𝑖,𝑛𝑒𝑤. The formula, given 

by Equation 3.12, simply loops over all larger mers and utilizes the values from the 

breakdown matrices to calculate the new flow rate. This result gives the complete 

updated histogram for a change in IL concentration. 

𝑁𝑖,𝑛𝑒𝑤 = ∑ 𝑁𝑗,𝑜𝑙𝑑

𝑚𝑎𝑥

𝑗=𝑖

∗(∑ 𝑝𝑏𝑘 ∗ (𝑚𝑘,𝑖)

(𝑗−1)

𝑘=0

) ,𝑤ℎ𝑒𝑟𝑒 𝑚𝑎𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑚𝑒𝑟 

(3.12) 

In order to address numerical issues with large n-mers, two simplifications can 

be made in the use of this algorithm. Because this method is used in conjunction with 

a system of differential equations, Δ𝐼𝐿 in any given time step is small. This allows for 

the simplification that only a few bond breaking events occur in any given reaction 
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step. This reduces the numerical complexity that arises in the combinatorial term in 

the binomial calculation in Equation 3.10.  The second simplification is to lump 

similarly-sized mers. For example, if histogram only tracks every 20-mers, then much 

longer mers can be calculated quickly while only losing the more minute detail.  

3.4.1.3 Depolymerization Chemistry – PE 

The thermal depolymerization of polyethylene proceeds via a radical cracking 

mechanism[68] containing two primary mechanistic steps: H-abstraction and 𝛽-

scission, shown in Figure 3.5. The products from depolymerization arise from relative 

stabilities of radicals. For instance, after a cracking reaction, the instability of the 

primary product radical means unzipping is unlikely to occur, and monomer yield is 

low[68]. Instead, the product from 𝛽-scission is likely to abstract a hydrogen either 

intramolecularly or intermolecularly. In the intramolecular case, H-abstraction occurs 

on the same chain, likely at the 6-carbon location due to a 6-member ring transition 

state[69]; this step is often called backbiting. If H-abstraction occurs intermolecularly, 

then the depolymerization has random-scission type behavior. In order to 

accommodate both mechanisms, the initial breakdown was performed using random 

scission, and 3-mer was selected as the largest oligomer for full pyrolytic detail.  
H-abstraction

 
β-Scission

 

Figure 3.5: Radical propagation steps for polyethylene depolymerization. The H-

abstraction step shown here is inter-molecular and can occur with any 

radical in the system.  



 50 

There are three possible 6-carbon oligomers from the thermal cracking of 

polyethylene: hexane, hex-1-ene, and hexa-1,5-diene shown in Figure 3.6. In this 

mechanism, each bond breaking event produces one double bond end group and one 

single bond end group. It therefore follows that there should be approximately a 1:2:1 

ratio of these products. If the assumption is made that all initial end groups are 

saturated, then the ratio is slightly skewed toward hexane. During depolymerization, 

the link cleavage reaction in Equation 3.5 keeps track of the relative amounts of single 

bond and double bond end groups. This allows for the ratio of 6-carbon oligomers to 

be calculated at any time. 

 

Figure 3.6: Oligomers with 6-carbons produced during polyethylene 

depolymerization. These are the starting molecules from polyethylene for 

the full pyrolysis and gasification network. 

3.4.1.4 Depolymerization Chemistry – PET  

The thermal depolymerization of PET follows the mechanism[70],[71] shown 

in Figure 3.7. Because this mechanism is concerted and thermal, the random scission 

assumption applies. For PET, a dimer was chosen as the oligomer size for more 

detailed chemistry. This allowed the inclusion of a charring mechanism to occur on 

the PET linkage as will be shown later when discussing pyrolysis. Again, there are 

three possible 2-mers based on the different combinations of end groups.  
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Figure 3.7: Link cleavage in polyethylene terephthalate (concerted mechanism). 

3.4.1.5 Depolymerization Chemistry – PVC 

The depolymerization of polyvinylchloride is modeled as a two-step 

depolymerization given in Figure 3.8. The first step, dehydrochlorination, occurs very 

quickly producing HCl and a poly-ene structure[68], [72]. The second step of PVC 

breakdown is less well understood and far slower. Benzene is one of the most common 

volatile products from thermal breakdown[73]. To account for benzene production, a 

pinch-off mechanism[72] was utilized to further breakdown the polyene structure.  



 52 

 

 

Figure 3.8: Two-step depolymerization of polyvinyl chloride.  

Unlike PE and PET, PVC is not modeled using a random scission mechanism. 

Instead, there are two reactions, given in Equation 3.13 and Equation 3.14. 

Dehydrochlorination occurs on the original PVC molecule and produces 3 HCl for 

every 6 carbons. This step also changes the backbone to a polyene structure, 

represented here by 𝑃𝑉𝐶𝐼𝐿2. The pinch-off mechanism occurs only on the poly-ene 

structure and produces a benzene every link cleavage; thereby eliminating the need to 

track the polymer size distribution during depolymerization. The transition point to 

full pyrolysis and gasification chemistry occurs at benzene for PVC. 

𝑃𝑉𝐶𝐼𝐿1 → 𝑃𝑉𝐶𝐼𝐿2 + 3𝐻𝐶𝑙 (3.13) 

𝑃𝑉𝐶𝐼𝐿2 → 2𝑃𝑉𝐶𝑆𝐶 + 𝐵𝑒𝑛𝑧𝑒𝑛𝑒 (3.14) 
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3.4.1.6 Depolymerization Chemistry – PS 

The depolymerization of polystyrene is a radical cracking mechanism. 

Differences between the polymers is due to the stability of the radicals shown in Table 

3.5. Unlike polyethylene, the end-group radical is a benzylic radical and is stable 

allowing for unzipping-type mechanisms to occur. Also, there are two stable 

intramolecular H-abstraction reactions leading to backbiting and production of dimers 

and trimers. Finally, as before, intermolecular H-abstraction can occur in a random-

scission type mechanism. All of these mechanisms were included in the 

depolymerization model. 

A multi-step breakdown method was used for polystyrene depolymerization. 

For the initial breakdown from large n-mer, random scission for a generalized polymer 

size distribution was utilized with 20-mer lumps. For 20-mer and smaller, a standard 

population balance was used with a differential equation for every mer. 

Depolymerization reactions for all four mechanisms from Table 3.5 were included on 

these mers. Finally, for styrene monomers, full pyrolysis and gasification chemistry 

was allowed to break down the structure into light gases.  
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Table 3.5: Stable radicals and products from included mechanisms in polystyrene 

degradation. 

Type Stable Radical Products 

Unzipping 

  
Dimer Backbiting 
 

 
 

Trimer Backbiting 

  
Random Scission 

 

Spectrum of mono- 
and di-olefin n-mers 

 

3.4.2 Pyrolysis of Oligomers 

Pyrolysis chemistry occurs without the presence of reactive gases. In the case 

of plastics, there are two general types of pyrolysis reactions: cracking reactions which 

serve to break down molecules and charring reactions which serve to build up stable 

higher-MW species. In this network, the dominant cracking reaction families were 

acyclic thermal cracking, decarboxylation, and decarbonylation given in Table 3.6. 

These reaction families are well known and have been used in previous models[74]. 

Less common cracking mechanisms,  ester decarboxylation and rearrangement, were 

proposed in the PET pyrolysis literature[75], and were included in this model. 
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Table 3.6: Pyrolysis cracking reaction families, reaction matrices, and example 

reactions. The reaction matrix contains -1 for bond-breaking and -1 for 

bond-making during reaction. 

Reaction Type 
(Family) and 
Reactive Moetiy 

Reaction Matrix Example Reaction 

Decarbonylation 
Aldehydes 

 
H O C R  

H 0 0 -1 1  

O 0 0 1 0  

C -1 1 0 -1  

R 1 0 -1 0  
 

 

Decarboxylation 
Carboxylic acids 

 
H O C R  

H 0 -1 0 1  

O -1 0 1 0  

C 0 1 0 -1  

R 1 0 -1 0  
 

 
 

Acyclic Thermal 
Cracking 
Hydrocarbon side 
chains and 
irreducible 
molecules 

 
C C C H  

C 0 -1 0 1  

C -1 0 1 0  

C 0 1 0 -1  

H 1 0 -1 0  
 

 

Ester 
Decarboxylation 
Esters 

 
H O C C  

H 0 -1 0 1  

O -1 0 1 0  

C 0 1 0 -1  

C 1 0 -1 0  
 

 

Ester 
Rearrangement 
Esters adjacent to a 
double bond 

 
H O C C  

H 0 -1 0 1  

O -1 0 1 0  

C 0 1 0 -1  

C 1 0 -1 0  
 

 

 

The formation of char and tar products is observed throughout the plastics 

pyrolysis literature. For example, if a PET sample undergoes  thermogravimetric 

analysis (TGA) in a nitrogen atmosphere, 15-20 wt% remains solid even after reaching 

700 °C[76]. The literature speculates the formation of a stable anhydride linkage in the 
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PET backbone [70], [71], [77]; this reaction and other char reactions are detailed in  

Table 3.7. For PVC, char formation originates from the poly-ene structure following 

dehydrochlorination. In this work, PVC char is modeled as mass remaining in the 

poly-ene backbone.  For polyethylene, the included char formation pathways involve 

Diels-Alder[57] reactions followed by dehydrogenation to aromatic rings[68], [73], 

[78], [79]. While no explicit char formation pathways are included for polystyrene, the 

monomers fall under the tar category, where tars are defined here as volatile 

compounds with boiling point greater than or equal to benzene, and are of great 

importance to gasification processes. 

Table 3.7: Pyrolysis reactions used to build aromatic, polyaromatic char molecules.  

Reaction Type 
(Family) and 
Reactive Moeity 

Example Reaction Reaction Rules 

Diels-Alder Addition 
Diene, dienophile 

 

2 and 6 carbon dieneophiles 
were allowed to react with 
4 carbon dienes.  

Multistep 
Dehydrogenation to 
Aromatic Rings 
Naphthenic Rings 

2H2

 
 

Reactions allowed on cyclic 
enes. 

PET Anhydride 
Linkage Formation 
Hydrocarbon side 
chains and 
irreducible 
molecules 

 

Only PET linkages on 
dimers. 
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3.4.3 Gasification of Oligomers 

Gasification chemistry includes reactions with gasification agents such as 

oxygen, carbon dioxide, or water. As discussed, many polymers produce char or tar 

products under pyrolysis conditions. Gasification reactions eliminate these heavy 

molecules through the reaction with gasification agents. For example, although PET 

forms char under pyrolysis conditions, after inclusion of oxygen, all char is consumed 

in a TGA experiment[60].  The two primary gasification reaction families included 

were incomplete combustion and steam reforming as shown in Table 3.8. The model 

also contained a number of light gas reactions, such as water-gas shift.   

Table 3.8: Gasification reactions included in the model. The reversibility of light gas 

reactions was determined based on the equilibrium constants at reactor 

conditions. 

Reaction Type Reaction 

Incomplete Combustion Example 
𝐶3𝐻8 + 3.5𝑂2 → 3𝐶𝑂 + 4𝐻2𝑂 

General  

𝐶𝑥𝐻𝑦𝑂𝑧 +
𝑥 +

𝑦
2 − 𝑧

2
 𝑂2 → 𝑥𝐶𝑂 + (

𝑦

2
)𝐻2𝑂 

Steam Reforming Example 
𝐶3𝐻8 + 3𝐻2𝑂 → 3𝐶𝑂 + 7𝐻2 

General 

𝐶𝑥𝐻𝑦𝑂𝑧 + (𝑥 − 𝑧) 𝐻2𝑂 → 𝑥𝐶𝑂 + (
𝑦

2
− (𝑥 − 𝑧))𝐻2 

Water-Gas Shift 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 
 

Steam Reforming 
Methane to CO 

𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2 

Partial Oxidation of 
Methane 

𝐶𝐻4 + (
1

2
)𝑂2 → 𝐶𝑂 + 2𝐻2 

Dry Reforming of 
Methane 

𝐶𝐻4 + 𝐶𝑂2 ↔ 2𝐶𝑂 + 2𝐻2 

Oxidation of CO to CO2 
𝐶𝑂 + (

1

2
)𝑂2 → 𝐶𝑂2 
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3.5 Network Generation 

Using the depolymerization, pyrolysis, and gasification chemistries, the 

reaction network was generated using in-house software tools. First, a reaction 

network was made for the pyrolysis of each plastic oligomer using the Interactive 

Network Generator, INGen[44], [80]. These networks were then merged together 

using INGenNetworkMerge, a C# application; this application also added gasification 

reactions to the network. Finally, link cleavage reactions (e.g., 𝑃𝐸𝐼𝐿 → 𝑃𝐸𝑆𝐶0 +

𝑃𝐸𝑆𝐶1) representing the breakdown of the polymer backbone were added manually to 

the merged network. The features of the final reaction network are given Table 3.9.  

In the final reaction network, the initial depolymerization contained reaction 

families for each plastic, including four total families for the competition of 

polystyrene depolymerization mechanisms. The pyrolytic breakdown of oligomers and 

formation of tar and char molecules was described using five and three reaction 

families, respectively. Finally, gasification included general incomplete combustion 

and steam reforming reactions common to all plastics as well as a reaction family 

specific to PET char breakdown. The final network containing 283 reactions and 85 

species was used to build the kinetic model. 
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Table 3.9: Reaction network diagnostics for the plastics model. 

Reaction Family Reaction 
Count 

Adjustable 
Parameters 

Constraints 

Depolymerization    
PE Depolymerization 4 2 0 
PET Depolymerization 4 2 0 
PVC Depolymerization 3 2 0 
Polystyrene Random Scission 102 2 0 
Polystyrene Backbiting 
(dimer) 

18 2 0 

Polystyrene Backbiting 
(trimer) 

17 2 0 

Polystyrene Unzipping 19 2 0 

Pyrolysis    
Acyclic Thermal Cracking 27 3 0 
Decarboxylation 12 2 2 
Decarbonylation 3 2 2 
Ester Decarboxylation 2 2 2 
Ester Rearrangement 2 2 0 

Char Formation    
PET Anhydride Formation 6 2 0 
Diels-Alder 4 2 0 
Aromatic Ring Formation 4 2 0 

Gasification    
Incomplete Combustion 19 2 0 
Steam Reforming 18 2 2 
PET Anhydride Breakdown 14 2 0 
Light Gas Reactions 5 10 2 

Total Reactions 283   
Total Species 85   

3.6 Model Equations and Kinetics 

The reaction network was used to generate a set of material balance differential 

equations with one equation per molecular species. This model was built and solved 

using an in-house software, the Kinetic Model Editor (KME)[40].  In general, the rate 

laws used standard mass-action kinetics and Arrhenius rate constants. Exceptions to 
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this rule were in the gasification reactions where the kinetics were assumed to be first 

order with respect to oxygen and water for incomplete combustion and steam 

reforming respectively. 

The number of adjustable parameters in the model was reduced using the 

concept of reaction families and linear free energy relationships (LFER). All reactions 

in a given reaction family are modeled to have the same pre-exponential factor. 

Furthermore, the activation energies are modeled to follow the Bell-Evans-

Polanyi[51], [52] LFER which relates activation energy of individual reactions to the 

enthalpy of reaction.  The final form of the rate constant, derived in prior work[42], 

[48], is given in Equation 3.15 for reaction i and reaction family j. In general, this 

constrains the number of adjustable parameters to three per reaction family; however 

for this work, only acyclic thermal cracking utilizes 𝛼𝑗. All other reaction families 

contained two adjustable parameters, Aj and E0(j). This modeling approximation states 

that reaction rate constants for the reactions in the other families are equal for all 

reactions in the family. 

The number of adjustable parameters was further constrained using parameter 

values from the open literature. In particular, constraints were placed on many of the 

pyrolysis and gasification parameters. For pyrolysis, rate parameters from the 

literature were utilized for decarboxylation and decarbonylation[74]. Ester 

decarboxylation was modeled to have the same rate parameters as decarboxylation. 

For gasification, reactions with oxygen are much faster than reactions with CO2 or 

H2O. Steam reforming was constrained to be slower and proportional to incomplete 

combustion. Finally, literature values were assumed for the water-gas shift[81].  

 

ln 𝑘𝑖 = ln𝐴𝑗 − (
𝐸0 (𝑗) + 𝛼𝑗 ∗ Δ𝐻𝑖

𝑅𝑇
) 

 

(3.15) 
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3.7 Model Evaluation 

Literature studies provided the data to evaluate the kinetic model. The 

polyethylene study was used to probe the kinetics of polyethylene degradation, 

pyrolysis, gasification, and polyethylene char formation reactions. The PET study was 

to demonstrate the ability of molecular-level models to predict thermogravimetric 

analysis (TGA) experiments while analyzing the competition between polymer 

breakdown, PET char formation, and PET char breakdown. The PVC study was used 

to obtain rate constants for dehydrochlorination and the subsequent reaction producing 

benzene. Finally, the polystyrene study allowed for the analysis of the competition 

between the different depolymerization mechanisms. 

3.7.1 Model Evaluation – PE 

The polyethylene study utilized a pilot-plant scale fluidized bed gasifier using 

both oxygen and steam as gasifying agents for polyethylene consumption[23]. The 

experiments of interest are summarized in Table 3.10. Experimental runs 3-7 from this 

study were selected because they were uncatalyzed and used air as the oxidation agent. 

The reported results included input flow rates of polyethylene, air, output syngas 

composition, and tar flow rate.  
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Table 3.10: Utilized experiments from Arena et al[23].  

 Run 3 Run 4 Run 5 Run 6 Run 7 

Polyethylene Flow 
Rate (kg/hr) 

16.7 21.8 27.9 20.0 31.0 

Air Flow Rate (kg/hr) 64.3 77.2 90.1 90.1 90.1 

Temperature (°C) 850 869 867 898 845 

Syngas Composition 
(vol%) 

N2 
CO 
H2 

CO2 
CH4 

C2Hx 

 
68.7 
2.7 
7.4 
9.5 
8.3 
3.4 

 
65.7 
2.5 
9.1 
9.6 
8.8 
4.4 

 
64.6 
2.4 
9.6 
9.6 
9.1 
4.6 

 
69 
2.3 
8.3 
10.4 
7.1 
2.9 

 
63.9 
2.8 
9.1 
9.1 
10.4 
4.8 

Output Tar Flow 
Rate(kg/hr) 

6.2 7.8 12.1 7.0 14.6 

 

The model tuning results are shown in Figure 3.9. The C2Hx fraction was the 

combined flow rate of ethane, ethylene, and acetylene. Tars were classified as 

compounds with a boiling point greater than or equal that of benzene. The model 

showed good agreement with experimental results with 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 0.952 ∗

𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 + 0.0036. Figure 3.10 shows a comparison between experimental and 

predicted liquid/gas mass ratio. The model results showed agreement with 

experimental results, with small under-predictions on runs 5 and 7. 
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Figure 3.9: Tuning results for all data sets. The linear fit has the equation 

ypredicted=0.952*yexperimental+0.0036. Tar yield is in units of (g/s/25); it was 

rescaled to have a similar value as the light gas flow rates (mol/s).  

 

Figure 3.10: Comparison of experimental and model predicted results for liquid/gas 

ratio (mass basis) for all data sets. 

In order to further examine deviations between model and experimental results, 

the effects of uncertainty in the reported measurements were analyzed in Figure 3.11. 

For GC measurements, the standard error was 0.05 vol% due to the number of 
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reported significant figures in Arena et al[23]; similarly, the error in tar flow was 0.05 

kg/hr. For tar, the model prediction is as good as the reported significant figures. The 

experimental results reported an average temperature; however, minor temperature 

deviations in the reactor are possible. To analyze these effects on model predictions, a 

10 degree temperature variation was studied on Run 6. The results were shown to be 

relatively insensitive to minor changes in temperature, implying that deviations from 

the average temperatures in Table 3.10 would have little impact on modeling results. 

 

Figure 3.11: Experimental error and the effects of temperature deviation in model 

predictions for Run 6. Effects of a 10 degree temperature variation are 

shown using error bars. 

3.7.2 Model Evaluation – PET 

For polyethylene terephthalate, a thermogravimetric analysis (TGA) [60] study 

with oxidative depolymerization provided TGA curves for different heating rates of 
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PET using air as the carrier gas. This allowed for the analysis of PET 

depolymerization, char formation, and subsequent char breakdown with oxygen. A 

software tool was developed in order to utilize TGA data in a molecular-level kinetic 

model. 

The simulation of TGA with a molecular-level kinetic model was performed 

using an in-house software called TGA Simulator; a C# application developed for this 

work. The logic for the TGA simulator is given in Figure 3.12.  In order to simulate a 

constant heating rate, TGA Simulator repeatedly calls the ODE solver (within KME) 

using isothermal runs for short duration where the output of one simulation is the input 

to the next simulation. For example, if the heating rate is 10K per minute starting at 

298K then TGA simulator would integrate for 6 seconds at 298K, 6 seconds at 299K, 

and so forth. The TGA Simulator predicts mass-loss based on the molar amounts, 

boiling points, and flow rates of each component. 

 

Figure 3.12: Logic for the TGA Simulator C# application 

The results in Figure 3.13 show the experimental and predicted TGA curves. 

There are three regions of interest on this graph: the initial mass loss, char formation, 

and char consumption. The majority of the initial drop is due to PET 
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depolymerization; however, any reaction that causes molecular breakdown also plays 

a role in the initial region of the curve. The relative rates between the breakdown 

chemistry and PET anhydride formation determine the amount of char initially 

formed. The char consumption is known to occur under gasification conditions. For 

instance, an analogous study by Du and coworkers on pyrolysis showed a persistent 

char.[76]  Similarly, Figure 3.14 shows remaining char when oxygen is removed from 

the simulation. Because our results are the combination of many reaction families and 

rate parameters, it is difficult to draw a connection to parameters derived from 

traditional TGA analyses; however, the fit of the raw data implies agreement between 

experiment and model results. 

 

  

Figure 3.13: TGA model results (lines) compared with experiment (points). Colors 

correspond to different heating rates: red, 5 °C/min; green, 10 °C/min; 

blue, 20 °C/min; orange, 40 °C/min. The left plot gives the TGA curves, 

the right plot is a parity plot of the results. The maximum decomposition 

rates in units of wt%/°C are 0.018, 0.17, 0.015, and 0.041 in order of 

increasing heating rate. 
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Figure 3.14: TGA Simulator results showing persistence of char in the absence of 

oxygen for PET depolymerization at a heating rate of 40 °C/min.  

3.7.3 Model Evaluation – PVC 

The tuning effort for PVC was focused on a study in a bubbling fluidized bed 

to probe the kinetics of dehydrochlorination and PVC char formation[82]. In this 

study, there were two uncatalyzed experiments and five catalyzed experiments. In 

general, the experiments of interest are uncatalyzed as this is more similar to 

applications such as MSW gasification. However, dehydrochlorination is known to be 

fast[68], [73] and kinetics are not expected to be limiting which allows for the usage 

of all seven experiments. The catalyst does affect char formation and therefore only 

uncatalyzed data sets were used for char analysis. 
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Table 3.11: HCl and char from all experiments in Slapak et al.[82] Q1 and Q2 are 

uncatalyzed (quartz sand bed). A1, A2, and all A3 experiments were 

under alumina support. *- data points not used in char analysis due to 

catalyst effects on char formation. 

Experiment HCl (wt% PVC) Char (wt% PVC) 

Q1 54 35 

Q2 35.2 33 

A1 57 16* 

A2 54 16* 

A3-1150K 
A3-1200K 
A3-1250K 

54 
54 
54 

16* 
9* 
3* 

 

Results from PVC kinetic parameter tuning are given in Figure 3.15. The char 

predictions for the two uncatalyzed experiments matched well with the experimental 

data. For HCl, six of the seven data sets were predicted well. The remaining data 

point, Q2, is expected to be an outlier or a typographical error because it is well 

known that approximately 55 wt% of PVC is quickly released in the initial 

depolymerization step[68], [73]. 
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Figure 3.15: Results for HCl (all runs) and Char (only Q1 and Q2). The outlet flow 

rate units for HCl and char are in mol/s and g/s/50 respectively. 

3.7.4 Model Evaluation – PS 

The polystyrene tuning study focused on the probing the different 

depolymerization mechanisms using literature on pyrolysis in a fluidized bed[67]. The 

results of interest were relative amounts of mono-, di-, and tri- aromatics after 

pyrolysis over a range of temperatures, as shown in Table 3.12. The kinetic parameters 

were tuned to these data sets with results shown in Figure 3.16. Overall the fit was 

good with 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  =  0.9595𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙  +  0.0217. The largest deviation was 

seen in the 450 °C data set. This data set is less important as the temperature in most 

gasification applications is significantly higher. 
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Table 3.12: Experimental weight percent values for monoaromatics, diaromatics and 

triaromatics in pyrolysis output at different temperatures[67]. All values 

are in weight percent of initial polystyrene. 

Temperature Monomer Dimer Trimer 

450 °C 72 11 14 

500 °C 76 13.5 7 

550 °C 79 15 2 

600 °C 87 12 --- 
 

 

Figure 3.16: Parity plot for monomer-trimer predictions for polystyrene pyrolysis. A 

least-squares linear fit of the data gives ypredicted  = 0.9595yexperimental  + 

0.0217 

3.7.5 Reaction Family Rate Constants 

After evaluation and optimization with all data sets, a tuned set of kinetic 

parameters was developed and are given in Table 3.13. In this table, the rate constants 

are relative to the rate constant for Acyclic Thermal Cracking. 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

d
ic

te
d

  W
ei

gh
t 

P
er

ce
n

t

Experimental Weight Percent

450
°C
500
°C
550
°C
600
°C



 71 

Table 3.13: Reaction family rate constants at 1000 K relative to Acylic Thermal 

Cracking. log(k)relative,1000=log(k)AcylicThermalCracking,1000-

log(k)ReactionFamily,1000.  

Reaction Family 𝐥𝐨𝐠(𝐤)𝐫𝐞𝐥,𝟏𝟎𝟎𝟎 

Depolymerization  
PE Depolymerization 1.60 
PET Depolymerization -2.57 
PVC Depolymerization - 
Dehydrochlorination 

-1.95 

PVC Depolymerization - Benzene 
Formation 

-8.17 

Polystyrene Random Scission -2.95 
Polystyrene Backbiting (dimer) -7.63 
Polystyrene Backbiting (trimer) -2.49 
Polystyrene Unzipping -5.34 
Pyrolysis  
Acyclic Thermal Cracking 0.00 
Decarboxylation 2.40 
Decarbonylation 2.40 
Ester Decarboxylation 2.40 
Ester Rearrangement -2.58 
Char Formation  

PET Anhydride Formation 1.98 
Diels-Alder -2.83 
Aromatic Ring Formation -0.76 
Gasification  
Incomplete Combustion -4.00 
Steam Reforming -7.30 

PET Anhydride Breakdown -1.92 
Light Gas Reactions  
Water-gas Shift -6.83 
Oxidation CO to CO2 -3.14 
Partial Oxidation of Methane (forward) -7.10 

Steam Reforming of Methane (reversible) -5.90 
Dry Reforming of Methane (reversible) -6.84 
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3.8 Conclusions 

A molecular-level kinetic model was developed for the gasification of four 

common plastics: PE, PVC, PET, and PS. The model’s parameters were tuned using 

literature studies on each of the plastics. The model includes the kinetics of the 

formation and degradation of tar and char molecules from these wastes, which are 

important design considerations for waste-to-energy technologies such as MSW 

gasification. 

