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ABSTRACT

Medical professionals leverage health-related data to address questions and sup-

port decision-makings. However, many of these medical tasks require intensive manual

effort in identifying useful information in the noisy data. The rapid growth of data is

making these tasks more and more costly and time-consuming.

In this thesis, we develop effective medical information retrieval (IR) systems

to reduce search-related manual work for three representative medical related tasks,

namely electronic medical records (EMR) based cohort identification, Medical Subject

Headings (MeSH) indexing, and gene ontology annotation (GOA).

For cohort identification, we improve the search precision and recall from three

aspects: 1) we design a multi-level evidence aggregation strategy for effective merging

and scoring of the distributed evidence in EMR; 2) we develop a novel statistical

IR model that significantly alleviates two medical language related issues in medical

IR; 3) we further enhance the search performance by effectively incorporating domain

knowledge into our system.

For MeSH indexing and GOA, we demonstrate how to use IR to address specific

needs. In particular, we investigate different query formulation methods and explore

various ways in which IR work together with other techniques such as Natural Language

Processing and Machine Learning.

xvi



Chapter 1

INTRODUCTION

The increasing availability and usage of health related (e.g., biomedical and

clinical) data have been driving innovations in health care and transforming our un-

derstanding of wellness and disease. Medical professionals use these data to address

questions and support decision-makings. However, many of these medical tasks (e.g.,

cohort identification, data curation, etc.) require a lot of manual effort in identify-

ing the useful information in the abundant and noisy data, and they cannot be fully

automated by computers. With the rapid growth of data, these labor-intensive tasks

become more and more time-consuming and costly.

Fortunately, the information retrieval (IR) technology is playing a critical role

in helping healthcare professionals accomplish medical tasks in an efficient way. Specif-

ically, IR helps to reduce the manual work for healthcare people by finding the most

relevant information from the vast amount of data in a short period of time. However,

there are a few challenges in searching clinical and biomedical data that could prevent

us from gaining the most out of IR.

First, the retrieving units are not necessarily standard documents. For example,

in cohort identification the retrieval units are patients whose relevance supporting

evidence can spread across all personalized data, such as lab test results, medical

history, radiology report, etc. We need to find an effective way to score and aggregate

the multiple components for each retrieving unit.

Second, the usage and vocabulary of medical language is very different from the

general English. In particular, the synonymy and polysemy are prevalent in medical

language. In addition, there are a number of other problems associated with the
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usage of words, especially in clinical narratives, e.g., negations, spelling errors, elliptical

sentences, grammatical incompleteness, and non-lexicon words [44]. These medical

language related problems have a direct and huge impact on the search precision and

recall.

Third, medical domain knowledge is helpful, but how to effectively incorporate

it into IR systems is usually not straightforward.

Last but not least, different medical tasks usually need specific design and tailor

of their search methods. There is no one-size-fits-all approach. In many cases, we need

to combine IR with other techniques such as Natural Language Processing (NLP) and

Machine Learning to accomplish the task.

All the things mentioned above can affect the search system performance which

further determines how much cost and time we can save for accomplishing the health

and biomedical tasks. Therefore, in this thesis work we develop novel medical IR sys-

tems to tackle these problems. In particular, we will design systems for three specific

medical-related tasks, namely electronic medical records (EMR) based cohort identi-

fication, Medical Subject Headings (MeSH) indexing, and gene ontology annotation

(GOA). The goal is to reduce manual effort involved in these processes and allow

healthcare professionals to focus on other things that are more important. This will

also contribute to better patient care in the long term.

1.1 Three Biomedical Tasks

In this section, we will briefly describe the three health related tasks along with

the subtopics of this thesis.

1.1.1 EMR-based Cohort Identification

Cohort identification is the task of finding patients that all meet certain inclusion

criteria for clinical studies. In the past, cohort identification has been a costly endeavor,

requiring hours of trained expertise to accomplish manual chart reviews. With the

gradual adoption of EMR, this problem has been mitigated by NLP techniques, such as
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entity recognition and information extraction. However, this kind of methods have its

limitations. First, it requires extensive collaboration between NLP experts and medical

researchers to turn the clinical information needs (or patient matching criteria) into a

good set of (usually complicated) matching patterns, and this has to be done manually

for each specific information need. Second, the recall depends heavily on the quality

of the pattern set. If we need a large number of relevant patients, the manual work

grows dramatically for developing and maintaining the pattern set.

Thus, we will investigate how to use advanced IR techniques to minimize the

labor work in cohort identification. In particular, in Chapter 3 we will explore ways of

expanding, aggregating, and scoring evidence that resides in different parts of patients’

EMR for patient searching and ranking;

In Chapter 4, we will design novel retrieval models for alleviating the poly-

semy and synonymy issues (i.e., two medical language related issues) that will severely

compromise search precision and recall;

In Chapter 5, we will investigate how to effectively leverage medical domain

knowledge to improve search results.

1.1.2 MeSH Indexing

MEDLINE1 is the U.S. National Library of Medicine’s (NLM) premier bibli-

ographic database that contains over 19 million references to journal articles in life

sciences with a concentration on biomedicine. A distinctive feature of MEDLINE is

that the records are indexed with NLM Medical Subject Headings (MeSH) and by a

relatively small group of highly qualified domain experts at NLM.

Currently, there are about 0.7 million new journal articles being added to the

MEDLINE database each year. Manually indexing new articles is very labor-intensive

and time-consuming. In addition, the indexing consistency is hard to control. On the

other hand, we need to include these new articles into the database in a timely fashion

so that the latest research outcomes can quickly become available to the public.

1 http://www.nlm.nih.gov/pubs/factsheets/medline.html
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Thus, in Chapter 6 we will design search-based systems that can suggest and

rank MeSH terms to assist domain experts in MEDLINE article indexing and to help

reduce manual work and indexing time.

1.1.3 Gene Ontology Annotation

The gene ontology (GO) provides a set of concepts for annotating functional

descriptions of genes and proteins in biomedical literature. The resulting annotated

databases are useful for large-scale analysis of gene products. However, performing

gene ontology annotation (GOA) requires expertise from well-trained human curators.

Due to the fast expansion of biomedical data, GOA becomes extremely labor-intensive

and costly. Thus, in Chapter 7 we will investigate how to use information retrieval

techniques for GO term prediction. Although this task is very similar to MeSH index-

ing, we want to show that different tasks need specific designing and tailoring of the

search methods.

We have briefly introduced the topics of Chapters 3 to 7 above. Chapter 2 will

highlight related work while Chapter 8 will conclude the thesis and discuss future work.

1.2 Evaluation Metrics

The evaluation metrics are important for understanding the system design, and

we will use them frequently to evaluate our retrieval systems in Chapters 3-7. Therefore,

we describe the evaluation metrics early in the thesis:

1) P10, which measures the proportion of relevant documents among the top

10 retrieved.

2) MAP, as one of the most standard evaluation measures among TREC com-

munity, provides a single-figure measure of quality across recall levels [26, 76]. If

{d1,...,dj} is the set of relevant documents for an information need q ∈ Q, then MAP

is defined as:

MAP(Q) =
1

|Q|
∑

q∈Q

∑
d∈{d1,...,dj}

Precision(rank(d))

|{d1, ..., dj}|
, (1.1)
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where Precision(k) is the proportion of relevant documents among the top k retrieved.

There is another related metric called infAP (inferred AP) which is used to approximate

average precision when the relevance judgments are incomplete [122].

3) bpref, defined as:

bpref =
1

R

∑

r

(1− |n ranked higher than r|
min(R,N)

), (1.2)

where R is the number of judged relevant documents, N is the number of judged

irrelevant documents, r is a relevant retrieved document, and n is a member of the

first R irrelevant retrieved documents. bpref computes a preference relation of whether

judged relevant documents are retrieved ahead of judged irrelevant documents. It is

based on the relative ranks of judged documents only [21].

4) R-prec, which is the precision after R documents have been retrieved (also

known as the break-even point), where R is the number of relevant documents for the

topic. It de-emphasizes the exact ranking of the retrieved relevant documents, though

it is highly correlated to MAP in practice.

5) NDCG, which stands for normalized discounted cumulative gain and is de-

signed for situations of nonbinary notions of relevance [76]. The cumulative gain (CG)

of a ranked list of size k is the total gain contributed from each relevant document in

this list. When a relevant document is ranked low in the rank list its gain towards CG

will be discounted, which lead to the the discounted cumulative gain (DCG). If we nor-

malize DCG by the DCG from the perfect ranking (i.e., when all relevant documents

appear at the top of the ranked list), we will have the NDCG which is formally defined

as

NDCG(q, k) =
1

DCGperfect(q, k)
·

k∑

i=1

2R(q,di) − 1

log(1 + i)
, (1.3)

where q is the query, R(q, di) is the relevance score of document at rank i, and log(1+i)

is the discounting factor.

Note that in the thesis, the evaluation scores are averaged over all queries in a

system run.
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In fact, for this thesis the ideal way to evaluate our retrieval systems is to

measure the time reduced for each specific task. Though due to limited resources we

are not available to take this ideal approach, we believe that the standard IR evaluation

metrics, such as those described above, can indirectly reflect the improvement on time

and efficiency. Intuitively, good IR systems can filter away most of the non-relevant

information which would otherwise be examined and removed manually. In addition,

several IR evaluation workshops (as will be described in Section 2.2) also use these

standard metrics to evaluate IR systems that perform the same or similar tasks.
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Chapter 2

RELATED WORK

In this chapter, we will highlight the related work in the fields of traditional

information retrieval (IR) and domain-specific IR .

2.1 Information Retrieval

Information retrieval is a very broad field, containing topics on representation,

storage, retrieval, ranking, evaluation, etc. of various media types, such as web pages,

images, and videos. In this section, we focus on reviewing relevant work on retrieval

models for text-based documents as they are the underpinning of our thesis work.

Before moving on, we first introduce some terminology. A document (D) in

information retrieval refers to the unit used in indexing and retrieval. It can be of

different media types or at different levels of granularity for a given type (e.g., books,

chapters, paragraphs, and sentences for text-based documents). A term (t) is the basic

element that constitutes a text-based document. A collection (C) is a set of documents

used to address users’ requests. Each request is an information need, i.e., a topic the

user desires to know more about. A user communicates an arbitrary information need

via a query (Q) to the search engine, and we call this an ad hoc retrieval task. A

relevant document is the one that the user perceives as containing information of value

with respect to their personal information need [76].

Next, we briefly review several representative IR models.
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2.1.1 Basic Retrieval Models

Boolean Retrieval Model

The simplest retrieval model is the boolean retrieval model in which we pose queries

as terms combined by boolean operators AND, OR, and NOT. In this model, a doc-

ument is essentially a set of terms, and the search engine returns an unordered list of

documents.

Vector Space Model

In contrast, the vector space model (VSM) allows free-text queries (i.e., terms with-

out boolean operators) and returns an ordered result set [94]. In VSM, we represent

documents and queries as vectors of features. Each feature is a term weight associated

with a term in the vocabulary and calculated by a function of the term statistics in the

document and the collection. The relevance score is usually computed by the cosine

similarity between the query vector and the document vector.

One popular weighting scheme for assigning term weights is TF-IDF weighting.

TF (term frequency) is the raw frequency of a term within a document [72]. It reflects

the intuition that key terms conveying the meanings of a document tend to occur

frequently within that document. IDF (inverse document frequency) estimates how

discriminative a term is [53]. It is defined as:

IDFt = log
N

dft
, (2.1)

where N is the size of the collection C, i.e., the total number of documents in C, and
dft is the number of documents in C that contain term t.

Okapi BM25 Model

Another classical retrieval model using TF and IDF is the Okapi BM25 model [102].

It is a probabilistic model and the ranking function is defined as:

score(D,Q) =

n∑

i=1

IDF(qi) ·
tfqi,D · (k1 + 1)

tfqi,D + k1 · (1− b+ b · |D|

avgdl
)
, (2.2)
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where qi is the ith query term, |D| is the document length, avgdl is the average docu-

ment length in the collection, and k1 and b are free parameters. The IDF(qi) weight is

usually defined as:

IDF(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
, (2.3)

where N is the total number of documents in the collection, and n(qi) is the number of

documents containing qi. The Okapi BM25 retrieval has been shown to perform well

on a wide range of collections [112, 93].

Query Likelihood Model

Language modeling (LM) approach [88, 48, 17, 82] in which we assign probabilities over

words produces a family of language-model-based retrieval methods. The very basic

one is the query likelihood language model [88] which scores documents for queries as

a function of the probability that query terms would be sampled (independently) from

an urn containing all the words in that document. Formally, the scoring function is a

sum of the logarithms of smoothed probabilities:

score(D,Q) = logP (Q|D) =
n∑

i=1

log
tfqi,D + µ

tfqi,C
|C|

|D|+ µ
, (2.4)

where qi is the ith term in query Q, n is the total number of terms in Q, |D| and
|C| are the document and collection lengths in words respectively, tfqi,D and tfqi,C are

the document and collection term frequencies of qi respectively, and µ is the Dirich-

let smoothing parameter [124]. Smoothing is a common technique to estimate the

probability of unseen words in the documents [23, 125, 124, 87].

The query likelihood method has been shown to perform well on a variety of

tasks, including adhoc retrieval [57, 124], cross-lingual information retrieval [120, 58],

distributed information retrieval [101, 119], query difficulty prediction [27], passage

retrieval [70], etc.
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Relevance Model

In contrast with the query likelihood model, we have the document likelihood model

as another LM-based model. Since there is much less text in the query to estimate a

language model, it is necessary to incorporate relevance information into this model.

One instance of the document likelihood model is the relevance model [59] which is

built upon pseudo-relevance feedback. The relevance model is estimated according to:

P (w|θ̂Q) ∝
1

|R|
∑

D∈R

P (w|θD)P (Q|θD), (2.5)

where R is the set of pseudo-relevant document. It has been shown that the LM

approach beat the BM25 method on a number of tasks [49].

2.1.2 Advanced Retrieval Models

Markov Random Field Model

In the query likelihood model, it is a strong assumption that query terms are generated

independently from the document language model. In reality, related terms are likely

to occur in close proximity to each other. The Markov random field (MRF) model [79]

improves upon query likelihood model by incorporating term proximity information. It

works by first constructing a graph that contains a document node, one node per query

term, and edges that represent dependencies among nodes. Then, MRF models the

joint distribution over the document random variable and query term random variables.

The ranking function of the MRF model is of the form:

PΛ(Q|D)
rank
=

∑

c∈T

λTfT (c) +
∑

c∈O

λOfO(c) +
∑

c∈O∪U

λUfU(c), (2.6)

where T is defined to be the set of 2-cliques containing the document node and a query

term node, O is the set of cliques involving the document node and two or more query

terms that appear contiguously in the query, and U is the set of cliques involving the

document node and two or more query terms that appear non-contiguously within the

query. f(c) is the feature function over clique c and λ’s are the feature weights. MRF
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model has been shown to consistently out-perform the standard unigram model across

a range of TREC test collections [79, 80].

Weighted Sequential Dependence Model

The weighted sequential dependence model (WSD) [15] extends the Markov Random

Field model (MRF) for information retrieval by automatically learning query concept

weights. In particular, the λ parameters in Equation 2.6 are trained using both endoge-

nous (based on target collection) and exogenous (based on external sources) features.

WSD has been shown to significantly outperform MRF on a number of corpora [15].

However, WSD and its variants [100, 113] have limitations due to that the improvement

comes from the weighting for the explicit query concepts. In other words, the latent

concepts associated with the underlying information need are totally discarded. The

parameterized query expansion (PQE) proposed by Bendersky et al. [16] addresses this

issue by learning weights for both explicit and latent query concepts. It outperforms

MRF and WSD on both newswire and web TREC corpora.

Positional Language Model

Another model that effectively uses term proximity information is the positional lan-

guage model (PLM) [74]. The PLM is estimated for each position based on propagated

counts of words within a document through a proximity-based density function. The

document relevance score is calculated by scores of its PLMs. PLM is further improved

by incorporating pseudo-relevance feedback [75].

Mixture of Relevance Models

Relevance modeling described at the end of Section 2.1.1 can be further improved

upon by leveraging information in external document collections [33]. The mixture

of relevance models (MRM) constructed in this way has been shown to achieve more

stable MAP improvement than traditional pseudo-relevance feedback across a range of

news and web collections. The term generation probability function is formally defined
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by:

P (w|θ̂Q) =
∑

Ci

kCi
P (Ci)
|RCi |

∑

D∈RCi

P (w|θD)P (Q|θD), (2.7)

where kCi is the normalization factor for the relevance model estimate using collection

Ci.

Divergence from Randomness

The Divergence from Randomness (DFR) [7] paradigm is a generalization of Harter’s

2-Poisson indexing-model [43]. The 2-Poisson model is based on the hypothesis that the

level of treatment of the informative words is witnessed by an elite set of documents, in

which these words occur to a relatively greater extent than in the rest of the documents.

On the other hand, the frequency of words in non-elite documents tent to follow a

random distribution.

2.2 Medical Information Retrieval

The medical information retrieval has received much attention in the IR research

community during the past decade. In this section, we will highlight a few related work.

Discussion on more specific work and approaches relevant to this thesis work will be

deferred to each of the remaining chapters.

2.2.1 ImageCLEFMed

The Medical Image Retrieval Challenge Evaluation1 (also known as Image-

CLEFmed), as part of the Cross Language Evaluation Forum (CLEF2), started in the

year of 2005. The goal of this workshop is to promote research on retrieval and classi-

fication of medical images. At the 10th year of this medical task, ImageCLEFmed was

organized outside Europe for the first time at the annual AMIA (American Medical In-

formatics Association) meeting in 2013. There are four tasks in 2013 ImageCLEFmed,

1 http://www.imageclef.org/2008/medical

2 http://www.clef-initiative.eu
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namely modality classification, compound figure separation, image-based retrieval, and

case-based retrieval [29].

In the modality classification, images are classified into medical modalities and

other images types, such as CT, X-Ray, PET, etc. The modality information is further

used in image retrieval to prune the search results by removing the false positives. The

compound figure separation task is to segment multi-panel figures into sub-figures so

that the image retrieval can be more accurate. In the image-based retrieval task, the

retrieving units are images but the queries are textual, semantic, or mixed queries.

Participants can leverage both textual and visual features of the images to design their

retrieval algorithms. In case-based retrieval, the task is to retrieve relevant medical

cases and images given a brief case description along with patient demographics, limited

symptoms, and test results.

2.2.2 TREC Genomics Track

The Text REtrieval Conference (TREC3) is an annual evaluation workshop held

at the National Institute of Standards and Technology (NIST) with the goal of pro-

viding a common experimental setting for researchers that want to work on particular

search tasks. Each year, there are up to 7 “tracks” devoted to different search tasks.

Organizers provide documents and information needs to participants, ensuring that all

participants are using the same data and working towards the same task. TREC orga-

nizers also oversee the collection of human relevance judgments, which are instrumental

in understanding the effectiveness of a search system.

The Genomics Track [5] took place annually at TREC from year 2003 to 2007.

The goal is to evaluate systems for information retrieval and related technologies in

the genomics domain. The task scenario is that of a user seeking to acquire new

knowledge in a sub-area of biology linked with genomics information (as opposed to

a domain expert seeking information in his/her area of expertise). The main task is

an ad hoc search task which evaluates manual, automatic, and interactive retrieval

3 http://trec.nist.gov/
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systems for full-text article retrieval and passage retrieval [45]. The other tasks include

text summarization, categorization, and question-answering, which partially rely on

the techniques used in the ad hoc search task.

2.2.3 Electronic Medical Record Search

As EMR become more prevalent, attempts have been made to transfer search

engine technology to EMR retrieval for various applications [41]. The EMERSE (Elec-

tronic Medical Record Search Engine) system, as one of the earliest and successful non-

commercial EMR search engines, has been used by medical professionals in a few hospi-

tals, health centers, and clinics since its initial introduction in 2005 [41, 98]. EMERSE

supports free-text queries and offers several advanced features such as query sugges-

tion and collaborative search [126]. Though EMERSE has not achieved widespread

adoption and there is little discussion about its search algorithms, a few interesting

research work have been done using the EMERSE system:

Seyfried et al. [98] compared EMERSE-facilitated chart reviews with manual

reviews, and concluded that using a well-designed EMR search engine for retrieving

information in free-text EMR can provide significant time saving while preserving re-

liability.

Yang et al. [121] analyzed a query log of the EMERSE system recorded over the

course of 4 years. One of their interesting findings is that the coverage of EMR query

terms by a meta-dictionary (containing all terms in Unified Medical Language System,

an English dictionary, and a medical dictionary) is much lower than the usual 85-90%

coverage of Web queries by English dictionaries. Thus, they suggested seeking beyond

the use of medical ontologies to enhance medical information retrieval.

Apart from these few attempts on improving EMR retrieval, methods emerging

from research on information retrieval have not been well explored, largely due to the

sensitivity of patient data, preventing its use by academic researchers. Fortunately,

TREC organized a Medical Records Track in 2011 & 2012 making a set of real medical
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records and human judgments of relevance to search queries available to the research

community.

