NUMERICAL EXPERIMENTS
WITH ISOMETRIC MAPPING
AND BACK-PROJECTION FOR
CONDITIONING COORDINATE FAMILIES
IN A SIMPLE SOBOLEV SPACE

Allan G. Dallas

Department of Mathematical Sciences
University of Delaware
Newark, DE 19716, U.S.A.

Technical Report No. 2001-1



Numerical Experiments with Isometric Mapping
And Back-Projection for Conditioning Coordinate Families
In a Simple Sobolev Space *

Allan G. Dallas

Abstract. Numerically stable Galerkin procedures can be constructed by ensuring that the
families of trial- and test-functions are well conditioned in the respective Hilbert spaces between
which the operator is an (appropriate) isomorphism. We explain an idea for constructing a family
that may be well conditioned in a given Sobolev space of nonzero fractional order from a family
that is well conditioned in the corresponding zero-order space, by using a naturally occurring
isometric operator followed by projection back onto the original subspace. Effectively, the con-
struction results in “preconditioning matrices,” to be used in transforming the original Galerkin
matrix to produce new ones which may be of much smaller condition number. The underlying
geometric setting must be sufficiently simple, so that the Sobolev structures can be “manipulated
numerically.” While we have not yet proven the well-conditioning of the constructed families,
the use of the scheme is illustrated numerically in applications to the approximate solution of a
first-kind integral equation arising in two-dimensional acoustic scattering, where a pronounced

stabilizing effect is observed.
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1. Introduction.

Frequently, an application of mathematics to the physical sciences leads to the formulation of an
operator problem
Lu =y, (1.1)

in which L : H; — H, is an isomorphism carrying the Hilbert space H; onto the Hilbert space H,
(so that (1.1) is well posed) and g is a given element of H,; problem (1.1) may also appear in its
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equivalent “variational form,” involving bounded sesquilinear and linear forms. The Galerkin method
is commonly employed in the construction of approximate solutions for such operator problems. For
example, finite- and boundary-element methods are elaborate applications of the Galerkin method
for solving partial differential equations and boundary-integral equations.

Evidently, however, it has not been uncommon for implementations of the Galerkin method to
be numerically unstable. Here, we say that a Galerkin procedure is numerically stable if the sequence
of condition numbers of the Galerkin matrices (sometimes called “stiffness matrices”) is bounded.
In some cases, an asymptotic bound of the form O(hj_vt) can be established on these condition
numbers, as in, e.g., [9] and [10]; here, hy denotes the N'* mesh size of a discretization scheme
(with hpy = 0 as N — o0) and ¢ is some positive number depending on other circumstances in the
problem. The actual numerical work then reveals that these upper bounds do in fact accurately
describe the behavior of the condition numbers for diminishing mesh sizes, i.e., that the procedure
is indeed unstable.

In many applications, especially in small-scale problems when the data are known very precisely,
sufficient accuracy of the computed approximate solution can be achieved in spite of such a numerical
instability. In other instances, notably when an iterative method must be employed for solution of the
linear systems, it is imperative to maintain reasonably small matrix condition numbers. Presently,
this reduction of the system condition numbers to acceptable levels is realized through some ad hoc
numerical strategy employed after the Galerkin-system matrices have been formed; this is usually
referred to as “preconditioning,” and is an indispensable first step in the usual iterative methods of
solution, where the error at each stage is essentially governed by the condition number of the system
matrix; cf., e.g., BRAESS [4].

In this note, however, we consider the possibility of achieving numerical stability through the
design of the Galerkin procedure itself, in particular, by studied selection of the trial- and test-
functions that essentially determine the procedure. More specifically, when the underlying spaces
H, and H, are appropriate and certain other prerequisites are fulfilled, by a suggestive heuristic
argument we motivate a systematic routine for generation of trial- and test-functions that “should”
afford numerical stability. (Ideas for numerical-stabilization constructions of this sort arise by study-
ing the central features of the mathematical operation of the Galerkin method in its abstract form.)
While we have not presently established practically usable sufficient conditions under which our
construction is guaranteed to produce well-conditioned families, we do present numerical evidence
obtained in implementations of the scheme that strongly indicates the resultant stabilizing effect.

Even though there may be other desirable features required in the design of a Galerkin procedure
for (1.1), here we restrict attention to the numerical-stability question. For example, in large-scale
applications it is desirable—and may be essential—that the system matrices be sparse, i.e., contain
many zero-elements. In the case of boundary-operator problems, this sparseness is now usually
achieved by a strategy commonly known as “compression,” whereby one uses a judicious selection of
the trial- and test-functions to produce many “small” matrix elements, which are then set to zero in
the system-solution process. Thus, the matrix used in the computation is a perturbation of the actual
one, so it is clear that the success of such a procedure hinges on the size of the condition number
of the original Galerkin matrix. That is, numerical stability is also a prerequisite for the success of
compression. We plan to discuss the combined issues of numerical stability and compression in a
future note.

We conclude this introduction by summarizing the developments in the succeeding sections. In
Section 2 we recall the formulation of the Galerkin method and the simple condition sufficient for
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numerical stability that is developed in [5], which states that one should choose families of trial-
and test-functions that are “well conditioned” in the respective spaces between which the particular
operator L is an (appropriate) isomorphism. Section 3 is devoted to a summary of the well-known
construction of a scale of Hilbert spaces intermediate between two given spaces, one of which is
compactly embedded in the other, along with construction of their antiduals; this is just a recounting
of developments given in AUBIN [1]. Working within the setting of Section 3, we describe in Section 4
our idea for systematic generation of numerically stable Galerkin schemes by a certain construction
of families of trial- and test-functions from appropriate “initial” families of such functions. The
procedure involves mapping the initial functions under a selected isometric isomorphism followed
by a projection back onto the initial subspace. Resulting from the construction are matrices to be
used in transforming the “original” Galerkin matrices by pre- and postmultiplication, yielding a
new sequence of Galerkin matrices that is conjectured to be well conditioned. From an inspection
of the recipe, it becomes evident that we must be able to “manipulate numerically” the inner-
product structures of the scale of Hilbert spaces in any implementation of the scheme, so that these
must be relatively simple, e.g., Sobolev spaces associated with an interval in R, a circle, a plane
rectangle, or a spherical surface. In the remaining Sections 5-7, we restrict attention to Sobolev
spaces of functions defined in a bounded subinterval (a,b) of the reals R. In Section 5 we recall the
definitions of the so-called B-splines and, by relying on results of SCHOENBERG [11], [12], show that
these well-known functions generate families of codrdinate functions that are well conditioned in
H°a,b) = Ly(a,b). Consequently, we are motivated to use such splines as our initial family in the
construction of Section 4. In Section 6 we use the previous results to apply our idea in constructing
families of coordinate functions that we conjecture to be well conditioned in various Sobolev spaces
on (a,b) of positive and negative fractional order, e.g., spaces of “periodic” functions and spaces
of functions with traces vanishing at both a and b. Finally, Section 7 contains a description of the
two numerical applications we have made by employing the families generated in Section 6. There,
we construct approximate solutions of a two-dimensional boundary-operator problem involving the
scattering of time-harmonic acoustic waves by a sound-soft obstacle of arbitrary smooth shape. One
of these applications is only cited, since the details are available in [6].

As we noted, our idea was originally most appropriate for application to problems set in a
Sobolev space of functions on a geometrically simple set, say, an interval in R. But in [6] we show
how to reformulate a large class of boundary-integral equations set on a manifold in R® as corre-
sponding integral-operator problems posed in a space of functions defined in a square in the plane
and having vanishing traces on the boundary of the square. Then the underlying geometry be-
comes sufficiently simple that the Sobolev structures can be manipulated numerically, so permitting
the implementation of the ideas explained here in the higher-dimensional case of greater physical
importance.



2. Sufficient conditions for numerical stability of a Galerkin procedure.

In this section we review the formulation of a Galerkin procedure for convergent approximate so-
lution of an operator problem in Hilbert space and recall the simple condition guaranteeing the
numerical stability of such a procedure that is derived in [5]. This sufficient condition suggests a
design strategy leading to the constructions described in Sections 4-6 and the examples of solution-
approximation outlined in Section 7. The strategy consists simply in the construction and use of
trial- and test- families that are “well conditioned” in the Hilbert spaces between which the operator
is an isomorphism.