Furthermore, because this model is at the molecular-level, it can be used to 

help predict changes in syngas composition in the gasifier outlet as a function of the 

MSW composition. This could be used to help process engineers design better waste 

streams for a gasification unit. The robustness of a molecular-level model is especially 

important in the application of MSW because the waste composition is likely to 

change as a function of season and location. Only models containing fundamental 

chemistry have a hope of modeling such a diverse set of conditions. 
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4.1 Abstract 

A molecular-level kinetic model for biomass gasification was developed and 

tuned to experimental data from the open literature. The development was divided into 

two categories: the composition of the feedstock and the construction of the reaction 

network. The composition model of biomass was divided into three submodels for 

cellulose, hemicellulose, and lignin. Cellulose and hemicellulose compositions were 

modeled as linear polymers using Flory-Stockmayer statistics to represent the polymer 

size distribution. The composition of lignin, a cross-linked polymer, was modeled 

using relative amounts of structural building blocks, or attributes. When constructing 

the full biomass composition model, the fractions of cellulose, hemicellulose, and 

lignin were optimized using literature-reported ultimate analyses.  

The reaction network model for biomass contained pyrolysis, gasification, and 

light-gas reactions. For cellulose and hemicellulose, the initial depolymerization was 

described using Flory-Stockmayer statistics. The derived monomers from cellulose 

and hemicellulose were subjected to a full pyrolysis and gasification network. The 

pyrolysis reactions included both reactions to decrease molecule size, such as thermal 

cracking, and char formation reactions, such as Diels-Alder addition. Gasification 

reactions included incomplete combustion and steam reforming. For lignin, reactions 

occurred between attributes and included both pyrolysis and gasification reactions. 

The light-gas reactions included water-gas shift, partial oxidation of methane, 

oxidation of carbon monoxide, steam reforming of methane, and dry reforming of 

methane. The final reaction network included 1356 reactions and 357 species. 

The performance of the kinetic model was examined using literature data that 

spanned six different biomass samples and had gas compositions as primary results. 

Three data sets from different biomass samples were used for parameter tuning, and 
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parity plot results showed good agreement between the model and data (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =

𝑦𝑜𝑏𝑠 ∗ 0.928 + 0.0003). The predictive ability of the model was probed using three 

additional data sets. Again, the parity plot showed agreement between model and 

experimental results (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑦𝑜𝑏𝑠 ∗ 0.989 − 0.007). 

4.2 Introduction 

Biomass is the major source of chemical energy that is renewable at a 

reasonable timescale. The most common way to access that energy is incineration; 

however, there are technical and environmental issues with large scale 

implementation. In terms of technical feasibility, biomass has much lower energy 

density than its fossil fuel counterparts[84]. Environmentally, the incineration of 

biomass has high production of harmful oxygenates such as dioxins and furans[85]. 

The gasification of biomass has gained interest in recent years due to lower emissions 

of pollutants and the production of synthesis gas (syngas), a possible route to liquid 

fuels. Biomass gasification also makes up the majority of municipal solid waste 

(MSW) gasification, an up-and-coming waste disposal technology. In the design of 

biomass gasification units, important parameters are tar production and syngas 

composition. To study these parameters, kinetic models are often utilized in the 

literature.  

Previous kinetic models of biomass gasification are lumped in nature[86],[87]. 

Lumped models contain no structural information beyond the definition of the lump. 

For instance, a lumped model might contain ‘Tar’ where tar is simply defined as 

‘liquid product at reactor conditions’. Lumped models in the literature follow some 

combination of parallel or sequential implementations, as shown in Figure 4.1. More 

advanced lumped models contain light gasses explicitly. For example, Zhong et al.[88] 
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contained reactions and material balances for many of the observed light gasses. 

However, the model is still fundamentally lumped as there is no chemical description 

from the feedstock molecules (e.g., cellulose) to light gas. More examples of kinetic 

models found in literature can be found in a reviews by Puig-Arnavat[16] and 

Prakash[89].  

 

 

 

Figure 4.1: Literature lumped kinetic models. (Left) Sequential lumped model[86] of 

biomass gasification. (Right) parallel lumped model of biomass 

gasification where V1-V5 are lumped volatile products.[87] 

Chemical percolation devolatilization (CPD) was developed by Fletcher and 

coworkers in the early 1990s and has been utilized for two decades in work on the 

pyrolysis and gasification of coal[90]–[92]. Due to the molecular similarity between 

coal and lignin, CPD has been successfully applied to biomass in recent years[93]–

[95]. In CPD, the chemical structure of the feedstock is modeled as aromatic clusters, 

labile bridges, and side chains, and the cluster size distribution is described Bethe 

lattice statistics. The kinetic breakdown of the lattice involves the cleavage of labile 

bridges into side chains, and the production of light gas, char, and tar molecules. A 

key advantage of CPD is the direct usage of measurable structural parameters and 

simple, easy-to-understand kinetic networks. Also, the usage of lattice statistics is 
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appropriate for cross-linked polymers such as lignin. The main drawbacks of CPD are 

the minimal information on the molecular descriptions of tar and light gas, and the 

application of lattice statistics onto predominantly linear polymers such as cellulose 

and hemicellulose. 

For similar reactor conditions on a single biomass sample, lumped kinetic 

models do an adequate job of describing experimental data[15], [96]. Problems arise 

when the feedstock or reactor conditions are perturbed. For example, a lumped model 

of pine sawdust will have different parameters than a lumped model of grass. 

Fundamentally, a model can only answer questions at the same level of complexity as 

the model’s definition. For example, a lumped model with a single ‘tar’ component 

cannot yield any information about the specific tars present in the output stream. In 

MSW gasification, the biomass feedstock changes over the course of time. For these 

changes, the questions that are asked of the model are at the molecular-level, and 

therefore the model must retain the same level of detail. 

The current modeling work is the first representation of a molecular-level 

kinetic model of biomass gasification. This model maps the feedstock to products, 

tracking each individual molecular species throughout the reactor. With this in mind, 

there are three fundamental steps to building a molecular-level kinetic model for 

biomass gasification. First, the feedstock must be defined as a set of molecules. 

Second, a reaction network describes how the feedstock becomes products. Third, a 

kinetic model is built which utilizes the feedstock and reaction network to create a 

system of mass balance differential equations. The output of this process is a model 

with a set of rate parameters for each reaction chemistry. These rate parameters are 

then tuned, or optimized, using experimental data from the open literature. 
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The most interesting results from the model are also at the molecular-level. For 

example, the model contains reaction chemistries important to biomass gasification. 

These chemistries convey an underlying understanding of the reactor. Second, the 

model contains explicit molecular definitions of tar molecules. The amount of 

produced tar can then be predicted for a range of conditions. Third, the model can 

predict relative changes in syngas and tar compositions for a variety of biomass 

feedstocks. This allows for the anticipation of changes in syngas output due to changes 

in the MSW feedstock composition. 

4.3 Molecular Representation of Biomass 

In order to model reactor kinetics at the molecular-level, the feedstock must 

first be represented as a set of molecules and mole fractions.  For biomass, an explicit 

composition cannot be measured experimentally because it contains large polymeric 

structures; therefore, composition models are required to map available experimental 

data to molecular compositions. 

A molecular-level composition model fundamentally obtains a list of 

molecules and mole fractions. Here, a composition model is a set of probability 

distribution functions (PDFs) that describe the relative amounts molecular groups, 

called attributes within the feed stream.  For linear polymers (e.g., cellulose), where 

the monomer structure is relatively well understood, the composition was modeled 

with the traditional Flory distribution function[61].  For cross-linked polymers with 

variable repeat units such as lignin, a more elaborate set of PDFs must be constructed.  

For both simple and complex systems, the optimal set of PDFs is determined by 

tuning the PDF parameters to experimental measurements through structure-property 
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correlations. The complete list of molecules and mole fractions is obtained through 

juxtaposition of the PDFs.  

In this work, composition models for each of the biomass polymers were 

developed independently using experimental data from literature. These models were 

combined to build the complete biomass model which was, in turn, used to describe 

the feedstock to the biomass gasification kinetic model. 

4.3.1 Linear Polymer Composition Models: Cellulose and Hemicellulose 

The basic composition of a linear polymer is known; for instance the repeat 

unit of cellulose is 𝛼-glucose (C6H10O5), given in Figure 4.2. Whereas cellulose is 

comprised solely of glucose, hemicellulose is made up of several pentose sugars, with 

different branching and functional groups.  The primary monomers include xylan, 

glucronoxylan, arabinoxylan, glucomannan, and xyloglucan[97].  The relative 

composition of the hemicellulose monomers and degree of crosslinking varies among 

the different wood types.  Consequently, modeling hemicellulose composition is more 

complex than modeling cellulose. Xylose is the predominate sugar in hemicellulose, 

so to reduce the composition model complexity, it is often represented as a linear poly-

xylan structure[97], [98]. 

 
 

Figure 4.2: Cellulose polymeric n-mer of 𝛽(1 → 4) linked D-glucose units (Left). 

Hemicellulose representation as an n-mer of poly-xylan (Right). 
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Composition models are required for linear polymers due to polydispersity, 

i.e., the presence of differently sized n-mers, and their molecular composition is 

described using a polymer-size distribution function. In this model, a Flory 

distribution[61] is used due to its simplicity and wide-spread usage.  

𝑥𝑛 = (1 − 𝑝) ∗ 𝑝
𝑛−1 (4.1) 

The Flory distribution is given in Equation 4.1, where p is the bridge fraction, 

or fraction of end-groups that are linkages. Linear polymers can be thought of as 

cores, side chains (SCs) and inter-core linkages (ILs), a verbiage that will be used later 

in the analysis of the statistics in cross-linked polymers. By considering each repeat 

unit as a core, it follows that SCs and ILs are terminal substituents and bridges 

between cores, respectively. A monomer, therefore, is a core with two SCs, and a 

dimer contains 2 cores, two SCs, and 1 IL. When this concept is extended to a general 

linear polymer, an 𝑛-mer has (𝑛 − 1) ILs, two SCs, and 𝑛 cores. The concentration of 

sites in the system is given by Equation 4.2 since every IL represents two previously 

reactive sites and all unreacted sites are [SC]. The bridge fraction in terms of SCs and 

ILs is given by Equation 4.3. 

𝑆𝑖𝑡𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 = 2 ∗ [𝐼𝐿] + [𝑆𝐶] (4.2) 

𝑝 =
2 ∗ [𝐼𝐿]

2 ∗ [𝐼𝐿] + [𝑆𝐶]
 

(4.3) 

 

In order to model the molecular composition of a linear polymer using a Flory 

distribution, the value for p is estimated from experimental measurements. Literature 

studies have used a variety of methods to characterize a linear polymer. One common 

metric is the average degree of polymerization, or 𝑋𝑛̅̅̅̅ , which can be related to 𝑝 using 

Equation 4.4. In biomass gasification literature, the most common representation of 
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feedstock compositional information is an ultimate analysis. For example, an ultimate 

analysis for a cellulose sample is shown in Table 4.1.  

 

𝑋𝑛̅̅̅̅ =
1

1 − 𝑝
 

(4.4) 

Table 4.1:  Ultimate analysis of cellulose samples in Chang et al. (2011)[99]. 

Element Chang et al. 
(2011) 

C (wt%) 44.44 
H (wt%) 6.17 
O (wt%) 49.38 

 

Given a value for p (or equivalently 𝑋𝑛̅̅̅̅ ), a predicted ultimate analysis can be 

calculated through the use of Flory statistics. First, the mole fraction of each n-mer is 

calculated using Equation 4.1. Second, the weight fraction of each n-mer is calculated 

by using the average molecular weight of the polymer, 𝑀𝑊̅̅ ̅̅ ̅̅ , as shown in using 

Equation 4.5. Finally, the ultimate analysis is calculated by multiplying the mass 

fraction of each n-mer by the mass fraction of each element in the n-mer.  For 

example, the predicted weight percent of carbon is found using Equation 4.6. Using 

this method, an ultimate analysis can be predicted for a given 𝑋𝑛̅̅̅̅  and polymer.  

𝑤𝑛 = 𝑥𝑛 ∗
𝑀𝑊𝑛

𝑀𝑊̅̅ ̅̅ ̅̅
  

(4.5) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑤𝑡% 𝐶𝑎𝑟𝑏𝑜𝑛 =  ∑𝑤𝑛 ∗ 𝐶𝑤𝑡%,𝑛−𝑚𝑒𝑟

∞

𝑛=1

 

𝑤ℎ𝑒𝑟𝑒 𝐶𝑤𝑡%,𝑛−𝑚𝑒𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑛 − 𝑚𝑒𝑟 

(4.6) 

An automated tool called Linear Polymer Composition Editor has been 

developed in a C# application to facilitate the optimization of 𝑋𝑛̅̅̅̅   for any linear 
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polymer and experimental data set. This tool works using a simple optimization loop 

as shown in Figure 4.3. First, it guesses a value for the degree of polymerization. Next 

it calculates an ultimate analysis for this degree of polymerization. It then compares to 

experimental results using a least-squares objective function. Finally, it adjusts the 

prediction.  

  

 

Figure 4.3: Linear Polymer Composition Editor optimization loop. 

The linear polymer composition editor was used to simulate the compositions 

of cellulose and hemicellulose. The composition simulated by the Flory distribution 

fits very well with the literature as shown in Table 4.2. The agreement is expected as 

cellulose is known to be composed of a single monomer unit and linear. With 

hemicellulose, the Flory distribution still fits well; deviations between prediction and 

experiment are likely due to cross-linking and the exclusion of other possible 

monomeric units. However, if a mass balance can be achieved using the simpler 
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polymeric structure, then it is likely that the approximations made would lead to no 

significant error in gasification products. 

Table 4.2: Comparison between experimental data and predictions from the Linear 

Polymer Composition Editor. Experimental data came from Chang et 

al.[99] and Couhert et al.[100], [101] for cellulose and hemicellulose, 

respectively. The simulated average degree of polymerizations for 

cellulose and hemicellulose were 232 and 5. 

Element Cellulose 
Experimental  

Cellulose 
Simulated 

Hemicellulose 
Experimental 

Hemicellulose 
Simulated 

C 44.44 44.42 44.3 44.2 
H 6.17 6.22 5.4 6.2 
O 49.38 49.35 49.9 49.5 

 

4.3.2 Cross-linked Polymer Composition Model: Lignin 

The final composition model needed for biomass is for lignin. Lignin is a 

cross-linked biopolymer present in all plants, and is primarily made of three 

phenylpropane units: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol 

(shown in Table 4.3). These units are connected together in a structure reminiscent of 

an archipelago of islands. The prototypical archipelago structure commonly accepted 

for lignin is the Freudenberg model[102] (an adapted version is shown in Figure 4.4).  



 84 

Table 4.3: C9 units of Lignin[103]. 

Name Coniferyl Alcohol  Sinapyl Alcohol   P-coumaryl Alcohol 

Structure 
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Figure 4.4: Adapted Freudenberg Structure[102]. This structure was parsed to yield 

the attribute identities. 

The Freudenberg model was parsed to obtain identities of cores, ILs, and SCs.  

The above structure contains 5 cores, 5 ILs, and 5 SCs, shown in Table 4.4. For the 
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core attributes, there are two characteristics of note. First, the Ph-O bond for a 

hydroxyl group on an aromatic is a strong bond; therefore, the OH groups are 

considered part of a core. Similarly, C-C bonds where both carbons are part of 

separate ring structures, e.g. biphenyl linkages, were considered strong bonds. When 

parsing inter-core linkages, any IL bonded to three rings in the Freudenberg structure 

was approximated to contain only two binding sites. This simplifies the configuration 

of larger core clusters. 
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Table 4.4: Attribute Identities as parsed by CME from the Freudenberg model for 

lignin.  

Index Core 
Identity 

IL Identity SC Identity 

1 

   

2 

 
 

 

3 

 
 

 

4 

 

  

5 

 

  

 

Lignin adds complexity to the binding site concept because not all side chains 

and linkages can bind to all binding sites. An example is seen with side chain binding 

to the phenol core, given in Figure 4.5. Based on the structure of the C9 units in Table 

4.3, the two binding sites ortho to the hydroxyl group can only contain methoxy side 

chains. The para binding site, on the other hand, must contain a C-C bond, or one of 
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the other four side chains. Each attribute was associated with R1 and R2 binding sites 

based on the chemical structure.  

 

Figure 4.5: Binding site types on the phenol core.  

 

The molecular nature of the composition is retained despite the use of 

attributes. Individual molecule identities and mole fractions are obtained through the 

sampling five PDFs. The first three are attribute group PDFs, or the relative amounts 

of each entry in Table 4.4. Each core has binding sites which can be filled by an IL, 

SC, or left unfilled (-H side chain). This complexity gives rise to two additional PDFs. 

First, a polymer size distribution defines the relative amounts of differently sized n-

core clusters; or a molecule with n cores and n-1 ILs. Finally, the binding site 

distribution describes how many sites on each core cluster are filled by side chains. 

The mole fractions of individual molecules are calculated through the combined 

probabilities from each PDF as shown in Table 4.5.  The complete juxtaposition of all 

five PDFs gives both identities and mole fractions for the molecule list. 
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Table 4.5: Mole fraction calculation from sampled molecules.  

Molecule Attributes Filled 

Binding 

Sites 

Cluster 

Size 

Mole Fraction 

 Cores SCs and ILs 

   

 2 1 ∝ 

Pcore( )PSC(

)2 * 

PBS(2)PCluster(1) 

 
 

  

1 2 
∝ Pcore( ) 

Pcore( ) * 

PIL( ) 

PSC( )2 * 

PBS(1)PCluster(2) 

 

In order to model the composition of lignin, experimental measurements were 

obtained from literature. Compositional measurements of lignin have a strong 

dependence on the lignin isolation method. For example, Kraft lignin comes from the 

Kraft pulping process and is significantly degraded from the original plant matter. A 

less destructive isolation technique is called Milled Wood Lignin (MWL) and the 

product is considered to be the closest to native lignin[104]. Table 4.6 shows a subset 

of the experimental measurements on miscanthus, a perennial grass[104]. 
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Table 4.6: Experimental Data used in the optimization of the lignin compositional 

model. All data are from Hage et al. (2009)[104].  

Description Value Experiment 

Ultimate Analysis (wt%) 
C 
H 
O 
N 
S 

 
63.5 
5.7 
29.2 
0.2 
0.0 

Unreported 

Normal Molecular 
Weight (g/mol) 

8300 Gel Permeation 
Chromatography 

Aromatic H per ring 2.5 Carbon NMR 

Methoxy (-OCH3) per ring 0.98 Carbon NMR 

Phenolic OH per ring 0.28 Proton NMR 

 

The optimization of lignin’s composition was performed using an in-house 

software, the Composition Model Editor (CME)[43]. Each attribute PDF was modeled 

using a histogram. Gamma distributions were used to determine the number of filled 

binding sites on molecules and the polymer size distribution.  

For any well-posed optimization problem, the number of adjustable parameters 

should not exceed the number of data points and constraints. For this simulation, there 

are 16 total adjustable parameters, and 6 usable data points shown in Table 4.7. 

Therefore, to have a well-posed problem, 10 constraints must be applied. First, 

average molecular weight (MW) is primarily controlled by the polymer size 

distribution. Therefore, the standard deviation was set to a representative value and the 

MW mean was allowed to vary. Similarly, the only data relevant to the binding site 

distribution, which controls the number of side chains, is the number of aromatic 

hydrogen per ring   Again, a representative value was used for the standard deviation 

and the number of aromatic hydrogens per ring was allowed to vary.  
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Constraints on the histogram were made using the relative amounts of 

attributes group members within the Freudenberg structure, as shown in Table 4.7. 

Two simulations were run to compare a fully constrained model to a second that 

includes two additional degrees of freedom. In simulation 1, all attribute histograms 

were set using the Freudenberg structure and only the polymer size distribution mean 

and the binding site distribution mean were allowed to vary. The results, shown in 

Table 4.8, were surprisingly accurate given that the attribute PDFs were set entirely 

using the Freudenberg structure.  

In the second simulation, the attribute PDFs were informed by the Freudenberg 

structure, but selected attribute group member concentrations were allowed to vary. 

For example, in the SC PDF, the composition of SC1 was allowed to vary and the 

remaining side chains amounts were constrained to follow the Freudenberg structure 

(e.g., the probabilities of SC2 and SC3 were equal). Of the substituent PDFs, the 

methoxy side chain and phenol core were allowed to vary. These decisions were made 

based on the experimental measurements available. The methoxy side chain correlates 

very well with the experimentally measured ‘methoxy per ring’ datum, and the phenol 

core is well described using the ‘phenolic OH per ring’ datum.  
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Table 4.7: Adjustable parameters in optimization. *obtained by difference, not an 

adjustable parameter. In simulations 1 and 2, bolded terms were 

optimized on. 

Adjustable Parameter Simulation 1: Attribute 
PDFs from Freudenberg 

Simulation 2: 
Attribute PDFs 

partially 
constrained by 
Freudenberg 

Polymer Size Distribution 
(Gamma)  

Mean 
Standard deviation 

 
 

32 
5 

 
 

34 
5 

Binding Site Distribution 
(Gamma) 

Mean 
Standard Deviation 

 
66 
20 

 
66 
20 

Core Histogram 
C1 
C2 
C3 
C4 

C5* 

 
0.571 
0.214 
0.071 
0.071 
0.071 

 
0.64 
0.18 
0.06 
0.06 
0.06 

IL Histogram 
IL1 
IL2 
IL3 
IL4 

IL5* 

 
0.2 
0.1 
0.1 
0.5 
0.1 

 
0.2 
0.1 
0.1 
0.5 
0.1 

SC Histogram 
SC1 
SC2 
SC3 
SC4 

SC5* 

 
0.783 

0.0435 
0.0435 
0.870 

0.0435 

 
0.89 

0.022 
0.022 
0.044 
0.022 

Constraint Analysis 16 Adjustable parameters, 
6 data points, 14 

constraints. 

16 Adjustable 
parameters, 6 data 

points, 12 
constraints. 
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The results from the second simulation are an improvement on the first 

simulation especially on the methoxy correlation as shown in Table 4.8. This is 

unsurprising as lignin from different sources primarily differ in the ratios of guaiacyl, 

syringil, and p-coumryl units[97]. These units are differentiated based on the number 

of methoxy groups. Therefore, it is follows that the probability of a methoxy side 

chain would play a key role in tuning to a new biomass type. 

Table 4.8: Experimental data currently used in the optimization of the lignin 

compositional model. All data are from Hage et al. (2009)[104]. The data 

shown here is a subset of data reported; CME adjustments are required to 

make use of more data.  

Description Experimental 
Value 

Simulation 1: 
Attribute PDFs 

from 
Freudenberg 

Simulation 2: Attribute 
PDFs partially 

constrained by 
Freudenberg 

Ultimate Analysis 
(wt%) 
C 
H 
O 
N 
S 

 
63.5 
5.7 

29.2 
0.2 
0.0 

 
64.98 
6.14 

28.85 
0.0 
0.0 

 
64.77 
6.18 

29.05 
0.0 
0.0 

Average Molecular 
Weight (g/mol) 

8300 8225.7 8304 
 

Aromatic H per ring 2.5 2.44 2.47 
Methoxy (-OCH3) 
per ring 

0.98 0.897 0.98 

Phenolic OH per ring 0.28 0.315 0.28 
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4.3.3 Combined Biomass Composition Model 

A full biomass sample contains fractions of cellulose, hemicellulose, and 

lignin. However, literature studies rarely report these fractions, and instead report an 

ultimate analysis on the full biomass sample. In order to make use of these data, the 

percentages of each subcomponent, reproduced in Table 4.9, are optimized such that 

the net ultimate analysis agrees with experimental data.  

Table 4.9: Ultimate analysis for each subcomponent of biomass from preceding 

sections. 

Element Cellulose Hemicellulose Lignin 

C 44.4 44.3 64.77 
H 6.2 6.2 6.18 
O 49.4 49.5 29.05 

 

In order to automate this process, an in-house C# application called MSW Bulk 

Composition Solver was developed and utilized. The general logic and equations for 

the calculation of the ultimate analysis of biomass are given in Figure 4.6. This 

application, developed for optimizing municipal solid waste (MSW) cuts based on a 

bulk ultimate analysis, can also be applied to biomass by simply setting all other 

fractions of MSW to zero. This tool was used to find the optimal fractions, shown in 

Table 4.10, of cellulose, hemicellulose, and lignin for six biomass samples from Li et 

al., the gasification study used for the reaction kinetic model. The results showed good 

agreement with experimental data for C, H, and O. The experimental results showed 

trace amounts of nitrogen and sulfur that were not included in the model. We have 

excluded N and S containing function groups due to their relatively insignificant 

amounts and absence of both composition and gasification experimental results. The 
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future availability of more detailed experimental data could allow for the inclusion of 

these functional groups. 

 

Figure 4.6: Logic of MSW Bulk Composition solver applied for biomass. All numbers 

in this figure are in wt%. The plastics and carbon support segments of the 

figure are truncated as the weight fraction within biomass is 0 for each. *-

Lignin fraction is dependent on cellulose and hemicellulose. 
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Table 4.10: Biomass splits for each of the biomasses under study by Li et al.[13] SPF 

is spruce, pine, fir mixed sawdust. PS is 50% each of pine bark and 

spruce whitewood mix. 