Most TREC participants of Medical Records Track used domain-specific knowl-

edge to enhance retrieval. King et al. [55] annotated segments of the report text as

having specific properties/features. They also identified and indexed terms of medical

reports that appeared in the Unified Medical Language System (UMLS) Metathe-

saurus [20]. Meanwhile, they expanded original queries with related terms in UMLS

and several commercial medical reference encyclopedias. Their best run improved their

baseline by about 18%.

Goodwin et al. [39] used several external utilities for query expansion, including

PubMed Central Open Access Subset (a small portion of PubMed Central database),

Systematized Nomenclature of Medicine–Clinical Terms (SNOMED–CT) [103], and

UMLS. They found that using these external medical-related sources together improved

their baseline system performance.

Limsopatham et al. [67] made use of the ICD codes [84] in the reports and en-

riched reports with ICD code descriptions and related Wikipedia pages. They identified

medical concepts in both documents and queries based on medical-domain ontologies in

SNOMED-CT and Medical Subject Headings (MeSH), and expanded the concepts with

nearby concepts in the ontology hierarchies (i.e., trees in MeSH, ICD, and SNOMED).

They also obtained promising results.

Demner-Fushman et al. [31] expanded query terms with UMLS synonyms and

expanded drug related terms using RxNorm and Google search. They also expanded

terms in documents with their ancestors and children in the MeSH hierarchy. However,

their knowledge-based Lucene [1] runs was worse than the baseline Lucene run, though

they observed some improvement on their Essie [51] run. In a few other cases of

using query expansion, Daoud et al. [28] used UMLS, Wu et al. [116] used disease and

symptom descriptions from a healthcare website, and Schuemie et al. [97] used UMLS

and DrugBank [114]. However, they all obtained very little or no improvement over

their baseline runs.
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2.2.4 ShARe/CLEF eHealth Evaluation Lab

The ShARe/CLEF eHealth Evaluation Lab is another CLEF workshop4 that

aims to improve the accessability of health data. Its goal is to develop processing

methods and resources to enrich difficult-to-understand health text as well as their

evaluation setting. There were three tasks in 2013: 1) identification of disorders from

clinical reports and mapping of the SNOMED-CT disorders to UMLS codes, 2) map-

ping abbreviations and acronyms in clinical reports to UMLS codes, and 3) information

retrieval to address questions patients may have when reading clinical reports [38]. Task

3 is very relevant to this thesis work. We will use the test collection of Task 3 to eval-

uate our retrieval systems in Chapter 4 where we try to tackle the medical language

related issues in medical IR.

2.2.5 Biomedical Tools

Existing medical natural language processing (NLP) tools are handy for pre-

processing raw clinical and biomedical text, and thus gives us more flexibility in de-

signing our retrieval systems. Some of the well-known tools in biomedical field include

MedLee [34], cTakes [96], MetaMap [9], and HITEx [123], which are specifically de-

signed for recognizing medical terms and findings and mapping them to controlled

vocabularies.

As we will see, we use the MetaMap tool frequently for in the thesis work.

MetaMap was developed at the National Library of Medicine (NLM) to map biomedical

text to concepts in the UMLS Metathesaurus. It has been used by many TRECMedical

Records Track participants [90, 60, 81, 40]. Thus, we also use MetaMap so that our

results can be compared with others. Next, we briefly describe how MetaMap works

to get a sense of how reliable it is.

MetaMap’s basic procedure of generating a set of concept candidates for a piece

of text [10] can be summarized in the following steps:

4 https://sites.google.com/site/shareclefehealth/
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1. Parsing: text is parsed for identifying noun phrases.

2. Variants generation: variants of each noun phrase are generated where a

variant contains at least one of the noun phrase words.

3. Candidates generation: a candidate set is formed by including all UMLS

Metathesaurus strings that contain one of the variants.

4. Candidates scoring: each candidate is given a confidence score (a measure of

the quality of match between a phrase and a UMLS Metathesaurus string) based on

four metrics: centrality, variation, coverage, and cohesiveness.

5. Candidates merging: candidates from the disjoint parts of a noun phrase are

combined and re-evaluated for the confidence score.

The final candidates (i.e., concepts) are represented by the Concept Unique

Identifier (CUI) in UMLS Metathesaurus as shown in Table 2.1.

Table 2.1: CUI candidates for concept “hearing loss”.

Score CUI Description

1000 C0011053 hearing loss (Deafness) [Disease or Syndrome]
1000 C0018772 hearing loss (Hearing Loss, Partial) [Finding]
1000 C1384666 Hearing Loss (hearing impairment) [Finding]
861 C0018767 Hearing [Physiologic Function]
861 C1455844 hearing (Hearing examination finding) [Finding]
861 C1517945 Loss [Quantitative Concept]

The concept mapping in MetaMap is imperfect. Denny et al. [32] reported a

precision of 85% and a recall of 78% for MetaMap. Pratt and Yetisgen-Yildiz [89]

reported similar findings: 84.5% (“weak precision”) and 70.2% (“weak recall”) when

comparing MetaMap with human annotators.
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Chapter 3

EMR SEARCH - EVIDENCE AGGREGATION

In the cohort identification, due to the special document structure of EMR

and the one-to-many relationship between patients and their EMR, the evidence that

contributes to patient relevance can scatter in different fields of the same document

(e.g., in both meta-data fields and the clinical narrative field), distribute across multiple

documents (e.g. across reports from different hospital departments), and even spread

over a long time span. Therefore, how to merge and score the distributed evidence

becomes critical for improving the retrieval performance. In this chapter, we introduce

and evaluate several effective evidence aggregation methods that collect, weight, and

combine multi-level evidence in EMR for improving patient ranking.

3.1 Data and Task

We first briefly describe the dataset used for our study. We use the official test

collection from the TREC 2011 & 2012 Medical Records Track [111]. The test collection

contains 100,866 de-identified medical reports from the University of Pittsburgh NLP

Repository. These medical reports were gathered from multiple hospitals in the course

of one month. The retrieval task1 is an ad hoc search task for patient visits. A patient

visit to the hospital normally links to multiple medical reports generated from different

departments, meaning there is a 1-to-n relationship between visits and reports as shown

in Figure 3.1. Based on the report-to-visit mapping information provided by TREC,

we have 17,198 unique visits associated with 100,866 reports.

Each medical report is an XML file with a fixed set of fields2 as shown in

1 http://www-nlpir.nist.gov/projects/trecmed/2011/tm2011.html

2 http://www.dbmi.pitt.edu/nlp/report-repository
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From different

hospital

departments

repor

ts
reportsreports

reports

visitvisit visit

Patient 1 Patient 2 Patient 3

Figure 3.1: Patient visits to reports mapping. The number of reports associated with
each visit can vary from one to hundreds.

======================================================================

<report>

<checksum>20070209RAD-woewoefn-838-1342343139</checksum>

<subytpe>CHEST</subtype>

<type>RAD</type>

<chief_complaint>FELL OUT OF WHEELCHAIR</chief_complaint>

<admit_diagnosis>924.01</admit_diagnosis>

<discharge_diagnosis>924.01,E884.3,294.8</discharge_diagnosis>

...

<report_text>

This is a **AGE[65]-year-old male patient. ...EXAMINATION PERFORMED: ...

ONLY **DATAE[Feb 02 08] 300 HOURS CLINICAL HISTORY: Fall. FINDINGS:

Frontal views of the pelvis and specific oblique views of the right

hip show no fractures of dislocations. There is a protrusio acetabulum

on the left with chronic deformity of the acetabular margin and adjacent

femoral head with joint space narrowing. Vessel calcification is evident.

...

</report_text>

</report>

======================================================================

Figure 3.2: Sample medical report. Meta-data fields contain information about the
type, subtype, ICD-9 codes, etc. The main body contains clinical narratives.

Figure 3.2. The most important information resides in two diagnosis fields consisting

of ICD-9 (International Classification of Diseases, 9th Revision) codes, and one free-

text field containing doctors’ notes. Our search system will rely on evidence within
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these main fields to satisfy search users’ information needs.

TREC assessors developed 85 information needs (or “topics” in TREC termi-

nology). These needs were designed to require information mainly from the free-text

fields, i.e., topics are not answerable solely by the diagnostic codes. Topics are meant

to reflect the types of queries that might be used to identify cohorts for comparative

effectiveness research [111]. Table 3.1 shows several TREC topics as examples. The

topic usually specifies the patient’s gender, age group, condition, disease, treatment,

etc. Relevance judgments for the topics were also developed by TREC assessors based

on the pooled results from TREC participants. It turned out that 4 out of 85 topics had

too few known relevant visits and thus were dropped by TREC organizers. Therefore,

we will use 81 topics with their relevance judgments for our experiments.

Table 3.1: Example topics of Medical Records Track.

ID Topic

107 Patients with ductal carcinoma in situ (DCIS)
118 Adults who received a coronary stent during an admission
109 Women with osteopenia
112 Female patients with breast cancer with mastectomies during admission

In summary, the retrieval task is to find patients matching certain inclusion

criteria for clinical studies based on a set of medical reports.

3.2 Multi-level Evidence Aggregation

In this section, we will explore evidence at different document levels and intro-

duce several evidence aggregation methods.

Baseline Retrieval Model

We will build and evaluate the evidence aggregation methods on top of a baseline

retrieval model, the query likelihood (QL) language model, which has already been

described in Chap 2.1.1. For convenience , we formulate it here again:

score(D,Q) = logP (Q|D) =
n∑

i=1

log
tfqi,D + µ

tfqi,C
|C|

|D|+ µ
, (3.1)
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where qi is the ith term in query Q, n is the total number of terms in Q, |D| and
|C| are the document and collection lengths in words respectively, tfqi,D and tfqi,C are

the document and collection term frequencies of qi respectively, and µ is the Dirichlet

smoothing parameter. The reason for selecting QL model as our baseline is that it has

been shown to be a strong baseline compared with other TREC systems [127].

3.2.1 Field Level Evidence

As aforementioned, the main parts of a report are the doctor’s notes and the

diagnosis codes. Here we describe how we leverage ICD-9 codes in the retrieval model,

and how we remove some extraneous information from doctor’s notes.

Code Expansion: The “admit diagnosis” and “discharge diagnosis” fields con-

tain ICD-9 codes which, though mainly used for billing purposes, give a high level

summary of medical report content, and whose associated descriptions can provide

potentially useful terms for retrieval purpose. Thus, we expand ICD codes with their

corresponding descriptions3. For instance, we substitute code “428.1” with “LEFT

HEART FAILURE”. Then, if the query is “heart failure”, we will find a match in the

document after this substitution. We refer to this feature as ICD.

Negation Removal: The “report text” field contains clinical narratives. One

distinct feature of clinical narratives is that negation phrases are frequently used to

claim the absence of certain conditions or symptoms [22], such as “cannot tell”, “not

clear”, “without evidence”, etc. Negations may cause retrieval false positives. For

instance, a simple IR system will consider a document with the sentence “The patient

comes in with episodes of orthopnea and has ruled out for an acute coronary syndrome.”

as relevant to the query “acute coronary syndrome”. Thus, we use NegEx4 [42], an

open-source clinical negation detection tool, to remove all negated portions of the

sentences from the medical records before indexing. For instance, in the above example

3 https://drchrono.com/public_billing_code_search

4 http://code.google.com/p/negex/
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we will delete the phrase “ruled out for an acute coronary syndrome” from the original

report. We refer to this feature as NEG.

Age/Gender Filtering: We use simple regular expressions to search for age/gender

indication words and phrases in both the“report text” field and the topics. We use the

extracted age and gender information to filter from the retrieval set visits that do not

meet the inclusion criteria specified in the topics. We refer to this feature as AGF.

3.2.2 Report Level Evidence

Evidence in a visit may mainly exist in only a small proportion of all the asso-

ciated reports. This allows us to rely on the strongest evidence of a visit to estimate

its relevance. Thus, we use reports as the initial retrieval units (i.e., building an index

for reports and applying the retrieval model to each report), and then transform a

report ranking into a visit ranking based on the strongest report-level evidence, which

is equivalent to using the following report score merging function for ranking visits:

scoreRbM(V,Q) = fRbM({score(rV1 , Q), score(rV2 , Q), ...}), (3.2)

where rVj is a report associated with visit V based on the report-to-visit mapping,

score(rVj , Q) is the language modeling score of the report with respect to query Q, and

fRbM is the function for aggregating the scores. We will experiment with MAX, SUM,

and ANZ (averaging over non-zeros) for fRbM in Section 3.2.5.3. We name this evidence

aggregation strategy Retrieval-before-Merging (RbM). The merging process involved

in RbM corresponds to “merging I” in Figure 3.3.

3.2.3 Visit Level Evidence

Evidence may also spread near evenly across multiple reports, especially when

the information need is a complex one. Thus, our second strategy for aggregate evidence

is to first merge reports from a single visit field by field into a visit document and then

construct an index for visit documents, i.e., using visits as the retrieval units. With

this strategy, the language model built on a merged document can naturally combine
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Figure 3.3: Overview of merging multi-level evidence: ICD, NEG, and AFG at the
field level, RbM at the report level, MbR at the visit level, and VRM at the top level.

the evidence scattered across multiple reports. Furthermore, this strategy can directly

lead to a ranking of visits which are the desired retrieval units. We call this second

evidence aggregation strategy Merging-before-Retrieval (MbR). The merging process

involved in MbR corresponds to “merging II” in Figure 3.3.

3.2.4 Top Level Evidence

RbM and MbR described above are two different strategies for aggregating ev-

idence and ranking visits. RbM and MbR complement each other because: the for-

mer can leverage the strongest evidence (which may be diluted in MbR) to estimate

relevance while the latter can naturally aggregate evidence spreading across multiple

reports which would be challenging to do at the report-level. This complementing char-

acteristic leads to our third evidence aggregation method in which we take advantage

of both RbM and MbR by merging their visit rankings, as demonstrated by “merging

III” in Figure 3.3. We call the third strategy Visit-Ranking-Merging (VRM), which is

formally defined by:

scoreVRM(V,Q) = fVRM(scoreRbM(V,Q), scoreMbR(V,Q)), (3.3)

where scoreRbM(V ) and scoreMbR(V ) are the language modeling scores for visit V with

respect to query Q in the two visit rankings obtained by RbM and MbR respectively,

fVRM is the function for score aggregation, and scoreVRM(V,Q) is the final score of visit
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V in the merged ranking. We will try different methods for fVRM such as CombMNZ,

CombSUM, and CombMAX in Section 3.2.5.4 below.

3.2.5 Evaluation

In this section, we will evaluate each of the evidence aggregation strategies

described in the previous sections.

3.2.5.1 Experimental Setup

We use the Indri5 [104] retrieval system for indexing and retrieving. In par-

ticular, we use the Porter stemmer to stem words in both reports and queries, and

use a simple standard medical stoplist [44] for stopping words in queries only. Then

we conduct 9-fold cross-validation and use top 1000 retrieved visits6 for each query

to evaluate our system under different evidence aggregation settings on top of the QL

model.

Particularly for RbM we initially retrieve top 20000 reports to make sure that

we have 1000 visits after merging. The topics were initially ordered randomly by NIST

and assigned unique ID’s (101-185). Thus, we split up the 81 topics into 9 folds in the

order of their original ID’s, i.e., we put topics 101-109 into the first fold, 110-108 to

the second fold, and so on.

In each iteration of the 9-fold cross validation, we train our system on 72 queries

to obtain the best setting of the Dirichlet smoothing parameter µ with respect to MAP

by sweeping over the parameter space [1000, 20000] with a step size of 2000, and then

generate a ranking for each of the remaining 9 queries based on the trained system.

When complete, we have full rankings for all 81 topics as a test set. We evaluate the

system based on the average evaluation scores over all 81 topics.

5 http://www.lemurproject.org/indri/

6 The guideline of TREC medical records track requires each retrieval set contain no
more than 1000 visits.
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We train our systems on MAP. This is because: 1) training on MAP is most

commonly used in IR to improve retrieval performance; 2) we find that training on MAP

improves the retrieval performance on other evaluation metrics as well while training

on other evaluation measures does not improve the overall performance. Thus, MAP

will be the primary evaluation measure in this work. In fact, MAP correlates well with

other evaluation measures as we will show in the next section.

To access the statistical significance of differences in the performance of two

systems, we perform one-tailed paired t-test for MAP (since we train systems on MAP).

3.2.5.2 Impact of Field Level Evidence

In Section 3.2.1, we introduced three field level features, namely ICD, NEG, and

AGF. Now we evaluate their impact on the retrieval performance by varying system

settings. For each one of the three evidence aggregation methods (i.e., RbM, MbR,

and VRM), we start with the raw medical corpus and the QL model, and define this

setting as a baseline. Then we add field level features on top of the baseline.

Table 3.2 shows that both ICD and NEG significantly improve the baseline MAP

score. However, we observe very little gain from AGF. This is because our test collection

contains only a few topics that have age and gender restrictions. Nevertheless, each

field level feature presents consistent improvement across different evidence aggregation

levels. Furthermore, combining three medical features makes a pronounced, positive

impact on the retrieval performance. Since all three field level features are effective,

our systems will use them by default in the rest of this thesis unless otherwise specified.

3.2.5.3 Score Merging for RbM

As mentioned in Section 3.2.2, we have several options for choosing the score

merging function fRbM in Equation 3.2 (i.e., “merging I” in Figure 3.3) for RbM. Now
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Table 3.2: Impact of field level features. Scores shown below are all MAP scores, and
they are based on 9-fold cross validation on the 81 topics from 2011 & 2012 Medical
Records Track. 4 indicates statistically significant difference (p < 0.05) from the
baseline MAP score in the corresponding row. “FIELD” is the combination of ICD,
NEG, and AGF features. We will discuss the settings for RbM and VRM (i.e., the
MAX and CombWEG merging algorithms) in Sections 3.2.5.3 and 3.2.5.4 respectively.

System Setting BL (baseline) BL+AGF BL+NEG BL+ICD BL+FIELD

RbM (MAX) 0.327 0.334 0.3394 0.3424 0.3554

MbR 0.341 0.347 0.3594 0.3634 0.3824

VRM (CombWEG) 0.352 0.356 0.3734 0.3764 0.3954

we describe them formally below:

MAX: scoreRbM(V,Q) = max({score(rVj , Q)})

SUM: scoreRbM(V,Q) =
∑

j

score(rVj , Q)

ANZ: scoreRbM(V,Q) =

∑
j score(r

V
j , Q)

|{score(rVj , Q) 6= 0}|

where again score(rVj , Q) is the language modeling score of the report rVj (associated

with visit V ) with respect to query Q. ANZ stands for “Averaging over Non-Zeros”,

meaning we only consider reports containing at least one query term. MAX, SUM,

and ANZ are similar to CombMAX, CombSUM, and CombANZ proposed by Fox and

Shaw [99]. The difference is that CombMAX, CombSUM and CombANZ are used for

merging multiple retrieval runs.

Table 3.3: Score merging for RbM. 4 indicates statistically significant difference (p <
0.05) from the other MAP scores. The scores are based on 5-fold cross validation on
the 34 topics from 2011 Medical Records Track.

MAX (selected) SUM ANZ

MAP Score 0.3554 0.293 0.3077

Table 3.3 shows that MAX significantly outperforms SUM and ANZ. This con-

firms our assumption that we can rely on the strongest evidence (i.e, the most relevant
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report) of a visit to estimate the relevance of that visit. Thus, we will use MAX as the

default setting for score merging in RbM in the rest of this thesis.

3.2.5.4 Score Merging for VRM

Similarly, we also have several options for choosing the score merging function

fVRM in Equation 3.3 (i.e., “merging III” in Figure 3.3) for VRM, such as CombMNZ,

CombANZ [99]. In our case, we are only merging two rankings. Thus, the merging

methods are specified as follows:

CombMNZ: scoreVRM(V,Q) = NV · [scoreRbM(V,Q) + scoreMbR(V,Q)]

CombSUM: scoreVRM(V,Q) = scoreRbM(V,Q) + scoreMbR(V,Q)

CombANZ: scoreVRM(V,Q) =
scoreRbM(V,Q) + scoreMbR(V,Q)

NV

CombWEG: scoreVRM(V,Q) = λvrm · scoreRbM(V,Q) + (1− λvrm) · scoreMbR(V,Q)

where scoreVRM(V,Q) is the merged score for visit V , and scoreRbM(V,Q) and scoreMbR(V,Q)

are the scores for V in two different visit rankings as demonstrated in Figure 3.3, and

NV is the number of rankings that have V in the top 1000 retrieved visits. Note that

scoreMbR/RbM(V,Q) = 0 if V does not appear in the top 1000 retrieved. CombSUM is

a special case of CombWEG. We train λvrm using cross validation within the range of

(0.1, 1.0) with a step size of 0.1.

We compare the performance of these merging methods using MAP and P10 in

Table 3.4. As we can see, CombWEG, CombMNZ and CombSUM achieve comparable

performance, and are better than CombMAX and CombANZ. Thus, we can infer that

a good aggregation strategy for “merge III” should favor visits that appear in both

rankings. We use CombWEG as the default merging method for VRM for the rest of

this chapter.
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Table 3.4: Score merging for VRM. CombWEG, CombMNZ, and CombSUM achieve
comparable performance, and are better than CombMAX and CombANZ, which infers
that a good merging strategy for VRM should favor visits that appear in both rankings.
The scores are based on 5-fold cross validation on the 35 topics from 2011 Medical
Records Track.

