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ABSTRACT 

Much of our current risk assessment, especially for extreme events and natural 

disasters, comes from the assumption that the likelihood of future extreme events can 

be predicted based on the past. However, as global temperatures rise, established 

climate ranges may no longer be applicable, as historic records for extremes such as 

heat waves and floods may no longer accurately predict the changing future climate. 

To assess extremes (present-day and future) over the contiguous United States, I used 

NOAA’s Climate Extremes Index (CEI), which evaluates extremes in maximum and 

minimum temperature, extreme one-day precipitation, days without precipitation, and 

the Palmer Drought Severity Index (PDSI). The CEI is a spatially sensitive index that 

uses percentile-based thresholds rather than absolute values to determine climate 

“extremeness,” and is thus well-suited to compare extreme climate across regions. I 

used regional climate model data from the North American Regional Climate Change 

Assessment Program (NARCCAP) and the Coordinated Regional Downscaling 

Experiment (CORDEX) to compare a late 20th century reference period to a mid-21st 

century business as usual (RCP8.5 and SRES A2) greenhouse gas-forcing scenario. 

Additionally, I used CMIP3 and CMIP5 data to compare regional climate model data 

to its global climate model boundary forcings, to see what added value the regional 

climate models provide in the Mid-Atlantic region. Results show a universal increase 

in extreme temperatures across all models, with annual average maximum and 

minimum temperatures exceeding historic 90th percentile thresholds over more than 

90% of the area assessed by 2068. Results for precipitation indicators have greater 
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spatial variability from model to model, but indicate an overall movement towards less 

frequent but more extreme precipitation days in the future. 
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Chapter 1 

INTRODUCTION 

Anthropogenic climate change is a complex global issue with repercussions for 

virtually every facet of human life, from public health to economics to ecology. 

Understanding and effectively communicating about climate extremes is one of the 

most important problems that climate scientists face. One major problem is the issue 

of nonstationarity: much of our understanding of weather-related risk is based on 

historic trends, but climate is neither static nor stationary (Barros 2014). As climatic 

mean and variance change, so will the probability of extreme climate hazards such as 

heat waves. 

Climate scientists often express climate change in terms of changes in mean 

and variance. For example, Diffenbaugh et al. (2008) identified climate-change “hot-

spots” over the US using mean temperature and precipitation. While changes in mean 

conditions across the United States are well-documented in climate literature, this has 

not always been accompanied by an equal understanding of changes in extremes 

(Gleason 2008). For instance, the first iterations of the Intergovernmental Panel on 

Climate Change (IPCC) Assessment report addressed climate change primarily 

through trend analysis of changes in mean conditions (SAR; Houghton et al. 1995). 

Some analysis of extremes and climate variability was added in the Third (TAR; 

Houghton et al. 2001) and Fourth Assessment reports (AR4; Solomon et al. 2007) but 

in keeping with the global focus of the IPCC reports, these analyses were primarily 

done on a continental or global scale, not a regional one. While changes in mean 
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conditions are useful metrics for detecting climate change signal and expressing 

change, they do not show the entire picture, as extreme events have the greatest impact 

on natural and human systems (Peterson et al. 2008).  

In addition, many climate extremes have no clear universal definition or 

threshold. What counts as an ordinary day in Florida could be a severe heat warning in 

New England, so any metric must by necessity be spatially sensitive and relative to 

historic ranges. The questions that matter to our colleagues outside of climate science 

are often measures of extremes: how many more extreme heat waves per year should 

we expect, with associated heat-related hospitalizations and fatalities? How many 

more droughts and floods, how severe, and where will they occur? In short, when we 

ask what the natural and human impacts of climate change will be, often we are asking 

“what changes in climate extremes can we expect?” 

This work will address the following research questions: 

1. What patterns in climate extremes (heat waves, flood, drought, etc.) are 

currently observable over the continental US (CONUS)? 

2. In particular, what patterns in climate extremes (heat waves, flood, 

drought, etc.) are currently observable over the Mid-Atlantic region? 

3. What changes in climate extremes are projected by climate models to 

occur in the future? 

4. Do regional climate models (RCMs) produce different spatial trends 

than high-resolution global climate models (GCMs)? If so, what trends 

exist, and what causes might we attribute to the difference? 

The objectives of the proposed research are: 

1. Calculate the U.S. Climate Extremes Index (CEI) for both the CONUS 

and the Mid-Atlantic, over two time periods: one late twentieth century, 

and one mid-21st century; 
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2. Create map series for each of the individual components of the CEI, 

highlighting spatial trends and changes over time; 

3. Compare the CEI (both calculated index and components) using 

regional model simulations from the North American Regional Climate 

Change Assessment Program (NARCCAP) and global climate model 

simulations from the Coupled Model Intercomparison Project version 3 

(CMIP3); 

4. Compare these results to selected high-resolution models from the 

Coupled Model Intercomparison Project version 5 (CMIP5) to evaluate 

how the continuously evolving field of climate modeling – and our 

continuously evolving understanding of climate change – affects 

projections of future scenarios.  

1.1 Extreme Heat in the United States 

Episodes of extreme heat and cold can have serious impacts on society, 

agriculture, and health. In particular, extreme heat is the number one cause of weather-

related death, with hundreds of fatalities annually, and contributes to even more heat-

related illnesses (National Weather Services 2012). High temperatures can also 

exacerbate cardiovascular and respiratory illness; children, the elderly, people with 

chronic illnesses, and urban populations in poverty are all at especially high risk 

(Habeeb et al. 2015). High temperatures at night have an even more pronounced 

correlation to heat-related mortality, because the body does not get a reprieve to 

regulate temperature during the cooler nighttime (Serofim et al. 2016). Increased heat 

waves will put even more stress on aging infrastructure in many urban areas, 

especially along the heavily urbanized Atlantic corridor from Washington, D.C. to 

New York City (Horton et al. 2014). 

The effects of changing temperature variance can have indirect health and 

ecological impacts as well. Seasonal temperature extremes can impact the spread of 

invasive species, as well as vector-borne illnesses such as Lyme disease (Canning-
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clode et al. 2011, Monaghan 2015). Lyme disease is concentrated heavily in the 

Northeast, especially in the region from Maryland to Connecticut, and is the most 

commonly reported vector-borne illness in the United States (CDC 2015). On the 

other end of the spectrum, episodic events of extreme cold can serve as a critical 

ecological ‘reset’ mechanism, offsetting the effects of increasing mean temperature. 

Transient cold spells along the mid-Atlantic coastline have been shown to limit the 

range expansion of marine invasive species from the Caribbean, despite warming 

average ocean temperatures (Canning-clode et al. 2011). 

Observations dating back to 1900 show that the 21st century has the largest 

spatial extent of record-breaking and extreme monthly minimum and maximum 

temperatures (Wuebbles et al. 2014). Heat wave temperatures in the CMIP5 RCP8.5 

scenario are projected to increase from 5 to 7 degrees Celsius across the continental 

U.S. by the end of the 21st century (Wuebbles et al. 2014). CMIP5 projections using 

the RCP8.5 scenario also found that current annual maximum temperature extremes 

are projected to occur every year over the entire U.S., excluding parts of Alaska 

(Wuebbles et al. 2014). However, these projections show little spatial variance, with 

temperatures increasing consistently across large swaths of the continent. By including 

regional climate models, in addition to the global CMIP3 and CMIP5 data, I will 

examine spatial trends in greater detail. 

1.2 Extreme Precipitation in the United States 

Out of all the natural hazards the United States is faced with, flooding has the 

potential to cause the greatest harm, both in terms of economic and property damage, 

and by endangering the safety and wellbeing of human communities (Brody et al. 

2007). It is estimated that flooding causes billions of dollars in economic harm 
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annually, and this number only continues to rise (Brody et al. 2007). In terms of 

potential socioeconomic impacts, intensified storms and extreme precipitation events 

could contribute to floods which threaten urban coastal areas. Several studies have 

already identified the Delmarva region as a potential hotspot for accelerated sea level 

rise, which can have a synergistic effect with extreme precipitation events to increase 

the intensity of flooding (Ezer and Atkinson 2014, Sallenger et al. 2012). Current 

estimates suggest that between 450,000 and 2.3 million people in the Mid-Atlantic are 

at risk from sea level rise alone over the next century, not counting the increased risk 

from storm surges and heavy precipitation (CCSP 2009). Additionally, many coastal 

cities, including New York and Philadelphia, use combined sewer and stormwater 

systems that are vulnerable to flooding, increasing the risk of waterborne illness (NCA 

2014). A study of stormwater infrastructure around Washington, D.C. found evidence 

that as future precipitation intensifies, current stormwater retention basins will likely 

not be able to keep up with the increased load (Moglen & Vidal 2014). 

While the majority of the United States shows little change in the frequency of 

flood events, there are some exceptions. Complicating any examination of 

hydrological trends are changes in anthropogenic land use and management, which 

can affect the frequency of floods, independent of changes to precipitation patterns 

(Peterson et al. 2013). Current observational data indicates that flooding is increasing 

in parts of the Midwest, and decreasing in the Southwest (Peterson et al. 2013). 

Additionally, increasing trends in flood magnitude over the eastern half of the United 

States have been observed in multiple studies, especially in the area of the northern 

Appalachian Mountains up to New England (Peterson et al. 2013, Collins 2008, 

Villarini and Smith 2010, Smith et al. 2010, Hodgkins 2010, Hirsch and Ryberg 
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2012). However, the exact magnitude and causes of these changes are still poorly 

understood. 

Analysis of CMIP5 data shows an increasing trend in both the frequency and 

intensity of precipitation events and the fraction of annual total precipitation that falls 

during the heaviest 1% of daily precipitation events (Wuebbles et al. 2014). By the 

end of the century, the fraction of annual precipitation falling during extreme events is 

projected to increase by 50% in the RCP4.5 scenario, and by 90% in the RCP8.5 

scenario. This change is especially noticeable over the eastern and western coastal 

regions, with the central U.S. showing a smaller percent increase (Wuebbles et al. 

2014). In general, confidence in model predictions of precipitation is lower than 

confidence in model predictions of temperature; the standard deviation between 

models is often greater than the signal when examining extreme precipitation events 

(Wuebbels et al. 2014). 

While model simulations predict an overall increase in precipitation over the 

next century, estimates of magnitude and seasonal timing of these changes vary 

considerably between models (Najjar 2000). Recent studies indicate that some of this 

uncertainty may be linked to the influence of multidecadal climatic cycles, such as the 

Atlantic Multidecadal Oscillation and El Niño Southern Oscillation, on extreme 

precipitation events (Curtis 2007, Ning 2015). Spatial heterogeneity is also a factor; an 

examination of multiple global precipitation indices showed that changes in 

precipitation patterns were much more spatially heterogeneous than temperature 

changes (Donat et al. 2013). However, multiple studies agree that the frequency of 

days with heavy precipitation have been increasing across the eastern United States, 

especially in New England (Peterson et al. 2013, Karl et al. 2009, Kunkel et al. 2013). 
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1.3 Study Area 

Two primary study areas were taken into consideration in this analysis, at two 

different scales: first, the CEI was calculated over the entire continental United States 

(CONUS). Then, the CEI was calculated again, but solely over the Mid-Atlantic 

region. This two-pronged approach has multiple advantages; calculating the CEI over 

the full CONUS allows for any changes to the Mid-Atlantic CEI to be put into 

perspective, and also allows for examination of any synoptic-scale spatial trends. 

There is no singular universal definition for the boundaries of the Mid-Atlantic region, 

and many studies fold the Mid-Atlantic states into the Northeast and Southeast regions 

(Najjar et al. 2000, Polsky et al. 2000, NCA 2014, Karl and Koss 1984). For this 

study, I used the regional boundaries specified by Polsky et al. (2000), specifically 

inclusive of Delaware, Maryland, Pennsylvania, Virginia, West Virginia, the District 

of Columbia, and parts of New York, New Jersey, and North Carolina. 

The 2014 National Climate Assessment of the Northeast region (which 

overlaps heavily with the Mid-Atlantic region defined above as a study area) 

characterizes the region as a high-density urban corridor along the Atlantic coast, and 

one of the most heavily developed environments in the world (NCA 2014). Physically, 

the Mid-Atlantic region encompasses a broad range of physiographic regions and land 

cover types, from coastal plain up to the Appalachian plateau (Polsky et al. 2000). 

Intra-regional climate variation reflects the influences of latitude, elevation, and 

physiography: the southern states are relatively low-latitude and low-elevation, 

experiencing warmer temperatures and greater precipitation. In contrast, the 

northernmost part of the region is comparatively high-elevation and high-altitude, 

experiencing cooler average temperatures and precipitation more strongly influenced 

by lake effects (Polsky et al. 2000). 
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The Mid-Atlantic is notably underserved by current regional climate research. 

While there have been many studies in the past few years focusing on the influence of 

specific teleconnections, many overview papers focusing on the Mid-Atlantic regional 

climate date back over 15 years – prior to the release of the IPCC Third Assessment 

Report, while we are now on the Fifth (Najjar et al. 2000, Polsky et al. 2000). A 

previous study of climate change hotspots identified the southwestern United States as 

an area of primary concern, with the Mid-Atlantic showing relatively mild response to 

climate change (Diffenbaugh et al. 2008). However, there are several reasons why 

further analysis could be valuable. First, the fact that climate change may be more 

severe in some areas does not negate potential climate impacts elsewhere, and local 

officials and planners still need to be informed on the magnitude of changes they 

should likely expect. Second, the Diffenbaugh et al. 2008 paper used only monthly 

CMIP3 data and a single high-resolution nested model, whereas now we have access 

to CMIP5 data as well as a range of regional climate models, integrating multiple 

metrics at different time scales. Finally, the goal of Diffenbaugh et al. was to quantify 

sensitivity to climate change by calculating hotspots using seasonal mean and standard 

deviation. The Climate Extremes Index, by contrast, is explicitly focused on changes 

to the tails of the climate distribution, rather than on mean values for temperature and 

precipitation. 

