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ABSTRACT 

 

Managing the deterioration of the bridge components and elements has continued to 

be one of the major concerns for the Departments of Transportation (DOTs) in the 

United States due to the huge cost needed for constructing new bridges. To avert 

disasters that could lead to severe losses, deterioration models have been created to 

predict the future condition of the deck while attributing the deterioration to different 

factors elicited by engineering and statistical techniques. Previous deterioration 

models have been more like linear regression models and did not predict the 

discretized value of the deck condition rating. A prediction of 6.51 was approximated 

to be a condition rating of 7, which is inappropriate for a discrete data type. This 

research project uniquely combines all the bridge features identified in the literature 

by applying principal component analysis (PCA) to capture the variance in the dataset 

needed to predict the condition of the bridge components. Feedforward Artificial 

Neural Network (ANN) models were created using different numbers of principal 

components and the performances were compared with that of the base model that 

uses all the features collected from the literature. It was observed that 9, 9, and 10 

principal components are needed to create a deterioration prediction model that gives a 

better prediction accuracy than the base model that uses all the bridge features in the 

Deck, Superstructure, and Substructure respectively. The deterioration of the bridge 
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elements is also known to influence the condition rating of the bridge components and 

the overall condition of the bridge. The weight or importance of the bridge elements 

influences the maintenance, repair, and replacement (MRR) schedule of the 

Departments of Transportation (DOTs) and the resource allocation to the structures. 

The DOTs currently use a cost-based approach to assign weight to bridge elements 

which can be in terms of the loss accrued during downtime or the amount needed for 

the replacement of the element. However, this approach does not consider the bridge 

element's structural relevance to the bridge's overall performance. This research also 

uniquely uses the Random Forest (RF) algorithm, an ensemble of decision trees, to 

evaluate the importance of different elements to the condition of the bridge 

components and the overall condition of the bridge. The analysis focused on 15 bridge 

design types in Delaware, Maryland, Pennsylvania, Virginia, and West Virginia and 

discovered that the weight of bridge elements is not constant as insinuated by the cost-

based approach but varies based on its relevance to the bridge's structural 

performance. The resultant bridge elements’ weight can be used to construct the 

Bridge Health Index (BHI) equations for the different bridge types. The novel 

approach herein provides the DOT personnel with data-driven evidence to determine 

which set of bridge elements to prioritize in their maintenance actions to improve the 

components' condition, and the overall condition of their bridge inventory and to 

ascertain if the elements receiving the highest priority in the MRR schedule and 

budget allocation are also the same set of elements that bridge inspectors regard as 

needing attention. Furthermore, the technique presented also serves as an approach for 
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synthesizing the bridge component and element-level data and aids the conversion 

process between the two important datasets. 
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Chapter 1 

OVERVIEW 

1.1 Background of Study 

Deterioration is inherent in bridges like many other transportation structures 

that support the movement of goods and services and promote economic activities. 

Bridge owners including the Departments of Transportation (DOTs) who receive 

federal funding for bridge maintenance in the United States are mandated to collect 

data and rate the condition of the bridge components based on the bridge deck, 

superstructure, and substructure at the minimum. As such, there are more than three 

decades worth of condition rating data that shows the health condition trend of in-

service bridges in the nation. In 1997, the idea of collecting element-level data in 

addition to condition rating data on the bridge deck, superstructure, and substructure 

was first introduced via the AASHTO Commonly Recognized (CoRe) structural 

elements. The purpose of including element-level data was to make the bridge data 

collection process more consistent and quantitative [1] and it was not mandatory at 

this point. However, some DOTs in the United States of America started collecting 

element-level data in the early 1990s as part of their bridge management operations 

and only collected for their internal operations. The Moving Ahead for Progress in 21st 

Century (MAP-21) Act in 2014 mandated all bridge owners receiving federal funds to 

start collecting element-level data to help engineers monitor the life-cycle of a bridge 

and improve Bridge Management Systems (BMS) [2].  
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As of today, the bridge data collection in the U.S. is getting more robust with a 

large volume of component and element-level data collected yearly. There are over 

600,000 bridges in the country and this number continues to rise due to the creation of 

new transportation routes, and more data related to the condition and features of 

bridges will be collected. Similarly, determining these bridges’ deterioration remains a 

priority to avert disasters as about 7.5% of these bridges are in poor condition [3].  

The deck, superstructure, and substructure are the major components of the 

bridge, and they have several other elements nested under them. The lingering issue 

has continued to be the effect of the deterioration of the bridge elements on the 

condition of the major components and the bridge as a whole. The importance of 

bridge elements is known to influence their prioritization in the maintenance, 

replacement, and repair (MRR) process. It becomes pertinent to determine which sets 

of elements have the highest impact on the condition rating of existing bridge 

components. The current method used by most departments of transportation (DOTs) 

in the United States to determine the bridge elements’ weight is based on the failure 

cost, which is determined by experts in terms of the amount needed to replace the 

element or the amount that would be lost if such elements were not functioning 

optimally [4]. However, this approach does not consider the bridge element’s 

structural relevance to the major components’ overall performance.  

FHWA [5] provided a hierarchy showing the connection/relationship between 

the major bridge components and the elements as shown in Figure 1-1. However, this 

hierarchy does not consider the different bridge design types that could occur and only 

shows the general connection between the elements and the major components. 

Different bridge design types have distinct sets of elements that are responsible for 
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their structural performance; for example, the cables in a suspension bridge are 

important elements in the superstructure, however, they have no relevance in other 

bridge types like the Stringer/Multi-beam, Truss-thru, Box beam, etc. This makes it 

pertinent to consider the bridge elements’ importance based on the design type of the 

bridge. 

The bridge deck, which provides a travel surface for vehicles is susceptible to 

deterioration effects because of the high level of contact (abrasive force), traffic 

volume, and quicker exposure to adverse weather conditions like snowfall and 

freezing effects [6]. This prompts the usage of de-icing salts and other chemicals 

which have been linked to causing rapid deterioration of bridge decks [7-10]. 

Although there is no actual data on the frequency of salt added to the bridge deck, this 

can be implied by using other climatic factors like snowfall and freeze index as 

references [7].  For this reason, it becomes pertinent to give close monitoring to the 

bridge deck for proper maintenance, replacement, and repair (MRR) planning. The 

reconstruction of a bridge deck accrues a lot of costs associated with traffic jams, 

rerouting, minimizing noise and dust, and the actual reconstruction cost that may be 

averted by taking actions that will mitigate the full deterioration of the deck [11].  
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Figure 1-1: Bridge Hierarchy [5]. 

Also, the other bridge components i.e., the superstructure and substructure also 

experience deterioration which limits their load-carrying capacity and affects the 

overall bridge performance. Recently, more attention has been directed to the 

maintenance of the bridge deck because of the immediate discomfort it causes road 

users when it is in bad condition. However, the other components (i.e., superstructure 

and substructure) are as important to the overall condition of the bridge. The 

deterioration of any of the three major bridge components affects the overall condition 

rating of the bridge as this rating is taken as the lowest of the condition rating of the 

deck, superstructure, and substructure [12]. By foreseeing a bridge's imminent 

collapse or adverse deterioration, quicker actions can be taken to minimize the 

consequences [6, 13]. 
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The study first computes the weight (or importance) of individual bridge 

elements and calculates the overall bridge health index (BHI) which is another 

measure of a bridge performance using the random forest algorithm. This was done to 

replicate the different bridge design types that occur in the National Bridge Inventory 

(NBI) to give a better understanding of the specific elements that influence the 

deterioration of the different types of bridges the most. 

Many deterioration models have been created to predict the future condition of 

bridge components with many researchers attributing this drop in condition rating to 

different sets of features and recorded a reasonable level of accuracy [6, 7, 14-18]. 

However, combining all bridge features to create a standard model creates noise in the 

data because of redundancies in some of the features due to inaccurate data and low 

variability in certain instances, which does not help the prediction accuracy of the 

model created [17]. This research aims to apply principal component analysis (PCA), 

a dimensionality reduction technique, to find a good set of new features or principal 

components that represent the important information in the dataset and create a more 

standardized model. Artificial Neural Network (ANN) models will be created using 

these principal components to predict the future condition of the bridge components. 

This model is intended to have a lower computation cost in terms of the complexity of 

the architecture when compared to using the original set of features without having 

any significant effect on prediction accuracy. Also, the models created will predict the 

actual discrete value of the deck condition rating using an appropriate classification 

algorithm framework. 

 



 6 

1.2 Objectives of Research 

The proposed research objective for this research is to develop bridge 

components’ deterioration models using the components’ inspection data to predict the 

future condition of bridge components in appropriate classes while exploring the 

effectiveness of dimensionality reduction in bridge data when creating the prediction 

models. Principal components (PC), which are less computationally expensive and 

produce equal or better prediction accuracy compared to the base model (i.e., with the 

original bridge feature set), will be used to create prediction models.  A classification 

model will also be created instead of the regression-based approach and prevent the 

need for approximating the predicted condition rating values. The analysis will go a 

step further to determine the bridge elements that influence the deterioration of the 

bridge components and overall bridge condition the most. The novelty of the proposed 

approach identifies critical quality bridge features to be harnessed using principal 

component analysis to filter data rather than considering irrelevant feature selection 

techniques. Correlations between the component and element-level data are 

determined to define bridge weights from this data-driven analysis to redefine bridge 

health index (BHI) equations for different bridges based on main-span design types. 

The broader impact of this study supports BHI equations using a data-driven approach 

given the wealth of bridge inspection data now available at the bridge element level 

for evaluating bridge health. 

1.3 Thesis Outline 

This section is illustrated in the table of contents, highlighting several parts of 

this thesis including the knowledge gaps and the approaches that were adopted to 

solve the existing problems.  
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

The importance of bridge elements to the overall condition the of bridge and 

the ability to monitor the deterioration of the major bridge components are important 

topics that drive the effort for the continuous improvement of bridge infrastructure. 

The need for bridges that are performing optimally cannot be overemphasized because 

they form a core part of the transportation network that drives the economy and other 

societal needs. It becomes essential to discuss the rudiments of this important 

infrastructure and several efforts that have gone into putting it in good condition. 

2.1.1 Bridge Inspection 

Bridges are made up of several parts that act together as a unit to facilitate 

transportation. To keep these parts in good working condition, bridges are inspected 

regularly to observe their condition and ability to perform optimally according to the 

specified design. Most bridges are inspected every two (2) years except in special 

cases where closer monitoring is required for heavily deteriorated bridges [12]. 

Bridges are made up of three major components i.e., deck, superstructure, and 

substructure, and each of these components is made up of elements that are 

responsible for its structural configuration and influence its condition. Most of the 

bridge elements are nested under these three major components termed the National 

Bridge Inventory (NBI) rating or General Condition Rating as illustrated in Figure 2-1. 
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The NBI ratings have been in use since the 1970s and a lot of data have been accrued 

to date [19]. 

 

 

Figure 2-1: Hierarchy of Bridge Parts. 

Bridge elements are divided into three categories, according to the AASHTO 

Manual for Bridge Element Inspection (MBEI): 1) National Bridge Element (NBE), 2) 

Bridge Management Element (BME), and 3) Agency-defined Element (ADE). This 

categorization is important to have a simplified technique for element condition 

assessment that can be adopted nationwide [12]. The NBE is the primary load-carrying 

element of the bridge. BME are elements used to improve the performance of the 

NBE, and ADE are elements specific to a DOT that are considered important to the 

bridge condition. Furthermore, a sub-element of the NBE and BME can also be 

defined [1].  

The collection of element-level condition data is gaining acceptance among 

State DOTs, where there is a need to document the condition states of bridges to 

efficiently utilize these data for an improved Bridge Management System (BMS). It is 

essential to have a consistent scale for measuring bridge conditions that will help to 
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establish accurate bridge evaluation [20]. Lin, Pan [20] also noted that without the 

element-level data, existing manuals only introduce material distresses for condition 

rating but overlook bridge element conditions that affect the bridge performance and 

indicate the likelihood of failure.  

Fiorillo and Nassif [19] further clarified the mode of identifying elements 

using a unique identification (ID) called an Element Number (EN). Elements with IDs 

of less than 100 are in the deck region of the bridge. IDs between 100 and 199 are for 

elements in the superstructure and IDs between 200 and 299 are for the substructure 

elements. Bridge Management Elements like the joints are assigned IDs between 300 

and 399 while ADEs like the wearing surface are assigned IDs of 500 upwards. In 

some DOTs, element numbers 800 and above are reserved for agency-defined 

elements [1]. This helps sort elements and prevents mismatches when trying to 

correlate the performance of related elements, which is important for having a more 

definitive maintenance schedule and budget allocation for structure improvement. 

2.1.2 Evaluation of Bridge Elements’ Health Index 

A bridge element’s status is represented in terms of its quantity in each 

condition state (CS) as specified by AASHTO [12]. CS1 signifies a good state, CS2- is 

a fair state, CS3- is a poor state, and CS4- is a severe state. These condition states are 

all that are required to determine the health index, HIe, of each element, where a 

weighted factor is assigned to each of them. For example, CS1 has the greatest effect 

on the health index and is assigned a factor of 1, CS2 – 0.67, CS3 – 0.33, and CS4 – 0, 

assuming an equally-weighted distribution. Other weight distributions like 1:0.5:0.25, 

1:0.4:0.1:0, and 1:0.8:0.4:0 have also been used in practice and comparisons are made 
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to determine which of them results in a health index value that most accurately depict 

the actual physical condition of the bridge elements. The number of elements in CS4 is 

assumed to have no impact on the health index of the element [12]. The condition state 

data of each bridge element are converted into an element health index (HIe), which is 

a single value between 0 and 100%. Equation 2.1 illustrates how to compute the health 

index of individual bridge elements. 

Jiang and Rens [21] and Jiang and Rens [22] examined a bridge deck element 

whose health index was computed using the linear health index coefficient ratio of 

1:0.67:0.33:0 and observed that the health index did not change significantly even as 

the bridge got older and with apparent deterioration. The authors suggested that using 

the health index coefficient ratio 1:0.4:0.1:0 for computing the elements’ health index 

is more realistic and better represents the actual condition of the bridge elements. In 

their research, Inkoom, Sobanjo [23] evaluated the bridge elements’ health index using 

1:0.5:0.25:0, 1:0.67:0.33:0, and 1:0.8:0.4:0 separately and concluded that the weight 

factor ratio of 1:0.5:0.25:0 and 1:0.67:0.33:0 provide a more conservative computation 

of the elements’ health index and may represent the present realities of these elements. 

In this research project, the health index of the bridge elements will be computed using 

the 1:0.4:0.1:0 weight factor ratio as it was observed that the linear approach 

(1:0.67:0.33:0) does not produce a realistic estimate of the elements’ health index 

when juxtaposed with the condition rating of the associated major component. For 

instance, a bridge deck that is rated 5 has the associated deck element having a health 

index greater than 90% in many instances. 

Hie = ∑ ((health index coefficient) * (% of the element in each condition state)     (2.1) 
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2.1.3 National Bridge Inventory 

The National Bridge Inventory (NBI) is the most complete and reliable source 

of bridge condition data in the United States of America (USA), providing the general 

condition rating of the deck, superstructure, and substructure on a scale of 0 (failed 

condition) to 9 (excellent condition) [12]. The indicator for each of the condition states 

is shown in Table 2-1. The NBI database does not only contain data on the condition 

ratings of the deck, superstructure, and substructure, but also data on factors like 

bridge properties, climatic conditions, and traffic volume that could influence the 

deterioration and distress of the bridges. This database also helps in prioritizing 

funding allocations for bridge maintenance, repair, and replacement (MRR), and 

provides a source of reporting to Congress on the status of bridges in the country [24]. 

In 2014, the Moving Ahead for Progress in 21st Century (MAP-21) Act mandated that 

all state DOTs collect element-level data, which makes the NBI database larger and 

helps to capture the relationship between major deterioration components and their 

sub-elements, also making the Bridge Management Systems (BMS) more robust [2].  

The bridge components condition rating assessment is carried out by trained 

bridge inspectors who check for some physical attributes of the component and assign 

the appropriate condition rating value. The condition rating of the deck, 

superstructure, and substructure is alternatively called the general condition ratings 

(GCR) and can further be divided into categories. Ratings of 0-4 are categorized as 

poor, 5 and 6 – as fair, and 7 through 9 – as good [12]. The overall condition rating of 

a bridge is taken as the minimum of the rating assigned to the deck, superstructure, 

and substructure, e.g., a bridge with the deck at 5, superstructure at 6, and substructure 

at 7 will have an overall condition rating of 5 [12]. Other data available in the NBI 
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database include the load rating of the bridge, dimensions of spans, traffic volume, 

highway functional class, etc. The NBI database has a total of 116 items that represent 

data on the bridge geometry, climatic and environmental conditions, deterioration 

conditions, traffic conditions, and the location of the structure. The full description of 

these items is available in the NBI data dictionary. 

Table 2-1: Condition rating description [24] 

Code Condition Description 

N Not 

Applicable 

Component does not exist. 

9 Excellent Isolated inherent defects. 

8 Very Good Some inherent defects. 

7 Good Some minor defects. 

6 Satisfactory Widespread minor or isolated moderate defects. 

5 Fair Some moderate defects; strength and performance of the 

component not affected. 

4 Poor Widespread moderate or isolated major defects; strength and/or 

performance of component is affected. 

3 Serious Major defects; strength and/or performance of the component 

is seriously affected. Condition typically necessitates more 

frequent monitoring, load restrictions, and/or corrective 

actions. 
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2 Critical Major defects; component is severely compromised. Condition 

typically necessitates frequent monitoring, significant load 

restrictions, and/or corrective actions in order to keep the 

bridge open. 

1 Imminent 

Failure 

Bridge is closed to traffic due to component condition. Repair 

or rehabilitation may return the bridge to service. 

0 Failed Bridge is closed due to component condition, and is beyond 

corrective action. Replacement is required to restore service. 

