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ABSTRACT 

Advances in computational and biological methods have greatly accelerated 

the pace of scientific discovery and produced a tremendous amount of experimental 

and computational data in the biomedical domain. Given the wealth of information 

that are available both in scientific papers and electronic databases, one particular 

challenge in biomedicine is to detect disease-drug associations and to organize them in 

a meaningful way that will accelerate pharmacogenetic research. Several text mining 

tools have been developed to facilitate this purpose. They perform adequately well in 

identifying facts and entities using on-the-fly search of scientific articles from many 

different databases; however, they cannot analyze the type of relationship that exist 

between the objects identified. In this thesis, we propose a novel method to analyze 

drug-disease relationships using a combination of in-house and open-source tools that 

exploit the Multinomial Naïve Bayes (MNB) modeling technique. 

The main motivation behind this thesis work is to assist researchers to quickly 

identify disease-drug relationships from the biomedical literature using the case study 

of tardive dyskinesia (TD) and to classify those relationships into specific categories 

to enable better understanding of various drug effects. We have manually developed 

and annotated a biomedical training corpus for TD via sentence classification. Using 

the MNB modeling technique, we generated a learning model and built a predictive 
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classifier system using data preprocessing and filtering algorithms. To assess whether 

the model would generalize to an independent dataset, we applied the 10-fold cross-

validation method to evaluate the model using precision, recall, F-measure, and ROC 

area. The precision, recall, and F-measure were approximately 88%, and ROC area 

was over 97%. 

One particular challenge in sentence classification is the co-existence of 

contrasting biological observations that cause confusion to the classification model. To 

address this ambiguity issue, we passed the output data to Metamap to identify and 

separate distinct biological observations in biomedical text. By further discerning the 

semantic meaning of biological observations, we classified biomedical sentences into 

more refined categories, which helped to elucidate various drug effects and proved to 

be an initial effort toward the sophisticated task of disease-drug relationship 

extraction. 
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Chapter 1 

INTRODUCTION 

Advances in computational and biological methods have greatly accelerated 

the pace of scientific discovery and produced a tremendous amount of experimental 

and computational data in the biomedical domain. Given the wealth of information 

that are available both in scientific papers and electronic databases, one particular 

challenge in biomedicine is to detect disease-drug associations and to organize them in 

a meaningful way that will accelerate pharmacogenetic research. The main motivation 

behind this thesis work is to assist researchers to quickly identify disease-drug 

relationships from the biomedical literature using the case study of tardive dyskinesia 

(TD) and to classify those relationships into specific categories to enable better 

understanding of various drug effects. 

TD is a serious, irreversible neurological disorder characterized by repetitive, 

involuntary, purposeless movements of various body parts. The most typical sign of 

TD is orofacial dyskinesia (i.e. chewing movements and tongue protrusions), but the 

body trunk and extremities may also be affected [1]. It is frequently associated with 

long-term or high-dose use of dopaminergic antagonists, usually antipsychotic 

medications such as haloperidol. Although the prevalence rates are difficult to 

estimate and have reportedly differed between studies, a meta-analysis including 
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39,187 subjects from 76 studies found an overall prevalence of 24.2% [2]. The 

underlying neurological mechanisms of TD are not yet completely understood. 

Current research suggests that TD may result primarily from neuroleptic-induced D2 

receptor hypersensitivity in the nigrostriatal pathway [3]. People affected by TD 

exhibit signs of abnormal movements and are subjected to humiliation and 

embarrassment, which lead to social stigma and inability to lead a normal lifestyle. 

This work uses TD as a case study to build a model that seeks to better understand 

TD-related drugs and other symptomatic observations in association with TD. 

In this thesis work, we first set out to manually develop and annotate a 

biomedical training corpus for TD via sentence classification. To extract meaning 

from terms and sentences, we employed supervised machine learning and word 

context methods to generate a learning model and build a predictive classifier system. 

This was accomplished with the Multinomial Naïve Bayes modeling technique using 

data preprocessing and filtering algorithms in WEKA (Waikato Environment for 

Knowledge Analysis) [4]. To assess whether the model would generalize to an 

independent dataset, we used the 10-fold cross-validation method to evaluate the 

model using precision, recall, F-measure, and ROC area. Our precision, recall, and F-

measure were approximately 88%, and ROC area was over 97%. 