1.4 The U.S. Climate Extremes Index 

The U.S. Climate Extremes Index (CEI) was developed by Thomas Karl of 

NCDC, as a tool to quantify climate change as changes in extremes, rather than 

changes in mean conditions (Gleason et al. 2008). The CEI is a percentile-based index, 

calculated at each gridpoint based on historic climate values. In other words, it 
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measures relative change at each gridpoint, rather than using fixed thresholds to define 

heat wave, drought, etc. The original CEI was developed in 1996, based on an 

aggregate set of climate indicators in an attempt to produce a single, nonparametric 

index of how the climate is becoming more extreme (Karl et al. 1996). It was later 

revised by NOAA in 2008, to include additional data not available at the time of the 

original index’s publishing, and to modify the way that certain components were 

calculated (Gleason et al. 2008). 

Developing indices of “extremeness” is a difficult task: quantifying 

extremeness will produce different results when calculated based on arbitrary 

thresholds, defined events such as hurricanes, or socioeconomic impact (Gallant et al. 

2014). Other extremes, such as heavy precipitation or heat waves, are defined 

primarily by their place on the tails of the normal climate distribution (Peterson et al. 

2013). None of these approaches can be deemed objectively wrong, but all have 

different applications. The CEI is not a universal index of all climate extremes; it does 

not attempt to quantify changes in natural disasters such as floods or tornadoes 

(Gallant et al. 2014). However, as a broad assessment of multidecadal changes in both 

temperature and precipitation extremes, it has successfully been applied in the United 

States, Europe, and Australia to identify consistent trends, especially towards 

widespread heat extremes (Gallant et al. 2014). 

The CEI’s primary strength is also its primary weakness: it is a simple, 

nonparametric index that aims to distil a large amount of complex climate information 

into a single score that represents whether an area is becoming more or less “extreme” 

(Gallant et al. 2014). However, since the CEI includes extremes from both tails of the 

distribution, the index itself does not convey the sign of these changes. Nor does it 
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indicate which temperature or precipitation metrics are contributing most of the 

extremeness. Therefore, in accordance with NOAA’s recommendations on 

interpretation of the CEI, I have included analysis of each individual component of the 

CEI separately, to supplement the combined index (Gleason et al. 2008). 

Additionally, I have added a new component to my analysis. The standard CEI 

as computed by NOAA is an area average, and thus produces a single annual or 

seasonal score for the entire area over which the CEI is calculated. NOAA currently 

produces an annual and seasonal report of regional CEI using the nine U.S. Standard 

Regions as defined by Karl and Koss (1984, Fig. 1.1). While these regions are broadly 

used in climate analyses, changes in climate trends along the whole of the East Coast 

may not necessarily be applicable to the Mid-Atlantic. For example, intensified 

hurricane activity in Florida may not reach as far north as Virginia, and expected 

winter conditions in New England are very different from coastal Maryland and 

Delaware. A more specific spatial analysis, one that is not aggregated by region, could 

highlight fine-scale detail and processes that are otherwise lost. To complement the 

standard CEI, which calculates area average at each time step, I calculated the average 

CEI over time at each grid point to create a series of CEI maps. This allows for 

inclusion of spatial trend analysis, which is absent from traditional calculations of the 

CEI. 

1.5 Approach 

In order to assess how climate extremes will change in the future, we turn to 

climate models. There is an impressive body of work dedicated to projections of 

global change, including recent IPCC reports; however, the ability to accurately 

represent smaller-scale regional changes is a relatively recent development. As 
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computational power advances and climate models become more sophisticated, 

higher-resolution calculations become possible. Increasing climate model resolution 

by a factor of two results in a factor of ten increase in required computing power, so in 

order to keep computational costs from becoming prohibitive, global climate models 

are by necessity limited in resolution (UCAR 2011). As of the Intergovernmental 

Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), average 

resolution for global climate models was roughly 110 km per grid cell (UCAR 2011). 

For reference, the entire state of Delaware is roughly 154 km in length (delaware.gov). 

Therefore, one of the primary challenges of regional climate assessment is a matter of 

scale, as many important climate processes cannot be adequately represented at a 

global grid scale. 

Climate modelers have developed multiple downscaling techniques in order to 

simulate local and regional processes with greater accuracy than global climate models 

alone can provide. One such downscaling technique, statistical downscaling, relies on 

a combination of large-scale climate factors and local physiographic features to create 

a statistical model, into which global simulation data can be fed to estimate local 

climate characteristics (TAR 2001). Statistical downscaling is computationally 

inexpensive, but relies on the assumption that present-day statistical relationships will 

continue to hold true under future climate forcings (TAR 2001). An alternative, 

potentially more robust but also more computationally expensive, is to use regional 

climate models (RCMs). RCMs take their boundary conditions from global climate 

simulations, but then use those boundary conditions to calculate effects of sub-GCM 

grid scale forcings and atmospheric variables (TAR 2001). Because regional models 

are run over a small area of interest, reducing the total number of grid points, they are 
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less computationally expensive than a global model run at equivalent resolution, and 

thus can be run at a finer grid scale. Ideally, regional climate models provide a more 

accurate dynamic simulation of small-scale climate forcings under varying conditions 

than statistical downscaling, while being less computationally expensive than high-

resolution global modeling. As part of this study, we will compare output from North 

American Regional Climate Change Assessment Program (NARCCAP) regional 

climate models to the global climate models from which they take their boundary 

conditions, to assess what fine-scale trends in extremes the regional models highlight. 

Global climate models can capture synoptic-scale climatic features such as the 

jet stream and mid-latitude cyclones, but are not necessarily equipped to accurately 

resolve mesoscale features such as tropical storms, lake effects, and land-sea 

interactions. Nor is model grid scaling solely a matter of finer detail, like zooming in 

on an image. Better resolution of these small-scale phenomena can reveal enhanced 

climate responses: one study of future changes in snowmelt-driven runoff timing over 

the western US showed that a high-resolution model, which better represented 

topographic complexity, also showed an amplified snow-albedo feedback which 

significantly changed the temperature response (Rauscher et al. 2008). Specifically in 

the case of mid-Atlantic climate, a study using empirical downscaling methods 

showed that appropriate application of downscaling generally reduced inter-GCM 

uncertainty, showing the same increases in precipitation as the raw GCM projections 

but with a much smaller magnitude (Ning et al. 2012). This mid-Atlantic study used 

empirical downscaling based on self-organizing maps, but empirical downscaling does 

not change the underlying physics of the models used or resolve small-scale 
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phenomena. Using regional climate models, such as those used in the NARCCAP and 

CORDEX data sets, could potentially highlight even further detail at the mesoscale. 
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Figure 1.1:  U.S. Standard Regions for Temperature and Precipitation (Karl and Koss, 

1984) 
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Chapter 2 

DATA AND METHODS 

2.1 Observations 

Table 2.1 List of observational datasets to be used in the analysis. 

Variables Source Resolution Type Time Period 

Temperature, 

precipitation 

Maurer et al. (2002) 1/8° x 1/8° Gridded 1949-2010 

 

 

The current NOAA-produced CEI report uses data from NCEI’s nClimGrid, as 

of October 2016. Prior to October 2016, the CEI was calculated using station data 

from the U.S. Historical Climatology Network (USHCN) for temperature data, and 

from the Global Historical Climatology Network (GHCN) for daily precipitation 

(NOAA 2015). These station data points are then averaged into 1° × 1° grid cells and 

evaluated for completeness, to ensure that at least 90% of grid cells contain at least 

one station (Gleason 2008). 

Due to limited temporal coverage and availability of observational data at 

comparable resolutions, only one observational data set was used in this analysis: a set 

of gridded observational data produced by Maurer et al. of Santa Clara University, and 

provided to the public at 

http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html. While 

observational uncertainty is a factor, the CEI I calculated from this observational data 
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was validated against the CEI as calculated by NOAA, publicly available on their 

website at https://www.ncdc.noaa.gov/extremes/cei/graph.  

2.2 Models 

For the purposes of this analysis, I used regional model projections from 

NARCCAP and CORDEX, as well as global climate model data from CMIP3 and 

CMIP5. This climate model data is already gridded, so the completeness evaluation 

used for observational data above was not necessary. However, all model data was 

regridded bilinearly onto a common 1/8° x 1/8° grid to allow for easier direct 

comparison and ensemble means. Two multidecadal time periods were compared: a 

late 20th century period, from 1968 to 1998, and a mid-21st century period, from 2038 

to 2068. The exception to this rule was CMIP3 data, whose mid-21st century period 

was run from 2046 to 2065 due to data availability. These time periods were selected 

for maximum overlap between various observational and model outputs, as certain 

projects such as NARCCAP were run over limited time slices. See Table 2.2 below for 

a list of all models used in this analysis.  

 



 

 

1
7

 

 

Table 2.2 List of models used in the analysis 

Project Model Type Organization Experiment Horizontal 

Resolution 

Data  

Access 

CMIP3 CCSM3 GCM NCAR SRES A2 1.4°x1.4° Public via 

ESGF 

CMIP3 CGCM3.1 GCM CCCMA SRES A2 1.9°x1.9° Public via 

ESGF 

CMIP3 GFDL-CM2.1 GCM NOAA-GFDL SRES A2 2.0°x 2.5° Public via 

ESGF 

NARCCAP CRCM RCM OURANOS/UQAM SRES A2 50km Public 

NARCCAP ECPC/ECP2 RCM UC San Diego/Scripp SRES A2 50km Public 

NARCCAP HRM3 RCM Hadley Centre SRES A2 50km Public 

NARCCAP MM5I RCM Iowa State University SRES A2 50km Public 

NARCCAP RCM3 RCM UC Santa Cruz SRES A2 50km Public 

NARCCAP WRFP/WRFG RCM Pacific Northwest Nat'l 

Lab 

SRES A2 50km Public 

CMIP5 EC-EARTH GCM ENES RCP 8.5 1.1215°x1.125° Public via 

ESGF 

CMIP5 CanESM2 GCM CCCMA RCP 8.5 2.81°x2.79° Public via 

ESGF 

CORDEX HIRHAM5 RCM DMI RCP 8.5 0.44°x0.44° Public via 

ESGF 

CORDEX RCA4 RCM SMHI RCP 8.5 0.44°x0.44° Public via 

ESGF 
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All project data used in this experiment (CMIP3, CMIP5, NARCCAP, 

CORDEX) are made available with a full suite of climate variables; a full list of 

variables with standard output for CMIP can be found at http://www-

pcmdi.llnl.gov/ipcc/standard_output.html. For this project, the variables used were 

maximum temperature (tasmax), minimum temperature (tasmin), daily precipitation 

(pr), and mean surface temperature (tas). Mean surface temperature was not used 

directly in the analysis, but indirectly to estimate PET during PDSI calculations. 

2.2.1 CMIP3 

The Coupled Model Intercomparison Project, or CMIP, was a joint effort by 

the Working Group on Coupled Modelling (WGCM) under the World Research 

Climate Programme. The project began in 1995, with the majority of CMIP data 

archived on the Program for Climate Model Diagnosis and Intercomparison website 

(PCMDI) for use by climate scientists and other researchers. CMIP3 is the third phase 

of the project, and provided much of the material underlying the IPCC Fourth 

Assessment Report (CMIP 2010). 

CMIP3 includes “realistic” scenarios as defined by the IPCC Special Report 

Emissions Scenarios; there are a total of 40 SRES storylines, representing a 

comprehensive range of possible futures. However, a majority of these scenarios are 

slight variations of one another, exploring different assumptions in energy technology 

(Nakićenović 2000). In brief, the scenarios fall along two axes: economic-

environmental, and global-regional, and in doing so can be said to fall into four 

archetypes, also referred to as the four “families” of storylines (Nakićenović 2000). 

The economic-environmental axis represents the degree to which policy and public 

opinion favor economic growth at the cost of environmental factors. The global-

http://www-pcmdi.llnl.gov/ipcc/standard_output.html
http://www-pcmdi.llnl.gov/ipcc/standard_output.html
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regional axis represents the degree to which developing technology continues to foster 

globalization; this can also be read as whether technology is assumed to be largely 

homogeneous or heterogeneous worldwide in the future. For this analysis, I focused 

on the A2, or regional-economic storyline: this assumes a heavy emphasis on 

economic growth and limited movement of ideas and people across regions, with 

resultant high emissions. 

2.2.2 CMIP5 

CMIP5 is the most recent iteration of the Coupled Model Intercomparison 

Project, completed for the IPCC Fifth Assessment Report. Between the time of CMIP3 

and CMIP5, the IPCC discontinued use of the Special Report Emissions Scenarios, 

replacing them with Representative Concentration Pathways, or RCPs. Rather than 

acting as specific socioeconomic scenarios, the RCPs represent a broad range of 

climate outcomes, and are defined by total radiative forcing (IPCC 2014). No exact 

one-to-one comparison can be made between the SRES scenarios and the RCP 

pathways; for instance, it would be misleading to say that SRES A2 is “equivalent” to 

RCP 8.5, as the two were derived by wholly different methodologies. However, for 

purposes of this analysis, we will be using the RCP 8.5 scenario. Like the SRES A2 

storyline, it represents the most extreme climate forcings out of its scenario set, and 

most closely resembles the current path of observed trends; thus, using A2 and RCP 

8.5 allows for the best possible parallel between CMIP3 and CMIP5 results. 