 Cypres
s 

Hemlock SPF Cedar PS Mixed 

Biomass Splits       
Cellulose 0.448 0.448 0.405 0.444 0.425 0.424 
Hemicellulose 0.202 0.202 0.3 0.205 0.350 0.350 
Lignin 0.35 0.35 0.3 0.35 0.226 0.225 
Ultimate 
Analysis 

      

C: obs 
pred 

0.516 
0.515 

0.518 
0.515 

0.504 
0.504 

0.523 
0.514 

0.491 
0.489 

0.489 
0.489 

H: obs 
pred 

0.062 
0.062 

0.062 
0.062 

0.063 
0.062 

0.0611 
0.062 

0.0786 
0.0621 

0.076 
0.062 

O: obs 
pred 

0.404 
0.423 

0.406 
0.423 

0.416 
0.434 

0.399 
0.423 

0.403 
0.448 

0.403 
0.448 

N: obs 
pred 

0.0065
0 

0.0065 
0 

0.0062 
0 

0.0052 
0 

0.0021 
0 

0.0051 
0 

S: obs 
pred 

0.0046
0 

0.0070 
0 

0.0034 
0 

0.0039 
0 

0.0007 
0 

0.0034 
0 

 

4.4 Reaction Chemistry of Biomass Gasification 

After modeling the composition of biomass, the reaction chemistry defines the 

mapping from molecular inputs to outputs. The reaction chemistry for biomass 

gasification consists of two major reaction classes: pyrolysis, reactions requiring no 

reactive gasses, and gasification, here reactions with oxygen and water. Discussion of 

the reaction chemistry in the biomass gasification model is again divided into linear 

polymers, cellulose and hemicellulose, and the cross-linked polymer, lignin. 
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4.4.1 Cellulose and Hemicellulose 

For the linear polymers, cellulose and hemicellulose, the composition was 

represented using a polymer-size distribution and a known repeat unit. Due to the 

length of these polymers, detailed pyrolysis chemistry, e.g., thermal cracking, could 

produce a near infinite number of products. Furthermore, the only products measured 

at gasification conditions are light gasses and tar compounds with undefined 

compositions[13], [16]. To simplify this process, the initial breakdown of cellulose 

and hemicellulose is assumed to occur from depolymerization reactions. After 

breakdown into monomeric units, the reaction network includes more complex 

pyrolysis and gasification chemistries. 

4.4.1.1 Depolymerization 

Depolymerization of cellulose can occur via two dominant mechanisms: 

hydrolysis and thermolysis, which are illustrated in Figure 4.7[105],[106]. Hydrolysis, 

a bimolecular reaction with water, of a glycosidic linkage produces glucose end-

groups on the oligomers formed. At complete conversion, this mechanism produces 

pure glucose as monomers. The second pathway is a thermolysis mechanism, which 

produces both a glucose and a levoglucosan end group. Counter-intuitively, this 

mechanism does not produce a 1:1 ratio of glucose:levoglucosan monomers at 

complete conversion. Instead, a single glucose monomer is produced for every original 

cellulose chain. This is illustrated in Figure 4.8 for the breakdown of a cellulose 4-

mer. Hydrolysis typically occurs over an acid catalyst[105], whereas thermolysis 

requires no such catalyst and occurs at temperatures above 300 °C[106]. As biomass 

gasification is often at extreme temperatures with no acid catalyst, thermolysis is 

assumed to break down the initial structure.  



 98 

Hydrolysis, +H2O

Thermolysis

m mer n-m mer

...

n-m merm mer

...

...

...

 

Figure 4.7: Cellulose Depolymerization Pathways.  

 

 

2

 

Figure 4.8: Complete cracking of a cellulose 4-mer showing final monomeric 

products. 

After breakdown into glucose and levoglucosan, the monomers then undergo 

ring opening to form analogous acyclic structures, as shown in Figure 4.9. These 

molecules are assumed to be the starting point for more detailed pyrolysis and 

gasification chemistry. Full pyrolysis chemistry was not applied on larger or ring-
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containing molecules as it would add unnecessary detail for species that are not 

measured in gasification literature[13], [100], [101]. 

 

Figure 4.9: Starting molecules of full cellulose pyrolysis network: linear levoglucosan 

(left) and linear glucose (right). 

Hemicellulose depolymerization is similar to that for cellulose in that it can 

follow both hydrolysis and thermolysis reaction pathways, as shown in Figure 4.10. 

Unlike that for cellulose, hemicellulose thermolysis can only occur at end-groups 

rather than at any linkage in the molecule. This is due to the nature of the 

levoglucosan-like structure, anhydro-xylopyranose, that forms in the thermolysis 

reaction. In order to have two five-membered rings in the structure, one of the ether 

linkage sites must participate in ring formation. If this were to occur mid-chain, it 

would require simultaneous bond-breaking of both ether linkages[98]. Like cellulose, 

the final yield of an n-mer breakdown via thermolysis is (n-1) anhydro-xylopyranose 

and one xylose. 
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n-m mer

...

m mer

...
Hydrolysis, +H2O

Thermolysis

 

Figure 4.10: Depolymerization pathways for hemicellulose. 

Of the two depolymerization mechanisms, thermolysis is likely to dominate 

based on the observed products[98] at high temperatures. This mechanism follows a 

stepwise depolymerization rather than a random-scission depolymerization. Every 

depolymerization reaction produces an anhydroxylopyranose molecule. When the last 

linkage in each chain breaks, a xylose is also produced. The 5-carbon molecules in 

Figure 4.11 were the starting points for more detailed pyrolysis and gasification 

chemistry.  

 
 

Figure 4.11: Linear forms of anhydro-xylopyranose (left) and xylose (right). These are 

the starting point of the full pyrolysis network. 
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For both cellulose and hemicellulose, the linear monomers mark the transition 

from representing chemical structure using statistics and attributes to representing the 

structure using explicit molecules. Within the reaction network, this transition is 

represented using the reactions given in Table 4.11.  

Table 4.11: Depolymerization reactions representing conversion of attribute 

representation to molecular representation for linear polymers. 

Hemicellulose Cellulose 

𝑯𝒆𝒎𝒊𝒄𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝑰𝑳
𝒕𝒉𝒆𝒓𝒎𝒐𝒍𝒚𝒔𝒊𝒔
→          

𝑯𝒆𝒎𝒊𝒄𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝑺𝑪𝟎
+𝑯𝒆𝒎𝒊𝒄𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝑺𝑪𝟏  

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝐼𝐿
𝑡ℎ𝑒𝑟𝑚𝑜𝑙𝑦𝑠𝑖𝑠
→          

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑆𝐶0 + 𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑆𝐶1  

𝑯𝒆𝒎𝒊𝒄𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝒄𝒐𝒓𝒆
→ 𝑨𝒏𝒉𝒚𝒅𝒓𝒐𝒙𝒚𝒍𝒐𝒑𝒚𝒓𝒂𝒏𝒐𝒔𝒆 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑐𝑜𝑟𝑒 → 
𝐿𝑖𝑛𝑒𝑎𝑟 𝐿𝑒𝑣𝑜𝑔𝑙𝑢𝑐𝑜𝑠𝑎𝑛 

𝑯𝒆𝒎𝒊𝒄𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝒄𝒐𝒓𝒆
→ 𝑳𝒊𝒏𝒆𝒂𝒓 𝒙𝒚𝒍𝒐𝒔𝒆 

𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑐𝑜𝑟𝑒 → 𝐿𝑖𝑛𝑒𝑎𝑟 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 

 

The equations for the transition from statistical representation to molecular 

representation are based on the mechanism of depolymerization. For hemicellulose, 

each link cleavage produces an anhydroxylopyranose due to the unzipping 

mechanism. Because there is one reaction site per chain, the rate of unzipping is 

proportional to the number of chains in the system. In the last cleavage of each chain, 

a linear xylose is also produced. To model this phenomenon, the probability of a linear 

xylose forming was set to the ratio of total number of initial hemicellulose chains to 

the total number of repeat units. Shorter chain lengths, i.e., larger initial number of 

chains, would therefore lead to the production of more linear xylose molecules. These 

characteristics yield the rate laws given in Table 4.12. 
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Table 4.12: Depolymerization reaction rate laws representing conversion of attribute 

representation to molecular representation for hemicellulose. 

Index Reaction Rate Law 

1 𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝐼𝐿
𝑡ℎ𝑒𝑟𝑚𝑜𝑙𝑦𝑠𝑖𝑠
→         𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑆𝐶0
+ 𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑆𝐶1  

𝑅𝑎𝑡𝑒1 = 
𝑘1 ∗ [𝐻𝑒𝑚𝑖𝐶ℎ𝑎𝑖𝑛𝑠] 

2 𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑐𝑜𝑟𝑒
→ 𝐴𝑛ℎ𝑦𝑑𝑟𝑜𝑥𝑦𝑙𝑜𝑝𝑦𝑟𝑎𝑛𝑜𝑠𝑒 

𝑅𝑎𝑡𝑒2 = 𝑅𝑎𝑡𝑒1 

3 𝐻𝑒𝑚𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝑐𝑜𝑟𝑒 
→ 𝐿𝑖𝑛𝑒𝑎𝑟 𝑥𝑦𝑙𝑜𝑠𝑒 

𝑅𝑎𝑡𝑒3 = 

𝑅𝑎𝑡𝑒1 ∗
[𝐻𝑒𝑚𝑖𝐶ℎ𝑎𝑖𝑛𝑠]0

[𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑝𝑒𝑎𝑡 𝑈𝑛𝑖𝑡𝑠]
 

 

The mechanism in cellulose depolymerization occurred via random breakdown 

in the backbone. This characteristic of depolymerization is analogous to the 

assumptions made in a Flory-distributed polymerization; therefore, a Flory distribution 

can also be used to model the breakdown. Changes in monomer concentration inform 

the production of linear levoglucosan and linear glucose.  

The production of monomers from random scission can be related to the 

breakdown of the backbone, or d[IL]/dt.  First, the number of monomers in a Flory-

distributed polymer as a function of p is given below, in Equation 4.7. The parameter, 

N0, corresponds to the number of repeat units in the system, equivalent to the half of 

the total sites, as each repeat unit has two sites. Differentiation allows for a 

relationship between the change in monomer concentration and dp/dt, shown in 

Equation 4.8. The final result, given in Equation 4.9, gives a simple relationship 

between increase in monomer concentration and decrease in inter-core linkage 

concentration. 

𝑁1 = (𝑁0) ∗ (1 − 𝑝)
2 

𝑤ℎ𝑒𝑟𝑒 𝑁0 =
2 ∗ [𝐼𝐿] + [𝑆𝐶]

2
 

(4.7) 
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𝑑𝑁1
𝑑𝑡

= 𝑁0 ∗ −2 ∗ (1 − 𝑝) ∗
𝑑𝑝

𝑑𝑡
 

 

(4.8) 

𝑑𝑝

𝑑𝑡
=
1

𝑁0
∗
𝑑[𝐼𝐿]

𝑑𝑡
 

𝑑𝑁1
𝑑𝑡

= −2 ∗ (1 − 𝑝) ∗
𝑑[𝐼𝐿]

𝑑𝑡
 

(4.9) 

 

The increase in monomer concentration is divided into relative increases in 

linear levoglucosan and glucose. From the analysis of the depolymerization 

mechanism, it was found that a single glucose monomer is produced for every original 

chain of cellulose. The probability of forming a glucose repeat unit is proportional to 

the total number of chains divided by the number of repeat units given in Equation 

4.10. Therefore, if the original system contained shorter polymer chains, then a higher 

number of glucose monomers would be produced. These results give the rate laws 

shown in Table 4.13. 

𝑝𝑟𝑜𝑏𝑔𝑙𝑢 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑖𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑖𝑡𝑠
 

𝑝𝑟𝑜𝑏𝑙𝑒𝑣𝑜 = 1 − 𝑝𝑟𝑜𝑏𝑔𝑙𝑢 

(4.10) 

Table 4.13: Depolymerization reaction rate laws representing conversion of attribute 

representation to molecular representation for cellulose. 

Reaction Rate Law 

𝑪𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝑰𝑳
𝒕𝒉𝒆𝒓𝒎𝒐𝒍𝒚𝒔𝒊𝒔
→         𝑪𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝑺𝑪𝟎
+ 𝑪𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝑺𝑪𝟏  

𝑅𝑎𝑡𝑒1 = 𝑘4 ∗ [𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒𝐼𝐿] 

𝑪𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝒄𝒐𝒓𝒆 → 𝑳𝒊𝒏𝒆𝒂𝒓 𝑳𝒆𝒗𝒐𝒈𝒍𝒖𝒄𝒐𝒔𝒂𝒏 
𝑅𝑎𝑡𝑒2 =

𝑑𝑁1
𝑑𝑡
∗ 𝑝𝑟𝑜𝑏𝑙𝑒𝑣𝑜 

𝑪𝒆𝒍𝒍𝒖𝒍𝒐𝒔𝒆𝒄𝒐𝒓𝒆 → 𝑳𝒊𝒏𝒆𝒂𝒓 𝒈𝒍𝒖𝒄𝒐𝒔𝒆 
𝑅𝑎𝑡𝑒3 =

𝑑𝑁1
𝑑𝑡
∗ 𝑝𝑟𝑜𝑏𝑔𝑙𝑢 
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4.4.1.2 Pyrolysis 

The pyrolysis reactions in the cellulose and hemicellulose networks serve two 

primary purposes: the breakdown into light hydrocarbons and the formation of char, 

i.e, stable, heavy molecules. The breakdown of molecules comes in the form of 

cracking reactions, as shown below in Table 4.14. The enol-aldehyde tautomerization 

is included for two reasons. First, the aldehyde form of the molecule is energetically 

more stable. Second, the carbonyl group can undergo decarbonylation, allowing for 

further breakdown of the molecule. 
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Table 4.14: Pyrolysis reactions used to breakdown cellulose and hemicellulose into 

small molecules.  

Reaction Type 
(Family) and 
Reactive Moiety 

Reaction 
Matrix 

Example Reaction Reaction Rules 

Decarbonylation 
Aldehydes 

 
H O C R  

H 0 0 -1 1  

O 0 0 1 0  

C -1 1 0 -1  

R 1 0 -1 0  
 

 

Any aldehyde 
(primary carbonyl) is 
allowed to react. 

Decarboxylation 
Carboxylic acids 

 
H O C R  

H 0 -1 0 1  

O -1 0 1 0  

C 0 1 0 -1  

R 1 0 -1 0  
 

 
 

Any carboxylic acid 
in the system is 
allowed to react. 
 
 

Acyclic Thermal 
Cracking 
Hydrocarbon 
side chains and 
irreducible 
molecules 

 
C C C H  

C 0 -1 0 1  

C -1 0 1 0  

C 0 1 0 -1  

H 1 0 -1 0  
 

 

All reactions 
allowed; however, 
in cases with 
multiple reactions 
for a given site, a 
single reaction is 
selected based on 
radical stability of 
intermediates as 
described in the 
appendix. 

Enol-Aldehyde 
Tautomerization 
enols 

 
C C O H  

C 0 -1 0 1  

C -1 0 1 0  

O 0 1 0 -1  

H 1 0 -1 0  
 

 

Reaction allowed 
on any primary 
enol.  

 

Pyrolysis reactions were also used in the formation of char as summarized in 

Table 3.7. The primary reaction family used to create higher molecular weight 

molecules was Diels-Alder addition. Other reaction families, e.g. dehydrogenation, 

allowed for the formation of stable aromatic molecules such as benzene and 

naphthalene. 
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Table 4.15: Pyrolysis reactions used to build aromatic, polyaromatic char molecules.  

Reaction Type 
(Family) and 
Reactive Moiety 

Reaction 
Matrix 

Example Reaction Reaction Rules 

Diels-Alder 
Addition 
Diene, dienophile 

Bimolecular 
reaction 

matrix, more 
complex 

 

2 and 6 carbon 
dieneophiles were 
allowed to react with 4 
carbon enes.  

Double-bond shift 
Double bonds 

 
C C C H  

C 0 -1 0 1  

C -1 0 1 0  

C 0 1 0 -1  

H 1 0 -1 0  
 

 

 

Reactions allowed only on 
double bonds in a ring. 

Dehydrogenation 
Hydrocarbon side 
chains and 
irreducible 
molecules 

 
C H H C  

C 0 -1 0 1  

H -1 0 1 0  

H 0 1 0 -1  

C 1 0 -1 0  
 

 

Reactions only allowed 
on cyclic structures. 

 

4.4.1.3 Gasification 

Two forms of gasification reactions were included in the cellulose and 

hemicellulose networks: incomplete combustion and steam reforming, as shown in 

Table 4.16. Gasification reactions between hydrocarbons and hydrogen or CO2, the 

other gasifying agents in the MSW gasification process, were assumed to be 

negligible. It should be noted that for the included gasification reactions, the rate laws 

were assumed to be first order with respect to both reactants. This prevents unrealistic 

reaction orders with respect to the gasifying agent.  
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Table 4.16: Gasification reactions in hemicellulose and cellulose networks.  

Reaction 
Type 

Example Reaction General Reaction 

Incomplete 
Combustion 

3 43.5

 
𝐶𝑥𝐻𝑦𝑂𝑧 +

𝑥 +
𝑦
2 − 𝑧

2
 𝑂2 

→ 𝑥𝐶𝑂 + (
𝑦

2
)𝐻2𝑂 

Steam 
Reforming 

733

 
𝐶𝑥𝐻𝑦𝑂𝑧 + (𝑥 − 𝑧) 𝐻2𝑂 

→ 𝑥𝐶𝑂 + (
𝑦

2
− (𝑥 − 𝑧))𝐻2 

4.4.2 Lignin 

4.4.2.1 Interconversion of Attributes 

Due to the attribute representation of the composition of lignin, the reaction 

network of lignin contains reactions between attributes. In biomass gasification, cores 

are modeled to react via gasification reactions to form smaller cores and light gasses. 

Side chains and linkages are modeled to react from both pyrolysis and gasification 

reactions.  

4.4.2.2 Core Reactions 

The core reactions currently included in the lignin reaction network are 

incomplete combustion and steam reforming. These reactions occur in a stepwise 

manner for each of the cores as shown in Figure 4.12. The first core would react with 

oxygen or steam to produce a reduced size core. This reduced core would then react 

with oxygen or steam to be completely consumed, forming light gases. 

The reaction network for cores only included gasification reactions. This was 

due to the high thermal stability of cores in the system. The two dominant cores, 

accounting for 82 mol% of all cores are benzene and phenol, and they are stable under 
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pyrolysis conditions and are reacted through gasification. Additionally, in cores that 

can undergo thermal cracking, the majority of the mass belongs to aromatic rings.  

 

Reactant Core Product Core 

 

 

 

Light gas only. 

Figure 4.12: Example of stepwise gasification reactions of cores. Each reaction is 

written for both incomplete combustion and steam reforming. The 

alternate reactions where the phenol ring is gasified first were also 

written.  

4.4.2.3 Linkage and Side Chain Reactions 

The inter-core linkage (IL) and side chain (SC) network contains primarily 

cracking, incomplete combustion, and steam reforming reactions. The cracking 

reactions are as described in the cellulose and hemicellulose models and include 

acyclic thermal cracking and decarbonylation.  For side chains, incomplete 

combustion and steam reforming reactions were written such that a hydrogen side 

chain remained bound to the core as shown in Table 4.17. This characteristic prevents 

the product core from having empty binding sites. Similarly, when gasification 

reactions occur on inter-core linkages, two side chains must remain to fill the binding 

sites on each core. 
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Table 4.17: IL and SC gasification to hydrogen side chains to retain stable cores. 

Reactant IL or SC Product SCs 

 
 

 
 

4.4.2.4 Light Gas Reactions 

In addition to the breakdown of cellulose, hemicellulose, and lignin, light 

gasses are present in the gasifier and undergo gas-phase reactions. A list of included 

reactions, along with calculated thermodynamic data, is given in Table 4.18. 

Thermodynamic properties were calculated from ground state data and Shomate 

parameters reported by NIST[107]. These properties were used to determine if 

reactions were modeled as reversible or irreversible. 

Table 4.18: Thermodynamic details of the specific gas-phase reactions. Superscripts 

represent temperatures (K).  

Reaction  𝑲𝒆𝒒
𝟐𝟗𝟖 𝑲𝒆𝒒

𝟏𝟎𝟎𝟎 

Water-Gas Shift 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 
 

1.05E+05 1.44 

Steam Reforming Methane  𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2 1.19E-25 26.74 
Partial Oxidation Methane 

𝐶𝐻4 + (
1

2
)𝑂2 → 𝐶𝑂 + 2𝐻2 

1.39E+15 3.07E+11 

Dry Reforming of Methane 𝐶𝐻4 + 𝐶𝑂2 ↔ 2𝐶𝑂 + 2𝐻2 1.13E-30 18.62 
Oxidation of CO to CO2 

𝐶𝑂 + (
1

2
)𝑂2 → 𝐶𝑂2 

1.23E+45 1.65E+10 

 

2 
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4.5 Network Generation 

The reaction network was generated automatically using in-house software 

tools. The pyrolysis networks were generated using the Interactive Network 

Generator, or INGen[44],[40]. In this case, three separate networks were generated: a 

combined cellulose-hemicellulose network, a lignin core network, and a lignin SC-IL 

network. An in-house C# application, INGen Network Merge, was developed to both 

merge these networks and add gasification reactions to the system. The final reaction 

network features are summarized in Table 3.9. The network contained eight reaction 

families for depolymerization and pyrolysis, and six reaction families for gasification 

with oxygen and water. The final network contained 1348 reactions and 357 species. 

This network was used to construct the kinetic model. 
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Table 4.19: Reaction network diagnostics for the biomass model. 

Reaction Families Reactions 

Depolymerization and 
Pyrolysis 
Acyclic Thermal Cracking 

 
474 

Cellulose Depolymerization 3 
Double-Bond Shift 76 
Decarbonylation 108 
Dehydrogenation 10 
Diels-Alder 40 
Enol-Alde Tautomerization 37 
Hemicellulose 
Depolymerization 

3 

Gasification  
Core Oxidation 26 
Core Steam Reforming 26 
Incomplete Combustion 231 
Incomplete Combustion-Chain 55 
Steam Reforming 209 
Steam Reforming-Chain 45 

Light Gas Reactions 5 

Total Reactions 1348 
Total Species 357 

 

4.6 Model Equations and Kinetics 

The model equations in a molecular-level kinetic model are fundamentally a 

set of differential equations derived from material balances. The reaction rate 

constants are calculated using a standard Arrhenius equation; this gives two rate 

parameters, the pre-exponential factor and activation energy, per reaction in the 

network. 

To reduce the parametric complexity of the model, reaction families and linear 

free energy relationships (LFERs) were utilized. First, all reactions from a given 

reaction family are modeled to have the same pre-exponential factor. Second, the Bell-
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Evans-Polanyi LFER[51], [52] in Equation 4.11 is used to relate the activation energy 

of reactions within a reaction family, j, to the enthalpy change on reaction, i.  This 

yields the rate constant expression in Equation 4.12. In this relationship, there are 

three parameters per reaction family in the model: lnA, E0, and . There are few data 

in the gasification literature on non-light gas species. This makes it difficult to 

differentiate rate constants within a given family; therefore, most families were 

modeled to have  equal to zero, thereby removing a third of the adjustable 

parameters. After parameter reduction, there was a total of 39 adjustable parameters in 

the model as shown in Table 4.20. 

 

𝐸𝑖,𝑗
∗ = 𝐸0 (𝑗) + 𝛼𝑗 ∗ Δ𝐻𝑖 

 

(4.11) 

 

ln 𝑘𝑖 = ln𝐴𝑗 − (
𝐸0 (𝑗) + 𝛼𝑗 ∗ Δ𝐻𝑖

𝑅𝑇
) 

 

 

(4.12) 

To reduce the complexity of the optimization problem, further constraints were 

applied to the adjustable parameters in the model, as described in Table 4.20. First, 

literature values were obtained for the rate constants of decarbonylation, 

dehydrogenation, and water-gas shift[81],[74]. Further constraints were obtained by 

allowing thermodynamic equilibrium to dictate two reaction families: double-bond 

shift and enol-aldehyde tautomerization. Incomplete combustion of small molecules 

and chains from lignin were modeled using the same rate constant. Steam gasification 

is known to be significantly slower than oxygen gasification[108]; in this work, the 

rate constants for steam reforming were constrained to be slower and proportional to 

the respective incomplete combustion families. Based on this reasoning, dry-reforming 

and steam-reforming of methane were constrained to be slow relative to the partial 
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oxidation of methane. After constraints, the optimization problem was reduced to 17 

parameters. 

Table 4.20: Analysis of adjustable parameters and constraints in the model.  

Reaction Families Adjustable 
Parameters 

Constraints Justification 

Depolymerization and 
Pyrolysis 
Acyclic Thermal Cracking 

 
3 

 
0 

 
 

Cellulose 
Depolymerization 

2 0  

Double-Bond Shift 2 2 Equilibrated 
Decarbonylation 2 2 Literature Value 
Dehydrogenation 2 2 Literature Value 
Diels-Alder 2 2 Equilibrated 
Enol-Alde 
Tautomerization 

2 2 Equilibrated 

Hemicellulose 
Depolymerization 

2 0  

Gasification    
Core Oxidation 2 0  
Core Steam Reforming 2 2 k proportional to Core 

Oxidation 
Incomplete Combustion 2 0  
Incomplete Combustion-
Chain 

2 2 k same as Incomplete 
Combustion 

Steam Reforming 2 2 k proportional to 
Incomplete Combustion  

Steam Reforming-Chain 2 2 k proportional to 
Incomplete Combustion 

Light Gas Reactions 10 6 Literature values and 
kinetic reasoning 

Total 39 22  
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The material balances for the attribute reaction model used for lignin are in 

terms of attributes, rather than species[48], [109]. The equations for the attributes are 

analogous to the molecular species material balances and are given below in Equation 

4.13. All other traits of the reaction kinetics, e.g. reaction family concept, are 

analogous to the irreducible molecule model discussed previously. It should be noted 

that despite the attribute representation, the list of molecular species and mole 

fractions can be generated at any point in the solution[109]; the attribute material 

balances simply change the relative amounts of attributes in the system. 

           
𝑑𝐶𝑜𝑟𝑒̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
= ∑ �̅�𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖
𝑖, 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 
(4.13) 

a. 

𝑑𝐼�̅�

𝑑𝑡
= ∑ �̅�𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖
𝑖, 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 
 

b. 

𝑑𝑆𝐶̅̅̅̅

𝑑𝑡
= ∑ �̅�𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖
𝑖, 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 
c. 

 

4.7 Model Evaluation 

To evaluate the model, literature data from Li et al. on uncatalyzed biomass 

gasification in a circulating fluidized bed were simulated. The paper contained data on 

five biomass samples and temperatures ranging from 700-815 °C. The reactor was 

modeled as a continuous stir tank reactor to simulate the experimental fluidized bed. 

The authors performed 15 experiments varying feedstock, temperature, pressure, 

oxidation agent, and ash reinjection.  The data of primary interest are at atmospheric 

pressure with air as the oxidation agent, no ash reinjection, and no added catalyst. For 

these runs, the temperature, feedstock, and gas composition are given in Table 4.21. 

From this table, runs 3, 4, and 11 were chosen for tuning to test two biomass samples 
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at a moderate range of temperatures. The remaining data sets were reserved to test the 

predictive ability of the model. 

Table 4.21: Biomass type, temperature, and gas composition for each utilized 

experimental run from Li et al (2004). For biomass type, the 

abbreviations are Cyp – cypress, hem – hemlock, SPF- spruce, pine, fir. 

PS – pine, spruce.   