2.2 Bridge Elements’ Weight 

Knowledge of the element weights of bridge components is a requirement to 

determine the significance of their deterioration to the overall bridge health. The 

overall condition state of a bridge cannot be derived from the simple addition of 

effective element deficiencies because of the complexity of the bridge system, having 

a range of material types and components [25]. 

Efforts have been made over the past decades to convert the health index of 

elements into the general health index of the bridge. AASHTO [12] introduced the 

AASHTO Bridge Management (BrM) software that combines the individual health 

index of elements into a single rating on a scale of 0 to 100. The effect or impact of an 

element’s deterioration on the overall health index of the bridge still depends on the 

weighted factors adopted by the state DOTs which are mostly based on the failure or 

replacement cost. The overall health index of a bridge is termed the Bridge Health 

Index (BHI) and can be calculated as illustrated in Equation 2.2. 
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BHI = ∑ ((Element Weight) * (Element Health Index, Hie))   (2.2) 

The California Bridge Health Index (BHI) method posited that the health index 

of an element is proportional to its quantity in a particular condition state and the 

economic impact of the element’s failure [4]. In the study, failure cost was introduced 

as the weight emphasizing the importance of the element to the overall bridge health 

since depreciation in element value can be measured over time and the associated 

replacement cost can be estimated by experts. However, the limitation of this method 

is that element failure cost varies across states and agencies--a model cannot be 

universally adopted to calculate bridge health index across states using this technique 

because of varying economic conditions. Also, this technique is more fixated on the 

dollar value of the bridge elements rather than their functionality to the optimum 

performance of the bridge. This approach is the most widely adopted element 

condition index by the DOTs in the United States which raises the need for other data-

driven alternatives that solely use the condition state and rating data collected to 

determine the importance of bridge elements and eliminate the bias that can be 

associated with the failure and replacement cost method normally determined by 

experts. 

Inkoom and Sobanjo [26] developed a bridge element importance weighting 

system that used the availability of the element and the criticality of its downtime to 

the performance of the bridge. The availability index gives the residual strength of the 

element expressed in terms of uptime and downtime. Failure and repair rates of 

important elements were also considered in the study as major factors because their 

failure will have the greatest effect on the performance of the bridge. However, the 

computation of the availability index is highly probabilistic and there is limited actual 
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data that has been collected to measure the downtime and uptime of bridge elements 

proposed in the study. 

Abiona, Head [27] applied artificial neural networks (ANN) to determine 

which bridge elements are more important to the overall condition of the bridge. This 

was done by setting the health index values of the bridge elements as the independent 

variables and the overall condition of the bridge as the dependent variable. The 

relevance of each bridge element in predicting whether the overall condition of the 

bridge is poor, fair, or good is used to assign importance to the elements. In this study, 

it was observed that the bridge abutment has the highest level of importance to the 

overall condition of the bridge while the gusset plate has the least importance when 

considering the aggregation of all the bridges in Delaware, Maryland, Pennsylvania, 

Virginia, and West Virginia. However, the bridges were not classified based on the 

design type which means that bridge elements in some less frequent bridge types will 

have low representation in the data set causing their importance to be underestimated.  

Inkoom, Sobanjo [23] developed an importance factor based on the element’s 

replacement costs, long-term costs, vulnerability to hazard risk, and the combination 

of all three measures. The replacement cost approach was done by calculating the unit 

cost of each element and finding the ratio to that of the total unit cost of all elements in 

the bridge. The long-term cost approach was done similarly to the replacement cost 

approach, but the long-term cost was computed using the product of the unit cost and 

the element’s quantity. The ratio between the long-term cost of each element to the 

total long-term cost of all the elements in the bridge gives the importance factor. The 

elements’ importance factor based on vulnerability to the hazard was computed using 

a vulnerability index scale based on the type of hazard that is predominant in the 
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bridge location. It was observed that the elements’ importance based on the 

vulnerability to hazard is higher than that of the replacement cost and long-term cost. 

Finally, the combined approach allows the addition of some level of importance to 

bridge elements that were deemed irrelevant by the individual approaches. However, 

the approaches adopted by the authors are mainly based on cost and not the 

importance of the element to the functionality of the bridge. Given the amount of 

bridge element data collected since 2015, there is a need to consider the role and 

impact of these elements on the bridge vulnerability using a data-driven approach. 

Jiang and Rens [21] developed an alternative approach for determining the 

bridge elements’ importance based on the conventional failure and replacement cost. 

The bridge elements’ importance is made flexible so that elements in a deplorable state 

are assigned a higher weight greater than what was initially assigned making the 

overall condition of the bridge more sensitive to reflect the condition of small bridge 

elements. In this approach, the increase in the severity of the distress of the bridge 

elements leads to higher importance on the overall condition of the bridge. Adjustment 

factors were used such that if the health index of an element reduces below 40%, the 

importance of the element increases by eight times. However, like Inkoom, Sobanjo 

[23], the basis of the analysis is rooted in the cost of the elements, which might 

introduce some initial bias and can vary from one state to another depending on the 

economic condition. Also, increasing the importance of the elements in a poor state by 

eight times might lead to being overly conservative in stating the overall condition of 

the bridge. 

By comparing with what is being done internationally, in the United Kingdom, 

elements’ significance to the overall bridge health is represented using an assigned 
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Element Importance Factor (EIF) and this can be combined with the Element 

Condition Score (ECS) to determine the overall condition index of the bridge [4]. The 

major setback of this approach is that the EIF is subjective; in other words, an element 

that is perceived by the inspector to be of less importance might carry more weight 

depending on the complexity and current state of the bridge. Furthermore, Chase, Adu-

Gyamfi [4] also described the weighted averaging method of prioritizing elements’ 

importance adopted by the Finnish Road Administration. The bridge is divided into 

nine structural parts and a weight factor is assigned to each part using experts’ 

opinions. Although this method can capture the element-level defects in the overall 

bridge condition rating, there is no index integrating the structural condition and 

function of the elements. 

2.3 Synthesis of Component and Element-Level Data 

As it is already known that the condition of the major bridge components (i.e., 

deck, superstructure, and substructure) are influenced by conditions of the sub-

elements that are nested under them, it becomes pertinent to synthesize these two 

important data sets. According to the bridge inspection reference manual, the condition 

rating of the major components is assigned based on the inspected condition of the 

sub-elements that are nested under them, and can be deduced that the deterioration of 

the major components and associated bridge elements are interconnected [28].  

In a survey conducted by Bektaş [1] on 51 Departments of Transportation 

(DOTs) in the United States to observe if they have a prescribed set of activities for 

comparing the element-level data and general condition rating data. The result of the 

survey shows that 26 of these DOTs which is equivalent to 51% indicated that they do 
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not compare the element-level data and general condition rating data, 13 DOTs (25%) 

indicated that they developed a conversion profile/model, but it needs further 

improvement, 6 DOTs (12%) indicated that they use the default conversion profile 

available in the Bridge Management System (BMS), and only 6 DOTs (12%) indicated 

that they developed a conversion profile they are confident in. This goes to show the 

amount of benefit the DOTs will get from having a framework that can synthesize 

these two distinct data sets. Apart from helping them to gain better intuition from the 

bridge data that were collected, it also helps to validate their maintenance, repair, and 

replacement (MRR) schedule.  

This research explores techniques for capturing how different bridge elements 

influence the deterioration of the major components and also setting up a reliable 

prediction model for forecasting the future condition of the major components (i.e., 

deck, superstructure, and substructure). 

2.4 Bridge Condition Prediction Models 

Since the commencement of data collection by most DOTs in the 1990s, 

different kinds of deterioration models have been developed to monitor the condition 

of bridges in the country. Many researchers have applied different statistical tools, and 

more recently, machine learning algorithms to develop deterioration models that 

utilize these data for making forecasts on the future condition of bridges. These 

models form the backbone of many bridge management systems (BMS) and have a 

great influence on the maintenance, repair, and replacement (MRR) plan [15]. The 

major types of models used are stochastic, deterministic, mechanistic, and machine 

learning models.  
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2.4.1 Stochastic Model 

This is a type of model that allows uncertainties and randomness in some 

quantities to be built into it, and it is usually time or condition-state-bound. The 

deterioration process for the condition state-based is modeled using the probability of 

transition from one state to another while the time-based is modeled using the amount 

of time a component remains in a condition without transitioning [29]. The condition 

state-based model is more widely adopted in bridge deterioration modeling. Ranjith, 

Setunge [30] used a stochastic Markov chain to develop a deterioration model for 

predicting the future condition of timber bridge elements in Australia in the form of a 

probabilistic estimate. Ranjith, Setunge [30] used the condition rating data to develop 

transition probabilities and applied a percentage prediction method, regression-based 

optimization method, and nonlinear optimization technique to predict transition 

matrices and transient probabilities. It was observed that the nonlinear optimization 

technique was more mathematically acceptable and predicted the progress of 

deterioration with better accuracy than the other two methods. However, Madanat, 

Mishalani [31] developed an econometric method, which was based on an ordered 

probit technique for making transition probabilities using condition rating data. This 

method has the advantage of treating the deterioration of the components as a latent 

variable and recognizes the discrete nature of the condition rating data. Madanat, 

Mishalani [31] also concluded that the ordered probit technique produced a more 

accurate estimation of the transition probabilities when compared to the regression-

based method. However, this model is limited because of the assumption that the 

future condition only depends on the present condition state and neglects the historical 

data of the bridge.  



 20 

2.4.2 Deterministic Model 

Deterministic models assume that there is a constant relationship between the 

factors causing deterioration and the condition rating of the bridge components. This 

model is very simple to apply in predicting the future condition of bridges and can be 

adopted at the network level [29]. Moomen, Qiao [7] created deterministic models for 

bridge components to support Indiana’s bridge management system (BMS). This 

model was able to capture the complex relationship between some factors like bridge 

age, length of span, number of freeze-thaw cycles, etc., and the condition rating of 

these bridge components. Trans [32] used data mining and geographical information 

systems (GIS) with the NBI data to create a prediction model. Trans [32] created 

several generalized linear models, generalized additive models, and a combination of 

the two models. It was observed that the generalized linear model gave a better 

prediction and was more accurate. However, random errors in the prediction are 

usually neglected and do not give room for uncertainty or the influence of undeclared 

variables [33].  

2.4.3 Mechanistic Model 

Mechanistic models are different from other statistical models because they do 

not use the historical data of the bridges to make predictions but rather the 

mathematical description of the phenomenon involved in the degradation [34]. To 

describe the deterioration mechanism mathematically, the underlying causes of 

deterioration must be known and studied throughout the life of the bridge as against 

the early deterioration process that was only measured during the onset of visible 

defects [34]. The deterioration predictions of the mechanistic models are more 

quantitative and are more appropriate for project-level analysis [29]. Lu, Liu [35] 
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developed a mathematical model that can predict the time from corrosion initiation in 

a structural member to the appearance of the first crack on the concrete. This model 

established a relationship between the expansive pressure and the amount of corrosion 

in the steel using the mechanics of elasticity and was able to predict the time to the 

appearance of the cover crack with a reasonable level of accuracy. However, this 

model requires a large amount of data and is computationally expensive for a large 

bridge network, making it difficult to adopt in bridge management systems [29].  

2.4.4 Machine Learning Models 

Machine learning is an artificial intelligence (AI) system that allows computers 

to solve problems involving knowledge of the real world by extracting patterns from 

raw data to make decisions that appear subjective [36]. The advent of different 

machine learning algorithms has seen great acceptance in bridge deterioration 

modeling. This has caused a significant shift from the stochastic and deterministic-

based model that was widely adopted in different applications. Srikanth and 

Arockiasamy [29] did an extensive review of models created with stochastics, 

deterministic, and Artificial Neural Network (ANN) based approaches for timber and 

concrete bridges. Srikanth and Arockiasamy [29] concluded that the stochastic-based 

method like the Markov chain provided a lower level of accuracy because of the 

assumption that the future condition only depends on the present condition which 

resulted in many unused condition rating data. Overall, the authors concluded that the 

ANN-based model gave the highest level of accuracy in predicting the future 

condition of the bridge components.  
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Althaqafi [37] used historical bridge condition data in Ohio from 1992 to 2019 

to develop deterioration models for the bridge deck, superstructure, and substructure 

using both ANN and Markov Chain. The analysis result shows that the ANN model is 

far superior to the Markov chain model in terms of prediction accuracy and provides a 

more reliable means to forecast the future condition of bridge components. Miao and 

Yokota [38] developed a bridge deterioration prediction model using both Markov 

chain and recurrent neural network (RNN). The analysis result shows that the RNN 

model predicts the bridge deck deterioration faster than the Markov chain model. 

Nguyen and Dinh [13] applied ANN to predict the condition rating of bridge decks 

using 2572 bridge samples in the state of Alabama collected from the National Bridge 

Inventory (NBI) and observed a prediction accuracy of 73.6% which is more than 

what is obtainable from any deterministic, stochastic, or mechanistic model.  

Apart from predicting the future condition of bridge components, machine 

learning algorithms have been applied to bridge data to improve usability and help in 

making informed decisions on bridge preservation. Fiorillo and Nassif [19] applied 

deep convolutional neural networks (CNN) to convert between the bridge elements 

condition and the NBI condition ratings. This study is important because the element 

level data collection was only started recently while the NBI condition rating data runs 

over three decades, improving the conversion between the two datasets will help to 

reveal the historical trend of the bridge elements’ condition and improve their 

maintenance schedule. The CNN model was able to predict the ratings of the bridges 

with an accuracy of up to 90%. Similarly, Bektas, Carriquiry [39] used classification 

and regression trees (CART) to predict the NBI condition ratings from the element-

level condition data. The method and machine learning algorithm presented by the 
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authors gives another approach for converting between the two important bridge 

datasets. Wang, Yao [40] developed a machine learning framework for predicting 

bridge defect detection cost by using a random forest algorithm to determine the 

importance of the major factors affecting detection cost and used a combination of 

genetic algorithm and multilayer neural network to develop the detection cost 

prediction model.  

2.4.4.1 Artificial Neural Networks 

Among the different machine learning algorithms, the artificial neural network 

has seen the most application in bridge deterioration prediction. Miao [41], Huang 

[15], Ali, Elsayegh [42], Nguyen and Dinh [13], Assaad and El-adaway [14], Althaqafi 

and Chou [43], etc. have all applied ANN to predict the deterioration of bridge 

components using bridge inspection data collected from the national bridge inventory. 

The quick acceptability of ANN among researchers can be attributed to its ease of use 

and result interpretation. 

The artificial neural network (ANN) is a form of deep learning algorithm that 

was developed to mimic the human brain where several neurons can interact and share 

information. Like the human brain, the ANN can also function even when some of the 

neurons are dead or disabled [44]. The model is created through an iterative learning 

process when it is given a set of examples to study the pattern in which they are 

organized. Weights are assigned to the neurons (or units) and are continuously 

evaluated until there are no significant changes in them again. The impulse received 

by each neuron is computed as the weighted sum of the input signal received from a 

preceding layer [45].  
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The learning method of the ANN can be in three major forms which are 

supervised, unsupervised, and reinforcement learning. Supervised learning involves a 

dataset with a known output or response variable whereas unsupervised learning 

involves a dataset without an output variable and the work of the algorithm is to detect 

patterns or any other interesting aspect of the data. Reinforcement learning is used for 

a situation where the task is too complicated to be programmed in the computer so the 

learner is not told about the actions to take but uses the rewards and penalties from 

actions taken to determine which direction is the best [45]. 

 The ANN framework usually contains three categories of layers i.e., input 

layer, hidden layer, and output layer. The signal flows from the input units to the 

output units in a forward direction and this framework is referred to as a feed-forward 

network or multilayer perceptron (MLP) [45]. The MLP consists of the input and 

output layer at the extreme, and multiple hidden layers in the middle [46]. Figure 2-2 

shows a typical arrangement of the layers in an ANN. The input layer is the first layer 

in the neural network and corresponds to the actual features that describe the dataset. 

The number of neurons in the input layer must correspond to the number of features 

that are fed into the model. The hidden layer is the middle layer of the neural network, 

and the number of layers and neurons can be modified depending on the intended 

complexity of the model. The output layer is the final layer of the neural network and 

the number of neurons in this layer is dependent on the data type of the response 

variable. For a regression problem where the response variable is a continuous data 

type and can take an infinite number of possible outcomes, the number of neurons in 

the output layer is 1 and in a binary classification problem where the response variable 

can take only two possible values which can be 0 or 1, the number of neurons in the 
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output layer for this kind of model is also 1. For a multi-class classification problem 

where the output can only be a set of discrete numbers within a particular range of 

values, the number of neurons must be equal to the number of possible discrete values. 

E.g., a bridge deterioration model that intends to predict the condition rating of bridge 

components into a value from 0 to 9 must have exactly 10 neurons in the output layer. 

An important term that helps to differentiate how each of the layers is treated 

concerning the nature of data they handle is called the ‘activation function’. 

 

Figure 2-2: Typical Artificial Neural Networks (ANN) Layers. 

2.4.4.2 Activation Function 

The activation functions in artificial neural networks are needed to relay 

information in an interpretable format between interconnected layers. They help in 

transforming input signals received by a layer into a suitable output that will serve as 

an input for the next layer in the model assembly [47]. Nwankpa, Ijomah [48] 

described activation functions as functions that help to compute the weighted sum of 
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input and biases to know if a neuron can be activated or not. Activation functions are 

known to generally improve the prediction accuracy of models and if they are not 

used, the output signal will be a simple linear function that is not capable of 

understanding and recognizing complex mappings from data [47]. Also, non-linear 

activation functions are needed in neural networks because neural networks are 

expected to be able to solve and interpret complex functions to achieve optimum 

performance.  