2.2.3 NARCCAP 

NARCCAP is an ensemble of dynamically downscaled regional climate 

simulations, using 50 km grid spacing over North America. Figure 2.1 shows the 
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complete NARCCAP domain; for the purposes of this analysis, ocean gridpoints were 

masked, and only the continental U.S. was taken into consideration. All NARCCAP 

data is based on the A2 scenario from the IPCC Special Report Emissions Scenarios; 

this scenario is at the higher end of the emissions scenarios, and roughly tracks with 

current trajectory of emissions, provided no major policy changes or dramatic shifts 

towards renewable energy are enacted (NARCCAP 2008). NARCCAP simulations 

exist for a 20th century historical simulation (1968-1998) and a mid-21st century future 

simulation (2038-2068). 

Table 2.3: GCM-RCM pairings in NARCCAP. RCMs are on the vertical axis, 

GCMs on the horizontal. 

 CCSM CGCM3 GFDL HadCM3 

CRCM X X   

ECP2   X X 

HRM3   X X 

MM5I X   X 

RCM3  X X  

WRFG X X   

 

 

The NARCCAP project uses twelve GCM-RCM pairings, from 6 different 

RCMs and 4 different GCMs for boundary conditions. The GCMs used as boundary 

conditions for NARCCAP are all taken from CMIP3 (NARCCAP 2008). See Table 

2.3 above for available pairings. All twelve NARCCAP pairings were used in this 

analysis; however, HadCM3 had to be excluded from the CMIP3 analysis, as future 

projections were only available for the end of 21st century (2071-2100) period. 
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2.2.4 CORDEX 

Like NARCCAP, CORDEX is a regional climate downscaling project, using 

boundary conditions from GCMs to drive RCMs. However, there are two important 

distinctions between CORDEX and NARCCAP. Where NARCCAP was specifically 

North American, CORDEX is an international coordinated project, with teams of 

scientists working on common domains all over the globe; this project focuses on the 

North American domain, but CORDEX data also exists for most major land areas. 

CORDEX is also more recent – in fact, as of 2017, CORDEX is still ongoing and 

receiving regular updates (CORDEX.org). Where NARCCAP uses CMIP3 data, 

CORDEX uses the more updated CMIP5. As above, this analysis will focus on the 

RCP 8.5 scenario, which is the closest analogue to the SRES A2 scenario, and will 

also represent the most dramatic (while still realistic) potential climate forcing for 

future simulation. 

Table 2.4:  GCM-RCM pairings in CORDEX. RCMs are on the vertical axis, GCMs 

on the horizontal. 

 EC-EARTH CCCma-CanESM2 

HIRHAM5 X  

RCA4 X X 

 

The CORDEX project is still in progress; over 50 different RCMs have been 

officially registered with CORDEX as of July 2016 (CORDEX.org). However, not all 

models provide simulations yet, and there is no single central CORDEX archive or 

master list of available simulations. For this project, I used all currently available 

CORDEX simulations for the North American domain; as of December 2016, only 

three GCM-RCM pairings had all the requisite variables in the appropriate time scales. 
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This data was provided by the same ESGF data hub as the CMIP3 and CMIP5 data. 

See Table 2.4 above for available GCM-RCM pairings. 

2.3 The U.S. Climate Extremes Index 

The CEI, as calculated by NOAA, is the arithmetic mean of five indicators: 

1. the sum of (a) percentage of the United States with maximum 

temperatures much below normal and (b) percentage of the United 

States with maximum temperatures much above normal; 

2. the sum of (a) percentage of the United States with minimum 

temperatures much below normal and (b) percentage of the United 

States with minimum temperatures much above normal; 

3. the sum of (a) percentage of the United States in severe drought based 

on the Palmer Drought Severity Index (PDSI) and (b) percentage of the 

United States with severe moisture surplus based on the PDSI; 

4. twice the value of the percentage of the United States with a much 

greater-than-normal proportion of precipitation derived from extreme 

1-day precipitation events; 

5. the sum of (a) percentage of the United States with a much greater-

than-normal number of days with precipitation and (b) percentage of 

the United States with a much greater-than-normal number of days 

without precipitation. (Gleason 2008) 

NOAA provides a plot of the historic CEI going back to 1910 at 

https://www.ncdc.noaa.gov/extremes/cei/. For each period within the study timeframe 

(typically monthly data for an annual calculation, or daily values for precipitation) 

NOAA grids observed station temperatures into 1° x 1° cells, and the resulting values 

for each grid cell are averaged together with all other monthly values during the study 

timeframe. For my analysis, only gridded data was used, so the intermediary step of 

converting station temperatures into gridded cells was not necessary. I also used a 

finer resolution: 1/8° x 1/8° rather than 1° x 1° cells. From this distribution of monthly 

https://www.ncdc.noaa.gov/extremes/cei/
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means, 90th and 10th percentile values are calculated, and any period falling above the 

90th percentile or below the 10th percentile is classified as an “extreme” temperature 

value. Figure 2.2 shows an example graph from NOAA, showing historic values of the 

CEI for the maximum temperature component. 

PDSI is assessed using NOAA’s PDSI database, which includes data from 

1900 to the present day. As with temperature, monthly PDSI values are averaged for 

the period of interest, then sorted and ranked to identify the 90th and 10th percentile 

values. For each grid cell, any values falling outside those boundaries are marked as 

extreme. I calculated PDSI for model data using monthly minimum temperature, 

monthly maximum temperature, and daily precipitation. For further details on how the 

PDSI was treated in this analysis, refer to the following section for an extended 

methods discussion. 

Extreme precipitation is assessed using the same method as temperature, 

except that only the 90th percentile is taken into consideration. For purposes of the 

CEI, “extreme precipitation” is defined as the proportion of total annual precipitation 

that falls on days where the daily precipitation total is extremely high (above the 90th 

percentile). In other words, this indicator is not a measure of total precipitation, but of 

proportionally how much precipitation falls in the form of extreme one-day events. To 

keep this indicator weighted consistently with the other indicators, the value is then 

doubled. For the fifth indicator, daily precipitation data is tallied, and total number of 

days with/without precipitation are calculated annually over the entire period of 

record. As with temperature and precipitation above, the 90th and 10th percentile are 

calculated, and values falling outside those values are considered extreme (Gleason 

2008). For the purposes of this analysis, trends in each of the above indicators will be 
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discussed. Figure captions will use a consistent shorthand: for instance, components 

TMAX10 and TMAX90 refer to the 10th and 90th percentile components of maximum 

temperature, respectively. Likewise, TMIN represents minimum temperature, TDD 

total dry days, EPD extreme precipitation days, and PDSI is the Palmer Drought 

Severity Index. Note that, unlike the other variables, EPD only assesses the 90th 

percentile, making for a total of nine indicator values. 

Each of the indicator values is then expressed as a percentage of the study area 

experiencing an extreme climate event: for instance, for monthly maximum 

temperatures, the percentage of grid cells with extreme (above 90th percentile) 

maximum temperatures would be calculated and then summed over the analysis 

period. The CEI itself is simply the arithmetic mean of all five indicators, producing a 

single value that expresses the relative proportion of the study area which experienced 

extreme climate events during the study period. However, the CEI alone, being a 

broad index of multiple variables, does not evaluate to what degree each individual 

variable contributes to the final score. Therefore, in addition to the CEI itself, this 

thesis will include individual analysis and spatial mapping of each component, to 

determine which are the strongest factors in observed and projected regional climate 

extremes. 

2.3.1 The Palmer Drought Severity Index 

Four of the CEI metrics can be easily calculated using monthly maximum and 

minimum temperature and daily precipitation.  The model data used in this project 

includes temperature and precipitation data available on daily or 3-hourly time slices, 

which can easily be converted into daily precipitation and monthly maximum and 

minimum temperatures. In contrast to the other four metrics, the Palmer Drought 
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Severity Index (PDSI) is itself a calculated index value, making it essentially a two-

step process. 

The PDSI, first published in 1965, is one of the most widely-used drought 

indices (Jacobi et al. 2013, Heim 2002, Wells et al. 2003). It was originally developed 

by meteorologist Wayne Palmer, in 1965 (Palmer 1965). The PDSI was among the 

first drought indices to analyze precipitation and temperature as part of a water 

balance model, rather than simply defining drought as an unusual shortage of rainfall 

(Heim 2002). Unlike comparable drought indices such as the Standardized 

Precipitation Index, which only tracks precipitation, the PDSI incorporates moisture 

supply and demand into a hydrologic budget, thereby incorporating both 

meteorological and hydrological drought (Heim 2002). In 2004, an updated version of 

the PDSI was developed at the University of Nebraska: the self-calibrating PDSI, or 

scPDSI (Wells et al. 2004). The self-calibrating PDSI uses a very similar procedure to 

Palmer’s original index, but takes into account the accessibility of modern computing 

resources that were unavailable at the time that the original index was developed. The 

self-calibrating PDSI can also be used to compare values between diverse 

climatological regions, a common criticism leveraged against the original PDSI (Wells 

et al. 2004). As regional analysis is a crucial component to this study, all PDSI 

calculations herein are done using the self-calibrating method. 

The PDSI is a widely used drought index, but it has been criticized for its lack 

of transparency, and is notoriously difficult for researchers to calculate independently 

(Jacobi et al. 2013). An abbreviated explanation of the PDSI calculation will be 

provided here; for a more thorough step-by-step process, refer to Palmer 1965 and 

Wells et al. 2004. 
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For each month of the year, eight values are computed: evapotranspiration 

(ET), potential evapotranspiration (PE), recharge (R), potential recharge (PR), runoff 

(RO), potential runoff (PRO), loss (L), and potential loss (PL). The PDSI itself uses a 

“bucket” model of soil moisture, in which the top layer is assumed to hold one inch of 

moisture, and the remaining water holding capacity is based on geology as inputted by 

the user. The four potential values are then weighted to form the water-balance 

coefficients, , , , and . These coefficients are also referred to as climatically 

appropriate for existing conditions, or CAFEC, and reflect the variance in “normal” 

conditions between climatically different regions. These values are then combined to 

produce the CAFEC precipitation value, �̂�, using the following equation: 

�̂� =  𝛼𝑖𝑃𝐸 + 𝛽𝑖𝑃𝑅 +  𝛾𝑖𝑃𝑅𝑂 − 𝛿𝑖𝑃𝐿 

The difference d is then calculated by subtracting CAFEC precipitation from actual 

precipitation, and then weighted using the climatic characteristic K. This is where the 

self-calibrated PDSI departs: the original PDSI used an empirical constant K 

calculated by Palmer, while the self-calibrated PDSI automatically calculates values of 

K based on historic climate data (Wells et al. 2004). The end result of the process 

produces a range of nonparametric values, with anything below -4 representing severe 

drought, and anything above 4 representing severe moisture surplus. 

The PDSI values used by NOAA are based on observed station data, not 

gridded model simulations, and are provided by the National Climatic Data Center of 

NOAA already calculated. MATLAB and FORTRAN tools for calculating PDSI exist, 

requiring four inputs: temperature, precipitation, latitude, and available water capacity 

of the soil (Jacobi et al. 2013). Temperature, precipitation, and latitude data were 

already acquired to calculate the other metrics, and AWC is entered into the 
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calculation as a constant (Jacobi et al. 2013). One concern, however, is that any AWC 

data acquired will be representative of the present-day, and will not account for any 

changes in future soil capacity, e.g. urbanization, land use change, impervious 

surfaces, etc. For purposes of this study, Dr. Park Williams of Columbia University 

generously provided both his MATLAB tool for calculating PDSI, and his gridded soil 

capacity data, both of which were invaluable for completing this research. 

An additional challenge was posed by the calculation of potential 

evapotranspiration (PET), a necessary component of the PDSI. There are at least 50 

different methods or models used to estimate PET; however, these can be roughly 

divided into temperature-based methods, radiation-based methods, and combination 

methods (Lu et al. 2005). Previous studies utilizing the PDSI with GCM data have 

used the modified Hargreaves or Thornthwaite methods – two of the most commonly-

used temperature-based methods – to transform GCM outputs into monthly potential 

evapotranspiration data, then followed procedures outlined by Palmer to generate 

PDSI from those monthly PET values (Strzepek et al. 2010, Wang 2014). The 

Thornthwaite method in particular has been commonly used due to its ease of 

calculation, requiring only average temperature and latitude to produce an estimate of 

PET, and was used in the original version of the PDSI calculation (Wells et al. 2004). 

However, because the Thornthwaite method assumes a largely linear relationship 

between temperature and PET, recent studies have expressed concern that it may result 

in overestimations of PET in future warming scenarios (Sheffield et al. 2012, Hoerling 

et al. 2012). Recent studies generally agree that the Penman-Monteith method is the 

gold standard for future estimates of PET (Cook et al. 2014, Sheffield et al. 2012, 

Hoerling et al. 2012). On the other hand, as a combined temperature-based and 
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radiation-based method, the Penman-Monteith calculation requires a large number of 

variables, including wind and solar radiation, which are not available for all models 

and observational data sets. 