Let L : H — H, be an isomorphism between the Hilbert spaces H; and H,, so that the
fundamental operator problem for L is well posed:

Given g€ H,, find u, € H, such that Lu, =g. (OP)

The Galerkin method is probably the most well known and commonly applied scheme for the (nu-
merical) construction of a sequence of operators converging strongly (i.e., pointwise) on H, to the
inverse L' : H, — H,; with such a construction in hand, it is clear that the unique solution u, of
(OP) can be convergently approximated in the norm of H,. However, in addition to the convergence
question, the issues of numerical stability and “problem size” must be confronted in any implemen-
tation of the Galerkin method. In fact, for many purposes it is useful to distinguish two stages in
the design and execution of a Galerkin procedure, (1) the “abstract,” or “basis-free,” formulation,
followed by (2) the “numerical-implementation” stage.

The abstract formulation. This step is determined entirely by the selection of two sequences

(M%) %_, and (M%) _, of subspaces of H, and H,, respectivelgg We suppose that M3 and M%

are of equal and finite dimension dy for each N and that (M}) N1
k=12, ie., that

is ultimately dense in H), for

A}i_r)noo dist (u, M}f,) = ngnoo vrenﬁl,’:, ||u — vHHk = J\}I—I>noo ||u - P}\“,u”Hk =0 for every u € H,

o
N=1
converges strongly to L, so it is natural to inquire (i) whether the operators Ly : M3, — M2, given

by

in which P} denotes the orthoprojector onto M% in Hy. Then the operator-sequence (P} LPy)

Ly = PyL|My, N=1,2,..., (2.1)

are invertible for all N > some N, and, if that is the case, (i) whether the resultant operator-

sequence (Ly'P%)5_, converges strongly to L~1. Put another way, we ask (i) whether the N'*h
)

Galerkin subsidiary problem

Given g€ H,, find u) € My suchthat  Lyul =Pg (OPy)

is well posed for all N > some N, and, if so, (i) whether the sequence (uév = LJ_VIPI%,g) ]Ovo_ N of
-0

solutions converges in H; to the unique solution u, of (OP), for any data-element g € H,. When this

goes through, naturally we say that the Galerkin procedure determined by (M }V)]ovozl and (Mf\,)?vo:l

fvozl in H,, a necessary and sufficient condition
for convergence of the Galerkin procedure is the eventual uniform invertibility of the operators L,

is convergent. With the ultimate denseness of (M})

i.e., the existence of an integer IV, and a positive number a such that
|Lnunll, > allux|, for all uy € My whenever N > Nj. (2.2)
2 1
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There are various necessary and sufficient conditions known to guarantee (2.2), as well as sufficient
conditions that are applicable to one class of operators or another. In any case, the question of
convergence is completely settled in this abstract-formulation stage. In the remainder of this section,
we shall suppose that (2.2) obtains.

The numerical-implementation stage. To construct (a numerical approximation to) the solution

ué\' of the N*® Galerkin subsidiary problem (OP,), we first select bases for the trial- and test-

subspaces. That is, for each N let (eX) Z’l L and (e )Zi , be linearly independent collections chosen

from M} and M2, respectively; we shall refer to the families F, := ((enN )Zi 1)N X and F, =

((5nN ) Z’l 1);.:_1 as coordinate families (in H, and H,, respectively). Of course, there are many ways
in which to choose these collections of finite-dimensional bases, and (once it is assured that (2.2)
holds) the numerical performance of the Galerkin procedure depends on their intelligent selection.
That is, these choices will determine both the numerical stability and the “effective numerical-

problem size” in the implementation.

It is clear that the solution uév of (OPy) is given by

dy
uév = Z ENeN for N > Ny, (2.3)
n=1

in which the coefficients (& )i’l , are determined by the linear system

dN
S N el = () mm Ly 2
n=1

the system is uniquely solvable, owing to (2.2) and the linear independence of (€l) )fi L and (e )Zi .-

We say that the Galerkin procedure is numerically stable iff the sequence of respective E; N_condition
numbers of the matrices in (2.4) is bounded, with €2d N denoting the usual d-dimensional complex
unitary space. We want to control the growth of these condition numbers by a construction of the
trial- and test-functions that is based on a known criterion for numerical stability. To recall from
[5] this simplest stability condition, let £y, : €2d N Z: N denote the operator in E; N that is induced
by the matrix in (2.4) with respect to the canonical basis, so that the €2d N-condition number of the
matrix is just the product HE N“ Hﬁfvl || of operator norms. Now, it is easy to check that £, can be
factored as

Ly =U3 LUk, (2.5)

in which the “prolongation” operator UL : £4~ — H, is given by
dy
d d
Uné=> &Nel,  for &= (&N)Y, € 4,™, (2.6)
n=1

U% : £y~ — H, is defined similarly in terms of (X )Z’l ,» and (the “restriction” operator) UZ" :
H, — €2d N is the adjoint of U%. We observe that the linear independence of the sets of codrdinate-
functions guarantees that the Uy and U% are injective; by (U}V)_1 and (UJZ\,)_1 we indicate the
inverses of these operators on their respective ranges M3 and MZ. Now it is easy to get from (2.5)

the upper bound

lenllien | < ORI 1} Jenlzz ) {Ioslil@h) ) for N =N, (@7)
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for the condition number of the N'** Galerkin matrix, as a product of the condition numbers of

three operators. The sequence <||LN|| ”LJ_VIH):)VO_N has the upper bound ||L||/a, by virtue of the
-0

boundedness of L and (2.2). Therefore, (2.7) implies that numerical stability will obtain if the
coordinate families F; and F, are well conditioned in H,; and H,, respectively, in the sense of the
following definition:

dn
n=1

Definition 2.1. Let J := ((bN ) ): be a codrdinate family in the Hilbert space H. Let the

prolongation operators Uy : IZdN — H be defined analogously as in (2.6), with bY replacing €. We

say that J is well conditioned in H iff the sequence (||U NH || ~) ||)N_1 of condition numbers is
bounded. -

With this terminology, we can state that our designing for numerical stability is based on (2.7),
assuming that (2.2) holds, through the selection/construction of coérdinate families well conditioned
in the appropriate Hilbert spaces H; and H,.

Besides affording an alternate means for handling the condition numbers associated with a
coordinate family that is frequently convenient, the next observation indicates that the process of

oo
computing the H-orthoprojections onto the sequence of subspaces (M ~ = span {bY }di ) by

N=1
using the respective basis-families (bN ) is numerically stable iff the family JF is well conditioned

in H:

=1

Lemma 2.1. Let (b ) , be a linearly independent collection in the Hilbert space H, and denote
the associated pro]ongamon operator by Uy : Ezd N — H. Then ||U NH || U N || is the square root

dN
of the €3~ -condition number of the H-Gram matrix {(bN bY) 4 } » of (bN)dN

nrm n=1"

Proof. Let By : Ezd N Ezd N denote the operator induced with respect to the canonical basis of

€2d ¥ by the Gram matrix of (b ) Y ,» so that the £, ¥ _condition number of the latter matrix is

just ||By|l[IBx'll- Then it is easy to see that By = UxUy and By' = (Uy) ™~ UN|MN =

(Un) - ((Un) _1)*7 50

Bl = [UAUN]| = [Un: &~ H |
and
1B = 11@w) ™ (@n) )l = 1Ow) 50, 657,

from which the conclusion of the Lemma follows. O

There are other important aspects of the conditioning of a coérdinate family that should be
kept in mind when designing a Galerkin procedure. For example, the following simple result sheds
light on the reason for various instabilities occurring in practice.

Lemma 2.2. Let J be a codrdinate family in the Hilbert space H, generating a sequence of subspaces
that is ultimately dense in H,. Suppose further that H, is densely and compactly embedded in a
second Hilbert space H,. Then J can be well conditioned in at most one of H,; and H,.