Method MAP P10

CombWEG (selected) 0.395 0.582
CombSUM 0.393 (different from CombWEG at level p < 0.10) 0.572
CombMNZ 0.393 (different from CombWEG at level p < 0.10) 0.572
CombMAX 0.368 (different from CombWEG at level p < 0.05) 0.547
CombANZ 0.367 (different from CombWEG at level p < 0.05) 0.556

3.2.5.5 Performance Comparison

Now we compare the performance of RbM, MbR, and VRM since each one

of them can produce a visit ranking as shown in Figure 3.3. Table 3.5 shows that

VRM is significantly better than MbR and RbM on MAP, which means that merging

visit rankings as the top-level evidence aggregation strategy boosts the retrieval per-

formance significantly. This confirms our assumption in Section 3.2.4 that RbM and

MbR complement each other and their combination brings further improvement.

Table 3.5: Evidence Aggregation Methods. The scores are based on 5-fold cross val-
idation on the 35 topics from 2011 Medical Records Track. 4 indicates statistically
significant difference (p < 0.05) from the other MAP scores. RbM and MbR comple-
ment each other and their combination brings further improvement.

System MAP bpref P10 Rprec

RbM 0.355 0.436 0.546 0.386
MbR 0.382 0.463 0.563 0.400
VRM 0.3954 0.469 0.582 0.413

3.3 Adaptive Evidence Aggregation

Intuitively, different queries can have different forms of evidence distribution.

For some queries the evidence may concentrate in only a few associated reports while

for others the evidence may spread near uniformly across many reports. As we have

seen, RbM focuses on dealing with the former situation using the local information
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each individual report while MbR mainly handles the latter using global information

that comes from the combined reports. It would be beneficial to find a balance between

RbM and MbR with respect to different queries, i.e., the function fVRM in Equation 3.3

needs to be adaptive to the query.

3.3.1 Query-adaptive Scoring

Therefore, we propose a new query-adaptive scoring function for fVRM as shown

below:

scoreVRM-Adaptive(V,Q) = αQ · scoreR(V,Q) + (1− αQ) · scoreV(V,Q), (3.4)

where scoreR(V,Q) and scoreV(V,Q) are the relevance scores of document V from

report-based and visit-based retrievals respectively, and αQ is the query-adaptive co-

efficient for scoring merging. If we can adjust αQ appropriately, Equation 3.4 should

be able to deal with the two extreme evidence distribution cases mentioned above and

others between those two cases. This idea is also illustrated visually in Figure 3.4.

R  

       =  visit V repor

ts 

n 1 

reports 

Strategy 1: assuming strong evidence in a single report of a visit V 

strong 

evidence   
= max(score( ), score( ), )  scoring 

Strategy 2: assuming evidence are scattered across multiple reports of a visit V 

repor

ts scattered 

evidence 

visitDoc merging  = score(visitDoc, ) scoring 

Local 

Global 

Figure 3.4: Adaptive evidence aggregation. RbM uses local information for concen-
trated evidence while MbR uses global information to deal with scattered evidence.
αQ is the query-adaptive coefficient for score merging.
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3.3.2 Learning Algorithm

We propose to adaptively set αQ with respect to different queries by learning

the weight αQ based on a set of features.

In particular, we can view αQ as a mixing probability: the probability that the

evidence clusters in only one report rather than spreads across multiple reports. Then,

assuming the log-odds of that probability can be expressed as a linear combination of

feature values, we may write:

log
αQ

1− αQ

= β0 +
m∑

i=1

βixi + εQ (3.5)

where β0 is a model intercept (or bias term), xi is the value of feature number i, βi is

the weight coefficient of that feature, and εQ is a slack variable.

This is essentially a logistic regression model7. Logistic regression is fit using

iteratively reweighted least squares to find the values of the β coefficients that are the

best fit to training data. Given feature values and their β coefficients, we can then

predict the mixing probability αQ for new queries.

3.3.3 Features

We propose 14 features that are possibly related to the evidence distribution in

visits, and can be used to predict the weight αQ in Equation 3.4. All these features

are based on characteristics of the medical concepts contained in the query. We de-

tect these medical concepts using MetaMap [9], a medical NLP tool developed at the

National Library of Medicine (NLM) to map biomedical text to concepts in the Uni-

fied Medical Language System (UMLS) Metathesaurus. The concepts are represented

by the Concept Unique Identifier (CUI) in UMLS Metathesaurus as already shown in

Section 2.2.5. Thus, we use QC to represent a concept query that is converted from

the original text query Q and contains only CUIs. Next, we describe these 14 features

in detail:

7
While logistic regression is often used for 0/1 classification problems, it can also be used when the target variable is

a real number between 0 and 1. In this case it is sometimes called a “quasibinomial” model.
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1. Length of the query

Intuitively, evidence is more likely to resides across reports for long queries. Thus, we

use the length of query |Q| as the feature to estimate the evidence distribution. It is

defined formally as |Q| =
∑

w∈Q cnt(w,Q), where c(w,Q) is the count of term w in Q.

2. Number of concepts in the query

Similarly, if a query contains more medical concepts, it is more likely that the evi-

dence distributes across multiple reports. We define this feature formally as |QC | =
∑

wc∈QC
cnt(wc, QC), where cnt(wc, QC) is the count of concept term wc in QC . |QC | is

a better feature than |Q| because if the query contains a medical concept whose name

is very long then |Q| might not be a good indicator of the evidence distribution.

3. Broad/narrow query concepts

A text query can contain several medical concepts, for each of which the MetaMap

program will return 1 to 10 candidates. We hypothesize that a concept with more can-

didates is less specific, and thus is more likely to be a broad or ambiguous concept and

tends to appear in multiple reports. Thus, the average number of returned MetaMap

candidates for concepts in a query may be a good indicator of evidence distribution.

We define this feature as RC =
∑

wc∈QC
|Meta(wc)|

|QC |
, where |QC | is the original concept

query length (i.e., the length before expansion), |Meta(wc)| is the number of concept

candidates returned by MetaMap for concept term wc in concept query QC .

4. Semantic similarity among query concepts

Intuitively, if QC contains concepts that are semantically close to each other, the as-

sociated evidence tends to co-occur in the same report. However, if the concepts are

semantically distant, the corresponding evidence may tend to distribute across reports.

Therefore, we use the semantic distance among query concepts to estimate how the

evidence distributes.

In particular, we use YTEX8 to measure semantic similarity. Given a pair of

8
http://code.google.com/p/ytex/wiki/SemanticSim_V06
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UMLS concepts, YTEX can produce knowledge based and distributional based simi-

larity measures. The former uses knowledge sources such as dictionaries, taxonomies,

and semantic networks, while the latter mainly uses the distribution of concepts within

some domain-specific corpus [36].

We use the 11 measures listed in Table 3.6 as our features. Garla and Brandt

provide a detailed overview [36] of these semantic similarity measures.

Table 3.6: Semantic similarity measures for medical concepts in UMLS.

Type Method Notation Name

Knowledge-based

Path-Finding

WUPALMER Wu & Palmer
LCH Leacock & Chodorow
PATH Path
RADA Rada

Intrinsic IC based

IC LIN Lin
IC LCH Leacock & Chodorow
IC PATH Jiang & Conrath
IC RADA Rada
JACCARD Jaccard
SOKAL Sokal & Sneath

Distributional-based Corpus IC based CIC LIN Lin

For each query and each specific measure, we take the mean of the semantic

similarity scores from all possible UMLS concept pairs in the query as one feature.

3.3.4 Evaluation

3.3.4.1 Experimental Setup

We use the Indri retrieval system for indexing and retrieving. In particular, we

use the Porter stemmer to stem words in both text documents and queries, and use a

standard medical stoplist [44] for stopping words in queries only.

To make it more interesting and challenging, we build this adaptive VRM

method on top of an advanced model called CME model (which will be described

in Section 4.1) as a stronger baseline than the QL model. The collections used for

query expansion in CME are the ClueWeb09 Category B corpus, the 2009 Genomics
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Track corpus, 2012 Medical Subject Headings (MeSH), and the medical records corpus

itself. We will describe these collections in detail in Section 4.2.2. Both the report and

visit-based retrievals (i.e., RbM and MbR) will use this setting.

Because the focus of Section 3.3 is to evaluate the adaptive scoring Function 3.4,

we set CME model parameters to some default values, and we use the same set of

parameter values for both the report and visit-based retrievals. In particular, we set

the Dirichlet smoothing parameter µ to 2500. For the MRF model in CME, we set

the feature weights (λT , λO, λU) to (0.8, 0.1, 0.1). For the EMRM model in CME,

we take take the top-weighted 10 terms from the top-ranked 50 documents for each

expansion collection. Again, the details about these model parameter will be described

in Section 4.1 when we introduce the advanced models for tackling the medical language

related problems in EMR search. For now the reader should be fine without a full

understanding of CME.

To evaluate our learning algorithm as described in Section 3.3.2, we first obtain

the optimal coefficient αQ-opt for each topic Q by sweeping [0, 1] (i.e., the valid range

of αQ) at a step size of 0.1. Then we conduct leave-one-out cross-validation (LOOCV),

in each iteration of which the system predicts the coefficient αQ for one new topic

based on αQ-opt’s for the other 80 topics. With limited topics available for learning a

relatively complex prediction model, using LOOCV can maximize the size of training

data we can use in each iteration of the cross-validation, and lead to a better estimate

for each feature weight.

Similar to the setup in Section 3.2.5.1, we train our systems onMAP and perform

one-tailed paired t-test for MAP to compare the performance of two systems. We report

scores for MAP, R-precision (Rprec), bpref, and precision at rank 10 (P10).

3.3.4.2 Feature Selection

To choose a good subset of the 14 features, we take a greedy approach in which

we start with a full set of features and iteratively eliminate exactly one feature at a

time that has the greatest negative impact on the retrieval performance until when
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further removing any feature will degrade the performance. The algorithm for this

greedy feature elimination is formally described below:

Require:

(1) n = 14; F ← ∪ni=1fi (fi is the ith feature)

(2) compute score MAPn using F in LOOCV

while |F| > 1 do

k ← 0

for fi ∈ F do

F ′ ← F − fi; compute MAP using F ′ in LOOCV

if MAP ≥ MAPn then

k = i; MAPn−1 ← MAP

end if

if k = 0 then

return F
end if

n← n− 1

end for

end while

return F

After the above feature set pruning step, there are 8 features left as shown in

Table 3.7. We further study the importance of each feature by analyzing the prediction

model trained in a randomly selected iteration of LOOCV using these 8 features. Based

on the statistical significance of each feature as shown in Table 3.7, we can infer that:

1) All the intrinsic IC based features except IC LCH are in the pruned feature

set, indicating that this type of similarity measures is effective for predicting αQ. In

fact, the intrinsic IC similarity measure incorporates taxonomical evidence explicitly

modeled in ontologies (such as the number of leaves/hyponyms and subsumers), which
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Table 3.7: Features in the pruned set using LOOCV, sorted by their statistical signifi-
cance scores.

Feature Significance Feature Significance

IC RADA 0.0112 RC 0.0654
WUPALMER 0.0299 SOKAL 0.0671

RADA 0.0368 IC LIN 0.0824
JACCARD 0.0647 IC PATH 0.0876

are not captured by the path-finding based measure. Furthermore, the intrinsic IC

similarity measure does not depend on the availability of domain corpora, thus is con-

sidered more scalable and easily applicable than the distributional-based measure [95].

2) RC is an informative feature though it only uses similarity information about

each query concept with its neighbors (rather than with other query concepts) in the

semantic network.

3) Neither |Q| nor |QC | is in the pruned set, suggesting that non-semantic-

similarity-based features are generally not useful for estimating the evidence distribu-

tion.

4) RADA is a feature that might worth further exploration because both the

Path-finding based and the intrinsic IC based RADA features are in the pruned set.

In summary, the most important characteristic of a good feature for predicting

αQ is that the feature should capture the ambiguity or broadness of each individual

concept term in Qc or it should capture the relationship (i.e., semantic distance) among

query concepts.

3.3.4.3 Adaptive Weighting

Fixed Weighting

We first evaluate the performance of Equation 3.4 when α is fixed (i.e., not

adaptive). In each iteration of the LOOCV, we sweep α from 0 to 1 with a step size

of 0.1 to get the best value setting for α on the 80 training topics, and then use the

trained α value to test the single testing topic.
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We show the results in the “Fixed-weighting” row of Table 3.8. Note that this

system corresponds to udelWEG [129] which is one of the top-ranked 2012 Medical

Records Track systems.

Optimal Weighting

We obtain the optimal αQ-opt for each topic separately by sweeping α from 0

to 1 with a step size of 0.1. Then, we use the αQ-opt’s to compute the best retrieval

performance (i.e., an upper-bound) Equation 3.4 can possibly achieve, as shown in the

‘Optimal-weighting’ row of Table 3.8.

We also show the sensitivity of α by plotting the MAP score of several randomly

selected topics with a varying α. Figure 3.5 shows that the retrieval performance differs

significantly with respect to different settings of α, and the αQ-opt can be very different

for different topics, which confirms the necessity of making VRM query-adaptive.
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Figure 3.5: Sensitivity of retrieval performance to varying α for different topics. This
indicates that making VRM query-adaptive would be beneficial.
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Table 3.8: Performance comparison. A superscript on the MAP score of system X
corresponds to the initial of system Y, and indicates statistical significance (p < 0.05)
in the MAP difference between X and Y. The last column is the mean square error of
the predicted weights. ‘Fixed-weighting’ corresponds to one of the top-ranked TREC
systems as mentioned in Sections 3.3.4.1 and 3.3.4.3.

System MAP R-prec bpref P10 Pred. MSE

Visit-based 0.4122 0.422 0.499 0.619 –
Report-based 0.4354V 0.435 0.511 0.607 –
Fixed-weighting 0.4472V,R 0.443 0.520 0.631 0.128
Adaptive-weighting 0.4485V,R 0.447 0.523 0.642 0.125
Optimal-weighting 0.4639V,R,F,A 0.457 0.539 0.656 0.000

Performance Comparison

Table 3.8 shows performance comparison of our adaptive merging method with

fixed-weighting, optimal-weighting, and two other baselines (report-based retrieval and

visit-based retrieval). Our adaptive merging method is better than the fixed weighting

method on all the evaluation metrics. The improvement is not statistically significant

(p = 0.191), possibly because 81 topics may not be enough to train a good prediction

model for our adaptive weighting method. In addition, the data are slightly skewed as

Figure 3.6 showing that αQ-opt = 1 or 0.9 on about one third of the topics.

Figure 3.6: Distribution of topics against αQ-opt.
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3.4 Related Work

There are a few relevant work that specifically deal with the distributed evidence

in the EMR using the same TREC Medical Records Track dataset. Limsopatham et

al. [64] explored using the type of medical records for enhancing retrieval performance.

They demonstrated that incorporating department level evidence of the medical reports

in their extended voting model and federated search model could improve the retrieval

effectiveness.

More recently, they [65] proposed a new method which learns to selectively

choose between a patient model and a document model based on a binary classifier

built on top of features that are indicative of query difficulties. They implemented

the method in Terrier [85]. Their results showed significant improvements over several

strong baselines such as CombSUM and ComMAX.

Koopman [56] also discussed related issues about the the influences of document

length for EMR retrieval. They concluded that the number of reports (or the length

of the visit documents) does not correlate with the relevance of the visits.

3.5 Conclusion

In this chapter, we have described and evaluated a number of aggregation strate-

gies for documents formed by EMR at different granularities. At the field level, we

explored three features, namely ICD-9 code expansion (ICD), negation detection and

removal (NEG), and age/gender filtering (AGF). In particular, ICD focus on improving

the recall since it expand the medical record with helpful words that summarizes the

medical report. On the other hand, NEG and AGF improves the recall as the former

prevents negative instances from being retrieved while the latter removes false positives

in the retrieval set.

At the report level, we experimented with SUM, MAX, and ANZ as the com-

bination strategy for RbM (Retrieval-before-Merging). MAX outperforms SUM and

ANZ significantly, which indicates that we can indeed rely on the strongest local evi-

dence (i.e., the single most relevant report of each visit) to measure the relevance of the

38



visits. RbM works best for queries whose corresponding evidence tend to concentrate

in a single report.

At the visit level, we aggregated evidence by merging reports for a single visit

field by field into a large visit document, and then perform retrieval against an index of

visits. We call this method MbR (Merging-before-Retrieval). MbR scores a visit based

on the global statistics for that visit. MbR works best for queries whose corresponding

evidence tend to distribute across multiple reports.

Finally at the top/patient level, we introduced and examined both the basic

merging methods (i.e., CombSUM, CombMNZ, CombMAX, and CombANZ) and the

advanced method (query-adaptive scoring) for VRM (Visit-Ranking-Merging). In par-

ticular, CombWEG, CombMNZ, and CombSUM achieve comparable performance, and

are better than CombMAX and CombANZ, which infers that a good merging strategy

for VRM should favor visits that appear in both rankings. That further confirms the

necessity to assess the relevance of a visit from both the local (i.e. report level) and

global (i.e., visit level) perspectives.

For the adaptive VRM, we studied features that are useful for predicting the

evidence distribution in visits with respect to specific queries. In general, it is beneficial

to include features that measure the semantic similarity of query concepts (i.e., distance

among query concepts in medical ontology), such as the path-finding and intrinsic IC

based similarity measures.
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Chapter 4

EMR SEARCH - MEDICAL LANGUAGE

We have discussed a few medical language related issues that hurt search per-

formance in Chapter 1. Among them, problems related to polysemy and synonym in

medical text are the most common ones.

Polysemy is the capacity of a word to have different meanings under different

context. For example, the word “cold” can mean the temperature, or a kind of sensa-

tion, or a disease. The abbreviation “PCP” can stand for the drug “phencyclidine”,

the disease “pneumocystis carinii pneumonia”, or even an individual – the “primary

care physician”. Polysemy causes ambiguity and consequently hurts precision as the

number of false positives increases in the search results.

On the other hand, synonymy leads to vocabulary gaps between queries and doc-

uments, and eventually brings down the recall. For example, given the query “smoker”,

a simple unigram-matching-based search system will not be able to retrieve documents

that contain the phrase “tobacco user” but without the word “smoker” or “smokers”.

Furthermore, due to the richness of synonym in medical language, medical professionals

often find it difficult to formulate a satisfying query for their information needs [121],

which suggests that a special search engine is highly desired that can automatically

expand the query with related terms to mitigate vocabulary mismatch.

Therefore, in this chapter we will introduce and evaluate several retrieval models

specifically designed for alleviating the polysemy and synonymy related problems in

medical IR.
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4.1 Retrieval Models

We use the query likelihood (QL) language model (which we have already seen

in the previous two chapters) as our baseline model. For convenience, we formulate it

here again:

score(D,Q) = logP (Q|D) =

n∑

i=1

log
tfqi,D + µ

tfqi,C
|C|

|D|+ µ
, (4.1)

where qi is the ith term in query Q, n is the total number of terms in Q, |D| and
|C| are the document and collection lengths in words respectively, tfqi,D and tfqi,C are

the document and collection term frequencies of qi respectively, and µ is the Dirichlet

smoothing parameter. The reason for selecting QL model as our baseline is that it has

been shown to be a strong baseline compared with other TREC systems [127]. Next,

we will look at several advanced models.

4.1.1 Markov Random Field Model

To mitigate the polysemy issue, we use the Markov random field (MRF) model

proposed by Metzler and Croft [79] to model term dependencies. The intuition is

that medical queries usually contain phases that describe conditions, symptoms, drug

names, treatments, etc. These query terms are likely to occur in close proximity to each

other in the relevant documents. In addition, MRF’s ability to incorporate contextual

information can disambiguate word senses to some extent.

MRF has been shown to be very effective for improving web search and news

search, but has not been tested in the biomedical domain. The MRF model works

by first constructing a graph that contains a document node, one node per query

term, and edges that represent dependencies among nodes, as shown in Figure 4.1b.

Then, MRF models the joint distribution over the document random variable and

query term random variables. We use their sequential dependence model in particular,

which means edges exit only between adjacent query terms nodes in addition to those

connecting every query term node to the document node. MRF can be viewed as an

extension of the QL model as the former considers dependence between query terms
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Figure 4.1: Model Comparison I. MRF can be viewed as an extension of QL by incor-
porating term dependence features.

and the latter simply assumes independence between query terms, as illustrated by

Figure 4.1.

The ranking function of the MRF model is of the form:

PΛ(Q|D)
rank
=

∑

c∈T

λTfT (c) +
∑

c∈O

λOfO(c) +
∑

c∈O∪U

λUfU(c), (4.2)

where T is defined to be the set of 2-cliques containing the document node and a query

term node, O is the set of cliques involving the document node and two or more query

terms that appear contiguously in the query, and U is the set of cliques involving the

document node and two or more query terms that appear non-contiguously within the

query. f(c) is the feature function over clique c. λT is the weight given to the original

bag-of-words query, λO the weight given to ordered phrases, and λU the weight given

to unordered phrases.

4.1.2 Mixture of Relevance Models and Its Extension

4.1.3 MRM for Query Expansion

To tackle the synonymy issue, we expand the query with additional “related”

terms (also called expansion terms) that are derived from a relevance model θQ, which
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itself is built upon top-ranked k documents from the target collection (i.e., the same

collection used for retrieval) with respect to the query.