In order to maximize the number of simulations used in this study, I employed 

the Thornthwaite method, taking into account several factors. First, this is not a 

hydrology study, and evapotranspiration itself is not the primary focus of the research. 

PET is being calculated solely as an intermediate step in calculating the Palmer 

Drought Severity Index, which is in turn only a one-fifth component in a larger 

climate index. Second, it is important to remember that the CEI is a relative index: 

“extremeness” in the CEI is not determined based on any absolute value of dryness or 

wetness, but is a percentile-based value calculated from historic climate conditions. 

Therefore, even if the PDSI was overestimated in some areas, this bias would still be 

accounted for in the percentile-based thresholds. 

Several studies indicate that the method of PET calculation may not have a 

dramatic impact. Lu et al. (2005) directly compared six different PET calculations, 

including Thornthwaite, and found that they were all highly correlated (Pearson’s R 

values of .85 to 1.00). Another study directly compared PDSI values calculated using 

Thornthwaite and Penman-Monteith, and concluded that they were “very similar, in 

terms of correlation, regional averages, trends, and in terms of identifying extremely 

dry or wet months” (Schrier et al. 2011). Schrier et al. concluded that the PDSI is 

primarily a reflection of heterogeneity in precipitation inputs, and that it is largely 

insensitive to the use of one PET calculation method over another. This conclusion 

was made specifically in reference to the self-calibrating PDSI, the version used in this 

study (Schrier et al. 2011). 
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To test the assumption that PET would not be a significant factor in final 

calculations, I also ran a set of sample data through the PDSI calculation twice: once 

using the Penman-Monteith method, and once using Thornthwaite. Ultimately I found 

that while the scPDSI calculated using Thornthwaite had a slightly higher variance 

(4.91 versus 4.82), the Willmott Index of Agreement between the two was very high, 

at 0.945. The Index of Agreement was designed as a standardized measure for 

evaluating model performance, by calculating the degree of difference between 

observed and simulated values (Willmott 1981). In this case, the Penman-Monteith 

values stood in for the observations, and the Thornthwaite for the simulated. A value 

of 1 indicates perfect agreement, while 0 indicates no agreement at all. The index of 

agreement is calculated by the following formula: 

 

𝑑 = 1 − (
Σ(𝑜𝑏𝑠 − 𝑠𝑖𝑚)2

Σ(|𝑠𝑖𝑚 − 𝑜𝑏𝑠̅̅ ̅̅ ̅| + |𝑜𝑏𝑠 − 𝑜𝑏𝑠̅̅ ̅̅ ̅|)2
) 

 

 A scatterplot of the two sample data sets is provided in Figure 2.2 below, for 

reference. In light of this close correlation between the PDSI calculated with 

Thornthwaite and Penman-Monteith, the Thornthwaite method was used in order to 

maximize the number of data sets that could be incorporated into the analysis. 
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Figure 2.1:  NARCCAP domain, showing coverage of the full CONUS. Reprinted 

from http://www.narccap.ucar.edu/  

http://www.narccap.ucar.edu/
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Figure 2.2:  Climate Extremes Index, Indicator 1: Extremes in Maximum 

Temperature. Plot represents percentage of continental U.S. with 

maximum temperatures above the 90th percentile (red) or below the 10th 

percentile (blue) from 1910 to 2016, based on gridded observational data. 

Reprinted from https://www.ncdc.noaa.gov/extremes/cei/ 
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Figure 2.3:  A scatterplot of sample self-calibrated Palmer Drought Severity Index 

(scPDSI) data, calculated using both the Penman-Monteith and 

Thornthwaite methods for estimating potential evapotranspiration, 

showing strong agreement. 
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Chapter 3 

RESULTS 

In the following chapters, we separate our analysis into the temporal and 

spatial dimensions of the CEI. First we examine the standard CEI, shown as a time 

series, which shows the percentage of the contiguous U.S. in each year that is 

experiencing climate extremes. While the index provides a snapshot of the U.S. as a 

whole, and an effective means of comparing changes over time, it does not on its own 

provide information on where those changes are occurring. The spatial patterns of the 

CEI will be addressed in Chapter 4. 

Traditionally, the CEI is calculated based on gridded observation data, not 

from model data. Therefore, the first step is to calculate the CEI using observed data, 

to validate the methods used against expected values of the index. We then calculate 

the CEI using models over the historical period, to provide a baseline for comparison 

between the historical and mid-21st century periods. Finally, we turn our attention to 

the future period, to examine the type and degree of expected changes in extreme 

temperature and precipitation. For both the historical and future periods of the model 

data, we will first examine the CEI as a whole, then individually examine each 

component. 
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3.1 Observational Data 

Figure 3.1 shows the results of CEI calculations on observational data from the 

period of 1949 to 2010. The area for these line plots is the whole CONUS, to provide a 

better comparison with existing NOAA data. Note that the black line on Figure 3.1 

represents the index as calculated from data provided by Maurer et al., while the red 

dashed line indicates data calculated by NOAA from nClimGrid data, and downloaded 

from the NCDC website. The nClimGrid data was not used for analysis; it is included 

here for validation purposes, and to show strong agreement between my calculation 

methods and NOAA’s. Small differences between the two can be attributed to 

observational uncertainty, as they were calculated using wholly different observational 

datasets. 

Note also that the blue line represents an expected value of 0.2 for the 

complete index. The expected value for each individual indicator is 0.1, indicating that 

10% of the study area falls into the 10th percentile, and 10% into the 90th percentile, at 

any given time. As the final index is calculated by combining the 10th and 90th 

percentile components in each category, and then averaging them together, the 

expected value for a completely climatologically average year would be 0.2. Values 

above 0.2 indicate a more extreme climate over the CONUS (i.e., more of the 

CONUS than we would expect is experiencing extremes), while values below 0.2 

represent a less extreme climate, overall. As expected, the historical observation 

data shows variation from year to year, but overall stays close to 0.2. 

Figure 3.2 shows each individual component of the CEI, as calculated from the 

gridded observation data. These individual components will be explained in more 

depth in the next section. 
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3.2 Model Data for the Historical Period 

Figure 3.3 shows the complete Climate Extremes Index, calculated for all four 

model groups under consideration: NARCCAP, CMIP3, CORDEX, and CMIP5. For 

ease of comparison, the regional climate models (NARCCAP and CORDEX) are on 

the left-hand side, while their associated global climate models (CMIP3 and CMIP5) 

are on the right-hand side. Ensemble means for the full CONUS are shown in black, 

while individual models are shown in red. The green line represents the ensemble 

mean for just the Mid-Atlantic region. It is clear that there is a large amount of 

variation between models, but all of them adhere fairly closely to expected values 

around 0.2: there are very few spikes higher than 0.4 in this historical analysis, and all 

of them are single-model peaks. 

The first component of the CEI is maximum temperature. Figure 3.4 indicates 

the frequency with which the maximum temperatures for each year fell below the 10th 

percentile value; values close to 1 indicate that maximum temperatures are unusually 

cool at every grid cell, while values close to 0 indicate that maximum temperatures 

never fall below the 10th percentile, suggesting an unusually warm year. The first thing 

to note is that all of the extreme temperature indicators show dramatic spikes from 

year to year, even in the historic data; this indicates that extreme temperatures are 

highly variable on an interannual time scale, although the multidecadal mean still 

averages out to 0.1. Additionally, some similar year-to-year patterns can be seen 

between ensemble means, with high values at the beginning of the study period and 

lower values from 1985 to 1990. 

Figure 3.5 represents the frequency with which maximum temperatures 

exceeded the 90th percentile threshold. For this component, values close to 1 indicate 

that maximum temperatures are unusually warm at every grid cell, while values close 
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to 0 indicate that maximum temperatures are unusually cool at every grid cell. Even in 

this late 20th century study period, there are already excursions above the expected 

value of 0.1, indicative that more of the CONUS is experiencing maximum 

temperature extremes over the 31-year period. There are several very large single-

model spikes, especially in the earlier NARCCAP and CMIP3 data; it is more difficult 

to evaluate the CORDEX and CMIP5 data due to the smaller number of ensemble 

members. 

The second component of the CEI is minimum temperature. Similar to the 

maximum temperature components, Figure 3.6 shows the frequency with which 

minimum temperatures fall below the 10th percentile over the CONUS. Higher values 

indicate a cooler year over more of the CONUS, while lower values indicate an 

unusually warm year. As with the maximum temperature indicator, these values are 

highly variable from year to year, with NARCCAP in particular showing some 

dramatic single-model peaks. However, as with the maximum temperature indicator, 

there are already signs of warming, with peaks more common towards the beginning 

of the study period, and dropping off towards the end. 

Figure 3.7 shows the frequency with which minimum temperatures exceed the 

90th percentile value. As with the previous indicators, this is the inverse of the 10th 

percentile, which higher values indicating unusually warm temperatures, and lower 

values indicating unusually cool temperatures. Once again we see high variability 

from year to year, and a subtle tendency towards more of the CONUS experiencing 

higher minimum temperatures, although this is slightly less pronounced in the 

NARCCAP data, which has high inter-model variability and spikes as high as 0.5 

across the whole study period. 
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Next we move on to the precipitation-based components of the CEI, beginning 

with the Palmer Drought Severity Index. Strong negative values of the PDSI (shown 

in Figure 3.8) indicate drought conditions, while strong positive values (Fig. 3.9) 

indicate a moisture surplus. Therefore, the 10th percentile of the PDSI is associated 

with extreme dryness, while the 90th percentile is associated with extreme wetness. 

With all the historical precipitation indicators, we see less year-to-year variability than 

with the temperature indicators, with values hovering much closer to the expected 

value of 0.1. 

Figure 3.10 represents extreme precipitation above the 90th percentile. Recall 

from the methods section that extreme precipitation is defined, for the purposes of the 

CEI, as the proportion of total precipitation per year that falls during extreme (>90th 

percentile) one-day precipitation events. It can be inferred that higher values of the 

index mean more of the country experiences more intense precipitation events, while 

lower values mean fewer extreme precipitation events. Note that this is not a measure 

of change in total precipitation; this is not an indicator of how much total rainfall an 

area is receiving, but how it is receiving that rainfall. Of all nine individual 

components of the CEI, this one shows by far the least variance, rarely showing either 

values of zero or values higher than 0.2. For historical data, the standard deviation for 

ECP90 was generally 0.04 or lower, in contrast to standard deviations of 0.15 or 

higher for the temperature indicators, for an index with an expected value of 0.1. This 

suggests that the proportion of extreme precipitation events is ordinarily extremely 

stable from year to year, when averaged over the CONUS as a whole. Because of the 

spatial averaging inherent in the CEI, however, this statement only applies to the 
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CONUS as a whole; as will be seen in the next chapter, precipitation is much more 

spatially heterogeneous than temperature. 

The final component of the CEI is total dry days, defined as the total number 

of days in a given year where the total precipitation is less than a certain trace 

threshold. To match the methodology cited by Gleason et al. (2008), the minimum 

precipitation threshold used in this analysis was 0.01 inches, or 0.254 mm. Figure 3.11 

represents greater than normal days with precipitation, while Figure 3.12 represents 

greater than normal days without precipitation. As with the extreme precipitation 

metric, precipitation is more spatially heterogeneous than temperature; however, total 

dry days showed much more interannual variance than extreme precipitation. This 

indicates that the frequency of precipitation events is more variable from year to year.  

3.3 Model Data for Mid-21st Century 

3.3.1 Composite CEI 

Already, simply from a cursory visual examination of Figure 16, it is clear that 

the mid-21st century climate is much more extreme. At no point in any year do any 

individual models fall below the expected value of 0.2, and at no point do any of the 

ensemble means fall below 0.4. Only three NARCCAP models have minimum values 

below 0.3, and only one CORDEX model has a minimum value below 0.4. Ensemble 

mean values are 0.53 for NARCCAP, 0.53 for CMIP3, 0.55 for CORDEX, and 0.56 

for CMIP5. This means that over half the CONUS is experiencing a more extreme 

climate. However, simply examining the overall index does not tell us which 

components are contributing the most to this increase in extremeness, or how much. 

For that, we must examine them individually. 
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3.3.2 Maximum Temperature 

Already, with the first indicator, there are signs of obvious change. Figure 

3.14, representing maximum temperatures much below normal, clearly shows that the 

most common value across all models is zero. This indicates that historically low 

maximum temperatures almost never occur between 2038 and 2068. For NARCCAP 

and CMIP3, most models show only one or two years with any maximum 

temperatures below the 10th percentile, and CMIP5 show none at all.  

Figure 3.15 in turn shows maximum temperatures exceeding the historic 90th 

percentile almost every year, and at almost every grid cell. While greater uncertainty 

exists for the earlier part of the future simulation, all models agree that extreme 

temperatures will increase drastically from the historical baseline. For all models and 

all years in the future scenario, at no point did any of them approach the expected 

value of 0.1, and virtually all models have at least one value of 1.0 – representing a 

year in which every grid point experienced record high temperatures. The ensemble 

mean for NARCCAP is 0.87, 0.91 for CMIP3, 0.96 for CORDEX, and 0.97 for 

CMIP5, suggesting that on average the CMIP5-based model groups predict even more 

severe temperature increase. 

Considerable inter-model variability exists, especially in the earlier part of the 

period; some pairings show consistently high extreme values across the entire period 

of interest, while others project a steep upward slope over the 31-year period. 