Proof . This follows from Proposition 4.3 of [5]. [



3. Construction of intermediate Hilbert spaces.

Let (Hy, (-, ")) and (H,, (-, -),) be two Hilbert spaces with H, C Hy, H, dense in Hy, and the
natural injection map ¢ : H, — H, compact. In this commonly occurring setting, AUBIN [1] gives a
construction of Hilbert spaces H® intermediate between H, and H,, along with their antiduals. For
ready reference, we include here a summary of the main line of this construction and the principal
results. In Section 6, we work out two examples, taking H, to be H%(a,b) = L,(a,b) (in each case)
and then identifying H, as one or another subspace of H'(a,b).

Much of the general development can also be found in, e.g., BEREZANSKII[3], albeit from a
somewhat different point of view.

We suppose that H; is a pivot space, i.e., we identify H, with its antidual, so that we can
identify the antidual of H, as the completion H_ of H, with respect to the inner product

(ug,vg) = (ug,vg)_ = (¥ug, 1*vg) 4, ug, vy € Hy,

where «* : H, — H, denotes the adjoint of .. The sesquilinear form (uq,u,) — (ug,tu ), on
H, x H, is then bounded when regarded as densely defined in H_ x H ; the bounded extension of
this form to all of H_ x H  , the antiduality pairing, is indicated by (-, -)o. The operator +* is clearly
an isometry with range dense in H, when it is regarded as densely defined in H_ (with domain Hy),
and so extends to an isometric isomorphism of H_ onto H_ ; the inverse of the extension is denoted
by J, : H, — H_ and termed the antiduality operator. It is easy to check that the inner products
and the antiduality pairing are connected by

(uf,J+u+)H_ = <u7,u+>0 = (J;luf,u+)H+, for w_€eH , u,€H,. (3.1)

With this review of the initial setting, we can describe the construction of the spaces inter-
mediate between H, and H,. More precisely, the result of the construction is a scale of Hilbert
spaces (H®)_, ___, such that H®t D H®: with compact embedding for s; < s,, while H~' = H
H° = H,, and H' = H_; moreover, H™* is a realization of the antidual of H* for s > 0, with the
antiduality pairing on H—® x H® obtained as the appropriate restriction/extension of (-, - ),.

-

The scale of Hilbert spaces is constructed with the help of a complete set of eigenpairs of J;l.

In fact, since the embedding of H, into H is compact, the version of the Riesz-Fredholm Theorem

given by AUBIN [1] asserts that there exists a collection {()\n, é )}:;1 of eigenpairs of J;l, i.e., such
that

Jte, = \,8

n n-n’

n=123, ...,

with the sequence (/\")Zo:1 positive, nonincreasing, converging to zero, and containing all of the
eigenvalues of J;l, repeated according to multiplicity, while the family of respective eigenfunctions
(8,)., forms an orthogonal basis for H, . It is easy to see that (&,) -, is also an orthogonal basis
for both H, and H_j; clearly, we may suppose that the basis is orthonormal in H,,. Thus, for each

=1, but |+=\/%and |_ =V

Definition 3.1. For s > 0, let (H® (-, -),) be the inner-product space formed by the linear
manifold H® C H, comprising all those u € H,, for which

n we have ||é

n”() €n €n

[|ul|, := {Z )‘is (u,én)0|2}5 < o0 (3.2)

n=1"T



and the corresponding inner product ( -, - ), obtained from || - ||, by polarization, in the usual manner.

D>

oo
n)O) is then easily shown to be an isometric isomorphism

n=1

Since the operation u +— (\/%(u,
n

from H® onto /5, one concludes that H® is a Hilbert space. Obviously, H® = H, and the “new”
inner product for H,, coincides with the original one (so there is no ambiguity in the notation), while
H'=H,.

+

Definition 3.2. For s < 0, let H® be the Hilbert space formed by completing the inner-product
space (Hy, (-, +),), with (-, -), obtained again by polarization from the new norm for H, given in
(3.2).

We list consequences of these definitions; the first three results are either easily verified directly
or are established in [1], so we merely present the statements with little comment on their proofs.

Inner product in H®: For any s in [—1, 1], the inner product for H® is given by

)
1 ~ ~
v s = Z )\_fb<u’en>0</u7en)03 u, v € HS; (33)

n=1

of course, the antiduality-pairing values in (3.3) reduce to Hy-inner-product values when v and v
are in H,.

Fourier expansion in H®: By (3.3) and the completeness of the eigenfunctions in H?, the sequence
(/\f/ 2én):):1 gives an orthonormal basis for H*, again for s € [—1,1]. The Fourier expansion in this
basis turns out to be simply

u= Z(u,én)oén, for we H®. (3.4)

Antiduality operator and its inverse: For s > 0, the antiduality operator J, : H* — H~ % and
its inverse have the representations

= 1
2 /\— é for we H?, (3.5)
J7lu=) "N (u,8,)08, for ueH™® (3.6)

Factorization of the antiduality operator and its inverse: Now we introduce isometric iso-
morphisms acting between H, and the spaces H® of positive and negative order; the presence of
these operators is already apparent in the forms of the inner products (3.3). It turns out that these
isometries provide factorizations of the antiduality operators and their inverses; cf. the factorizations
established with the help of the spectral theorem in the presentation of BEREZANSKII [3]. We shall
use the isometries defined here to construct codrdinate families well conditioned in an H*-space with
s # 0 from a family that is well conditioned in H,,.

For any s € [—1, 1] we write

o
Lu:=Y X/*(u,&,), for ueH, (3.7)
n=1



Obviously, I, is just the identity operator on H,,. In the general case, we find

Lemma 3.1. (i.) Let s € [-1,1]. Then (3.7) defines an isometric isomorphism I, : Hy — H*® with
inverse I, ' : H®* — H, given by

=1
ITu=>" e (u,8,)08,  for we H®. (3.8)

n=1

(#.) For s € (0,1], the antiduality operator J, : H® — H~* and its inverse have the factorizations

Jo =117, (3.9)
Jot =117} (3.10)

Proof. The proof consists of routine checking. []

One can define in a similar manner isometries acting between any two spaces H® and H?; cf.
AUBIN[1]. We have no need of the more general construction here, since our starting point will
always be a family well conditioned in the current H,-space.



4. The fundamental construction: isometric mapping and back-projection.

We maintain the setting and intermediate-space construction of the preceding Section 3. We wish
to explain our approach to the systematic production of a codrdinate family that is well conditioned
in some (perhaps fractional-order) space H*. The idea is based on the following nearly obvious
statement, which suggests how one might fashion a family well conditioned in one space out of a
family well conditioned in another.

Lemma 4.1. Let B : H; — H, be an isomorphism of the Hilbert space H; onto the Hilbert space H,.
g .= ((bN)Zfl)oo isa well-conditioned coérdinate family in H,, then BF := ((BbN)dN );o )
is a well- cond1t1oned codrdinate family in H,. The condition numbers of the prolongation operators
are exactly preserved if B is also an isometry, since then the H,-Gram matrices of the collections in

BY coincide, respectively, with the H,-Gram matrices of the collections in F.

Proof. Since the prolongation operators for the family BJF are given by BU, : €2d N — H,, where
the Uy : €2d N — H, are the prolongation operators for F, the first statement is clear. The second
statement is immediate. []

For clarity, it is helpful to enumerate the developments explicitly.

(1.) From this point we shall suppose that s € [—1,1] is nonzero and we have in hand a co6rdinate
o0
family F := ((bN ) 1) belonging to H'¢! that is well conditioned in the zero-order space H®
n=l/N=1

and generates ultimately dense subspaces in H°. Apparently, such families are readily available in
a number of settings encountered in the applications. For example, in Section 5 we present families
of codrdinate functions constructed from the well-known B-splines and show that they are indeed
well conditioned in the current zero-order space. In fact, one might conjecture that most of the
families of coordinate functions now commonly used in finite- and boundary-element procedures are
well conditioned in the pertinent H-space.

(2.) We suppose further that, because of the mapping properties of the operator L figuring in the
problem to which we are applying the Galerkin method, we want instead a cotrdinate family that
is well conditioned in H?®.

(3.) We observe from Lemma 2.2 that F cannot already be well conditioned in H?®. However, we
can appeal to Lemma 4.1 if we can find an isomorphism carrying H° onto H*. In fact, the operator
I, defined in (3.7) possesses the desired property—and is even an isometry. Therefore, we have
found in I.F := <(I by )dN );o L2 codrdinate family well conditioned in the desired space H?.

n=1

This image-family will generate ultimately dense subspaces in H® since F has that property in H°.