Finally, we looked into more sophisticated semantic processing to handle 

complex event descriptions in the sentences. One particular challenge encountered 

previously during sentence classification was the co-existence of contrasting 

biological observations that caused confusion to the classification model. To address 
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this ambiguity issue, we passed the output data to Metamap to identify and separate 

distinct biological observations in biomedical text. By further discerning the semantic 

meaning of biological observations, we classified biomedical sentences into more 

refined categories, which helped to elucidate various drug effects and proved to be an 

initial effort toward the sophisticated task of disease-drug relationship extraction. Our 

model may be extended to other biological diseases and can be used to mine 

relationships in aspects other than diseases and drugs. For instance, gene name 

mentions may be identified and associated with drug mentions to examine the role of 

genetic variants in individual drug response [24] [25]. A biological process or pathway 

may also be associated with certain genes or proteins to understand the molecular 

mechanisms that underlie a disease [26] [27]. 

We organized the rest of the paper as follows: First, we describe current tools 

to mine disease-drug associations from the biomedical literature. Then, we explain our 

method to annotate the biomedical training corpus for TD. We continue with the 

development and evaluation of our classification model. Finally, we present a 

discussion of the results and future work. 
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Chapter 2 

RELATED WORK 

Given the vast bodies of phenotypic and pharmaceutical data that are available 

both in scientific papers and electronic databases, researchers now face the challenge 

to apply translational bioinformatics to integrate this data to detect disease-drug 

associations and construct meaningful scientific queries to support knowledge 

discovery. Several text mining tools have been developed to facilitate this purpose. 

PolySearch [5] is a web-based text mining system that identifies tagged terms and 

their relationships, then organizes this information in a formatted and structured 

database. The tagged terms include human diseases, genes, mutations, drugs and 

metabolites. Its strength lies in on-the-fly search of scientific articles from many 

different databases including DrugBank [6], SwissProt [7], HGMD [8], OMIM [9], 

etc. However, as a text mining tool, PolySearch uses a relatively simple dictionary 

approach to identify biological or biomedical associations, which means PolySearch 

cannot identify novel or newly named diseases, genes, cell types, drugs or metabolites 

[5]. Another limitation is that PolySearch does not utilize artificial intelligence (AI), 

word context or machine learning (ML) methods in its current term identification 

term, hence it is unable to extract context or meaning from tagged terms or sentences 

[5]. 
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MedMiner [10] is a keyword-based system that requires the user or 

programmer to supply the drug and gene names. EDGAR [11], which stands for 

Extraction of Drugs, Genes and Relations, is a natural language processing system that 

extracts information about drugs and genes relevant to cancer from the biomedical 

literature. It uses a part-of-speech tagger and is able to generate relational assertions 

with correct arguments from syntactically complex sentences, but the system is still in 

development and its performance has not been quantified. Its accuracy is best 

characterized as moderate and it cannot analyze the type of relationship that exist 

between the objects identified [11]. 

Textpresso [12] supports full text literature searches of categories of terms 

pertaining to several model organisms including Caenorhabditis elegans and Mouse. 

Adapted from Textpresso, Pharmspresso [13] uses a dictionary-based approach to find 

references to human genes, polymorphisms, drugs, diseases, and their relationships 

from full text articles. It allows the user to query for a specific pattern such as “{drug} 

{association} {gene}” within a given sentence. For example, specific instantiations of 

the gene“BRCA2” can be sought by querying for the keyword “BRCA2” with the 

categories {drug} and {association}. Because Pharmspresso explores full text articles 

which contain richer information than literature abstracts, it requires availability of full 

text articles and only work on pre-defined corpus of relevant literature. Since this 

work is so labor-intensive, only 1025 articles have been included in Pharmspresso thus 

far [13]. 
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Some other biomedical text mining systems include MedGene [14], LitMiner 

[15], iHOP [16], ALIBABA [17] and EBIMed [18]. However, these text mining tools 

were designed to only identify and extract relevant terms without further analysis on 

the specific relationships between biological entities and facts. Researchers will be 

bombarded with all the data presented that virtually contain many false positives. For 

example, a search for TD and its associated drugs using Textpresso for mouse yielded 

859 matches in 115 documents is shown in Figure 2.1. Given the large number of 

matches returned, it would be a very time-consuming task for a researcher to analyze 

the type of relationships that exist between the objects identified and to understand 

specific drug effects for this particular disease. 

 

 

Figure 2.1 Results of Textpresso Mouse. Snapshot of Textpresso Mouse results page. 

User is searching for tardive dyskinesia and a member of the {drug} 

category. 

http://www.ncbi.nlm.nih.gov/pubmed/12938930
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Chapter 3 

METHODS 

3.1    Overview of the Pipeline 

Figure 3.1 shows an overview of the pipeline for document retrieval and 

sentence classification. We combined publicly available open-source tools such as 

Genia Sentence Splitter [19] and Weka with data processing Perl scripts we had 

written for this purpose. 