Run Number 2 3 4 11 12 13 

Biomass Type cyp. SPF hem. hem. PS mixed 

Temperature (°C) 718 766 815 789 701 728 

H2 (mol%) 3.1 3.2 3 4.2 5.4 5.1 
N2 (mol%) 68.1 67.1 68.4 62.6 53.9 56.3 
CO (mol%) 11 10.7 9.6 14.6 21.4 19.9 
CH4(mol%) 1.9 1.9 1.9 3 4.6 4.1 
CO2(mol%) 15.9 17.1 17.1 15.7 14.7 14.5 

 

The results, in the form of a parity plot, are given below in Figure 4.13. 

Tabulated versions of these results are also given in Table 4.22. The results fit well 

with experimental data with a best fit line of 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑦𝑜𝑏𝑠 ∗ 0.928 + 0.0003. 

There are two sources of possible uncertainty. First, there was uncertainty in modeling 

the ultimate analysis of the biomass, shown previously in Table 4.10. This was most 

notable in the values for oxygen. This can be partly attributed to the absence of sulfur 

and nitrogen in the cellulose, hemicellulose, and lignin composition models. Second, 

the biomass samples contain varying, trace amounts of ash which can have a catalytic 

effect on gasification reactions[110].  
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Table 4.22: Observed and predicted values for data sets in Li et al. All values in the 

table are in mol/s.  

Composition Data Set 3 (exp, 
pred) 

Data Set 4 (exp, 
pred) 

Data Set 11 (exp, 
pred) 

CH4 0.017, 0.016 0.020, 0.016 0.024, 0.028 
H2 0.028, 0.032 0.031, 0.033 0.034, 0.034 
CO 0.094, 0.093 0.101, 0.075 0.117, 0.141 
CO2 0.150, 0.135 0.179, 0.175 0.126, 0.091 

 

 

Figure 4.13: Parity plot of tuned data sets for Li et al data. After a linear fit, the 

formula comparing experiment to model results is 

ypredicted=yobs*0.928+0.0003. The R2 relative to y=x is 0.918 for the tuned 

data sets.  

In order to test the tuned kinetic parameters, a once-through simulation was run 

using all six viable data sets. The parity plot is shown below, in Figure 4.14. The 

results are summarized as 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑦𝑜𝑏𝑠 ∗ 0.989 − 0.007 even though the 

predicted data sets included both a wider temperature range and additional biomass 
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samples. This suggests model robustness, a key feature for technologies such as MSW 

gasification. 

 

 

Figure 4.14: All viable datasets from Li et al (2004) using tuned parameters from data 

sets 3, 4, and 11. Squares represent tuned results, circles are predicted 

results. After a linear fit, the formula comparing experiment to model 

results is ypredicted=yobs*0.989-0.007. The R2 relative to y=x is 0.861 for 

all data sets. 

4.8 Tar Prediction and Reaction Family Analysis 

A major advantage of molecular-level kinetic models is the ability to ask the 

model questions at the molecular level. First, the model predicts both the quantity and 

composition of tar, defined here as molecules with a higher boiling point than 

benzene. The relative amounts of tar produced in each of the data sets are given below, 

in Table 4.23.  The trend that data sets 11-13 produced the highest tar agreed with the 

experimental measurements[13]. The amount of tar also increases as the biomass/O2 
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ratio increases as shown in Figure 4.15. The oxygen increase does have a tradeoff in 

the quality of the syngas; higher tar fractions had a higher fraction of CO and H2 in 

syngas. The composition of tar was predominantly lignin-derived components derived 

from benzene and phenol with methoxy substituents. It is important to note that mass 

transport, heat transport, and vapor-liquid equilibrium are not taken into account in the 

modeling of tar in this model. Any tar molecule that is present in the product stream at 

the reactor outlet is considered part of the tar fraction. This is important to note when 

comparing with literature studies, such as CPD models by Fletcher and co-

workers[93], [94], that model tar release as well as tar formation. It is not a 

fundamental limitation of molecular-level kinetic models to exclude tar release, or 

more generally mass and heat transfer effects. An interesting path for future work is to 

analyze whether these phenomena play a role in discrepancies between model 

predictions and experimental data. 

Table 4.23: Weight fraction of tar in output stream for all data sets. 

Data Set Tar Fraction 

Data Set 2 0.028 
Data Set 3 0.031 
Data Set 4 0.027 
Data Set 11 0.058 
Data Set 12 0.058 
Data Set 13 0.049 
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Figure 4.15: Tar weight fraction as a function of the ratio of dry biomass to supplied 

oxygen (blue, left axis). The fraction of CO and H2 in overall dry syngas 

(nitrogen excluded) is also shown (orange, right axis). 

The model can also provide additional insight into the process chemistry. First, 

during reactor integration, the rates of each reaction are recorded as a function of 

reactor volume. The total molar flux through each reaction can then be quantified 

using Equation 4.14. For example, if the reaction were the oxidation of CO to CO2, the 

summation would return the moles of CO reacted. If the result of Equation 4.14 is 

calculated for every reaction within a reaction family, then the total flux through the 

reaction family is quantified. A comparison of the relative sums of all reaction 

families is given, below, in Figure 4.16. From these results, the dominant pyrolysis 

reaction families include the depolymerization of each biomass component. Of the 

gasification chemistries, oxidation was far more prevalent than steam reforming. 

𝑀𝑜𝑙𝑎𝑟 𝐹𝑙𝑢𝑥 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  ∑ (𝑉𝑖+1 − 𝑉𝑖) ∗ 𝑟𝑎𝑡𝑒𝑖
𝑖, 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

 
(4.14) 
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Figure 4.16: Relative importance of reaction families in the reactor model integration 

for Data Set 11. All analysis was done using an in-house C# application, 

KME Results Analyzer. 

4.9 Kinetic Rate Constants 

The tuned values for the kinetic rate constants relative to Acyclic Thermal 

Cracking at 1000K are given in Table 4.24. The initial removal of moisture is 

important to gasification processes. Here, this removal is incorporated into the rate 

constants for the initial breakdown of polymeric structures. For cellulose and 

hemicellulose, the relevant reaction families are cellulose and hemicellulose 

depolymerization. For lignin, the primary breakdown of polymeric structure is 

cracking, oxidation, and steam reforming of chains. 
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Table 4.24: Rate constants at 1000K relative to Acyclic Thermal Cracking. 

log(k)relative,1000=log(k)AcylicThermalCracking,1000-log(k)ReactionFamily,1000. Reaction 

families that were assumed to be equilibrated are not included in the 

table. 

Reaction Family 𝐥𝐨𝐠(𝒌)𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆,   𝟏𝟎𝟎𝟎 

Depolymerization and 
Pyrolysis 

 

Acyclic Thermal Cracking 0.00 
Cellulose Depolymerization 0.56 
Decarbonylation 1.64 
Dehydrogenation 0.84 
Hemicellulose 
Depolymerization -3.34 
Gasification 

 Core Oxidation -0.30 
Core Steam Reforming -10.62 
Incomplete Combustion -2.73 
Incomplete Combustion-Chain -2.73 
Steam Reforming -5.94 
Steam Reforming-Chain -5.94 
Light Gas reactions 

 Water-gas shift -7.46 
Oxidation CO to CO2 -2.10 
Partial Oxidation of Methane -3.71 
Steam Reforming of Methane -5.94 
Dry Reforming of Methane -5.94 

4.10 Conclusions 

This study has demonstrated that the composition of biomass and kinetics of 

biomass gasification can be described at the molecular-level. The composition model 

showed that individual models for cellulose, hemicellulose, and lignin can be linearly 

combined to produce a full biomass composition model that fit well with literature 

experimental data. The kinetic model was constructed using a tractable number of 

tunable parameters, and was shown to agree not only the data sets used for tuning, but 
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also additional reported results. The results of the kinetic model demonstrated that 

syngas composition can be predicted across different biomass samples with the same 

set of parameters, thereby addressing a key weakness of lumped kinetic models. This 

allows the kinetic model to be used in commercial applications such as municipal solid 

waste gasification where the biomass type varies as a function of both time and 

location. 
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5.1 Abstract 

A molecular-level kinetic model was developed for a plasma-arc municipal 

solid waste (MSW) gasification unit. The kinetic model included both MSW and 

foundry coke. The components included in the MSW kinetic model were biomass and 

four common plastics, detailed in earlier reports. The relative amounts of these 

components can be optimized for experimental ultimate analyses using an in-house 

tool, The MSW Bulk Composition Solver. The reaction chemistries included detailed 

pyrolysis and gasification chemistry totaling 1628 reactions and 433 molecular 

species. The kinetic model utilized Arrhenius rate laws and contained a material 

balance for each species in the model. The model of coke gasification included 10 

reactions of surface atoms with oxygen and carbon dioxide. The reaction rates were 

modeled using both surface diffusion and intrinsic kinetics. The plasma arc gasifier 

was simulated using three zones for MSW: combustion, gasification, and freeboard, 

and a separate zone for coke gasification. Each bed was simulated using idealized 

chemical reactors with independent conditions. The simulation of the gasifier was 

organized in a user-friendly application, organizing measurable inputs and outputs. 

This application allowed for trending studies, investigating the effects of equivalence 

ratio, MSW composition, and relative sizes of combustion and gasification zones. The 

results provided insight into the effects of these variables on tar production, tar 

composition, and the quality of produced syngas.  

5.2 Introduction 

In 2013, the United States produced 250 million tons of municipal solid waste 

(MSW)[1]. The management of this waste has evolved over the years, as shown in 

Figure 5.1. Historically, MSW was disposed of in landfills; however, in the 1970s, 
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recycling began to become more prevalent. In recent years, the growth of recycling 

has tapered off. This begs the question: what should be done with waste that cannot be 

economically or efficiently recycled? Currently, landfills remain are the primary 

disposal methodology.  

 

 

Figure 5.1: MSW management technologies from 1960-2013. Figure from source 

material[1].  

The economic and environmental issues surrounding landfills motivate waste-

to-energy (WTE) technologies. Environmentally, landfills are potential sources of 

groundwater contamination. Also, uncontrolled degradation of waste promotes the 

formation of greenhouse gases, such as CH4[111], that are tens of times more potent 

than CO2. Economically, WTE is attractive due to landfill tipping fees, energy 

recovery, and political incentives. Landfill tipping fees in the US are shown in Figure 

5.2, and are currently on the order of 50 USD/ton. Furthermore, these fees are 

drastically higher in a more space-limited country; for instance, the UK has tipping 

fees of around 120 USD/ton[112].  Also, MSW is a remarkable potential source of 
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energy; it has been estimated that the energy content in only the plastic fraction of US 

waste is 700 trillion BTU, equivalent to 139 million barrels of oil, per year[113]. 

Politically, this energy source has been judged renewable in the UK, and thereby 

provides additional revenue from renewable energy credits. 

 

Figure 5.2: Average landfill tipping fees in the US 1982-2013. Prices are in USD.[1] 

 

One of the up-and-comping waste-to-energy technologies is plasma-arc 

gasification. This technology offers many advantages over traditional incineration. 

First, oxygen is kept lower than stoichiometric levels, thereby reducing the production 

of harmful oxygenated pollutants[21]. Second, in gasification the waste is converted to 

syngas, a ubiquitous product that can be utilized for electricity or liquid fuel synthesis. 

Finally, due to the extreme temperatures in plasma-arc gasification, the final by-

product is a vitrified slag. This slag material passes EPA leech tests and can be utilized 

for construction purposes[6].  
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Models allow for prediction and optimization of reactor outlets for a given 

reactor inlet. In the broad sense, plasma arc gasification has three primary inputs: 

MSW, Coke, and enriched air. MSW is composed of a variety of components ranging 

from paper to food to plastics. Furthermore, the composition of MSW is a function of 

both location and time of year. The second inlet, coke, is fed to the reactor as a heat 

source and to provide mechanical support for the waste bed. The enriched air stream is 

fed at various points along the reactors walls and provides gasification agents for the 

breakdown of MSW. A portion of this air inlet is heated by the plasma torch before 

entering the main reactor. Interest in modeling MSW gasification stems from the 

complexity and variability of these input streams. This variability must be captured for 

a useful and robust model of MSW gasification. In particular, the model must predict 

response of key outputs, such as syngas and tar composition.  

There are many mathematical models of the gasification of MSW, or its 

components, in the open literature. The most common type of models are based on 

assuming thermodynamic equilibrium[14], [17], [26]–[33] which predict outlet 

compositions based only on the temperature of the gasifier. In the outlet composition, 

the prediction of tar molecules is important in gasification for downstream processing. 

This prediction is problematic for equilibrium models as the extreme temperatures in 

the gasifier disallow tar molecules at thermodynamic equilibrium. Therefore, to 

predict tar molecules, kinetics are necessary. Xiao et al.[37], used an artificial neural 

net to model MSW gasification. Artificial neural nets can predict tar molecules, 

however the absence of chemical meaning to connections within the neural net 

reduces the insight gained from the model. Zhang and coworkers[34], [35] utilized an 

Eulerian model to study the flow characteristics paired with lumped kinetics. Some 
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advantages of lumped kinetics include the model solution time, the number of 

equations, and model simplicity. Lumped kinetics have disadvantages in terms of 

model robustness if the feed or conditions are perturbed from the data used for 

parameter tuning.  

In kinetic modeling, the type of model is determined by the complexity of both 

the desired inputs to the model and predictions. In this case, the complexity of both 

inputs and predictions are at the molecular-level. For instance, a given MSW 

composition is a set of molecules and mole fractions, and changes in MSW 

composition are reflected in the mole fractions. The predictions of the model, tar and 

syngas composition, are also fundamentally represented as a list of molecular 

structures and amounts. Because of the molecular nature of model inputs and outputs, 

the optimal kinetic modeling approach is also at the molecular-level. 

In this work, we have built a molecular-level kinetic model for a plasma-arc 

gasifier. For the MSW stream, we have combined models from two prior works on 

plastics and biomass gasification[54], [83]. The model of coke gasification, detailed in 

this report, takes into account both diffusional and kinetic limitations. The gasifier was 

simulated using four zones: combustion, gasification, freeboard, and a coke bed. Each 

zone was simulated using an idealized reactor, plug-flow or continuously stirred tank, 

with independent reactor conditions. This model was organized using a user-friendly 

C# (C sharp) application, allowing for specification of adjustable inputs and rapid 

analysis of observable outputs. This app enabled trending studies on important design 

parameters. 
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5.3 Kinetic Model Development of Municipal Solid Waste Gasification 

The kinetic model of MSW gasification includes biomass and four common 

plastics: polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate 

(PET), and polystyrene (PS). Kinetic models for biomass and plastic gasification have 

been individually discussed in prior publications[54], [83].  These models were 

merged for the full model of MSW utilized in this work. In this section, the details of 

this model are divided into three categories: the composition model, the reaction 

chemistry and reaction network, and the automatically constructed kinetic model. 

5.3.1 MSW Composition Model 

For molecular-level kinetics, the composition of MSW is a list of molecules 

and mole fractions. The composition model takes a lumped input such as MSW, and, 

using experimental information, predicts the molecular composition. Model 

development was a multistep process. First, the waste components in MSW, shown in 

Figure 5.3, were divided into two modeled categories: plastics and biomass-derived. 

These two categories were then divided into individual polymers: PE, PVC, PET, PS, 

cellulose, hemicellulose, and lignin. The molecular composition model was discussed 

for each of these polymers in prior work; however, in general, polymers were 

described using known repeat-unit structures and polymer-size distributions. The 

molecular composition of MSW was modeled as a weighted average of the polymeric 

compositions, where each weighting was based on the fraction of that polymer in 

waste. 
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A. 

 

C. 

 

B. 

 

 

D. 

 

 

Figure 5.3: MSW Fractions in the United States in 2013. A. Overall fractions as 

reported by the EPA. B. MSW divided into four categories. The biomass-

derived category includes food, wood, yard trimmings, textiles, and 

paper. The ‘not modeled’ category includes metals, glass, other, and 

rubber and leather. C. the cellulose hemicellulose and lignin splits 

predicted in prior work[83] using data from Li and coworkers[13]. D. 

The relative amounts of included plastics, renormalized from EPA 

data[1].  

 

The analysis in Figure 5.3 utilizes literature data for the fractional split of 

MSW components, but MSW is an inherently variable feedstock. To allow these 

variations, an in-house C# application titled ”MSW Bulk Composition Solver” was 

developed for tuning new MSW compositions based on simple experimental ultimate 
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analyses. This application allows the user to vary any of the mass fractions of the 

seven polymers. The least-squares objective function of the optimization routine 

compares calculated and experimental ultimate analyses. The optimization proceeds 

using an in-house simulated annealing algorithm.  

 

Figure 5.4: Screenshot from the MSW Bulk Composition Solver. In this screen, the 

checkboxes on the left allow the user to select which fractions are 

adjusted during the optimization procedure. 

The application in Figure 5.4 allows the user to easily apply ultimate analyses 

to the kinetic model; however, it is advised that this cursory experiment only be used 

on feedstocks with similar compositions. The optimization problem is underspecified 

as there are seven polymers and an ultimate analysis containing only four data points 

(C, H, O, Cl). It is better to utilize this application with supplemental information to 

reduce the degrees of freedom of the optimization. For instance, relative amounts of 
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individual plastics is known, the optimization problem can be constrained. The impact 

of MSW composition on process variables is analyzed in later results. 

5.3.2 Reaction Chemistry and Network 

The reaction chemistry of MSW gasification includes pyrolysis and 

gasification chemistries. Pyrolysis reactions are thermal and take place without the 

presence of a gasifying agent, as discussed in prior work[54], [83]. There are two 

primary categories of pyrolysis chemistry discussed in Table 5.1. The first category 

contains reactions, such as thermal cracking, that break down molecules. The second 

type of pyrolysis reactions are based on addition and produce stable tar molecules. A 

good example here is Diels-alder addition where a diene reacts with a dienophile to 

produce a cyclic olefin.  
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Table 5.1: Pyrolysis reaction families in MSW gasification. These families include 

both categories of pyrolysis chemistry: cracking and tar-formation. This 

table was adapted from tables in prior work[54], [83].  

Reaction Type (Family) 
and Reactive Moetiy 

Example Reaction 

Decarbonylation 
Aldehydes 

 
Decarboxylation 
Carboxylic acids  
Acyclic Thermal 
Cracking 
Hydrocarbon side chains 
and irreducible 
molecules 

 

 
Ester Decarboxylation 
Esters 

 
Ester Rearrangement 
Esters adjacent to a 
double bond  
Enol-Aldehyde 
Tautomerization 
enols  

Diels-Alder Addition 
Diene, dienophile 

 
Double-bond shift 
Double bonds 

 
Dehydrogenation 
Hydrocarbon side chains 
and irreducible 
molecules 

 

PET Anhydride Linkage 
Formation 
Hydrocarbon side chains 
and irreducible 
molecules 
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Gasification reactions take place under the presence of a gasification agent 

such as oxygen, water, or carbon dioxide. In this work, the included gasification 

reaction families are incomplete combustion and steam reforming, shown below in 

Table 5.2; also included in this table are important light-gas reactions such as water-

gas shift.  

Table 5.2: Included gasification reactions. Table is directly from Horton et al[54].  

Reaction Type Reaction 

Incomplete Combustion Example 
𝐶3𝐻8 + 3.5𝑂2 → 3𝐶𝑂 + 4𝐻2𝑂 

General  

𝐶𝑥𝐻𝑦𝑂𝑧 +
𝑥 +

𝑦
2
− 𝑧

2
 𝑂2 → 𝑥𝐶𝑂 + (

𝑦

2
)𝐻2𝑂 

Steam Reforming Example 
𝐶3𝐻8 + 3𝐻2𝑂 → 3𝐶𝑂 + 7𝐻2 

General 

𝐶𝑥𝐻𝑦𝑂𝑧 + (𝑥 − 𝑧) 𝐻2𝑂 → 𝑥𝐶𝑂 + (
𝑦

2
− (𝑥 − 𝑧))𝐻2 

Water-Gas Shift 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 

Steam Reforming 
Methane to CO 

𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2 

Partial Oxidation of 
Methane 

𝐶𝐻4 + (
1

2
)𝑂2 → 𝐶𝑂 + 2𝐻2 

Dry Reforming of 
Methane 

𝐶𝐻4 + 𝐶𝑂2 ↔ 2𝐶𝑂 + 2𝐻2 

Oxidation of CO to CO2 
𝐶𝑂 + (

1

2
)𝑂2 → 𝐶𝑂2 

 

The reaction network for MSW was constructed via merging the networks for 

biomass and plastics gasification. Other details of the reaction chemistry can be found 

in the original publications[54], [83]. After merging the plastics and biomass 
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networks, the final reaction network for MSW gasification contained 433 species 

undergoing 1628 reactions. 

 

5.3.3 Kinetic Model Details 

The kinetic model contains a material balance differential equation for each of 

the 433 species in the reaction network. When integrating a reactor, these differential 

equations are solved simultaneously. The reaction rates are governed using Arrhenius 

rate parameters; fundamentally two parameters per reaction. Using the concepts of 

linear free energy relationships (LFERs) and reaction families, the number of 

adjustable parameters was reduced to three per reaction family[51], [52], [54].  The 

values of these parameters were optimized in prior work, and they are left invariant for 

simulations shown in the current work. 

5.4 Kinetic Model Development of Coke Gasification 

5.4.1 Coke Structure and Composition 

Coke is co-fed to the MSW gasification unit as a source of heat and 

mechanical stability. The particle-size distribution was 4”-6” for the coke in this study. 

An ultimate analysis is given in Table 5.3.  Elementally, the composition of coke was 

almost entirely carbon with trace amounts of hydrogen, sulfur, and nitrogen. Pure 

carbon is effectively large sheets of graphene, and therefore the chemical makeup of 

this coke is large aromatic clusters. Sulfur and nitrogen are likely contained within the 

aromatic rings; and hydrogen is likely exist at edge sites. These compositional details 

are key in determining the gasification reactions of coke.  
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Table 5.3: Ultimate analysis of coke fed to the gasifier. 

Carbon 98.27 

Hydrogen 0.19 

Nitrogen 0.96 

Sulfur  0.58 

5.4.2 Gasification Reactions of Coke 

Coke gasification involves between surface atoms and adsorbed gasifying 

agents. The surface atoms of coke are carbon, hydrogen, nitrogen, and sulfur. The 

dominant gasifying agents are oxygen and carbon dioxide. While hydrogen is 

produced and it can react with carbon to form methane, it is not a feed and the reaction 

with coke will likely be minimal.   Although the surface concentrations of H, N, and S 

are low, their gasification reactions are considered to account for their mass. 

Simplifications to account for their low concentrations will be discussed.   

Carbon can react with oxygen to undergo either complete or incomplete 

combustion, as shown in Equation 5.1. There is some debate over the surface 

intermediates and exact steps of the mechanisms for this combustion. Walker et al. 

gave the mechanism in Equation 5.2 for oxidation where CO originates from carbonyl 

surface groups and CO2 originates from lactone surface groups[114]. Later work by 

Hurt & Calo proposed mechanism in Equation 5.3 after analyzing experimental data 

with a number of rate law options, including a power law, Langmuir-Hinshelwood-

Hougen-Watson, and more complex methods[115].  This mechanism was also the 

preferred mechanism in a later work by Feng and Bhatia[116]. 

 

𝐶 + (
1

2
)𝑂2 → 𝐶𝑂 

2𝐶 + 𝑂2 → 𝐶𝑂2 
(5.1) 
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2𝐶 + 𝑂2 → 2 𝐶(𝑂) 

𝐶(𝑂) → 𝐶𝑂 

𝐶(2𝑂) → 𝐶𝑂2 

(5.2) 

2𝐶 + 𝑂2 → 2𝐶(𝑂) 
              𝐶(𝑂) + 𝑂2 → 𝐶𝑂2 + 𝐶(𝑂) 
              𝐶(𝑂) → 𝐶𝑂 + 𝐶 

 

(5.3) 

The net surface reaction of CO2 with carbon to form CO is shown in Equation 

5.4, and was studied by its namesake, Boudouard, in 1905. A proposed mechanism 

was developed by Ergun and is given in Equation 5.5[117]. Rate constants for this 

mechanism were later studied by Huttinger & Fritz [118]. While more complicated 

mechanisms exist, this mechanism was reported to explain most experimental 

observations by Feng & Bhatia[116]. 

                         𝐶 + 𝐶𝑂2 ↔ 2𝐶𝑂 (5.4) 

              𝐶 + 𝐶𝑂2 ↔ 𝐶(𝑂) + 𝐶𝑂 

𝐶(𝑂) → 𝐶𝑂 + 𝐶 
(5.5) 

 

The reactions of nitrogen, sulfur, and hydrogen are less prevalent in the 

structure of coke and are less well-studied in literature. Surface nitrogen is in low 

percentages and is likely bound to 5- and 6- member aromatic rings in the surface. The 

reactions given in Equation 5.6 are proposed by Leppalahti & Koljonen[119] for the 

gasification with oxygen and CO2 of surface nitrogen with adjacent surface carbons, 

CN. For surface sulfur an analogous mechanism produces COS and is proposed in 

Equation 5.7. Finally, for surface hydrogen, the reaction with oxygen is given in 

Equation 5.8. For both sulfur and hydrogen, these mechanisms are not based on 

literature; however, due to the relative scarcity of these surface atoms, the exact details 

of the mechanism is second order in terms of importance. 
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𝑂2 + 𝐶 + 𝐶𝑁 → 𝐶(𝑂) + 𝐶𝑁(𝑂) 

𝐶𝑁 + 𝐶𝑁(𝑂) → 𝑁2𝑂 + 2𝐶 

𝐶𝑁(𝑂) → 𝑁𝑂 + 𝐶 

𝐶𝑁 + 𝐶𝑂2 → 𝐶𝑁(𝑂) + 𝐶𝑂 

(5.6) 

𝑂2 + 𝐶 + 𝐶𝑆 → 𝐶(𝑂) + 𝐶𝑆(𝑂) 

𝐶𝑆(𝑂) → 𝐶𝑂𝑆 

𝐶𝑆 + 𝐶𝑂2 → 𝐶𝑆(𝑂) + 𝐶𝑂 

(5.7) 

2𝐻 + (
1

2
)𝑂2 → 𝐻2𝑂 (5.8) 

5.4.3 Reaction List and Rate Laws 

Based on the experimental ultimate and proximate analyses, the coke reaction 

network has been simplified from the literature mechanisms, and is shown in Table 

5.4. Carbon gasification with oxygen is described using two reactions, producing 

either CO or CO2. More complex mechanisms involving surface sites are not utilized 

as the system is known to be diffusion-limited at the reactor conditions. Therefore the 

combined reaction rate, 𝑟𝑛𝑒𝑡_𝑂2, combines both diffusional limitations and intrinsic 

kinetics. The relative production of CO and CO2 is defined using a literature 

correlation for the 
𝐶𝑂

𝐶𝑂2
 (cR) ratio from Arthur[120] and is given in Equation 5.9.  