(4.) On the other hand, in an actual application we must use (3.7) for computation of the values of
the I,bY. In the first place, this means that we will need to construct the collection {(X,,,&,)}
of eigenpairs of the operator J;l (¢f. Section 3), so that, as indicated in the Introduction, the
underlying geometry should be rather simple. Secondly, repeated use of (3.7) for function-value
computations will prove too expensive, so we are motivated to search for an acceptable approximation
to the I,bYY that does not destroy the property of well-conditioning. It seems reasonable to explore

the use of approximations of the form Py I.bY, in which Py denotes a projector “back” onto the

n’
original (algebraic) subspace My := span {bN }le, say, the orthoprojector Pl ~ reckoned in the inner
product of H?, for an appropriately selected t € [—1,1]. The first natural choice here might be t = s,
but we have chosen to concentrate on the value ¢t = 0, since in our case (as we already noted in

Section 2) the process of successive orthoprojection onto the subspaces (M N) ]O\,o:l that is performed
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N

by using the respective basis-families (bn

that F is well conditioned in HP.

dy . . . .
)ni , is numerically stable, under the original assumption

(5.) Thus, in the present work our newly constructed codrdinate families will be of the special form
oo
fPR,ISTf = ((fPR,ISbLV )Zi 1)N:1’ in which P% denotes the orthoprojector onto the subspace My :=

span { b} }Zi , in the Hinner product. The conjecture is that, perhaps under some reasonable
additional hypotheses, fP][\),IS‘”J'~ is well conditioned in the desired space H®. At this point, we have
not yet identified any easily checked sufficient conditions under which the back-projection step can be
proven to preserve the well conditioning. Specifically, we have been working to find simple conditions
guaranteeing that the operators

PRI [ My My =My, N=1,2,...,

are uniformly bounded and uniformly invertible, with va denoting the subspace M, equipped
with the H'-inner product; with the well conditioning of the original coordinate family in H°, it
is clear that this would suffice to assure the well conditioning of the new family in H*. (It is easy
to show that each of these operators is injective.) Consequently, in this note we are reporting on
various other issues relating to the construction, and intend to deal in a separate article with the
all-important matter of establishing the preservation of stability under the projection mapping.

In any event, the numerical evidence cited later in simple applications clearly shows the marked
reduction in condition numbers resulting from the use of this scheme; however, we do not now
know whether the observed reductions constitute genuine numerical stability or simply a beneficial
diminution of the condition numbers to a state of “mild instability.”

(6.) There are some points to be checked to determine that the construction makes sense whether s
is positive or negative. For example, suppose that s > 0. since we have required that My C H sl we
find that I bY = I7'bN € H°, so PRI ,bY makes sense. Alternately, again because My C H!*l,

one can show that TN regarded as densely defined in H~° and mapping into H~® possesses a
bounded extension to all of H~*, verifying again that PI_,bY makes sense.

(7.) Now, with the use of the projector, the new codrdinate functions are linear combinations
of the original ones, so that the codrdinate subspaces themselves remain unchanged, and no new
convergence proof is required; the procedure simply prescribes a change-of-basis for each subspace.
In an application to a Galerkin procedure, the Galerkin matrices constructed from the new trial-
and test-functions will be obtained by matrix transformations (pre- and postmultiplication) acting
on the Galerkin matrices constructed from the original trial- and test-functions. That is, for each
N we can write

PRLHN = Z AN BN n=1,...,dy, (4.1)
in which the coefficients ALY = are determined for n = 1,...,dy by
dN
D (b b ) g AR = (LY, 0Y) g, 1=1,...,dy. (4.2)
m=1

To effect these computations, one must compute the Gram-matrix elements (b%,b{v ) o and the

o5 in turn, recalling (3.7), the latter require the values of

the generalized Fourier coefficients (bz , e ) . Again, because of the hypothesis on F, the processes

righthand-side inner products (I bﬁ ,bfv )

of solving the (symmetric) systems in (4.2) are numerically stable.
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Sometimes the special features of a particular setting will permit significant savings in work
here. For example, there may be some translation-invariance to be exploited and/or the Gram
matrices may be Toeplitz matrices. Also, one might be able to perform some of the integrations
explicitly, so avoiding the need for numerical quadratures to approximate those integrals.

Finally, considering for simplicity the case of the Bubnov-Galerkin method, when the operator
L acts entirely in H® and the trial- and test-subspaces are chosen to coincide, in view of (4.1) it is
now clear that the elements of the old and new N*" Galerkin matrices are related according to

dN dN
(LPRILY, PRIBY) =D > " AN(LN,bY) AN, m,n=1,...,dy. (4.3)
j=1k=1

i.e., by a transformation using the matrix A" obtained from the projection-calculation. (In the
examples, the form of the operator L will permit computation of the H*-inner products here by
reduction to H%-inner products.) Similarly, the new righthand-side vectors in the Galerkin systems
are obtained by a single matrix multiplication acting on the original vectors. This shows that one
might be able to employ the present stabilizing device by modification of an already-existing code,
avoiding the need to reprogram the entire computation from scratch.

12



5. Initial coordinate families: examples.

In this section, we recall a well-known construction of codrdinate functions, from the polynomial
spline-functions obtained as the convolution powers x™ = y*" of the characteristic function y =
X[0,1] of the interval [0,1]. These splines are usually termed B-splines, since they can be used to
construct bases for various linear spline-spaces; cf., e.g., SCHOENBERG [11], [12]. Basic information
about the convolution powers of  is also given by AUBIN [1], [2]; for easy reference, we repeat here
the definitions and explicit forms established there.

The convolution powers themselves are defined by x!!! = x*! := y and

xEH(s) := x B (5) = / x(s = o)x** (o) do, seR, for k=1,2,.... (5.1)
Then x*+1 is of class C*~! on R if k > 1, with support comprising precisely the interval [0, k + 1].
Forl =0,...,k, the restriction of x[**! to the interval [I,1+ 1] coincides with a (shifted) polynomial
al of degree k, i.e., we have

k
xEH(s) = Zafk(s —Dx(s=1) for seR, s#1,...,k, (5.2)

=0

while, at the subinterval-endpoints indicated, the (limiting) values are
xE@)y =ak(0)  for 1=1,....k (5.3)

(and, of course, x*T1(0) = a9(0) = 0, x¥+!(k + 1) = ak(1) = 0). The polynomials o}, are given
by

k .

N
al(s) == Zak(l,_y),—', (5.4)

0 J:

J
with the coefficients defined as
! k+1\ (I —q)ki

ak(l,j) = Z(—l)q( q )W, for 0 S l,J S k (55)

q=0

Recursion relations amongst the a! and the a,(l,j) are developed in [1], [2], along with other
connections. Figure 1 shows the first seven powers, x**! for k=0, ..., 6.

Let (a,b) C R be a bounded interval. The “mesh size” hy corresponding to a given positive
integer N is

We review the formation of initial coérdinate families to be used for convergent solution-approx-
imation in problems posed in two settings, a space H{(a,b) (the closure of C§°(a,b) in H*(a,b))
and a space H}.(a,b) (the closure in H*(a,b) of the restrictions to (a,b) of all the (b — a)-periodic
functions in C*°(R)), along with their respective antiduals. By the term “initial,” we indicate that
these codrdinate families turn out to be well conditioned (only) in H?(a, b), but we intend to generate
from them families (that appear to be) well conditioned in a Sobolev space of nonzero order by using

the idea of isometric mapping and back-projection, as outlined in the preceding Section 4.
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Fig. 1. The convolution powers x*t1 for k=0, ..., 6.