According to Sharma, Sharma [47], there are different types of activation 

functions such as Binary step function, Linear, Sigmoid, Tanh, Rectified linear unit 

(ReLu), Softmax, etc. with different approaches for mapping between the input and 

output signals. The binary step function is a simple activation function that is used for 

a binary classification problem i.e. there are only two possible classes in the dataset 

represented as 0 or 1. Linear activation functions represent the signals using a simple 

linear function with a single gradient and the error in the model does not improve with 

training because of the constant gradient [47, 49]. The sigmoid activation is a more 

acceptable method for binary classification problems with an S-shaped function that 

runs from 0 to 1. They are used in the output layer of a binary classification problem 

and have also been applied in other logistic regression models [48]. Sigmoid functions 

are rarely used in the hidden layers of a neural network except for a shallow network 

[50].  

Tanh function is like the sigmoid function but symmetric around the origin and 

the S-shaped function runs between -1 and 1. This helps in mapping the negative 

inputs to negative outputs and mapping inputs that are close to zero to outputs with 

similar characteristics [49]. The rectified linear unit (ReLu) activation is a more 
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efficient activation function that only activates neurons that are in use while the others 

are deactivated. ReLu activations are widely adopted in the hidden layer of neural 

networks because of their efficiency in mapping linear combinations of inputs into 

non-linear outputs, which is very suitable for most neural network architecture to 

perform optimally in handling complex functions. The Softmax activation works like 

multiple sigmoid functions, and it is the most appropriate activation function for 

multiclass classification problems. They are often used as the activation function in the 

output layer of a multiclass classification model.  

2.4.4.3 Tensorflow 

TensorFlow owned by Google is an open-source deep learning software library 

for defining, training, and deploying machine learning models [51]. The multilayer 

model of the ANN has been simplified through a framework called TensorFlow which 

can help to easily specify the model parameters ranging from the number of layers and 

neurons, learning rate, activation function, etc. The process of computing weight and 

bias in the loss function, gradient descent, and other parameters is very complex 

especially when it has to be done over several iterations, TensorFlow provides a 

dashboard to implement this process in a computationally efficient way [46]. 

TensorFlow has a function called tf.gradients () that can automatically compute 

gradients and has different types of optimizers in its library that can be used to 

regulate the learning rate of the model [46]. Other available deep-learning frameworks 

include Theano, Torch, Caffe, etc. [46]. 
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2.4.4.4 Optimizers 

Determining the appropriate learning rate that regulates the weight (w) and 

bias (b) of the gradient descent in each iteration can be a very difficult task because 

choosing the wrong learning rate can cause the model to infinitely without reaching its 

optimum performance. The gradient descent gets stuck in a local minima irrespective 

of the change in the weight and bias. Equations 2.3 and 2.4 show how the weight and 

bias are updated in each iteration through a multiplication factor i.e., the learning rate 

(α). 

Weight, w = wo – α.(
𝜕𝐽(𝑤,𝑏)

𝜕𝑤
)     (2.3) 

Bias, b = bo - α.(
𝜕𝐽(𝑤,𝑏)

𝜕𝑏
)    (2.4) 

Where, 

 J(w,b) is the loss function. 

wo is the initialized weight carried on from the previous iteration. 

bo is the initialized bias carried on from the previous iteration. 

Using optimizers helps to automatically tune the learning rate to help the deep 

learning model achieve optimum performance [52]. Although different optimizers 

occur in practice such as SGD, Adam Momentum, RMSProp, Nesterov, Adagrad, Nag, 

Adadelta, etc. no theory guides in making an appropriate comparison between the 

available optimizers [52, 53]. Schmidt, Schneider [53] posited that the performance of 

optimizers is task-dependent, and the analysis conducted shows that the Adam 

optimizer is one of the contenders for the best-performing optimizer across the 

majority of assigned tasks.  
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2.4.4.5 Regularization Parameters 

One of the major problems with neural network models is overfitting which is 

a situation where the model performs well on the data it was trained on and reports a 

poor performance on a new dataset. Regularization allows the deep learning model to 

generalize well to unseen data even when training on a finite training set or with an 

imperfect optimization procedure [54]. This poor generalization on a new dataset is 

associated with the model trying to memorize the training data without a firm 

understanding of the different possible patterns. Using too many features in the neural 

network model has been associated as one of the major causes of overfitting. Some of 

the features can be polynomial and result in a higher-order function that the model 

tries to fit in. The use of the regularization parameter (λ) helps to suppress the effect of 

features with proclivity to cause overfitting in the model. The regularization parameter 

is only added in the computation of the weight during gradient descent and not the bias 

because it is a constant in the model evaluation function as shown in Equation 2.5. The 

method for computing the weight during the model training is now updated as shown 

in Equation 2.6 to suppress the effect of the features (x).  

f (w,b) = wx + b       (2.5) 

Weight, w = wo – α.(
𝜕𝐽(𝑤,𝑏)

𝜕𝑤
+  

λ

𝑚
𝑤𝑜)     (2.6) 

m represents the number of training examples available for creating the model. 

Some of the regularization techniques used in practice include dataset 

augmentation involving the addition of simulated data to the model and preventing the 

model from trying to fit into all the available data points, early stopping which 

involves stopping the model training after there is no more significant reduction in 
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error and reduces the propensity for overfitting, bagging (or ensemble method) which 

involves averaging several models since all the models cannot make the same errors 

on the test set, dropout which involves the random deactivation of some neurons in the 

neural network layers and prevents the model from memorizing the training examples, 

Lasso regularization (or L1 norm) involves shrinking the model parameters towards 

zero, Ridge regularization (L2 norm) shrinks the weight to be very small without 

making them exactly zero, etc. [55]. 

2.5 Features Affecting Bridge Components Condition Identified from 

Literature 

One of the most important steps in creating a machine-learning model that 

makes good predictions is feature selection. These are potential factors that influence 

the condition rating of the bridge components, and the created model can study their 

structure to make predictions on a new set of data. Miao [41] used two sensitivity 

analysis techniques which are Shapley value and sobol indices to determine the bridge 

features that have the greatest influence on the condition deterioration and observed a 

similar level of feature importance from the two techniques. Ali, Elsayegh [42] used 

engineering judgment to select 15 features from the NBI database for an ANN model 

and adopted linear correlation to validate the selected features. However, the resulting 

model gave a low coefficient of determination, R2, for the deck, superstructure, and 

substructure with a value of 0.35, 0.47, and 0.37 respectively. This does not show any 

significant improvement in accuracy when compared with the linear model. The low 

accuracy level is strongly attributed to the features selection method, and the linear 

correlation method that was adopted by Ali, Elsayegh [42] to validate the feature 

selection is not appropriate for discrete data types like the components condition 
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rating. Liu, Nehme [56] depended on the auto-feature mining characteristics of the 

deep learning framework and used a total of 23 features that cut across geographical 

location indicators, bridge attributes, structure configurations, and climatic factors for 

making a convolutional neural network (CNN) model. Liu, Nehme [56] observed an 

average prediction error of 56% for condition rating data from 1993 to 2019, which 

seems high. Although this result was better than that of the Markov chain-based 

percentage prediction method (PPM), expected-value method, Bayesian approach, and 

MUSTEM model, the low accuracy further reinforces the need for a more appropriate 

feature selection procedure.  

Liu and Zhang [57] used different combinations of features to generate 

deterioration models for the deck, superstructure, and substructure of bridges in 

Maryland and Delaware and observed a variation in the performance of these models 

signifying that all the features are not on the same level of importance to the 

deterioration of the bridge components. Zhu and Wang [17] in their work proposed the 

ReliefF algorithm as a method that can be used in feature selection based on the 

assigned weight by using the correlation between the features and the rank in the 

ReliefF algorithm as the determinant. The aim was to remove the subjectivity in 

engineering judgment used when selecting features for the machine learning model. 

The algorithm was able to select the right set of features, and a combination of 

recurrent neural network (RNN) and convolutional neural network (CNN) was used to 

make forecasts for 3 to 4 years. However, no individual prediction was made for the 

bridge components; rather, the authors adopted the overall condition rating of the 

bridge as the response variable which does not help the maintenance agencies know 

which component needs urgent rehabilitation.  



 32 

Winn and Burgueño [16] used a combination of linear correlation, chi-square, 

and engineering judgment to make a preliminary selection of features and then used 

the trial-and-error method to select the optimum set of features. This is done by 

creating a multi-layer perceptron (MLP) model for different sets of nominated features 

and the set of features with the best predictive property was selected. However, the 

trial and error method does not guarantee that those selected are the best set of features 

because other combinations could give a better result. Nguyen and Dinh [13] adopted 

seven of the features discovered by Winn and Burgueño [16] in their ANN 

deterioration for bridge deck and cited the uncertainty in the NBI data as the reason for 

dropping some of the features used by Winn and Burgueño [16]. Nguyen and Dinh 

[13] added the average daily traffic (ADT) growth rate to the initially selected seven 

features to construct an ANN model that gives the maximum prediction accuracy of 

73.6%. The eight features that were ultimately adopted are bridge age, ADT, design 

load, structure type, approach design type, number of spans, percent truck traffic, and 

ADT growth rate. However, Nguyen and Dinh [13] constructed the model more like 

linear regression and did not predict the class of the deck condition. This is done by 

assuming that the condition ratings are continuous, whereas they are discrete and can 

only assume a whole number value between 0 and 9.  A prediction of 6.51 was 

approximated by Nguyen and Dinh [13] to be a condition rating of 7.  

Huang [15] developed an ANN model to predict the condition of concrete 

bridge decks in Wisconsin, USA. Huang [15] used the Analysis of Variance (ANOVA) 

method to select features that influence the condition of the bridge deck, and 8 features 

were identified at the end of this process, which resulted in a model with a prediction 

accuracy of 75%. However, more emphasis was placed on the age of the bridge when 
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it deteriorates from one state to another, and other features were selected based on the 

level of relationship associated with it. Hasan and Elwakil [18] developed a regression 

model to predict the condition of the prestressed concrete bridge deck. The authors 

conducted the best subset analysis to identify features that influence the deck 

condition rating the most by pegging the minimum coefficient of determination, R2, at 

70%. Features that resulted in a lower R2 for any iteration were categorized as 

insignificant and then omitted from the analysis. The optimum model at the end of this 

analysis gave a coefficient of determination of 80%. Like many other papers 

previously cited, this model treats the deck condition rating like a continuous data type 

when in reality, ratings are discrete values.  

Assaad and El-adaway [14]  adopted the Boruta algorithm, which was based on 

a wrapper method, in selecting features for their bridge deck deterioration model. This 

algorithm can select the relevant features out of a long list irrespective of the complex 

and non-linear relationship with the output variable. Assaad and El-adaway [14] 

created an Artificial Neural Network (ANN) and K-nearest Neighbor (KNN) with the 

nominated features and then discovered that the ANN model produced better 

prediction accuracy of the deck. However, an unbalanced dataset was observed in the 

output prediction of the model where only a few bridges are in condition ratings of 2 

and 3. This could lead to low prediction accuracy on a new set of data for bridges in a 

critical state. Moomen, Qiao [7] nominated features for the deterioration model based 

on the long-term study of the effect of the features on the deterioration of the bridge 

component. Kong, Li [6] adopted the Shapley additive explanation (SHAP) to 

investigate the association between various factors and bridge deck deterioration. The 

authors created an XGBoost model that can identify young bridges (less than 20 years) 
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with poor or failing deck condition and old bridges (30 – 40 years) with good 

condition. This is aimed at identifying factors that influence the quick deterioration of 

the bridge deck regardless of the age of the bridge. 

Chang, Maguire [58] developed a framework to mitigate human bias in feature 

selection during the development of deterioration models for bridge components using 

the least absolute shrinkage and selection operator (LASSO) which is a penalized 

regression and covariance analysis. The process is aimed at removing redundant 

features that can occur in the form of repetition or contribute nothing to the 

informative description of the dataset. The authors used the features selected by 

LASSO to develop a deterministic deterioration model for the bridge components. 

Moomen and Siddiqui [59] in developing a probabilistic deterioration model for 

bridge components adopted a marginal effect technique that quantifies the effect of 

changes in the explanatory variables (bridge features) on the response variable 

(component condition rating). The effect of each of the explanatory variables on the 

response variable is observed while the other explanatory variables are held constant. 

Moomen, Qiao [7] developed probabilistic deterioration models for bridge 

components in the state of Indiana using a binary probit approach that was based on 

the LIMDEP platform. The significance of the bridge features to the components’ 

condition rating was estimated using a hypothesis test at a 5% significance level. The 

continuous explanatory variables highlighted by these papers were elicited for further 

analysis in this research project. 

Table 2-2, Table 2-3, Table 2-4, and Table 2-5 show the list of features selected 

by several papers using different analytical methods for the bridge components 

deterioration model. This shows that there is no standard list of features that are 
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generally accepted as the factors influencing the deterioration of the bridge 

components the most. Combining all the features and using them in a deterioration 

model greatly increases the dimensionality of the data and does not guarantee greater 

prediction accuracy. Liu, Nehme [56] used all the features on the NBI database which 

resulted in a high prediction error of 50% with a CNN model. 

 

Table 2-2: Deck Features Identified from Literature 1. 

Huang [15], 

ANOVA 

Winn and Burgueño 

[16], Trial & Error 

Moomen, Qiao [7], 

Long-term study of 

effect 

Assaad and El-

adaway [14], Boruta 

Algorithm 

District Age Age Deck width 

Design load Year built Highway class Bridge age 

Average daily 

traffic (ADT) 

Average daily traffic 

(ADT) 

Service under 

bridge 

Structural length 

Environment Percent truck traffic Number of freeze-

thaw cycles 

Average daily traffic 

Skew Average daily truck 

traffic (ADTT) 

Freeze Index Maximum span 

Deck length Number of spans Average daily truck 

traffic 

Operation rating 

Deck area Region Number of spans Inventory rating 
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Number of spans Steel reinforcement 

protection 

Skew  

 Structure Type Bridge length  

 Design load   

 Approach surface 

type 

  

 

Table 2-3: Deck Features Identified from Literature 2. 

Hasan and Elwakil [18], 

Iterative Regression  

Zhu and Wang [17], ReliefF 

Algorithms 

Kong, Li [6], 

SHAP 

Skew Latitude Structure width 

Maximum span length Longitude Average daily 

traffic 

Structural length Lanes on structure Number of 

snowfall days 

Roadway width Skew Max length of 

span 

Deck width Design/Material Type Structure length 

Inspection frequency Number of spans Material type 

Percent truck traffic Type of Wearing Surface Percent truck 
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traffic 

 Average daily truck traffic Number of spans 

 Future average daily traffic Design type 

 Bridge condition in the 

previous year 

 

 Age  

 Age from reconstruction  

 

Table 2-4: Superstructure Features Identified from Literature. 

Chang, Maguire 

[58], LASSO 

Moomen, Qiao [7], 

Statistical 

Significance 

Moomen and 

Siddiqui [59], 

Marginal Effects 

Zhu and Wang 

[17], ReliefF 

Algorithms 

Age Age Age Lanes on structure 

Bridge roadway 

width 

Number of freeze-

thaw cycle 

Number of annual 

precipitation days 

Skew 

Length of 

maximum span 

 Average daily traffic Number of spans 

Structure length   Average daily 

truck traffic 

(ADTT) 
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Average 

temperature 

  Future average 

daily traffic 

Total 

Precipitation 

  Age 

Number of spans    

Lanes on 

structure 

   

Lanes under 

structure 

   

Skew    

 

 

Table 2-5: Substructure Features Identified from Literature. 

Chang, Maguire 

[58], LASSO 

Moomen, Qiao [7], 

Statistical 

Significance 

Moomen and 

Siddiqui [59], 

Marginal Effects 

Zhu and Wang 

[17], ReliefF 

Algorithms 

Age Age Age Lanes on structure 

Bridge roadway 

width 

Number of freeze-

thaw cycle 

Number of annual 

precipitation days 

Skew 

Average daily 

truck traffic 

 Total precipitation Number of spans 
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(ADTT) 

Structure length 

 

 

  Average daily 

truck traffic 

(ADTT) 

Average 

temperature 

  Future average 

daily traffic 

Total Precipitation   Age 

Number of spans    

Lanes under 

structure 

   

Skew    

 

2.6 Principal Component Analysis (PCA)   

PCA is a statistical technique used to explain the variation in a dataset by using 

uncorrelated linear combinations called principal components. It has been used in 

different applications to suppress or remove features with low amounts of variation 

since they do not give much information about the dataset. PCA extracts the most 

important information from a dataset which makes it a tool for dimensionality 

reduction and easier data interpretation [60]. PCA projects the original data into other 

axes while retaining most of the variation in the dataset. Wetherell, Costamagna [61] 

showcased the importance of PCA in Figure 2-3 below. The original data points in red 
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color consist of horizontal and vertical coordinates which can be projected to a new 

axis PC1. This resulted in a single coordinate on the PC1 axis while also giving a 

clearer representation of the variation between the data points. However, if the points 

were to be projected on axis PC2, the data points would be clustered around a region 

and not much of the variation in the data would be explained by this component. This 

explains why different components explain different amounts of variation in the 

dataset. The first principal component explains the largest variation in the dataset and 

decreases progressively until the last principal component. The number of principal 

components that could be generated is as much as the number of features in the dataset 

that are orthogonal to each other. This orthogonality means that the principal 

components are independent of each other.  

PCA is a very useful tool in feature selection for creating a model because the 

principal components are influenced by the original features to different degrees to 

explain the variation in the data. Selecting a few principal components that sufficiently 

explain the variation in the dataset to replace the original set of features is equivalent 

to selecting the features that have more information about the dataset and removing 

redundancies. PCA has been used in different fields such as engineering, agriculture, 

health, commerce, etc. to determine the optimum set of features for their analytical 

models. Song, Guo [62] applied PCA for feature selection in a face recognition model 

and observed an increase in the classification accuracy when the right set of features 

was used while also reducing the dimensionality of the samples. Lasisi and Attoh-

Okine [63] applied principal component analysis to reduce the dimensionality of the 

track geometry parameter and built a machine-learning model for predicting defects in 

tracks. It was observed by the authors that three principal components are more 
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efficient in predicting defects in tracks compared to using the whole track quality 

index. 

 

 

Figure 2-3: Illustration of Principal Component Analysis [61]. 