Relevance modeling can be further improved upon by leveraging information

in other document collections [33, 130]. Specifically, we can form relevance models

for two or more additional collections, then expand the query using those models, as

illustrated in Figure 4.2. This leads to another advanced model called Mixture of

Relevance Models (MRM).

 

 

  

 

Expansion 

Collection 

C 

(a) Relevance model

 

   

   

(b) Mixture of relevance models

Figure 4.2: Model Comparison II. MRM model is an extension of the relevance model.

To achieve better performance, we linearly interpolate the mixture of relevance

models with the maximum likelihood (ML) query estimate by formulating the equation:

P (w|θQ) = λQ

#(w,Q)

|Q| +
∑

C

λCP (w|θ̂Q,C), (4.3)

where the first part is the weighted ML query estimate for word w and the second part

represents the mixture of relevance models. In particular, P (w|θ̂Q,C) is the probability

of w in the estimated relevance model θ̂ built upon top-ranked documents in expansion

collection C. λ’s are collection weights and λQ +
∑

C λC = 1. Mixing the relevance

models with the ML model is a common technique to prevent query drift by assigning

more weight to the original query terms in the ML model. In fact, Equation 4.3 reduces

to the well-known variant of the relevance model, the RM3 model [6], when there is

only one relevance model.
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We implemented MRM in Indri [104] which naturally supports such queries

with the “#weight” operator; we implement Equation 4.3 in Indri by formulating a

query of the following format:

#weight(

λQ #combine(w1 w2 ... w|Q|)

λC1#weight(p11 e11 p12 e12 ... p1m e1m)

...

λCn
#weight(pn1 en1 pn2 en2 ... pnm enm)

).

Here wi represents a term in the original user query; eij represents the jth

expansion term (in decreasing order of probability pij) from collection Ci. n is the

number of expansion collections, and m is the number of terms to expand with. The

“#combine(w1 w2 ... w|Q|)” phrase corresponds to the ML query estimate while the

“#weight(pi1 ei1 pi2 ei2 ... pim eim)” phrase corresponds to the estimate of relevance

model θ̂Q,Ci
. Note that p will be automatically normalized by the “#weight” operator

in Indri. We will explain how to obtain expansion terms e and estimate their weights

p shortly.

Thus, an expanded query based on two expansion collections when the values

of λ’s are specified as (0.7, 0.2, 0.1) looks like the following:

#weight(

0.7 #combine( female breast cancer mastectomies admission )

0.2 #weight( 0.225 mastectomy 0.145 women 0.110 risk

0.107 prophylactic 0.101 bct 0.074 radiate 0.068 therapy

0.062 radiotherapy 0.058 surgery 0.050 adjuvant )

0.1 #weight( 0.211 mammographic 0.159 tram 0.101 dci

0.116 mammography 0.93 flap 0.082 mammogram

0.068 duct 0.063 biopsy 0.059 axillary 0.048 recurrence )

).
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4.1.4 Extended MRM

Now we make several extensions on top of the traditional MRM: 1) we choose

external expansion collections from different domains rather than from the same (i.e.,

clinical) domain as the target collection. As we will show in Section 4.2.2 that we test

a variety of external collections, ranging from general web datasets to domain-specific

datasets, and from small to large datasets. By doing so, we can derive a diversified set

of query related expansion terms, and consequently reduce the vocabulary gap caused

by medical synonymy; 2) we use information beyond the term frequency (tf) statistics

to weight the expansion terms in each relevance model; and 3) we extends the MRM

model to accommodate not only free-text collections but also medical thesauri (e.g.,

MeSH) by designing a special query expansion method. We elaborate on Points 2 and

3 next.

General Expansion

For general free-text collections we sort and select expansion terms by their

weights p which are estimated by:

pi =
k∑

j=1

exp{tfei,Dj

|Dj|
+ log

|C|
dfei,C

+ score(Dj, Q)}, (4.4)

where score(Dj, Q) is the query likelihood score for the top jth feedback document in

the initial retrieval set ranked by the QL model, tfei,Dj
is the term frequency of ei in

document Dj , dfei,C is the document frequency of ei in collection C, and |Dj| and |C|
are document and collection lengths in words respectively. This formula estimates the

importance of term ei based on its term frequency, inverse document frequency, and

feedback document scores. m terms with highest scores p are selected as expansion

terms, and they form our estimated relevance model θ̂Q. Note that we also normalize

p so that we have an estimated probability P (w|θ̂Q) for each word w.

Medical Thesaurus-based Expansion

Medical thesaurus-based expansion differs from general expansion in that there

are no feedback documents for obtaining expansion terms e and estimating weights
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p. Thus, we extract medical concepts from the query for expansion, and propose a

novel concept weighting method based on information from a query log. In this thesis,

we use the MeSH ontology for demonstration, and call this method MeSH expansion

which contains four steps:

1. Concept identification: use PubMed e-utility [2] to identify MeSH concepts in
the query

2. Concept expansion: expand a detected MeSH concept rc by its entry terms
and decedent nodes down level l in the MeSH trees rooted at rc, i.e., obtaining
expansion terms e for the original query

3. Concept weighting: estimate weight p for each e using a PubMed query log

4. Concepts aggregation: aggregate the weights of expansion terms and form a final
expansion list

In Step 2, we also model term proximity using MeSH concepts wherever appli-

cable. For instance, for MeSH terms “Usher Syndromes” and “Hearing Loss, High-

Frequency”, we will formulate “#1(usher syndromes)” and “#uw16(#1(hearing loss),

high-frequency)” respectively in Indri as expansion terms. The former means “usher

syndromes” must occur as a phrase while the latter means “high-frequency” and “hear-

ing loss” can occur within a text window of 16 words. Note that we avoid expanding

MeSH concepts by their ancestor nodes because broader concepts are more likely to

cause query drift and compromise precision. Moreover, we do not split phrase concepts

into single terms because single terms are likely to be semantically different or far less

discriminative than their associated phrase concepts (e.g., “usher syndromes”, “back

pain”, “sleep walking disorder”, etc.).

The PubMed query log used in Step 3 contains 2,996,301 queries submitted by

627,455 different users [47]. We estimate weight of term ei by:

pi =
logNei,G∑
j logNej ,G

, (4.5)

where Nei,G is the number of users whose queries contain ei in query log G. The

logarithm dampens the effect of large differences in counts. Equation 4.5 estimates the
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popularity of ei and its variants among users who use them interchangeably to express

a medical concept in general. For instance, “hearing impairment” is more common

than “hypoacusis” for expressing the concept “hearing loss” and consequently gets a

larger weight.

Finally, we refer to our new model described in this section as Extended Mixture

of Relevance Models, or EMRM for short.

4.1.5 A Hybrid Model

MRF improves precision by using contextual information while EMRM enhances

recall by expanding the query with related terms. Therefore, we linearly combine MRF

and EMRM to get a hybrid model called CME (Combined MRF and EMRM model)

which is expected to benefit from the complementing advantages of MRF and EMRM.

The scoring function of CME is formally defined as:

P (w|θQ) = λQ ·MRF +
∑

C

λCP (w|θ̂Q,C), (4.6)

which is structurally similar to Equation 4.3.

4.2 Evaluation

4.2.1 Experimental Setup

We use the Indri retrieval system for indexing and retrieving. In particular, we

use the Porter stemmer to stem words in both reports and queries, and use a simple

standard medical stoplist [44] for stopping words in queries only. Then we perform

similar cross-validation as described in Section 3.3.4.1. In particular, to train the

EMRM and CME models by sweeping the parameter space according to Table 4.1.

Table 4.1: Parameter space for training EMRM and CME Models.

Parameter Explanation From To Step Size

µ Dirichlet smoothing parameter 1000 20000 2000
k number of top-ranked expansion documents 20 80 30
m number of expansion terms 10 21 5
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The baseline system using the QL model has only one free variable µ to train.

We fix µ to 10000 for other systems to reduce the training time. For systems using

single expansion collections, we train them to obtain λQ, k, and m, except for MeSH

expansion which only needs to train λQ because, unlike general expansion, low-ranked

MeSH expansion candidate terms can still be highly related to the original query terms.

For systems using multiple expansion collections, we fix k to 50, m to 10 for efficiency,

and thus λQ will be the only free variable for training.

We train our systems on MAP. To access the statistical significance of differences

in the performance of two systems, we perform one-tailed paired t-test for MAP.

4.2.2 Selection of Expansion Collections

4.2.2.1 MeSH Expansion

We first evaluate the MeSH expansion for EMRM. We compare the effectiveness

of different settings for MeSH expansion as listed in Table 4.2: 1) Entry: using entry

terms only and without term weighting (i.e., no Step 3 described in Section 4.2; 2)

Tree1: using tree terms only, tree expansion level l = 1, and no weighting; 3) Entry-

Tree1: using both entry and tree terms with l = 1, no weighting; and 4) WEntryTree-

1: weighted EntryTree1 using PubMed query log; 5) WEntryTree[2-6]: similar to

WEntryTree-1 but using different values (i.e., 2 ∼ 6) for l.

Table 4.2 tells us that our expansion term weighting method brings significant

improvement over all other unweighted versions as well as the baseline: we see nearly

12% improvement over the baseline, and 5-7% over the unweighted version. Increasing

expansion level l only slightly improves the retrieval effectiveness.

4.2.2.2 General Expansion

Next, we test several general expansion collections for EMRM. In addition to

the medical records that are the target of retrieval, we leverage information in several

other large, widely-available collections: ImageCLEF 2009 Medical Image Retrieval

Task dataset [83], TREC 2007 Genomics Track dataset [46], TREC 2009 ClueWeb09
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Table 4.2: Evaluation of MeSH expansion. “X > S” means the MAP difference
between system X and any system specified in set S is statistically significant. The
statistical significance is determined using one-tailed paired t-test on queries and p-
value < 0.05. The scores are based on 5-fold cross validation on the 34 topics from
2011 Medical Records Track.

System MAP Significance bpref P10

Baseline (B) 0.353 0.469 0.506
Tree1 (T1 ) 0.368 (+4.2%) 0.484 0.509
Entry (E ) 0.370 (+4.8%) 0.481 0.553
EntryTree1 (ET1 ) 0.377 (+6.8%) 0.490 0.553
WEntryTree1 0.391 (+10.8%) >{B, E, T1, ET1} 0.496 0.547
WEntryTree2 0.394 (+11.6%) >{B, T1, E, ET1} 0.498 0.556
WEntryTree3 0.395 (+11.9%) >{B, T1, E, ET1} 0.498 0.568
WEntryTree4 0.392 (+11.0%) >{B, T1, E, ET1} 0.497 0.556
WEntryTree5 0.391 (+10.8%) >{B, T1, E, ET1} 0.497 0.556
WEntryTree6 0.391 (+10.8%) >{B, T1, E, ET1} 0.497 0.556

Category B dataset (excluding Wikipedia pages), and a Wikipedia dataset (contain-

ing those excluded Wikipedia pages). Table 4.3 provides detailed information about

these datasets. In particular, the CLEF dataset consists of 74,902 medical images.

We crawled 5,704 full-text CLEF articles associated with these images as the actual

external collection used in this work.

The ClueWeb09 dataset was created to support research on information retrieval

and related human language technologies. It consists of about 1 billion web pages in

ten languages that were collected in January and February 2009. The dataset is used

by several tracks of the TREC conference. TREC Category B contains first 50 million

English pages1.

TREC 2007 Genomics Track dataset consists of full-text HTML documents from

49 journals2 published publish electronically via Highwire Press3.

1 Availableathttp://lemurproject.org/clueweb09.php/

2 The full list of journal can be found at http://ir.ohsu.edu/genomics/2007data.html

3 http://www.highwire.org/
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We choose these collections because there are existing topics and relevance judg-

ments for analysis and because we want to compare the effects of different sources on

retrieval performance. Note that although the Genomics dataset is much smaller than

the ClueWeb09 dataset, the vocabulary size of both datasets is of the same magnitude.

Table 4.3: Collection statistics for EMRM Model.

Collection # documents vocabulary size avg doc length

Medical* 100,866 105 423
ImageCLEF 5,704 105 6,495
Genomics 162,259 107 6,595
Wikipedia 5,957,529 106 1,305
ClueWeb09 44,262,894 107 756

For simplicity, we use the aggregation strategy MbR (without ICD, NEG, and

AGF, which are all described in Section 3.2) and the retrieval model EMRM with

a single expansion collection at a time to explore the expansion effectiveness of each

collection as shown in Table 4.4. Note that we use the 34 topics from 2011 Medical

Records Track as the training data and perform 5-fold cross validation on them. Then,

the rest 47 topics from 2012 Medical Records Track will be used for testing which will

be further described in Section 4.2.4.1.

As we can see in Table 4.4, ImageCLEF and Wikipedia have comparable im-

provement over the baseline, though the former is more medical-related, much smaller,

and less noisy than the latter. The same situation applies to the pair of Genomics and

ClueWeb09. However, Genomics and ClueWeb09 are much larger than ImageCLEF

and Wikipedia respectively, and Genomics and ClueWeb09 both have significant im-

provement over the baseline. Genomics is also significantly better than Wikipedia.

Thus, we can infer that expansion effectiveness depends on both the quality (i.e., con-

tent similarity to the target collection) and size of the expansion collection.

In addition, MeSH expansion is different from general expansion in that it relies

on a controlled vocabulary from which expansion terms derived are not as diversified

as those from a general expansion collection. For instance, for the query “hearing loss”,
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Table 4.4: Evaluation of single expansion for EMRM. “X > S” means the MAP
difference between system X and any system specified in set S is statistically significant.
The statistical significance is determined using one-tailed paired t-test on queries and
p-value < 0.05. The scores are based on 5-fold cross validation on the 34 topics from
2011 Medical Records Track.

System MAP Significance bpref P10

Baseline (B) 0.353 0.469 0.506
ImageCLEF (I ) 0.371 (+5.1%) 0.492 0.544
Wikipedia (W ) 0.376 (+6.5%) 0.500 0.550
ClueWeb09 (C ) 0.390 (+11%) >{B} 0.513 0.556
MeSH (S ) 0.391 (+11%) >{B, I} 0.496 0.547
Medical (M ) 0.393 (+11%) >{B} 0.520 0.535
Genomics (G) 0.395 (+12%) >{B, W} 0.524 0.553

it is difficult for MeSH to provide related expansion terms such as “cochlear”, “noise”,

“auditory”, and “binaural” (top-ranked terms from Genomics), “cerumen”, “canals”,

and “tympanic” (from Medical), “vestibular”, “ear”, and “stape” (from ImageCLEF).

Some of these terms do appear in the MeSH trees at upper levels, however, it is

hard to find a link to them, i.e., discriminating them from other unrelated tree nodes.

Simply including all visited concepts along the path is likely to cause query drift.

Moreover, these terms normally appear in phrase concepts having different meanings

than individual terms.

MeSH expansion is quite restrictive, yet is comparable to top performing single

expansions and is significantly better than the baseline and ImageCLEF. This is most

likely because our MeSH expansion emphasizes modeling term proximity which is a

big advantage of any medical thesaurus-based expansion over the general expansion.

Another merit of MeSH expansion is that, if used properly, it rarely includes bad

expansion terms, while we have no control of the quality of each expansion term from

the general expansion.

4.2.3 Impact of Advanced Models

We evaluate the impact of MRF, EMRM, and CMM models by adding them

on top of the evidence aggregation method VRM (which is described in Section 3.2.4)
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respectively. Based on Table 4.4, we use the Genomics, Medical, MeSH, and ClueWeb09

(i.e., the top-performing expansion collections) together for query expansion in the

EMRM model.

Table 4.5 shows the performance of systems of different settings. The MAP dif-

ferences between 1) VRM+MRF and VRM, 2) VRM+EMRM and VRM, 3) VRM+CME

and VRM+MRF, and 4) VRM+CME and VRM+EMRM, are all statistically signif-

icant (p < 0.05), which indicates that each further improvement significantly boosts

the retrieval performance. In particular, EMRM is more effective than MRF. However,

since EMRM and MRF are improving the system from different aspects, as expected

we obtain a further significant enhancement for the CME model. The final system

MedSearch (VRM+CME) improves the QL baseline MAP by nearly 20%.

Table 4.5: Impact of Advanced Models. † means statistically significant difference (p <
0.05) from the MAP scores of Systems VRM and QL. ‡ indicates statistically significant
difference (p < 0.05) from the MAP scores of VRM+MRF and VRM+EMRM. System
VRM+CME improves the baseline MAP by nearly 20%. The scores are based on 5-fold
cross validation on the 34 topics from 2011 Medical Records Track.

System MAP bpref P10 Rprec

QL (baseline q) 0.416 0.551 0.594 0.434
VRM (baseline v) 0.446(+7%q) 0.563 0.635 0.456
VRM+MRF 0.468(+13%q †) (+5%v) 0.585 0.644 0.486
VRM+EMRM 0.475(+14%q †) (+7%v) 0.611 0.632 0.481
VRM+CME (MedSearch) 0.501(+20%q †‡ ) (+12%v) 0.631 0.656 0.505

4.2.4 System Comparison

We have shown that our advanced models outperforms the QL model signifi-

cantly. In this section, we compare variants of MedSearch with other top-performing

systems from two separate shared tasks that we also participated in.

4.2.4.1 2012 Medical Records Track

The first shared task is 2012 TREC Medical Record Track in which a total of

82 automatic systems and 6 manual systems were submitted including the 4 automatic
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systems from us. Base on previous investigations in Sections 3.2.5, 4.2.2, and 4.2.3, we

select and combine multiple features for our final testing on the 2012 TREC Medical

Record Track dataset as shown in Table 4.6. The settings for udelMRF and udelMED

are for evaluating the impact of MRF and MeSH respectively.

Table 4.6: Feature settings for system variants with results on the 2012 TREC Medical
Records Track dataset.

runID
Features Scores

MRF
EMRM

VRM MAP infAP infNDCG Rprec P10
Genomics+Medical+ClueWeb MeSH

udelSUM
√ √ √

CombSUM 0.413 0.286 0.578 0.419 0.592
udelMNZ

√ √ √
CombMNZ 0.412 0.285 0.576 0.418 0.594

udelMRF
√ √

CombMNZ 0.408 0.280 0.572 0.415 0.604
udelMED

√ √
CombMNZ 0.398 0.269 0.564 0.410 0.590

Table 4.6 also shows the evaluation scores averaged over 47 official topics. We

pick udelSUM, the system with the highest MAP score, for further analysis. Figure 4.3

shows the comparison of infNDCG and P10 scores with TREC results (combining both

automatic and manual runs). As we can see, system udelSUM is above TREC medians

for the majority of topics. We observe similar results for the other three systems.

(a) udelSUM is below TREC medians
for 3/47 topics on infNDCG.

(b) udelSUM is below TREC medians
for 4/47 topics on P10.

Figure 4.3: Comparison with TREC results.

Table 4.7 shows the results of pairwise one-tail paired t-test on infAP for our

four submitted runs. The significance scores indicate that MRF and MeSH are both

very effective system features.

Table 4.8 compares the performance between TREC automatic systems from the

top-3 ranked participating teams. As we can see, our system udelSUM outperforms all
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Table 4.7: Pairwise one-tail paired t-test on infAP

udelMNZ udelMRF udelMED
udelSUM 0.1635 0.0190 0.0005
udelMNZ − 0.0335 0.0008
udelMRF − − 0.0181

the other systems except one manual system (NLMManual) from the National Library

of Medicine team. In their work [30], they segmented EMR into sections based on

pre-defined topic frames, such as “problem list”, “past medical history”, “procedure

results”, etc. Each topic frame slot was assigned a weight between 0 to 1.0. Then they

used an internally developed search engine (called Essie) to search over positive text in

the sections and combine the weighted scores. They manually and interactively refined

the search queries until the top 10 retrieved looked mostly relevant.

Table 4.8: Performance comparison between top-ranked 2012 TREC Medical Records
Track systems. Manual systems are marked with *. Our system udelSUM outperforms
all the other systems except a manual one from the National Library Medicine team.

Systems infNDCG infAP P10

NLMManual* 0.680 0.366 0.749
udelSUM 0.578 0.286 0.592
sennamed2 0.547 0.275 0.557
ohsuManBool* 0.526 0.250 0.611
atigeo1 0.524 0.224 0.519

The sennamed2 system was built upon the vector space model with pseudo-

relevance feedback and the UMLS concept represented EMR. Although the retrieval

model is relatively simple, sennamed2 showed very good performance.

The ohsuManBool system [14] is another manual system whose queries were

constructed by relevant ICD-9 codes and phrases for all the conditions in the topic.

The atigeo1 system [106] benefited mainly from injecting ICD-9 code descrip-

tions and the careful processing (e.g., tag removal, sentence segmentation, tokenization,

token normalization, etc.) of the corpus.
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The major difference between our system and other automatic TREC systems

is that our retrieval model CME deals with the polysemy and synonymy related issues

in a more explicit and effective way. In addition, our evidence aggregation methods

(described in Chapter 3) allows us to effectively and maximally exploit the useful

information contained in EMR.

4.2.4.2 2013 ShARe/CLEF eHealth Evaluation Lab

The second shared task is the Task 3 of 2013 ShARe/CLEF eHealth Evalua-

tion Lab which simulated web searches for health information by patients [38]. The

web searches were designed to be connected to hospital discharge summaries from the

patient’s electronic medical record, thus effectually modeling a post-visit information

need. This task differs from both the EMR search and the web search in that it is an

ad-hoc retrieval of webpages that mainly contain medical content.