𝑐𝑅 =  2500 ∗ 𝑒
−
6420
𝑇 (𝐾) (5.9) 

The rate of consumption of all non-carbon surface elements is assumed to be 

proportional to the rate of consumption of carbon. For example, after 10% of the 

surface carbon has been consumed, it is assumed that 10% of H, N, S have also been 

consumed. These assumptions appear in the rate laws in Table 5.4. Reactions for both 

oxygen and carbon dioxide are included as either species can consume carbon. It 
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should be noted that these elements are in small amounts and are not expected to play 

a major role in gasifier operation; they were included in this model to close the mass 

balance. 
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Table 5.4: Reaction network for the coke gasification model. Definitions: 𝑐𝑅 =
𝐶𝑂

𝐶𝑂2
 𝑟𝑎𝑡𝑖𝑜, 𝑟𝑛𝑒𝑡 is the net rate taking into account both intrinsic kinetics 

and diffusional limitations. [𝐶]0, [𝐻]0, [𝑆]0, [𝑁]0 are the relative initial 

amounts of each element in the coke (Units in either Mol/s or Mol/L). 

Reaction Rate law 

𝑪 + (
𝟏

𝟐
)𝑶𝟐 → 𝑪𝑶 𝑟1 = 𝑟𝑛𝑒𝑡_𝑂2 ∗

𝑐𝑅

𝑐𝑅+1
  

𝑪 + 𝑶𝟐 → 𝑪𝑶𝟐 
𝑟2 = 𝑟𝑛𝑒𝑡_𝑂2 ∗

1

𝑐𝑅 + 1
 

𝟐𝑯 + 𝟎. 𝟓𝑶𝟐 → 𝑯𝟐𝑶 
𝑟3 = (𝑟𝑛𝑒𝑡_𝑂2 + 𝑟5) ∗

[𝐻]0
[𝐶]0

 

𝑵 + 𝟎. 𝟓𝑶𝟐 → 𝑵𝑶 
𝑟4 = (𝑟𝑛𝑒𝑡_𝑂2 + 𝑟5) ∗

[𝑁]0
[𝐶]0

 

𝑪 + 𝑺 + 𝟎. 𝟓𝑶𝟐 → 𝑪𝑶𝑺 

𝑟5 = 𝑟𝑛𝑒𝑡_𝑂2 ∗

[𝑆]0
[𝐶]0

1 −
[𝑆]0
[𝐶]0

 

𝑪 + 𝑪𝑶𝟐 → 𝟐𝑪𝑶 𝑟6 = 𝑟𝑛𝑒𝑡_𝐶𝑂2 

𝟐𝑯 + 𝑪𝑶𝟐 → 𝑯𝟐𝑶+ 𝑪𝑶 
𝑟7 = (𝑟𝑛𝑒𝑡_𝐶𝑂2 + 𝑟9) ∗

[𝐻]0
[𝐶]0

 

𝑵+ 𝑪𝑶𝟐 → 𝑵𝑶+ 𝑪𝑶 
𝑟8 = (𝑟𝑛𝑒𝑡_𝐶𝑂2 + 𝑟9) ∗

[𝑁]0
[𝐶]0

 

𝑪 + 𝑺 + 𝑪𝑶𝟐 → 𝑪𝑶𝑺 + 𝑪𝑶 

𝑟9 = 𝑟𝑛𝑒𝑡_𝐶𝑂2 ∗

[𝑆]0
[𝐶]0

1 −
[𝑆]0
[𝐶]0

 

𝑪𝑶 + (
𝟏

𝟐
)𝑶𝟐 → 𝑪𝑶𝟐 

𝑟10 = 𝑘 ∗ [𝐶𝑂]
1.5 ∗ [𝑂2]

0.25 
𝑘
= 3.16𝐸12

∗ exp(−
1.67𝐸8

𝐽
𝑘𝑚𝑜𝑙

𝑅𝑇
) 

 

5.4.4 Intrinsic Kinetics and Diffusional Limitations 

The net rate given in Equation 5.10 of the reaction of carbon with oxygen takes 

into account both diffusional limitations and intrinsic kinetics. The Damköhler 
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number, Da, is defined as the ratio of the rate without diffusion limitations over the 

diffusion limited rate as shown in 5.11. When Da is small, the reaction rate approaches 

intrinsic kinetics, or 𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐. Similarly, when Da is large, the reaction rate 

approaches the diffusion limited rate, or 𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡𝑒𝑑. The intrinsic rate follows an 

Arrhenius relationship, given in Equation 5.12. 

𝑟𝑛𝑒𝑡_𝑂2 =
𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐
1 + 𝐷𝑎

 [
𝑚𝑜𝑙

𝐿 ∗ 𝑠
]    

 

(5.10) 

𝐷𝑎 =
𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐

𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡𝑒𝑑
 

(5.11) 

𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 = 𝑦[𝑂2] ∗ 𝐴𝑂2,𝐶 ∗ 𝑒
−
𝐸𝑂2,𝐶
𝑅𝑇  [

𝑚𝑜𝑙

𝐿 ∗ 𝑠
]   

 

(5.12) 

The diffusion limited rate, shown in Equation 5.13, is proportional to the gas 

phase oxygen concentration, the surface area to volume ratio of the particle, 
𝑆𝐴𝑝

𝑉𝑝
, and 

the oxygen mass transport coefficient, 𝑘𝑂2. The concentration of oxygen depends on 

the temperature, pressure, and oxygen/air feed composition.  The surface area to 

volume ratio is calculated as a function of time from the initial particle size and the 

extent of carbon consumption. The mass transport coefficient is calculated using 

Equation 5.14 and involved calculations of the Sherwood, Schmidt, and Reynolds 

numbers. The Schmidt number is assumed to be constant as it is a weak function of 

temperature and contributes little to the Sherwood number.  

𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡𝑒𝑑 = 𝑘𝑂2 ∗ 𝑦[𝑂2] ∗
𝑆𝐴𝑝

𝑉𝑝
= 𝑘𝑂2 ∗ 𝑦[𝑂2] ∗ (

6

𝑑𝑝
) [
𝑚𝑜𝑙

𝐿 ∗ 𝑠
]   (5.13) 
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𝑘𝑂2 =
𝑆ℎ ∗ 𝐷𝑂2
𝑑𝑝

 [
𝑚

𝑠
] (5.14) 

𝑆ℎ = 2.0 + 1.1 ∗ 𝑅𝑒0.66 ∗ 𝑆𝑐0.33 
 

 

𝑅𝑒 =
𝜌𝑔 ∗ 𝑑𝑝 ∗ 𝑣

𝜇
   

 

𝑆𝑐 = 0.705  

𝐷𝑂2: oxygen diffusivity (m2s-1), 𝑑𝑝: particle diameter (m) 𝑣: bed 

velocity of vapor (m/s)  
𝜇: viscosity (kg*m-1*s-1), 𝜌𝑔: vapor density (kg*m-3), 𝑆𝐴𝑝: Surface area 

of particle (m2) 
𝑉𝑝: Volume of particle (m3)   

 

 

The gasification with CO2 has analogous formulation as both diffusion and 

intrinsic rates play a role in determining the kinetics of the reaction. Final equations 

are given in Equation 5.15 and Equation 5.16. 

𝑟𝑛𝑒𝑡_𝐶𝑂2 =
𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 ∗ 𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡𝑒𝑑

𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡𝑒𝑑
  

 

(5.15) 

𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 = 𝑦[𝐶𝑂2] ∗ 𝐴𝐶𝑂2,𝐶 ∗ 𝑒
−
𝐸𝐶𝑂2,𝐶
𝑅𝑇    

 
(5.16) 

𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡𝑒𝑑 = 𝑘𝐶𝑂2 ∗ 𝑦[𝐶𝑂2] ∗
𝑆𝐴𝑝

𝑉𝑝
= 𝑘𝐶𝑂2 ∗ 𝑦[𝐶𝑂2] ∗ (

6

𝑑𝑝
) 

 

5.4.5 Analysis of Kinetics in Coke Bed 

Diffusional limitation are known to play a role in the gasification of coke at the 

reaction temperatures. To examine this idea further, Figure 5.5 shows the values of  

𝑟𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐, 𝑟𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡𝑒𝑑, and 𝑟𝑛𝑒𝑡_𝑂2 for both 4” and 6” particles at a range of 

temperatures. As expected from the equations, the intrinsic rate is independent of 

particle size, and the diffusion limited rate decreases with increasing particle size. In 

the expected temperature regime of >1400K, diffusion limitations dominate. This is 
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shown in Figure 5.6 which shows the Da as a function of temperature for the two 

particle sizes. The temperature region of interest has Da much larger than 1, indicating 

surface diffusion control of the rate. 

 
 

Figure 5.5: Comparison of initial reaction rates for 4” (top) and 6” (bottom) particles 

for gasification with oxygen. Data labels give values for diffusion 

limitations at 1200K to show comparison in particle sizes. 
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Figure 5.6: Damköhler number as a function of temperature for 4” and 6” particles. 

 

The initial diffusion-limited state is expected from the literature. In the cupula 

handbook[121], diffusional limitations in CO2 gasification were observed starting at 

1000 °C, and diffusion dominated the net rate at 1400 °C as shown in Figure 5.7. The 

intrinsic kinetics of oxygen gasification is hundreds of times faster than CO2; 

therefore, the shift to the diffusion-limited regime occurs at much lower temperatures.  
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Figure 5.7: Reaction rate contributions as a function of temperature for CO2 

gasification from the Cupula Handbook[121]. In the low temperature 

region (w1), kinetic limitations dominate. The middle range temperatures, 

w2, both kinetics and diffusion contribute to the overall rate. At high 

temperatures (w3), diffusional limitations dominate.  

5.5 Reactor Simulation of Plasma-arc Gasifier 

The coke and MSW gasification kinetic models were used to simulate a 1000 

tonne/day gasification facility. To give an idea of the general layout, a diagram of an 

Alter Nrg gasifier is given in Figure 5.8[6]. Conceptually, there are four regions of this 

reactor: the coke bed, the combustion zone, the gasification zone, and the freeboard 

zone.  

  

Figure 5.8: Gasification unit depiction from Young[6] (left) and conceptual 

organization of idealized reactors for each reaction zone(right).  
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Each region of the gasifier is modeled as an idealized chemical reactor using 

either the MSW or coke gasification models. Design decisions were based on the flow 

regimes found in computational fluid dynamic (CFD) simulations performed by APCI 

(Air Products and Chemicals Inc.). In the coke bed, the coke is gasified using air or 

enriched air. This is a high-temperature bed and is simulated as a plug-flow reactor 

using the coke gasification model. The waste inlet is split into both the combustion 

and gasification zones. The combustion zone are the regions around air inlets with 

high oxygen concentrations and temperatures. The majority of the waste bed is 

modeled using the gasification zone which has lower oxygen concentrations and lower 

temperatures. Both waste bed zones are modeled as a continuously stirred tank reactor 

(CSTR) using the MSW gasification model. The freeboard zone has the largest 

volume of any zone and is the region where equilibrium reactions dominate. This zone 

is modeled as a plug-flow reactor (PFR) using the MSW gasification model. 

5.5.1 MSW Gasification I/O Converter 

A user-friendly application was developed to organize and run the model of the 

gasification unit. The focus of this application is on measurable inputs and outputs to 

the gasification facility. All molecular-level details are abstracted away from the user 

and occur in the underlying code. The following discussion details the usage and 

features of this application. 

The MSW Gasification I/O Converter is shown in Figure 5.9.  To use this 

application, the user specifies measurable (or known) inputs. Each zone has a volume, 

temperature, and pressure; this independence is especially important as there are large 

temperature differences across the reactor. The coke bed has additional flow rates for 

coke, nitrogen, and oxygen; the independence of the gas flow rates allows for enriched 
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air input. MSW is fed to both the combustion and gasification zones; where the user-

specified 𝛼 determines the mass flow to each zone. Similar to the coke bed, the 

combustion zone has independent oxygen and nitrogen flow rates. Moisture is also 

taken into account in these zones through two parameters: moisture content of MSW 

and relative evaporation volume. The latter term signifies the volume (per kg/hr of 

moisture) required for the initial evaporation of moisture within MSW. 

 

Figure 5.9: Screenshot of the main screen from the MSW Gasification I/O Converter. 

Measurable process inputs are on the left, the reactor layout is given in 

the diagram, and measurable process outputs are on the right. 

 

After clicking the run kinetic model button, each reactor zone is solved to fill 

the output tables on the right hand side of Figure 5.9. Due to the linear layout, the 

solution is straightforward. The coke bed is solved first, followed by the combustion 

zone. These two zones provide inputs to the gasification zone, solved third, which, in 
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turn feeds the freeboard zone, solved last. The initial outputs displayed are syngas 

composition and overall tar weight fraction. 

There are two key features to this application that are possible due to the 

molecular nature of the underlying model. The first is the ability change the 

composition of MSW, as shown in Figure 5.10.The tool allows the user to uniquely 

specify the fractions of the seven polymers included in MSW, or the user can load a 

tuned composition from the MSW Bulk Composition Solver, discussed previously. 

The second feature is the ability to analyze the molecular composition of tar 

compounds. For each of the MSW beds, the user can perform analysis of the tar 

leaving that bed, as shown in Figure 5.11. The form gives a pie chart displaying the 

fraction of tar for each dominant species, and the user can view the molecular structure 

of each compound. 

Perhaps the most important feature of this application is ease-of-use, enabled 

by reducing model input and output to measurable quantities. This allows for the user 

to quickly test ‘what-if’ scenarios relevant to MSW gasifier operation. For instance, 

the effects of MSW composition can be tested in minutes rather than days or weeks. 

Furthermore, these tests can be run by anyone from a researcher to an informed 

engineer on-site.  
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Figure 5.10: Edit MSW Composition window within the MSW User Friendly 

Gasification Model.  

 

Figure 5.11: Tar composition analysis screen in the MSW Gasification I/O Converter. 

5.6 Trending Studies 

Trending studies of relevant process parameters were completed using the 

MSW Gasification I/O Converter. Specifically, the changes in tar flow rate and the 

quality of syngas were analyzed as functions of equivalence ratio, MSW composition, 

and 𝛼, or the relative flow rate of MSW to the gasification zone. The usage of the 

user-friendly application allowed these trending studies to be completed in minutes, 

rather than days or weeks. 
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Figure 5.12 shows the effects of the equivalence ratio on the relative flowrates 

of tar molecules and the quality of syngas leaving the freeboard zone. As the 

equivalence ratio is increased, the relative amount of tar molecules are decreased as 

the tar molecules are consumed by oxygen. The quality of syngas also decreases with 

increasing oxygen as CO is oxidized to CO2. Over the normal equivalence ratio range 

for gasification, 0.3-0.5, the amount of tar and syngas quality decrease by factors of 

2.5 and 1.5 respectively. From the point of view of plant engineers, oxygen flow rate 

should be set such that tar does not exceed downstream unit specifications; however, 

exceeding this flowrate reduces the energy content of the syngas and therefore profits 

from electricity production. 
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Figure 5.12: Relative tar fraction and relative syngas quality as a function of 

equivalence ratio. The tar fraction is defined as the weight fraction of 

species with boiling point greater than or equal to benzene. Syngas 

quality here is the mass ratio of CO+H2 to CO+H2+CH4+CO2.  

The composition of tar molecules is described using Figure 5.13. The dominant 

tar molecules are derived from lignin, benzene, and naphthalene. The aromatic nature 

of these tar species is expected from gasification literature of related compounds[21]. 

The lignin reaction model divided lignin into three types of moieties, cores (ring 

structures), inter-core linkages (connections between cores), and side chains (terminal 

groups). Most of the mass in lignin tar molecules was contained within benzyl and 

phenolic cores. The dominant side chains are methoxy, methyl, and hydroxyl. 

Linkages are less prevalent because in the product stream, most linkages have been 
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broken from pyrolysis reactions. The remaining linkages are unable to break due to 

hydrogen deficiency from cracking and require oxygen for further reaction. If more 

oxygen were fed, as in complete combustion, these linkages would break down, 

ultimately forming gas phase species.  

 

  

Figure 5.13: Tar composition leaving the freeboard zone. Left: overall tar molecule 

mass fractions. Right: composition of lignin tar molecules. 

A molecular-level kinetic model can predict model results for a variable 

feedstock. The composition of MSW is variable based on both location and season. 

For this trending study, the EPA (US Average) results were compared with two sets of 

seasonal data for the UK: winter and summer as shown in Figure 5.14. The 

comparisons, given in Table 5.5, show a near constant syngas quality and flow rate for 

five different MSW compositions. The tar flow rates increased with increasing 

fraction of plastics; although this was a weak function over the range of expected 

MSW samples. It should be noted that oxygen flow rates were varied between samples 
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to hold equivalence ratio constant for the ultimate analyses; this simple experiment 

remains the most important for gasifier operation. One difference, not immediately 

evident in Table 5.5, between runs is the composition of tars, shown in Figure 5.15. In 

this figure, the most extreme cases are compared. In the UK-Summer data set, the tar 

are almost entirely lignin-derived molecules, or aromatics with high oxygen content. 

Alternatively, if the feed is mostly plastics, the tar is mostly oxygen-free aromatics. 

These details are important information for downstream processing. 

 

Figure 5.14: Seasonal Dependence of UK MSW, winter and summer[25]. 
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Table 5.5: Comparison of MSW compositions.  All data points used equivalence ratio of 

0.3. The syngas flow rate was defined as the flow rate sum of CO, CO2, H2, 

and CH4. Relative syngas flow rate was the ratio of the flow rate to minimum 

flow rate amount the data sets. 

 Plastics 
Fraction 

Biomass 
Fraction 

Relative 
Tar 

Relative 
Syngas 
Quality 

Relative 
Syngas 
Flowrate 

EPA 0.23 0.77 1.27 1.01 1.01 
UK - Winter 0.085 0.915 1.07 1.00 1.00 
UK - Summer 0.038 0.962 1.00 1.00 1.00 
Synthesized 1 0.5 0.5 1.64 1.03 1.03 
Synthesized 2 0.8 0.2 1.97 1.03 1.03 

 

        
 

 

  

Figure 5.15: Comparison of Tar Compositions for different MSW compositions: 

Left(UK-Summer), Right(Synthesized 2). 
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Figure 5.16: Effect of 𝛼 on relative syngas quality (orange) and tar flow rate (blue) at 

equivalence ratios of 0.4 (top) and 0.3 (bottom). 

The effects of 𝛼, or the fraction of the MSW bed in the gasification zone, on 

relative tar flow rates and syngas quality are given in Figure 5.16. The first 

observation is an inverse relationship between syngas quality and tar flow rate. This 

observation can be explained as the simulations were run with constant equivalence 

ratio, and therefore an increase in tar rate has a corresponding decrease in syngas 

quality as CO and H2 are oxidized.  
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Figure 5.16 also shows a peak in tar flow rate when the fraction of waste 

entering the combustion zone is equal to the equivalence ratio, or when 𝛼 = 1.0 − 𝐸𝑅. 

The combustion zone is at very high temperature and the waste is completely 

combusted to CO2. The peak then aligns with the definition of equivalence ratio, or the 

ratio of fuel to O2 required for complete combustion. If the overall process 

equivalence ratio is 0.3, and 30% of the MSW is fed to the combustion zone, then the 

local equivalence ratio in the combustion zone is 1.0, and the oxygen is completely 

consumed. In this scenario, any waste fed to the gasification zone can only be gasified 

by H2O, a much slower set of reaction chemistry. Pyrolysis reactions proceed in the 

gasification zone, producing tar molecules unabated by incomplete combustion.   

The extreme localized temperature in the combustion zone is not beneficial to 

gasifier operation provided that waste is also fed to the relatively cooler portions of the 

gasification bed. Increasing 𝛼 above the peak value allows oxygen to be in excess in 

the combustion zone and reach the gasification bed. Likewise, decreasing 𝛼 below the 

peak value, allows a greater portion of the waste to react with oxygen from within the 

combustion zone. The lowest tar values and highest syngas quality values are shown 

where 𝛼 is zero or one; the scenarios where all waste is present in the same zone as the 

O2 feed. 

5.7 Summary and Conclusions 

A plasma-arc gasifier with simulated for a MSW feedstock using a molecular-

level kinetic model. The two solid inlets to the reactor were MSW and foundry coke. 

A molecular-level kinetic model of MSW gasification was developed by combining 

models of plastics and biomass gasification. A model of coke gasification with oxygen 

and carbon dioxide was developed utilizing both kinetic and diffusional limitations. 
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The gasifier was simulated with a coke bed and three zones for MSW: combustion, 

gasification, and freeboard. These models were organized into a user-friendly C# 

application called the MSW Gasification I/O Converter. This application prioritized 

measurable inputs and outputs, to allow for trending studies on important process 

parameters. Some conclusions from this work are: 

 The coke model was surface-diffusion limited at gasifier conditions. 

 Increasing equivalence ratio decreases both tar production and 

syngas quality. Process optimization is required to maximize profit. 

 Over normal ranges of waste composition, tar, syngas quality and 

syngas flowrate are invariant if equivalence ratio is held constant. 

Therefore, ultimate analysis remains an important tool for gasifier 

operation. Tar composition requires more in-depth analyses on the 

fractions of different waste products. 

 Tar composition from biomass is primarily aromatics with 

methoxy, OH, and methyl side chains; tar composition from 

plastics is predominantly benzene and naphthalene. 

 The localized extreme temperature regions of the combustion zone 

can potentially reduce the quality of syngas produced while 

increasing the amount of tar exiting the freeboard zone. Tar is 

minimized in the well-mixed scenario where all MSW contacts all 

oxygen.  

 Kinetic parameters were optimized (in prior work) to literature data 

at much lower temperatures than plasma arc gasification. In the 

future, data from gasification facility will allow for trend 

verification and the validation and/or improvement of kinetic 

parameters.  
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6.1 Abstract 

A molecular-level kinetic model of heavy oil pyrolysis was developed for a 

Venezuelan vacuum residue. Model development proceeded in three major steps: 

creation of a molecular description of the feedstock, generation of a reaction network, 

and model solution and parameter tuning. The feedstock composition, as described in 

previous work[46], was modeled in terms of probability density functions (PDFs) of 

three finite attribute groups (385 cores, two inter-core linkages, and 194 side chains) 

and a PDF for each of a cluster-size and binding site distribution. These attributes, or 

molecule building blocks, represent more than 0.4M molecules. An attribute reaction 

network was developed using the fundamental reaction chemistry for resid pyrolysis 

including 6274 reactions that fall into one of 11 reaction families. To make solution 

time tractable, we used Attribute Reaction Modeling (ARM) which constrained the 

number of material balances to the number of attributes and irreducible molecules in 

the system, or 2841 total equations. Therefore, reactor output was a set of reaction-

altered attribute PDFs and molar amounts of irreducible molecules. The quantitative 

molecular composition of the reactor outlet was obtained through the juxtaposition of 

the final attribute PDFs. The properties of both the sampled molecules and the char 

fraction were obtained using quantitative structure-property relationships (QSPRs). 

The kinetic model was tuned using a least-squares objective function comparing the 

model predictions to measurements from the molecular to bulk-property level for all 

relevant boiling point fractions. The tuned model showed reasonably good agreement 

with the experimental measurements. 



 160 

6.2 Introduction 

Petroleum is likely to be of primary importance for the coming decades for the 

manufacture of liquid fuels. The diminishing supply of conventional, light crude oils 

has led to a focus in both industry and academia on heavy oil[122].  Heavy oils pose a 

problem as the light fractions of petroleum are easiest to refine into liquid fuels. A 

major process to convert heavy oil into lighter fractions is the pyrolysis of vacuum 

residue, or resid.  

Process models assist in making efficient use of this heavy-oil fraction. 

Originally, models of resid were lumped in nature, often phrased in terms of boiling 

point cuts[123]. Reactor models therefore contained very few reactions and equations 

and were easy to solve and understand. Unfortunately, this simplicity also limits the 

usefulness of lumped models as they contain no chemical structure information and 

therefore no basis for property estimation beyond the definition of the lump. Two resid 

samples with different chemical composition would, therefore, require separate rate 

constants. Furthermore, experimental techniques can now identify tens of thousands of 

molecular species in a resid sample[124]. By incorporating this detailed information, 

the overall efficacy and robustness of reactor models can be increased. 

The current state-of-the-art in modeling resid pyrolysis is molecular-level 

modeling. These models attempt to capture the full molecular detail of resid. In the 

early 1990s, Neurock et al. used Monte Carlo methods to sample 10,000 representative 

molecules to model reactions of resid[125]. In 2014, Rueda-Velásquez and Gray[126] 

and Oliveira et al.[127] revisited the use of Monte Carlo techniques for thermolysis, 

now taking into account modern knowledge of asphaltene composition. Quann and 

Jaffe developed structure-oriented lumping (SOL) in order to describe both light and 

heavy fractions of petroleum using structural vectors (building blocks)[128]. Recently, 
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delayed coking has been described by Tian and coworkers using the SOL 

methodology[129].  

While there is extensive literature on resid pyrolysis, no model has 

successfully captured the full molecular detail of the reaction of hundreds of thousands 

of unique resid molecules because reactor models require a material balance 

differential equation for every species. In the coming years, in order to simulate state-

of-the-art experiments, kinetic models must be developed to capture the full molecular 

detail of resid. Advances in computational or mathematical algorithms will not 

overcome the sheer intractability of these reacting systems; instead, the development 

must occur in kinetic modelling approaches. 

To address this problem, we will extend previous work[46], [48] that 

represented 400,000 resid molecules in terms of probability density functions (PDFs) 

of attributes, or building blocks by introducing a novel approach for the kinetics. As 

illustrated in Figure 6.1, conventional kinetic modeling would juxtapose the attribute 

PDFs before reactor model solution. This results in O(1,000,000), or “on the order of” 

1,000,000, material balances and an intractable solution. In this work, we instead 

propose to react the attribute PDFs, rather than molecules. This allows for reactor 

simulation using only 2839 total material balances. The outlet attribute PDFs are then 

juxtaposed to generate the full molecular footprint and associated properties. 
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Figure 6.1: Comparison of Attribute Reaction Modeling and Conventional Modeling 

methods.  

In the current work, a molecular-level kinetic model was developed and 

evaluated for the pyrolysis of a Venezuelan Vacuum Resid.  Here, we follow a general 

procedure laid out in previous work[46], [48] for model construction. Other details of 

the modeling work have been significantly improved over prior work. First, more 

detailed reaction chemistries are taken into account. Second, different methods of 

attribute juxtaposition have been explored. Finally, this work contains kinetic 

parameter tuning to experimental data. The following sections cover each of the major 

steps in this process: the molecular representation of the feed, the development of a 
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reaction network, the construction and solution of a kinetic model, and the comparison 

of results with experimental measurements. 