NARCCAP pairings that used the CCSM or CGCM3 for boundary forcings appear to 

be more stable over time, while the GFDL pairings have a steeper slope, with 

HadCM3 more or less variable depending on RCM. What is consistent is a dramatic 

increase in historic warm temperatures. By 2068, all models groups are in agreement 
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that over 90% of the country will be experiencing historic 90th percentile temperatures 

on a yearly basis. 

3.3.3 Minimum Temperature 

As seen in Figure 3.16, minimum temperature values are just as extreme or 

more so than the maximum temperature values, with a majority of models showing 

values at or near zero. This indicates that minimum temperatures between 2038 and 

2068 virtually never fall below the historic 10th percentile. Both CMIP3 and CMIP5 

have no values above 0, while NARCCAP and CORDEX models have only one or 

two years with any historic low temperatures.  

Likewise, Figure 3.17 shows that by the end of the 31-year future period, a 

majority of models report minimum temperatures above the historic 90th percentile by 

2068. As with maximum temperature above, NARCCAP shows an upward slope over 

the 31-year period, while CORDEX and CMIP5 start out with values already close to 

the maximum, indicating that warming is already too extreme to fall within historic 

normals. The ensemble mean for NARCCAP is 0.94, 0.98 for CMIP3, 0.98 for 

CORDEX, and 0.99 for CMIP5, even higher than for maximum temperature. Clearly, 

the two 90th percentile temperature indicators are strong contributors to the rise in 

overall CEI.  

In a nonstationary climate, there are three potential sources of changes in 

climate extremes: the distribution itself can shift, the variance of the distribution can 

change, or the skewness of the distribution can change, or a combination of any of the 

above (Gallant et al. 2014, Field et al. 2012, Seneviratne et al. 2012). The CEI alone 

does not provide enough diagnostic data to definitively assert how the temperature 

distribution as a whole is changing. However, it is clear that certain patterns are 
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emerging. Both tails of the distribution are shifting drastically warmer across the entire 

CONUS, to the point where historic percentile thresholds are no longer useful 

diagnostic tools; once the CEI reaches its maximum value of 1.0, it cannot detect any 

further changes. This change is happening at roughly equal rate and magnitude for 

both maximum and minimum temperature, where historic warm temperatures happen 

yearly and historic cool temperatures are vanishingly rare. This suggests that the 

distribution itself is shifting, both for maximum and minimum temperature. 

3.3.4 PDSI 

Overall, signals in the precipitation indicators are less extreme than those seen 

in the temperature indicators, and also show less overall agreement between models. 

Figure 3.18 shows strong negative values of the PDSI, indicating severe drought, 

while Figure 3.19 shows strong positive values, indicating severe moisture surplus. 

Looking at the 10th percentile component of the PDSI, indicating severe drought 

conditions, ensemble means are 0.14 for NARCCAP, 0.13 for CMIP3, 0.12 for 

CORDEX, and 0.13 for CMIP5. For comparison, the ensemble mean for the 20th 

century was 0.097 for all four model groups. There appears to be a small increase in 

drought conditions over the mid-21st century period, with the NARCCAP and CMIP3 

ensembles in particular showing higher values by 2068. However, with standard 

deviations of between 0.06 and 0.09 across all model groups, none of these ensemble 

mean values are likely to be statistically significant deviations from the expected value 

of 0.1.  

A lack of significant increase or decrease in the PDSI metric does not 

necessarily mean that no changes in precipitation or drought are occurring. Because of 

the spatial averaging of the CEI, if parts of the CONUS are becoming wetter while 
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others are becoming drier, the overall index will result in something close to the 

expected value. While temperature changes are universally positive all over the 

CONUS, precipitation changes vary by region. Thus, a lack of change in the PDSI 

metric means that whatever changes in extreme drought are occurring, they are 

occurring at a regional scale rather than across the whole CONUS. Spatial trends in 

precipitation will be examined in more detail in Chapter 4. 

3.3.5 Extreme Precipitation 

Extreme precipitation requires some context: as seen earlier in the historical 

graphs, it shows very little year-to-year variance when compared with the other 

indicators, and stays extremely close to the expected value of 0.1. While the increase 

shown in Figure 3.20 is small in magnitude, it is consistent across all model 

groupings. The ensemble mean for NARCCAP is 0.16, 0.14 for CMIP3, 0.15 for 

CORDEX, and 0.16 for CMIP5. The average difference between the future and 

historical values is 0.06 for NARCCAP, 0.05 for CMIP3, 0.05 for CORDEX, and 0.07 

for CMIP5. However, unlike with PDSI above, the standard deviations are 

respectively 0.02, 0.03, 0.04, and 0.05. A paired t-test comparing future vs historical 

values for NARCCAP (chosen due to the largest sample size of models) shows 

statistical significance at p<0.01. 

It is important to recall in this context that an increase of 0.1 to 0.15, while 

appearing less dramatic than the temperature indicators, still represents a 50% increase 

from its historic value. In real-world terms, the percentage of the CONUS 

experiencing extreme precipitation in any given year is projected to increase by half. 

This value has a relatively small impact on the overall CEI score, in relation to the 

more extreme changes seen in the temperature indicators. However, this underscores 
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why it is important to examine each metric of the CEI individually, as explained in 

Gallant et al. 2014. Given that this metric is related to the proportion of extreme 

precipitation, and thus represents a potential increase in severe precipitation events, it 

may also have a disproportionate impact on human and biological systems. The CEI 

itself is not a diagnostic tool for detecting the cause of changing precipitation patterns, 

but it is consistent with CMIP5 analysis showing both an increase in extreme 

precipitation and an overall intensification of the hydrological cycle, driven by 

increased temperatures (Wuebbles et al. 2014). 

3.3.6 Days With/Without Precipitation 

Figure 3.21 represents greater than normal days with precipitation, while 

Figure 3.22 represents greater than normal days without precipitation. For days with 

precipitation, the ensemble mean value is 0.08 for NARCCAP, 0.11 for CMIP3, 0.12 

for CORDEX, and 0.14 for CMIP5. The average difference between the future and 

historical values is -0.02 for NARCCAP, 0.02 for CMIP3, 0.02 for CORDEX, and 

0.05 for CMIP5. None of these differences are larger than the standard deviation for 

their respective model groups. This indicates that the CONUS as a whole is not 

becoming more or less extreme in respect to years with a very high number of 

precipitation events. 

For days without precipitation, the ensemble mean is 0.24 for NARCCAP, 

0.18 for CMIP3, 0.16 for CORDEX, and 0.14 for CMIP5. The average difference 

between future and historical values is 0.14 for NARCCAP, 0.08 for CMIP3, 0.06 for 

CORDEX, and 0.04 for CMIP5. Paired t-tests indicate statistical significance at 

p<0.01 for all model groupings except CMIP5. This could be attributed to the lower 

sample size of CMIP5 models, or to the lower average difference between the 



 

 44 

historical and future values. Regardless, three of four model groups show a small but 

significant increase in the frequency of years with unusually low number of 

precipitation events. 
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Figure 3.1:  Climate Extremes Index (CEI) calculated from observation data. The date 

range is 1949 to 2010. The black line indicates index values calculated 

from gridded observation data provided by Maurer et al. (2002). The red 

line indicates CEI values calculated by NOAA using nClimGrid data. 

The blue line indicates the expected value of the index (0.2) for a 

stationary climate. 
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Figure 3.2:  Individual components of the CEI. The date range is 1949 to 2010. The 

black line indicates index values calculated from gridded observation 

data provided by Maurer et al. (2002). The blue line indicates the 

expected value of each component (0.1) for a stationary climate. 
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Figure 3.3:  Climate Extremes Index (CEI) calculated from model data. The date 

range is 1968 to 1998. Black lines indicate ensemble mean values for the 

CONUS, while red lines indicate individual models. The green line 

represents the ensemble mean for just the Mid-Atlantic region. The blue 

line indicates the expected value of the index (0.2) for a stationary 

climate. 
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Figure 3.4:  Climate Extremes Index (CEI) component TMAX10: maximum 

temperatures much below normal. The date range is 1968 to 1998. Black 

lines indicate ensemble mean values for the CONUS, while red lines 

indicate individual models. The green line represents the ensemble mean 

for just the Mid-Atlantic region. The blue line indicates the expected 

value of the component (0.1) for a stationary climate. 
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Figure 3.5:  Climate Extremes Index (CEI) component TMAX90: maximum 

temperatures much above normal. The date range is 1968 to 1998. Black 

lines indicate ensemble mean values for the CONUS, while red lines 

indicate individual models. The green line represents the ensemble mean 

for just the Mid-Atlantic region. The blue line indicates the expected 

value of the component (0.1) for a stationary climate. 



 

 50 

 

Figure 3.6: Regional Climate Extremes Index (rCEI) component TMIN10: minimum 

temperatures much below normal. The date range is 1968 to 1998. Black 

lines indicate ensemble mean values for the CONUS, while red lines 

indicate individual models. The green line represents the ensemble mean 

for just the Mid-Atlantic region. The blue line indicates the expected 

value of the component (0.1) for a stationary climate. 
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Figure 3.7: Climate Extremes Index (CEI) component TMIN90: minimum 

temperatures much above normal. The date range is 1968 to 1998. Black 

lines indicate ensemble mean values for the CONUS, while red lines 

indicate individual models. The green line represents the ensemble mean 

for just the Mid-Atlantic region. The blue line indicates the expected 

value of the component (0.1) for a stationary climate. 
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Figure 3.8: Climate Extremes Index (CEI) component PDSI10: strong negative 

values of the PDSI (indicating severe drought). The date range is 1968 to 

1998. Black lines indicate ensemble mean values for the CONUS, while 

red lines indicate individual models. The green line represents the 

ensemble mean for just the Mid-Atlantic region. The blue line indicates 

the expected value of the component (0.1) for a stationary climate. 
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Figure 3.9: Climate Extremes Index (CEI) component PDSI90: strong positive 

values of the PDSI (indicating severe moisture surplus). The date range is 

1968 to 1998. Black lines indicate ensemble mean values for the 

CONUS, while red lines indicate individual models. The green line 

represents the ensemble mean for just the Mid-Atlantic region. The blue 

line indicates the expected value of the component (0.1) for a stationary 

climate. 
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Figure 3.10: Climate Extremes Index (CEI) component EPD90: precipitation derived 

from extreme 1-day precipitation events. The date range is 1968 to 1998. 

Black lines indicate ensemble mean values for the CONUS, while red 

lines indicate individual models. The green line represents the ensemble 

mean for just the Mid-Atlantic region. The blue line indicates the 

expected value of the component (0.1) for a stationary climate. 
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Figure 3.11: Climate Extremes Index (CEI) component TDD10: greater than normal 

days with precipitation. The date range is 1968 to 1998. Black lines 

indicate ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.12: Climate Extremes Index (CEI) component TDD90: greater than normal 

days without precipitation. The date range is 1968 to 1998. Black lines 

indicate ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.13: Climate Extremes Index (CEI) calculated from model data. The date 

range is 2038 to 2068, except for CMIP3, where the date range is 2046 to 

2065. Black lines indicate ensemble mean values for the CONUS, while 

red lines indicate individual models. The green line represents the 

ensemble mean for just the Mid-Atlantic region. The blue line indicates 

the expected value of the index (0.2) for a stationary climate. 
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Figure 3.14: Climate Extremes Index (CEI) component TMAX10: maximum 

temperatures much below normal. The date range is 2038 to 2068, except 

for CMIP3, where the date range is 2046 to 2065. Black lines indicate 

ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.15: Climate Extremes Index (CEI) component TMAX90: maximum 

temperatures much above normal. The date range is 2038 to 2068, except 

for CMIP3, where the date range is 2046 to 2065. Black lines indicate 

ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.16: Regional Climate Extremes Index (rCEI) component TMIN10: minimum 

temperatures much below normal. The date range is 2038 to 2068, except 

for CMIP3, where the date range is 2046 to 2065. Black lines indicate 

ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.17: Climate Extremes Index (CEI) component TMIN90: minimum 

temperatures much above normal. The date range is 2038 to 2068, except 

for CMIP3, where the date range is 2046 to 2065. Black lines indicate 

ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.18: Climate Extremes Index (CEI) component PDSI10: strong negative 

values of the PDSI (indicating severe drought). The date range is 2038 to 

2068, except for CMIP3, where the date range is 2046 to 2065. Black 

lines indicate ensemble mean values for the CONUS, while red lines 

indicate individual models. The green line represents the ensemble mean 

for just the Mid-Atlantic region. The blue line indicates the expected 

value of the component (0.1) for a stationary climate. 
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Figure 3.19: Climate Extremes Index (CEI) component PDSI90: strong positive 

values of the PDSI (indicating severe moisture surplus). The date range is 

2038 to 2068, except for CMIP3, where the date range is 2046 to 2065. 

Black lines indicate ensemble mean values for the CONUS, while red 

lines indicate individual models. The green line represents the ensemble 

mean for just the Mid-Atlantic region. The blue line indicates the 

expected value of the component (0.1) for a stationary climate. 