The choice of the number of principal components to select depends on the 

purpose of the analysis to be conducted [64]. To select the number of principal 

components to adopt in some cases, a scree plot is used to select as many principal 

components as possible until the curve flattens out [60].  Figure 2-4 shows a sample 

scree plot where most of the variation in the dataset is explained by the first four 

principal components as signified by the inertia (measure of variance) after which 
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there was no significant increase in the amount of variation explained.  In other cases, 

the number of principal components is selected based on the quality of data available, 

which is expressed in terms of the amount of noise in the dataset [64]. In a case where 

the data has a large quantity of noise, choosing a number of principal components that 

explain 90 to 95% of the data will amount to modeling the noise, as such, a smaller 

number of components is usually recommended [64]. It is not uncommon to see 

instances where principal components are selected based on eigenvalues because 

eigenvalues are mostly ordered from the highest to lowest corresponding to each of the 

components. Principal components with eigenvalues less than 1 or less than the overall 

average could be dropped and tagged as insignificant. 

 

Figure 2-4: Sample Scree plot for PCA generated in R-programming language. 

Like many other statistical techniques, PCA has its limitations in the sense that 

it only re-expresses the data as a linear combination and neglects other more complex 
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relationships [65]. It is also worth noting that PCA cannot be applied to categorical 

variables since they do not have a variance structure that is needed by the principal 

components. 

Omuya, Okeyo [66] developed a hybrid feature selection model, which uses 

both PCA and information gain. The features selected at the end of this process were 

used to make a classification machine learning model. Omuya, Okeyo [66] observed a 

large reduction in training time and better prediction accuracy when compared to the 

original dataset. Zhang [67] applied a varying number of principal components in their 

malware detection model using ANN. The author observed that selecting 32 principal 

components produced the same level of accuracy as 48 principal components while 

also producing a 33% reduction in dimensionality and a 22% reduction in training 

time. This further showcases the importance of PCA in removing redundancies from a 

dataset and even generates better model accuracies in cases where the less important 

features constitute noise in the data. Yuce, Mastrocinque [68] similarly used PCA for 

selecting features in an ANN model for detecting defects in wood. This model 

achieved an 18% increase in accuracy while using 61 fewer epochs, which translated 

to a reduction in the training time. Generally, PCA can help to remove features with 

low variation, remove multicollinearity in the features of a model, suppress noise in 

the data, and speed up model training. 

By synthesizing the ways PCA has been implemented by all the literature cited, it is 

evident that it can serve as a good technique for capturing important information or 

variance in a dataset that is required for developing a good deterioration model. It can 

also eliminate the need for complex model architecture since good performance is 

guaranteed without using all the features and saves some computing effort. 
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2.7 Random Forest Algorithm 

Random forest is an effective classification algorithm that uses an ensemble of 

decision trees and bagging techniques to make predictions. It is also very efficient in 

handling data with a high number of variables, large noise content, and missing data 

without affecting the stability of the resulting model [69]. A good level of performance 

has been achieved with this algorithm because of its low propensity for overfitting and 

easy result interpretation. The decision tree works by splitting the dataset based on the 

available features and evaluates the purity of the groups after the split. Each member 

of a group is expected to be as similar as possible and dissimilar from the members of 

other groups. The features that result in the highest amount of purity after splitting are 

regarded as the most important features. In an ensemble (group) of decision trees, the 

overall importance of the features can be evaluated by averaging the importance 

across all the trees. It is worth noting that the individual decision trees are uncorrelated 

and reduce the likelihood of making biased decisions. 

In each of the decision trees making up the random forest algorithm, each of 

the features (nodes) is used to split the dataset into two groups and the decrease in 

impurity for each split is computed using Equation 2.7. The amount of decreased 

impurity derived from using each of the features is combined using Equation 2.8 to 

derive the overall feature importance in the decision tree and the resulting value is 

normalized to a value between 0 and 1 using Equation 2.9. The overall importance of 

each feature using the random forest algorithm is derived from averaging over all the 

trees as illustrated in Equation 2.10 [70]. It is worth noting that the number of trees in 

a random forest algorithm is typically between 64 and 128 to achieve optimum 

performance and good processing time [71]. 
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Nodal Reduction in Impurity (Ni) = H (Pi 
root) – (wleft * H (Pi 

left) + wright * H (Pi 
right))                                                      

(2.7) 

Where, H (Pi 
root) is the measure of impurity at the initial stage before the split. 

 wleft is the fraction of the total sample in group a. 

 H (Pi 
left) is the measure of impurity in group a. 

 wright is the fraction of the total sample in group b. 

 H (Pi 
right) is the measure of impurity in group b. 

Feature Importance (f) = 
∑ 𝑁𝑖 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑠𝑝𝑙𝑖𝑡𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖 

∑ 𝑁 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠
         (2.8) 

Normalized Feature Importance (nf) = 
𝑓

∑ 𝑓
             (2.9) 

Overall Feature Importance (F) = 
∑ 𝑛𝑓

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠
           (2.10) 

Another method to determine which feature to split on is called the ‘Gini 

Index’ and is widely used in machine learning libraries like Scikit-Learn because of its 

computational efficiency. The Gini Index (gini) computes the probability of getting a 

misclassification when a sample is drawn randomly, and it is mathematically 

illustrated in Equation 2.11 [72]. The lower the Gini Index, the lower the likelihood of 

misclassification, and the feature importance approach follows the same procedure as 

illustrated in equations 3, 4, and 5.  

             gini = 1 - ∑ P(𝑖)2𝑗

𝑖=1
                                                           (2.11) 

where j is the number of classes in the dataset 

P(i) is the probability of selecting each class when drawn randomly. 
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This algorithm has seen some level of application in bridge engineering for 

both prediction and feature selection purposes. Alipour, Harris [73] used a 

combination of decision trees and random forest to determine the load rating capacity 

of bridges and were able to rapidly determine which set of bridges required load 

restriction or load removal. Soleimani [74] applied random forest to determine the 

importance of some bridge portfolios or features to the seismic response of the bridge. 

The analysis was performed on different bridge design types and bridges with special 

characteristics like taller piers, and the random forest was able to highlight the major 

parameters that influence the seismic response of the bridge. Chun, Ujike [75] used the 

random forest to evaluate the extent of internal damage due to rebar corrosion in 

reinforced concrete. This model was tested on an actual bridge and was able to detect 

internal damage that was not obvious on the exterior surface. Zhang [67] developed an 

economical damage detection model for old short-span arc bridges in rural areas using 

the random forest algorithm. The algorithm takes the vehicle-induced excitation as an 

input and can determine the damage index on the bridge. 

In the case of this research, the bridge elements are the features because they 

are first inspected to help in assigning condition ratings to the major components. As 

such, the condition rating of the bridge components is dependent on the condition of 

the associated bridge elements. 

2.8 Knowledge Gaps and Relevance of Research 

From the literature review conducted, the method for the determination of the 

importance (or weight) of bridge elements to the overall condition of the bridge 
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adopted by the DOTs and other researchers is not based on the actual inspection data 

that describes the condition of the different bridge parts but rather human judgment 

that is subjected to bias and error in assumptions. Moreover, the methods that were 

previously adopted in assigning importance to bridge elements did not consider the 

different bridge design types that could occur in reality and the fact that the 

importance of the elements is dependent on the structural configuration of the bridge. 

The literature review also shows that there is a need to synthesize the component and 

element-level data to help validate the bridge inspection process and the maintenance, 

repair, and replacement (MRR) schedule of the DOTs. 

Furthermore, in various attempts by researchers to forecast the future condition 

of bridge components, the literature review conducted shows that there is no generally 

acceptable list of features that certainly influence the condition of the bridge 

components, different techniques adopted by the previous researchers give a different 

list of most influential bridge features. Also, it was observed that most of the machine 

learning prediction models that were previously developed did not adopt the right 

technique that is suitable for the nature of the bridge components data. The models 

have been more like linear regression models and did not predict the discretized value 

of the components’ condition rating. A prediction of 6.51 was approximated to be a 

condition rating of 7, which is inappropriate for a discrete data type. 

As such, this research intends to determine the importance of the bridge 

elements using a data-driven approach by adopting the random forest algorithm to 

synthesize the different bridge data and come up with the overall bridge health index 

(BHI) equation for the different bridge types. Also, in predicting the future condition 

of bridge components this research intends to apply the principal component analysis 
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(PCA) technique to extract the important information in the dataset and develop a 

more suitable prediction model that is more appropriate for the nature of available 

component data. 
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Chapter 3 

METHODOLOGY 

3.1 Description of Research Approach/Framework 

The activity in this research can be divided into two main distinct objectives 

namely: (a) Developing bridge component condition prediction model. (b) 

Determining bridge elements weight and developing bridge health index (BHI) 

equations. Figure 3-1 below shows a pictorial representation of the framework to be 

followed to achieve the stated objectives. 

 

Figure 3-1: Research Framework. 
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3.2 Bridge Data Handling 

The approach adopted as related to getting the bridge data ready for analysis is 

discussed in the following sections. 

3.2.1 Data Collection Procedure 

Large amounts of data were collected from different sources to achieve the 

itemized goals of this research and it is important to discuss the associated process. 

3.2.1.1 Data Collection for Prediction Model 

The bridge data for five states in Region 3 as per USDOT categorization 

(Delaware, Maryland, Pennsylvania, Virginia, and West Virginia) from 1992 to 2022 

were downloaded from the info-bridge Long Term Bridge Performance (LTBP) web 

portal after selecting the appropriate bridge features that will be used in the analysis. 

The bridge features used by the authors listed in Table 2-2, Table 2-3, Table 2-4, and 

Table 2-5 are a combination of discrete and continuous data types e.g., the design and 

material type are categorical data types while features like the operating rating, 

inventory rating, traffic volume, etc. are continuous. Some papers that have developed 

deterioration models for direct application by DOTs e.g., Moomen, Qiao [7] have 

regarded these factors as grouping factors and would normally develop multiple 

deterioration models for all the sub-groups. This means that if we have six material 

types (i.e., steel, concrete, prestressed concrete, steel continuous, concrete continuous, 

and prestressed concrete continuous) six models will have to be created. To move 

away from this approach, the deterioration model was developed to be robust and 

should be able to be applied irrespective of the design type, material type, and other 

groupings. Moreover, some features like the deck area are redundant because it is a 
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factor of the deck width and deck length. A combination of all three features will lead 

to multicollinearity in the dataset, which is a situation where two or more features are 

proportional to each other and affect the model performance. Features like the 

longitude and latitude were removed because it was observed from the data analysis 

that most of the values are zero (0) and further inquiry shows that bridges that are over 

water have their longitude and latitude recorded as zero. The zeros could also be 

attributed to incomplete bridge data collection. Table 3-1, Table 3-2, and Table 3-3 

show the aggregation of features that were identified from the literature review 

conducted for the identification of prevalent factors influencing the deterioration of the 

bridge deck, superstructure, and substructure respectively [6, 7, 13-18, 58, 59]. Data 

for culverts were excluded from the download because they are not explicitly 

separated into deck, superstructure, and substructure. The portal has an interactive 

display that helps in making proper selections and allows a lot of flexibility in the data 

that needs to be downloaded. The condition rating data of the bridge deck, 

superstructure, and substructure are collected through visual inspection by bridge 

inspectors, and this makes the data collected highly subjective. To minimize the effects 

of this subjectivity on the performance of the deterioration model, the data selected 

was restricted to only 2 states with enough data distribution among the possible 

condition rating values. An analysis will be conducted to determine the two states with 

enough distribution for each of the three bridge components. It was assumed that 

bridge inspectors in a particular state go through the same mode of training and the 

data they collect go through the same quality assurance and quality control framework, 

making the disparity minimal. Combining data from multiple states will worsen the 
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variation in the data and make it difficult for the deterioration model to learn from 

these extremely varied cases.  

 

 

Table 3-1: Bridge features downloaded for deck deterioration Model. 

S/N Bridge features 

1 Average daily traffic 

2 Number of spans in main unit 

3 Structure length 

4 Bridge age 

5 Skew 

6 Length of maximum span 

7 Deck width 

8 Operating rating 

9 Inventory rating 

10 Lanes on the structure 

11 Future average daily traffic 

12 Average daily truck traffic 

13 Number of freeze-thaw cycles 
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14 Number of snowfall days 

 

 

Table 3-2: Bridge features downloaded for superstructure deterioration Model. 

S/N Bridge features 

1 Bridge roadway width 

2 Number of spans in main unit 

3 Structure length 

4 Bridge age 

5 Skew 

6 Length of maximum span 

7 Lanes under structure 

8 Average temperature 

9 Total precipitation 

10 Lanes on the structure 

11 Future average daily traffic 

12 Average daily truck traffic 

13 Number of freeze-thaw cycles 
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14 Average daily traffic 

15 Number of days with measurable precipitation 

 

Table 3-3: Bridge features downloaded for substructure deterioration Model. 

S/N Bridge features 

1 Bridge roadway width 

2 Number of spans in main unit 

3 Structure length 

4 Bridge age 

5 Skew 

6 Length of maximum span 

7 Lanes under structure 

8 Average temperature 

9 Total precipitation 

10 Lanes on the structure 

11 Future average daily traffic 

12 Average daily truck traffic 

13 Number of freeze-thaw cycles 
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14 Number of days with measurable precipitation 

 

3.2.1.2 Data Collection for Bridge Elements’ Weight Model 

In this research, bridges in the Region 3 (U.S. DOT categorization) states 

namely Delaware, Maryland, Pennsylvania, Virginia, and West Virginia were 

considered in the analysis. The long-term bridge performance (LTBP) web portal was 

used to identify bridges in these states with valid element-level data. This process is 

important because the collection of the element-level data was only mandated in 2014 

and has not been fully implemented in all the bridges in these states. After identifying 

these bridges, the general condition rating data for the deck, superstructure, and 

substructure were downloaded from the LTBP portal for the years 2015 to 2022. 

Included with the components’ condition rating data are the overall condition rating of 

the bridges and other bridge-specific features like the structural number and the main 

span design type. Also, with the help of the interactive interface of the LTBP web 

portal, culverts were filtered out of the download since they do not have a distinct 

deck, superstructure, or substructure. However, on the LTBP web portal, the element-

level data for these bridges were only presented in a visual format and cannot be 

downloaded. A separate Federal Highway Administration (FHWA) web portal was 

utilized to get the element-level data for bridges in each state from 2015 to 2022. 
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3.2.2 Data Pre-Processing 

3.2.2.1 Data Cleaning for Prediction Model 

The NBI condition rating for the deck, superstructure, and substructure was 

checked for missing values which either appear as ‘N’ or the space is empty. This 

could be attributed to the reconstruction period of the bridges or some bridge design 

types that merge two components. An example of this case appears in some slab 

bridges where the deck and superstructure are given a single rating because they are 

built monolithically. Bridge samples with any of these cases were removed from the 

analysis. It was observed that most of the bridge components have condition ratings of 

4 to 8 while condition ratings of 0, 1, 2, 3, and 9 only represent a small percentage of 

the total bridge sample. The case of low representation for condition ratings 0, 1, 2, 

and 3 can be attributed to the fact that the DOTs mostly do not allow the bridge 

components to deteriorate to this level before carrying out rehabilitation efforts. 

Condition rating 9 also has a low representation because it represents bridges in 

perfect condition, which can only be found in a few new bridges. Most bridges are 

already in existence and new bridges are not built as often, making the number 9 

condition rating have low representation in the dataset. Thus, bridge components in 

condition ratings 0, 1, 2, and 3 were merged to condition rating 4 and those in 

condition rating 9 were merged with 8. The data from other states was not added to 

supplement the condition ratings with low frequency of occurrence because the ratings 

assigned are subjective to the inspectors. As such, having a high level of variability in 

the judgment of the inspectors on the condition rating of the components will 

significantly affect the prediction accuracy. 



 57 

Also, the age of the reconstructed bridges was recomputed to show a new age 

count and not continue from the initially deteriorated structure. The data frame was 

restructured to include only the features to be used in developing the deterioration 

models while other irrelevant data columns like the structural number and state name 

automatically downloaded with the dataset were deleted. Finally, all the bridge 

features downloaded were checked for invalid and missing values. The length of 

maximum span, deck width, and the number of spans in any bridge are not meant to be 

0. These situations could be a result of input error, and such bridges were removed 

from the analysis.   

3.2.2.2 Data Scaling for Prediction Model 

The different bridge features take on a wide range of possible values and it 

becomes essential to scale data to help the models’ gradient descent run faster and 

reach the local minima earlier. There are different types of feature scaling which 

include the Min-max method, Mean method, Z-score method, etc. The min-max 

method of scaling a feature involves subtracting the minimum value from each of the 

data points and dividing the result by the difference between the minimum and 

maximum value as illustrated in Equation 3.1. The mean method involves subtracting 

the mean value from each of the data points and dividing the result by the difference 

between the minimum and maximum value as illustrated in Equation 3.2. The z-score 

method involves subtracting the mean value from each of the data points and dividing 

the result by the standard deviation as illustrated in Equation 3.3. It is worth noting 

that the standard scaler module of the scikit-learn library which will later be utilized in 

this research uses the z-score scaling method. 
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Xscaled = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
       (3.1) 

 

Xscaled = 
𝑋−µ

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
       (3.2) 

 

Xscaled = 
𝑋−µ

ẟ
        (3.3) 

Where µ is the mean value and ẟ is the standard deviation. 

3.2.2.3 Data Cleaning and Synthesis for Bridge Elements’ Weight Model 

The general condition rating data of the bridges were inspected for missing or 

invalid condition rating values in the three major components. In some instances, a 

value of ‘N’ was observed in place of an expected condition rating between 0 and 9, 

this could be a result of current rehabilitation on the bridge component or a specific 

type of bridge design where two components are built monolithically and are rated as 

a single unit. This was observed in some slab bridges where the deck and 

superstructure are assigned a single condition rating. As such, bridge data with these 

conditions or with completely missing condition rating values were removed from the 

analysis.   

