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Abstract
Drones (unmanned aerial vehicles) provide another system to mount sensors for mea-

suring plant characteristics. For winter wheat (Triticum aestivum) this can include

evaluating stands and making nitrogen (N) recommendations. Timing these flights

and adequate camera resolution (based on flying height), must be known before

applying tasks. This study observed six winter wheat planting populations (222, 297,

371, 445, 494, and 544 seeds m–2) at three different heights above ground level (30,

60, and 120 m) over three growing seasons. Plant populations could be separated at

all growth stages and heights flown but were easier to separate right after emergence

(GS11). In the spring, additional tillering caused the higher populations (371–544

seeds m–2) to have similar normalized difference vegetative index (NDVI), much like

the final yields. Comparing changes in NDVI between flights was also successful in

separating high and low planting populations, with inverse relationships in the fall

and spring. A random forest classification of tiller counts by NDVI measurements

ranked change in NDVI between stages as the most important compared to single

flights. As separation and classification was successful at the lowest camera resolu-

tion (120 m), it can be possible for scouts to collect whole field imagery for analyses

prior to deciding on split N applications.

1 INTRODUCTION

Winter wheat (Triticum aestivum) relies on tillers for yield,

where additional tiller formation can be related to both

seeding rate (plant population), row spacing, and nitrogen

(N) additions (Aase & Siddoway, 1980; Tilley, Heiniger, &

Crozier, 2019). When higher seeding rates are used, fall tillers

contribute the most to yield, whereas lower rates rely on

spring tiller growth for yield (Tilley et al., 2019). To increase

spring tillers, N may be split applied, which requires labor

intensive hand counts to measure stiller density (Phillips,

Abbreviations: AGL, above ground level; GS, growth stage; NDVI,

normalized difference vegetation index.
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Keahey, Warren, & Mullins, 2004; Tilley et al., 2019. The

measurement of canopy reflectance has also successfully

evaluated stands to make N applications (Aase & Siddoway,

1980; Phillips et al., 2004; Ruan et al., 2001).

Since the 1970s, satellite imagery has been used to measure

vegetation characteristics (Mulla, 2013). Vegetation indexes,

such as the normalized difference vegetation index (NDVI),

were developed from satellite multispectral bands to measure

crop biomass (Hatfield, Gitelson, Schepers, & Walthall, 2008;

Mulla, 2013). The NDVI uses near infrared (NIR) and red

bands to measure vegetative biomass and is commonly used

in agronomic applications (Aase & Siddoway, 1980; Erdle,

Mistele, & Schmidhalter, 2011; Phillips et al., 2004). Shortly
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after satellite imagery was used to measure vegetative char-

acteristics, handheld radiometers were used to successfully

examine NDVI for wheat at ground level (Aase & Siddoway,

1980; Aase & Siddoway, 1981). These proximal measure-

ments were further refined for agricultural use by attaching

sensors to tractors or other agricultural equipment and could

be active or passive (Mulla, 2013).