 

 64 

 

Figure 3.20: Climate Extremes Index (CEI) component ECP90: precipitation derived 

from extreme 1-day precipitation events. The date range is 2038 to 2068, 

except for CMIP3, where the date range is 2046 to 2065. Black lines 

indicate ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.21: Climate Extremes Index (CEI) component TDD10: greater than normal 

days with precipitation. The date range is 2038 to 2068, except for 

CMIP3, where the date range is 2046 to 2065. Black lines indicate 

ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Figure 3.22: Climate Extremes Index (CEI) component TDD90: greater than normal 

days without precipitation. The date range is 2038 to 2068, except for 

CMIP3, where the date range is 2046 to 2065. Black lines indicate 

ensemble mean values for the CONUS, while red lines indicate 

individual models. The green line represents the ensemble mean for just 

the Mid-Atlantic region. The blue line indicates the expected value of the 

component (0.1) for a stationary climate. 
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Chapter 4 

SPATIAL TRENDS 

While the index provides a snapshot of the U.S. as a whole, and an effective 

means of comparing changes over time, it does not on its own provide any spatial 

information on where these changes are occurring. To examine the spatial patterns of 

the CEI, we calculate the CEI in the time axis, rather than on the latitude/longitude 

axes, and show the result on a series of maps. While the original index is a measure of 

the percentage of gridpoints over the CONUS that experience extremes in each year, 

the maps in the following section show how many years are extreme at each gridpoint. 

In both cases, the result is expressed as a proportion, ranging from 0 to 1. In the 

following section, a value of 0 indicates that gridpoint never exceeded the historic 

threshold, while a value of 1 indicates that every timestep for that grid cell exceeded 

the historic threshold. This method of visualizing the CEI over space rather than time 

is new, and was developed specifically for this study. 

As explained in the previous section, the individual components of the CEI are 

designed to assess both warm and cold extremes, as well as precipitation extremes in 

both directions (dry and wet). To facilitate visual understanding, common color bars 

are used across all maps and all indicators: values in orange/red indicate unusually 

warm conditions, values in blue indicate unusually cool conditions, values in brown 

indicate unusually dry conditions, and values in green/teal indicate unusually wet 

conditions, in comparison to their historic baseline values. 
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4.1 Maximum Temperature 

As expected from the CEI values shown in the previous section, maximum 

temperatures for the future scenario almost never fall below the historic 10th percentile 

threshold. For NARCCAP (Figure 4.1) three model pairings have consistent values of 

0 for every grid point: MM5I-CCSM, CRCM-CGCM3, and RCM3-CGCM3. For 

CMIP3 (Figure 4.2), both CCSM and GFDL have consistent values of 0 at each grid 

point, and CGCM3 has only a few values above zero, near Texas. Both of the CMIP5 

GCMs (Figure 4.3) have consistent values of zero at all grid points, as does the 

CanESM2-RCA4 pairing; the EC-EARTH-RCA4 and EC-EARTH-HIRHAM5 

pairings show only a few values higher than zero, all close enough to the edge of the 

map that they could potentially be affected by boundary conditions. 

In contrast, while the 90th percentile indicator still shows consistent warming 

across the entire contiguous US, the magnitude of that warming is very different on 

the coasts versus the interior. There is one surprisingly consistent pattern across all 

models: virtually all of them show more extreme changes over the coastlines, and less 

extreme heating over the interior of the continent, especially the US Midwest. For 

example, compare the WRFG-CGCM3 to the MM5I-HadCM3 (Figure 4.4): they share 

neither an RCM nor a GCM boundary forcing, and yet they both produce a very 

similar distinct J-shape over the center of the U.S. The MM5I-CCSM also shares a 

similar spatial pattern in the north, although that one does not extend as far south. This 

would appear to be the opposite of initial expectations; coastlines generally have less 

extreme temperatures because the ocean acts as a heat sink. While the pattern is not as 

immediately evident in the CMIP3 models (Figure 4.5), once again we can see a 

greater severity of relative warming on the coasts, with relatively milder warming in 

the interior, especially towards the center of the map. The pattern observed in 
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NARCCAP/CMIP3 is less apparent in the CanESM2 model, due to consistently high 

warming everywhere (Figure 4.6). However, EC-EARTH does show that same 

distinctive vertical band over the center of the US, and it carries over into the RCA4 

model pairing. While climate models cannot be said to be truly independent of one 

another, the consistency of this pattern across different RCMs and forcings may be 

indicative of a physical phenomenon. 

Overall, all models are in agreement that both minimum and maximum 

temperatures will exceed historic thresholds across a majority of the continental 

United States. This is consistent with findings of the National Climate Assessment, 

indicating that heat waves are projected to become more intense everywhere across the 

nation (Walsh et al. 2014). In terms of the unusual Midwestern spatial trend in 

maximum temperatures, a few possible explanations present themselves. The first 

possibility is model error. Predictions at the center of RCM domains are less driven by 

boundary conditions, more driven by model physics, so too-large domains can become 

decoupled from their boundaries and produce conditions independent of global 

forcings (Downing et al. 2002). However, this occurs not only in NARCCAP, but also 

in CORDEX, and in several global models which have no such boundary forcings; 

let’s not stop at the conclusion that the spatial trend is solely a domain error. The CEI 

is calculated via percentiles, so if the coastlines experience a smaller range of 

temperatures in the historic time period, it would take a proportionally smaller 

increase in temperature to exceed the 90th percentile. It could simply be a case of the 

coasts “catching up” to the interior, while the Midwest is already experiencing 

extreme heat waves.  
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A third possibility, however, is related to land cover change and changes in 

surface energy budget. One study of observed station temperatures from 1910 to 2014 

found cooler summer temperature extremes in the Midwest over the 20th century, 

which they concluded was due to cropland intensification and associated increase in 

evapotranspiration (Mueller et al. 2012). They found that cooling trends were greatest 

for the highest temperature percentiles, which is consistent with both greater 

evapotranspiration and with a reduction in CEI values (Mueller et al. 2012). Another 

study of agricultural effects on boundary layer processes found significantly lower 

latent and sensible heat fluxes for simulations of irrigated land, and near-ground 

temperatures 1.2˚C cooler than the control (Adegoke et al. 2007). On the other hand, 

in this case, cooler temperatures may not necessarily correlate with an associated 

decrease in climate-related risk; a study of extreme heat events in Chicago suggested 

that enhanced evapotranspiration from agriculture led to an increase in dew-point 

values, and an associated increase in risk to human health from extreme urban heat 

(Changnon et al. 2003). 

As a secondary aspect of the analysis, I wanted to explore whether RCM 

physics or GCM boundary forcings had a stronger impact on CEI results. In other 

words, which were more similar: model pairings that shared an RCM, or pairings that 

shared a GCM? Table 4.1 is a correlation table for the TMAX90 values for all twelve 

NARCCAP models; as with earlier, NARCCAP was chosen due to the highest number 

of ensemble members. TMAX10 was excluded, as the high number of zero values 

resulted in artificially low correlations across all model pairings. For TMAX90, there 

was universal strong agreement, with correlation values of 0.98 or higher for all model 

pairings, even those that shared neither an RCM nor a GCM. This is a reflection of 
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how consistent the temperature results were between models; since all NARCCAP 

models showed a universal large increase in extreme high temperatures, there were 

simply not enough inter-model differences to determine if RCM physics or GCM 

boundary forcings had a greater impact. 
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Table 4.1:  TMAX90 correlation table. Cells highlighted in red indicate model pairings that share RCM physics, while 

cells highlighted in blue indicate model pairings that share GCM boundary forcings. 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CRCM-CCSM             

2.CRCM-CGCM3 0.997            

3.ECP2-GFDL 0.990 0.992           

4.ECP2-HadCM3 0.995 0.996 0.989          

5.HRM3-GFDL 0.997 0.998 0.992 0.995         

6.HRM3-HadCM3 0.997 0.997 0.991 0.996 0.997        

7.MM5I-CCSM 0.983 0.979 0.982 0.976 0.978 0.981       

8.MM5I-HadCM3 0.985 0.985 0.989 0.984 0.983 0.985 0.982      

9.RCM3-CGCM3 0.995 0.995 0.991 0.993 0.994 0.996 0.985 0.985     

10.RCM3-GFDL 0.990 0.991 0.995 0.988 0.991 0.992 0.983 0.988 0.992    

11.WRFG-CCSM 0.993 0.992 0.992 0.988 0.992 0.992 0.993 0.988 0.992 0.992   

12.WRFG-CGCM3 0.983 0.981 0.985 0.980 0.979 0.984 0.989 0.990 0.987 0.988 0.990  
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4.2 Minimum Temperature 

As seen in the previous section with the time series, future patterns for TMIN 

closely mirrored those for TMAX, but with even greater extremeness. There were very 

few models with minimum temperatures below the 10th percentile. For TMIN10, 

seven out of twelve NARCCAP model pairings (Figure 4.7) had constant values of 

zero: CRCM-CCSM, CRCM-CGCM3, WRFG-CGCM3, RCM3-CGCM3, ECP2-

HadCM3, HRM3-HadCM3, and MM5I-HadCM3. All three of the CMIP3 models 

(Figure 4.8) had consistent values of zero for all grid points. Both of the CMIP5 

models (Figure 4.9) had constant values of zero at all grid points, as did the 

CanESM2-RCA4 pairing; the two EC-EARTH-RCM pairings had only a few values 

higher than zero, again happening close to the edge of the map. 

For TMIN90 (Figures 4.10 through 4.12), as with TMAX90, there is a more or 

less consistent spatial pattern from model to model. Warming is generally extreme 

across the entire CONUS, but slightly less so in the northern parts of the country, 

especially over the Pacific Northwest. As this indicator measures the frequency of 

years in which minimum temperature exceeds the 90th percentile, this could simply be 

a reflection of natural climate variation; cold fronts will continue to move over the 

northern part of the U.S., causing a handful of cold events per year, even as overall 

temperatures continue to rise. 

Table 4.2 shows the correlation table for all twelve NARCCAP models for the 

TMIN90 indicator. TMIN10 was excluded, as above. Overall correlation rates for 

TMIN are even higher than for TMAX, with all correlation values at 0.99 or above. As 

such, it is impossible to draw any conclusions about whether GCM or RCM has a 
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stronger impact on CEI results for temperature; inter-model agreement is simply too 

high to determine which is the deciding factor. In other words, all models show 

warming in response to increased greenhouse gases. 
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Table 4.2:  TMIN90 correlation table. Cells highlighted in red indicate model pairings that share RCM physics, while cells 

highlighted in blue indicate model pairings that share GCM boundary forcings. 

 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CRCM-CCSM             

2.CRCM-CGCM3 0.999            

3.ECP2-GFDL 0.991 0.991           

4.ECP2-HadCM3 0.999 0.999 0.991          

5.HRM3-GFDL 0.998 0.998 0.995 0.998         

6.HRM3-HadCM3 0.999 0.999 0.991 0.999 0.998        

7.MM5I-CCSM 0.996 0.996 0.992 0.996 0.996 0.996       

8.MM5I-HadCM3 0.994 0.994 0.989 0.995 0.992 0.995 0.993      

9.RCM3-CGCM3 0.999 0.999 0.993 0.999 0.998 0.999 0.997 0.995     

10.RCM3-GFDL 0.992 0.992 0.998 0.992 0.995 0.991 0.993 0.990 0.994    

11.WRFG-CCSM 0.997 0.997 0.991 0.997 0.997 0.997 0.996 0.992 0.997 0.992   

12.WRFG-CGCM3 0.999 0.999 0.991 0.998 0.997 0.999 0.996 0.995 0.999 0.991 0.997  
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4.3 PDSI 

As shown in Figure 4.13, spatial patterns for the PDSI are heterogeneous, and 

vary from model to model. There is no immediately visible spatial signal, in contrast 

with the temperature indices. The CMIP3 models (4.14) show slightly more spatial 

agreement than their NARCCAP counterparts, though not by much; both CCSM and 

GFDL show a slight tendency towards drought on the eastern half of the US and the 

west coast, but CGCM3 reverses this, with the largest area of extreme drought over 

the Rockies. The comparison between GCM and RCM is easier to make with the two 

side-by-side: as can be seen in Figure 4.15, the RCMs and their driving GCMs have 

roughly similar spatial patterns, but the patterns in the RCM are more diffuse and 

heterogeneous, possibly related to the effects of higher horizontal resolution on 

precipitation patterns. As predicted by Schrier et al. (2011), extreme values of the 

PDSI are heterogeneous, following individual model patterns of precipitation. While a 

few potential signals can be seen – a vertical band across the Midwest in the 

NARCCAP data where the index tends towards drought, for instance – they are not 

consistent between model groups. 

While interpretation of the temperature indices is straightforward, several of 

the precipitation indices show significant variation in spatial distribution from model 

to model. To better facilitate interpretation, I created a series of maps intended to show 

areas of common agreement between multiple models. The maps in Figure 4.16 and 

4.20 do not reflect magnitude of changes in the indicators, but only the degree of 

agreement between models. Each grid cell for each model was assigned a binary 

value, 0 or 1, indicating whether the value for that cell was unusually wet or unusually 
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dry in comparison to the historic baseline. These binary maps were then averaged 

together to create a composite map. High values indicate broad consensus between 

models that the value is higher than 0.1, while low values also indicate broad 

consensus between models that the value is below 0.1. These values are marked in 

dark brown and dark teal, respectively, indicating whether the index represents an 

increase or decrease in precipitation extremes. Mid-range values close to 0.5 indicate 

that models are divided on whether a particular grid cell has higher or lower values 

than expected, and these are marked in lighter brown or teal, closer to white. Note that 

while the NARCCAP had twelve models in its ensemble, CMIP3 and CORDEX had 3 

each, and CMIP5 had only two. Hence the possible values for CMIP5 were only 0, 

0.5, or 1. 