Coordinate functions supported in [a,b]. Now, with the integers £ > 0 and N > 0 satisfying
N — k > 1, the translations/compressions bN* of x!¥+1] are defined on R by

(= Dha —
bE(s) := y[hH1] (S (n = Dhy a) for s€R, for n an integer;

hx

usually, we need the bY* only for n = 1,..., N — k, but occasionally it is useful to admit any integer
n. One can then check that the support of bY* is the interval [a + (n — 1)hy,a + (n + k)hy] (of
length (k + 1)hy). Consequently, the support of each function in (b}*) " is contained in [a, b].
Corresponding to the selected k, which determines the smoothness of the cotrdinate functions, we
now take the N*" subspace M of Section 4 to be M% := span {bY* }g:_lk (so that here dyy = N —k).
Nk in H%(a,b), we
=1/ N=f+1

must examine the behavior of the ratio of the largest to the smallest eigenvalues of the Gram matrices

Ghe o= {(bNF, b k)O}:_nkzl as N — oco. Because each function b)'* is real and a translate of any

To study the conditioning of the codrdinate family ), := ((bﬁy k)

other, it is already clear that G% is an (N — k) x (N — k) real, symmetric Toeplitz matrix; because
the support of bN* is of width k + 1, % is banded, with bandwidth 2k + 1. In fact, the elements
of these matrices can be easily calculated; to give the results of this computation, whenever m is an
integer we shall use the abbreviation

BNE 20D (1 4 k) = { ayit(0) = apy (m+k,0)  for m=—k+1,... k+1, (5.5)
0 otherwise;
here, the explicit expressions follow from (5.2)—(5.4).
Lemma 5.1. The inner product (b{Vk,bﬁk)O in H%(a,b) is given by
(OF,00F) o = b x PN (m + k) = hyBYF,  for m=1,...,N -k, (5.6)

so that
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(bV* ka)Oz (b{Vk,be'imHl)O:hNﬁfX’imHl for m,n=1,...,N —k. (5.7)

m ’'n

Proof. Choose an m in {1,...,k+1}. We find that

b N
(b1*, BYF) = / BYEBNE AN, = hy / K (0) 5 (o = (m - 1)) do
a 0

the support of the integrand here is [m — 1, k + 1], so we can extend the interval of integration to all

of R. Thus, we can express the inner product as a value of a convolution:
(b{Vka b%k)o = hN((X[k+l]) * X[k+1]) (m - ]-)7

in which g(o) := g(—o), as usual. Now, with the operator 7; of translation by 6 € R defined
according to (759) (o) := g(o + 4), one can easily check that

~

(X*(k+1)) syt D) = px(ktD) o x (k1) — (x * X)*(k+1)

*(k+1) *
= T(kt1) ((X * X) ) = Ty1)X 2(k:+1);

(5.6) follows from this. Since the first equality in (5.7) is easy to verify, the proof is complete.  []
Now we can establish an important conditioning fact:

Proposition 5.1. Let k be a nonnegative integer. The cobrdinate family F, is well conditioned in
H°(a,b).

Proof . Tt is easy to see that the assertion is true for k = 0, since each collection {b% O}gzl is an
orthogonal set in H°(a,b), for N = 1, 2,..., so that each corresponding Gram matrix 9?\, is diagonal,
with every diagonal element equal to hy. Therefore, we shall suppose in the remainder of the proof

that k£ > 1.

We show that the ratio of the largest to the smallest eigenvalues of the Gram matrix va is

bounded for all N > k + 1, by examining the values of the Rayleigh quotient

S (BNF BNR) € . SNk XRED] (jn —m| + k + 1)€,,E,
_ — N _
SR SN Fle

the second equality holding by Lemma 5.1. Now, for any positive integer p let ¢,, denote the cosine-

QR (€) := , Eet) Tk

polynomial given by

oo

b,(x) == Z X7 (n + g)einw _ Z Pl (n + g)einz

n=—co inl<(p/2)-1

— X[2P] (g + Z X[”] (n + g) cosSnx, z €R;
1<|n|<(p/2) -1

we shall rely on the properties of the ¢, established by SCHOENBERG [11], [12], where they are

introduced in studying questions of spline-interpolation. (The original definition of ¢, in [12] is
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given in terms of “central” B-splines; we have translated the definition to involve only the “forward”
B-splines being used here; cf., e.g., [12, (1.5)].) Following, e.g., [8], for any £ € £¥ * we compute

x Nk, Nk pm . B
Z gnemz‘ ¢2(k+1)(37) do = Z %/ ¢2(k+1)($)671(n7m)z dr €&y
T p=1 m,n=1 -
N—k
= D XPE(n—ml+k+1) €,8,
m,n=1

for the latter equality, we used the fact that x[?! is even with respect to p/2, i.e., that X! (x + g) =

2
xPl (—m + g) for z € R. Since (1/27) [” Zg;lk £, dr = Eg;lk |€,]?, we get

-7

i <ok < _ _
hy 77¥rsuzng{¢z(k+1)(w)} <QN(§) < hy ﬂ%’iﬂ{%(kﬂ)(m)} (5.8)
For k > 1, the results of SCHOENBERG [12, Lemma 6] show that ¢2(k +1) is strictly decreasing on
[Oﬂﬂ-]) with ¢2(k+1) (0) =1 and

oo

2 2(k+1) 1 2(k+1) 2
bun@=(2) X 2 ¥ 15 = 2(3) z<k+1) (5.9)

Jj=—o0 J:1

Since ¢y, ;) is even and 27-periodic, it follows that @, ) (0) and Pokt1) (m) are, respectively, also
the maximum and minimum values of the function. Therefore, from the lower and upper bounds on
the eigenvalues of G% obtained from (5.8), we can conclude that the £1¥ ~¥-condition number of G
is bounded by the reciprocal of the number on the right in (5.9), for all N. ]

Proposition 5.1 indicates that we should anticipate a numerical instability if we use one of the
families ¥}, when we actually need a family well conditioned in a Sobolev space of some order other
than zero.

Coordinate functions periodic in [a,b]. Instead of functions vanishing outside of a closed
subinterval of [a,b], now we generate functions “periodic in [a,b],” i.e., with identical values and
identical derivative-values at a and b. To this end, still with the integer k£ > 0 fixed, suppose now
that the integer N is > 2k+1 and let XE’GH] denote the periodic extension to all of R of the restriction
x¥*1|[0, N, i.e., of the restricton of x#+1 to the interval [0, N]. Thus,

o

) = 3T ) for seR

p=—00

Now we proceed as in the first case to define translations/compressions Bﬁ k of xg(“,H] on R by

. —(n—=1Dhy —
BNE(s5) =yt (8 (n = Dhy a) for s€R, for n an integer;

hy
in this case, only N distinct functions result, since one can readily verify that the Ejnv k are periodic,
with period N, in the index n, i.e., one finds that

bk = bNE for every integer p.

n+p
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Of course, the functions are also periodic in their principal argument, but with period (b — a):
bYE(s+ (b—a)) =bN*(s)  for s€eR,

which is also easy to check directly. Moreover, the restrictions of bY* and bY* to [a, b] coincide for
n=1...,N—k:

bYE(s) =bNk(s)  for sefa,b] if n=1,...,N—k, (5.10)

but for n = N —k+1,..., N the restriction bY*|[a, b] has “split” support [a,a+ (n— N +k)hy]U[b—
(N —n+1)hy,b]. Now we denote the codrdinate subspaces by M¥; := span {bNk }le; in particular,
here we have dyy = N.

The conditioning of the codrdinate family F* := ((I;ﬁbv k)N_l)N . in H%(a,b) depends, as
n= =k+1
before, on the pertinent Gram matrices, G := { (b, bNV%) O}Z .- Naturally, the elements of

these matrices can also be expressed in terms of the 8N* defined in (5.5):

Lemma 5.2. The inner product (5{”,5%’“)0 in H%(a,b) is given by

Nk pNk) _ [2(k+1)] _ Nk _ _
(B{Vk ENk) _ (bl , by )0 hnx (m+k‘) hn B, for m=1,...,N —k,
) m 0
(0%, bNE N 12) o = BNBNE N 1o for m=N—-k+1,...,N;
(5.11)
the remaining elements of the Gram matrix can be found from
Bk oy F) g = (O, B0 a),  for m,m=1,...,N. (5.12)
Proof. These values are easily computed from those given in Lemma 5.1 and the definitions of the
periodic functions. [J

It is easy to see that gf“\, is an NV x N real, symmetric Toeplitz matrix; its main-diagonal band
is of width 2k + 1, just as for the (N — k) x (N — k) matrix §%, but §';V also has upper-right and
lower-left triangles of side-length k. Moreover, it is essential to observe that §’fv is a circulant matrix,
i.e., forn=2,..., N, its n'" column is obtained by simply permuting the elements of its (n — 1)st,
moving the last element into first position. Precisely, the matrix {amn}zmz1 is circulant iff the
elements a,,,, satisfy

for n=2,...,N.