 

 

 

 

Figure 3.1 Document retrieval and sentence classification pipeline overview. TD-

related abstracts are retrieved from PubMed, fed into the Genia Sentence 

Splitter, tagged for drug name mentions, then manually categorized. Next, 

the text is tokenized into individual words and passed to Weka to build a 

predictive modeling system for sentence classification. The model is 

compared against manual annotation and evaluated using ROC measures. 
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3.2    Retrieving Relevant PubMed Abstracts 

We first set out to retrieve a set of abstracts that are related to TD from 

PubMed. According to the Unified Medical Language System ® (UMLS®) 

Metathesaurus ® [20], which is a large (more than 620,000 concepts) compilation of 

several controlled vocabularies in the biomedical domain, TD has several textual 

variants that should be taken into consideration when retrieving relevant biomedical 

text. A search using the following keywords in either the title or abstract was 

performed: “tardive dyskinesia; dyskinesia tardive; drug-induced tardive dyskinesia; 

oral-facial dyskinesia; tardive dystonia; tardive oral dyskinesia.” There are a total of 

2783 PubMed abstracts, of which 1734 are published in the time frame of 1/1/1990-

12/12/2011. We decide to omit abstracts prior to 1/1/1990 because the format and 

organization of those are vastly different from abstracts published in recent decades 

and do not contain the most up-to-date information in the disease we are interested in. 

Figure 3.2 shows the number of PubMed articles by publication year for all articles 

and those that contain an abstract. 

 



 9 

 

 

Figure 3.2 Number of TD articles by publication year. Plots the number of TD-related 

articles by publication year for all articles and those that contain an 

abstract. Abstracts published before 1/1/1990 have been omitted. 

 

 

3.3    Splitting Sentences 

The abstracts were passed to the Genia Sentence Splitter [19], which has been 

optimized for biomedical texts. The splitter employs a classification model based on 

supervised learning method using maximum entropy modeling, and has obtained an F-

score of 99.7 on 200 unseen GENIA abstracts [19]. A total number of 16468 sentences 

were correctly split from 1734 PubMed abstracts, giving an average of 9-10 sentences 

per abstract, with maximum 38 sentences and minimum 2 sentences as shown in 

Figure 3.3.  
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Figure 3.3 Number of sentences per abstract. Plots the number of sentences per 

abstract and the corresponding number of abstracts that contain those 

sentences. Total = 16468 sentences, 1734 abstracts, average = 9.497 

sentences/abstract, max = 38, min = 2. 

 

 

3.4    Identifying Drug Mentions 

The sentences were then passed to a Perl script that looks for specific drug 

mentions. The drug ontology consists of 1494 drug names and synonyms from 

DrugBank’s list of FDA-approved drugs. An additional 337 small molecules and 1138 

drug classes from PharmGKB [21] were subsequently added. The resulting drug 

ontology was then manually curated by the primary author, Xia Bi, altogether leading 

to 2968 drugs, small molecules, and drug classes. This drug ontology may be used to 

mine drug name and class mentions in relation to other diseases in the future. Current 
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of drugs. Our system ensures retrieval of relevant sentences that mention only the 

parent drug class, i.e. first-generation antipsychotic drugs. By including drug 

categories, our system is able to correctly identify 12.90% more TD-specific sentences 

compared to only having drug names.  

Out of total of 16468 sentences, 3993 (24.25%) sentences were found to contain 

one or more drug names. Those were parsed from 1734 PubMed abstracts, which gave 

an average of 2-3 drug-related sentences per abstract. The number of drug mentions 

per sentence was also examined. Upon manual curation, it was observed that the first 

drug mentioned in the sentence is almost always the focus of the sentence, and 

whenever two or more drugs are the subject of a sentence, a connector word such as 

“and” or “or” is used to link multiple drugs. For example, 

“Olanzapine has demonstrated efficacy in maintenance treatment as 

well as a reduced risk of tardive dyskinesia compared with 

haloperidol.” (PMID:9847048) 

 

Both olanzapine and haloperidol are mentioned in this sentence, but olanzapine is the 

drug of interest, so a positive relationship between olanzapine and TD is established. 

Following this pattern, we eliminated drug mentions that are inconsequential, and 

obtained the number of drug mentions per sentence as shown in Table 3.1 and Figure 

3.4. Since approximately 95% of all sentences focus on one specific drug, our model is 

applicable for the majority of sentences parsed from biomedical text. It is important to 

note, however, that the small percentage of sentences that contain multiple drug 

mentions have practical implications in sentence classification. Because observations  

can refer to different drugs, there may be ambiguity and misclassification of sentences 
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Table 3.1 Number and percentage of drug name mentions per sentence. 

 

# of drug 

names/sentence 

# of sentences % of all 

sentences 

1 574 94.56% 

2 31 5.11% 

3 1 0.16% 

4 1 0.16% 

 

 

 

  
 

Figure 3.4 Percentage of drug name mentions per sentence. 