Tables 4.3 and 4.4 show NARCCAP model correlation for the PDSI10 and 

PDSI90 indicators, respectively. Two things are clear: first, overall correlation for the 

PDSI is lower than for temperature, with values around 0.7 for PDSI10, and around 

0.6 for PDSI90, as compared to values of 0.98 and higher for maximum and minimum 

temperature. Additionally, there does not appear to be any strong relationship between 

either GCM or the RCMs that are forced by that particular GCM. Some of the highest 

correlation values are between model pairings that share neither a GCM nor an RCM: 

for instance, one of the two highest-correlated model pairings for CRCM-CCSM is 

MM5I-HadCM3. Overall, models that share boundary forcings appear to be slightly 

more correlated than those that don’t, but it is by no means a clear or universal trend. 

The reasons for these two observations – that precipitation patterns in models 

are less clear and less correlated than temperature – are interrelated, and have to do 

with the difference in how climate models calculate temperature vs precipitation. 
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Temperature is a smooth gradient field; it can be calculated at any resolution, and can 

be comparatively easily interpolated from one grid to another. By contrast, 

precipitation events frequently happen at scales smaller than a single grid cell, even 

for RCMs, and thus must be calculated via a combination of explicit model physics 

and subgrid-scale parameterizations for processes such as convection and cloud 

physics (Wehner 2012). Climate models are not all wholly independent, and many 

models use similar physics and parameterization schema; for instance, CRCM and 

MM5I both use a form of mass flux for their cumulus parameterization (NARCCAP 

2008). A full discussion and comparison of precipitation physics between regional 

models is beyond the scope of this project, but could be a compelling direction for 

future research. 
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Table 4.3:  PDSI10 correlation table. Cells highlighted in red indicate model pairings that share RCM physics, while cells 

highlighted in blue indicate model pairings that share GCM boundary forcings. 

 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CRCM-CCSM             

2.CRCM-CGCM3 0.746            

3.ECP2-GFDL 0.726 0.655           

4.ECP2-HadCM3 0.753 0.720 0.711          

5.HRM3-GFDL 0.757 0.713 0.689 0.745         

6.HRM3-HadCM3 0.715 0.718 0.671 0.740 0.714        

7.MM5I-CCSM 0.776 0.694 0.705 0.733 0.716 0.685       

8.MM5I-HadCM3 0.780 0.719 0.699 0.742 0.741 0.732 0.736      

9.RCM3-CGCM3 0.758 0.738 0.688 0.748 0.716 0.724 0.740 0.719     

10.RCM3-GFDL 0.735 0.686 0.662 0.713 0.731 0.691 0.696 0.729 0.712    

11.WRFG-CCSM 0.780 0.728 0.742 0.764 0.728 0.712 0.775 0.759 0.750 0.712   

12.WRFG-CGCM3 0.729 0.720 0.697 0.735 0.714 0.718 0.707 0.713 0.733 0.720 0.735  
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Table 4.4:  PDSI90 correlation table. Cells highlighted in red indicate model pairings that share RCM physics, while cells 

highlighted in blue indicate model pairings that share GCM boundary forcings. 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CRCM-CCSM             

2.CRCM-CGCM3 0.662            

3.ECP2-GFDL 0.683 0.600           

4.ECP2-HadCM3 0.692 0.665 0.645          

5.HRM3-GFDL 0.676 0.636 0.643 0.692         

6.HRM3-HadCM3 0.672 0.695 0.613 0.658 0.657        

7.MM5I-CCSM 0.709 0.617 0.644 0.664 0.655 0.651       

8.MM5I-HadCM3 0.664 0.657 0.633 0.696 0.702 0.635 0.652      

9.RCM3-CGCM3 0.674 0.699 0.622 0.656 0.635 0.676 0.674 0.666     

10.RCM3-GFDL 0.683 0.651 0.660 0.674 0.673 0.673 0.653 0.662 0.676    

11.WRFG-CCSM 0.721 0.674 0.665 0.685 0.679 0.657 0.693 0.673 0.663 0.676   

12.WRFG-CGCM3 0.683 0.716 0.626 0.675 0.643 0.689 0.648 0.658 0.696 0.672 0.689  
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4.4 Extreme Precipitation 

As Figure 4.21 shows, the proportion of extreme precipitation is showing more 

extreme values at a majority of grid cells. There are scattered points of less extreme 

precipitation (shown in brown) but there is little consensus from model to model on 

the location of those points, and the predominant trend is increasing extreme 

precipitation. As expected from the graph of extreme precipitation over time in the 

previous section, the increase is not dramatic – with most values still at 0.3 or below – 

but it is consistent. For the CMIP3 models (Figure 4.22), both CCSM and CGCM3 

have a mix of more and less extreme precipitation, while GFDL shows a more 

universal increase in precipitation extremes. In Figure 4.23, both the CMIP5 models, 

CanESM2 and EC-EARTH, show less extreme precipitation towards the center of the 

map; as both of these models are global, this trend cannot be attributed to domain size 

and boundary coupling issues. However, the decrease in extreme precipitation over the 

Midwest is not seen in the associated RCMs, which return to a diffuse and 

heterogeneous pattern. 

The model agreement maps (Figure 4.24) for extreme precipitation support the 

conclusion derived from the time series graphs: extreme precipitation is increasing 

across the majority of the United States. While there is one notable brown region 

across the center of the CMIP3 map, the large amount of dark teal on all four 

agreement maps indicates a strong degree of inter-model support. While the change in 

extreme precipitation is not necessarily large in magnitude, it affects a broad area, and 

inter-model agreement reflects a high degree of certainty. Likewise, the majority of 
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correlation values between NARCCAP model pairings in Table 4.5 are 0.8 and higher, 

representing stronger agreement than seen with the PDSI. 

One potentially confounding factor is that regional models tend to produce 

more high intensity precipitation than GCMs. Horizontal resolution greatly affects a 

model’s ability to simulate extreme precipitation; at least one study showed that at grid 

spacing greater than 50km, extreme precipitation events were significantly lower than 

observed rates (Wehner 2012). RCMs, with their finer resolution, can better resolve 

small-scale physical processes and local topography, which theoretically should make 

them better at reproducing realistic precipitation patterns (Caldwell 2010). However, 

several studies have shown that reanalysis-forced RCMs tend to significantly 

overpredict precipitation, especially extreme events, and underpredict frequency 

(Caldwell 2010, Rauscher et al. 2016). By contrast, GCMs tend to show a “drizzle 

problem”, where global models have a higher precipitation frequency and lower 

intensity (Mearns et al. 1995, Schoof et al. 2015). This offers a potential explanation 

as to why the CMIP3 and CMIP5 results show less consistent increases in extreme 

precipitation than the NARCCAP and CORDEX model groups. 
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Table 4.5:  EPD90 correlation table. Cells highlighted in red indicate model pairings that share RCM physics, while cells 

highlighted in blue indicate model pairings that share GCM boundary forcings. 

 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CRCM-CCSM             

2.CRCM-CGCM3 0.827            

3.ECP2-GFDL 0.803 0.795           

4.ECP2-HadCM3 0.811 0.802 0.783          

5.HRM3-GFDL 0.796 0.797 0.797 0.801         

6.HRM3-HadCM3 0.797 0.802 0.758 0.772 0.787        

7.MM5I-CCSM 0.826 0.826 0.812 0.808 0.822 0.791       

8.MM5I-HadCM3 0.799 0.799 0.777 0.788 0.771 0.796 0.797      

9.RCM3-CGCM3 0.824 0.795 0.797 0.800 0.802 0.768 0.817 0.795     

10.RCM3-GFDL 0.827 0.807 0.808 0.812 0.819 0.803 0.821 0.806 0.815    

11.WRFG-CCSM 0.850 0.792 0.799 0.811 0.791 0.773 0.828 0.797 0.834 0.836   

12.WRFG-CGCM3 0.833 0.814 0.797 0.801 0.807 0.774 0.823 0.790 0.823 0.820 0.832  
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4.5 Days With/Without Precipitation 

Unlike the PDSI, the total dry days indicator does show some clear spatial 

patterns, even if there is still disagreement between models. With some exceptions, the 

majority of NARCCAP models (shown in Figure 4.25) show a decrease in days with 

precipitation along the west coast extending into the southwest. Around half of the 

models also show a similar pattern on the east coast. Visually, RCM seems to be a 

stronger contributor than GCM for this indicator: the two HRM3 pairings, for 

instance, both show a decrease in days with precipitation across nearly the entire 

country, while the other two RCMs paired with the GFDL are both much less severe. 

With CMIP3 (Figure 4.26), the entire western half of the country shows an increase in 

years with extremely few precipitation days, in all three models. However, the 

CGCM3 model shows no reduction in precipitation days in the northwest, instead 

showing a reduction in precipitation days along the entire east coast. CMIP5 and 

CORDEX (Figure 4.27) show a clear spatial pattern, although it is slightly different 

than the pattern shown in CMIP3/NARCCAP. A tendency toward decreased days with 

precipitation is concentrated in the south for all three RCMs, even when that pattern is 

not necessarily present in the driving GCMs. And again, several of the models show 

areas of decreased precipitation days along both the east and west coasts. 

When examining model agreement (Figure 4.28) for the total dry days 

indicator, clear spatial patterns emerge. The west coast is a clear hotspot for reduction 

in precipitation days, as are parts of the south and southwest, depending on model 

group. However, parts of the northeast and Mid-Atlantic region also show reduced 

precipitation days, in all four model groups. While the spatial pattern is less clearly 
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visible on the CMIP5 map, this may be partially attributable to the low number of 

models in the CMIP5 ensemble. Tables 4.6 and 4.7 show that correlation between 

NARCCAP models is stronger for the 90th percentile indicator – representing 

unusually dry years– than for the 10th percentile indicator. 

The NARCCAP set of models seems to have strong agreement that extreme 

years with very few precipitation events will increase across the entire United States, 

while other model groups do not necessarily show this pattern. As with the total dry 

days indicator, however, both the west coast and the Mid-Atlantic are highlighted by 

these maps as potential hotspots for a change in precipitation frequency. Taken in 

conjunction with the extreme precipitation component, the overall conclusion is that 

total number of precipitation events per year will decrease, but each individual event 

will be more intense. 
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Table 4.6:  TDD10 correlation table. Cells highlighted in red indicate model pairings that share RCM physics, while cells 

highlighted in blue indicate model pairings that share GCM boundary forcings. 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CRCM-CCSM             

2.CRCM-CGCM3 0.627            

3.ECP2-GFDL 0.584 0.465           

4.ECP2-HadCM3 0.448 0.462 0.678          

5.HRM3-GFDL 0.499 0.355 0.602 0.373         

6.HRM3-HadCM3 0.450 0.515 0.581 0.642 0.512        

7.MM5I-CCSM 0.634 0.603 0.658 0.534 0.522 0.504       

8.MM5I-HadCM3 0.481 0.539 0.619 0.670 0.481 0.668 0.616      

9.RCM3-CGCM3 0.569 0.615 0.645 0.584 0.551 0.594 0.697 0.607     

10.RCM3-GFDL 0.560 0.377 0.688 0.460 0.656 0.473 0.611 0.463 0.669    

11.WRFG-CCSM 0.657 0.582 0.608 0.524 0.561 0.522 0.776 0.597 0.699 0.653   

12.WRFG-CGCM3 0.599 0.576 0.623 0.562 0.510 0.533 0.738 0.518 0.702 0.650 0.759  
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Table 4.7:  TDD90 correlation table. Cells highlighted in red indicate model pairings that share RCM physics, while cells 

highlighted in blue indicate model pairings that share GCM boundary forcings. 