The health index of all the bridge elements was computed using the weight 

factor ratio 1:0.4:0.1:0 and added as a column in the final because the element-level 

data only show the number of elements in each condition state. Since the element-

level data of the bridges and the general condition rating data are downloaded 

separately, it becomes important to match these data sets into a single unit. The 
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structural number which is a unique identifier for each bridge was used to connect the 

data sets and reformatted as shown in Table 3-4. The table was filled with the health 

index value and condition rating value for each corresponding bridge element and 

major component. The structural number, main span design, and overall condition 

rating of the bridges were also included in the data table. It is worth noting that in 

cases where a bridge has more than one type of an element e.g., a bridge having both 

steel and reinforced concrete rail or a bridge having different joint types, the effective 

element health index that is selected in the analysis is the lowest of the available health 

index because this represents the most critical health index condition.  

Table 3-4: Bridge data format. 

Structural 

Number 

Main 

Span 

Design 

Element 

(1) 

Health 

Index 

… Element 

(n) 

Health 

Index 

Deck 

rating 

Superst

ructure 

rating 

Substruc

ture 

rating 

Overall 

Rating 

Bridge 1         

Bridge 2         

        :         

Bridge n         

 

SAMPLE 
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3.2.3 Data Selection 

3.2.3.1 Bridge Data Partitioning for Elements’ Weight 

As it is already noted, different bridge design types have separate sets of elements that 

are important for their structural performance. The resulting dataset in Table 3-4 was 

divided into groups based on the main span design type of the bridges; 15 groups were 

derived as shown in Table 3-5 to represent most of the bridge span design types found 

in the states considered in the analysis. The bridge elements were nested under the 

associated major component, Figure 3-2, Figure 3-3, Figure 3-4, and Figure 3-5 show 

a general hierarchy of the bridge parts to depict the bridge component and the 

elements connected with them. The hierarchy was adapted from the Federal Highway 

Administration (FHWA) guideline for bridge elements and modified to show the 

connection between the major components and the element irrespective of the material 

type of the bridge [5]. Based on this hierarchy, the dataset for each main span design 

group was divided such that only the elements associated with a given major 

component appear in the data frame as shown in  

Table 3-6. For each main span design group, three of these data frames were 

created to represent the deck, superstructure, and substructure and the bridge elements 

associated with them. Also, to determine the importance of each of the three major 

components to the overall condition of the bridge, the data frame shown in Table 3-7 

was set up for each of the main span design type groups. 
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Table 3-5: Bridge categories in the analysis. 

Main Span Design Types Notation in Analysis Number of Observations 

Stringer/Multi-beam or Girder SMG 55878 

Box Beam or Girders (Single) BBGS 19864 

Box Beam or Girders (Multiple) BBGM 13371 

Tee Beam TBM 10254 

Girder and Floor beam System GFS 2549 

Frame FRM 1075 

Truss-Thru TRT 1175 

Channel Beam CBM 677 

Arch-Deck ARD 533 

Truss-Deck TRD 277 

Movable Bascule  MVB 83 

Arch-Thru ART 112 

Segmental Box Girder SBG 37 

Suspension SPS 59 

Stayed Girder STG 16 
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Table 3-6: The data frame format for each major component and the associated 

elements. 

Structural 

Number 

Element (1) 

Health Index 

…

……. 

Element (n) 

Health Index 

Major Component 

Condition Rating 

Bridge 1     

Bridge 2     

        :     

Bridge n     

 

Table 3-7: The data frame format for components and overall rating. 

Structural 

Number 

Deck 

Rating 

Superstructure 

Rating 

Substructure 

Rating 

Overall 

Rating 

Bridge 1     

Bridge 2     

        :     

Bridge n     

 

To avoid leaving out the wearing surface and bearing from the bridge elements’ 

weight analysis, they were nested under the Deck and Superstructure respectively. 

Although this new arrangement is different from the Federal Highway Administration 

SAMPLE 

SAMPLE 
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(FHWA) hierarchy in Figure 1-1, the reason for this adjustment can be justified by the 

bridge inspection manual. It states that for situations where the surface of the deck is 

not visible due to the presence of a wearing surface, the condition of the Deck is 

assessed based on the observed crack or settlement in the wearing surface. This 

affirms the relationship between the Deck condition rating and the wearing surface. 

Also, for the inspection of the superstructure, the bridge inspection manual states that 

the problem areas to be inspected include the location of maximum moment, 

maximum shear, bearing, section change, and connection. This statement affirms the 

relationship between the Superstructure condition rating and the bearing. 

 

Figure 3-2: Bridge Components Hierarchy. 

 

Figure 3-3: Deck Hierarchy. 
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Figure 3-4: Superstructure Hierarchy 

 

 

Figure 3-5: Substructure Hierarchy 

 

3.2.3.2 Deck Data for Model Development 

A preliminary analysis was conducted on the deck condition rating data 

collected for the 5 states to determine how the condition rating values are distributed. 

It was observed that a combination of deck condition rating data in Maryland and 

Virginia gives a good distribution for the creation of an optimum model. A total of 

53,000 bridge samples were used and it was ensured that there was almost equal 

representation of each condition state in the dataset. This represents an average of 

10600 bridge samples in each condition state, and these bridges were drawn randomly 

from the total dataset. However, during the preliminary training and testing of the 

models, it was observed that most of the misclassifications occurred for condition 
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ratings 5, 6, and 7. Thus, the number of bridge samples used is 10000, 11000, 11000, 

11000, and 10000 for condition ratings 4, 5, 6, 7, and 8 respectively.  

3.2.3.3 Superstructure Data for Model Development 

The preliminary analysis was also conducted for the superstructure and like the 

deck, it was observed that a combination of superstructure condition rating data in 

Maryland and Virginia gives a good distribution for the creation of optimum model. A 

total of 63,000 bridge samples were used and it was ensured that there was almost 

equal representation of each condition state in the dataset. This represents an average 

of 12600 bridge samples in each condition state, and these bridges were drawn 

randomly from the total dataset. However, during the preliminary training and testing 

of the models, it was observed that most of the misclassifications occurred for 

condition ratings 6 and 7. Thus, the number of bridge samples used is 12000, 12000, 

13500, 13500, and 12000 for condition ratings 4, 5, 6, 7, and 8 respectively.  

3.2.3.4 Substructure Data for Model Development 

The preliminary analysis conducted on the substructure condition rating data 

collected for the 5 states shows that a combination of substructure data for Maryland 

and West Virginia gives a good distribution for the creation of an optimum model. A 

total of 69,000 bridge samples were used and it was ensured that there was almost 

equal representation of each condition state in the dataset. This represents an average 

of 13800 bridge samples in each condition state, and these bridges were drawn 

randomly from the total dataset. However, during the preliminary training and testing 

of the models, it was observed that most of the misclassifications occurred for 
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condition ratings 5, 6, and 7. Thus, the number of bridge samples used is 13000, 

14500, 14500, 14000, and 13000 for condition ratings 4, 5, 6, 7, and 8 respectively.  

3.3 Data Analysis 

3.3.1 Principal Component Analysis (PCA) for Prediction Model 

The features were first scaled using the standard scaler module of the scikit-

learn library to make sure they assumed the same range of values [76]. The scaled data 

for the 14 features for the deck and substructure and 15 features for the superstructure 

were then fit into the PCA module which automatically does the mean normalization 

to ensure that the data is distributed around the mean. Mean normalization is an 

integral part of PCA because it projects the original data points into different axes 

(principal components) to maximize the variation in the dataset, and without first 

centering the data around the mean, the PCA is biased towards the features with initial 

high variance and underrepresent the contribution of the other features to the principal 

components. A scree plot was generated to visualize the amount of variation explained 

by each of the components. The numbers of components from 2 to 14 or 2 to 15 were 

stored separately to represent different data sets and the number of components 

retained in each set represents the new features. It is important to know that selecting 2 

principal components means that only the projection of the original features into 2 

axes was retained while the other axes that explain a smaller amount of the variation in 

the data were removed. Also, the total amount of variation explained by selecting 2 

principal components (features) is the sum of the variation explained by the first and 

second components. This guide also applies when selecting 3, 4, and up to 14 or 15 
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principal components. Finally, the PCA attribute ‘components_’ was used to extract the 

linear correlation between the original features and the principal components. 

3.3.2 Base Case Prediction Model 

A base model was created for the deck, superstructure, and substructure using 

all the original 14, 15, and 14 features in the dataset respectively to compare with the 

models created using the different number of cumulative principal components. All the 

features were scaled using the standard scalar module of the scikit-learn library to 

ensure that they all have the same range of values. This technique helps the model to 

converge faster and save some training time. 

3.3.3 Artificial Neural Networks (ANN) Prediction Model Setup 

The datasets from the PCA were used to develop ANN models to compare the 

efficacy of the different number of features (principal components) in predicting the 

deterioration of the bridge deck to that of the base case. Models were created for 

different numbers of principal components in incremental versions until the 

performance matches that of the base case and to showcase the importance of PCA as 

a dimensionality reduction technique. The loss function used in all the models is 

‘Sparse Categorical Crossentropy’ because it is a classification task with different 

integer labels. Rectified linear unit (‘relu’) activation was adopted for the hidden 

layers of the neural network while the output layer utilizes the ‘softmax’ activation 

which is very suitable for multiclass classification problems. Adaptive moment 

estimate (Adam) was selected as the optimizer in all the models to regulate the 

learning rate and ensure quick convergence. To combat overfitting in the models, a 

combination of L2 regularization (ridge regression) and dropout was adopted, and the 
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values were adjusted appropriately to ensure good generalization on the cross-

validation and test set. The number of layers and neurons in the model was adjusted to 

achieve good prediction accuracy with minimum overfitting. In all the models, the 

data was split into train, cross-validation, and test set at 68%, 17%, and 15% 

respectively.  

It is very important to know how many iterations (epochs) are required to train 

the model before there is no significant improvement in the accuracy. As such, the 

‘Early Stopping’ module of the sci-kit learn library was utilized to stop training 

whenever the increase in accuracy did not surpass a particular level [76]. This 

approach helps to train the models more efficiently and reduce the training time which 

is one of the goals for using principal components instead of the original feature set. A 

value of 0.1% was set as a benchmark for training to stop if improvement in the 

validation accuracy does not surpass this level. However, it is not uncommon to see 

cases where the accuracy does not increase for some period as the model is trying to 

locate the ‘local minima’. In this case, the training will be stopped even though the 

validation accuracy would have increased if a longer time was allotted to the training. 

To solve this problem, the ‘patience value’ was set at 50 iterations to permit the model 

to run for more time in case the accuracy might increase after which the training will 

be stopped. Each of the models was initially set at large epochs to allow them to 

effectively run until the condition for early stopping is reached. The final number of 

epochs used for each of the models were those obtained from the early stopping 

procedure after conducting the test multiple times to ensure that the output was stable. 

It is also worth noting that the early stopping technique helps to combat overfitting in 

the model. 
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The GridSearchCv module of the Scikit-learn library was first used to conduct an 

initial parameter search for the bridge components deterioration models to know the 

range of values that would give the optimum model performance. The result from the 

grid search formed the foundation for selecting initial values for the optimizers (for 

regulating the learning rate), hidden layers, and regularization parameters. Table 3-8,  

Table 3-9, and Table 3-10 shows the ANN model parameters used for the deck, 

superstructure, and substructure deterioration models respectively including the 

number of layers and the associated number of neurons (or units) in each layer. The 

first and the last layer in each of the models represent the input and output layers 

respectively while all other layers in between are the hidden layers. 

 

Table 3-8: ANN Model Architecture for Deck. 

Model ANN Layers and Neurons Dropout L2 

Regularizer 

Optimizer 

(Adam) 

2-PC 2-50-150-200-50-5 0.01 0.00015 0.0001 

3-PC 3-50-150-200-150-50-5 0.08 0.00015 0.0001 

4-PC 4-50-150-200-200-100-50-5 0.08 0.00015 0.0001 

5-PC 5-50-150-200-150-100-50-5 0.08 0.00015 0.0001 

6-PC 6-50-150-200-200-150-50-5 0.08 0.00015 0.0001 

7-PC 7-50-150-300-300-300-300-

150-50-5 

0.1 0.00015 0.0001 
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8-PC 8-50-150-300-300-300-300-

300-150-150-50-5 

0.09 0.00015 0.0001 

9-PC 9-50-150-300-300-300-300-

300-150-50-5 

0.09 0.00015 0.0001 

     

Base-

Case 

14-50-150-300-300-450-450-

300-150-50-5 

0.1 0.00015 0.0001 

 

Table 3-9: ANN Model Architecture for Superstructure. 

Model ANN Layers and Neurons Dropout L2 

Regularizer 

Optimizer 

(Adam) 

2-PC 2-50-150-300-50-5 0.1 0.001 0.0001 

3-PC 3-50-150-300-300-50-5 0.1 0.001 0.0001 

4-PC 4-50-150-300-300-150-50-5 0.085 0.0003 0.0001 

5-PC 5-50-150-300-300-300-150-50-5 0.15 0.0003 0.0001 

6-PC 6-50-150-300-300-300-300-150-

50-5 

0.12 0.0002 0.0001 

7-PC 7-50-150-300-300-300-300-300-

150-50-5 

0.09 0.0002 0.0001 

8-PC 8-50-150-300-300-450-450-300- 0.075 0.00015 0.0001 
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150-150-50-5 

9-PC 9-50-150-300-300-450-600-450-

300-150-150-50-5 

0.075 0.00015 0.0001 

     

Base-

Case 

15-50-150-300-300-450-450-

600-600-300-150-150-50-5 

0.09 0.00015 0.0001 

 

Table 3-10: ANN Model Architecture for Substructure. 

Model ANN Layers and Neurons Dropout L2 

Regularizer 

Optimizer 

(Adam) 

2-PC 2-50-100-200-50-5 0.15 0.003  0.0001 

3-PC 3-50-100-300-100-50-5 0.15 0.0003 0.0001 

4-PC 4-50-100-300-300-100-50-5 0.15 0.0003 0.0001 

5-PC 5-50-100-300-300-300-100-50-5 0.12 0.0003 0.0001 

6-PC 6-50-100-300-300-300-300-100-

50-5 

0.12 0.0003 0.0001 

7-PC 7-50-150-300-300-300-300-300-

150-50-5 

0.1 0.0003 0.0001 

8-PC 8-50-150-300-300-450-450-300-

150-150-50-5 

0.1 0.00015 0.0001 
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9-PC 9-50-150-300-300-450-450-450-

300-150-150-50-5 

0.09 0.00015 0.0001 

10-PC 10-50-150-300-300-450-600-

450-300-150-150-50-5 

0.08 0.00015 0.0001 

     

Base-

Case 

14-50-150-300-300-450-600-

600-450-300-150-150-50-5 

0.1 0.00015 0.0001 

 

3.3.4 Prediction Model Performance Measurement 

3.3.4.1 Model Performance 

The effectiveness of the models was measured using their performance on the 

test set which is equivalent to 15% of the whole dataset i.e., 7950, 9450, and 10350 

bridge samples for the deck, superstructure, and substructure respectively. The metrics 

used are precision, accuracy, and the F1-score of the models in predicting each class of 

bridge. The precision of a model in predicting a bridge class is the ratio of the number 

of accurate predictions to the number of total predictions for that class. The recall for a 

bridge is the ratio of the number of accurate predictions to the actual number of 

samples in the bridge class. Also, a combination of the precision and recall for a bridge 

class was used to calculate the F1-score of the model for a particular bridge class. 

Equations 3.4, 3.5, and 3.6 illustrate how to compute the precision, accuracy, and F1 

score respectively. The number of bridge samples that were used in computing the 
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precision and recall of a model for a bridge class is not explicitly stated in the 

classification report of the model. The classification report only shows the ‘Support’ 

for each of the classes which represents the total number of samples allotted to it in the 

test set. However, the precision and recall values can be validated by checking the 

confusion matrix, which clearly shows the amount of correct and incorrect 

classifications for each bridge class in a model.  

Precision (P) = 
True Positive

Predicted Postive
      (3.4) 

Recall (R) = 
True Positive

Actual Postive
      (3.5) 

F1-score = 
2∗P∗R

P+R
        (3.6) 

3.3.4.2 Confusion Matrix 

The confusion matrix is a detailed chart that shows the actual number of 

samples that were used in computing the precision, recall, and F1-score that appeared 

on the classification report. As illustrated in Figure 3-6, the confusion matrix consists 

of 2 axes representing the true (or actual) class and the predicted class for a particular 

test data. The model performance is illustrated by the number of test samples it 

accurately classified (i.e., true positive and true negative) into the proper class and the 

amount it misclassified (i.e., false negative and false positive). This is particularly 

useful to identify which neighboring classes are misclassified by a model to help in 

taking the right actions to improve the model performance. 
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Figure 3-6: Confusion Matrix Illustration. 

3.3.5 Determination of Bridge Components’ and Elements’ Weight 

To determine the weight (or importance) of the bridge elements, the random 

forest classifier of the Scikit-Learn library was used to evaluate the changes in the 

condition rating value of the major components while having the associated bridge 

elements’ health index as the features [76]. The weight of the bridge components was 

also determined by using the random forest classifier to evaluate the changes in the 

overall rating of the bridge while having the three components' condition ratings as the 

features. Since the condition of the bridge elements influences the condition rating of 

the major components they are nested under, it makes sense to take the elements’ 

health index as the explanatory variable (independent variable) and the condition 

rating values as the response variable (dependent variable). The same analogy goes for 

the relationship between the components' condition rating and the overall rating of the 

bridge where the components' condition ratings are the independent variables, and the 
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overall rating is the dependent variable.  A total of 60 models were created where 45 of 

the models represent the elements and major components (i.e., Deck, Superstructure, 

and Substructure) relationship for each of the 15 bridge design types considered in the 

analysis, and the remaining 15 represent the major components and the overall rating 

relationship.  