 

 

 

in constructing the sentence classifier. Hence, we looked into more sophisticated 

semantic processing to handle complex event descriptions in the sentences. An attempt 

to separate distinct observations and to increase the accuracy of our model was carried 

out using Metamap [22], which proves to be an initial effort toward the sophisticated 

task of disease-drug relationship extraction. 
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3.5    Annotating Sentences 

Extensive manual classification of 607 drug-containing sentences was carried 

out by three annotators to ensure consistency. All three annotaters are experienced 

biologists who are familiar with pharmacology. The agreement rate between the three 

annotaters was 81.25%. The sentences were classified into one of three categories: 

sentences that contain a positive relationship between the drug and disease were 

assigned to the positive category, i.e. the drug is used to treat the disease. Sentences 

that involve negative effects between a drug or groups of drugs and a disease were 

assigned to the negative category, i.e. the drug induces the disease or is associated 

with progression of the disease. It is crucial to take context into consideration while 

categorizing sentences. Some sentences indicate that a drug has a less severe risk of 

inducing the disease compared to other neuroleptics. For example, 

“However, if cases do develop, the risk of tardive dyskinesia is 

likely to be less with clozapine than with typical neuroleptics.” 

(PMID:8104929) 

 

Since we wish to capture the superiority of clozapine, we have assigned this sentence 

to the positive category even though clozapine may induce the disease. 

Sentences that belong to neither the positive or negative effect category were 

assigned to the third category. This occurs when the drug has no relation to the 

biological disease or when the sentence is inconclusive or exploratory in nature. An 

example of a sentence for each respective category is shown in Table 3.2. 

Out of 607 drug-containing annotated sentences, 191 were classified to the first 

category, 161 were classified to the second category, and 252 sentences were 
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Table 3.2 Example for each of the three categories in manual sentence classification. 

 

Pub

Med 

ID 

Title Sentence Drug Cate

gory 

9466

234 
Risperidone in children 

and adolescents with 

pervasive developmental 

disorder: pilot trial and 

follow-up. 

Overall, 5 of the 6 patients 

derived significant clinical 

benefits from risperidone. 

Risperid

one 

1 

2111

2461 
Duloxetine-related 

tardive dystonia and 

tardive dyskinesia: a case 

report. 

Even though this association 

has been rarely reported, 

duloxetine may pose a 

potential risk of inducing 

tardive syndrome. 

Duloxeti

ne 

2 

1077

5299 
Risperidone implicated in 

the onset of tardive 

dyskinesia in a young 

woman. 

She had received small 

dosages of typical 

antipsychotics before and 

during receiving risperidone 

for short periods. 

Typical 

antipsyc

hotics 

3 

 

 

classified to the third category, the last 3 sentences were classified as unsure as shown 

in Table 3.3. For predictive modeling purposes, we omit the unsure sentences, and 

build a classification scheme using the remaining 604 sentences. 

 

 

 

Table 3.3 Overview of manual classification results 

 

# articles  607 

Positive (1) 191 

Negative (2) 161 

Neither (3) 252 

Unsure 3 
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The top ten most-mentioned drugs are shown in Table 3.4. Drugs that are 

frequently mentioned tend to be the most relevant or controversial with respect to the 

symptom or disease. Haloperidol, which is the most mentioned drug out of all 607 

manually annotated sentences, is used to induce TD in the animal model. The drug 

classes “Atypical antipsychotics” and “Typical antipsychotics” are two other 

frequently mentioned drug terms from the input dataset. Certain drugs may belong to 

different classes of compounds depending on the date of publication and the author, 

but identification of drug classes serves as an additional piece of information that the 

user can choose to keep or ignore. 

 

Table 3.4 Top ten most-mentioned drugs from 607 manually annotated sentences. 

Drug Count 

Haloperidol 89 

Clozapine 68 

Risperidone 58 

Atypical antipsychotics 47 

Olanzapine 35 

Vitamin E 29 

Metoclopramide 28 

Typical antipsychotics 20 

Aripiprazole 17 

Reserpine 13 
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3.5    Building a Multinomial Naïve Bayes Classifier 

Following manual annotation, the next step entails generating a learning model 

and building a predictive classifier system using data preprocessing and classification 

techniques. The steps are summarized below: 

1. Convert the sentences into datasets suitable for processing by Weka 

2. Import the dataset and preprocess to select important features using filtering 

algorithms 

3. Apply Multinomial Naïve Bayes (MNB) algorithm to train the model 

The software requirement for building the predictive model is Weka [4], a free 

software originally developed at the University of Waikato, New Zealand. Weka 

contains a collection of visualization tools and machine learning algorithms for data 

analysis and predictive modeling, and provides a simple graphical user interface for 

ease of use. The current version is written in the Java programming language, which 

can be run on almost any computing platform. It supports several standard tasks to 

solve real-word data mining problems, such as data preprocessing, classification, 

regression, and feature selection [4]. Because of these advantages, Weka has been 

used in many different application areas to analyze large datasets for educational 

purposes and research. 