Among the seven systems we submitted to CLEF, one (named TeamMayo.5.3 )

is based purely on the CME model (without using any information from the discharge

summaries). In particular, for the query expansion in the EMRMmodel we used several

external sources: the TREC 2011 Medical Records Track test collection, the TREC

2007 Genomics Track test collection, a subset of Mayo Clinic clinical notes (which will

be described in Section 5.2.1), and the 2012 MeSH ontology [136].

Table 4.9 compares the performance of TeamMayo.5.3 with three baselines

(namely query likelihood, BM25, and BM25 with pseudo-relevance feedback) and the

top performing systems from several other teams. Since it is a web search, P@10

and NDCG@10 are two primary evaluation measures. As we can see, TeamMayo.5.3

ourperforms other systems by a margin that is large enough to make a big difference

for web search tasks.

In particular, teamAEHRC.5.3 [137] was built upon a Dirichlet-smoothed lan-

guage modeling provided by the Terrier system. It incorporated additional features

such as query spelling correction (using Google Search) and query acronym expansion.
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Table 4.9: Performance comparison between top-ranked CLEF systems. Our system
TeamMayo.5.3 ourperforms other systems by a margin that is large enough to make a
big difference for web search tasks.

Systems P@10 NDCG@10

TeamMayo.5.3 0.5040 0.4618
teamAEHRC.5.3 0.4840 0.4226
MEDINFO.1.3 0.4800 0.4377
uogTr.5.3 0.4400 0.3840

BM25 FB 0.4860 0.4328
BM25 0.4700 0.4169
QL (TeamMayo.1.3) 0.4720 0.4408

MEDINFO.1.3 [25] was similar to our QL baseline system in that both systems

used the unigram language model with Dirichlet prior smoothing on the Indri search

engine. The small difference between the scores of MEDINFO.1.3 and QL may result

from different settings of the Dirichlet prior and corpus preprocessing.

uogTr.5.3 [66] used Divergence from Randomness and pseudo relevance feedback

models within the Terrier framework.

Again, the major advantage of our system compared with other CLEF systems

is the effectiveness of our CME model in reducing the vocabulary gap and the term

ambiguity in searching unstructured medical text.

4.3 Conclusion

In this chapter, we have introduced several retrieval models specifically designed

for alleviating the polysemy and synonymy related issues in medical IR. In particular,

the MRF disambiguates word senses and improves the search precision by incorpo-

rating contextual information in the query. On the other hand, the EMRM model

enhances the recall by deriving query expansion terms from multiple external collec-

tions including both in-domain and out-of-domain collections.

The CME model, as a combination of the MRF and EMRM, benefits from the

distinct strengths of both models. In particular, the negative interaction between MRF

and EMRM is minimal, as Table 4.5 shows that the respective MAP gains from MRF
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and EMRM on top of the VRM model approximately sum up to the gain from CME on

top of VRM. This is very desirable since it is often hard to improve the precision and

recall at the same time. Our systems built upon CME has exhibited this advantage

over other systems when performing the same retrieval tasks.

Furthermore, we proposed two different expansion methods for the EMRM

model, i.e., the general expansion and the medical thesaurus-based expansion. Partic-

ularly for the latter one, we showed that using an external medical query log to weight

the expansion terms is very beneficial. We also tested several expansion collections

from different domains and found that the size and content similarity of the expansion

collections are two important factors that determines the expansion effectiveness.
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Chapter 5

EMR SEARCH - DOMAIN KNOWLEDGE

Domain knowledge is very helpful to domain-specific search engines [45]. In

the previous chapters, we have already seen a few cases where medical knowledge

contributes to retrieval performance, e.g., ICD-9 code expansion and MeSH expansion

in the EMRM model. In this chapter, we will further explore how to leverage more

medical domain resources and how to use them effectively to improve the search results.

In particular, in the first half of the chapter we will describe and evaluate a joint search

model that can naturally incorporate medical knowledge in UMLS. In the second half,

we will study the utility of a large clinical corpus for query expansion and discuss how

to choose effective expansion collections for the EMRM model.

5.1 Joint Search in Text and Concept Spaces

Health search systems typically work in either the “text space”, in which queries

and documents are free-text and represented as sequences of terms, or the “concept

space”, in which documents are represented by the medical concepts to which they

pertain and users search for those concepts. Traditional retrieval tasks such as web

search exist primarily in the text space; we refer to retrieval methods in that space

“text-based retrieval” (TBR). In contrast, the concept space is defined by mapping

terms uniquely to medical concepts; a query or document comprises a sequence of

concepts. We refer to search in the concept space “concept-based retrieval” (CBR). In

this section we present a novel and effective system that can search jointly in both of

these spaces, and adaptively merge results with respect to the user’s query to provide

optimal results.
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One major benefit of separating the concept space from text space is that it

allows us to focus on: 1) improving the CBR by enriching and expanding domain

knowledge in the concept space; and 2) transferring any effective text-based retrieval

technique to the concept space without worrying about applying medical knowledge

since that knowledge already exists in the concept space. In this section, we will

demonstrate the former by using an existing medical NLP tool for expanding medical

domain knowledge in the concept space, and demonstrate the latter by exploring a

novel approach for external expansion in the concept space.

The major challenge in this framework is how to merge the search results ob-

tained by text-based and concept-based retrieval. In this study, we use a learning

approach based on features of the text, concepts, and ranked results to adaptively

merge for each query based on several heuristics. We will evaluate our algorithm on

the official test collections of 2011 and 2012 TREC Medical Records Track.

5.1.1 System Architecture

We propose a novel framework for building medical record search systems that

can easily incorporate domain knowledge as shown in Figure 5.1. This framework

separates the retrieval space into two, namely the text space and the concept space,

allowing the system to search jointly in those two spaces. The meaning of this “joint

search” mechanism are twofold: 1) each module in the text space has its counterpart

in the concept space as demonstrated in Figure 5.1, and 2) the system can dynamically

merge for different queries the results returned by TBR and CBR respectively.

5.1.2 Concept-based Retrieval

In this subsection, we will demonstrate how to effectively transfer two stan-

dard text-based retrieval models, the QL model and the EMRM model described by

Equations 4.1 and 4.3 respectively, from the text space to the concept space.
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Figure 5.1: A novel framework for building medical record search systems. Q, M, C,
R are the query, retrieval model, document collection, and ranked list, respectively. T
and C refer to text space and concept space respectively.

5.1.2.1 From Text to Concepts

Performing Text-Based Retrieval (TBR) using the aforementioned retrieval mod-

els is straightforward. However, Concept-Based Retrieval (CBR) requires every module

in the text space be mapped into their counterparts in the concept space as demon-

strated by the labeled processes 1 to 3 in Figure 5.1. We first illustrate processes 1 and

3, i.e., how to map the query and collection to the concept space. In this study, we

use MetaMap [9], a medical NLP tool developed at the National Library of Medicine

(NLM), to detect concepts in the medical records. For each detected medical concept,

MetaMap will return a list of candidates (i.e., concepts) that are represented by the

Concept Unique Identifier (CUI) in UMLS Metathesaurus. Thus, processes 1 and 3

in Figure 5.1 involve using MetaMap to convert medical text to a sequence of CUIs

in the concept space as shown in Table 5.1. This results in a full second collection of

documents composed of CUIs instead of natural language.

Table 5.1: Mapping text to CUI’s using MetaMap.

Text: Chest pain that feels like a heart attack.
Concepts: C0008031 C0027051

Text: He has a history of hearing loss.
Concepts: C0019664 C0011053

Text: Clear evidence of MRSA.
Concepts: C0332120 C0343401
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5.1.2.2 Enriching the Concept Space

If we simply transform text into its best matched concepts (as shown in Ta-

ble 5.1) and use the same ranking function, the performance of CBR is usually not as

good as TBR because the concept mapping is imperfect and because important con-

textual information possibly contained in non-conceptual words is lost. This situations

applies to both text queries (QT ) and documents (DT ), and degrades the performance

of CBR. Our idea is that although a “connection” (i.e., matching of text terms) between

QT and DT in the text space might be lost after the mapping (e.g., between “hearing”

and “hearing loss”), we can still form a new type of “connection” by expanding QC

and DC with their related concepts, again using MetaMap.

Table 5.2: CUI candidates for “hearing loss” sorted by the confidence scores.

Scores CUI Description
1000 C0011053 hearing loss (Deafness) [Disease or Syndrome]
1000 C0018772 hearing loss (Hearing Loss, Partial) [Finding]
1000 C1384666 Hearing Loss (hearing impairment) [Finding]
861 C0018767 Hearing [Physiologic Function]
861 C1455844 hearing (Hearing examination finding) [Finding]
861 C1517945 Loss [Quantitative Concept]

For each identified noun phrase in the text, MetaMap will return one or more

concept candidates depending on the ambiguity of the text phrase as shown in Ta-

ble 5.2. We propose to expand QC and DC with their CUI candidates whose confidence

scores are above thresholds LQ and LD respectively. By doing so, we augment the con-

cept space with extra domain knowledge. Conceptually, we are expanding QC and DC

with their own related CUIs in the UMLS ontology, and these two sets of CUI’s may

overlap with each other and thus a new “connection” (i.e., matching of CUIs) is formed

between QC with DC . We will discuss the choice of LQ and LD on the performance of

CBR in Section 5.1.4.
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5.1.2.3 Retrieving in the Concept Space

Another aspect of the convenience of applying medical knowledge under our

framework is that we can transfer effective techniques from the text space to the con-

cept space, which corresponds to the process 2 in Figure 5.1. For instance, transferring

the baseline model to the concept space is straightforward: we simply replace term

frequency with “concept frequency”, which is the number of times the CUI appears

in the translated document; we replace collection term frequency with “collection con-

cept frequency”, which is the total number of times the CUI appears in all translated

documents. In this way we obtain a query-concept likelihood score:

scoreC(D,Q) = logP (QC |DC) =
n∑

i=1

log
cfci,DC

+ µC
cfci,CC
|CC |

|DC |+ µC

, (5.1)

where QC , DC , and CC represent the concept-mapped query, document, and corpus,

respectively, cfci is the concept frequency of query concept ci, cfci,CC is the collection

concept frequency of query concept ci, and µC is a Dirichlet smoothing parameter for

the concept space.

The full EMRM model based on Equations 4.3 and 4.4 can similarly be trans-

ferred to the concept space.

To let the expansion collections work for EMRM the concept space, a direct

approach is to first map the text collections into concept collections, and then apply

the same method as described in Section 4.1.2. However, this approach has two major

limitations. First, the size of an effective external expansion collection is usually much

larger than the size of the target collection. Converting it into a concept collection

is time-consuming and costly (complex phrases and sentences may require hours of

computation due to the thoroughness of MetaMap [11]). Second, in some cases external

expansion collections may not be fully accessible (e.g., only top-ranked results from

some commercial search engine are available via APIs), and it becomes impossible to

map them into concept collections completely.

Thus, we propose an alternative approach in which we first use the Text-based

Retrieval to obtain the initial top-ranked documents for expansion from the external
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collection. Then we map those expansion documents to the concept space. Finally, we

can apply the full EMRM model directly in the concept space. However, we still do not

have the statistics about the whole expansion concept collection in order to compute

the inverse document frequency in Equation 4.4. We propose two possible solutions:

one is to use the statistics of the target concept collection, the other is to sample the

expansion text collection using a set of sample queries and then build a small concept

collection based on the returned documents. In this study, we use the latter approach.

5.1.3 Adaptive Joint Search in Text and Concept Spaces

Given a query Q and a document collection C, the TBR and CBR methods

described in Section 5.1.2 will return two separate sets of search results. We next need

to find a way to combine them into a single ranked list suitable for a user. We formulate

this problem as a linear interpolation between the scores of documents in the two sets

of results:

score(D,Q) = αQ · scoreT (D,Q) + (1− αQ) · scoreC(D,Q), (5.2)

where scoreT and scoreC are relevance scores of TBR and CBR respectively (both

calculated by the language model with query expansion described in Section 5.1.2),

and score(D) is the merged score for D in the returned ranked list. Thus, our goal

is to optimize the coefficient αQ for different queries. We use a learning approach to

predict αQ based on several heuristics.

5.1.3.1 Learning Algorithm

We can view αQ in Equation 5.2 as a mixing probability: the probability that

the query has been sampled from document text rather than translated from a concept

sampled from the document’s concept space. Then, assuming the log-odds of that

probability can be expressed as a linear combination of feature values: log
αQ

1−αQ
=

β0 +
∑m

i=1 βixi, where β0 is a model intercept (or bias term), xi is the value of feature

number i, and βi is the weight coefficient of that feature. This is essentially a logistic
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regression model1. Logistic regression is fit using iteratively reweighted least squares

to find the values of the β coefficients that are the best fit to training data. Given

feature values and their β coefficients, we can then predict the mixing probability αQ

for new queries.

5.1.3.2 Features

We propose a number of features that are heuristically related to the perfor-

mance of TBR and CBR, and can be used to predict the result merging coefficient αQ

in Equatioin 5.2.

Length of the text query: Generally a long query is more discriminative than

a short one since the former contains more information [73]. Thus, we use the length

of text query |QT | as the feature to estimate the performance of TBR. It is defined

formally as

|QT | =
∑

w∈QT

cnt(w,QT ), (5.3)

where c(w,QT ) is the count of term w in QT .

Length of the concept query: The intuition for using feature No.1 applies

in the concept space as well. The length of concept query tells how discriminative

concept query is, and thus relates to the performance of CBR. We define this feature

formally as

|QC | =
∑

w∈QC

cnt(w,QC), (5.4)

where cnt(w,QC) is the count of term w in QC .

Concept ratio: This feature computes the proportion of concept-related words

in the original query, and is defined as

RC =

∑
wc∈QT

cnt(wc, QT )

|QT |
, (5.5)

1 While logistic regression is often used for 0/1 classification problems, it can also be
used when the target variable is a real number between 0 and 1. In this case it is
sometimes called a “quasibinomial” model.
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where wc is a concept-related term. For example, if the query is “elderly people with a

history of hearing loss”, MetaMap will detect the concept “hearing loss” as a phrase.

Then, “hearing” and “loss” are both concept-related terms. Since only concept-related

terms can make an impact on document scoring in the concept space, CBR will gen-

erally have a better performance if the concept ratio of the text query is higher.

Concept expansion ratio: A text query can contain several noun phrases, for

each of which MetaMap may return a set of candidates. We hypothesize that a noun

phrase is more difficult for TBR if it has more CUI candidates returned by MetaMap,

because having more candidates means that the noun phase is more ambiguous, and

finding those counterpart candidates in the text space will be harder. Thus, the average

number of returned candidates for concepts in a query may be a good indicator of the

text query difficulty. Since the candidates are also expansion concepts as described in

Section 5.1.2.2, we call this feature the concept expansion ratio, defined as

ERC =
|QC |∑

w∈QC
|Meta(w)| , (5.6)

where |QC | the original concept query length (i.e., the length before expansion), and

|Meta(w)| is the number of concept candidates returned by MetaMap for term w in

concept query QC .

Weighted pseudo-AP difference: Our final feature is based on an estimate

of differences in retrieval effectiveness. We first define the set as D which contains

the common documents shared in the top k retrieved of the two ranked lists returned

by TBR and CBR respectively. We argue that documents in D are more likely to be

relevant than other documents in both ranked lists.

Thus, we treat D as a pseudo-relevance set (i.e., assuming all the documents

in D are relevant) and compute a pseudo-AP (average precision) score based on D
for each query in TBR and CBR respectively. This pseudo-AP score is expected to

be a good indicator of the true retrieval performance of TBR and CBR. We use the
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weighted pseudo-AP difference as our last feature, which is defined as

WAP =
|D|
k

(PAPT (D, Q)− PAPC(D, Q)) (5.7)

where PAPT (D, Q) and PAPC(D, Q) are the pseudo-AP scores of query Q for TBR

and CBR respectively, and |D| is the size of the relevance set. Intuitively, if |D| is
small, PAP will be more sensitive to the ranks of documents in D. Thus, we use |D|/k
to dampen this effect caused by small |D|. In this work, we experimentally set k to

300 because we observe that |D| increases relatively slow when k rises above 300.

5.1.4 Evaluation

5.1.4.1 Experimental Setup

We use the Indri2[104] retrieval system for indexing and retrieving in both the

text space and the concept space. In particular, we use the Porter stemmer to stem

words in both text documents and queries, and use a simple standard medical sto-

plist [44] for stopping words in queries only. Note that in the concept space as described

in Section 5.1.2, we do not need to do stemming and stopping since the vocabulary in

the concept space consists of concept unique identifiers only.

To evaluate the baseline model and EMRM model in both text and concept

spaces (i.e., MT and MC in Figure 5.1), we conduct 9-fold cross-validation and use the

top 1000 retrieved visits (top 1000 is a TREC standard) for each query to evaluate our

system under different settings.

In each iteration of the 9-fold cross validation, we train our system on 72 queries

to obtain the best parameter setting for mean average precision (MAP) by sweeping

over the parameter space ((1000, 16000, 5000) for µ, (20, 100, 20) for k, and (10,

20, 5) for m. The last number in this pair of parenthesis is the step size), and then

generate a ranking for each of the remaining 9 queries based on the trained system.

When complete, we have full rankings for all 81 topics as a test set. Note that we do

2 http://www.lemurproject.org/indri/
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cross-validation for both TBR and CBR, and thus obtain separate parameter values

(i.e., µ, k, and m) for TBR and CBR.

Finally, we evaluate the system based on the average evaluation scores over all

81 topics. This corresponds to evaluating the ranked lists R1 and R2 in Figure 5.1.

To evaluate our learning algorithm for the result merging, we first obtain the

optimal coefficient αQ-opt for each topic Q by sweeping [0, 1] (i.e., the valid range of

αQ) at a step size of 0.1. Then we conduct leave-one-out cross-validation (LOOCV), in

each iteration of which the system predicts the coefficient αQ for one new topic based

on αQ-opt’s for the other 80 topics.

Similar to previous chapters, we train our systems on MAP and perform one-

tailed paired t-test on MAP scores to access the statistical significance of MAP im-

provement. We also report scores for R-precision (Rprec), bpref, and precision at rank

10 (P10).

5.1.4.2 Expanding the Concept Space

As discussed in Section 5.1.2.2, we can expand queries and documents respec-

tively with their CUI candidates returned by MetaMap. In this section, we evaluate

the effectiveness of this approach for improving retrieval performance.

We run 9-fold cross-validation on the baseline retrieval model in the concept

space. We vary the confidence score threshold from 400 (all the confidence scores we

observed are above 400) to 1000 at a step size of 100 for both LD and LQ. Table 5.3

shows the MAP scores for different threshold settings. The rows show that MAP has a

negative correlation with LD, indicating expanding the documents always helps. The

columns also suggest expanding queries with related CUIs is very helpful, except when

LQ = 1000 and 900, which further indicates that when the documents are not well

expanded aggressively expanding only queries may cause query drift and lead to severe

performance degradation.

Further analysis shows that setting LD and LQ both to 500 results in the best

performance and is significantly better (p < 0.05) than other settings where LD > 600
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or LQ >= 600. This tells us that enriching the concept documents with more related

domain information improves retrieval performance. Thus, we use 500 as the default

value for LD and LQ unless otherwise specified.

Table 5.3: MetaMap for concept expansion.

LD

1000 900 800 700 600 500 400

LQ

1000 0.212 0.236 0.259 0.250 0.265 0.265 0.265
900 0.187 0.234 0.259 0.259 0.266 0.264 0.264
800 0.167 0.210 0.297 0.298 0.312 0.310 0.310
700 0.169 0.194 0.284 0.296 0.311 0.310 0.310
600 0.159 0.185 0.285 0.298 0.321 0.320 0.320
500 0.160 0.185 0.286 0.300 0.322 0.333 0.333
400 0.160 0.185 0.286 0.300 0.322 0.322 0.322

The purpose of choosing the best confidence score thresholds is that we want to

build on a strong baseline to demonstrate the effectiveness of other retrieval methods

in this work.

5.1.4.3 EMRM in Text and Concept Spaces

We evaluate the effectiveness of EMRM in both text and concept spaces. We

use two expansion collections for EMRM model: the medical record collection itself

(i.e., the target collection) and the 2007 TREC Genomics Track dataset.

Before discussing results of the comparison, we compare some key statistics of

the text space and concept space in Table 5.4. It is interesting to note that while the

base concept collection is much smaller than the text collection, the expanded concept

collection CC becomes almost 50% larger than CT . Expanded concept queries are more

than twice as long as their text-based counterparts, and nearly four times as long as

the non-expanded concept queries.

Table 5.5 show the EMRM model works very well in the text space. We obtain

significant improvement when just using a single expansion collection. Using both

collections in the EMRM model further improves the performance significantly.
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Table 5.4: Statistics comparison of text and concept spaces. The expanded concept
collection CC becomes almost 50% larger than CT . Expanded concept queries are more
than twice as long as their text-based counterparts, and nearly four times as long as
the non-expanded concept queries.