W AN (n—m)+1,1 for m=1,...,n—-1
mn Q11 for m=n,...,N

The circulant property of §’R,, a result of the translation-invariance and periodicity properties of the
55 k. can be readily established from the values given in Lemma, 5.2; we omit the details.

For present purposes, the important fact about circulant matrices is that their eigenvalues can
easily be computed directly from their elements; cf., e.g., [7]. We can exploit this to show that the
families F* are also well conditioned in H%(a,b). (In passing, it is interesting to note that now the
argument of the proof of Proposition 5.1 does not succeed for k > 1.)

Proposition 5.2. Let k be a nonnegative integer. The cobrdinate family F* is well conditioned in
H°a,b).
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Proof. Once again we can dispose of the case k = 0 just as in the proof of Proposition 5.1 and
suppose in the remainder of the argument that k& > 1.

We already noted that each Gram matrix gf\, is a circulant matrix. Therefore, as shown in,
e.g., [7], the eigenvalues of G&; are just the components of the discrete Fourier transform of the first
column of the matrix. Thus, recalling Lemma 5.2, these eigenvalues are given by

N-1
hy Z 2O (p 4 k4 1) F
p=0
k ) N-1 .
= hyxPENE +1) + by > xPEp + b+ 1) F +hy Y XPEIN —p 4 k1) %
p=1 p=N—k

k
- [2(k+1)] [2(k+1)] P = -
hN{X k+1)+2) x (p+k+1)cos(27rN)}, r=0,...,N—1,

p=1

that is, recalling the cosine-polynomials ¢, cited in the proof of Proposition 5.1, the collection of

{hN¢2(k+1) (ZNﬂ) }i\:ol_

Accordingly, now we can once again appeal to the positivity properties of the ¢,,, along with their

eigenvalues of gf\, is just

monotonicity on [0, 7], established in [12] and summarized in the proof of Proposition 5.1. Thus,
the largest eigenvalue of G%; is hy for every k and N (and is simple, i.e., of multiplicity one). To
identify the smallest eigenvalue, we must pick out the value of 271 /N nearest 7, and so consider two
cases:

» N is even: Now the minimum eigenvalue, occurring for r = N/2, is h NPa(kt1) () (this eigenvalue
is simple, while there are (N — 2)/2 distinct eigenvalues of multiplicity two). The £4¥-condition
number of G%; is given by the reciprocal of the number on the right in (5.9).

» N is odd: Here, the minimum eigenvalue is of multiplicity two, corresponding to r = (N £ 1)/2,
and has the value hydy ;) (%w) (the remaining eigenvalues comprise (N — 3)/2 distinct values,

each of multiplicity two). Now the £;¥-condition number of §’J‘V is (strictly) bounded by the reciprocal
of the number on the right in (5.9). [

A remark analogous to that following Proposition 5.2 is also in order here.
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6. Construction of coordinate families: examples.

Here we give two example settings in which we can construct coordinate families according to the
program outlined in Section 4, by starting from one of the families shown in the preceding Section 5
to be well conditioned in H%(a,b). The conjecture is that a family so constructed is well conditioned
in the pertinent Sobolev space of selected nonzero order associated with the interval (a,b). We
reiterate that, while we have not yet established this well conditioning, the numerical evidence
presented in the final Section 7 supports the contention.

Following the choice of a nonzero value s € [—1, 1], the sequence of developments should by now
be clear:

(1.) Corresponding to Hy = H%(a,b) and a selected Sobolev space H_ of functions in (a,b) com-
pactly and densely embedded in H(a, b), as in Section 3, first find a complete collection of eigenpairs
for JJ:I, permitting determination of the action of the isometry I, for the desired value of s.

(2.) For a chosen “smoothness index” k, act on the corresponding convolution-power codrdinate
functions bY'* with I, to produce a codrdinate family of elements I,bY* that is well conditioned in
the current H ®-space.

(3.) Determine the transformation matrix AV as in (4.1), (4.2), to be used as described in item 7
of Section 4. Of course, this also permits construction of the actual back-projections P I,bN*
themselves, if desired (with Py, denoting the H°(a,b)-orthoprojector onto Mj).

In the present section, we shall consider just steps (1) and (2), by showing how to generate the
isometric images I,b)¥; concerning step (3), we merely recall that the Gram matrices required
in the projection computation have already been displayed in Lemma 5.2 and Lemma 5.1 for the
respective examples discussed here.

Example 6.1. Spaces Hj..(a,b). For simplicity, we take the interval (a,b) to be (0,27). In

the construction of Section 3, we identify H, as H°(0,27) and H, as H(0,2m); the latter is the

subspace of H!(0,2m) comprising those functions u satisfying the “periodicity” condition u(0) =
u(27), or, alternately, the closure in H'(0,27) of the restrictions to (0,27) of all the 27-periodic
functions in C°°(R). These choices generate, in the construction of Section 3, spaces H® denoted
now by H}.(0,27), —1 < s < 1. To find the explicit forms of the inner product and other structures

er

in H},.(0,2m), we need first to capture the action of the operator J;lg it is sufficient to know J;lu

for, say, u € H°(0,27). Accordingly, in view of the form of the inner product in H'(0,27), the
second equality in (3.1) requires here

27 27
/0 {(J_;lu)lﬂg_—l- (J_;lu) H+}d/\1 =/0 u, d) for w e H°(0,2n), uy EH;er(0,27r).
(6.1)
Since J, ' will map H°(0,2r) into H2,,.(0,2r), we find after an integration by parts in (6.1) (and

recalling the denseness of H].(0,27) in H°(0,27)) that J{'u is the solution of a second-order
ordinary differential problem with periodic boundary conditions:

—(I7t)" + (J5 ) = u,

(J7 ) (2r), for u € H°(0,2r). (6.2)
(J7 )  (2m),
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Evidently,
27

Jiu= Gper(t, T)u(T) dXy (1) for every u € H°(0,2n), (6.3)
0

in which Green’s function G, for the latter boundary-value problem is given by

inh 2 1
G e (t,7) = % cosh(t—7) - gsinh[t—7|  for 0<t7<2m (6.4)
With (6.3), one can check that a complete set of eigenpairs of J 1 is given by { ( 5, € )}
p——oo

with e denoting the ordinary complex exponential function normalized in H 0(0 27r) é,(8) =
{27‘[‘} 1ps

Now all of the constructions of Section 3 can be effected explicitly for the current setting. For
present purposes, we need to construct the isometries defined by (3.7), which we shall denote by
IS in this example; more precisely, we need the images ISbN k of the periodic codrdinate functions
constructed in Section 5. With due regard for the modified indexing used in this example, we find

oo
IALEEY ;(W e )oé for n=1,...,N, N>2k+1, k=1,2,.... (6.5)
s'n (1+p2)s/2n’p0p AR = ) 14

p=—00

An easy computation produces the Fourier coefficients (bn Nk ¢ é,)o explicitly as

k41
R /2,”. sin F pT
BNk, e,)0 = ~ | exp{—lﬁ(2n+k‘— D}, p==%1,+2,..., n=1,...,N,
N
(6.6)
for k=0,1,...,and N > 2k+1; when p = 0, the coefficient (b*,é,), has in every case the limiting
value for p — 0, or /2w /N. Therefore, the value of the series in (6.5) can be written
— sin % k+1 .
ILby*(s) = N NZ 1+p e i cosp(s—N(2n+k—1)), for s € (0,2m)
N
(6.7)

and for the indicated values of n, k, and N. It is clear that the righthand side of (6.7) gives
the periodic extension of fsi)g k to all of R, and, moreover, for fixed k and N the collection of
these periodic extensions of {I,6Y ’“}::1 are all simply translates of, say, the periodic extension
of I, IN)N k. The latter property can sometimes be exploited to save much labor, especially in the
computations involving the orthoprojections CPO I bN k which are also mutual translates in the
same sense. (Unfortunately, the same circumstance does not obtain in the upcoming Example 6.2.)

oo
In any event, Lemma 2.2 and Proposition 5.2 imply that the family <( bN k) )N . is
2k+1
well conditioned in ngr(O, 2m), with the corresponding sequence of condition numbers coinciding

with that of the original family in H°(0, 27).