6.3 Molecular Representation of Resid 

Resid is a complex system of molecules, such as the molecule shown in Figure 

6.2, where no unique composition defines the feed. Currently, no single analytical 

technique provides the identities and amounts of every molecule within a given resid; 

therefore composition models must make use of the information available. 

 
 

Figure 6.2: Example resid molecule and attribute groups: cores (blue), inter-core 

linkages (red), and side chains (green). 

Conceptually, resid can also be thought of as a collection of structural 

moieties, or attributes. Despite the complexity and variability of resid, all possible 

molecules are made up of three attribute types: cores, inter-core linkages, and side 

chains, as shown in Figure 6.2. Cores are polycyclic molecules containing aromatic 

rings and naphthenic rings with or without heteroatoms; inter-core linkages are bridges 

between cores; and side chains are terminal substituents bound to cores. The molecular 

composition of resid is then a set of probability density functions. First, attribute group 

S

S

HO

O



 164 

pdfs contain information on the relative amount of each attribute. Second, a cluster-

size PDF describes the relative amounts of n-core clusters. Lastly, a binding site PDF 

describes the number of filled sites on a given core cluster. This description of resid 

allows for the level of model detail to match the level of available experimental 

information.  

The description of resid as a set of attribute PDFs preserves the molecular-

nature of the composition. The PDFs are juxtaposed, by combining the different 

attributes together, to produce a list of molecules. The identity of the molecule is the 

combination of the sampled attributes, and the mole fraction is proportional to the 

relevant PDF values. For example, the mole fraction calculations of selected 

molecules are given below, in Table 6.1.  

Table 6.1: The mole fraction calculation for selected molecules from attributes. Pcore, 

PIL, and PSC represent the three attribute PDFs. PBS and PCS represent the 

binding site and cluster size distributions. 

Molecule Attributes Filled 

Binding 

Sites 

Cluster 

Size 

Mole Fraction 

  

 1 1 ∝ 𝑃𝑐𝑜𝑟𝑒 ( )

∗ 𝑃𝑆𝐶( )

∗ 𝑃𝐵𝑆(1) ∗ 𝑃𝐶𝑆(1) 

  

  2 2 ∝ 𝑃𝑐𝑜𝑟𝑒 ( )

∗ 𝑃𝑆𝐶( )

∗ 𝑃𝐵𝑆(2) ∗ 𝑃𝐶𝑆(2) 

 
 

  3 2 
∝ 𝑃𝑐𝑜𝑟𝑒 ( )

2

∗ 𝑃𝑆𝐶( )3

∗ 𝑃𝑆𝐶( )

∗ 𝑃𝐵𝑆(3) ∗ 𝑃𝐶𝑆(2) 
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 There are numerous methods for building the molecule list. The most 

intuitive method is complete sampling, where every possible combination of attributes 

is listed for a given maximum cluster size and filled binding site number. As shown in 

Table 6.2, the number of sampled molecules in this method is combinatorial in nature 

and quickly surpasses computational limitations even for simple property calculations. 

The issue with this method for resid is that many molecules are sampled that cannot be 

differentiated experimentally. To address this, instead a termed “main methyl method 

(MMM)”, was developed. In this method, there is a primary binding site where any 

side chain may be bound. The other binding sites are either unfilled or filled with a 

methyl group, as shown in Figure 6.3. MMM removes the combinatorial nature of the 

side chain portion of the model and drastically reduces the number of molecules 

during sampling.  

Table 6.2: Number of molecules for the two common sampling methods for different 

cluster sizes using 100 cores, 2 linkages, and 50 side chains. 

Cluster 

Size 

Max binding sites for 

side chains 

Number of 

Sampled 

Molecules – 

Complete 

Sampling 

Number of Sampled 

Molecules – Main Methyl 

Method 

1 3 2,210,000 15,000 

2 4 4.4 x 109 3,030,000 
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Complete Sampling  
R1 and R2 all side chains 

 

Main Methyl Method  
R1 all side chains, R2 only 

methyl 

Figure 6.3: Differences in binding sites for complete sampling and main methyl 

method.  

Further reductions in the sampled molecule list also depend on the available 

experimental information. For instance, if the experiment of interest is a distillation 

curve which terminates at 750 °C, then there is no need to sample molecules with 

boiling points greater than 750 °C. Furthermore, there is no reason to include a higher 

level of resolution than the experiment. For instance, if the distillation curve is 

accurate to 10 °C, then the cores can be placed into 10 °C lumps. This reduction is 

drastic; for instance, if the number of cores was reduced to 50, instead of 100; then the 

number of molecules for MMM drops to 7,500 and 765,000 for cluster sizes 1 and 2, 

respectively. Through these methods, the molecule list is tailored to remain finite and 

representative of the available experimental data. 

6.4 Feedstock Composition 

The first step in the construction of a molecular-level kinetic model is the 

description of the feed at the molecular level. The composition model is described, in 

detail, in our previous work[46], where ~600 attributes were used to describe a 

molecular composition containing 400,000 molecules after sampling. The first detail 

of the composition is the identities of the included attributes. These identities came 

from prior knowledge of resid from both literature and experimental data. The 385 
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core attributes included up to nine ring-structures of both naphthenic and aromatic 

rings, such as those seen in Figure 6.4. Also included were three heteroatoms: oxygen, 

nitrogen, and sulfur. The side chains and inter-core linkages are summarized in Figure 

6.5. Four types of side chains were included: n-alkyl, iso-alkyl, sulfide, and carboxylic 

acid with up to fifty carbons per side chain type resulting in ~200 total side chains. 

There were only two inter-core linkages: a CH2 bridge and a sulfide bridge.  

 

Figure 6.4: Examples of both hydrocarbon and heteroatom-containing core attributes. 

 

 

Figure 6.5: The four side chain types and two inter-core linkages. The side chain types 

are, top-to-bottom, n-alkyl, iso-alkyl, carboxylic acid, and sulfide. 

The results of the resid composition model are the three attribute PDFs, a 

binding site PDF, and a cluster size PDF. A subset of the three attribute PDFs is given 

below in Figure 6.6 and Figure 6.7. The cluster size distribution and binding site 

distribution are given in Figure 6.8. In our previous work, these PDFs were sampled to 

S

H
N

OH O

N

X

X
S

X OH

O
X

X X

X
S

X



 168 

produce over 400,000 molecules and their associated properties. An example of a 

property prediction is a molecular-weight distribution, reproduced below in Figure 6.9. 

 

 

 

  

Figure 6.6: Side chain (left) and Inter-core linkage (right) PDFs. The side chain PDF is 

only shown for n-alkyl side chains (normalized to 1). Similar PDFs can 

be created for the other side chain types. 
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Figure 6.7: Selected cores from the core PDF, mole fractions normalized for the 

selected cores. 

  

Figure 6.8: Binding site (left) and cluster size (right) PDFs for feedstock composition. 

Results are from model presented by Zhang et al.[46] 
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Figure 6.9: Molecular weight distribution of the sampled molecules. Figure 

reproduced from attribute distributions in Zhang et al[46].  

6.5 Reaction Chemistry 

Three general reaction types govern resid pyrolysis. First, cracking reactions 

reduce the molecular weight of some species and produce small molecules. Second, 

aromatization reactions produce hydrogen and lead to stable polycyclic aromatic 

hydrocarbons (PAHs). Finally, coking reactions give rise to a high molecular-weight 

fraction. 

The reaction network applies the process chemistry to the attributes in the 

feedstock. For instance, alkyl side chains can crack to small molecules and shorter side 

chains. These small molecules can be quantified individually and are therefore termed 

irreducible molecules. Examples of irreducible molecules include small paraffins, 

olefins, and hydrogen. 

The cracking reaction families include decarboxylation, ring-opening, and the 

cracking of linear hydrocarbons and C-S bonds. The reaction site and reaction 

matrices, along with example reactions, can be found below, in Table 6.3. Reaction 



 171 

rules specify which reaction sites were considered valid sites in reaction network 

creation. The rules for cracking were based on the stability of radicals in H-

Abstraction and 𝛽-scission steps. For example, an alkyl side chain on an aromatic ring 

has a stable radical at the benzylic position as shown below in Figure 6.10. The two 

most favorable scenarios are a benzylic radical after H-abstraction or a benzylic 

radical after 𝛽-scission. A full list of reaction rules for the reaction families can be 

found in the supplemental information. 

 

Stable after H-

Abstraction 
    

+           

Stable After 𝛽-Scission 

    

+        

Figure 6.10: Most stable cracking pathways for an alkyl aromatic. 
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Table 6.3: Cracking reaction families, sites, matrices, and examples. These details are 

discussed in the PhD Thesis by Zhang[130]. The reaction matrices define 

the bond making (1) and bond breaking (-1) in a reaction type. 

Reaction Type 

(Family) and 

Reaction Site 

Reaction Matrix Example Reaction 

Decarboxylation 

Carboxylic acid on 

side chain and 

irreducible molecules. 

 
H O C C  

H 0 -1 0 1  

O -1 0 1 0  

C 0 1 0 -1  

C 1 0 -1 0  
 

 
 

Naphthenic Ring 

Opening 

6-member naphthenic 

rings 

 
C C C H  

C 0 -1 0 1  

C -1 0 1 0  

C 0 1 0 -1  

H 1 0 -1 0  
 

 
Sulfide Ring 

Opening 

5-member sulfide 

rings 

 
H C C S  

H 0 -1 0 1  

C -1 0 1 0  

C 0 1 0 -1  

S 1 0 -1 0  
 

 
Thermal Cracking – 

Hydrocarbon 

Hydrocarbon side 

chains and irreducible 

molecules 

 
C C C H  

C 0 -1 0 1  

C -1 0 1 0  

C 0 1 0 -1  

H 1 0 -1 0  
 

 

Thermal Cracking – 

C-S bonds 

Carbon-Sulfur bonds 

on side chains and 

irreducible molecules 

 
H C C S  

H 0 -1 0 1  

C -1 0 1 0  

C 0 1 0 -1  

S 1 0 -1 0  
 

 

 

The aromatization reaction families which increase the aromaticity in the 

system while releasing hydrogen are given below in Table 6.4. The five reaction 

families are based on ring type and number of hydrogen atoms released. Here the rules 

were specified such that the number of hydrogens released from a given reaction step 

was minimized. For example, an aromatization-2 would take precedence over an 

aromatization-4 if a molecule contained both reactive sites. 

OH

O

X OH

O

X

+ CO2

+ CO2

S
HS

SHS

S HS

X X +

X X +

+

+

+

X
S

X
SH

X
SH

+ H2SX

S SH

SH
+ H2S

+

+
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Table 6.4: Aromatization reaction families, sites, matrices, and examples for 

aromatization reactions. These details are discussed in the PhD Thesis by 

Zhang[130]. 

Reaction Type 
(Family) and 
Reaction Site 

Reaction Matrix Example Reaction 

Naphthenic Ring 
Aromatization-2 

 
C C H H  

C 0 1 -1 0  

C 1 0 0 -1  

H -1 0 0 1  

H 0 -1 1 0  
 

 

Naphthenic Ring 
Aromatization-4 

 
C C C C H H H H  

C 0 1 0 0 -1 0 0 0  

C 1 0 0 0 0 -1 0 0  

C 0 0 0 1 0 0 -1 0  

C 0 0 1 0 0 0 0 -1  

H -1 0 0 0 0 1 0 0  

H 0 -1 0 0 1 0 0 0  

H 0 0 -1 0 0 0 0 1  

H 0 0 0 -1 0 0 1 0  
 

 

Naphthenic Ring 
Aromatization-6 
 

6-carbon, 6-hydrogen analogue to 
reaction matrix in Naphthenic Ring 
Aromatization-4.  

 

Sulfide Ring 
Aromatization-3 

Same matrix as Naphthenic Ring 
Aromatization-2  

Sulfide Ring 
Aromatization-5 

Same matrix as Naphthenic Ring 
Aromatization-4. 

 

 

The final reaction family is aromatic ring condensation. This reaction allows 

for the growth of a char phase. An example is shown below in Figure 6.11. As an 

attribute reaction, this can be conceptualized as the formation of a biphenyl inter-core 

linkage. Therefore, only one reaction was written for aromatic ring condensation to 

represent the possible condensation of any two aromatic cores in the system.  

+ H2

+ 2H2

+ 3H2

S S + H2

S S + 2H2
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Figure 6.11: Aromatic ring condensation example reaction. 

6.6 Network Generation 

With these reaction families and reaction rules, the reaction network was 

generated, automatically, using an in-house software, the Interactive Network 

Generator, INGen[40], [44]. INGen takes a starting set of reactant molecules as 

network building seeds, and exhaustively searches the molecules for the reaction sites. 

The addition of the reaction matrix to the reactant sub-matrix gives product molecules. 

This is an iterative process as products of reactions can also react. In this case, the 

seed molecules were the attributes in resid composition. The final network diagnostics 

for the vacuum resid model are given below in Table 6.5.  

INGen builds networks very quickly. For instance, the 6,274 reactions here 

took ~30 seconds to build on a regular desktop computer (Dell Precision T1500, 

Processor: Intel (R) Core i7 870@2.93 GHz 2.93 GHz, Memory: 4.00 GB). This 

allows network generation to become an iterative process where the user can fine-tune 

the network to include the exact level of desired chemical detail. For instance, in this 

model, rules were designed for each reaction family.  

+ 
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Table 6.5: Reaction network diagnostics including total number of reactions, 

attributes, and irreducible molecules. These details are discussed in the 

PhD Thesis by Zhang[130]. 

Reaction Family Number of Reactions 

Decarboxylation 137 

Naphthenic Ring Opening 224 

Sulfide Ring Opening 9 

Thermal Cracking – Hydrocarbon 3790 

Thermal Cracking – C-S bonds 1097 

Naphthenic Ring Aromatization-6 8 

Naphthenic Ring Aromatization-4 734 

Naphthenic Ring Aromatization-2 13 

Sulfide Ring Aromatization-5 9 

Sulfide Ring Aromatization-3 6 

Aromatic Ring Condensation 1 

Total Reactions 6274 

Cores 1704 

Inter-core Linkages 3 

Side-chains 256 

Irreducible Molecules 876 

 

6.7 Model Equations 

After reaction network construction, a mathematical description of the kinetics 

is built to model the reactor. In general, a molecular-level kinetic model is a system of 

ordinary differential equations (ODEs) with one material balance per species and an 

overall energy balance. In this study, the lab-scale, semi-batch coking reactor that 

provided experimental data for comparison was isothermal and therefore only material 

balances are relevant. This would equate to O(1,000,000) differential equations in a 

conventional kinetic model for resid. Attribute reaction modeling addresses this 

intractability while retaining molecular-level detail.  
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First, a balance equation is written for each attribute in the system, as shown in 

Equation 6.1. Each equation, written in vector notation, uses 𝜈 to denote stoichiometry 

and −𝑟𝑒𝑣𝑎𝑝 to account for the rate of evaporation in the coking semi-batch reactor. In 

this model, −𝑟𝑒𝑣𝑎𝑝 was taken into account by restricting slow reaction families on 

smaller molecules. For instance, molecules with less than four rings were not allowed 

to undergo aromatization.  The total number of equations for the attribute portion of 

the model is equal to the total sum of the attributes. This trait of the model is 

singularly the most important for computational tractability due to the combinatorial 

relationship between attributes and molecules. The initial conditions for each attribute 

originate from the continuous attribute PDFs from the composition model. The 

generation of initial conditions effectively transforms the continuous probability 

distributions from the composition into discrete distributions, as illustrated in Figure 

6.12. 

           
𝑑𝐶𝑜𝑟𝑒̅̅ ̅̅ ̅̅ ̅

𝑑𝑡
= −�̅�𝑒𝑣𝑎𝑝 + ∑ �̅�𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖, 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 
(6.1) 

a. 

𝑑𝐼�̅�

𝑑𝑡
= −�̅�𝑒𝑣𝑎𝑝 + ∑ �̅�𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖, 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 
b. 

𝑑𝑆𝐶̅̅̅̅

𝑑𝑡
= −�̅�𝑒𝑣𝑎𝑝 + ∑ �̅�𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖, 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 
c. 
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Figure 6.12: Conversion of continuous attribute pdfs to discrete PDFs during the 

generation of initial conditions for the reactor kinetic model. 

Small molecules that are not reducible into attributes were produced in the 

reaction network. A material balance is written for each of these irreducible molecules 

as shown in Equation 6.2. The number of irreducible molecules produced is finite, and 

the model remains tractable. Combined, the attribute and irreducible molecule material 

balances make up the kinetic model. These equations are integrated using the LSODE 

suite of differential equation solvers[131]. 

 

           
𝑑𝐼𝑀̅̅ ̅̅

𝑑𝑡
= −�̅�𝑒𝑣𝑎𝑝 + ∑ �̅�𝑖 ∗ 𝑟𝑎𝑡𝑒𝑖

𝑖, 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 
(6.2) 

For irreducible molecules, the model solution simply yields molar flows at the 

outlet, as in a conventional molecular-level model. For attributes, the integration of the 

reactor model alters the relative amounts of attributes in the system. For example, in 

Composition Model Results 
Continuous PDFs 

Material Balance Initial Conditions 
Discrete PDFs 
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the side chain distribution, cracking would increase the amount of methyl (x-CH3) side 

chains relative to longer paraffin side chains. Conceptually, model solution can 

therefore be represented as the alteration of the discrete attribute PDFs, as shown in 

Figure 6.13. The molecular products are obtained via juxtaposition. 

 

 

 

Figure 6.13: The alteration of attribute PDFs through model solution.  

6.8 Kinetics 

The rate constants in the model were followed the standard Arrhenius 

expression, given in Equation 6.3. To reduce the parametric complexity, we utilized 

the concept that the rates of similar reactions, i.e., members of the same reaction 

family, can be correlated. First, all activation energies for a given reaction family, 𝑗, 

were constrained using a linear free energy relationship (LFER), such as one posed by 

Bell-Evans-Polanyi[51], [52] shown in Equation 6.4. Second, all pre-exponential 

factors are assumed to be a function only of reaction family, or ln(𝐴𝑗). The expression 

Model Solution 

Initial Attribute PDFs Reaction-altered Attribute PDFs 
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for each rate constant in the model, shown in Equation 6.5, is only dependent on 

known quantities, temperature and the enthalpy change on reaction (Δ𝐻𝑖), and three 

reaction-family dependent parameters (𝐴𝑗, 𝛼𝑗, and 𝐸0 (𝑗)).  

 

ln 𝑘𝑖 = ln𝐴𝑖 −
𝐸𝑖
∗

𝑅𝑇
 

 

(6.3) 

 

𝐸𝑖,𝑗
∗ = 𝐸0 (𝑗) + 𝛼𝑗 ∗ Δ𝐻𝑖 

 

(6.4) 

 

ln 𝑘𝑖 = ln𝐴𝑗 − (
𝐸0 (𝑗) + 𝛼𝑗 ∗ Δ𝐻𝑖

𝑅𝑇
) 

 

 

(6.5) 

For instances where the data used for tuning do not contain temperature 

dependence, the adjustable parameters are reduced to two terms per reaction family. 

This is shown in Equation 6.6 as 𝑎𝑗 and 𝑏𝑗. These are the parameters for ten of the 

eleven reaction families. For the formation of a biphenyl bond in aromatic ring 

condensation, the rate is linearly correlated proportional to the average aromatic 

content in the system, as shown in Equation 6.7. There are a total of 21 adjustable 

parameters in the model. 

 

ln 𝑘𝑖 = 𝑎𝑗 + 𝑏𝑗 ∗ Δ𝐻𝑖 

𝑎𝑗 = ln(𝐴𝑗) −
𝐸0 (𝑗)

𝑅𝑇
 

𝑏𝑗 = −
𝛼𝑗

𝑅𝑇
 

 
 

(6.6) 

 

𝑘𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑒𝑛𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑎𝑟𝑜𝑚 ∗ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝐶𝑜𝑛𝑡𝑒𝑛𝑡) 
 

(6.7) 

6.9 Model Evaluation 

The model was evaluated through comparison of its predictions with the 

experimental results given in Table 6.6.  Quantitative structure-property relationships, 

QSPRs, were used to transform the molecular composition into the higher-level 
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measurements. After using QSPRs to calculate predictions, the evaluation of model 

fitness used a least-squares objective function, shown below in Equation 6.8. 

 

𝐹 =  ∑ (
𝑦𝑖
𝑚 − 𝑦𝑖

𝑝

𝑤𝑖
)

2

𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

  

 

 

(6.8) 

Table 6.6: Experimental data for resid pyrolysis at 500 °C and 0.101 MPa for 40 

minutes. All data were collected at the State Key Laboratory of Heavy 

Oil Processing, China University of Petroleum.  

Property Experimental Property Experimental 

Light Gas Cut 
wt% 

13.6 Diesel Cut 

wt% 

21.1 

H2S, wt% 7.31 Density (g/ml) 0.903 

H2, wt% 0.35 S, wt% 3.3 

CO+CO2 0.71 N, wt% 0.26 

CH4, wt% 16.65 Gas-Oil Cut 

wt% 

16.5 

C2H6, wt% 21.09 Density (g/ml) 0.9859 

C2H4, wt% 3.71 C, wt% 85.05 

C3H8, wt% 16.26 H, wt% 10.7 

C3H6, wt% 9.07 S, wt% 5.6 

C4H10, wt% 8.51 N, wt% 0.79 

C4H8, wt% 7.24 MW (g/mol) 437 

C5+, wt% 9.2 Saturates wt% 59.52 

Gasoline Cut 
wt% 

13.8 Coke Cut wt% 35.0 

Density (g/ml) 0.78 C, wt% 86.21 

S, wt% 1.9 H, wt% 3.81 

N, wt% 0.04 S, wt% 5.6 

  N, wt% 2.7 
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The weight term, 𝑤𝑖,  in the objective function is calculated based on two 

sources of standard error. The first is an error incurred by the property measurement. 

For instance, there is error in an average molecular weight measurement by GPC. The 

second source of uncertainty originates in the structure-property correlation. Some 

properties, such as molecular weight, are calculated exactly from a given composition. 

Others, such as density, have uncertainty in the structure property correlation. An 

analysis of a model’s predictive ability must take into account both types of error. The 

total uncertainty, 𝜎𝑡𝑜𝑡𝑎𝑙, for a given data point must then take both 𝜎𝑒𝑥𝑝 and 𝜎𝑄𝑆𝑃𝑅 into 

account, as shown in Equation 6.9. The values for 𝜎𝑡𝑜𝑡𝑎𝑙 for the data points are given 

below, in  

Table 6.7.  

 

𝑤𝑖 = 𝜎𝑖,𝑡𝑜𝑡𝑎𝑙 =  √𝜎𝑖,𝑒𝑥𝑝
2 + 𝜎𝑖,𝑄𝑆𝑃𝑅

2  

 

 

(6.9) 
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Table 6.7: Total error and error associated with experiments and quantitative structure 

property correlations for the measurements in the objective functions. 

Values for error were estimated based on experience in our prior 

work[46] with similar data in the objective function.  

Property Experiment 𝝈𝒆𝒙𝒑  QSPR 𝝈𝑸𝑺𝑷𝑹  𝝈𝒕𝒐𝒕𝒂𝒍  
Boiling Point 

Cuts 

HT-SimDis 1.2  Group 

contribution 

Theory 

0.05
∗ 𝑦𝑜𝑏𝑠 

√((0.05
∗ 𝑦𝑜𝑏𝑠)

2

+ 0.0122) 
Light Gas 

Composition 

Gas Chrom. 0.05
∗ 𝑦𝑜𝑏𝑠 

Calculated 
Exactly 

0.00 0.05
∗ 𝑦𝑜𝑏𝑠 

Elemental 

Composition 

Elemental 
Analysis 

0.01
∗ 𝑦𝑜𝑏𝑠 

Calculated 
Exactly 

0.00 0.01
∗ 𝑦𝑜𝑏𝑠 

Density 

(g/mol) 

Pyncometer 0.00003  Gani 
Theory 

0.25
∗ 𝑦𝑜𝑏𝑠 

0.25
∗ 𝑦𝑜𝑏𝑠 

Average 

Molecular 

Weight 

GPC 0.25
∗ 𝑦𝑜𝑏𝑠 

Calculated 
Exactly 

0.00 0.25
∗ 𝑦𝑜𝑏𝑠 

SARA SARA 
Analysis 

0.25
∗ 𝑦𝑜𝑏𝑠 

Calculated 
Exactly 

0.00 0.25
∗ 𝑦𝑜𝑏𝑠 

 

After setting up the objective function, the optimization was performed using a 

simulated annealing algorithm. The optimization problem was well-posed with over 

30 terms in the objective function for 21 adjustable parameters. The parity plot 

comparing model and experimental results is given below in Figure 6.14. Included in 

this plot are all data points from Table 6.6. These data agreed reasonably well with 

experiments with an overall R2 of the parity plot of 0.939. The tuned values for 𝑎𝑗 and 

𝑏𝑗 used in predicting this data for each reaction family are given below in Table 6.8.  
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Figure 6.14: Parity plot comparing experimental and predicted results. The y=x line 

corresponds to exact prediction. All weight percent values were 

converted to weight fractions, the average molecular weight for gas-oil 

was normalized to be on the same scale as other data. The R2 value 

relative to y=x is 0.944. 
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Table 6.8: Tuned parameters for kinetic model for each reaction family. aj=ln(Aj)-

E0(j)/RT and bj=-αj/RT. For aromatic ring condensation, αj is the scaling 

factor, as shown in Equation 6.7. The value for the gas constant used is 

R=1.987*10-3  kcal/(mol*K) and T=773 K. 

Reaction Family 𝒂𝒋 𝒃𝒋 

Decarboxylation 2.041 -0.270 

Naphthenic Ring Opening 0.169 -0.275 

Sulfide Ring Opening -1.652 -0.301 

Thermal Cracking – Hydrocarbon -3.645 -0.150 

Thermal Cracking – C-S bonds -3.983 -0.077 

Naphthenic Ring Aromatization-6 2.357 -0.255 

Naphthenic Ring Aromatization-4 -3.333 -0.278 

Naphthenic Ring Aromatization-2 -3.034 -0.112 

Sulfide Ring Aromatization-5 -0.006 -0.314 

Sulfide Ring Aromatization-3 -1.224 -0.068 

Aromatic Ring Condensation 7.800E-05 ------ 
 

 

 

Figure 6.15: Observed versus experimental including error bars for σtotal; the error bars 

were chosen to be drawn on the experimental values. The average 

molecular weight for gas-oil was normalized to be on the same scale as 

other data. 
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The tuned results including 𝜎𝑡𝑜𝑡𝑎𝑙 are given in Figure 6.15 and give more 

detailed information on individual experiments than provided by the parity plot. For 

instance, the errors in density can be explained by 𝜎𝑡𝑜𝑡𝑎𝑙. The predictions that deviate 

from measurements most notably by the model are in the light-gas composition. The 

light gas composition is controlled by two reaction families: hydrocarbon cracking and 

sulfide cracking. One approximation made is that these two reaction families govern 

the cracking of any resid molecule, regardless of boiling point, and it is likely that the 

apparent rate constants are different between light gasses and heavy ends. A possible 

solution is the inclusion of an additional pair of cracking reaction families for light 

gasses.  This alternation would only add four parameters to the model. Therefore, the 

model would retain its computational tractability. Furthermore, the importance of the 

predictive ability of a model for light gasses in resid pyrolysis is minor compared to 

other experiments such as boiling point cuts.  