CT CC (LD = 1000) CC (LD = 100)

# uniq. terms 83,978 43,711 62,703
# total terms 33,454,213 13,347,125 47,540,697
# avg document length 1945 744 2,764

QT (after stopping) QC (LQ = 1000) QC (LQ = 100)
avg length 5.3 3.7 14.9

Table 5.5: Effectiveness of EMRM in text and concept spaces. * means the MAP
difference from the baseline is statistically significant (p < 0.05). † means that the
MAP score is significantly better (p < 0.05) than other systems. 4 means the score is
significantly better (p < 0.05) than the baseline score.

Text-based Retrieval MAP R-prec bpref P10
baseline 0.363 0.382 0.434 0.541
EMRM (Target) 0.379* 0.392 0.450 0.558
EMRM (Genomics) 0.377* 0.391 0.446 0.563
EMRM (Target + Genomics) 0.392† 0.407 0.461 0.572

Concept-based Retrieval MAP R-prec bpref P10
baseline 0.333 0.352 0.420 0.519
EMRM (Target) 0.339 0.3644 0.4314 0.5384

EMRM (Genomics) 0.337 0.3664 0.4324 0.5464

EMRM (Target + Genomics) 0.350† 0.3724 0.4454 0.5494

In the concept space, there is no significant improvement on the MAP score

for EMRM using a single expansion collection. This might be because the query has

already been expanded with MetaMap concept candidates and thus EMRM does not

help much for MAP (Our further analysis shows that the MAP difference is statistically

significant (p < 0.05) when LQ ≤ 600 or LD ≥ 600). Nevertheless, the score differ-

ence on other evaluation metrics is statistically significant; moreover, EMRM with two

expansion collection improves the MAP significantly.

Overall, TBR is better than CBR. However, TBR and CBR have varied per-

formance on different topics: while TBR is better on average, CBR outperforms it
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for quite a few topics. The ideal system should take advantage of both types of re-

trieval and adaptively merge their results to achieve further improvement. This is our

motivation for proposing the adaptive result merging algorithm which we will analyze

next.

5.1.4.4 Adaptive Result Merging

Now we evaluate our learning algorithm described in Section 5.1.3.1.

Best Fixed Coefficient

We first compute the retrieval performance for result merging using a fixed coefficient

for all topics. We sweep α from 0 to 1 with a step size of 0.1, as demonstrated by

Figure 5.2. We find that αbest-fixed = 0.7, which is expected since the overall perfor-

mance of TBR is better than CBR. Retrieval performance with this value is given in

Table 5.6.
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Figure 5.2: Finding the best value for the combination parameter α in the ‘Best-fixed’
strategy.

Optimal Coefficient

We also obtain the optimal αQ-opt for each topic separately by sweeping α from 0 to

1 with a step size of 0.1. Then, we use the αQ-opt’s to compute the best retrieval

performance (i.e., an upper-bound) we can achieve by our adaptive merging algorithm,

as shown in Table 5.6.
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Table 5.6: Adaptive Result Merging. * means “Adaptive” is significantly (p < 0.05)
better than “Best-fixed”. The last column is the mean square error of the predicted
weights.

α MAP R-prec bpref P10 Pred. MSE

Best-fixed 0.408 0.411 0.471 0.619 0.124
Adaptive 0.416* 0.424 0.481 0.624 0.098
Optimal 0.441 0.447 0.512 0.637 0.000

Performance Comparison

We compare the performance of our adaptive merging method with the fixed weighting

method and the optimal weighting method in Table 5.6. As we can see, our adaptive

merging method outperforms the fixed weighting method on all the evaluation metrics,

and the improvement on MAP is statistically significant. Furthermore, the adaptive

merging method outperforms our best TBR result, indicating that both text and con-

cept space can contribute to a good retrieval system.

5.2 Using Large Clinical Corpora for Query Expansion

In the EMRM approach to query expansion described in Section 4.1.2, multiple

large external text corpora from general-domain collections have been shown to select

reasonable terms and improve retrieval performance. What sort of improvement, if any,

should be expected if clinical-domain collections are used for this query expansion?

In this section, we analyze the effects of including a large, unlabeled corpus of

clinical notes (as another way of exploiting domain knowledge) into an statistical IR

system for cohort identification. In particular, we evaluate the helpfulness of a corpus

of Mayo Clinic clinical notes for the TREC task of IR-based cohort identification,

considering the effects of collection size, the inherent difficulty of a query, and the

interaction with other widely-available collections.

5.2.1 Auxiliary Collections for Query Expansion

This study mainly performs an analysis based on a clinical text collection: a 39

million-document subset of Mayo Clinic clinical notes between 1/1/2001–12/31/2010,
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retrieved from the Mayo Clinic Life Sciences System (MCLSS). This includes data from

a comprehensive snapshot of Mayo Clinic’s service areas, excluding only microbiology,

radiology, ophthamology, and surgical reports. Additionally, each possible note type

at Mayo was represented: Clinical Note, Hospital Summary, Post-procedure Note,

Procedure Note, Progress Note, Tertiary Trauma, and Transfer Note. This corpus has

been characterized for its clinical information content (namely, medical concepts[117]

and terms[118]) and compared to other corpora, such as the 2011 MEDLINE/PubMed

Baseline Repository and the 2010 i2b2 NLP challenge dataset[109].

Table 5.7: Collection Statistics

Collection # documents vocabulary size avg doc length

PittNLP* 100,866 105 423
Genomics 162,259 107 6,595
ClueWeb09 44,262,894 107 756
MayoClinic 39,449,222 106 346

In addition to the medical records from Mayo Clinic, we leverage information

in several other large, widely-available collections: the TREC 2007 Genomics Track

dataset [46], the TREC 2009 ClueWeb09 Category B dataset, and the Pittsburgh NLP

Repository itself (the target collection, as indicated by * in Table 5.7).

Table 5.7 provides statistics about these datasets. The ClueWeb09 Cat-B dataset

has comparable size to Mayo Clinic dataset in terms of the number of documents,

however, it is less similar in content to the target collection (i.e., the Pittsburgh NLP

Repository) and is considered more noisy than Mayo Clinic dataset. The Genomics

dataset is much smaller than the ClueWeb09 Cat-B dataset, however, the knowledge

domain where the Genomics dataset comes from overlaps more with the clinical domain

than the general web domain where the ClueWeb dataset is derived from.

5.2.2 Experimental Setup

We use the query likelihood (QL) language model (Equation 4.1) as the baseline,

and the EMRM model (Equation 4.3) for query expansion.
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For corpus preprocessing, we used the Porter stemmer and a simple standard

medical stoplist [44] for stemming and stopping words in queries during retrieval. Then

we conducted 9-fold cross-validation and used the top 1000 retrieved visits3 for each

query to evaluate our system under different settings. In each iteration, we trained our

system on 72 queries to obtain the best parameter setting for MAP by sweeping over

the parameter space according to Table 5.8 below, and then generate a ranking for

each of the remaining 9 queries based on the trained system. When complete, we had

full rankings for all 81 topics as a test set. We evaluated the system based on MAP

over all 81 topics.

Table 5.8: Parameter space for training.

Parameter From To Step Size

Dirichlet smoothing parameter µ 1000 20000 5000
# of feedback documents k 20 60 20
# of expansion terms m 10 30 10

Note that the baseline system using Equation 4.1 has only one free variable µ to

train. In this work, we fix expansion weight λQ to 0.7 and use equal weights for λC . This

is because we need to test various system settings with multiple parameters. Including

λ in training will be computationally expensive when two or more expansions collections

are used the mixture of relevance models. In fact, expansion collection weighting itself

is an interesting research problem and we plan to explore it in our future work.

To assess the statistical significance of differences in the performance of two

systems, we perform one-tailed paired t-test for difference in MAP.

5.2.3 Evaluation

In this section, we show and discuss the results of including the Mayo Clinic

corpus under various settings.

3 Medical Records track guideline requires each retrieval set contain no more than 1000
visits.
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5.2.3.1 Clinical Corpus vs. Other Single Collections

Table 5.9 shows the retrieval performance when a single collection was used to

produce query expansions.

Table 5.9: MAP scores for single expansion collections, and the significance of their
differences (p value).

Collection PittNLP Genomics ClueWeb Baseline MAP score

Mayo 0.225 0.125 0.077 8.39×10−07 0.391
PittNLP 0.363 0.354 2.50×10−04 0.388
Genomics 0.443 1.12×10−05 0.387
ClueWeb 1.57×10−06 0.386
Baseline 0.373

It can be seen that the best single MAP score is using the Mayo Clinic corpus.

This is particularly interesting because it outperforms the target collection (PittNLP)

itself, though the difference is not statistically significant. The Mayo Clinic data does

significantly (at the p < .10 level) outperform ClueWeb, showing the domain of similar-

sized corpora matters.

In these single expansion collection tests, the similarity of the collection appears

to be a suitable measure of quality. Similar corpora will tend to reduce noise and so

improve precision; while dissimilar corpora will attempt to increase recall with novel

terms but contribute noise, thus hurting precision.

5.2.3.2 Performance by Collection Size and by Query Difficulty

To test the impact of the collection size on the query expansion effectiveness,

we created multiple expansion collections of different size in an incremental way based

on the original Mayo Clinic corpus. In particular, we built the smallest sub-collection

C0 by randomly sampling a set of clinical notes in the Mayo Clinc corpus, and then

built the next sub-collection C1 by adding more clinical notes that are randomly se-

lected, and then built C2 by adding more notes to C1, and so on. Thus Cj is a

superset of Ci for i < j. We built an index for each sub-collection and use it for

query expansion. The number of terms in each sub-collection is shown on the x-axis
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Figure 5.3: Performance curve of incorporating different-sized clinical collections as
relevance models for query expansion.

in Figure 5.3. Figure 5.3 further shows the accumulated AP gain on the y-axis, where

the accumulated AP gain is the sum of MAP score improvements. We have divided

the queries into three classes, based on their performance (without any query expan-

sion): hard = MAP< .33; medium = .33 <MAP< .67; and easy = MAP> .67. It is

clear that “more is better” does not hold here. There is a peak at about 2.5 billion

terms, at which the Mayo clinical notes no longer contribute positive query expansions,

and they are more likely contributing noise instead. This is an interesting result, be-

cause it counters the common wisdom that more data will always solve the problem.

In the case of query expansion, it is helpful to have the right amount of in-domain

information.

Figure 5.3 also shows that the beneficial effects of query expansion are less

pronounced for easy queries. Because the query difficulty categorizations were made

without query expansion, easy queries are already able to be retrieved without the help

of query expansion. Medium and hard queries are more helped.
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5.2.3.3 Clinical Corpus among Multiple Expansion Collections

In this experiment, we compared the individual performance of several expansion

collections listed in Table 5.7. Since we had 4 expansion collections in total, there are

11 different combinations of two or more expansion collections.

Table 5.10: Using multiple expansion collections (PittNLP, ClueWeb09, Trec-
Genomics, Mayo Clinic) for extended mixture of relevance models (EMRM) query
expansion

MAP Expansion Collection
PittNLP ClueWeb Genomics Mayo

EMRM-1 0.4011

2 coll.

X X
EMRM-2 0.4031 X X
EMRM-3 0.3996 X X
EMRM-4 0.3979 X X
EMRM-5 0.3987 X X
EMRM-6 0.3943 X X
EMRM-7 0.4144

3 coll.

X X X
EMRM-8 0.4089 X X X
EMRM-9 0.4116 X X X
EMRM-10 0.4061 X X X
EMRM-11 0.4223 4 coll. X X X X

First, we note that the 4-corpus EMRM-11 run achieves the highest MAP score

of any tested combination. Thus, while Figure 5.3 showed that bigger was not neces-

sarily better for the size of the clinical corpus, more multi-corpus data was helpful to

performance.

Furthermore, Table 5.10 suggests that the diversity of expansion collections

should be considered when dealing with more than one expansion collection. With

multiple expansion collections, the effect of noisy terms from a single collection can be

mitigated by terms from other collections, as long as the collections are diverse. Thus,

diversity (appropriate dissimilarity in domains) counterbalances similarity, providing

additional recall with suppressed loss of precision.

Thus, while an in-house clinical collection (here, the Mayo corpus) is the single

most beneficial resource (according to Table 5.9), it is not necessarily the best resource

in a multiple expansion collections case. However, because in-house collections may be
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the most available resource within an institution (no subscription or data use agree-

ment), the next subsection explores whether it is worth the effort to produce such an

in-house collection.

5.2.3.4 Adding a Clinical Corpus to an Existing Setup

We ran query expansion using multiple collections and computed the relevance

scores according to Equation 4.3. Using the 11 runs calculated in Table 5.10, we con-

sidered the significance of adding the Mayo corpus given that one or more of the other

expansion collections were already present. This is a realistic setting when implement-

ing an IR-based cohort identification system with a local EMR. The significance of

Table 5.11: Change in performance (∆ MAP) and significance (p-values < .05), upon
adding the clinical corpus to any existing configuration.

EMRM Model ∆ MAP p-value

PittNLP adding Mayo 0.0117 2.66×10−05

ClueWeb adding Mayo 0.0124 0.000513297
Genomics adding Mayo 0.0075 0.003126875

PittNLP + ClueWeb adding Mayo 0.0078 0.004912243
PittNLP+Genomics adding Mayo 0.0085 0.005416947
ClueWeb+Genomics adding Mayo 0.0082 0.015875188

PittNLP + ClueWeb + Genomics adding Mayo 0.0162 0.023945989

adding the Mayo clinical corpus is very clear. Regardless of what collections have been

used for the mixture of relevance models, results will be improved by adding the cor-

pus. This implies that any locally-implemented IR-based cohort identification system

can significantly improve its performance by utilizing a large unlabeled corpus within

their institution.

5.2.4 Discussion

5.2.4.1 Analysis of Performance Factors

The quality, size, and diversity of the expansion collections are three important

factors that impact performance gain.
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First, larger expansion collections tend to have a better coverage of query-related

expansion terms. However, an expansion collection can also introduce more noise if

it is too large. Table 5.12 shows the top weighted expansion terms (word stems)

for the query “hearing loss”. The first three columns are terms derived from Mayo

sub-collections of different sizes. As we can see, M30 produces a much better set

of expansions terms than M10. However, the set derived from M80 is apparently

contaminated by noise.

The quality of expansion collection is estimated by the overlap between two

domains, i.e., the content similarity of the expansion collection to the target collection.

Expansion collections containing similar content to the target collection tend to use a

similar underlying language model (i.e., vocabulary and term distributions) and thus

can derive a better “relevance model”.

Moreover, a diversified set of expansion collections work better than a special-

ized set of collections. This is because expansion collections from different domains

contribute differently to the retrieval performance with respect to different queries. If

one collection in that diversified set fails to improve retrieval the others might still help

(as shown in Table 5.12), which is not the case if we use a set of similar collections.

5.3 Related Work

Most participants in TREC Medical Records Track tried using medical knowl-

edge to enhance retrieval, but only a few of them achieved positive results. King et

al. [55] identified and indexed terms of medical reports that appeared in the UMLS.

Meanwhile, they expanded original queries with related terms in UMLS and several

commercial medical reference encyclopedias. Goodwin et al. [39] leveraged information

from SNOMED-CT, UMLS, and a subset of PubMed Central database for query ex-

pansion. These three teams all obtained large improvement over their baselines which

used no medical-specific knowledge.

Demner-Fushman et al. [31] expanded query terms with UMLS synonyms and
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Table 5.12: Comparison of top 15 expansion terms for query “hearing loss”.

M10 (10% Mayo) M30 (30% Mayo) M80 (80% Mayo) ClueWeb Genomics

ear ear sensorineur heare hear
sensorineur sensorineur inherit shakespeare deaf

aid aid gene herbert hhie
gene audiogram connexin campion cochlear

audiogram hi ear nniina ear
inherit nois autosom jokinen sensorineur
genet right genet alphabeticall loss
tinnitu cochlear recess cawdrey ttss

hi tinnitu aid tiiaa nois
caus left ag ierde syndrom

connexin bilater slope george paget
nois sudden matern hiele audiometr
baud ha mutat babel fechter
carrier db famili renee cochlea

mitochondria hz patern har auditori

MeSH terms and expanded drug related terms using RxNorm and Goolge search. How-

ever, their knowledge-based system built upon the open-source Lucene4 system did not

improve over a simple baseline. In a few other cases of using query expansion, Daoud

et al. [28] used UMLS, Wu et al. [116] used disease and symptom descriptions from

a healthcare website, and Schuemie et al. [97] used UMLS and DrugBank. However,

they all obtained very little or no improvement over their baselines.

5.4 Conclusion

In this chapter, we explored how to use both structured and unstructured do-

main resources to improve EMR search.

In the first part, we proposed and evaluated a joint searching framework for

building an EMR search system in which we can flexibly apply structured medical

domain knowledge. In particular, after transforming text into UMLS CUI concepts we

can easily explore and build new types of connections between query and document

concepts by expanding them with related concepts using MetaMap, which is the main

4 http://lucene.apache.org/core/
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advantage of our concept-based retrieval (CBR) method compared with the text-based

retrieval (TBR). However, CBR suffers from losing certain amount of contextual in-

formation during the text-to-concept transformation, and furthermore its effectiveness

depends on the performance of MetaMap. Nevertheless, the performance of CBR and

TBR varies a lot with respect to different queries. Our post-analysis shows that CBR

outperforms TBR for about one third of topics.

Therefore, out joint search strategy learns to strike a balance between CBR

and TBR with respect to different queries in order to get the benefits from both CBR

and TBR. In particular, we have shown that the helpful features for predicting the

combination weight between CBR and TBR should be indicative the performance of

CBR versus the TBR with respect to different queries. Our cross-validation results

show that our adaptive CBR and TBR merging algorithm is more effective than a

well-tuned fixed-weight merging algorithm, and furthermore, there is still plenty of

room for further improvement after comparing the ‘adaptive’ merging strategy with

the upper-bound ‘optimal’ strategy. For future work, we will focus on exploring more

features on a larger test collection.

In the second part of this chapter, we further investigated the criteria of selecting

good free-text expansion collections for the EMRM model, following what we learnt

from Chapter 4. We showed that the expansion effectiveness for the EMRM model

depends on several properties, namely the size, the content similarity (or quality),

and the number and diversity of expansion collections. In general, large collections

outperform small collections, and in-domain collections are better than out-of-domain

collections. However, we also showed that more data is not necessarily better for query

expansion, implying that there is value in collection curation. Furthermore, a set of

collections from diverse domains tend to work better than a set of similar collections

since if one of the collections fails to provide good expansion terms the other collections

can still come to the rescue.

We also studies the usefulness of Mayo Clinic corpus for query expansion in the

EMRM model. As a large size, in-domain collection, the Mayo Clinic corpus is always
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beneficial when added into any existing settings of EMRM model.
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Chapter 6

MESH INDEXING

In this chapter, we will investigate how IR can help reduce human effort in the

biomedical sematic indexing task.

6.1 Background

MEDLINE1 is the U.S. National Library of Medicine’s (NLM) premier bibli-

ographic database that contains over 19 million references to journal articles in life

sciences with a concentration on biomedicine. MEDLINE records are indexed with

Medical Subject Headings (MeSH) and by highly qualified domain experts.

Currently, there are about 0.7 million new journal articles being added to the

MEDLINE databsese each year, which makes manual indexing extremely difficult and

costly. Besides, the indexing consistency among domain experts is unpredictable and

hard to control. Funk and Reid [35] reported a consistency of only 48.2% for MeSH-

based indexing. Moreover, the relatively slow speed of indexing new articles and making

them available in the search database hinders technology transfer and advancement

more or less.

In order to alleviate those problems, the NLM has developed a tool called Med-

ical Text Indexer (MTI) to assist human annotators with MEDLINE article index-

ing [12]. Recently, the BioASQ challenge [107, 8] has initiated a series of shared tasks,

among which Task 1a (Large-scale Biomedical Indexing) specifically targets on the

MEDLINE indexing problem and encourages participants to contribute to the de-

velopment of tools and systems to automatically suggest MeSH terms to MEDLINE

literature.

1 http://www.nlm.nih.gov/pubs/factsheets/medline.html
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In this work, we propose three approaches, one building upon another in an

incremental way, to automatic MeSH term suggestion: 1) MetaMap-based labeling,

which relies on the MetaMap tool to detect MeSH-related concepts for indexing; 2)

Search-based labeling, which builds on MetaMap-based approach and further lever-

ages information retrieval techniques for finding similar articles whose existing anno-

tations are used for MeSH suggestion; 3) LLDA-based labeling, which further trains a

multi-label classifier based on MeSH ontology for MeSH candidate list pruning. The

evaluation on the BioASQ challenge data presents promising results and produces in-

teresting findings that may benefit future exploration.

The rest of the chapter proceeds as follows: Section 6.2 highlights the related

work. Section 6.3 describes the data and the task. Then, Section 6.4 elaborates

our methods and Section 6.5 presents and discusses the evaluation results. Finally,

Section 6.6 summarizes our work and points out future research directions.

6.2 Related Work

There are many existing works related to MeSH-based MEDLINE indexing. We

will only highlight a few that are most relevant to our approaches in this section.

The most well-known system for MeSH indexing is the Medical Text Indexer

(MTI) developed at NLM [54, 12]. The latest version of MTI consists of three major

components: MetaMap [9], Trigram Phrase Matching, and Trigram PubMed Related

Citations (Trigram PRC) [68]. MetaMap is a tool that can map text into UMLS

concepts, represented by Concept Unique Identifiers (CUI). Trigram Phrase Matching2

is a method of identifying phrases that have a high probability of being synonyms.