In Figures 2-15 we display graphs of the functions b*, I.bN* and PY W OYE with PO . denoting
the H°(a, b)-orthoprojector onto MX;, for various selected values of s, N , k, and n. There are two
figures for each choice of the latter parameters, the first comparing the graphs of b¥* and I,bN*,

the second comparing the graphs of I,bN* and its purported approximation P9, T.bN*. Tn the
latter figures, the two graphs are practically indistinguishable over most of the 1nterval [0,27]; a
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magnified view would show that the agreement is poorest near those places where ’I;l;f%v k¥ is changing
most rapidly. One should note that the strict “small-support property” of the original codrdinate
functions is destroyed under the isometric mapping (and under the back-projector), although the
transformed functions are, roughly speaking, “small” outside a certain neighborhood of the original
support—with that neighborhood expanding with increasing s.

Example 6.2. Spaces Hj(a,b). Here, we shall take the interval (a,b) to be of the special form
(—b,b) for a given positive number b. In this second example, we identify H, as H°(—b,b) and H
as H(—b,b), the closure in H'(—b,b) of C$°(—b,b), the infinitely differentiable complex functions
with support in (—b,b). Now the spaces H® resulting from the construction of Section 3 are denoted
for s > 0 by H§(=b,b); for s < 0, however, it is customary to write H*(—b,b) in place of H§(—b,b),
and we shall adhere to that notation.

The developments run parallel those of Example 6.1; beginning with the appropriately modified
form of (6.1), in place of (6.2) we now come to the requirement

—(J3 )" + (T ) =,
(T u)(=b) =0, for u € H(=b,b). (6.8)
(Jitu) () =0,

In place of Green’s function for the periodic boundary-value problem, now we use Green’s function
G, pertinent to the same ordinary differential operator but with the homogeneous conditions at +b,
which is given by

sinh (b4 t_)sinh (b—1t, )
2sinh bcosh b

Go(ty,ty) = for —b<t,,t, <b, (6.9)

with the notation ¢, := max {¢,,t,} and ¢t_ := min {¢,,¢,}. In place of (6.3) we now get

b
Jiu= / Go(t,T)u(r)d\ (1)  for every u € H°(—b,b). (6.10)
—b
In this case, we find that a complete set of eigenpairs of J;l is {(W;/?b)z’ ép) }p:1’ with the
eigenfunctions é,, normalized in H°(—b,b), given by
R 1 . pm
€p(8) := —=sin (s + b), p=1,2,.... (6.11)

N

Now, we require the images I,b)'* of the coordinate functions bY* defined in Section 5 under
the isometry I, of (3.7). We get

o0

1
IRNEDY (bBNVE € )€ for n=1,....N—k, N>k+1, k=1,2,...
sn s/2\Yn »%p/0%p ) ) ) fl ’ )4 ’
o= {1+ (m/20)°}
(6.12)
and a short computation produces the Fourier coefficients of the codrdinate functions as
N LN |
ho [SID 5 -
Nk 2 N 2N . P
= —= = (2 k-1 =1,2,... =1,....N—k 1
(bn 76P)O \/B{ 2])]7{'7 SIH2N( n+ )7 p ) &y , N ) ’ ’ (6 3)
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fork=0,1,...,and N > k+ 1.

Now, on the bagls of Lemma 2.2 and Proposition 5.1 we can conclude that the coordinate
family ((Isbﬁ k)N_l) ., is well conditioned in H§(~b,b) if s > 0 or well conditioned in H*(~b,)
n= N=k+1

if s < 0 (and, again, the corresponding sequence of condition numbers coincides with that of the
original family in H%(—b, b)).

In Figures 16-27 we display graphs of the functions bY*, IbN* and Py, I,bN* (with Py,
denoting the H(a, b)-orthoprojector onto M 1), for various selected values of s, N, k, and n. There
are two figures for each choice of the latter parameters, the first comparing the graphs of bY*
and I,bY*, the second comparing the graphs of I,bN* and its purported approximation P, I,bN.
Here we can make comments on the agreement of the graphs in the latter figures and the support
properties of the I,bN* and the Py, I,bN* that are entirely analogous to the observations in the first
example. Now, however, the isometric images I,bY* are not at all mutual translates, a circumstance
making more expensive the computation of the coefficients needed for construction of the projections

PR I,bNE. In [6] we describe how the latter numbers can be generated in a fairly efficient manner.
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Fig. 2. Graphs of bN* (dotted) and I,bN* for s = —1/2, k = 1, N = 40, and n = 15.
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Fig. 3. Graphs of I,bN* (dotted) and P, I,bN* for s = —1/2, k =1, N = 40, and n = 15.

23



_05 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1 i 1 1 1
00 10 20 30 40 50 60 70

Fig. 4. Graphs of bN* (dotted) and I,bN* for s = —1/2, k = 3, N = 40, and n = 15.
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Fig. 5. Graphs of I,bN* (dotted) and P, I,bN* for s = —1/2, k = 3, N = 40, and n = 15.
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Fig. 6. Graphs of b¥* (dotted) and IbY* for s = —1/2, k = 3, N = 40, and n = 39.
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Fig. 7. Graphs of I,bN* (dotted) and P, I,bN* for s = —1/2, k = 3, N = 40, and n = 39.
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Fig. 8. Graphs of b¥* (dotted) and IbY* for s = —1/2, k = 3, N = 40, and n = 40.
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Fig. 9. Graphs of I,bN* (dotted) and P, I,bN* for s = —1/2, k = 3, N = 40, and n = 40.
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Fig. 10. Graphs of b¥* (dotted) and I,bN* for s = 1/2, k = 1, N = 40, and n = 25.
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Fig. 11. Graphs of I,bN* (dotted) and PG, I,bN* for s =1/2, k= 1, N = 40, and n = 25.
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Fig. 12. Graphs of b* (dotted) and I,bN* for s = 1/2, k = 3, N = 40, and n = 15.
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Fig. 13. Graphs of I,bN* (dotted) and P, I,bN* for s = 1/2, k = 3, N = 40, and n = 15.
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Fig. 14. Graphs of bY* (dotted) and I,bN* for s = 1, k = 3, N = 40, and n = 25.
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Fig. 15. Graphs of I,bN* (dotted) and P, I,bN* for s = 1, k = 3, N = 40, and n = 25.
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Fig. 16. Graphs of bY* (dotted) and I,bN* for s = —1/2, k =1, N = 40, and n = 16.
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Fig. 17. Graphs of I,bN* (dotted) and Py, I,bN* for s = —1/2, k =1, N = 40, and n = 16.
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Fig. 18. Graphs of bY* (dotted) and I,bY* for s = —1/2, k=3, N = 40, and n = 1.
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Fig. 19. Graphs of I,bN* (dotted) and P, I,bY* for s = —1/2, k =3, N = 40, and n = 1.
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Fig. 20. Graphs of bY* (dotted) and I,bN* for s = —1/2, k = 3, N = 40, and n = 25.
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Fig. 21. Graphs of I,bN* (dotted) and Py, I,bN* for s = —1/2, k = 3, N = 40, and n = 25.
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Fig. 22. Graphs of bY* (dotted) and I,bN* for s =1/2, k=1, N = 40, and n = 16.
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Fig. 23. Graphs of I,bN* (dotted) and Py, I,bY* for s = 1/2, k =1, N = 40, and n = 16.
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Fig. 24. Graphs of bY* (dotted) and I,bN* for s =1/2, k=3, N =40, and n = 1.
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Fig. 25. Graphs of I,bN* (dotted) and Py, I,bN* for s = 1/2, k =3, N = 40, and n = 1.
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Fig. 26. Graphs of bY* (dotted) and I,bYN* for s =1/2, k =3, N = 40, and n = 25.
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Fig. 27. Graphs of I,bN* (dotted) and Py, I,bY* for s = 1/2, k = 3, N = 40, and n = 25.
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7. Numerical implementations in Galerkin procedures: examples.