Finding relationships between sensors, vegetation indexes,

and wheat characteristics depends on the growth stage. Early

wheat growth is mostly leafy vegetation, which is why leaf

area index (LAI) correlates to total biomass and tillering

(Aase, 1978; Aase & Siddoway, 1981). After jointing, wheat

will accumulate more stem biomass and leaves eventually

senesce, so the relationship of LAI to biomass diminishes

(Aase, 1978; Phillips et al., 2004). This same relationship has

been observed with NDVI and wheat growth stages, where

LAI and leaf dry matter have linear relationships with NDVI

until stem matter accumulates or LAI saturates NDVI (Aase &

Siddoway, 1980; Aase & Siddoway, 1981; Aparacio, Villegas,

Casadesus, Araus, & Royo, 2000). Saturation of NDVI occurs

when LAI is above 2–3 (Erdle et al., 2011; Mulla, 2013), so

that in higher tiller densities, NDVI and LAI will have an

exponential relationship (Aparacio et al., 2000). The NDVI

has a linear relationship with tillers until there are more than

1,000 tillers m−2, therefore, tiller density can be predicted

with more accuracy at earlier growth stages or less biomass

(Erdle et al., 2011; Phillips et al., 2004). In a study of wheat

planting rates, it was easier to discern the highest and lowest

rates from each other than those in the middle range (Aase &

Siddoway, 1980). Water stress can cause lower canopy den-

sity so that NDVI performs better in dryland wheat than irri-

gated fields (Aparacio et al., 2000), leading to better yield pre-

dictions (Thapa et al., 2019). Wheat yield prediction through

NDVI also has strong relationships prior to joining, when LAI

is less than 2.5 (Aparacio et al., 2000; Goodwin, Lindsey,

Harrison, & Paul, 2018), and at the milk-grain (GS75) stage

(Marti, Bort, Slafer, & Araus, 2007; Royo et al., 2003; Hassan

et al., 2019; Prasad et al., 2007). For winter wheat growth, the

highest NDVI is often at the heading stage, peaking between

jointing and anthesis in the .8–.9 NDVI range (Hochheim &

Barber, 1998; Thapa et al., 2019).

Earlier studies used Julian days to evaluate NDVI and wheat

(Tucker, Holben, Elgin, & McMurtrey, 1980), but correla-

tions were improved by using growing degree days (GDD),

since growth stages will correlate better to heat units (Dhillon,

Figueiredo, Eickhoff, & Raun, 2019; Hochheim & Barber,

1998). For winter wheat, this has been further refined into

summing the number of GDD >0, with a range of 97 to 115

(GDD >0) predicting yield using NDVI (Dhillon et al., 2019).

While satellites, tractor mounted sensors, and handheld

devices have aided past research efforts, recent advances in

drone (unmanned aerial vehicles) technology have provided

another sensor mounting option. The use of a drone still

provides the resolution of a handheld device while allowing

Core Ideas
∙ Drones flown at 120 m can detect differences in

winter wheat planting populations over the grow-

ing season.

∙ Change in NDVI between stages can help find

lower populations in the field.

∙ Aerial imagery can be used to make decisions on

re-seeding or N applications.

for faster acquisition of whole plot or field data. Satellite

imagery works better at a regional level versus farm scale

(Labus, Nielsen, Lawrence, Engel, & Long, 2002), where

measuring crop biomass needs 1- to 3-m resolution, but vari-

able rate application can be done at 5–10 m (Mulla, 2013).

The resolution of drone imagery can be 2–3 cm (Duan,

Chapman, Guo, & Zheng, 2017) higher than is necessary for

biomass or variable rate application. Measurements of NDVI

using drones has also correlated to winter wheat biomass at

late flowering when flown at 40-m heights and had higher

accuracy than handheld active sensors (Hassan et al., 2019).

This was attributed to the ability of drone imagery to capture

the entire plot for an average value (Hassan et al., 2019).

Using drones, yield has also been correlated to NDVI at both

flowering and grain fill stages (Hassan et al., 2019; Guan

et al., 2019; Duan et al., 2017). There is also good correlation

between drone and handheld NDVI measurements of wheat,

but drone NDVI values are often higher (Condorelli et al.,

2018; Duan et al., 2017).

This study was designed to build upon previous work in

winter wheat, to determine whether tiller counts could be

performed using drone imagery, the best growth stage to

collect imagery, and whether the maximum 120-m elevation

was adequate.