Weka contains three user interfaces: Explorer, Knowledge Flow, and 

Experimenter. Each interface has several panels that feature different functionalities of 

the workbench. In the Explorer interface, the Preprocess panel facilitates data 

imported from a database or a text file, and pre-processes this data using several 
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filtering algorithms such as stemming and tokenizing. Stemming reduces inflected 

words (i.e. inflicted, inflicting) to their stem, base or root form (i.e. inflict). 

Tokenization breaks up a stream of text into words, phrases, symbols, or other 

meaningful elements called tokens, which are important for assigning a probability 

and are then used as input for further processing steps in classification. The Classify 

panel in the Explorer interface applies classification and regression algorithms to the 

input dataset, builds a predictive model that best approximates the input data, and 

assesses the accuracy of the model using various measures. The Associate panel 

enables the user to identify important interrelationships between attributes in the data. 

Others include the Cluster, Select, and the Visualize panel, which provide access to 

different clustering techniques and visualization tools in Weka. 

The MNB modeling technique was implemented to build a statistical model for 

sentence classification. This technique is computationally efficient and has relatively 

good predictive performance [28] [29]. The MNB model views each sentence as a 

collection of words and each word is independent from each other given the class 

variable. The probability that the n-th word of a given document occurs in a class 

value C can be represented by p (wn|C). 

The procedures carried out to build a MNB model is the following: Perl script 

is used to convert the sentences into a collection of datasets suitable for processing by 

Weka. The MNB algorithm in Weka opens each dataset, and breaks sentences into 

individual features (words) based on blank spaces and punctuation using the built-in 

tokenizer. Data filtering was applied to eliminate features that occur less than 3 times. 
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The algorithm then counts the frequency of each feature and creates a string-to-word 

vector. In this vector, the rows correspond to sentences and columns correspond to 

each feature. Thus, each element in the vector is typically the number of occurrences 

of the feature in a given sentence. For example, if the word efficient appears in a 

sentence for 3 times, then the feature vector of the word efficient in that particular 

sentence is 3. This arrangement is used to represent the sentence class by counting the 

frequency of semantically significant features. This is the process by which Weka 

preprocesses the input data to select important features using filtering algorithms. 

Altogether, 577 words (features) are filtered out as shown in Figure 3.5. 

 

Figure 3.5 Snapshot of Weka Preprocess page. String-to-word vector was applied to 

the input dataset to select important features using filtering algorithms. 
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The MNB algorithm then calculates the probability that a given sentence S 

belongs to a given class C according to the following equation: 

 ( | )  
 (   )

 ( )
 
 ( )

 ( )
 ( | ) 

where p(S|C) is the probability that a given sentence S contains all of the words wn, 

given a class C. We apply the conditional independence assumption: 

 ( | )   (          | ) 

  (  | ) (  |    ) (  |       )  (  |              ) 

 ∏ ( | )   

   

 

and obtain the probability of class C given sentence S as: 

 ( | )  
 ( )

 ( )
∏ 

   

( | )    

for the probability model of the MNB classifier, where p(C) is the prior probability of 

class C and is estimated by the proportion of training documents pertaining to each 

class. This is also the baseline measurement (shown in Figure 3.6a) against which we 

would compare our results using the MNB classifier system. p(S) is a constant that 

makes the probability of different classes sum to 1, and     is the number of times the 

word w occurs in sentence S. 
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b 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Baseline measurement and word probability. 3.6a shows the prior 

probability of each class C and 3.6b shows some examples words with their 

corresponding p(w|C). 

 

 

 

The predictive performance of the MNB model can be improved by 

appropriate data transformations. We applied data filtering to the input data to 

eliminate features that occur less than 3 times. This was found to have better precision, 

recall, and ROC area than including all features (2886). A tokenizing algorithm was 

employed to break sentences into individual words based on blank spaces and 

punctuation. Using the baseline measurement, we obtain an accuracy of 41.68% if we 

always pick the third class which has the highest probability. However, using the 

MNB classifier system, we are able to obtain a precision and recall of approximately 

The prior probability of a class p(C) 

---------------------------------------------------- 

1 0.316310 

2 0.266886 

3 0.416804 

The probability of a word given the class 

------------------------------------------------------------------------- 

  1  2  3  

useful  5.50130E-4 1.509206E-4 1.16009E-4  

well-tolerated 2.75065E-4 1.509206E-4 1.16009E-4  

therapeutic 0.001100 1.509206E-4 4.64037E-4  

tetrabenazine 9.62728E-4 3.018412E-4 3.48027E-4 

induced 4.12598E-4 0.001207 3.48028E-4  

toxicity 1.37532E-4 6.036824E-4 1.16009E-4  

vacuous 2.75065E-4 0.001660 1.16009E-4 
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88%, which gives much higher confidence. Some word examples with their 

corresponding p(w|C) is shown in Figure 3.6b. As expected, words with positive 

outcomes such as “useful”, “well-tolerated”, and “tetrabenazine” have a higher 

probability for the first class; whereas words with negative outcomes such as 

“induced”, “toxicity”, and “vacuous” (as in “vacuous chewing movement”) have a 

higher probability for the second class. 