It is based on the idea of representing each phrase by a set of character trigrams

that are extracted from that phrase. The character trigrams are used as key terms

in a representation of the phrase much as words are used as key terms to represent a

document. The similarity of phrases is then computed using the vector cosine similarity

measure. Trigram PRC is a probabilistic topic-based model for retrieving and ranking

2 http://ii.nlm.nih.gov/MTI/trigram.shtml
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related documents with respect to the target document. These three components

work independently and in parallel to suggest separate lists of MeSH candidates which

are merged in the final stage. Our search-based systems (which will be described in

Section 6.4.2) differ from MTI in that we used MetaMap and information retrieval

techniques in a sequential way.

Jimeno-Yepes et al. [52] analyzed the MeSH recommended by MTI and studied

a few issues of using machine learning approaches for MeSH suggestion. Their work

gives useful insights for improving our LLDA-based system.

Huang et al. [50] formulated the indexing task as a ranking problem. In partic-

ular, they used a learning-to-rank algorithm to rank MeSH main headings that were

extracted from 20 neighbor documents of the target document. Our search-based ap-

proach differs from theirs in that we proposed different query formulation strategies and

MeSH candidate ranking methods. We also explored the impact of system parameters

on the performance.

6.3 Data and Task

The dataset provided by BioASQ challenge contains over 10 million journal

articles, each of which consists of the title, abstract, PubMed identifier (PMID), and

gold standard MeSH labels that are manually annotated by experts. BioASQ releases

18 test sets of different sizes (ranging from hundreds to tens of thousands documents)

over 18 week. Each set consists of new journal articles (<title, abstract, PMID>

triples) that have not been annotated or indexed into the PubMed database. The task

is to develop systems that can automatically suggest MeSH terms to the unlabeled

articles.

We remove duplicated articles that have same PMID in the BioASQ dataset and

obtain a pool of 10,699,707 articles with unique PMID3. Furthermore, we randomly

3 Note that we will not distinguish between the singular and plural forms of acronyms
(such as CUI and DUI) in this work, i.e., PMID can either stands for PubMed identifier
or identifiers depending on the context.
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sample 2,000 articles from this pool as a training set for system parameter tuning, and

another 2000 random articles as the testing set, as shown in Table 6.1.

Table 6.1: Data

Data # of articles Purpose

TRN-0 10,691,707 Training data from BioASQ
TRN-1 10,687,707 Subset of TN-0 used for finding similar articles to the target article
TRN-2 2,000 Subset of TN-0 used for optimizing system parameters
TET 2,000 Subset of TN-0 used for evaluation

6.4 Systems

6.4.1 MetaMap-based Labeling

Concept Detection We process an article by MetaMap while restricting the resource

of MetaMap to the MeSH ontology. We obtain and store the following information: 1)

concepts (denoted as K) which are phrases or terms that map to UMLS CUI; 2) the

list L of MetaMap generated CUI candidates c with confidence scores Sc for each K;

and 3) the negation information for each K.

Figure 6.1 gives a concrete example in which “cervical cancer” is a detected, non-

negated phrase concept (i.e., K) with a MeSH-related CUI candidates list L (C0007847,

C0302592, C0006826, C0998265, etc.). Each c in L has its individual confidence scores

Sc, e.g., “C0006826” has a confidence score of 861.

Concept Weighting We first select all non-negated CUI whose confidence scores are

above the threshold h. Then, we merge and rank these selected c by aggregating their

weighted confidence scores. Here we use superscripts T and A to denote title and

abstract respectively. The final ranking score of a specific c looks like:

score(c) = α
∑

L∈T

SL
c + β

∑

L∈A

SL
c , (6.1)

where α and β are the weights assigned to c in abstract and title respectively, L is the

candidate list for each detected concept K, SL
c is the confidence score of c in list L. If

L does not contain c, SL
c will be zero.
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{ "candidates": [

{ "cui": "C0007847",

"name": "cervical cancer",

"preferredname": "Malignant tumor of cervix",

"score": 1000 },

{ "cui": "C0302592",

"name": "CERVICAL CANCER",

"preferredname": "Cervix carcinoma",

"score": 1000 },

... },

{ "cui": "C0998265",

"name": "Cancer",

"preferredname": "Cancer Genus",

"score": 861 },

...

],

"neg": false,

"phrase": "cervical cancer" }

Figure 6.1: CUI candidates for a detected concept by MetaMap, shown as a JSON
object.

In particular, we fix β to 1.0. However, we vary α (i.e., the weights of cT )

to explore the optimal value of α. We use Equation 6.1 to rank c and select the

top-ranked m ones. Finally, we convert the selected c to MeSH Descriptor Unique

Identifiers (DUI).

The above method has three free parameters, i.e., h, α, and m. We set their

values by exploring the parameter space as will be described in Section 6.5.1.

6.4.2 Search-based Labeling

We describe another approach for MeSH suggestion which is based on informa-

tion retrieval techniques. This approach starts by finding related articles to the target

article, and then leverages their existing annotations to suggest MeSH candidates for

the target article.
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We use the open-source search engine Indri4 [104] to build an index for the

training set TRN-1. In particular, we remove stop words in the title and abstract

based on a medical stoplist [44] and stem words by the Porter stemmer.

There are three components in our retrieval system: 1) the retrieval model for

ranking documents; 2) the query generation module which formulates a query based

on the target article; and 3) MeSH aggregation module that aggregates and scores

the existing annotations for labeling the target article. Next, we will describe each

component in detail.

Retrieval Model

Our retrieval model computes the relevance score of a document based on the

following function:

score(Q,D) =
∑

qi∈Q

wif(qi, D), (6.2)

where wi is the weight associated with a matched feature qi, and f(qi, D) is the feature

matching function defined as:

f(qi, D) = log
tfqi,D + µ

tfqi,C
|C|

|D|+ µ
, (6.3)

where qi is the ith query term used for text matching. Note that qi can be either

a single word or a phrase. |D| and |C| are the document and collection lengths in

words respectively, tfqi,D and tfqi,C are the document and collection term frequencies of

qi respectively, and µ is the Dirichlet smoothing parameter. Smoothing is a common

technique for estimating the probability of unseen words in the documents [23, 124].

The above matching function assigns a score to each match of a query term q,

and Equation 6.2 aggregates the scores based on weight w to obtain the final document

relevance score. We implement this retrieval model in Indri by formulating queries that

look like: #weight(w0 q0 w1 q1 ...wi qi...).

4 http://www.lemurproject.org/indri/

87

http://www.lemurproject.org/indri/


Query Formulation

Our next step is to formulate a query Q that can be representative of the content

of the article. We will describe how we generate query terms q as well as their weights

w for the ranking function shown by Equation 6.2.

Term Query (TQ) The first type of queries is based on single words/terms in the

article, i.e., terms in a term query are all single-word expressions. In particular, we

formulate Q based on words occurring in the concepts detected by MetaMap in both

title and abstract, i.e., query terms q come from words in KT and KA. Similar to what

we have described in Section 6.4.1, we assign equal weight 1.0 to all qA (i.e., query

terms from KA), but use a varying weight γ for all qT . A term query in Indri looks

like:

#weight(2.0 examination 2.0 cow 2.0 ultrasonographic 3.0 navel

3.0 urachal 3.0 extra-abdominal 2.0 pathologic 2.0 abscess)

Phrase Query (PQ) The second type of queries are from KT and KA directly, i.e.,

we use concepts (usually phrases) as query terms qi. Again, we assign equal weight

1.0 to all qA (i.e., KA), but use a varying weight γ for all qT (i.e., KT ). The following

shows an Indri phrase query example:

#weight(3.5 #uw2(hiv-1 infection) 4.5 #uw2(differential

susceptibility) 2.0 #uw2(actin dynamics) 2.0 actin

4.5 #uw2(cortical actin) 4.5 #uw3(naive t cells)

2.5 dichotomy 3.5 #uw2(human memory)

3.5 #uw3(chemotactic actin activity) 2.0 cd45ro)

“#uwN(t1 t2)” means words t1 and t2 can be in any order within a text window

of N words, and thus it takes possible variants of a phrase into consideration.

Long Query (LQ) The term query considers single words only and ignores the term

proximity information in concepts. Thus, it may hurt retrieval precision. On the other

hand, the phrase query poses “stricter” matching criteria, i.e., if a relevant document

does not have an exact match for a concept phrase K (e.g., for “#uw2(hearing loss)”

to match “loss of hearing”), it will not get any credit by Equation 6.3. Therefore, we
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formulate a long query that consists of qi from both TQ and PQ, i.e., both single word

query terms and phrase query terms.

To prevent Q from being too long (computationally expensive when retrieving

against a large database) for the above three types of queries (i.e., TQ, PQ, and LQ),

we remove q that occur only once in the the abstract and title combined unless no q

occur more than once (which is a very rare case).

Result Aggregation

For each target article, we formulate query Q and rank documents based on

Equations 6.2 and 6.3. Then, we take the top-ranked k documents, weight their

existing MeSH annotations (i.e., DUI) by their individual relevance scores shown in

Equation 6.2, and aggregate the wegiths for each DUI. Finally, we select the top-ranked

m DUI as MeSH annotations for the target article.

In our Search-based Labeling method, we will also allow three free parameters:

µ (the Dirichlet parameter in Equation 6.3), k (the number of top-ranked documents

used for DUI aggregation) and m (the number of DUI). We will discuss how to set

these parameter in Section 6.5.1.

6.4.3 LLDA-based Labeling

The MeSH indexing can also be cast as a multi-labeled classification task. There-

fore, the labeled latent Dirichlet allocation (LLDA) [91], a supervised variation of the

unsupervised LDA used for credit attribution in multi-labeled corpora, fits well to this

MeSH indexing task.

In LDA, each document may be viewed as a mixture of various topics, and

the topic distribution has a Dirichlet prior. As an extension of LDA, LLDA further

incorporates observed label information, and thus can generate topics that predict

labels. Therefore, we train an LLDA model with a subset (∼15%) of set of TRN-0 (see

Table 6.1) and use the existing MeSH annotations as labels.
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However, the MeSH ontology contains too many labels (over 25,000 descriptors)

for our LLDA to handle. Therefore, we only use the 12 MeSH terms at the category

level (i.e., children of the root) to form our label set. MeSH annotations of articles are

all converted to their corresponding ancestors in this category-level set.

Given a target article, our LLDA will predict its category level labels which

will be further used to filter irrelevant labels assigned by previous MetaMap-based or

search-based systems. Our goal is to remove false positives and improve precision.

6.5 Evaluation

BioASQ evaluates the MeSH annotation results by two different groups of met-

rics, i.e., the flat and hierarchical precision (P), recall (R), and F-1 (F) measures, among

which Micro F-measure (MiF) and Lowest Common Ancestor F-measure (LCA-F) are

the primary evaluation metrics. Thus, we will report P/R/F for both Microaveraging

and LCA measures, i.e., (MiP, MiR, MiF) and (LCA-P, LCA-R, LCA-F).

We have five systems, namely the MetaMap-based system (MM), Search-based

systems (TQ, PQ, and LQ), and the LLDA-based system (LLDA). Note that for con-

venience in the rest of work we will refer to each system by their short names given in

parentheses.

6.5.1 Parameter Exploration

As mentioned in Section 6.3, we use set TRN-2 to train system parameters. In

this section, we show how each free parameter affects performance.

MetaMap-based Labeling

System MM has three free parameters, i.e., h (title concept weight), α (confi-

dence score threshold for CUI candidates), andm (number of DUI in the final suggested

list). To get the best setting for MM, we explore the range (400, 1000, 100) for h, (0,

5.0, 0.5) for α, and (8, 41, 4) for m, and try all different value combinations. Note that

the third element is the range is the step size.
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Table 6.2a shows that MM achieves the best MiF score (0.2697) when w = 4.5,

h = 600, and m = 12 (the best setting). To explore the impact of each free parameter

on the performance, we fix two of them based on the best setting, vary the left one,

and obtain the performance curves as shown in the left column of Figure 6.2.

In particular, the performance curve in Figure 6.2a, where we vary the weight

of title concepts, shows that we should assign higher weights to the title concepts.

This is expected because the title of an article usually contains the most represen-

tative information and the concepts in title are very likely to associate with MeSH

annotations.

In Figure 6.2c, as we lower the confidence score threshold for MetaMap CUI

candidates from 1000 to 700, the precision declines while the recall improves. However,

the precision bounces back when h is below 700, and the best performance for MiF,

MiP, and MiR all appears at 600.

In Figure 6.2e, the precision decreases and the recall increases, both monoton-

ically, as we increase m, the number of DUI for annotating an article. This is also

expected because DUI ranked lower down the list are less likely to be correct annota-

tions, and consequently hurt the precision but improve the recall.

Search-based Labeling

Now we explore the parameter setting for search-based systems, which also have

three free parameters: µ (the Dirichlet parameter in Equation 6.3), k (the number of

top-ranked documents used for DUI aggregation) and m (the number of DUI). In

particular, we will train system TQ and use it as a reference for setting corresponding

parameters in PQ and LQ.

Table 6.2a shows that TQ achieves the best MiF score (0.5389) when µ = 125,

k = 20, and m = 12 (the best setting). Again, to explore the impact of each free

parameter on the performance, we fix two of them based on the best setting, vary the

left one, and obtain the performance curves as shown in the right column of Figure 6.2.

In Figure 6.2b, the performance degrades as we increase µ (i.e., more smoothing
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Figure 6.2: Parameter setting for MetaMap-based and Search-based labeling methods
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with the collection-level statistic). This may be because our search-based labeling uses

the top-ranked documents for MeSH suggestion and it desires a document set that has

a high precision, and on the other hand, less smoothing makes sure that the relevant

information remain highly concentrated in these documents which consequently appear

among the top of the rank list.

In Figure 6.2d, as we increase the number of top-ranked documents the perfor-

mance peaks early at k = 20 and declines after that point, which is expected because

our search-based labeling desires only a few highly relevant documents that can provide

a more reliable set of MeSH candidates.

Figure 6.2f looks very similar to Figure 6.2e in which the system tries to strike

a balance between precision and recall by varying m. However, method TQ only needs

top 10 candidates to achieve the best MiF, as opposed to top 12 in MetaMap-based

labeling, indicating that our search-based method is more precision-focused.

Due to the high similarity among search-based systems, we will simply use the

best parameter setting of TQ (µ = 125, k = 20, and m = 12) for systems PQ and LQ

in our testing stage which is presented next.

6.5.2 Test and Comparison

Table 6.2 shows the evaluation results. System MM and TQ both obtain com-

parable test results to those on the training set, indicating that our parameter setting

process results in consistent performance.

System TQ, as the simplest among search-based systems, achieves the best

performance. However, systems PQ and LQ are doing worse than TQ. The reason

might be that the simple term frequency based phrase weighting strategy could not

well distinguish important concepts from unimportant ones, and consequently hurts

the precision.

In System LLDA, we use the predicted category labels to prune the annotation

list from system TQ. We start with a long candidate list by setting m to 20, and then

prune this list with LLDA. Table 6.2b shows that LLDA does not produce positive
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Table 6.2: Evaluation

(a) Training

System MiP MiR MiF LCA-P LCA-R LCA-F

MM (w = 4.5, h = 600, m = 12) 0.2617 0.2781 0.2697 0.3303 0.2831 0.2931
TQ (µ = 125, k = 20, m = 12) 0.5766 0.5058 0.5389 0.4143 0.4655 0.3978

(b) Testing

System MiP MiR MiF LCA-P LCA-R LCA-F

MM (w = 4.5, h = 600, m = 12) 0.2660 0.2780 0.2719 0.3322 0.2862 0.2963
TQ (µ = 125, k = 20, m = 12) 0.5842 0.5044 0.5413 0.4697 0.3979 0.4168
PQ (same setting as TQ) 0.5141 0.4389 0.4735 0.4257 0.3496 0.3710
LQ (same setting as TQ) 0.5748 0.4953 0.5321 0.4638 0.3918 0.4110
LLDA (µ = 125, k = 20, m = 20) 0.5843 0.4400 0.5017 0.3322 0.2842 0.2950

(c) Comparison

BioASQ System MiP MiR MiF LCA-P LCA-R LCA-F

MTIFL Baseline 0.602 0.513 0.554 0.455 0.550 0.475
MeSH Indexing 0.425 0.598 0.497 0.531 0.470 0.473
system3 0.444 0.521 0.480 0.430 0.475 0.432
mc3 0.515 0.433 0.470 0.479 0.402 0.416
BioASQ Baseline 0.258 0.285 0.271 0.389 0.330 0.334

results. This might be because the category level MeSH terms are broad concepts that

are not discriminative enough to distinguish one from another.

We compare our system with other top performing BioASQ systems using a set

of 1942 new journal articles. Table 6.2c shows the evaluation results.

There are two baselines systems. The “MTIFL Baseline” is the state-of-the-

art system developed and used at NLM. Thus, it is a very strong baseline. On the

contrary, the “BioASQ Baseline” is a weak baseline since it follows an unsupervised

approach [86].

The “MeSH Indexing” system [77] is developed by the NCBI (National Center

for Biotechnology Information). It first finds the k-nearest neighbors of the test article

and then aggregate and rank the existing labels of these neighbors based on a learn-

to-rank framework. The features used for learning include unigram/bigram overlap

features, neighborhood features, results from “MTI Baseline”, etc.

“system3” [108] also took a learning approach. In particular, the system learns

94



two models: one for ranking the labels according their relevance to the test article and

another for predicting the number of label related to the test article.

Our system “mc3” (corresponding to system “TQ”) achieved comparable per-

formance with other top-ranked systems. In particular, our system seems to be more

precision-focused as indicated by the MiP. This might be because that the candidate

labels come from the most relevant articles whole existing labels have a lot overlap

with each other.

6.6 Conclusion and Future Work

In this chapter, we have proposed three approaches for automatic MeSH term

suggestion: 1) MetaMap-based labeling, which relies on the MetaMap tool to de-

tect MeSH-related concepts for indexing; 2) Search-based labeling, which builds upon

MetaMap-based approach and further leverages information retrieval techniques for

finding similar articles with existing annotations and uses them for MeSH suggestion;

3) LLDA-based labeling, which further builds on Search-based labeling and trains a

multi-label classifier based on MeSH ontology for MeSH candidate list pruning.

Our evaluation on the BioASQ challenge data showed promising results for

the Search-based labeling. In addition, we explored the impact of different system

parameters (e.g., the weight for title concepts, CUI confidence scores, Dirichlet prior,

number of top-ranked documents, etc.) on the system performance. In particular,

words in the title are more important than words in the abstract. We also proposed a

new multi-label classification system based on LLDA for MeSH candidate list pruning.

Although the machine learning based system generally outperformed our system,

we believe the research findings presented in this chapter would be useful for designing

similar systems for biomedical semantic indexing. In particular, we can incorporate

into a machine learning based model (e.g., learning-to-rank) the query features (such

as terms and phrases) and the term and label statistics from similar documents found

by our retrieval model.
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For future work, we plan to explore better concept weighting strategies (e.g.,

by incorporating corpus-level statistics or using information from external sources) for

systems PQ and LQ. As for the LLDA-based labeling, we will extend LLDA model by

leveraging hierarchical information in MeSH ontology. In addition, we plan to compare

our approaches with existing methodologies and carry out a thorough error analysis to

look for aspects that we can further improve.
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Chapter 7

GENE ONTOLOGY ANNOTATION

In this chapter, we will investigate how to use information retrieval techniques

and domain knowledge to assist gene ontology annotation for biomedical articles.

7.1 Background

The Gene Ontology (GO) provides a set of concepts for annotating functional

descriptions of genes and proteins in biomedical literature. The resulting annotated

databases are useful for large-scale analysis of gene products. However, performing

GO annotation requires expertise from well-trained human curators. Owing to the fast

expansion of biomedical data, GO annotation becomes extremely labor-intensive and

costly. Thus, text mining tools that can assist GO annotation and reduce human effort

are highly desired [71, 110, 18].

To promote research and tool development for assisting GO curation from

biomedical literature, the Critical Assessment of Information Extraction in Biology

(BioCreative) IV organized Gene Ontology Curation task (GO task) in 2013 [78]. There

are two subtasks: A) identification of GO evidence sentences (GOES) for relevant genes

in full-text articles and B) prediction of GO terms for relevant genes in full-text articles.

The training set of GO task contains 100 full-text journal articles in BioC format [13],

while the development and test sets each have 50 articles. Task organizers also provided

ground truth annotations for the training and development sets to all participants [13].

Table 7.1 gives the detailed statistics about genes, gene-related passages and GO terms

in the GO task data.

The following shows two sample passages and the corresponding key information

in the training and development sets:
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Table 7.1: Corpus statistics of BioCreative IV Track 4 GO Task.