2 MATERIALS AND METHODS

In the fall of 2017, 2018, and 2019 winter wheat (‘Shirley’)

was planted into 1.5- by 6.1-m plots in Georgetown, DE using

a plot planter. Wheat was planted at six seeding rates (222,

297, 371, 445, 494, and 544 seeds m−2) with five replica-

tions in a completely randomized design. Nitrogen was split

applied with 56 kg ha−1 ammonium sulfate at Zadooks growth

stage (GS) 23 and GS30, for a total of 112 kg ha−1. The sec-

ond N application included a broadleaf herbicide application,

and a fungicide application was made at flowering. Tillers

counts (main stem plus tillers with three leaves) were per-

formed by hand prior to greenup (GS21–23) along three sec-

tions of 0.91 m (3 ft) per linear row. Fields were harvested

using a plot combine in June of each year.
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Drone flights were performed at 30, 60, and 120 m above

ground level (AGL). In 2017–2018, a 3DR Solo quadcopter

drone (3D Robotics, Berkley, CA) was equipped with a Par-

rot Sequoia multispectral camera and sunshine sensor (Paris,

France). Mission planning for the quadcopter was performed

using the Tower app (3D Robotics, Berkley, CA) at a 75%

overlap. During the 2018–2019 growing season, emergence

was the only growth stage flown with the quadcopter due to an

error with the sunshine sensor. Flights were instead obtained

with a fixed wing drone (Model Parrot DiscoPro Ag) equipped

with the Parrot Sequoia multispectral camera and sunshine

sensor. Software restricts the lower limit of the fixed wing

drone to 50 m, so the 30-m AGL flight could not be obtained

over the 2018–2019 growing season. Over the 2019–2020

growing season, a DJI Matrice equipped with a Micasense

Altum multispectral camera was able to collect imagery at

all three flying heights. Flights were performed at emergence

(GS11, Nov.) and subsequent growth stages (tillering [GS21,

Feb.], greenup [GS23, early Mar.], jointing [GS30, late Mar.],

and boot [GS45, Apr.]) through the growing season.

Orthomosaics were generated for each camera band using

Pix4DMapper desktop software (Pix4D SA, Switzerland).

Five ground control points were used to georeference each

orthomosaic and images were calibrated using reflectance

panels for each flight. The NDVI orthomosiac was calcu-

lated by Pix4D and exported as a GeoTIFF for analyses in

ArcGIS Desktop 10.1 (ESRI, Redlands, CA). Plot level data

was extracted using a shapefile created in AutoCAD Civil3D

(San Rafael, CA) by the methods laid out in Miller and Adkins

(2020). Each plot was offset 0.5 m from the edge to reduce

soil reflectance from alleys. Average plot NDVI was calcu-

lated using the Zonal Statistics tool in ArcGIS and exported

using the Table to Excel tool. Yields and average NDVI plot

values were analyzed as a complete randomized design using

Proc GLM in SAS 9.4 software (Cary, NC). Means were sepa-

rated with the LSD at α= .10. Pearson correlation coefficients

of yield, NDVI, and tiller counts were also performed using

Proc Corr in SAS.

A random forest (RF) classifier was used to model NDVI

measurements across the wheat growing season versus tiller

(stem) counts in SAS Enterprise Miner (Cary, NC). To make

recommendations for N application in the Mid Atlantic, tiller

counts were split by their threshold for split spring application

of N (538 tillers m−2). The 22 model variables included all

individual NDVI measurements for each plot over the growing

season, the change in NDVI between fall and spring growth

stages, and the season the flights were performed. The dataset

was randomly split into a training (80% of the total dataset)

and validation (20% of the total dataset) set using the data

partition node. The model was tuned in a SAS code node to

vary the number of trees for the RF, the number of leaves at

each terminal node, and the number of variables used. Based

on this, Proc HPFOREST was set to 150 trees, the default leaf

setting, and four variables. In this case, four variables are close

to the square root of the total variables used. Since many of

the NDVI measurements were correlated to each other, the

RF classification model was also performed on measurements

only made at the 30 m (highest resolution) and 120 m (lowest

resolution) NDVI plot values.