Finally, we construct a MNB classifier from the probability model using 

maximum likelihood estimation, which estimates the parameters of our statistical 

model and selects the class that is the most probable given the model as defined 

below: 

        ( )        
 

 (   )  ∏ 

   

(    |   )
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Chapter 4 

RESULTS 

4.1    Model Evaluation 

We would like to assess whether the MNB classifier will generalize to an 

independent dataset using the cross validation method, and evaluate the classifier 

using several measures including precision, recall, F-measure, and receiver operating 

characteristic (ROC) area. 

Cross validation has been used to evaluate performance of predictive modeling 

techniques such as naïve bayes and support vector machine [30]. To evaluate 

performance of the MNB classifier, we applied the 10-fold cross-validation to assess 

whether the statistical model would generalize to an independent data set that has 

never been seen. The validation method randomly partitioned the sample into 10 

complementary subsets. 9 subsets were used as training data for training the model 

and the remaining subset was retained as the validation data for testing the model. The 

cross-validation process was repeated for 10 times, with each of the 10 subsets used 

exactly nine times as the training data and once as the validation data. Results from all 

10 cross validations were computed to produce a single estimation. This method used 

all observations for both training and validation, and each observation was used for 

validation exactly once, which reduced bias from random sub-sampling. 
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Results from the 10-fold cross-validation test were measured in terms of 

accuracy, recall, and ROC curve as shown in Table 4.1. Precision, recall, and F-

measure were calculated according to the conventional definition as shown below, 

where TP stands for true positive, FP stands for false positive, and FN stands for false 

negative. 

Precision (P) = TP / (TP+FP) 

Recall (R) = TP / (TP + FN) 

F-measure=(2 × P × R)/(P+R) 

 

Table 4.1 Detailed accuracy by class. 

 

 

The ROC curve plots the true positive versus false positive rate for the MNB 

classifier system. The ROC area is the probability that the classifier will assign a 

higher score to a randomly chosen positive example than to a randomly chosen 

negative example. For three classes, ROC area of 33% is considered random guessing. 

The ROC area for all three classes was approximately 97%, much higher than random 

guessing. 

 
TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 

ROC 

Area 
Class 

 
0.859 0.044 0.901 0.859 0.879 0.972 1 

 
0.857 0.05 0.863 0.857 0.86 0.973 2 

 
0.921 0.085 0.885 0.921 0.903 0.973 3 

Weighted 

Avg. 
0.884 0.063 0.884 0.884 0.884 0.973 
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We applied data filtering to the input data to eliminate features that occur only 

a few times to improve the measurement outcome. Several minimum term frequencies 

were attempted, and 3 was established to be the ideal cutoff point to significantly 

improve model accuracy, yet still retain sufficient features (577) to build a valid 

classification model. 

Table 4.2 shows the confusion matrix, which tabulates the number of correctly 

and incorrectly classified sentences for all three classes. For all 191 sentences 

categorized to the first class by manual annotation, the MNB classifier system 

correctly classified 164 as a (class 1), incorrectly classified 10 as b (class 2), and 17 as 

c (class 3). The same principle applies to 161 sentences in the second and 252 

sentences in the third class. 

 

Table 4.2 Confusion Matrix. 

 

 

 

 

 

 

4.2    Text Annotation Using Metamap 

Due to the complex interplay of biological diseases and pharmaceutical 

substances, biomedical texts usually contain sentences that involve one or more 

=== Confusion Matrix === 

a b c <-- classified as 

164 10 17 a=1 

10 138 13 b=2 

8 12 232 c=3 
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clinical observations that are difficult to classify into a single category. Sentences that 

contain two or more drug name mentions may associate each drug with a contrasting 

biological effect. Even sentences that focus on only one drug entity may exert 

different physiological effects that cause ambiguity to the classification model using a 

simple bag-of-words approach. This could account for classification errors in our 

current model. Therefore, in addition to the naïve bayes classification technique, we 

attempt to employ more sophisticated semantic processing to handle complex event 

descriptions in the sentences and to separate multiple observations to increase the 

accuracy of our model. Also, by further discerning the semantic meaning of biological 

observations, we classify biomedical text into more refined categories, which paints a 

clearer picture of different drug effects and proves to be an initial effort toward the 

sophisticated task of disease-drug relationship extraction. 