GO task data Training Development Test

# of full-text articles 100 50 50
# of genes 300 171 194
# of gene-associated passages 2234 1247 1681
# of GO terms 954 575 644

Key information for sample passage 1:

----------------------------------------------------------------------

<infon key="gene">cdc-14(173945)</infon>

<infon key="go-term">embryo development ending in birth or

egg hatching|GO:0009792</infon>

<infon key="goevidence>IMP</infon>

<text>However, of all components tested, only the depletion of

the C. elegans homologue of the budding yeast Cdc14p phosphatase

caused embryonic lethality in the offspring of injected worms

(Table 1).</text>

----------------------------------------------------------------------

Key information for sample passage 2:

----------------------------------------------------------------------

<infon key="gene">cdc-14(173945)</infon>

<infon key="go-term">phosphatase activity|GO:0016791</infon>

<infon key="goevidence>NONE</infon>

<text>text>CeCDC-14 is a phosphatase and localizes to the

central spindle and the midbody</text>

----------------------------------------------------------------------

Given a set of relevant genes, for subtask A, we need to find GOES, while

for subtask B, we need to assign GO terms to each article (primarily based on the

gene-related sentences identified in subtask A).

In this chapter, we will introduce several systems for the GO task. For subtask

A, we train a logistic regression (LR) model to detect GOES using the training data

supplemented with noisy negatives from an external resource. A greedy approach is

applied to associate relevant genes with sentences. For subtask B, we designed two

types of systems: (i) search-based systems, which predict GO terms based on existing

98



annotations for GOES that are of different textual granularities (i.e., full-text articles,

abstracts, and sentences) using state-of-the-art information retrieval techniques and

(ii) a similarity-based system, which assigns GO terms based on the distance between

words in sentences and GO terms/synonyms.

In the following sections, we will first describe our systems in more detail. Then,

we will present and discuss the official evaluation results, and finally draw the conclu-

sion.

7.2 Systems

7.2.1 Subtask A – GOES Identification

In subtask A, given a full-text article, we need to identify GOES and associate

them with genes. As we will see, we approach this problem by supervised machine

learning. In particular, we consider GOES as positive instances and all other sentences

as negative instances. Since the training set is very small, to prevent model overfitting

we expand the negatives with unlabeled excerpts from GeneRIF [3] records, which is

also based on the concept of distant supervision, i.e. use existing resources to obtain

weakly labeled instances for training machine learning classifiers [24, 69].

7.2.1.1 Data Preprocessing

We extract positive and negative instances (i.e. sentences) from both training

and developing sets to train our model. The training set contains 1,318 positive and

26,868 negative instances, while the development set gives 558 positive and 14,580

negative sentences.

We use GeneRIF as an unlabeled data pool, which contains excerpts from liter-

ature about the functional annotation of genes described in EntrezGene. In particular,

each record contains a taxonomy ID, a Gene ID, a PMID, and a GeneRIF text excerpt

extracted from literature. We randomly sample 20,000 excerpts from human GeneRIF

records and make sure that 1) there are at most two records per Gene ID, and 2)

the corresponding articles are not associated with any GO annotation (GOA) record
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based on GOA information available in iProClass [115]. We consider these sampled

excerpts as negative instances since if they are evidence excerpts the corresponding

articles would most probably haven been already included1 in GOA.

7.2.1.2 Feature Extraction

Our classifier uses the following features:

Bag-of-words (BOW) feature: for each sentence we generate a vector of

stemmed words using the Porter stemmer.

Bigram features: for each sentence we generate a vector of bigrams by con-

catenating every two neighboring stemmed words in the sentence. We also have two

boundary bigrams (SOS Lw and Rw EOS) where SOS indicates “Start of the Sen-

tences”, EOS means “End of the Sentence”, Lw is the leftmost stemmed word, and

Rw is the rightmost stemmed word.

Section feature: For each sentence, we include a feature to indicate which

section the sentence is from, i.e., title, abstract, introduction, methods, discussion, etc.

Topic feature: These features are generated by Latent Dirichlet Allocations [19],

which can effectively group similar instances together based on their topics [61].

Gene presence features: Because relevant genes of each article have been

provided, we also use dictionary lookup to check the presence of relevant genes in the

sentence.

7.2.1.3 Model Training

We apply logistic regression (LR) to predict labels for each instance. In particu-

lar, we impose a constraint on model parameters in a regularized LR to avoid overfitting

and improve the prediction performance on unseen instances. Note that our LR will

1 The rationale behind this assumption is that the scope of the functional annotation
in GeneRIF is broader than that of GO. Besides the scope of GO annotation, GeneRIF
also includes phenotypic and disease information that are not the subject of GO anno-
tation. Note that this assumption does not guarantee all excerpts obtained to be true
negatives
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assign probability scores to each class. In a task with skewed class distribution, a

threshold can be chosen to optimize the performance.

For each article, all relevant genes are provided. Therefore, we use a greedy

approach to associate evidence excerpts with the relevant genes in four steps:

1. Direct matching with dictionary lookup. Direct dictionary lookup is done for each
predicted positive sentence to detect whether there are relevant genes appearing
in the 40 sentence. If so, the corresponding genes found are assigned to that
sentence

2. Family name inferred. Because genes belonging to the same family can appear
as plurals in the document, we assemble a dictionary of family names based on
the gene mentions provided. For each mention of the family name in a sentence
(using direct string matching), all of the members of that family in the gene list
are assigned to the sentence.

3. Gene assignment based on proximity. For the remaining predicted positive sen-
tences with no relevant gene mentioned, we assume that prior sentences would
contain the gene information. For positive sentence S, we perform direct string
matching using the gene list provided and the family name dictionary assembled
in Step 2 on all prior sentences belonging to the same section of S. Gene hits are
identified similarly as in Steps 1 and 2. We then assign gene hits from the closest
one (among all prior sentences with gene hits) to S.

4. Assignment based on gene-sentence distributions. For genes that fail to be asso-
ciated with any predicted positive sentence, we picked sentences containing the
corresponding genes with the largest positive probability score (assigned by the
LR model) to be the evidence sentences.

7.2.1.4 Experimental Setup

We used LR-TRIRLS [4], which implements ridge regression, to build LR mod-

els. We chose a threshold of 0.1 based on the performance of the model trained using

the training set and evaluated using the development set, where if a sentence has a

probability >0.1 to be positive, then we consider it as positive. We submitted three

runs A1, A2 and A3 for subtask A. Runs A1 and A2 used different sets of unlabeled

instances sampled from GeneRIF, and Run A3 combined the results from A1 and A2.
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7.2.2 Subtask B – GO Terms Prediction

In this section, we describe two different systems for GO term prediction. The

basic idea is to leverage existing GOA to label new articles. In particular, we search for

relevant documents (sentences, abstracts or full-text articles) that have existing GOA

to the target article, and then score and aggregate these existing GOA to produce the

GOA for the target article.

7.2.2.1 System B1

Figure 7.1 gives an overview of system B1 with external resources highlighted

by blue color and system modules by gray. Next, we describe each component in more

details.
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Figure 7.1: Overview of system B1.

Resources

We use the following external resources: 1) Panther [105], from which we build

<GeneID, GOSlimID> pairs, 2) iProClass [115], from which we obtain <GOSlimID,

GOID, PMID> triplets, 3) a collection of PMC full-text articles that serve as the
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source for finding relevant documents, and 4) a collection of PubMed abstracts, used

as a complementary source for retrieving, because for some GOA records, only abstracts

are publicly available for the corresponding articles.

Retrieval

We build indexes for the abstract collection and the full-text collection, respec-

tively, using the Indri (17) search engine. In particular, we use the Porter stemmer for

stemming words in the documents. We choose the query likelihood language model as

our retrieval model. This model scores documents for queries as a function of the prob-

ability that query terms would be sampled (independently) from a bag containing all

the words in that document. Formally, the scoring function is a sum of the logarithms

of smoothed probabilities:

score(D,Q) = logP (Q|D) =
n∑

i=1

log
tfqi,D + µ

tfqi,C
|C|

|D|+ µ
, (7.1)

where qi is the ith term in query Q, n is the total number of terms in Q, |D| and
|C| are the document and collection lengths in words respectively, tfqi,D and tfqi,C are

the document and collection term frequencies of qi respectively, and µ is the Dirichlet

smoothing parameter.

Query Formulation

We formulate a query for each detected GOES from the output of subtask A.

In particular, we filter stop words in the sentence using a standard stop word list. We

leverage information in <GeneID, GOSLIM, GO> triples to reduce the GO candidate

list (denoted as C), and then build a PMID candidate list by incorporating information

in the <PMID, GOA> pairs. The following are the detailed steps:

1. Given a gene G, we have a list of <G, GOES> pairs.

2. For each <G, GOES> pair, we find the corresponding <G, GOSlimID> pairs.

3. For each <G, GOSlimID> pair, we get a list of PMIDs based on <GOSlimID,
GOID, PMID> triplets.

4. Combine all PMIDs for G to get a <G, L> pair, where L is the PMID candidate
list (i.e., a reduced search list) for G.
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Annotation The output from the retrieval model for a given <GeneID, GOES> pair is

a list of documents ranked by their relevance scores. Based on the <GOSlimID, GOID,

PMID> triplets, we obtain GOIDs for top-ranked k documents, and then weight each

GOID by their corresponding document relevance score. We further aggregate scores

of each GOID and take the top-ranked m GOID for each GOES. Finally, we combine

GOID across all GOES, rank them according to their occurrences and keep GOID,

which occurs more than p times. We set <k, m, p> to <7, 10, 4> by training them

on the 150 articles (i.e. the combination of training and development sets).

7.2.2.2 System B2

Figure 7.2 gives an overview of System B2 which has similar modules to system

B1. The major difference is that we use GeneRIF as the external resource. In par-

ticular, we extract <Sentence, GOID> pairs from GeneRIF where the corresponding

articles are cited as evidence of GOA records in iProClass and build an index for this

collection of sentences. Therefore, the output from the retrieval model is a ranked list

of sentences, which are further converted to a ranked list of GOID based on <Sentence,

GOID> pairs. Finally, in the Annotation module we do the following:

1. Starting from an initial list that contains top-ranked k GOID, select GOID one
by one down the list until the score difference of current GOID with the topmost
GOID is above threshold h.

2. Aggregate GOID frequency across all GOES associated with a particular gene,
and rank GOID by frequency.

3. Take the top-ranked m GOID for each gene.

7.2.2.3 Baseline System B3

We use a greedy string matching algorithm to generate the baseline. Specifically,

we obtained all words in the sentences that are aligned to GO terms and synonyms

when ignoring lexical variations. We then computed the Jaccard distance [92] between

those matched words with GO terms and synonyms. A threshold of 0.75 was used for

GO term assignment.
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Figure 7.2: Overview of system B2.

7.2.2.4 Experimental Setup

We implement systems B1 and B1 in Indri. By training them on the 150 articles

(i.e. the combination of training and development sets), we set <k, m, p> to <7, 10,

4> for system B1 and <k, h, m> to <5, 0.1, 3> for system B2.

7.3 Evaluation

7.3.1 Evaluation Metrics

We use the precision (P), recall (R) and F1-measure (F1) scores to evaluate the

results for both subtasks [78]. However, for subtask A there are two different criteria

for determining a match between a candidate sentence and the ground truth sentence:

1) exact match between sentence boundaries and 2) partial overlapping. For subtask B

there are also two different matching criteria: flat or hierarchical. For the flat metrics,

a match occurs when the predicted GO term is exactly the same as the gold standard.

For hierarchical metrics, a match occurs when the predicted GO term has a common

ancestor with the ground truth GO term.

7.3.2 Results and Discussion

Table 7.2 presents the evaluation results of subtask A. Systems A1 and A3

obtain comparable F1 scores. System A2 has a lower F1 score due to the relatively
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low performance on recall. The performance difference between A1 and A2 is caused

by the noisy negative training instances sampled randomly from GeneRIF.

Table 7.2: Evaluation results for GOES identification.

System Overlap match Exact match
P R F1 P R F1

A1 0.313 0.503 0.386 0.219 0.352 0.270
A2 0.314 0.442 0.367 0.220 0.310 0.257
A3 0.307 0.524 0.387 0.214 0.366 0.270

During the development phase of systems for subtask A, we assessed the perfor-

mance with or without the use of additional GeneRIF excerpts and the contributions

of individual types of features. We found that the use of an unlabeled data set sam-

pled from GeneRIF improved the F1 score by 0.03 compared with the baseline, which

uses only positives and negatives from the training data set and BOW features. Also,

including other features (bigrams, gene presence, section, and topic features) led to

performance improvement over the baseline. In particular, section feature improved

the F1 score by 0.01. Bigram and gene presence features each brought an improvement

of 0.008. Topic features further added 0.003 when the number of topics was set to 100.

Table 7.3 presents the official evaluation results of subtask B. The exact F1 scores

for both types of systems are less than 0.1. System B1 achieves 0.301 for Hierarchical-

F1. Our search-based systems (i.e., B1 and B2) outperformed the similarity-based

system (i.e., B3) significantly.

Table 7.3: Evaluation results for GO annotation.

System Flat Hierarchical
P R F1 P R F1

B1 0.054 0.149 0.079 0.243 0.459 0.318
B2 0.088 0.076 0.082 0.250 0.263 0.256
B3 0.029 0.039 0.033 0.196 0.310 0.240

We were not aware of the need of containing experimental methods for detecting

GO evidence excerpts and assigning GO terms as specified by the annotation guideline.

This may explain why the use of section features in subtask A has the most gain in
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the F1 score. Additionally, we sampled only from human GeneRIF records with at

most two records per gene. The rationale behind it is to avoid over-representation

of popular studied genes and their homologous genes. It is not clear whether such

sampling approach has impact on the performance of the system.

7.3.3 Comparison with Related Work

Table 7.4 shows the performance scores of the best runs from the top 3 teams

for subtask A. Team 238 corresponds to our team, which placed 1st.

Team 250 also built a binary classifier but used the reference distance esti-

mator [62] for constructing features from a large number of unlabeled sentences to

overcome data sparseness [63].

Team 237 designed a rule-based system by using text mining techniques to

extract information inside the GO database.They used more than 63,000 automatically

generated rules.

Other teams also used either machine learning based or rule-based approaches.

Although the overall results are far from satisfaction for practical use due to the limited

high quality training data, the general trend is that machine learning based approaches

outperformed the rule-based approaches [78].

Table 7.4: System comparison for subtask A. Systems are ordered by the exact match
F1 score.

Team Run Genes Passages
Exact match Overlap

P R F1 P R F1
238 3 (A3) 194 2866 0.214 0.366 0.270 0.307 0.524 0.387
250 2 140 2848 0.153 0.259 0.193 0.258 0.437 0.325
237 3 171 3717 0.138 0.305 0.190 0.213 0.471 0.293

Table 7.5 shows the performance scores of the best runs from the top 3 teams for

subtask B. Again team 238 correspond to our team which ranked the 2nd. However, we

are the only team that suggested GO terms for all the 194 genes provided for subtask

B.
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Team 183 used the supervised categorization method which retrieved most

prevalent GO terms among the 5 most similar instances to the input text in their

knowledge base [37].

Team 250 also developed an IR-based system for subtask B, but their approach is

quite different. In particular, they used GOES as queries and retrieve the relevant GO

terms using a ranking function that combined cosine similarity and GO term frequency

in documents. They achieved comparable F1 scores to our system although they only

provided GO terms for only about 2/3 of the total number of genes in the articles.

Although the IR-based approaches are not as good as the machine learning

approach, it might be because that the IR-based approach is more resource-dependent,

i.e., it cannot deal with unseen instances well. With enough data, the IR models could

be able to score the documents better and consequently provide a better suggestion

list of GO term.

Table 7.5: System comparison for subtask B. Systems are ordered by the exact match
F1 score.

Team Run Genes GO terms
Exact match Hierarchical match

P R F1 hP hR hF1
183 1 172 860 0.117 0.157 0.134 0.322 0.356 0.338
238 2 (B2) 194 555 0.088 0.076 0.082 0.250 0.263 0.256
250 3 132 453 0.095 0.067 0.078 0.284 0.161 0.206

7.4 Conclusion

We investigated the use of distant supervision for detecting sentences for GO

annotation assignment and explored using information retrieval techniques for finding

relevant existing GOA to predict GO terms to new articles. The results look promising

compared with other systems performing the same task.

In particular, we had several interesting findings: 1) constructing weakly labeled

instances based on distance supervision is helpful when the training data size is small;

2) the GO Slim, as a cut-down version of GO ontologies, further mitigate the issue of

limited training data by allowing us to focus on the high-level GO terms instead of
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fine-grained ones; 3) useful features for predicting the GO evidence sentences include

bag-of-words, bigrams, sections, topics, and gene presence; 4) useful resources for query

formulation to find similar articles/sentences include <GeneID, GOSlimID> pairs in

Panther [105], <GOSlimID, GOID, PMID> triplets in iProClass [115], <Sentence,

GOID> from GeneRIF [3], as well as PMC full-text articles and PubMed abstracts.
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Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this section, we conclude the thesis by summarizing the main contributions:

We have built and evaluated several effective systems to reduce the manual

work for three different clinical and biomedical tasks, namely EMR-based cohort iden-

tification, MeSH indexing, and gene ontology annotation. They all achieved compet-

itive results compared with other systems performing the same task. In particular,

we obtained the highest evaluation scores on the 2011 & 2012 Medical Records Track

datasets [127, 128, 129] as well as the 2013 ShARe/CLEF eHealth Task 3 dataset [136].

For the EMR-based cohort identification, we explored three directions for im-

proving the retrieval performance:

1) we specifically designed methods for aggregating the multi-level evidence

in the EMR. At the field level, we explored features such as ICD, NEG, and AGF to

expand evidence and remove extraneous information. At the report level, we introduced

RbM (Retrieval-before-Merging) and experimented with SUM, MAX, and ANZ as the

merging strategy. At the visit level, we introduced MbR (Merging-before-Retrieval)

method which merges reports from a visit field by field into a single visit document and

then performs retrieval against an index visits. Finally at the top level, we introduced

VRM (Visit-Ranking-Merging) and compared CombSUM/MNZ/MAX/ANZ with a

query-adaptive merging scoring scheme.

We also studied features that are useful for predicting the combination weight

of the query-adaptive VRM [131]. The most effective features capture either the ambi-

guity of individual query concepts or the semantic similarity between those concepts.
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All the evidence aggregation strategies discussed in Chapter 3 contribute to

system performance. In particular, ICD, AGF, and MbR focus on improving recall

while NEG and RbM on precision. Furthermore, the CombWEG/SUM VRM and the

adaptive VRM improve both recall and precision.

2) we have introduced the CME model specifically designed for alleviating pol-

ysemy and synonymy related issues in medical IR [130]. In particular, the MRF com-

ponent disambiguates word senses and improves search precision by incorporating con-

textual information in the query. On the other hand, the EMRM component enhances

recall by deriving query expansion terms from multiple external collections from differ-

ent domains. CME has shown strong performance and advantage other systems when

performing EMR search and medical web document search.

3) we explored how to use domain knowledge improved EMR search. In partic-

ular, we have proposed and evaluated a joint search framework for building an EMR

search system in which we can flexibly incorporate medical domain knowledge [132].

This framework also allows the system to automatically and adaptively adjust the

combination weight for the text-based and concept-based retrievals by using any infor-

mative features. Our cross-validation results showed that this adaptive result merging

algorithm is more effective than a well-tuned fixed-weight merging algorithm.

We also investigated the usefulness of a large clinical corpus for query expansion

in the EMRM model [135]. We have shown more data is not necessarily better for query

expansion, implying that there is value in collection curation. We concluded that the

size, quality, and diversity of the expansion collections are the three important factors

that dictate the effectiveness of the EMRM model.

4) We showed that different biomedical different medical tasks usually need

specific design and tailor of the search methods. In particular, we investigated several

query formation methods for finding similar articles with existing annotations and used

them for predicting annotations for new articles in both the MeSH indexing [133] and

the Gene ontology annotation [134] tasks.

Overall, based on what we learnt from this thesis work, here are some key points
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we believe that can help improve the retrieval performance in general or in other specific

domains: i) contextual information in text space (e.g., modeled by MRF or derived

from measuring textual similarity) improves precision as it disambiguates word senses;

ii) query expansion using external resources including both free-text and structured

collections improves recall as it expands query with many other related terms. More

specifically, the size, quality (in terms of content similarity to the target collection),

and diversity (in terms of combining multiple in-domain and out-of-domain resources)

are key properties for selecting effective expansion collections; iii) structured in-domain

data developed by human annotators (e.g., ontologies) allows us to transform both data

and retrieval models from the text space to the concept space where discovering and

measuring semantic relationships (i.e., contextual information in the concept space)

among query concepts becomes feasible so that the precision can be further improved

in another way.

8.2 Future Work

For future work, one main direction is to investigate whether it is worthwhile

and how to turn the prototype systems described in this thesis into production systems

for the EMR search. This will necessarily involve several key things:

1) we need to carefully design a graphical user interface (GUI) for our prototype

system so that the users can easily explore its full functionality with minimal interven-

tion. In addition, the GUI should have certain features, such as evidence highlighting

and score displaying, to help users quickly identify retrieval false positives.

2) then we need to thoroughly evaluate our prototype system under a real work-

ing environment. In particular, we should monitor key parameters that are indicative

of the usability and effectiveness of the system, such as the time spent on using the

prototype system for completing the search tasks, explicit user feedback, etc. We also

need to compare the prototype system with existing systems for EMR search.

3) if the evaluation results are satisfying, we need to consider other practical

issues (e.g., scalability) for migrating the prototype system into a production system.
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