3 RESULTS AND DISCUSSION

3.1 Yields

When averaged across all three season, the lowest planting

populations (S1 and S2) also had the lowest yields, whereas

the higher populations (S3–S4) were not different from each

other (Table 1). Previous research on small grain seeding

rates have similar results, with increases in yield being limited

above 371 seeds per m−2 and dropping with increasing seed-

ing rates (Joseph, Alley, Brann, & Gravelle, 1985; North Car-

olina Cooperative Extension, 2013). Tiller counts were great-

est at the S5 and S6 planting population, in the middle for S3

and S4 populations, and lowest for S1 and S2 (Table 1). This

was prior to N application, so the similarity in yield between

the S3–S6 populations indicates additional tillers may have

been formed at the middle rates, whereas N applications did

not assist in forming enough tillers at the lowest populations

(Table 1). On average, tiller counts were low (less than 538

tillers m−2) among planting populations, and therefore in need

of split N applications (Alley, Scharf, Brann, Baethgen, &

Hammons, 2019).

By year, 2020 had the highest yield, whereas 2018 and 2019

were similar and there was no interaction with planting pop-

ulation (Table 1). Tiller count was also significantly differ-

ent by year, with 2019 having the highest tiller (stem) counts

(Table 1).

3.2 Normalized difference vegetation index
(NDVI)

Among seeding rates, differences in NDVI were observed

across all growth stages and heights flown (Tables 2, 3, 4).

These measurements were taken after emergence (GS11–12)

and at Zadooks GS21, GS23, GS30, and GS45. The NDVI

measurements in this study are similar to those from hand-

held radiometers (Aase & Siddoway, 1980) for early growth

stages (.20–.30) and maximizing at heading (.60–.80). This

same range in NDVI over wheat growth stages has also been

observed from drone imagery, starting at .20 at stem elonga-

tion and reaching .70–.80 at heading (Guan et al., 2019). Aase

and Siddoway (1980) found differences in both dry leaf mat-

ter and linear relationships across six different seeding rates,

even though NDVI at the boot stage appeared similar.

Version of Record at: https://doi.org/10.1002/agj2.20539



MILLER AND ADKINS 1589

T A B L E 1 Yields (Mg ha−1) and wheat tillers (stems m−2) by seeding rate (S) and year. Values followed by a different letter are significantly

different (α = 0.1)

Parameter Yields Tillers
Mg ha−1 stems m−2

Planting population
S1, 222 seeds m−2 5.7b 370c

S2, 297 seeds m−2 5.7b 395c

S3, 371 seeds m−2 6.3a 446b

S4, 445 seeds m−2 6.2a 439b

S5, 494 seeds m−2 6.2a 455ab

S6, 544 seeds m−2 6.1a 484a

Pr > F .0726 <.0001

Year
2018 5.5b 358c

2019 5.6b 506a

2020 7.0a 431b

Pr > F <.0001 <.0001

Population × Year .2798 .2048

T A B L E 2 Average normalized difference vegetation index (NDVI) for the 2019–2020 growing seasons by growth stage (GS) at 30 m above

ground level. Values followed by a different letter are significantly different (α = .1)

Parameter GS11 GS21 GS24 GS30 GS45
NDVI

Seeding rate
S1, 222 seeds m−2 .1777e .4034b .4700b .7178b .9236b

S2, 297 seeds m−2 .1899d .4086b .4695b .7144b .8209b

S3, 371 seeds m−2 .2053c .4503a .5156a .7400a .8441a

S4, 445 seeds m−2 .2170b .4502a .5056a .7403a .8538a

S5, 494 seeds m−2 .2342a .4565a .5182a .7509a .8554a

S6, 544 seeds m−2 .2414a .4761a .5269a .7463a .8586a

Pr > F .0001 .0121 0414 .0440 .0090

Year
2018 .1885b .2408b .3332b .5936b .7626b

2019a .0671c – – – –

2020 .3772a .6430a .6688a .8864 .9222a

Pr > F .0001 .0001 .0001 .0001 .0001

Rate × Year .0001 .7195 .6459 .6620 .0590

aDrone flights could not be performed at 30 m in 2019.