 

 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CRCM-CCSM             

2.CRCM-CGCM3 0.855            

3.ECP2-GFDL 0.752 0.722           

4.ECP2-HadCM3 0.683 0.764 0.826          

5.HRM3-GFDL 0.749 0.723 0.799 0.705         

6.HRM3-HadCM3 0.722 0.762 0.785 0.770 0.799        

7.MM5I-CCSM 0.848 0.835 0.780 0.727 0.755 0.786       

8.MM5I-HadCM3 0.689 0.757 0.770 0.784 0.809 0.760 0.742      

9.RCM3-CGCM3 0.777 0.846 0.799 0.819 0.775 0.829 0.852 0.796     

10.RCM3-GFDL 0.752 0.702 0.805 0.699 0.837 0.728 0.819 0.770 0.777    

11.WRFG-CCSM 0.802 0.789 0.801 0.742 0.807 0.752 0.871 0.791 0.823 0.842   

12.WRFG-CGCM3 0.715 0.763 0.727 0.718 0.697 0.742 0.846 0.724 0.867 0.762 0.837  
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Figure 4.1:  Climate Extremes Index (CEI) component TMAX10: maximum 

temperatures much below normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. NARCCAP 

model pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.2:  Climate Extremes Index (CEI) component TMAX10: maximum 

temperatures much below normal. The date range is 2046 to 2065. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. All figures 

are for CMIP3: CCSM on top, CGCM3 in the middle, and GFDL on the 

bottom. 
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Figure 4.3:  Climate Extremes Index (CEI) component TMAX10: maximum 

temperatures much below normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. Driving 

GCMs from CMIP5 are on the lefthand side, paired with CORDEX 

RCMs on the righthand side. 
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Figure 4.4:  Climate Extremes Index (CEI) component TMAX90: maximum 

temperatures much above normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. NARCCAP 

model pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.5:  Climate Extremes Index (CEI) component TMAX90: maximum 

temperatures much above normal. The date range is 2046 to 2065. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. All figures 

are for CMIP3: CCSM on top, CGCM3 in the middle, and GFDL on the 

bottom. 
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Figure 4.6:  Climate Extremes Index (CEI) component TMAX90: maximum 

temperatures much above normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. Driving 

GCMs from CMIP5 are on the lefthand side, paired with CORDEX 

RCMs on the righthand side. 
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Figure 4.7:  Climate Extremes Index (CEI) component TMIN10: minimum 

temperatures much below normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. NARCCAP 

model pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.8:  Climate Extremes Index (CEI) component TMIN10: minimum 

temperatures much below normal. The date range is 2046 to 2065. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. All figures 

are for CMIP3: CCSM on top, CGCM3 in the middle, and GFDL on the 

bottom. 
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Figure 4.9:  Climate Extremes Index (CEI) component TMIN10: minimum 

temperatures much below normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. Driving 

GCMs from CMIP5 are on the lefthand side, paired with CORDEX 

RCMs on the righthand side. 
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Figure 4.10:  Climate Extremes Index (CEI) component TMIN90: minimum 

temperatures much above normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. NARCCAP 

model pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.11:  Climate Extremes Index (CEI) component TMIN90: minimum 

temperatures much above normal. The date range is 2046 to 2065. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. All figures 

are for CMIP3: CCSM on top, CGCM3 in the middle, and GFDL on the 

bottom. 
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Figure 4.12:  Climate Extremes Index (CEI) component TMIN90: minimum 

temperatures much above normal. The date range is 2038 to 2068. The 

scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. Driving 

GCMs from CMIP5 are on the lefthand side, paired with CORDEX 

RCMs on the righthand side. 
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Figure 4.13:  Climate Extremes Index (CEI) component PDSI10: strong negative 

values of the PDSI (indicating severe drought). The date range is 2038 to 

2068. The scale is a dimensionless index: a value of 0 means the value 

never exceeded the historic threshold, while a value of 1 indicates that 

the value exceeded the historic threshold for every year of the analysis. 

NARCCAP model pairings are grouped by GCM in rows, and by RCM 

in columns. 
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Figure 4.14:  Climate Extremes Index (CEI) component PDSI10: strong negative 

values of the PDSI (indicating severe drought). The date range is 2046 to 

2065. The scale is a dimensionless index: a value of 0 means the value 

never exceeded the historic threshold, while a value of 1 indicates that 

the value exceeded the historic threshold for every year of the analysis. 

All figures are for CMIP3: CCSM on top, CGCM3 in the middle, and 

GFDL on the bottom. 
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Figure 4.15:  Climate Extremes Index (CEI) component PDSI10: strong negative 

values of the PDSI (indicating severe drought). The date range is 2038 to 

2068. The scale is a dimensionless index: a value of 0 means the value 

never exceeded the historic threshold, while a value of 1 indicates that 

the value exceeded the historic threshold for every year of the analysis. 

Driving GCMs from CMIP5 are on the lefthand side, paired with 

CORDEX RCMs on the righthand side. 
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Figure 4.16:  Model agreement maps for CEI component PDSI10: strong negative 

values of the PDSI (indicating severe drought). Color values indicate the 

direction of model consensus – wetter or drier – while color intensity 

indicates the strength of agreement. 
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Figure 4.17:  Climate Extremes Index (CEI) component PDSI90: strong positive 

values of the PDSI (indicating severe moisture surplus). The date range is 

2038 to 2068. The scale is a dimensionless index: a value of 0 means the 

value never exceeded the historic threshold, while a value of 1 indicates 

that the value exceeded the historic threshold for every year of the 

analysis. NARCCAP model pairings are grouped by GCM in rows, and 

by RCM in columns. 
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Figure 4.18:  Climate Extremes Index (CEI) component PDSI90: strong positive 

values of the PDSI (indicating severe moisture surplus). The date range is 

2046 to 2065. The scale is a dimensionless index: a value of 0 means the 

value never exceeded the historic threshold, while a value of 1 indicates 

that the value exceeded the historic threshold for every year of the 

analysis. All figures are for CMIP3: CCSM on top, CGCM3 in the 

middle, and GFDL on the bottom. 
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Figure 4.19:  Climate Extremes Index (CEI) component PDSI90: strong positive 

values of the PDSI (indicating severe moisture surplus). The date range is 

2038 to 2068. The scale is a dimensionless index: a value of 0 means the 

value never exceeded the historic threshold, while a value of 1 indicates 

that the value exceeded the historic threshold for every year of the 

analysis. Driving GCMs from CMIP5 are on the lefthand side, paired 

with CORDEX RCMs on the righthand side. 



 

107 

 

Figure 4.20:  Model agreement maps for CEI component PDSI90: strong positive 

values of the PDSI (indicating severe moisture surplus). Color values 

indicate the direction of model consensus – wetter or drier – while color 

intensity indicates the strength of agreement. 
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Figure 4.21:  Climate Extremes Index (CEI) component ECP90: precipitation derived 

from extreme 1-day precipitation events. The date range is 2038 to 2068. 

The scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. NARCCAP 

model pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.22:  Climate Extremes Index (CEI) component ECP90: precipitation derived 

from extreme 1-day precipitation events. The date range is 2046 to 2065. 

The scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. Model 

pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.23:  Climate Extremes Index (CEI) component ECP90: precipitation derived 

from extreme 1-day precipitation events. The date range is 2038 to 2068. 

The scale is a dimensionless index: a value of 0 means the value never 

exceeded the historic threshold, while a value of 1 indicates that the value 

exceeded the historic threshold for every year of the analysis. Driving 

GCMs from CMIP5 are on the lefthand side, paired with CORDEX 

RCMs on the righthand side. 
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Figure 4.24:  Model agreement maps for CEI component ECP90: precipitation derived 

from extreme 1-day precipitation events. Color values indicate the 

direction of model consensus – wetter or drier – while color intensity 

indicates the strength of agreement. 
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Figure 4.25:  Climate Extremes Index (CEI) component TDD10: greater than normal 

days with precipitation. The date range is 2038 to 2068. The scale is a 

dimensionless index: a value of 0 means the value never exceeded the 

historic threshold, while a value of 1 indicates that the value exceeded the 

historic threshold for every year of the analysis. NARCCAP model 

pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.26:  Climate Extremes Index (CEI) component TDD10: greater than normal 

days with precipitation. The date range is 2046 to 2065. The scale is a 

dimensionless index: a value of 0 means the value never exceeded the 

historic threshold, while a value of 1 indicates that the value exceeded the 

historic threshold for every year of the analysis. All figures are for 

CMIP3: CCSM on top, CGCM3 in the middle, and GFDL on the bottom. 
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Figure 4.27:  Climate Extremes Index (CEI) component TDD10: greater than normal 

days with precipitation. The date range is 2038 to 2068. The scale is a 

dimensionless index: a value of 0 means the value never exceeded the 

historic threshold, while a value of 1 indicates that the value exceeded the 

historic threshold for every year of the analysis. Driving GCMs from 

CMIP5 are on the lefthand side, paired with CORDEX RCMs on the 

righthand side. 
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Figure 4.28:  Model agreement maps for CEI component TDD10: greater than normal 

days with precipitation. Color values indicate the direction of model 

consensus – wetter or drier – while color intensity indicates the strength 

of agreement. 
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Figure 4.29:  Climate Extremes Index (CEI) component TDD90: greater than normal 

days without precipitation. The date range is 2038 to 2068. The scale is a 

dimensionless index: a value of 0 means the value never exceeded the 

historic threshold, while a value of 1 indicates that the value exceeded the 

historic threshold for every year of the analysis. NARCCAP model 

pairings are grouped by GCM in rows, and by RCM in columns. 
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Figure 4.30:  Climate Extremes Index (CEI) component TDD90: greater than normal 

days without precipitation. The date range is 2046 to 2065. The scale is a 

dimensionless index: a value of 0 means the value never exceeded the 

historic threshold, while a value of 1 indicates that the value exceeded the 

historic threshold for every year of the analysis. All figures are for 

CMIP3: CCSM on top, CGCM3 in the middle, and GFDL on the bottom. 
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Figure 4.31:  Climate Extremes Index (CEI) component TDD90: greater than normal 

days without precipitation. The date range is 2038 to 2068. The scale is a 

dimensionless index: a value of 0 means the value never exceeded the 

historic threshold, while a value of 1 indicates that the value exceeded the 

historic threshold for every year of the analysis. Driving GCMs from 

CMIP5 are on the lefthand side, paired with CORDEX RCMs on the 

righthand side. 
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Figure 4.32:  Model agreement maps for CEI component TDD90: greater than normal 

days without precipitation. Color values indicate the direction of model 

consensus – wetter or drier – while color intensity indicates the strength 

of agreement. 
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Figure 4.33:  The nine components of the CEI, zoomed in over the Mid-Atlantic 

region. Each figure represents the ensemble mean of all twelve 

NARCCAP models for each of the components described in previous 

sections. 
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Chapter 5 

CONCLUSION 

Model projections indicate a significant increase in climate extremes across the 

CONUS, especially in both maximum and minimum temperatures, with historic 90th 

percentile values becoming commonplace and historic 10th percentile values becoming 

much rarer. The extreme high values in minimum temperature should be of particular 

concern to urban planners and public health officials: higher than normal minimum 

temperatures can lead to greater intensity and lethality of heat waves, as the body does 

not get a chance to cool down (Changnon et al. 2003). Model projections of 

precipitation indices are less consistent, but suggest a decrease in total precipitation 

events, coupled with an increase in precipitation intensity, consistent with previous 

findings (e,g. Karl et al. 2009, Kunkel et al. 2013, Peterson et al. 2013, Wuebbles et al. 

2014). 

As mentioned previously, the combined CEI is a measure of what percentage 

of the CONUS is experiencing climate extremes at any given time. The CEI score 

alone does not indicate the sign of any given changes in extremes, or which individual 

indicators are contributing the most to any change in extremes (Gleason et al. 2008). 

Changes in extreme could indicate changes in mean or variance; thus, it is difficult to 

draw substantive conclusions about the shape of the overall distribution from the CEI 

alone (Gleason et al. 2008). Some of this difficulty in interpretation can be ameliorated 

by examining each individual component in detail, as was shown in previous sections. 

The increase in 90th percentile temperature extremes, for instance, is clear across all 
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models for both maximum and minimum temperatures. For examining changes in 

precipitation extremes, however, the spatial averaging inherent in the CEI poses some 

challenges; as discussed earlier, an overall lack of change could indicate that extremes 

of both signs are occurring in different locations and being averaged together. The CEI 

also does not directly assess changes in total monthly or annual precipitation, which 

could provide valuable context to changes in extreme precipitation and number of 

days with precipitation. 

Additionally, Ye et al. (2017) found that extreme warm years are primarily 

distinguished from average and cold years by warm nights (night temperatures 

exceeding the 90th percentile) and that wet years were primarily distinguished from 

average and dry years by occurrence of heavy precipitation events (events ≥ 10 mm 

and ≥ 20 mm). The CEI does not specifically distinguish between day and night 

temperatures, but given scholarship on the health impacts of high nighttime 

temperatures on the human body (Habeeb et al. 2015, Sarofim et al. 2016) this could 

be a valuable addition to an examination of climate extremes. 

There are some limitations to the results presented here. The reference period 

used was only 31 years, from 1968 to 1998, the years for which NARCCAP historical 

experiments were available. This was done in the interest of “apples to apples” 

comparison, comparing each model only to itself when calculating the 90th percentile 

threshold. However, the NOAA calculation of the CEI uses the full period of record, 

from 1910 to the present day, to calculate percentiles. When examining Figure 1.1, the 

NOAA CEI plot, it would appear that 1960 to 1980 represents a relatively cool and 

mild period, with maximum temperatures more often falling below the 10th percentile 

threshold than above the 90th. This may not be a significant issue; for instance, the 
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NCDC heat index uses 1961-1990 as a base period to calculate their percentile-based 

thresholds (Habeeb 2015). Still, it represents a departure from the NOAA-calculated 

CEI that should be noted. 

Analysis of spatial correlation between NARCCAP models showed no clear 

consensus on whether an individual RCM or the GCM boundary forcing contributed 

more strongly to CEI results. Several pairings showed high correlation despite sharing 

neither an RCM nor a GCM. One possible avenue for further research would involve a 

closer examination of individual NARCCAP model attributes: model physics, 

parameterizations, land cover and soil properties, etc., in order to attribute variations 

between models to different assumptions. 

A study of regional climate models over Europe categorized RCM uncertainty 

into four different sources: sampling uncertainty, coming from the fact that the climate 

is estimated over a finite number of years, model uncertainty, reflecting the different 

physics and parameterization methods between regional models, boundary 

uncertainty, representing the contribution of the GCM boundaries, and radiative 

uncertainty, representing that any given IPCC scenario is only one of many possible 

futures (Déqué et al. 2007). While the scenario (SRES A2/RCP 8.5) and time scale 

(2038-2068, except for CMIP3) were held as close to constant as possible in this 

study, Déqué et al. found that the contribution of different sources of uncertainty 

varied by field, region, and season. While some uncertainty over physical processes 

can be resolved as gaps in knowledge close, other forms of uncertainty are inherently 

unknowable; for instance, we as climate scientists cannot perfectly predict how 

humans will respond to climate change (Foley 2010). We can only provide the tools 

for stakeholders to make informed decisions about our changing climate. 
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