To attain this goal, we used the Semantic Knowledge Represention (SKR) 

Project [31], which was initiated at the National Library of Medicine to provide usable 

semantic representation of biomedical free text. Using the batch mode, we passed 

sentences of the first and second classes (i.e. contain either a positive or negative 

relationship between the drug and disease) into Metamap, which amounted to 352 

sentences that contain a definitive relationship. 

Output from Metamap placed entities into distinctive categories, i.e. 

“clozapine” as Pharmacologic Substance, “reduction” as Qualitative Concept, “acute 

schizophrenia” as Mental or Behavioral Dysfunction. Upon close inspection, we 

identified 6 classes of observations (Disease or Syndrome; Mental or Behavioral 
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Dysfunction; Sign or Symptom; Pathologic Function; Cell or Molecular Dysfunction; 

Organ or Tissue Function), and manually added multiple entries to complement 

missing terms in the sentences. Here we define an observation as an abnormal 

condition affecting the body of an organism. We did not consider the terms that 

qualify as action or relationship words, since these classes were observed to 

encompass non-action words as well, i.e. “reduction” is a Qualitative Concept, but so 

is “possibly”. The added entries included “vacuous chewing movements,” “tongue 

protrusions,” “motor function,” “DNA methylation,” “neuronal toxicity,” etc. 

We first used Metamap to identify all biomedical entities and observations in 

the sentences, then filtered out irrelevant classes and retained those with the above-

mentioned biological observations. This output has the format of the drug-containing 

sentence followed by each biological observation and their respective class. For 

example, 

"Metoclopramide, the only drug approved by the FDA for 

treatment of diabetic gastroparesis, but used off-label for a variety 

of other gastrointestinal indications, has many potentially 

troublesome adverse neurologic effects, particularly movement 

disorders. "  

 of diabetic gastroparesis, ==> Disease or Syndrome 

 particularly movement disorders. ==> Disease or Syndrome 

 

This sentence contains two biological observations: “diabetic gastroparesis” and 

“movement disorders,” where the drug Metoclopramide is used to treat one and 

induces the other. Using Metamap, we are able to separate the observations and 

associate each with a different word probability for the classification model. We may 

further employ sentence simplification to associate the drug entity to each observation 
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as formatted input for the MNB classification model. This method is expected to 

improve the current sentence classification system. 

According to our definition of an observation, some sentences lack a biological 

effect. For example, the sentence “Furthermore, the toxic effect of chronic haloperidol 

on NOS system selectivity takes place in the neostriatum” (PMID:  14573391) does 

not contain a biological observation. One might argue that “haloperidol… takes place 

in the neostriatum” constitutes an observation; however, the word “takes place” is 

highly ambiguous and it is difficult to judge the biological effect based solely on this 

word. 28 such sentences are found to contain no observations. Altogether, 465 

biological observations are identified from 324 sentences. This approach proves that 

Metamap serves as a useful tool in identifying multiple observations in biomedical 

text. Future work entails employing sentence simplification to associate the drug and 

each of its biological observations to improve the accuracy of sentence classification 

modeling technique. 
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Chapter 5 

DISCUSSION AND FUTURE DIRECTIONS 

The MNB classifier model achieves a fairly high precision, recall, and ROC 

area in classifying un-seen sentences retrieved from abstracts associated with tardive 

dyskinesia. Using the MNB classifier system, we were able to obtain a precision and 

recall of approximately 88%, which gives high confidence. In addition, ROC curve of 

33% is considered random guessing, but we obtained a 97% ROC curve, which 

indicates our MNB classifier system performs significantly better than random 

guessing and that sentence classification is not a trivial task. To assess the ease and 

accuracy of classification, we use the prior probability of each class as a baseline of 

comparison, and obtain an accuracy of only 41.68% if we always pick the third class 

which has the highest probability.  

Out of a total of 604 annotated sentences, 534 were classified correctly, and 70 

were classified incorrectly using the MNB classifier model. More detailed statistics 

are included in Table 5.1. There exist some factors that may account for 

misclassification. First, sentences containing multiple drug names may be associated 

with both positive and negative words. Since different observations can refer to 

different drugs, there may be ambiguity and misclassification of sentences in 

constructing the sentence classifier. Hence, we attempted to separate distinct 
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Table 5.1 Detailed statistics applying the MNB classifier to un-seen sentences. 