At the first stage flown (GS11), NDVI values ranged from

.17 to .28, which is common in the early stages of wheat

growth as imagery includes soil reflectance (Aase & Sid-

doway, 1981; Guan et al., 2019). Flights performed at higher

elevations may reduce soil reflectance as image resolution

decreases, which may explain why higher NDVI was mea-

sured for plant populations at 120 m AGL (Table 4). At GS11,

separation by NDVI among seeding rates was evident at all

heights AGL (Tables 2, 3, 4), with complete separation evi-

dent at 120 m AGL (Table 4). This is a positive result, as

higher flights require less flight time, produce less photos, and

take less time to process.

From GS11 to GS45, there was a steady increase in NDVI,

which typically increases until heading (Aase & Siddoway,

1981; Guan et al., 2019). At GS21, NDVI values increased

to 0.34–0.47, as more tillering and plant growth occurred

in late fall and early winter. Among planting populations,

this additional tillering reduced the separation that was more
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T A B L E 3 Average normalized difference vegetation index (NDVI) for the 2019–2020 growing seasons by growth stage (GS) at 60 m above

ground level. Values followed by a different letter are significantly different (α = .1)

Parameter GS11 GS21 GS24 GS30 GS45
NDVI

Seeding rate
S1, 222 seeds m−2 .1748e .3434b .4243b .6284bc .8275b

S2, 297 seeds m−2 .1875d .3488b .4189b .6199c .8213b

S3, 371 seeds m−2 .2007c .3833a .4607a .6487a .8334a

S4, 445 seeds m−2 .2133b .3856a .4504a .6455ab .8471a

S5, 494 seeds m−2 .2285a .3975a .4606a .6548a .8470a

S6, 544 seeds m−2 .2357a .4056a .4686a .6529a .8502a

Pr > F .0001 .0001 .0093 .0103 .0016

Year
2018 .1750b .2308c .3495b .5950b .7477c

2019 .0757c .2594b .3241c .4242c .8563b

2020 .3606a .6418a .6681a .9059a .9142a

Pr > F .0001 .0001 .0001 .0001 .0001

Rate × Year .0001 .8199 .7306 .9711 .0992

T A B L E 4 Average normalized difference vegetation index (NDVI) for the 2019–2020 growing seasons by growth stage (GS) at 120 m above

ground level. Values followed by a different letter are significantly different (α = .1)

Parameter GS11 GS21 GS24 GS30 GS45
NDVI

Seeding rate
S1, 222 seeds m−2 .2118f .3460b .4146bc .6257bc .8014b

S2, 297 seeds m−2 .2291e .3516b .4120c .6188c .7950b

S3, 371 seeds m−2 .2473d .3864a .4475a .6464a .8156a

S4, 445 seeds m−2 .2614c .3866a .4365ab .6421ab .8200a

S5, 494 seeds m−2 .2790b .3989a .4456a .6534a .8212a

S6, 544 seeds m−2 .2875a .4082a .4516a .6510a .8225a

Pr > F .0001 .0002 .0217 .021 .0034

Year
2018 .2143b .2399b .3145b .5767b .7219c

2019 .0871c .2554b .3123b .4334c .8069b

2020 .4566a .6436a .6771a .9086a .9090c

Pr > F .0001 .0001 .0001 .0001 .0001

Rate × Year .0001 .8109 .6069 .9789 .3011

evident at emergence (Tables 2, 3, 4). Higher planting pop-

ulations (S3–6) were similar to each other at later growth

stages and heights flown, which follows the yield results

observed (Table 1). Therefore, higher populations having sim-

ilar NDVI values in this study is not an issue, as we are more

concerned with differentiating between lower yielding versus

higher yield regions of the field. This can potentially be per-

formed, as the lowest performing planting rates also had the

lowest NDVI measurements at all growth stages. Therefore,

at GS21, it is possible to detect portions of a field that need

split applied N for additional tillers (Phillips et al., 2004) in

the S1 and S2 planting populations. However, based on mid-

Atlantic recommendations (Alley et al., 2019), almost all indi-

vidual plots had tiller counts in need of split N application at

GS21.