The model also predicts molecular level results such as the molecular weight 

distribution shown Figure 6.16. When compared to the molecular weight distribution 

of the feedstock, the outlet stream is more bimodal with a low molecular weight peak 

corresponding to the low boiling point fractions and a higher molecular weight peak 

corresponding to coke. The general trend to lower molecular weights correspond to the 

cracking of side chains from core molecules. The peaks at low molecular weight 

correspond to irreducible molecules.  For aromatic ring number, values of all mole 

fractions were shifted down due to the production of small molecules. The distribution 

was also shifted to higher ring numbers due to aromatic ring condensation and 

aromatization. There were relatively fewer naphthenic rings than aromatics in the 
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product due to ring opening reactions. These trends were expected based on the 

reaction network and the feedstock. 

 

  

  

  

Figure 6.16: Before (left) and After(right) distributions for MW, aromatic ring 

number, and naphthenic ring numbers.  



 187 

6.10 Conclusions 

We have shown that a model containing only 2839 equations can simulate the 

pyrolysis of O(1,000,000) resid molecules using an Attribute Reaction Model (ARM). 

Furthermore, the parametric complexity in the model was reduced to 21 adjustable 

parameters using Linear Free Energy Relationships and reaction families. Even with 

this reduced number of equations and adjustable parameters, the model agrees well 

with experimental data. 

 

The supporting information document contains complete information on the 

rules for reaction network construction. This information is available free of charge 

via the Internet at http://pubs.acs.org/. 
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ENHANCING THE USER-MODEL INTERFACE THROUGH THE 

DEVELOPMENT OF SOFTWARE APPS 

For an industrial reactor kinetic model, there are three types of users, given in 

Table 7.1. The initial user is the developer of the model. After construction, this model 

is subsequently used, understood, and evaluated by research collaborators. Once the 

model is in use, the predominant end-user is a process engineer. There are different 

goals for the users of kinetic models, yet the common goal is the usage of the model to 

predict process outputs from specified or experimentally measured inputs. Research 

collaborators and model developers also hope to gain a mathematical and scientific 

understanding of the model, model results, and process. Finally, the model developer 

hopes to further their kinetic model development capabilities for future projects. 

Chapter 7 
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Table 7.1: The types and goals of kinetic model users.  

User Type User’s Goals 

Model Developer Scientific and mathematical 
understanding of model and results 
Usage of model to predict measurable 
outputs from measurable inputs 
Furthering kinetic model development 
capabilities  

Research Collaborators  Scientific and mathematical 
understanding of results 
Usage of model to predict measurable 
outputs from measurable inputs 

Process Engineer Usage of model to predict measurable 
outputs from measurable inputs 

 

To build the kinetic model, the model developer may use the Kinetic 

Modeler’s Toolkit (KMT). There are three software packages within this toolkit, as 

shown in Figure 7.1: the Composition Model Editor (CME), the Interactive Network 

Generator (INGen), and the Kinetic Model Editor (KME). The starting points of a 

kinetic model are experimental data on the feed and reactor outlet, and an 

understanding of the process chemistry. CME takes experimental data on the feed to 

create a list of molecules and mole fractions of the inlet. INGen utilizes this molecule 

list and process chemistry to build a reaction network. Finally, KME uses the reaction 

network and feed description to create and solve the equations that define the kinetic 

model. 



 190 

 

Figure 7.1: Main software packages that make up the Kinetic Modeler’s Toolkit 

The tools in KMT are designed to be ubiquitous regardless of the kinetic 

model; i.e., the same tools are used for MSW gasification as heavy oil resid pyrolysis 

or any other process. The strength of these tools therefore lies in the usage by a model 

developer. The features of the tools have a very logical progression. When a new 

project is started, if the tools do not perform all steps necessary for that project, then 

the tools are expanded to match the new project specifications. Over the years of 

development, these tools become increasingly more useful to the developers as the 

features are expanded to include more experimental measurements, process 

chemistries, and reactor configurations. The unfortunate side effect is that the learning 

curve for these tools is proportional to the number of features. The tools become less 

ideal for many research collaborators and process engineers. These users are only 

using a small fraction of overall features in the toolkit and often don’t have the time or 

resources to spend on the learning curve.  



 191 

Current expansion of KMT has been in the area of software apps, typically 

coded in C# (C-Sharp). The use of the colloquial term ‘app’ implies that these tools 

are lightweight in terms of development and use. Each app targets a specific use case 

and has one set of features. Alternatively, the larger software suites (CME, INGen, and 

KME) were designed to take into account as many use cases and features as possible. 

The consequence of the lightweight design approach is that the apps are very fast to 

develop, and have an easy learning curve from the point of view of the user. When a 

user needs new features, a new app is developed to meet their specific needs; this 

leads to many small programs as shown in Table 7.2. 

Software apps target the different objectives for the users of kinetic models. 

Apps that aim to increase scientific and mathematical understanding focus on 

organizing the vast quantities of information produced in a molecular-level kinetic 

model. The organized information is primarily displayed via visualization. It is 

important to note that these apps retain the molecular information to present to the 

user. In contrast, apps that focus on the usage of the model for measured inputs and 

outputs abstract all immeasurable information away from the interface. These apps are 

typically designed for a specific process and are easy to use regardless of a user’s 

background in kinetic modeling. Because of the focus on I/O (inputs/outputs), the apps 

are also useful for scenario testing of varying process parameters. The final category 

of apps aims to further kinetic model development capabilities. These apps have the 

most variety in terms of capability, ranging from the simulation of a particular 

experimental reactor to basic flowsheeting capabilities to a properties database. 
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Table 7.2: The categories of apps as organized by objective, corresponding design 

method, and a list of apps developed 

App Objective App Design Method Apps Developed 

Increase scientific and 
mathematical 
understanding of the 
model 

Reorganize and 
visualize information 
from a molecular-
level kinetic model to 
gain understanding 

Reaction Network Visualizer 
KME Results Analyzer 

Usage of the model to 
predict Measured 
Outputs from 
Measured Inputs 

Focus on I/O and 
abstract molecular 
information away 
from the user 
interface. 

MSW Gasification I/O 
Converter 
Naphtha Reforming I/O 
Converter 

Furthering kinetic 
model development 
capabilities 

Develop new, 
lightweight tools to 
further future kinetic 
model development. 

KME Flowsheet Application 
TGA Simulator 
Physical Property Database 
Interface 
INGen Network Merge 
External KME Simulated 
Annealing 
CME-Plastics 
CME-Naphtha 
MSW Bulk Composition 
Solver 

 

Most of the C# apps are associated with one or more of the three main software 

packages in KMT. A good example is the reaction network visualizer where the main 

use case is to visualize and understand INGen networks; the app supports INGen and 

assists in the network building process. A second example is the series of I/O 

converter apps. These tools effectively utilize CME and KME in a behind-the-scenes 

fashion to allow the users to access only the features of CME and KME that are 

needed for the project while not being overwhelmed with detail irrelevant to the 

project at hand. 
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Table 7.3: The KMT software supported by each App discussed in this thesis. 

App Supported KMT Software 

CME-Plastics CME 

CME-Naphtha CME 

MSW-Bulk Composition Solver CME, KME 

MSW Gasification I/O Converter KME 

Naphtha Reforming I/O Converter CME, KME 

Reaction Network Visualizer INGen 

Kinetic Results Analyzer KME 

KME Flowsheet Application KME 

TGA Simulator KME 

INGen Network Merge INGen 

External KME Simulated 
Annealing 

KME 

Physical Property Database 
Interface 

CME, KME 

 

The remainder of this chapter discusses each of the three primary app 

objectives from Table 7.2, and explores the functionality of the apps. 

7.1 Increasing the Scientific and Mathematical Understanding of the Model 

through Apps 

Historically, lumped kinetic models had few components and were easy to 

understand; however, this came at the cost of scientific rigor as shown in Figure 7.2. 

For instance, a lumped kinetic model of coal pyrolysis might contain four lumped 

components: coal, tar, volatiles, and char. A few simple plots as a function of 

operating conditions contain all of the kinetic data produced by the model, and 

therefore the model is easily understood. However, the absolute quantity of 

information produced by the model is dwarfed by level of detail actually contained 

within the process of coal pyrolysis. The information discrepancy between models and 

reality requires many lumped models to describe the realm of possible operating 
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conditions, coal types, etc. Rather than a single, universal description, each lumped 

model only contains a small piece of the information that makes up coal pyrolysis.  

 

 

Figure 7.2: (Left) Typical lumped model of coal pyrolysis. (Right) Conceptual 

representation of the information complexity in coal pyrolysis versus 

simple lumped models. 

Advanced kinetic models are more detailed, but their usefulness is a function 

of the user’s ability to comprehend vast quantities of data. The scientific rigor of 

modeling has been drastically increased through the advent of advanced experiments, 

algorithms, and computing. With increased levels of detail in the model, there is a 

better match between the model and what is physically happening within the process. 

If a model contained all of the information complexity of coal pyrolysis, then a single, 

universal model would suffice for every coal and reactor type. However, the incredible 

amount of information in detailed kinetic models shifts the onus of research onto the 

user who must understand the model’s equations and results. Unaided, a model can be 

difficult to comprehend, reducing the overall scientific usefulness of the results as 

shown in Figure 7.3. In order to address the challenge of model comprehension, first 
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we must go into more detail on the information contained within a detailed kinetic 

model. 

 

 

Figure 7.3: Trade-offs of the comprehension and scientific rigor of models as a 

function of the number of equations. 

 

 

Scientific Rigor

Comprehension

Usefulness

Number of Equations 
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Figure 7.4: Information sources and amounts within a molecular-level kinetic model. 

Values are relative and qualitative. The relatively low value for rate 

parameters is due to a linear free energy relationship (LFER) basis. 

The sources and quantities of information in molecular-level kinetics are given 

in Figure 7.4. The measured quantities are typically experimental measurements of the 

reactor inlets and outlets. Other aspects of the model structure include the reaction 

families, reactor type, and rate parameters. Typically, models have far more reactions 

than species; resulting in the smaller relative sizes of the molecular (input or output) 

compared to the reaction network categories. The largest categories of information are 

the reaction rate and molecule profiles within the reactor. Each of these categories 

contains a full set of rate and molecule profiles along the reactor length or the reaction 

time.  

 

The three main software tools enable the comprehension of many of the 

categories of information as described in Table 7.4. For example, CME predicts the 
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molecular input, but it also categorizes the feed using statistical distributions that are 

based on molecular structure. INGen helps to organize the reaction network via 

categorization into reaction families. There are opportunities for improvement in 

understanding the structure of the reaction network. KME also utilizes reaction 

families in the area of rate parameters. The most information in the kinetic model and 

the biggest issues in comprehension occur after kinetic model solution.  
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Table 7.4: Information types, relevant KMT software, how the information is 

organized, and how well the user comprehends the information. *the 

comprehension of the reaction network depends on the network size. 

Information Type Relevant 
Software 

Method of 
Organization 

Qualitative 
Comprehension  

Property Input CME User-defined and 
categorized 
experimental 
properties 

Complete 

Molecular Input CME Statistical distributions 
based on molecular 
structure 

High 

Reaction 
Chemistries 

INGen Reaction family list Complete 

Reaction Network INGen Organized using 
reaction families and 
species 

Low-High*  

Reactor Type and 
Conditions 

KME User-input. Flow-
profile determines 
reactor type 

Complete 

Rate Parameters KME User-defined, 
organized as reaction 
families 

Complete 

Reaction Rate 
Profiles 

KME Tabulated, no 
categorization 

Low 

Molecular Profiles KME Tabulated, no 
categorization 

Low 

Molecular Output KME Tabulated, can be 
categorized based on 
user-input 

Medium 

Property Output KME Experimental 
properties and bulk 
properties 

Complete 

 

Two C# apps have been developed to target the hardest to comprehend sources 

of information in the kinetic model. The Reaction Network Visualizer aims to improve 

the understanding of the structure of the reaction network by allowing the user to 
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visualize isolated portions of the network. KME Results Analyzer targets primarily the 

rate and molecule profiles in the reactor, but it also helps to address understanding the 

molecular-output data.  

 

 

7.1.1 Reaction Network Visualizer 

The reaction network visualizer was developed with the purpose of aiding in 

the creation of reaction networks via INGen. It allows for the graphical visualization 

of reaction networks, which can aid in viewing the reaction paths from feed molecules 

to important product molecules. All trees (or mathematical graphs) are rendered using 

the open-source GraphViz software[132].  

 

Figure 7.5: Sample screenshot from the Reaction Network Visualizer. Graph image 

rendered using GraphViz[132]. 
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Because these networks are too large for easy visualization of the full network, 

there are a few smarter methods of using this software. If there is a species of interest, 

a user might start from this species with a small number of parent (toward seed3) and 

child (toward product) reaction steps. The user can then adjust the numbers to 

visualize the desired network. If the graph is obscured by small, common molecules 

such as hydrogen or water, the user can elect to remove these molecules from 

visualization. Likewise, if a user wishes to focus on particular reaction families, this 

can be done as well.  

In any scenario, the Reaction Network Visualizer is used to better understand 

the reaction network. If the network does contain measured products, then the 

Visualizer can be used to help find the unreactive end-points of the network. If the 

network is too large and includes too many intermediates, visualization can help 

determine the seeds for constrained network building. In order to show the use of this 

application for the purpose of constrained network building, ethane pyrolysis is used 

as a case study. 

Ethane pyrolysis is a well-understood process where radical chemistries are 

utilized in models[39], [57]. Because the network is at the mechanistic level, most 

radicals in the system can interact with most molecules via H-abstraction reactions 

(see Figure 7.6) leading to a network size explosion as rank (reaction steps away from 

the network seed, ethane) increases. A qualitative version of this phenomenon is 

shown in Figure 7.7. This problem is exacerbated as the product of interest, xylene, is 

many reaction steps away from ethane. This detail brings up a quandary: the model is 

                                                 

 
3 The seeds of the network are the user-specified starting points for reaction network 

generation. Often, the seed molecules are synonymous with feed molecules.  
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either finite and useless or infinite and useful. A finite and useful model of ethane 

pyrolysis would have xylenes in the finite region of Figure 7.7. 

 

 

Figure 7.6: Reaction families and some example reactions from ethane pyrolysis. The 

primary form of mass increase from ethane is first via olefin addition 

reactions. Once large olefins form, Diels-alder additions allow for the 

formation of cyclic structures. Beta-scission can then lead to aromaticity 

and the product of interest, xylene. 

The question then arises: is there a way to lower the rank of xylenes such that 

it is in the finite region of model growth? A logical way to model xylene with a finite 

number of reactions is by seeding molecules on the path from ethane to xylene. The 

reaction network generation can then restrict reactions to remain within a few steps (or 

ranks) of the seeded species. This approach is analogous to creating a roadway 

between the two molecules, and only allowing for small deviations from that roadway. 

2 Initiation: Bond Fission 

H-Abstraction 

Beta-Scission 

Diels-Alder Addition 

Olefin Addition 

Recombination 
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Determining the molecular identities of these seeds is where network visualization can 

play a key role.  

 

Figure 7.7: Number of equations by rank in an ethane pyrolysis model with ethane as 

the only seed. The black dots represent the location of xylenes before and 

after seeding. 
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Path from ethane to 

buta-1,3-diene 

Path from buta-1,3-diene 

to benzene 

Path from buta-1,3-diene to  

o-xylene 

  
 

 

Figure 7.8: Some major reaction paths visualized using the Reaction Network 

Visualizer. Images rendered using GraphViz. 

Using the Reaction Network Visualizer, useful seeds for ethane pyrolysis can 

be identified as shown in Figure 7.8. The seeds selected are ethene, butadiene, 

benzene, and methylcyclohexenes. After reproducing the network, the number of 

reactions required to produce o-xylene is drastically reduced as shown in the 
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comparison presented in Table 7.5. This case study shows the utility of the reaction 

network visualizer as an aide to generate finite reaction networks. 

Table 7.5: Ethane pyrolysis reaction network before and after seeding. 

 

7.1.2 KME Results Analyzer 

The KME Results Analyzer was developed for the purpose of gaining 

additional understanding of the results produced by KME. This app specifically targets 

reactor profile information and the molecular information of the reactor output. For 

reactor profile information, the app allows for the user to select specific species in the 

output stream and graphically see the reaction families responsible for production and 

consumption of the species of interest. For understanding the molecular output, the 

app allows the user to specify structural properties (such as aromatic ring class) and 

visualize the dominant species that match the constraints. The following text examines 

each of these features in greater detail. 

Reaction Family Number of Reactions, 
Only ethane seeded 

Number of Reactions, 
Intermediates seeded 

Bond Fission 30 36 

H-Abstraction 14,977 2,325 

Beta-Scission 325 107 

Diels-Alder Addition 4 3 

Olefin Addition 17 9 

Recombination 153 181 

Total Reactions 15,506 2,661 
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Table 7.6: Reaction rate information from KME. 

Distance (or time) Reaction 1 Reaction 2 Reaction M 

𝒅𝟏 𝑟𝑎𝑡𝑒1(𝑑1) 𝑟𝑎𝑡𝑒2(𝑑1) 𝑟𝑎𝑡𝑒𝑀(𝑑1) 

𝒅𝟐 𝑟𝑎𝑡𝑒1(𝑑2) 𝑟𝑎𝑡𝑒2(𝑑2) 𝑟𝑎𝑡𝑒𝑀(𝑑2) 

𝒅𝒏 𝑟𝑎𝑡𝑒1(𝑑𝑛) 𝑟𝑎𝑡𝑒2(𝑑𝑛) 𝑟𝑎𝑡𝑒𝑀(𝑑𝑛) 

 

  

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑀 

𝑅𝑥𝑛𝐼𝑛𝑡𝑀 = ∑(𝑑𝑖 − 𝑑𝑖−1) ∗ 𝑟𝑎𝑡𝑒𝑀(𝑑𝑖)

𝑛

𝑖=1

, 𝑛𝑜𝑡𝑒 𝑑0 = 0 

 

 

(7.1) 

 

For profile information, the output of a KME simulation includes the reaction 

rates in a tabulated format, as shown in Table 7.6. These values can be integrated 

numerically using Equation 7.1. This result tells the user how many moles actually 

reacted for each reaction. The reaction integration can help inform a user beyond the 

reaction rate parameters. A reaction with a high value of the rate constant will not 

show up numerically if there is no reactant present. Similarly, reactions with low rate 

constant values might be very important if the reactant concentrations are sufficiently 

high. For these reasons, in analyzing the results of a kinetic model, it is useful to 

analyze the total integration of the reaction rates throughout the reactor. 

In models with reaction families, the adjustable parameters in the model are a 

shared pre-exponential factor for the reaction family and the Bells-Evans-Polyani[51], 

[52] LFER parameters (slope and intercept) of the activation energy correlation. 

Therefore, interest in analyzing a model’s results usually focuses on reaction families 

rather than individual reactions. A total reaction family integration can then be found 

by summing the total reaction integrations for each member of that family as in 
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Equation 7.2. The results can be displayed graphically in a pie chart that demonstrates 

the mathematical significance, on a molar basis, of each reaction family in the system. 

For example, the results shown in Figure 7.9 are for naphtha reforming. Key reaction 

families here are, as expected, the formation of aromatics from naphthenics, paraffin 

cyclization, and isomerization reactions. 

𝑅𝑥𝑛𝐹𝑎𝑚𝑖𝑙𝑦𝐼𝑛𝑡𝑃 = ∑ 𝑅𝑥𝑛𝐼𝑛𝑡𝑖

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑓𝑎𝑚𝑖𝑙𝑦 𝑝

𝑖=1

  

 

 

(7.2) 

 

 

 

Figure 7.9: Full reaction network generation in a Naphtha Reforming model.  

 

In order to understand the reaction rate and species profiles, the analysis of 

individual molecular species can yield useful information. For example, the user might 

be interested in the reaction families that produce or consume that species. 

Mathematically, this is very similar to the full reaction network integration with an 

additional term for the stoichiometry, 𝜈, of the species in the reaction, as shown in 
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Equation 7.3. This analysis is represented visually using pie charts, as shown in Figure 

7.10. These graphics can help inform which rate parameters are important for the 

prediction of the species.  

 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑅𝑥𝑛𝐹𝑎𝑚𝑖𝑙𝑦𝐼𝑛𝑡𝑃 = ∑ 𝜈𝑖 ∗ 𝑅𝑥𝑛𝐼𝑛𝑡𝑖

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑓𝑎𝑚𝑖𝑙𝑦 𝑝

𝑖=1

  

 

(7.3) 

 

 

 

Figure 7.10: Reaction families responsible for the production of 3-methyldecane.  

 

The full list of species outputs can become overwhelming in large models. To 

understand this output, it then becomes helpful to organize the species based on 

structural properties. An organization of the species based on structural properties can 

provide some better insight to the user. For example, Figure 7.11 shows the eight 

carbon i-paraffins in the reactor outlet from a naphtha reforming model. The app also 

has the ability to organize the species flowrates using any set of conditional 

statements, involving 70 physical properties. For instance, if the user is interested in 1-
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3 ring aromatic species, then they can specify two conditionals, as shown in Figure 

7.12. The app automatically gives the eight most significant species that meet the 

specified criteria.  

 

 

 

Figure 7.11: Visualization of Bulk Properties in the KME Results Analyzer 
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Figure 7.12: Window allowing the addition of bulk properties to the KME Results 

Analyzer. The bulk property added here is 1-3 ring aromatics. 

7.2 Enabling the Usage of Model to Predict Measured Outputs from Measured 

Inputs 

The second category of apps focuses on converting measurable inputs to 

measurable outputs. These tools are designed for the full spectrum of users from 

Model Developers to Process Engineers. As such, the assumed background of the user 

is knowledge of the physical process rather than detailed kinetic modeling. This focus 

comes into play in the design of the apps. For instance, technical kinetic vocabulary 

such as linear free energy relationships (LFERs) is avoided, while colloquial terms for 

experimental measurements are permitted. The apps also minimize user-supplied 

information required to run the model. For the kinetic model, the user is allowed to 

input process conditions and measurable properties, but not alter the physical process, 

equations, or kinetic parameters. The output is customized to suit the user’s needs and 

can be a combination of individual species outputs like H2 flow, experimentally 

measured bulk properties like PIONA, and reactor conditions like outlet temperature. 
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Because of their very nature, these apps are specific to a given project. The two 

apps discussed here, the MSW Gasification I/O Converter and the Naphtha Reforming 

I/O Converter, are fundamentally the same concept, but differ in appearance, inputs, 

and outputs. For instance, the inputs to MSW gasification are typically ultimate 

analyses, whereas naphtha reforming has detailed molecular information such as 

detailed PIONA or GC. These apps are currently in use by industrial collaborators and 

were designed to their specifications. 

7.2.1 MSW Gasification I/O Converter 

The first I/O converter app was created for a project on MSW gasification and 

is shown in Figure 7.13. The details of this app are discussed in Chapter 5. 

 

Figure 7.13: Sample Screenshot from the MSW Gasification I/O Converter. 
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7.2.2 Naphtha Reforming I/O Converter 

The Naphtha Reforming I/O Converter, shown in Figure 7.14, was developed 

to run a detailed kinetic model of a continuous catalytic reforming (CCR) process for 

naphtha. The measurable inputs to the model are simulated distillation, carbon number 

based PIONA, density, and reactor conditions. The measurable outputs from the 

model are light-gas yields, detailed PIONA, and temperature drops across each reactor 

bed. Because coking is a key phenomenon in this process, coke formation is also 

reported in the output tables. 

Behind the scenes, this app runs both a composition model and kinetic model. 

In this case, the composition model is a simplified limiting-case of CME 

(Composition Model Editor), due to the simplicity of a naphtha feed. The KME model 

involves Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetics on a bifunctional 

metal-acid catalyst. Despite this underlying complexity of the kinetic model, the user 

simply pastes data into the input table and runs the model by selecting the ‘Run CCR 

Model’ button. 

A second focus of this app is to enable the blending of feed streams from 

different sources. The blender portion of the app allows up to four naphtha feeds. This 

is potentially useful in cost-benefit analyses of different crude oils (straight-run 

naphtha), or evaluating the effects of feeding naphtha fractions from other refinery 

unit outlets such as fluid catalytic cracking (FCC). In the underlying code, the app 

simply runs a CME model for each feed stream. The input to the KME model is then 

the sum of each of the four feed streams. 
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Figure 7.14: Sample Screenshot from Naphtha Reforming I/O Converter 

7.3 Furthering Kinetic Model Development Capabilities 

The final category of apps is aimed at furthering the kinetic model 

development capabilities of the Kinetic Modeler’s Toolkit (KMT). These apps are 

widespread in concept and subject matter. The primary target users of this app are 

model developers or specific collaborators. 

Three apps are discussed here: KME Flowsheet Application, TGA Simulator, 

and the Physical Property Database Interface. The KME Flowsheet Application 

provides basic flowsheeting capabilities (e.g., bypass streams) for KME models. TGA 

Simulator simulates the thermogravimetric analysis (TGA) experiment using a pre-
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built KME model. Finally, the Physical Property Database was developed to store 

previously calculated properties for tens of thousands of molecules.  

Many other apps also fall into the category of furthering development 

capabilities and are listed in Table 7.7; detailed explanations of these apps were 

excluded from this chapter. For some of these apps, they have been discussed 

elsewhere (e.g., MSW Bulk Composition Solver). Others are useful to developers but 

are conceptually less significant, such as External KME Simulated Annealing. 

Table 7.7: Apps excluded from the current chapter. 

App Major Functionality 

CME-Plastics (or Plastics Composition Editor) Develop composition models for 
linear polymers using ultimate 
analyses as experiments 

CME-Naphtha Develop composition models for 
naphtha feeds (similar to I/O 
Converter) 

MSW-Bulk Composition Solver Predict polymer fractions in waste 
from ultimate analysis, detailed in 
chapter XX (REFERENCE) 

INGen Network Merge Merge INGen models, modify 
reaction network to include 
gasification reactions, detailed in 
chapter XX (REFERENCE) 

External KME Simulated Annealing Run simulated annealing as a 
separate application from Excel 
and allow for visualization of 
tuning progress and frequent 
backup of parameters 
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7.3.1 KME Flowsheet Application 

The KME Flowsheet Application, shown in Figure 7.15, was built to 

incorporate basic flowsheeting capabilities into the Kinetic Modeler’s Toolkit (KMT). 