The number of decision trees in the random forest was set to 100 for each of 

the models created. After implementing the random forest classifier model, the feature 

selection module of the Scikit-Learn library was used to rank the bridge elements 

based on their importance to the condition rating of the major component. The models 

were observed to be very stable even after running them multiple times, there was no 

significant change in the output of the bridge elements’ importance rank. The bridge 

elements’ importance rank and components' importance rank for all the main span 

design groups will be compared to draw out similarities and conclusions.  

It is worth noting that the random forest algorithm was not used in predicting 

the condition rating of the bridge components, only the powerful feature selection 

framework was utilized to evaluate the relationship between the bridge data. Having to 

use the algorithm to predict the condition rating of the bridge components based on the 

health index of the associated elements will require a balanced dataset to achieve a 

good level of performance. A balanced dataset means an equal or almost equal number 

of representations of the different component condition rating classes. A total of 10 

classes is available in this case representing the component condition ratings from 0 to 

9 and the data available is not sufficient to evenly divide the different bridge design 

types into condition rating categories since the first set of element-level data was 

collected in 2015. 
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3.3.6 Formation Of Bridge Health Index (BHI) Equations 

After getting the bridge elements and components' importance rank for the 15 

bridge design types, it becomes essential to consider how to synthesize this data to 

come up with the resultant weight of the bridge elements and the overall bridge health 

index equation for all bridge design types. Since the importance of the individual 

bridge elements to the condition of the associated bridge component is known and the 

importance of the bridge component to the overall rating of the bridge is also known, 

the resultant importance (or weight) of the bridge elements to the whole bridge can be 

mathematically computed. For example, if an element’s importance to a particular 

component is computed to be 0.25 and the component’s importance to the overall 

rating of the bridge is computed to be 0.30, the overall (resultant) importance of the 

bridge element to the bridge can be calculated as 0.075. 

The resultant bridge elements’ weight was computed for all the elements in the 

15 bridge design types and a BHI equation was developed for each of the bridge 

design types. Equation 3.7 shows the format for representing the BHI equation for 

each of the bridge design types. 

BHI = ∑ ((Element Weight) * (Element Health Index, Hie))  (3.7) 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1 Data Analysis Results for Prediction Model 

The data analysis result for the prediction model includes the initial Principal 

Component Analysis (PCA) that was conducted on the Deck, Superstructure, and 

Substructure data and also the Artificial Neural Network (ANN) models created for 

each of these three components. The scope of the analysis conducted to develop 

reliable condition prediction models for the bridge components is illustrated in Figure 

4-1. 

 

Figure 4-1: Bridge Components Condition Prediction Model Flow-Chart. 

4.1.1 Deck PCA Result 

The amount of variation in the bridge deck feature set explained by each of the 

principal components and the cumulative values when multiple principal components 

(PC) are combined is shown in Table 4-1. Figure 4-2 also shows the graphical trend of 

the cumulative values of the principal components. 
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Table 4-1: Variance explained by principal components for the bridge deck. 

Principal Components (PC) Variance Explained (%) Cumulative (%) 

1 23.37 23.37 

2 14.15 37.52 

3 11.95 49.47 

4 11.09 60.56 

5 10.13 70.69 

6 6.86 77.55 

7 6.14 83.69 

8 4.53 88.22 

9 3.50 91.72 

10 3.06 94.78 

11 2.62 97.40 

12 1.21 98.61 

13 0.95 99.56 

14 0.45 100 
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Figure 4-2: Scree plot for deck PCA. 

The amount of variance explained is highest in the first PC and reduces 

progressively in subsequent PCs. The cumulative amount of variance explained by all 

the PCs must be 100% in all cases. It is worth noting that selecting a particular set of 

PCs for analysis signifies combining all the PCs and the amount of variation explained 

is the cumulative variance up to the desired point. E.g., selecting 5 PCs for analysis 

will result in a cumulative explained variance of 70.69% as shown in Table 4-1. The 

correlation between the original deck feature set and the principal components is shown in 

Figure 4-3. 

As shown in Figure 4-3, PC1 is more influenced by the average daily traffic (ADT) 

and the average daily truck traffic (ADTT), this shows that the traffic condition on the bridge 

deck holds very important information about the state of the bridge because PC1 has the 

highest amount of explained variance as shown in Table 4-1 and affirms the relevance of the 
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traffic-related data. PC2 is more influenced by the operating and inventory rating of the 

bridge, PC3 is more influenced by the number of freeze-thaw cycles, PC4 is more influenced 

by the number of snowfall days, PC5 is more influenced by the structure length, PC6 is more 

influenced by the skew angle, PC7 is more influenced by the bridge age, PC8 is more 

influenced by the deck width, and PC9 is more influenced by the structure length. As the 

scree-plot in Figure 4-2 flattens after the ninth principal component, it makes sense not to 

consider any principal component after this point because the added explained variance 

becomes insignificant. This result highlights the most important and dominating deck features 

that hold the relevant information useful in predicting its future condition. 

 

Figure 4-3: Relationship between deck features and principal components. 

 



 81 

4.1.2 Deck Deterioration Model Results 

The learning curves and confusion matrix for the bridge deck prediction 

models created from different sets of PCs are shown in Figure 4-4 to Figure 4-11 and 

that of the base model is shown in Figure 4-12. The learning curves show the trend in 

the loss (or error) and accuracy over a series of iterations (epochs) during the model 

training process. The confusion matrix shows the model performance on the difference 

condition rating classes in the test set. Table 4-2 to Table 4-9 shows the classification 

report for the PC models and Table 4-10 shows the classification report for the base 

model. 

By comparing the variation explained by each set of principal components in 

Table 4-1 with the performance of the models, it was observed that the overall F1 

score continues to increase with an increasing number of principal components. This 

signifies the importance of an added component that gives more information about the 

dataset on the performance of the models. Increasing the complexity of the neural 

network in terms of the number of hidden layers and neurons does not have as much 

effect on the performance of the model as an additional component does. An 

illustration of this is the 4-PC and model 5-PC with the architecture shown in Table 

3-8. Model 4-PC has 50 more neurons in the fifth layer while the other layers were the 

same as that of model 5-PC. The classification reports from the two models in Table 

4-4 and Table 4-5 show that Model 5-PC has an overall F1-score of 61% while Model 

4 PC has an overall F1-score of 51%. 
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(a)                                                                   (b) 

Figure 4-4: (a) Learning curve for the deck model with 2 Principal Components (b) 

Confusion matrix for deck model 2 PC on the test set. 
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(a)                                                                (b) 

Figure 4-5: (a) The learning curve for the deck model with 3 Principal Components 

(b) Confusion matrix for deck model 3 PC on the test set. 

As shown in Table 4-1 the cumulative variation explained by the 4 and 5 

principal components is 60.56% and 70.69% respectively. This shows that an 

additional component that contributes 10.13% to the explained variance of the data has 

an almost equal contribution to the model performance (i.e., an 11% increase in 

accuracy). Models 8-PC and 9-PC also show the same relationship exhibited by 4 PC 

and 5 PC. Table 3-8 shows that model 8-PC has an additional layer of 150 neurons 

more than model 9-PC. However, the overall F1-score is 74% and 76% for models 8-

PC and 9-PC respectively as seen in the classification report in Table 4-8 and Table 

4-9. The cumulative variance explained by 8-PC and 9-PC is 88.22% and 91.72% 

respectively. The idea of an increase in the model performance as a result of an added 

principal component does not hold indefinitely as it can be shown in the model 
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performance result that the addition of lower-level principal components does not have 

as much impact on the model performance as the upper-level principal components. 

Many PC models were created until the performance level matched that of the base 

model. More PC models were not created after matching the base model performance 

so as not to circumvent the goal of having a condition prediction model with reduced 

dimensionality. 

 

     

(a)                                                              (b) 

Figure 4-6: (a) Learning curve for the deck model with 4 Principal Components (b) 

Confusion matrix for deck model 4 PC on the test set. 
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(a)                                                               (b) 

Figure 4-7: (a) Learning curve for the deck model with 5 Principal Components (b) 

Confusion matrix for deck model 5 PC on the test set. 
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(a)                                                               (b) 

Figure 4-8: (a) Learning curve for the deck model with 6 Principal Components (b) 

Confusion matrix for deck model 6 PC on the test set. 
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(a)                                                                (b) 

Figure 4-9: (a) Learning curve for the deck model with 7 Principal Components (b) 

Confusion matrix for deck model 7 PC on the test set. 
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(a)                                                                 (b) 

Figure 4-10: (a) The learning curve for the deck model with 8 Principal Components 

(b) Confusion matrix for deck model 8 PC on the test set. 

 

Table 4-2: Classification report for deck deterioration model with 2 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.59 0.58 0.59 1521 

5 0.31 0.36 0.33 1575 

6 0.33 0.22 0.26 1646 

7 0.36 0.31 0.33 1630 

8 0.35 0.49 0.41 1578 
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Accuracy   0.39 7950 

Macro Average 0.39 0.39 0.38 7950 

Weighted Average 0.39 0.39 0.38 7950 

  

Table 4-3: Classification report for deck deterioration model with 3 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.78 0.57 0.66 1521 

5 0.37 0.48 0.42 1575 

6 0.34 0.24 0.28 1646 

7 0.36 0.37 0.36 1630 

8 0.40 0.49 0.44 1578 

Accuracy   0.43 7950 

Macro Average 0.45 0.43 0.43 7950 

Weighted Average 0.45 0.43 0.43 7950 

 

Table 4-4: Classification report for deck deterioration model with 4 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.75 0.67 0.71 1521 

5 0.45 0.59 0.51 1575 
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6 0.44 0.30 0.36 1646 

7 0.40 0.55 0.46 1630 

8 0.60 0.45 0.51 1578 

Accuracy   0.51 7950 

Macro Average 0.53 0.51 0.51 7950 

Weighted Average 0.53 0.51 0.51 7950 

 

 

Table 4-5: Classification report for deck deterioration model with 5 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.77 0.73 0.75 1521 

5 0.57 0.70 0.63 1575 

6 0.56 0.44 0.49 1646 

7 0.54 0.53 0.53 1630 

8 0.65 0.70 0.67 1578 

Accuracy   0.62 7950 

Macro Average 0.62 0.62 0.61 7950 

Weighted Average 0.62 0.62 0.61 7950 
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Table 4-6: Classification report for deck deterioration model with 6 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.82 0.75 0.79 1521 

5 0.69 0.68 0.68 1575 

6 0.59 0.57 0.58 1646 

7 0.60 0.62 0.61 1630 

8 0.71 0.78 0.74 1578 

Accuracy   0.68 7950 

Macro Average 0.68 0.68 0.68 7950 

Weighted Average 0.68 0.68 0.68 7950 

 

Table 4-7: Classification report for deck deterioration model with 7 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.76 0.84 0.80 1521 

5 0.69 0.73 0.71 1575 

6 0.63 0.64 0.63 1646 

7 0.65 0.61 0.63 1630 

8 0.81 0.72 0.76 1578 
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Accuracy   0.71 7950 

Macro Average 0.71 0.71 0.71 7950 

Weighted Average 0.71 0.71 0.71 7950 

 

Table 4-8: Classification report for deck deterioration model with 8 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.86 0.82 0.84 1521 

5 0.66 0.86 0.75 1575 

6 0.74 0.54 0.62 1646 

7 0.66 0.71 0.68 1630 

8 0.82 0.78 0.80 1578 

Accuracy   0.74 7950 

Macro Average 0.75 0.74 0.74 7950 

Weighted Average 0.75 0.74 0.74 7950 

 

 

 

Table 4-9: Classification report for deck deterioration model with 9 PC. 

Condition Rating Recall Precision F1-score Support 
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4 0.84 0.85 0.84 1521 

5 0.73 0.80 0.77 1575 

6 0.71 0.67 0.69 1646 

7 0.70 0.69 0.70 1630 

8 0.80 0.77 0.79 1578 

Accuracy   0.76 7950 

Macro Average 0.76 0.76 0.76 7950 

Weighted Average 0.76 0.76 0.76 7950 

 

Table 4-10: Classification report for deck deterioration model with all 14 features 

(Base Model). 

Condition Rating Recall Precision F1-score Support 

4 0.84 0.84 0.84 1521 

5 0.68 0.84 0.75 1575 

6 0.71 0.63 0.67 1646 

7 0.70 0.71 0.71 1630 

8 0.84 0.74 0.79 1578 

Accuracy   0.75 7950 

Macro Average 0.75 0.75 0.75 7950 
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Weighted Average 0.75 0.75 0.75 7950 

 

     

(a)                                                                                  (b) 

Figure 4-11: (a) The learning curve for the deck model with 9 Principal Components 

(b) Confusion matrix for deck model 9 PC on the test set. 
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(a)                                                                 (b) 

Figure 4-12: (a) The learning curve for the deck base model with all features (b) 

Confusion matrix for the deck base model with all features on the test set. 

Figure 4-12 shows the learning curve and confusion matrix for the base model 

with all 14 bridge features. When compared with all the PC models, it performs better 

in terms of F1-score and accuracy than all the models except for model 9 PC as shown 

in the classification report in Table 4-10. Although the model 8 PC, which corresponds 

to 88.22% of the variation in the dataset has the same average recall as the base model, 

the overall F1-score and accuracy were 1% short. However, model 9 PC with 91.72% 

of the variation in the dataset performed better than the base model with an overall F1-

score and accuracy of 76%. As such creating a prediction model with 9 principal 

components will produce a better performance than using the 14 bridge features. 
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4.1.3 Superstructure PCA Result 

The amount of variation in the bridge superstructure feature set explained by 

each of the principal components and the cumulative values when multiple principal 

components (PC) are combined is shown in Table 4-11. The scree-plot in Figure 4-13 

also shows the graphical trend of the cumulative values of the principal components. 

Table 4-11: Variance is explained by the principal components of the bridge 

superstructure. 

Principal Components Variance Explained (%) Cumulative (%) 

1 27.99 27.99 

2 15.48 43.47 

3 10.06 53.53 

4 8.15 61.68 

5 7.26 68.94 

6 6.25 75.19 

7 6.08 81.27 

8 5.42 86.69 

9 4.61 91.30 

10 3.52 94.82 

11 1.47 96.29 
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12 1.25 97.54 

13 1.12 98.66 

14 0.95 99.61 

15 0.39 100 

 

 

Figure 4-13: Scree plot for superstructure PCA. 

As with the normal trend for any principal component analysis, the amount of 

variance explained is highest in the first PC and reduces progressively in subsequent 

PCs. The cumulative amount of variance explained by all the PCs is equal to 100%. 

The correlation between the original superstructure feature set and the principal components is 

shown in Figure 4-14. 
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Like the deck principal component analysis, PC1 is more influenced by the average 

daily traffic (ADT) and the average daily truck traffic (ADTT), which further reinforces the 

importance of the traffic-related data as shown in Figure 4-14. PC2 is more influenced by the 

number of days with measurable precipitation, PC3 is more influenced by the structure length, 

PC4 is more influenced by the total precipitation, PC5 is more influenced by the bridge age, 

PC6 is more influenced by the skew angle, PC7 is more influenced by the length of maximum 

span, PC8 is more influenced by the bridge age, and PC9 is more influenced by the number of 

lanes under the structure. This showcases the most important superstructure features that hold 

the relevant information useful in predicting its future condition. 

 

Figure 4-14: Relationship between superstructure features and principal components. 
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4.1.4 Superstructure Deterioration Model Results 

The learning curves and confusion matrix for the bridge superstructure 

prediction models created for different sets of PCs are shown in Figure 4-15 to Figure 

4-22 and that of the base model is shown in Figure 4-23. The learning curves show the 

trend in the loss (or error) and accuracy over a series of iterations (epochs) during the 

model training process. The confusion matrix shows the model performance on the 

difference condition rating classes in the test set. Table 4-12 to Table 4-19 show the 

classification report for the PC models and Table 4-20 shows the classification report 

for the base model. 

Like the PC models for the bridge deck, the performance of the PC models for 

the bridge superstructure improves with every added component until it reaches a 

point where there is no significant improvement in the F1-score of the models due to 

the limited amount of variation contributed by the added components. It was observed 

in all the PC models and the base model (i.e., with 15 features) that the best 

performance in terms of F1-score is observed in condition ratings 4 and 8, and the 

worst performance is observed in condition rating 6. This can be attributed to the 

effect of the subjectivity of the data collection process, condition ratings 4 and 8 are at 

the extreme points and are easily identifiable because poor bridge components in 

serious deplorable condition and good bridge components in almost perfect condition 

are easily elicited whereas condition ratings in between this two extremes are subject 

to more variations in quantifying the extent of damage which overall affect the model 

performance on this portion of the data.  

The model performance result shows that the model 8-PC which corresponds 

to 86.69% of the variation in the dataset has the same accuracy and F1-score (i.e., 
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74%) as the base model that uses all the 15 bridge features and going a step further to 

add another component to make the model 9-PC which corresponds to 91.3% of the 

variation in the dataset result in a higher overall accuracy and F1-score (i.e., 76%). 

This shows that suppressing the redundancies in the dataset by using the principal 

components will lead to a better model performance while also minimizing the data 

dimensionality. An in-depth look at the model classification reports for model 9-PC 

and the base model shows that model 9-PC performed better on all the condition rating 

classes than the base model as depicted by the F1-scores in Table 4-19 and Table 4-20.  

Table 4-12: Classification report for superstructure deterioration model with 2 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.43 0.63 0.51 1751 

5 0.26 0.02 0.04 1821 

6 0.30 0.44 0.36 1974 

7 0.26 0.22 0.24 2036 

8 0.29 0.32 0.30 1868 

Accuracy   0.32 9450 

Macro Average 0.31 0.33 0.29 9450 

Weighted Average 0.31 0.32 0.29 9450 
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Table 4-13: Classification report for superstructure deterioration model with 3 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.50 0.55 0.53 1751 

5 0.45 0.30 0.36 1821 

6 0.34 0.21 0.26 1974 

7 0.29 0.37 0.33 2036 

8 0.37 0.49 0.42 1868 

Accuracy   0.38 9450 

Macro Average 0.39 0.39 0.38 9450 

Weighted Average 0.39 0.38 0.38 9450 

 

Table 4-14: Classification report for superstructure deterioration model with 4 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.60 0.51 0.55 1751 

5 0.47 0.34 0.39 1821 

6 0.32 0.45 0.37 1974 

7 0.33 0.34 0.34 2036 

8 0.44 0.44 0.44 1868 
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Accuracy   0.41 9450 

Macro Average 0.43 0.41 0.42 9450 

Weighted Average 0.43 0.41 0.41 9450 

 

Table 4-15: Classification report for superstructure deterioration model with 5 PC. 