One issue with attempting to separate higher and lower per-

forming portions of a field is how small the NDVI differ-

ence was among seeding rates (∼.02), a range that could be
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T A B L E 5 Change in normalized difference vegetative index (NDVI) between growth stage (GS) GS11 to GS21 (change in the fall or ΔFall)

and GS21 to GS24 (change in the spring or ΔSpring) by height above ground level, year, and interaction (year × seeding rate). Values followed by a

different letter are significantly different (α = .1)

30 m 60 m 120 m
Parameter ΔFall ΔSpring ΔFall ΔSpring ΔFall ΔSpring

NDVI

Seeding rate
S1, 222 seeds m−2 .0313e .0667 .0774f .0809a .0024d .0686a

S2, 297 seeds m−2 .0418d .0608 .0867e .0773a .0092cd .0603b

S3, 371 seeds m−2 .0558c .0594 .0983d .0700b .0153bc .0611b

S4, 445 seeds m−2 .0619bc .0554 .1055c .0647bc .0221ab .0499c

S5, 494 seeds m−2 .0694b .0617 .1140b .0631c .0279a .0467c

S6, 544 seeds m−2 .0799a .0508 .1219a .0630c .0267a .0434c

Pr > F .0001 .1340 .0001 .0001 .0001 .0001

Year
2018 .0470b .0925a .1385a .1187a .0184b .0746a

2019 −.0084c – .0414c .0646b −.0049c .0569b

2020 .1240a .0257b .1220b .0263c .0383a .0335c

Pr > F .0001 .0001 .0001 .0001 .0001 .0001

Rate × Year .0031 .0007 .0006 .0069 .0001 .0025

observed between plots with the same planting population.

However, in a larger field setting, these regions may present a

larger pattern that can be separated through spatial statistics.

Among all heights flown, there were measurable dif-

ferences between years, particularly at the earliest growth

stage, where NDVI ranged from .07 to .45 (Tables 2,

3, 4). In 2020, a warmer fall and early winter produced

greater growth, which obviously influenced NDVI mea-

surements. This carried throughout the entire growing sea-

son, where NDVI was greatest in 2020 at every growth

stage and height flown. At GS11, there was an interac-

tion between planting population and year for all flights but

was not present for most other measurements (Tables 2, 3,

4). Early season measurements may differentiate between

populations well, (prior to tillering), but early growth may

change quickly and not give consistent NDVI values every

year.

3.3 Relative changes in NDVI between
growth stages

If multiple flights are made over small grains during the grow-

ing season, the change in NDVI between growth stages can

be measured (Table 5). When earlier growing stage NDVI

was subtracted from the next stage (e.g., GS21 minus GS11),

patterns of growth could be observed among the seeding

rates. Planting populations could be separated by changes in

NDVI at all three heights AGL between the GS11 to GS21

(change over the fall or ΔFall) and GS21 to GS24 (change

over the spring or ΔSpring) growth stages. Depending on

the height flown, the change in NDVI (plant growth) was

observed between planting populations in the fall, with sepa-

ration between all treatments at 60 m AGL (Table 5). There

may not be any important relationship with the image reso-

lution at this height and could be a random effect from this

study. At 120 m AGL, the lowest populations (S1 and S2),

which also had the lowest tillers and yields, could be separated

from the higher populations (S5 and S6). As noted above, any

flight at the highest legal height will reduce time and labor in

drone flights and allows for more acreage to be covered. More

importantly, during the first week of emergence, there was a

greater change in NDVI at the higher planting populations,

due to the overall higher biomass at planting (Table 5.) This

relationship was reversed when NDVI at GS21 was subtracted

from NDVI at GS24 (ΔSpring). Over this period, ΔSpring

differentiated between plant populations, but it was the lower

seeding rates that had a greater change (increase) in NDVI

(Table 5). During spring greenup, lower populations (S1, S2)

are seeing increased growth as they attempt to make up for

lower populations by adding more tillers. In this case, this

additional spring growth was not able to makeup yield due to

the low planting populations of S1 and S2 (<371 stems m−2).