The strength of the flowsheet app is the reactor block, which incorporate molecular-

level kinetics from KME. The advantage this application has over traditional KME is 

primarily in the ability to split streams and perform reactor bypasses. This is shown in 

the diagram in Figure 7.15. The Sep1 block is a basic splitter that was added to allow 

for bypass streams. Finally, heaters were added for reactor models, such as naphtha 

reforming, where energy balances play a key role in cost analyses.  

 

Figure 7.15: Sample screenshot from the KME Flowsheet Application. The flowsheet 

layout images in the KME Flowsheet Application are rendered using the 

open-source GraphViz software[132].  
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A full list of block types and descriptions are given in Table 7.8. Three reactors 

were included in the flowsheet: PFR, CSTR, and CCR. Of these reactors, CCR 

requires further explanation. In CCR, there is cross-directional flow of the catalyst and 

reactant stream. The catalyst flow is much slower than the reactant flow, and therefore 

the solution is treated as a set of separable ordinary differential equations within KME. 

In the future, as KME is updated to include more reactor types, the flowsheet will also 

be updated to include these reactors. For separation, there are three included 

separators. The simple splitter effectively splits the entire stream evenly; the mole 

fractions and species within product streams are the same as the inlet stream. The 

specific splitter allows for the split of each molecular species to be uniquely specified. 

Finally, the flash allows for a basic temperature-based split, without vapor-liquid 

equilibrium (VLE) calculations. The final unit is a heater that calculates heat duty for a 

given outlet stream temperature.  
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Table 7.8: Block Types and Descriptions included in KME Flowsheet Application. 

Block Type Description 

Reactor Block housing a kinetic model from KME 

    PFR Plug-flow reactor 

    CSTR Continuously stirred tank reactor 

    CCR Continuous Catalytic Reformer 

Separator Block allowing for stream separation 

    Simple Splitter Split entire stream on a molar basis, with split governed 
by a single parameter 

    Specific Splitter User-defined molar separation for every species, with n-
parameters for n species 

    Flash Split based on boiling temperature assuming perfect split 
with no VLE calculations performed 

Heater Calculate heat required for stream temperature change 
using a molar-averaged heat capacity of all species in the 
stream 

 

Solution of a KME Flowsheet Application follows a sequential order. The 

solution rank is determined automatically by representing the flowsheet as a 

mathematical graph. Each block is given a solution rank based on its proximity to a 

process input. For instance, the example flowsheet from Figure 7.15 has solution 

orders listed in Figure 7.16. If there are loops (i.e., recycle streams), then the current 

version of this app does not allow for solution. The inclusion of recycles requires 

iterative solutions and will be included in future versions of this app. 
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Figure 7.16: Solution order of blocks in the example flowsheet. 

7.3.2 TGA Simulator 

Thermogravimetric analysis (TGA) is a common lab-scale experiment found in 

the literature[58], [60], [63], [77], [94], [133]. The technique is ubiquitous and has 

been applied to feedstocks ranging from biomass to coal to plastics. As shown in 

Figure 7.17, TGA is a technique where a given mass of a compound, such as coal or 

biomass, is heated at a constant rate and the mass loss is measured. The vapor phase is 

either continually vented or quantified using a gas chromatograph. Mass loss occurs 

from two sources: first, as temperature increases, increasingly heavier components 

boil and enter the vapor phase; second, pyrolytic and gasification (if air inlet) reactions 

break down large molecules into lighter molecules with lower boiling points. 
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Figure 7.17: Conceptual Diagram of a Thermogravimetric Analysis experiment.  

Screenshots from the app are shown in Figure 7.18. The app allows the user to 

select a KME model, load in experimental data, input calculation settings, and 

visualize model-experiment comparison of results. The logic of running the KME 

model is given in Figure 7.19. The simulation begins with the starting temperature 

from the ‘Settings’ page. It then runs an isothermal batch reactor for a short time 

period, based on both the heating rate and KME step size. For example, if the heating 

rate is 30 °C/minute and the KME step size is 1 °C then each isothermal run is 2 

seconds long. The output from this simulation is then fed to the next isothermal batch 

simulation where the temperature is increased by 1 °C. The process continues until the 

final experimental temperature is reached. At each time (or temperature) step, the 

vapor and liquid fractions are calculated for comparison with experiments. There are 

two techniques for calculating the phase of each species shown in Figure 7.20. The 

most basic technique is to assume the species boils at exactly the boiling point in a 

step-wise fashion. A slightly more complex technique assumes a logarithmic based 

method as described by Hou[43].  
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Figure 7.18: Selected screenshots from TGA Simulator. Upper Left: opening screen 

where user can select the KME model. Upper right: Experimental data 

Input. Lower Left: simulation settings. Lower right: results and 

comparison with experiments. 



 220 

 

Figure 7.19: TGA Simulator Logic. Image from source [54].  

 

Figure 7.20: Boiling point options in TGA Simulator 

7.3.3 Physical Property Database Interface 

Physical properties are an integral part to kinetic modeling. Properties play a 

role in comparison with experimental data, rate constants, equilibrium constants, VLE 

calculations, and linear free energy relationships (LFERs). For example, the LFER 



 221 

relationships used for reaction families require Δ𝐻𝑓. Since the formation energies are 

temperature-dependent, heat capacity parameters are required for any temperature 

deviations. Finally, any bulk property requires property values for the individual 

species. For example, if the bulk property is a boiling point distribution, then the 

boiling points of each species are required.  

Some of these properties, such as molecular weight, are known exactly based 

on the molecular structure. Others, such as heat capacity, density, or heats of 

formation must either be measured or approximated. Ideally, all molecular properties 

would come directly from experiments. Realistically, the properties of many species 

have not yet been measured. Even if measurements do exist, finding properties for 

every species every time a model is made can be an onerous task. In lieu of 

experimental data, group-contribution methods can be used to approximate properties.  

Group contribution methods assume that a molecule’s properties can be 

predicted based on the groups that compose the molecule. One of the oldest and still 

most commonly used group-contribution method was developed by Benson[134]. 

Benson’s theory divides a molecule into groups, with one group per non-hydrogen 

atom. For example, ethane would have two groups (both CH3) and propane would 

have three (two CH3 groups and one CH2 group). The groups’ properties are a function 

of the neighboring atoms; a CH3 group bound to an oxygen atom would have a 

different set of properties than if it were bound to a carbon atom. Applying this 

concept to ethane, the molecule contains two CH3-C groups. The groups of some 

common molecules are shown in Table 7.9. Properties are calculated as a function of 

these groups. For example, the heat of formation of a molecule is calculated using 

Equation 7.4. 
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Δ𝐻𝑓 = ∑ 𝑛𝑖 ∗ Δ𝐻𝑖
𝑖,𝑔𝑟𝑜𝑢𝑝𝑠

 

𝑤ℎ𝑒𝑟𝑒 𝑛𝑖𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝 𝑖 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 

 

(7.4) 

 

Table 7.9: Some common molecules divided into Benson Groups and predicted heats 

of formation versus the values found in the NIST database.  

Molecule Structure Groups Predicted 
Heat of 
Formation 
(kJ/mol) 

Heat of 
formation 
from NIST 
(kJ/mol) 

Ethane 
 

2 CH3-C -84.38 -84. ± 0.4  

Propane 

 

2 CH3-C, 1 
CH2-2C 

-105.32 -104.7 ± 0.50 

Methanol 
 

1 CH3-C, 1 OH-
C 

-200.75 -205 ± 10 

Ethanol 

 

1CH3-C, 1 CH2-
C,O 
1 OH-C 

-234.66 -232± 2 

 

The validity of a given group contribution method is often dependent on 

molecule type and size. For instance, another system of grouping, Gani groups, predict 

polycyclic aromatics acceptably well; however, they are not useful for predicting 

properties of small molecules or biomolecules. Benson’s model, on the other hand, 

predicts properties of small molecules and biomolecules relatively well but falls short 

on predictions of more complex molecules. Within KMT, group-contribution methods 

are employed by the program PropGen (a component within CME). PropGen makes 

use of a combination of these methods to make the best possible property predictions. 
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Ultimately, any group contribution method is still a model of the properties; 

experimental data is preferred in cases where it exists. 

Table 7.10: Order of preference for sources of molecular properties. 

Order of Preference for Molecular 
Properties 

Relevant Molecules 

Experimental measurements Any experimental properties 
available should be used; however, 
they are likely only available for 
small molecules 

Group Contribution Methods 
Benson 
 
 
 
Gani 

 
Benson Groups are useful for small 
molecules that do not have 
experimental data, and they are 
also useful for biomolecules 
 
Gani Groups are most useful for 
larger molecules such as polycylic 
aromatic hydrocarbons (PAHs) 

 

For some molecules, experimental measurements are available in the open 

literature. This is especially true for low-molecular weight molecules. Furthermore, 

these small molecules are common to many different process chemistries. Often in 

model building, there is the necessary tedium of looking up experimental properties 

and correcting the group contribution approximations. This process is both error-prone 

and repetitive. The best way to address this issue is a physical property database. 

An app titled the Physical Property Database Interface, shown in Figure 7.21, 

was developed and utilized to build a database that currently contains ~10,000 

molecules with 70 properties per molecule. When molecules are added to the database, 
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the initial property predictions are from group contribution using PropGen. The app 

allows for easy addition of literature values for a given molecule. 

 

Figure 7.21: Screenshot of Physical Property Database Interface. 

The underlying database uses SQLite allowing for portability and local storage. 

SQLite is a database management system (DBMS) that utilizes a relational model of 

data. Benefits of using a DBMS instead of simpler storage systems such as Excel or 

text files include search speed and the ability to perform easy queries to return data of 

interest. In the physical property database, tables include molecule names, physical 

properties, units, property methods, and property values. As a result of these design 

decisions, searching the database, changing properties, adding new properties, and 

adding new molecules occurs in real time. 



 225 

The database interface allows for the export of properties for a selected list of 

molecules, as shown in Figure 7.22. The user can search the full database based on 

molecule name or property information. When properties are exported, the user can 

select which property to export, however, by default, literature values are preferred 

over group contribution.  

 

Figure 7.22: Export molecule list window in the Physical Property Database Interface. 

The left side shows a search of the database for all species with 1 or more 

aromatic ring. The right side gives the current list of selected molecules 

and details on which properties are being exported. 
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7.4 Current and Future App Development 

A key benefit to the app-based style of software design is that development is 

quick and ongoing. Unlike with major software packages, the timeframe between idea 

conception and availability of a usable tool is much shorter. This section details the 

Data Audit Application, a project currently still in the conception stage. A second 

advantage of app development is the ease of version updates. Currently, many of the 

apps are going through a general UI update. Over the last two years of developing 

apps, the quality of the user interfaces has improved drastically.  

7.4.1 Data Audit Application 

In the future, the idea of a ‘data audit’ will be explored. As a modeler, the 

default is to trust experimental data and, instead, question the correctness of the model 

if model and experiment do not agree. The typical course of action is to then go back 

to tuning the kinetic model or explore the reaction network to understand if any 

process chemistry is missing from the model. The idea of the data audit is to perform a 

heuristic to analyze the experimental data. There are two tiers currently being 

considered: analyzing the data alone, and analyzing the data and reaction network 

simultaneously. 

The first tier heuristic is to analyze the consistency of experimental data with 

itself. Basic examples of this are mass balances: i.e., do the measured weight fractions 

sum to 1.0? This type of analysis catches many types of human errors such as 

erroneous entry of data. Comparing experimental data on the input and output can 

provide more useful information. This is most useful if there are molecular 

measurements on both streams. In this case, a carbon balance can be calculated using 
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Equation 7.5. If the carbon balance is nonzero, then no amount of tuning of model 

parameters will return perfect results. 

 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐵𝑎𝑙𝑎𝑛𝑐𝑒

=  ∑ (𝐶#,𝑖 ∗ 𝑚𝑜𝑙𝑎𝑟𝐹𝑙𝑜𝑤𝑖)

𝑛𝑢𝑚𝐼𝑛𝑝𝑢𝑡𝑠

𝑖=0

− ∑ (𝐶#,𝑗 ∗ 𝑚𝑜𝑙𝑎𝑟𝐹𝑙𝑜𝑤𝑗)

𝑛𝑢𝑚𝑂𝑏𝑠

𝑗=0

 

 

 

(7.5) 

 

 

Figure 7.23: Basic reaction network layout for heuristic example. 

Table 7.11: Inputs, observed quantities, minimum and possible values at reactor outlet, 

and whether a heuristic returns a red flag. 

Species Input 

(Mol/s) 

Observed 

(Mol/s) 

Min, 

Max 

Red Flag from 

Heuristic 

A 1 0 0, 1 N 

F 2 0 0, 2 N 

B 0 2 0, 3 N 

E 0 2 0, 1 Y 

 

A second tier heuristic is to analyze both the data and reaction network. The 

major question asked by this heuristic is: can the data be predicted given the structure 

of the reaction network? A simple, conceptual example is shown below in Figure 7.8 
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and Table 7.11. Based on the input of A and F into the network, the maximum 

production of B is 3 Mol/s if all of both A and F react to B. In this example, the 

observed amount of B is 2 Mol/s, which is less than the maximum, and the heuristic 

does not flag the measurement. For E, the observed value is 2 Mol/s and the maximum 

possible production is 1 Mol/s based on the structure of the reaction network. The 

heuristic returns a flag, which means that either the data or the reaction network needs 

to be edited. No amount of kinetic parameter tuning will ever produce the observed 

value of E. 

7.4.2 Update of User Interfaces 

Currently, many of the older apps are going through an update of their user 

interfaces. Specifically, app development has switched from Windows Forms 

Applications to the more modern Windows Presentation Foundation (WPF). From the 

point of view of app development, the main advantage of WPF is ability of elements 

(e.g., menus) to be easily replicated across applications. The built-in objects in WPF 

are also much more visually appealing. 
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Figure 7.24: Comparison of user interfaces in Windows Forms Applications (Left, 

App: INGen Network Merge) and Windows Presentation Foundation 

(WPF, Physical Properties Database Interface). 

7.5 Summary 

In summary, software development in KMT has shifted toward lightweight 

software apps. These apps target the objectives of the kinetic model’s users. The first 

category of apps aimed at elucidating the detailed results from kinetic models to help 

improve model comprehension. These apps included the visualization of reaction 

networks and the visualization of reactor profile data. The second category of apps 

focused on measured inputs and outputs to the process. These apps are tailored to 

individual processes and collaborators. Most importantly, by focusing on inputs and 

outputs, the learning curve to using KMT is minimized. The final group of apps 

focuses on enhancing the capabilities of KMT. These apps are wide-ranging and 

include flowsheeting, simulating TGA, and an interface to a physical properties 

database. As a developer, the apps of KMT are inherently rewarding as they target the 

needs of specific users. All apps are currently in use by either researchers or industrial 

collaborators.  
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SUMMARY AND CONCLUSIONS 

 

8.1 Summary and Conclusions 

In summary, this dissertation presented two orthogonal goals: the development 

of kinetic models and the development of model building tools. A model for the 

gasification of MSW was generated and solved using the in-house KMT software. 

This was accomplished in three phases. In the first two phases, gasification models for 

biomass and plastics were developed, independently, and optimized using literature 

data. These models were merged to form a gasification reaction model for MSW. This 

model, combined with a coke gasification reaction model, provided the basis for a 

reactor model of a plasma-arc gasifier. The reactor model represented the gasifier 

using four beds, corresponding to different zones in the overall gasification unit.  

The plasma-arc gasifier reactor model was utilized for trending studies and 

helped to understand the effects of the extreme temperatures in the combustion zone of 

the reactor, the impact of MSW composition, and the effects of changing the oxygen 

flow rates, or the equivalence ratio. The extreme temperatures of the combustion zone 

were found to potentially increase tar production and reduce syngas quality due to a 

localized conversion of CO to CO2. Realistic variations of MSW composition was 

found to have a minor impact on syngas quality, provided that equivalence ratio 

remained constant. The effects on tar composition were more pronounced, with higher 

Chapter 8 
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biomass fractions leading to increased production of oxygenated aromatics, and higher 

plastics fractions leading to increased production of benzene and naphthalene. Finally, 

increasing oxygen flow rate to the bed decreased both tar flow rate and syngas quality. 

This provides room for optimization by process engineers to maximize syngas quality 

while keeping tar formation within the design specifications for downstream 

operations. 

In the process of modeling MSW gasification, modeling strategies were 

developed for both linear and cross-linked polymers. These strategies extend to other 

feedstocks such as additional plastics and entirely different complex feedstocks. For 

instance, the same modeling strategies utilized for lignin were applied to the pyrolysis 

of heavy oil. Going forward, the study of additional plastics and other, more complex 

feedstocks such as coal will be expedited due to the development of modeling 

strategies in this dissertation. 

While building the models for MSW gasification and resid pyrolysis, software 

‘apps’ were developed to aid in future model development. A key aim of software 

development was to target the user-model interface. Specifically, there are three 

groups of users: model developers, research collaborators, and process engineers; each 

group has their own goals while using the model. Process engineers are most 

interested in the ability of the model to predict measurable outputs from measurable 

inputs. The perfect tool for a process engineer is just that: an I/O converter. In addition 

to the measurable I/O, research collaborators care about the scientific and 

mathematical understanding of the model. These users wish to understand the process 

chemistry to improve results in the long run. Model developers share these aims with 

the research collaborators; however, they are also interested in the future development 
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of models. Apps that are exclusive to model developers add features to KMT to aid in 

future projects. 

8.2 Recommendations for Future Work 

8.2.1 MSW Composition 

The composition of MSW is one major area for future research in both the 

composition of individual polymers and the overall composition of waste. For the 

composition of linear polymers, there are two potential areas of future work. First, the 

assumptions of this model led to deviations between measured and modeled ultimate 

analyses for some polymers. Second, real MSW contains more than a single sample of 

each polymer. For the overall composition of waste, the suggested focus area for 

research is a method of quantification of polymer fractions in daily gasifier operation.  

8.2.1.1 Individual Polymer Composition 

In the modeling of the composition of linear polymers, the data utilized were 

from ultimate analyses. To utilize this limited data, two constraints were imposed in 

the composition model. First, the linear polymers were assumed to have known and 

constant repeat unit structure. Second, the polymer size distribution was assumed to 

follow an idealized distribution, e.g., a Flory distribution[61]. Although these 

assumptions worked well for some polymers, others—such as PVC—showed 

deviations when compared with experimental ultimate analysis. A preliminary 

analysis of these deviations is given in the following text; however, this is suggested 

as an area for future consideration. 

The comparison of the PVC composition model with literature experimental 

results is given in Table 8.1. The deviations are seen in the relative amounts of carbon 
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and chlorine in the polymer sample. For PVC, a Flory distribution was assumed to 

model the polymer size distribution. If this assumption is relaxed, one can imagine two 

extremes: all monomers or an infinite polymer. In either of these scenarios, the amount 

of carbon is still below that of the experimental value. Therefore, polymer size 

distribution alone cannot explain this discrepancy. 

The second possible reason for deviation between experiments and model 

predictions is the assumption of a constant repeat unit in the polymer sample. This 

assumption is a bit more interesting. First, real PVC waste can contain many 

plasticizers. However, these plasticizers typically originate from phthalates, which 

contain oxygen. The absence of oxygen from the ultimate analysis excludes 

plasticizers from consideration. However, it is also known that the first step of 

depolymerization is fast in PVC, forming a polyene structure with C2H2 repeat unit. If 

the polymer backbone is assumed to be a mixture of polyene and PVC repeat units, 

then the predicted and experimental analyses are significantly closer.  

Table 8.1: Experimental[64] and predicted ultimate analyses for PVC. Also given are 

the ultimate analyses if the for a monomer and infinite polymer, and pure 

polyene structure. The partially depolymerized polymer was 93.6% PVC 

repeat units with 6.4% polyene repeat units. 

Element Polyvinyl Chloride   

 Experimental Predicted Monomer Infinite 
Polymer 

Polyene Partial 
Depoly. 

C 41.55 38.1 37.2 38.4 92.3 41.55 
H 4.81 5.44 7.8 4.81 7.6 5.57 
O 0.00 0.00 0.00 0.00 0.00 0.00 
Cl 52.95 56.38 55.0 56.8 0.00 52.78 

The only significant change to model results is the amount of HCl produced by 

depolymerization. In the original model, depolymerization would convert 
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approximately 56 weight percent of the polymer to HCl; in contrast, the updated 

composition would only convert 53 weight percent to HCl. The partial 

depolymerization hypothesis did correct the modeled composition to match 

experimental results; however future work is needed to verify the results. 

Real MSW is inherently complex with multiple sources of each polymer. For 

instance, there are many types of polyethylenes, including high-density polyethylene 

and low-density polyethylene. In the model presented in this dissertation, each 

polymer fraction was optimized using a single ultimate analysis. An area for future 

work in MSW composition is in relaxing these assumptions.  

One possible route forward is an extensive analysis of common polymer types, 

polymer size distributions, and the effects on the output from a kinetic model. In order 

to pursue this method, detailed input and output data are required for each polymer in 

question. For the inlet, polymer size distributions can be obtained from Gel 

Permeation Chromatography[66]. This information can be paired with detailed gas 

chromatography results to study the effect of polymer type (e.g., HDPE) for each 

polymer on the reaction kinetics. Ultimately, this methodology would allow the model 

to take into account a combination of polymers and polymer types. To utilize this level 

of detail in a gasifier, additional work is required in modeling the combined 

composition of MSW. 

8.2.1.2 Combined Composition of MSW 

Currently, the composition of the polymeric fractions of MSW is based on an 

ultimate analysis, potentially taken daily, during gasifier operation. In this model, 

MSW is represented using four plastics and three biopolymers, and an ultimate 

analysis likely contains only four usable data points (C, H, O, and Cl). Optimization is 
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therefore under-constrained, and there are infinite solutions for any ultimate analysis. 

In current simulations, known samples of MSW (such as the US average distribution) 

are utilized; however, in gasifier operation, these values—while representative—will 

not be exactly correct. 

A potential route for future research lies in relaxing the assumption that the 

only available data are from ultimate analyses. This could be done at the plant 

operation level, i.e., a method of efficiently quantifying polymeric fractions of waste. 

A second option would be to perform a study of the average MSW composition over 

time for a given MSW gasifier. This would inform the quantification of individual 

MSW fractions beyond that of an ultimate analysis. 

8.2.2 Parameter Tuning and Confidence Intervals 

In this dissertation, the final set of parameters for the MSW gasification model 

was based on literature studies on plastics and biomass. In the future, with the 

availability of plant data, we hope to access the validity of our current parameter 

values in a commercial scale gasifier. If intrinsic values of kinetic parameters were 

obtained in literature studies, then the model results should match the full gasifier. 

Issues could arise as the temperatures of the plasma gasifier are much more extreme 

than the literature studies utilized for parameter tuning. Also, the plant is at a large 

scale of 1,000 metric tons/day. If there are mass or heat transfer limitations, there is 

opportunity for future model development and parameter tuning.    

The parameters in a kinetic model can be assessed using statistics. For 

example, using the seven data sets in the biomass gasification study, confidence 

intervals can be calculated for the tuned parameters. Specifically, we have predicted 

95% confidence intervals using methodology described in prior work by Hou[43]. The 
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relative confidence intervals on the pre-exponential, or A, factors are given in Figure 

8.1. The confidence intervals were smallest on depolymerization and gasification 

chemistries. The A-factors were less certain on cracking and dehydrogenation; at the 

reactor conditions, these reaction families are relatively fast and small changes do not 

appear in the objective function. In contrast, the objective function was insensitive to 

the dry reforming of methane because the reaction rate is too slow. In this case, minor 

increases in the A-factor do not increase the rate enough to impact the objective 

function. In the future, with the availability of data for MSW gasification we can 

extend this methodology to the reactor model of the plasma-arc gasifier. 

 

Figure 8.1: 95% confidence intervals on A-factors relative to the value of the A-factor. 

For instance, the confidence interval is ±0.169 ∗ 𝑙𝑜𝑔𝐴 for 

dehydrogenation. 
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8.2.3 Optimizing Experimental Data for Molecular Models 

The current limits to molecular-level modeling of MSW gasification are 

imposed, not by the modeling methods or computational power, but by the 

experimental information available in gasification literature. In order to enable the use 

of molecular models, future gasification literature should focus on molecular detail of 

both the reactor inlet and reactor outlet. For the reactor inlet, currently ultimate 

analyses are the most common characterization. For the reactor outlet, the common 

results are tar weight fraction and molecular predictions from gas chromatography on 

the most common species(CO, CO2, H2, and CH4). On both the inlet and outlet, this 

status quo lacks molecular detail. This is not necessarily due to a lack of experimental 

techniques; a full spectrum of advanced experiments is seen in the literature on 

refinery reactors. These experiments have aided in the development of detailed kinetic 

models on a wide range of boiling point ranges from naphtha[135]–[140] to vacuum 

gas oil[141] to vacuum resid[46], [48], [127]–[130].  

In naphtha reforming, molecular models are enabled through extensive 

molecular detail on both the input and output. For instance, standard measurements 

include simulated distillation, density, and carbon number PIONA. Advanced 

measurements such as GCxGC can give many isomers of species with up to 14 

carbons[142], [143]. These measurements enable molecular models by allowing for 

mechanism discrimination and accurate kinetic parameter tuning. 

The most complex refinery units also utilize advanced experiments to enable 

molecular modeling. For example, in heavy oil coker, FTICR-MS (Fourier Transform 

Ion Cyclotron Resonance-Mass Spectrometry) is utilized to elucidate the molecular 

identities of up to 50,000 unique species[46],[124]. These measurements can be 

utilized in molecular models as shown in Figure 8.2[46]. The degree of complexity in 
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heavy oil is on the same order of magnitude as MSW. This gives cause for optimism 

for the future pairing of detailed experiments and detailed kinetic models. 

 

 

Figure 8.2: Comparison of DBE versus Carbon Number for single pyrollic ring 

structures for experimental(right) and predicted (left) results. Figure 

taken directly from source and was Figure 15 in the source material.[46] 

8.3 Closing Remarks on MSW Gasification 

Currently, much of the waste in the United States is discarded in landfills. 

MSW is a valuable energy resource that is one of the low-hanging fruits in the energy 

market, and is able to provide a significant amount of cheap energy with little research 

and development. In order to pursue this source of energy, there are a number of 

useful Waste-to-Energy (WTE) technologies.  This dissertation focused on 

gasification of waste, and culminated in a reactor model for the most environmentally 

friendly WTE option: plasma-arc gasification. In building this model, it was shown 

that the process could be modeled at the molecular-level. This model is based on 

fundamental process chemistry and can account for changes in process conditions and 

MSW composition. Gasification and other WTE technologies have been, and will 

continue to be, a future topic of research. Undoubtedly, detailed kinetic models will 

play a central role in the future conversion of waste to energy.   
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