 

=== Stratified cross-validation === 

=== Summary === 

Time taken to build model 0.02 seconds 

Correctly Classified Instances          534 (88.4106 %)               

Incorrectly Classified Instances         70 (11.5894 %)               

Kappa statistic                           0.8226 

Mean absolute error                       0.0961 

Root mean squared error                   0.2406 

Relative absolute error                  22.0127 % 

Root relative squared error              51.4952 % 

Total Number of Instances               604     

 

 

observations and to increase the accuracy of our model by relaying our output data to 

Metamap, which proved to be an initial effort toward the sophisticated task of disease-

drug relationship extraction. 

Second, we have made the assumption that the first drug mentioned is always 

the focus of the sentence unless linked by other connector words such as “and” or 

“or.” However, there exist some exceptions to this rule, in which the first drug 

mentioned is not the subject of the sentence, so that the class of the sentence refers to 

some other drug that is not associated with the biological effect. A more advanced 

method may be developed to accurately identify the subject of the sentence. Such a 

method will require the use of a sophisticated syntactic parser to interpret and analyze 

parts of a sentence to determine the drug of interest. Complex, convoluted sentences 

with many subjects and verbs may also lead to classification error as the model will 

often find co-occurrence of contrasting terms a confusing task. Sentence simplification 
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may be employed here to automatically reduce the complexity of sentences in 

biomedical abstracts in order to improve the performance of syntactic parser and 

relationship extraction on the processed sentences. 

Lastly, the tokenizer employed in Weka breaks sentences down to individual 

words based on blank spaces and punctuation. The predictive performance can be 

further improved by tokenizing sentences into short phrases so that words that 

frequently appear together (i.e. vacuous chewing movements) have a single word 

probability given the class and can be consistently classified to the same category.  

This work may be extended to other biological diseases and can be used to 

mine relationships in aspects other than diseases and drugs. For instance, gene name 

mentions may be identified and associated with drug mentions to examine the role of 

genetic variants in individual drug response [24] [25]. A biological process or pathway 

may also be associated with certain genes or proteins to understand the molecular 

mechanisms that underlie a disease [26] [27]. 

The current approach may also be improved with some future work. Extracting 

biological observations using Metamap is not a comprehensive method to capture all 

possible instantiation of observations from biomedical sentences. Some sentences 

simply do not contain an observation, while others may have an observation that does 

not belong to any specific category in Metamap. In the future, more comprehensive 

methods may be developed to identify additional biological observations from 

biomedical text. Such a method may also take the location and proximity of certain 

words into consideration in a ranking scheme, so that disease and drug that are 
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mentioned within n-grams of each other are deemed to be more significant than if they 

are mentioned within the entire abstract. 

In addition, relationships described over several sentences using pronoun 

references are not captured in this work. This is the case of the sentence “This drug 

reduces purposeless limb movements.” In the future, we can consider using 

sophisticated algorithms to explore the vicinity of the sentence to find the explicit 

name that the reference points to, a process called anaphora resolution [23]. 

 

 



 32 

Chapter 6 

CONCLUSION 

The MNB classifier model achieves a fairly In this thesis work, we have 

manually developed and annotated a large biomedical training corpus for tardive 

dyskinesia by manually classifying sentences into one of three classes: the first class 

denoting a positive relationship between drug and disease, the second class denoting a 

negative relationship between drug and disease, and the third class denoting neither. 

Using the Multinomial Naïve Bayes modeling technique, we have generated a learning 

model and built a predictive classifier system using data preprocessing and filtering 

algorithms in Weka. To assess whether the model will generalize to an independent 

dataset, we used the 10-fold cross-validation method to evaluate the model using 

precision, recall, F-measure, and ROC area. Our precision, recall, and F-measure were 

approximately 88%, and ROC area was over 97%. 

Finally, we looked into more sophisticated semantic processing to handle 

complex event descriptions in the sentences. One particular challenge in sentence 

classification is the co-existence of contrasting biological observations that cause 

confusion to the classification model. To address this ambiguity issue, we passed the 

output data to Metamap to identify and separate distinct biological observations in 

biomedical text. By further discerning the semantic meaning of biological 
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observations, we classified biomedical sentences into more refined categories, which 

conveyed a clearer picture of various drug effects and proved to be an initial effort 

toward the sophisticated task of disease-drug relationship extraction. 

The thesis work includes various components that are not found in many of the 

text mining systems that extract relationships between diseases and drugs. These 

include: (1) a comprehensive drug ontology that includes 2968 drugs, small molecules, 

and drug classes; (2) biomedical training corpus on tardive dyskinesia which has been 

consistently and extensively annotated for classification purposes; (3) use of various 

pre-processing and filtering algorithms to build a MNB training model to classify un-

seen sentences; and (4) separate distinct biological observations found in biomedical 

text using software tools that are open-source and readily available (Metamap). This 

thesis work will be presented as a paper submission to the 2012 IEEE International 

Conference on Bioinformatics and Biomedicine (BIBM), which will be held in 

Philadelphia, PA from October 4-7, 2012. 
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