Now we show in two examples the numerical stabilizing effect that can be achieved by implementing
the constructions described in the preceding sections. More precisely, we present numerical results on
the approximate solutions of a single boundary-operator problem in two dimensions that have been
obtained by two different numerical schemes. The operator problem is a classical first-kind integral
equation, involving an integral operator that is compact in the usual L,-space. Thus, one expects
that a “usual” application of the Galerkin method, using codrdinate functions well conditioned
in the Ly-sense, will result at best in a numerical instability; the computational results bear out
this expectation, in each of the two cases. However, the results also show that numerical stability
appears to result from the “preconditioning” of the Galerkin procedures that is achieved by using
our construction of codrdinate functions and accounting for the orders of the Sobolev spaces between
which the underlying operator is an isomorphism.

Let Q denote a bounded, simply connected domain in R?, with boundary I := 0Q a smooth,
simple curve of class C?; in the applications, for simplicity in the parametric descriptions, we have
also required that I be starlike with respect to some point in . By H?(T") we indicate the Sobolev
space of order s associated with I', constructed, say, as in Section 3 on the basis of the compact
imbedding of H(T') in H°(T') = L,(T).

We introduce an integral operator S, : HO(T') — H%(T), acting first in H°(T'), according to

i

Su(6) = | /F HO (rle = (Nu(@)dAp(¢)  for aa E€T, foreach e HO(T);

here, the “wavenumber” k is a given positive number and Hél) denotes, as usual, the Hankel function
of first kind and order zero. The operator S, is the “direct-value operator” corresponding to the
single-layer potential based on I' for the Helmholtz equation in two dimensions. When regarded as
S, : HY(T) — H°(T), this operator is compact; however, it is shown in [9] that S, maps H°(T)
into Hz(T) (in fact, into H'(T')) and is bounded when regarded as the densely defined operator
S, : {H'T) Cc H _%(F)} — Hz(T); the bounded extension of the latter we shall denote again
simply by S, : H —3 (T —>H 3 (T'). Moreover, provided that the square x? of the wavenumber is not
a Dirichlet eigenvalue for the negative Laplacian in €, it is also shown that S, : H~2 (') — Hz (T)
is an isomorphism, so that the basic operator problem is well posed:

given g€ H2(T), determine u, € H-2(T') such that Sgu, =g. (S.P)

We shall suppose that « satisfies the indicated restriction (although the condition essentially limits
the usefulness of the present formulation in acoustics studies to “small” values of k?).

When g = v*|p, the trace on I' of an “incident-field” velocity potential v*, i.e., a function
satisfying the Helmholtz equation Av* + k2v* = 0 in an open set containing the closure of 2, then
the corresponding unique solution u, of (S,.P) has a physical interpretation as the normal derivative
on T of the (“total”) acoustic field in the exterior of . (Once this normal derivative is known, it
can be used as the density of an exterior single-layer potential to construct the scattered field—and
therefore also the total acoustic field—in the exterior region.)

While we are presently concerned mainly with the condition numbers of the matrices produced
in various implementations of the Galerkin procedure for problem (S,.P), and not the solution for
any one choice of g, we have validated our codes by solving particular problems using each of
the approaches indicated below and confirming that the results agree (to within error). In those
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applications, we have taken the incident field to be a plane wave propagating in a direction that is
set as input for the numerical computation. Thus, we have put

v'(§) =€t feR,

in which the unit vector & is chosen data. For comparison purposes, we provide below plots of the
approximations to the respective solutions in those cases, i.e., plots of the approximations to the
corresponding (real and imaginary parts of the) normal derivatives of the total fields, for two regions
Q and various incident directions é.

Example 7.1. In this first implementation of the Galerkin procedure for (S,.P), we assume for
definiteness that the plane boundary curve I is starlike with respect to a point O, and introduce,
in the usual manner, a parametric description of I' that is given by a smooth, 27-periodic mapping
X : R = T of class C? carrying [0, 27) bijectively onto I', employing as parameter the polar angle
measured from some ray emanating from . With this parametrization, the problem (S,P) can be
transferred from its original setting in the spaces H—2(T'), H2(T') down to the space Hl;eé (0,2m),
where we choose to cast it in the form

given g€ Hz(T), determine Y, € Hp_e% (0,27) such that J18by, = J1 (g0 Xp), (8,P)

1 1
in which J, : Hger(0,27) — Hpe? (0,27) denotes the antiduality operator (an isometric isomor-
2

1 1
phism) and the isomorphism 8, carrying Hpez (0, 27) onto Hger(0, 27) is related to S, through the
parametrization-map X in the usual way. That is, e.g., on H°(0,27) we find

i

8, () = / "1 (s X0 (9) - Xe(0) ) I XR@](@) g, aa b€ (0,27, for v € HO(O,2m).

Obviously, the solution u, of the original problem (S,P) is to be recovered from ¢, by u, :=

9

_1

Yy 0 Xp !, The operator J, has been introduced so that the Hpe: (0,27)-inner products in the
2

1 1
Galerkin procedure can be written in terms of the antiduality pairing on Hpe? (0,27) x Hger(0, 27),
and so also in terms of the inner product in H°(0,27), in view of the regularity of the coordinate
functions here.

Since our new problem (8,P) is posed in the single space ngé (0,27), we can formulate a
Bubnov-Galerkin method, in which the trial- and test-families are taken to be identical; the results
of [9] imply that the appropriate form of (2.2) holds for the operator (L =) J,8,, so we need only
note further that the codrdinate subspaces here will have the property of ultimate denseness in
Hpe? (0,27). Now we can appeal to the construction of Section 6 to generate coordinate functions
that appear to be well conditioned in Hp_e% (0,2m). On the basis of (2.7), we would then anticipate
observing numerical stability in the resultant procedure set up as in (2.3), (2.4).

We have executed such computations for various regions {2 and values of k£ determining the
smoothness of the co6rdinate functions. Numerical results on the condition numbers of the Galerkin
matrices are displayed in Figures 28-32, when (2 is a circular disc, a 10:1 ellipse, and a “kite,” or
“boomerang.” In each case, a is a characteristic dimension of the shape, while the condition number
is not the ¢y-number, but that computed by the routine supplied in the well-known linear-algebra

package LINPACK. The plots clearly show the numerical instability associated with the use of the
N

“unmodified” codrdinate family ((I;ﬁbv k) et

oo
) , along with the significantly reduced condition
N=2k+1
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N

"=1) N=2k+1’
although we cannot now assert unequivocally that this latter behavior is true numerical stability.

numbers found by employing instead the “new” codrdinate functions (('ﬁgk'f_léﬁ k)
2

Finally, in Figures 33—40 we show the real and imaginary parts of the normal derivative of
the total acoustic field on the “soft” obstacle boundary corresponding to plane waves incident from
various directions indicated by the value © (and the small schematic given with each plot). Here,
both © and the angular codrdinate € (determining position on the boundary) are measured positive
in the standard manner, counterclockwise from the positive axis of abscissas. In the final plot, of
Figure 40, the frequency parameter ka has the value 10.

Example 7.2. This second implementation employs the nonstandard parametrization and reformu-
lation described in [6] and leads instead to a new problem posed in the product space H -3 (=b,b)?,
with H=2(—b,b) denoting the antidual space of HO% (—b,b); here, b denotes an appropriate positive
number. Consequently, to produce codrdinate functions we can rely again on the constructions
of Section 6, but now using those set up for the space H§(—b,b) and its antidual H *(—b,b) (with
s > 0). We have also implemented this second approach numerically; the resulting condition-number
plots are contained in [6]. The results are qualitatively the same as those already shown ﬁerke fg)or Ex-
n=1 )N:k+1
N—k\*®
n=1 )N:2k+1
lead to marked reductions in the condition numbers, appearing once more to signal numerical sta-
bility.

ample 7.1, i.e., the numerical instabilities associated with the use of the families ((bnN k)

are again pronounced, while the “preconditioned” codrdinate functions ((TR,,CI A k)
2
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