Condition Rating Recall Precision F1-score Support 

4 0.63 0.58 0.60 1751 

5 0.49 0.47 0.48 1821 

6 0.41 0.33 0.37 1974 

7 0.40 0.39 0.39 2036 

8 0.49 0.67 0.57 1868 

Accuracy   0.48 9450 

Macro Average 0.49 0.49 0.48 9450 

Weighted Average 0.48 0.48 0.48 9450 

 

Table 4-16: Classification report for superstructure deterioration model with 6 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.68 0.63 0.66 1751 
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5 0.55 0.60 0.57 1821 

6 0.48 0.52 0.50 1974 

7 0.50 0.53 0.52 2036 

8 0.71 0.59 0.65 1868 

Accuracy   0.57 9450 

Macro Average 0.58 0.57 0.58 9450 

Weighted Average 0.58 0.57 0.58 9450 

 

Table 4-17: Classification report for superstructure deterioration model with 7 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.75 0.75 0.75 1751 

5 0.61 0.75 0.67 1821 

6 0.67 0.55 0.61 1974 

7 0.67 0.58 0.62 2036 

8 0.70 0.78 0.74 1868 

Accuracy   0.68 9450 

Macro Average 0.68 0.68 0.68 9450 

Weighted Average 0.68 0.68 0.67 9450 
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Table 4-18: Classification report for superstructure deterioration model with 8 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.76 0.86 0.80 1751 

5 0.73 0.73 0.73 1821 

6 0.75 0.60 0.66 1974 

7 0.69 0.72 0.71 2036 

8 0.76 0.79 0.78 1868 

Accuracy   0.74 9450 

Macro Average 0.74 0.74 0.74 9450 

Weighted Average 0.74 0.74 0.73 9450 

 

Table 4-19. Classification report for superstructure deterioration model with 9 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.81 0.84 0.83 1751 

5 0.72 0.80 0.76 1821 

6 0.78 0.62 0.69 1974 

7 0.71 0.72 0.72 2036 

8 0.77 0.81 0.79 1868 
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Accuracy   0.76 9450 

Macro Average 0.76 0.76 0.76 9450 

Weighted Average 0.76 0.76 0.75 9450 

 

Table 4-20: Classification report for superstructure deterioration model with 15 

features (Base Model). 

Condition Rating Recall Precision F1-score Support 

4 0.83 0.81 0.82 1751 

5 0.67 0.81 0.73 1821 

6 0.75 0.60 0.66 1974 

7 0.73 0.68 0.71 2036 

8 0.75 0.82 0.78 1868 

Accuracy   0.74 9450 

Macro Average 0.75 0.74 0.74 9450 

Weighted Average 0.74 0.74 0.74 9450 
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(a)                                                               (b) 

Figure 4-15: (a) Learning curve for the superstructure model with 2 Principal 

Components (b) Confusion matrix for superstructure model 2 PC on the test set. 
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(a)                                                          (b) 

Figure 4-16: (a) Learning curve for the superstructure model with 3 Principal 

Components (b) Confusion matrix for superstructure model 3 PC on the test set. 
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(a)                                                                (b) 

Figure 4-17: (a) Learning curve for the superstructure model with 4 Principal 

Components (b) Confusion matrix for superstructure model 4 PC on the test set. 
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(a)                                                               (b) 

Figure 4-18: (a) Learning curve for the superstructure model with 5 Principal 

Components (b) Confusion matrix for superstructure model 5 PC on the test set. 
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(a)                                                             (b) 

Figure 4-19: (a) Learning curve for the superstructure model with 6 Principal 

Components (b) Confusion matrix for superstructure model 6 PC on the test set. 
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(a)                                                              (b) 

Figure 4-20: (a) Learning curve for the superstructure model with 7 Principal 

Components (b) Confusion matrix for superstructure model 7 PC on the test set. 
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(a)                                                                 (b) 

Figure 4-21: (a) Learning curve for the superstructure model with 8 Principal 

Components (b) Confusion matrix for superstructure model 8 PC on the test set. 
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(a)                                                                (b) 

Figure 4-22: (a) Learning curve for the superstructure model with 9 Principal 

Components (b) Confusion matrix for superstructure model 9 PC on the test set. 

      

(a)                                                                (b) 

Figure 4-23: (a) The learning curve for the superstructure base model with all 

features (b) Confusion matrix for the superstructure base model with all features on 

the test set. 

4.1.5 Substructure PCA Result 

The amount of variation in the bridge substructure feature set explained by 

each of the principal components and the cumulative values when multiple principal 

components (PC) are combined is shown in Table 4-21. The scree-plot in Figure 4-24 

also shows the graphical trend of the cumulative values of the principal components. 
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Table 4-21: Variance explained by principal components for bridge substructure. 

Principal Components Variance Explained (%) Cumulative (%) 

1 27.82 27.82 

2 15.50 43.32 

3 10.70 54.02 

4 7.86 61.88 

5 7.09 68.97 

6 6.84 75.81 

7 6.37 82.18 

8 5.27 87.45 

9 4.40 91.85 

10 3.43 95.28 

11 1.46 96.74 

12 1.14 97.88 

13 1.09 98.97 

14 1.03 100 
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Figure 4-24: Scree plot for substructure PCA. 

As with the normal trend for any principal component analysis, the amount of 

variance explained is highest in the first PC and reduces progressively in subsequent 

PCs. The cumulative amount of variance explained by all the PCs is equal to 100%. 

The correlation between the original substructure feature set and the principal components is 

shown in Figure 4-25. 

As shown in Figure 4-25, PC1 is more influenced by the bridge roadway width. PC2 

is more influenced by the number of days with measurable precipitation, PC3 is more 

influenced by the structure length, PC4 is more influenced by the total precipitation, PC5 is 

more influenced by the bridge age, PC6 is more influenced by the skew angle, PC7 is more 

influenced by the length of maximum span, PC8 is more influenced by the lanes under the 

structure, PC9 is more influenced by the lanes on the structure, and PC10 is more influenced 

by the structure length. As the scree-plot in Figure 4-24 flattens after the tenth principal 
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component, it makes sense not to consider any principal component after this point because 

the added explained variance becomes insignificant. This result highlights the most important 

substructure features that hold the relevant information useful in predicting its future 

condition. 

 

Figure 4-25: Relationship between substructure features and principal components. 

4.1.6 Substructure Deterioration Model Results 

The learning curves and confusion matrix for the bridge substructure prediction 

models created for different sets of PCs are shown in Figure 4-26 to Figure 4-34 and 

that of the base model is shown in Figure 4-35. The learning curves show the trend in 

the loss (or error) and accuracy over a series of iterations (epochs) during the model 
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training process. The confusion matrix shows the model performance on the difference 

condition rating classes in the test set.  

 

Table 4-22 to  

 

Table 4-30 shows the classification report for the PC models and Table 4-31 

shows the classification report for the base model. 

Like the PC models for the bridge deck and superstructure, the performance of 

the PC models for the bridge substructure improves with every added component until 

it reaches a point where there is no significant improvement in the F1-score of the 

models due to the limited amount of variation contributed by the added components. 

Also like the deck and superstructure condition prediction models, the best 

performance in the PC models and the base model (i.e., with 14 features) in terms of 

F1-score are observed in condition ratings 4 and 8 and the worst performance was 

observed in condition rating 6. This can also be attributed to the subjectivity of the 

data collection process where the condition ratings at the extreme points (i.e., 

condition ratings 4 and 8) are easily identifiable. 

The model performance result shows that it takes up to 9 principal components 

corresponding to 91.85% of the variation in the dataset to match the performance of 

the base model (i.e., with 14 features) with both models having an accuracy and F1-

score of 72% on the test set. Taking a step further to develop a prediction model with 

10 principal components corresponding to 95.28% of the variation in the dataset 
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results in a slightly better model with an accuracy and F1-score of 73%. As such, it 

takes 9 and 10 PCs to develop models that match and surpass the performance of the 

base model.  

 

 

Table 4-22: Classification report for substructure deterioration model with 2 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.50 0.64 0.56 1904 

5 0.33 0.16 0.21 2147 

6 0.32 0.54 0.40 2189 

7 0.30 0.17 0.22 2175 

8 0.36 0.37 0.36 1935 

Accuracy   0.37 10350 

Macro Average 0.36 0.37 0.35 10350 

Weighted Average 0.36 0.37 0.35 10350 

 

Table 4-23: Classification report for substructure deterioration model with 3 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.57 0.61 0.59 1904 
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5 0.41 0.25 0.31 2147 

6 0.37 0.32 0.34 2189 

7 0.34 0.46 0.39 2175 

8 0.45 0.52 0.48 1935 

Accuracy   0.42 10350 

Macro Average 0.43 0.43 0.42 10350 

Weighted Average 0.42 0.42 0.42 10350 

 

Table 4-24: Classification report for substructure deterioration model with 4 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.58 0.60 0.59 1904 

5 0.43 0.22 0.29 2147 

6 0.38 0.39 0.38 2189 

7 0.37 0.44 0.40 2175 

8 0.45 0.56 0.50 1935 

Accuracy   0.44 10350 

Macro Average 0.44 0.44 0.43 10350 

Weighted Average 0.44 0.44 0.43 10350 
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Table 4-25: Classification report for substructure deterioration model with 5 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.60 0.67 0.63 1904 

5 0.49 0.32 0.39 2147 

6 0.44 0.44 0.44 2189 

7 0.45 0.44 0.44 2175 

8 0.56 0.73 0.63 1935 

Accuracy   0.51 10350 

Macro Average 0.51 0.52 0.51 10350 

Weighted Average 0.50 0.51 0.50 10350 

 

Table 4-26: Classification report for substructure deterioration model with 6 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.64 0.71 0.68 1904 

5 0.50 0.30 0.38 2147 

6 0.46 0.47 0.46 2189 

7 0.47 0.59 0.53 2175 
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8 0.68 0.69 0.69 1935 

Accuracy   0.55 10350 

Macro Average 0.55 0.55 0.55 10350 

Weighted Average 0.55 0.55 0.54 10350 

 

Table 4-27: Classification report for substructure deterioration model with 7 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.65 0.81 0.72 1904 

5 0.60 0.55 0.58 2147 

6 0.62 0.54 0.57 2189 

7 0.61 0.62 0.61 2175 

8 0.76 0.75 0.76 1935 

Accuracy   0.65 10350 

Macro Average 0.65 0.65 0.65 10350 

Weighted Average 0.65 0.65 0.64 10350 

 

Table 4-28: Classification report for substructure deterioration model with 8 PCs. 

Condition Rating Recall Precision F1-score Support 
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4 0.71 0.75 0.73 1904 

5 0.63 0.58 0.61 2147 

6 0.65 0.61 0.63 2189 

7 0.67 0.68 0.67 2175 

8 0.72 0.79 0.76 1935 

Accuracy   0.68 10350 

Macro Average 0.68 0.68 0.68 10350 

Weighted Average 0.68 0.68 0.68 10350 

 

Table 4-29: Classification report for substructure deterioration model with 9 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.71 0.82 0.76 1904 

5 0.66 0.68 0.67 2147 

6 0.73 0.62 0.67 2189 

7 0.76 0.66 0.71 2175 

8 0.75 0.84 0.79 1935 

Accuracy   0.72 10350 

Macro Average 0.72 0.72 0.72 10350 
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Weighted Average 0.72 0.72 0.72 10350 

 

 

 

Table 4-30: Classification report for substructure deterioration model with 10 PCs. 

Condition Rating Recall Precision F1-score Support 

4 0.72 0.82 0.77 1904 

5 0.69 0.64 0.67 2147 

6 0.69 0.68 0.68 2189 

7 0.74 0.69 0.72 2175 

8 0.79 0.81 0.80 1935 

Accuracy   0.73 10350 

Macro Average 0.73 0.73 0.73 10350 

Weighted Average 0.73 0.73 0.72 10350 

 

Table 4-31. Classification report for substructure deterioration model with 14 features 

(Base Model). 

Condition Rating Recall Precision F1-score Support 



 124 

4 0.73 0.82 0.77 1904 

5 0.69 0.61 0.65 2147 

6 0.74 0.62 0.67 2189 

7 0.70 0.75 0.72 2175 

8 0.76 0.85 0.80 1935 

Accuracy   0.72 10350 

Macro Average 0.72 0.73 0.72 10350 

Weighted Average 0.72 0.72 0.72 10350 

 

 

     

   (a)       (b) 
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Figure 4-26: (a) Learning curve for the substructure model with 2 Principal 

Components (b) Confusion matrix for substructure model 2 PC on the test set. 

     

   (a)     (b) 

Figure 4-27: (a) The learning curve for the substructure model with 3 Principal 

Components (b) Confusion matrix for substructure model 3 PC on the test set. 
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   (a)       (b) 

Figure 4-28: (a) The learning curve for the substructure model with 4 Principal 

Components (b) Confusion matrix for substructure model 4 PC on the test set. 

        

  (a)      (b)  
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Figure 4-29: (a) The learning curve for the substructure model with 5 Principal 

Components (b) Confusion matrix for substructure model 5 PC on the test set. 

 

      

  (a)       (b) 

Figure 4-30: (a) The learning curve for the substructure model with 6 Principal 

Components (b) Confusion matrix for substructure model 6 PC on the test set. 
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  (a)      (b) 

Figure 4-31: (a) The learning curve for the substructure model with 7 Principal 

Components (b) Confusion matrix for substructure model 7 PC on the test set. 
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  (a)       (b) 

Figure 4-32: (a) The learning curve for the substructure model with 8 Principal 

Components (b) Confusion matrix for substructure model 8 PC on the test set. 

      

  (a)       (b) 

Figure 4-33: (a) The learning curve for the substructure model with 9 Principal 

Components (b) Confusion matrix for substructure model 9 PC on the test set. 
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  (a)     (b)   

Figure 4-34: (a) The learning curve for the substructure model with 10 Principal 

Components (b) Confusion matrix for substructure model 10 PC on the test set. 

      

  (a)      (b) 
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Figure 4-35: (a) The learning curve for the substructure base model with all features 

(b) Confusion matrix for the substructure base model with all features on the test set. 

4.2 Data Analysis Results for Bridge Weight 

The result of the bridge elements’ importance to the condition of the associated 

major component and the major components’ importance to the overall condition of 

the bridge for the different bridge design types are discussed below. Figure 4-37 to 

Figure 4-66 show the elements’, components’, and resultant elements’ weight for all 

the bridge design types. A total of 15 bridge categories were considered based on the 

main span design and the random forest algorithm was able to extract the importance 

of the bridge elements to the bridge components based on how the changes in the 

individual element health index influence the changes in the condition rating of the 

associated major component. The importance of the bridge components to the overall 

bridge rating is also evaluated based on how the changes in the individual component 

condition ratings influence the changes in the overall condition rating of the bridge. 

This process of evaluating the bridge elements’ weight using the Random Forest (RF) 

algorithm is illustrated in the flow chart in Figure 4-36.  
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Figure 4-36: Bridge Elements' Weight Flow-Chart. 

The analysis result for the Deck, Superstructure, Substructure, and Overall 

bridge condition is discussed below and it shows that the importance of bridge 

elements is dependent on the design type and the structural configuration of the 

bridge, and it is not constant all through. The result represents a total of 60 models 

created for the Deck, Superstructure, Substructure, and Overall bridge condition in 

each of the 8 bridge design types. 

      

         

Figure 4-37: Bridge Components' and Elements' Importance for Stringer/Multi-beam 

or Girder Bridge. 
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Figure 4-38: Bridge elements’ weight for Stringer/Multi-beam or Girder Bridge. 

 

       

       

Figure 4-39: Bridge Components' and Elements' Importance for Box Beam or Girder 

(Single or Spread) Bridge. 
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Figure 4-40: Bridge Elements’ Weight for Box Beam or Girders (Single) Bridge. 

 

 

       

      

Figure 4-41: Bridge Components' and Elements' Importance for Box Beam or Girder 

(Multiple) Bridge. 
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Figure 4-42: Bridge Elements’ Weight for Box Beam or Girders (Multiple) Bridge. 

 

       

       

Figure 4-43: Bridge Components' and Elements' Importance for Tee Beam Bridge. 
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Figure 4-44: Bridge Elements’ Weight for Tee Beam Bridge. 

      

       

Figure 4-45: Bridge Components' and Elements’ Importance for Girder and Floor 

Beam System Bridge. 
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Figure 4-46: Bridge Elements’ Weight for Girder and Floor Beam System Bridge. 

     

      

Figure 4-47: Bridge Components' and Elements’ Importance for Truss-Thru Bridge. 
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Figure 4-48: Bridge Elements’ Weight for Truss-Thru Bridge. 

 

     

      

Figure 4-49: Bridge Components' and Elements’ Importance for Frame Bridge. 
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Figure 4-50: Bridge Elements’ Weight for Frame Bridge. 

 

       

      

Figure 4-51: Bridge Components' and Elements’ Importance for Arch-Deck Bridge. 
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Figure 4-52: Bridge Elements’ Weight for Arch Deck Bridge. 

 

     

      

Figure 4-53: Bridge Components' and Elements’ Importance for Channel Beam 

Bridge. 
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Figure 4-54: Bridge Elements’ Weight for Channel Beam Bridge. 

    

        

Figure 4-55: Bridge Components' and Elements’ Importance for Truss-Deck Bridge. 
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Figure 4-56: Bridge Elements’ Weight for Truss-Deck Bridge. 

       

        

Figure 4-57: Bridge Components' and Elements’ Importance for Movable Bascule 

Bridge. 
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Figure 4-58: Bridge Elements’ Weight for Movable Bascule Bridge. 