However, this study did not observe the effects of variable N

rates and timings, which could alter the results of tillering in

the spring.

The benefits of multiple drone flights can be two-fold. First,

a single flight may uncover low populations due to emergence
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or winter survival issue at either GS11 or GS21, but multi-

ple flights can then be compared to see where greater growth

was. Even if stem counts cannot be predicted this way, a con-

centrated effort in regions of the field can determine through

manual tiller counts whether replanting in the fall or split N

in the spring is warranted.

3.4 Correlations of NDVI to yield and tiller
counts

Data from all three growing seasons was analyzed for cor-

relations between NDVI, yield, and tiller counts (Table 6).

At 30 m AGL, yields had higher correlations to greenup and

tillering growth stages than any other height flown, ranging

from .54 to .59 with p-values < .0001 (Table 6). Small grain

yields have correlated to NDVI in other studies (Goodwin

et al., 2018), particularly at the heading stage (Guan et al.,

2019; Marti et al., 2007). In this study, earlier correlation to

yield is observed because the range in planting populations

has a greater control over yield than tillering would have been

if one rate had been used. The strongest GS24 correlation was

at 30 m (r = .59, p =< .0001), which was also the highest cor-

relation to yield from any year or height. The range of GS21

to GS24 has the highest correlation to yield at 30 m, simi-

lar to GDD > 0 observed to predict yield (97–112 GDD) by

Dhillon et al. (2019). These values were adjusted based on the

regional mid-Atlantic base of 0 -˚C in the calculation, where

the original calculation in Oklahoma would have placed the

range between GS30 and GS45, which correlates to yield at

all heights flown (Table 6).

Tiller counts were significant at all stages but had their

highest correlations to NDVI during the period spring N rec-

ommendations would be made (Phillips et al., 2004). This

is also the period when tiller counts were performed, so the

results should be expected. Tiller counts drop off in their

correlations after this period since additional stem forma-

tion would have occurred that was not made in the hand

count. Tiller counts were positively correlated to fall growth

(r = .31 to .67, p = < .0001), but negatively to spring

growth (−.57 to .61, p = < .0001). As mentioned above,

fall correlations are related to the initial planting population,

whereas negative spring correlations are related to lower pop-

ulations showing greater NDVI changes with more tillering

(Table 6).

To continue to uncover this relationship, future studies

should consider varying N rate, timing, and the addition of

zero and high N strips, as has been recommended in many

other studies (Phillips et al., 2004; Raun et al., 2001). Mea-

surement of NDVI by drone may be higher and more com-

pressed than handheld devices (Duan et al., 2017) and cur-

rent algorithms may need to be updated based on drone

imagery. T
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T A B L E 7 Random Forest variable importance for normalized difference vegetative index (NDVI) measurements at all growing stages and

heights and selected for the lowest (30 m) and highest (120 m) heights flown to classify wheat tillers for spring split N application. RMSE, root mean

square error; ΔSpring, change in the spring; ΔFall, change in the fall

Top 10 variables All variables 30 m 120 m
1 ΔSpring 60 m ΔFall ΔFall

2 ΔFall 30 m GS11 ΔSpring

3 GS11 120 m ΔSpring GS30

4 ΔSpring 120 m GS45 GS11

5 ΔFall 120 m GS30 GS45

6 ΔFall 30 m Year GS21

7 GS21 120 m GS21100 GS24

8 GS45 30 m GS24100 Year

9 GS11 30 m – –

10 GS11 6 m – –

Training RMSE .125 .224 .125

Validation RMSE .163 .366 .163

Validation misclassification rate .200 .250 .200

Validation misclassification # 0 4 0

3.5 Random forest classification using
drone NDVI

With the difference in yearly NDVI based on growth

(Tables 2, 3, 4), and potential variation in final stands due

to germination and winter kill, predicting actual tiller counts

by NDVI will be difficult. Application of NDVI by tractor-

mounted sensors used a range of indicators, including a high

and low N strip (Phillips et al., 2004; Ruan et al., 2001) which

were not used in this population study. What can be performed

is possible a comparison of adequate to inadequate popula-

tions that may need split applied N, which is 538 tillers m−2

in the Mid-Atlantic (Alley et al., 2019).

A random forest (RF) model was performed on variables

to discern if NDVI measurements over the season could

help predict where this split may occur. Twenty-two total

variables were used to classify tiller counts, including all

NDVI measurements at each image resolution and wheat

growth stage (Table 7). The top two variables to help classify

tiller counts were both based on measuring change in NDVI

between stages, for spring (60 m) and fall (30 m), respectively

(Table 7). These change in NDVI variables made up five of the

top six and included all three heights flown. The most impor-

tant single flight was at GS11, which was used three times in

the top 10 variables. The very last variable of importance was

year, which is a positive outcome. Although NDVI can vary

year to year, measuring NDVI across a field at two different

time points may reduce yearly variability.

As it is not practical to fly a drone at several heights across a

field during several growth stages, only NDVI measurements

at both 30 and 120 m were also evaluated for their ability

to classify tiller counts. This task is also important because

most of these individual NDVI variables are correlated to

each other and may not be needed each year. For both heights

flown, change in NDVI in the fall and spring were in the top

three predictors (Table 7). At 30 m, year had a greater effect

on predicting tillers, probably due to higher resolution pick-

ing up on more field variability. At 120 m, year was the least

important variable, whereas change in NDVI as well as earlier

growth stages (GS11, GS30) were important.

The misclassification rate of the validation sets was .20,

.25, and .20 for all, 30 m, and 120 m variables, respectively

(Table 7). Using only NDVI measurements at 30 m also

resulted in four misclassified tiller counts, compared to zero

for both all and NDVI at 120 m. These results indicate that

just using NDVI measurements from the higher flight (lower

camera resolution) may be adequate when placing tillers into

split vs no-split applied N categories.

Practically, the fewer flights performed, the more useful

drone imagery becomes. If measurements of all heights and

growth stages are needed, drone imagery does not necessar-

ily reduce the labor and time involved in tiller counts. High

resolution satellite imagery may also perform this function,

where an image may be acquired from both late fall and early

winter to calculate differences in growth and perform ground

truthing with a few tiller counts.

4 CONCLUSION

In this study, drone derived NDVI can separate between plant

populations to find potentially lower yielding portions of a
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winter wheat field. The range in plant populations used in this

study would not represent normal seeding rates but could be

the result of poor planting conditions or lower winter survival.

Flights at 30 m (higher camera resolution) did not necessarily

improve accuracy, so flights made at the highest legal limit

(120 m) could be adequate for separating tillers into low and

high categories, assisting with the decision to split spring N

applications for small grains. Multiple flights (fall and spring)

can assist with differentiating wheat growth rates, rather than

using a single flight to determine tillers. For this study, mea-

suring wheat growth with two flights in the fall was a good

predictor of high and low tillers according to a random for-

est classification. For an individual flight, emergence was an

important time to differentiate, however that may be related

to the range in planting populations performed.

This study should be limited in application, as the purpose

was to determine if lower camera resolution (higher flight

AGL) was adequate to differentiate between plant popula-

tions. Future studies that combine this information with vari-

ations in N rate, planting date, and cultivars will be needed to

improve wheat management using drone imagery. For larger

fields, satellite imagery may also be adequate to perform this

task, as obtaining one image from late fall and another from

early spring could be achievable for researchers, farmers, and

crop consultants.
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