       

        

Figure 4-59: Bridge Components' and Elements’ Importance for Arch-Thru Bridge. 
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Figure 4-60: Bridge Elements’ Weight for Arch-Thru. 

 

      

       

Figure 4-61: Bridge Components' and Elements’ Importance for Segmental Box 

Girder Bridge. 
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Figure 4-62: Bridge Elements’ Weight for Segmental Box Girder Bridge. 

       

      

Figure 4-63: Bridge Components' and Elements’ Importance for Suspension Bridge. 
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Figure 4-64: Bridge Elements’ Weight for Suspension Bridge. 

 

       

        

Figure 4-65: Bridge Components' and Elements’ Importance for Stayed Girder 

Bridge. 
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Figure 4-66: Bridge Elements’ Weight for Stayed Girder Bridge. 

4.2.1 Deck Elements’ Weight 

The deck element is more important to the overall condition rating of the Deck 

in all the main span design types except for the Truss-Deck (TRD), Movable-Bascule 

(MVB), Segmental Box Girder (SBG), and Suspension (SPS) design types. The bridge 

joint element has the highest importance for the Movable-Bascule (MVB)and 

Segmental Box Girder (SBG), the wearing surface has the highest importance for 

Suspension (SPS) bridges, and the rail element is the most important in the Deck for 

Truss-Deck (TRD) bridges. This is a rather unexpected result for these bridge types 

and can be deduced that the rail and joint elements in these bridge types are in a far 

worse condition than the deck elements which makes them influence the Deck 

condition rating more. The same analogy can be drawn for the Truss-Deck (TRD) 

which has the rail element as the most important element. This also goes to show that 

the bridge inspectors drop or increase the condition ratings of the whole Deck more 

due to the observed condition of these elements which further emphasizes their 

condition. It is also worth noting that in all the main span design types where the deck 

element is the most important bridge element in the Deck, the bridge rail happens to 

be the second most important element in such a structure which also emphasizes the 
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importance of the rail element to the overall deck condition rating. The high 

importance of the deck element to the Deck condition rating in most bridge types can 

be attributed to the fact that it receives direct traffic load from the vehicles and has a 

large surface area that is exposed to extreme weather conditions. The bridge rail is 

subjected to collision effects from vehicles, and this explains why it has significant 

importance to the Deck condition rating. Furthermore, this result indicates a clear 

distinction between the deck element and the wearing surface that serves as its 

protective coating. The random forest algorithm can distinguish between these two 

elements in the weight calculation to help justify and reaffirm the bridge inspection 

procedure. 

Also, according to Table 3-5, the number of bridge samples for the Movable-

Bascule (MVB), Segmental Box Girder (SBG), and Suspension (SPS) design types are 

83, 37, and 59 respectively which is a relatively lower number of observations 

compared to the other design types. Overall, the model will benefit from an increase in 

the amount of input data and as more inspection data is collected the model can be re-

run to observe the changes in the level of importance of the bridge elements to the 

components’ condition rating and help guide the DOTs on their bridge inspection 

policies and the maintenance, repair, and replacement (MRR) schedules for the 

different bridge design types. This will also serve as a note for bridge inspectors to see 

how the health index of the elements they inspect influences the general condition 

rating of the Deck and guide them for future inspection activity. 



 149 

4.2.2 Superstructure Elements’ Weight 

For the superstructure, the most important element varies largely based on the 

structural configuration of the bridge. The Girder/Beam element is by far the most 

important in a Stringer/Multi-beam or Girder (SMG), Tee beam (TBM), and channel 

beam (CBM) bridge design type while the Closed web is by far the most important 

element in a Box beam or Girder (Single) (BBGS) and Box beam or Girder (Multiple) 

(BBGM). This outcome makes sense because the SMG, TBM, and CBM design types 

have the Girder/Beam element as their base design element, and, logically, they 

influence the superstructure condition rating more. The results for BBGS and BBGM 

also make sense because the closed web which is also known as the ‘box girder’ forms 

the base design of the superstructure and it is expected to have the highest importance 

to the superstructure rating. This confirms the synchronization between the elements’ 

health index and the component’s condition rating and showcases the efficiency of the 

random forest algorithm in distinguishing between the bridge elements based on their 

structural configuration.   

In the Girder and Floor Beam System (GFS) design type, the Girder/beam, 

floor beam, bearing, and stringer elements are the most significant elements when 

compared to the rest of the elements in the superstructure. This is also a logical result 

because it is expected that the Girder/beam, floor beam, and stringer will have more 

importance to the superstructure condition rating of a signature bridge like the GFS 

and improves the confidence in the approach showcased in this paper for synthesizing 

the component and element-level data. This further reinforces the need to consider 

bridge elements based on their importance to the structural performance of the bridge 

component and not based on the perceived cost of replacement. In the Frame (FRM) 
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design type, the girder/beam, arch, bearing, and floor beam elements are the most 

significant elements to the condition rating of the superstructure. This result is also 

reasonable for the FRM design type. 

For the Truss-Thru (TRT) design type, the truss, floor beam, and stringer are 

the most important elements in the superstructure. This is yet another logical result 

that further confirms the synchronization between the bridge superstructure rating and 

the condition of its associated elements. The arch is the most important element in the 

arch-deck (ARD) design type while the truss is the most important element in the 

truss-deck (TRD) design type. The stringer, girder/beam, and floor beam are the most 

important superstructure elements in the movable-bascule (MVB) design type. The 

floor beam, girder/beam, arch, and stringer are the most significant elements in the 

arch-thru (ART) type while the closed web and girder/beam are the only significant 

elements in the segmental box girder (SBG) design type. So far, the bridge elements’ 

importance keenly agrees with the expected output based on the bridge design type. 

In the suspension (SPS) design type, the stringer, truss, girder/beam, floor 

beam, pin/hanger, secondary cable, main cable, and gusset plate have a significant 

level of importance to the condition of the superstructure. For the stayed girder (STG) 

design type, the main cable, girder/beam, and floor beam are the most important 

superstructure elements. This set also shows a reasonable result that can be further 

improved when additional inspection data are available. 

Overall, the elements’ weight of the superstructure elements for the different 

bridge design types considered in the analysis agrees mostly with the expected result 

and this confirms the reliability of the random forest approach for synthesizing the 
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component and element-level data. The bridge inspection procedure/guideline is also 

validated with these results as it shows that the bridge inspectors are considering the 

structural configuration of the bridges in assigning importance to the bridge elements 

while assigning condition rating values to the superstructure. 

4.2.3 Substructure Elements’ Weight  

In the substructure, most of the span design types have the abutment element 

as the most significant to the condition of the substructure except for movable bascule 

(MVB) and stay-girder (STG) where the pier cap and column have a higher 

importance respectively. The reason for this slight change in result might be that the 

pier cap and column are in a far worse condition than the abutment elements which 

makes them influence the Substructure condition rating more. The number of bridge 

observations used in creating the models in the MVB and STG design types are 83 and 

16 respectively and the reliability of the results for these three design types will 

benefit from the availability of more inspection data. 

This result is logical because the abutment is subjected to earth and hydrostatic 

pressure from the embarkment as it connects the bridge span to the land, and this 

explains why the condition rating of the substructure is greatly influenced by the 

abutment element. The abutment element provides an important support for the 

superstructure which also makes it subjected to the traffic load. All these affirm the 

importance of the abutment element which is showcased by the random forest 

algorithm. The importance of all other elements i.e., pier wall, pier cap, column, pile, 

pile cap, and trestle to the substructure rating varies significantly with the different 

main span design types. Thus, different bridge design types have different elements 
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that dictate their structural performance as evidenced by the analysis conducted. This 

calls for a review cost-based approach that focuses more on the economic loss and not 

the structural impact of the elements’ deterioration on the condition of the bridge 

component.   

4.2.4 Overall Components’ Weight 

A bridge's Overall condition rating is taken as the lowest of the deck, 

superstructure, and substructure condition ratings as posted on the National Bridge 

Inventory (NBI) database. The analysis conducted with the random forest algorithm 

shows that the overall condition rating of the bridge is influenced more by the 

condition rating of the Superstructure and Substructure. This result shows that the 

Superstructure and Substructure are in a poorer condition compared to the Deck. The 

Deck has the least importance to the overall condition of the bridge in all the bridge 

design types except for the BBGS design type which has the Deck as the second most 

important component. This signifies that the Deck component is in a much better 

condition than all the other components and can be attributed to the more intensive 

maintenance action carried out on the Deck due to the direct discomfort caused to the 

road users when it is not in a good condition. 

This analysis is a step toward achieving a new method for determining the 

overall Bridge Health Index (BHI) of different bridge design types as against the cost-

based method that uses a constant weight in computing the Bridge Health Index BHI 

of a bridge. As a result of the approach showcased here, it is evident that each of the 

different bridge design types will have a distinct Bridge Health Index (BHI) equation 
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that better represents the relevance of each of the elements to the structural 

performance of the bridge. 

4.2.5 Resultant Bridge Elements’ Weight 

The bridge elements’ weight for the 15 bridge design types as illustrated in 

Figure 4-37 to Figure 4-66 show that the abutment is the most important bridge 

element in all the bridge design types based on the data-driven analysis except for the 

MVB, SBG, and STG design types that have the Stringer, Closed web, and Main cable 

respectively as the most important bridge element. This result emphasizes the 

importance of the abutment to the overall performance of the bridge which can be 

related to a similar work done by Abiona, Head [27] stating the abutment is the most 

important element in the bridge. The ranking of the resultant weight of all the other 

bridge elements varies significantly with the different bridge design types. The bridge 

elements’ weight observed for the different bridge design types helps to guide the 

DOTs on which bridge elements need maintenance action the most to boost the overall 

condition rating of their bridge inventory.  

When maintenance action is conducted and the bridge components and 

elements are re-rated, the model can be re-run with the inclusion of the newly 

collected data to observe the changes in the level of importance of the bridge elements 

to the overall bridge condition and help guide the DOTs on their bridge inspection 

policies and the maintenance, repair, and replacement (MRR) schedules for the 

different bridge design types. This will also serve as a note for bridge inspectors to see 

how the health index of the elements they inspect influences the general condition 

rating of the components and guide them for future inspection activity. 
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Finally, the analysis conducted provides a promising approach that can be 

useful in converting the general condition rating values of the major components into 

the associated element-level health indexes for the different bridge design types. When 

the importance (or weight) of the elements is known, the condition rating of the 

components can be used to evaluate the possible condition of the associated elements. 

This will help in saving the cost of data collection as there will not be any need to 

collect large amounts of bridge data when the condition of the bridge elements can be 

analytically calculated. 
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Chapter 5           

CONCLUSION AND FUTURE WORK 

5.1 Summary 

In the deterioration prediction of the bridge components using Artificial Neural 

Networks (ANN), principal component analysis (PCA) which is a statistical technique 

for capturing the important information in a dataset was successfully applied to create 

condition rating prediction models for the bridge Deck, Superstructure, and 

Substructure. In each of the bridge components, Principal Component (PC) models 

were created until the scree-plot showing the amount of cumulative variation 

explained flattened out, signifying no significant improvement in the information 

gained. The performance of the PC models in each of the components was compared 

with that of the base model that uses all the selected bridge features. In the Deck, 

Superstructure, and Substructure, the number of relevant features influencing their 

condition identified from literature are 14, 15, and 14 respectively, and were used 

directly in the base models. It was observed that as the number of principal 

components used in a model increases, the performance of the model also increases 

until the variance explained by subsequent principal components becomes 

insignificant (flattening of the scree-plot). Increasing the complexity of the model in 

terms of the number of hidden layers and neurons does not translate to better 

performance over adding more principal components. Adam optimizer was used to 

regulate the learning rate in all the models and an initial value of 0.0001 was sufficient 
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to ensure quick convergence. A combination of dropout and L2 regularizer was 

successfully deployed in all the models to minimize the effects of overfitting. ‘Relu’ 

activation was used in all the hidden layers and ‘Softmax’ activation was used in the 

output layers of all the models since it is a classification problem. The models were 

created by training them on 68% of the dataset, cross-validating on 17% of the dataset 

to check for overfitting and testing the model performance on 15% of the dataset. 

The Deck, using 9 principal components (9-PC model) which corresponds to 

91.72% of the variation in the dataset to make a deterioration prediction model for the 

bridge deck has a better prediction accuracy and F1-score of 76% when compared to 

the base model, 75% which uses all the 14 bridge features. Apart from the improved 

model performance, the dimensionality of the data is also reduced from 14 features to 

9 features (or PCs). The model with 9 principal components also has fewer neurons in 

some of the hidden layers when compared to the base model, which translates to lower 

computational costs. In the Superstructure, comparing the performance of the PC 

models with the base model that used all the 15 bridge features shows that 8 principal 

components corresponding to 86.69% of the variation in the data have the same 

accuracy and F1-score (i.e., 74%) as the base model. Going a step further to compare 

the performance of the model with 9 principal components (corresponding to 91.3% of 

the variation) with the base model, it shows that the model 9-PC has an accuracy and 

F1-score of 76%, surpassing that of the base model. In the Substructure, model 9-PC 

has the same accuracy and F1-score (72%) as the base model that used all the 14 

bridge features. Model 10-PC has an accuracy and F1-score of 73% which surpasses 

that of the base model. These results emphasize the efficiency of PCA in maximizing 

the explained variance in a dataset to help improve the model performance while 
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reducing the dimensionality of the data. To improve the accuracy of subsequent 

models, it is imperative to consider the following: 

i. Minimize the subjectivity in assigning condition ratings to bridge decks as it 

can be confirmed by Moomen, Qiao [7] that ratings assigned by different 

inspectors are randomly distributed around the real condition of the bridge 

component. 

ii. Low variability in the assigned condition rating by different inspectors on the 

same bridge deck will generally lead to more prediction accuracy in the models 

created. 

iii. Other standardized means of inspection like computer-aided vision can be 

considered to improve the quality of bridge data collected. 

The random forest algorithm which consists of multiple decision trees was 

used to evaluate the importance of bridge elements and components to the overall 

condition of the bridge. The analysis was conducted on 15 different bridge design 

types for the inventory of bridges in Delaware, Maryland, Pennsylvania, Virginia, and 

West Virginia. The analysis result shows that the deck and rail elements are the most 

important bridge elements in the Deck in most of the bridge design types and this is 

attributed to the fact that the deck elements receive the direct traffic load while the rail 

element is exposed to frequent collisions with vehicles. The most important element in 

the Superstructure varies depending on the structural configuration of the bridge with 

the Closed Web (or Box Girder) being the most important element in Box Beam 

bridges, the Truss being the most important element in Truss-Thru bridges, the Arch 

being the most important element in Arch-Deck bridges, etc. The most important 
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substructure element in all the bridge design types except for the movable bascule 

(MVB) and stay-girder (STG) bridge is the abutment element. In contrast, the ranking 

of all other substructure elements varies depending on the design type. The results 

from the bridge component-element analysis are logical from a structural point of 

view and affirm the random forest algorithm's efficiency in determining the bridge 

elements' importance. The superstructure and substructure condition rating has the 

most influence on the overall condition rating in all the bridge design types, and this 

signifies that they are in a poorer condition compared to the Deck. The combination of 

the bridge components and elements’ importance shows that the abutment element has 

the highest resultant weight in all the bridge design types except for the MVB, SBG, 

and STG design types that have the Stringer, Closed web, and Main cable respectively 

as the most important bridge element. The ranking of the resultant weights of all the 

other bridge elements varies largely depending on the bridge design type. This result 

shows the need to evaluate the importance of bridge elements based on their structural 

relevance to the performance of the bridge and not a constant value all through. The 

weight of the respective elements in the different bridge design types can be used to 

construct the overall Bridge Health Index (BHI) equation and provide a guide for the 

Departments of Transportation (DOTs) on which set of elements to prioritize in their 

maintenance actions to improve the overall condition of their bridge inventory. Finally, 

the results obtained from this approach show promise towards helping the departments 

of transportation (DOTs) to ascertain if the elements they give the highest priority in 

the maintenance, repair, and replacement (MRR) schedule and budget allocation are 

also the same set of elements the bridge inspector accord this level of importance 

during inspections. The models can be re-run as more inspection data becomes 
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available to observe the changes in the level of importance of the bridge elements to 

the components’ condition rating and help guide the DOTs on their bridge inspection 

policies. 

5.2 Recommendations and Future Work 

The result of this research shows that the quality and reliability of the bridge 

components’ condition prediction model can be improved by investing more in 

computerized inspection to ensure consistency in the data collection process. Also, the 

bridge owners can adopt the resultant bridge elements’ weight computed in this 

research to formulate the bridge health index (BHI) equation for the different bridge 

types in their jurisdiction. Furthermore, the cost-based elements’ weight approach 

currently in use can be transformed by combining it with the results showcased in this 

study to develop a more robust bridge management system that optimizes the repair 

budget and the overall bridge condition. 

In the deterioration prediction of the bridge components, future studies could 

include careful consideration of the evolution of bridge performance degradation or 

lifespan problems if the data becomes available. Other data improvement techniques 

will also be considered for analysis to observe any improvements in the performance 

of the bridge components’ condition prediction models. The bridge weight analysis 

provides a novel approach for converting the general condition rating of the 

components to the element-level health index by using the derived weights of the 

elements based on the design type to redistribute the condition rating among the 

elements that make up the bridge component. The future work involved showcasing 
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how this weight redistribution can be conducted to improve the data collection process 

of the DOTs. 
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Appendix A 

PERMISSION AND OTHER MATERIALS 

 

Figure A1: Permission to reprint figure 1-1. 
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Figure A2: Code for condition prediction models. 
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Figure A3: Code for bridge elements’ weight. 

Data Sources: 

• https://infobridge.fhwa.dot.gov/ 

• https://www.fhwa.dot.gov/bridge/nbi/element.cfm 

 

https://infobridge.fhwa.dot.gov/
https://www.fhwa.dot.gov/bridge/nbi/element.cfm

