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Abstract—Vehicles are hesitant to upload data to edge servers
in vehicle edge computing (VEC) as many vehicle data collected
and perceived by various on-board sensors contain sensitive and
personal information and lack economic incentive. Instead of
free access to shared data, encrypted data trading will alleviate
security and privacy concerns and provide an incentive for vehicle
owners to share their data. The edge server needs to pay the
price in data trading, and reputation management is a great
method to help it trade with reliable and available vehicles.
In this paper, we propose a multi-armed bandit (MAB)-based
reputation management scheme, so the edge servers can select
the high reputation vehicles for data trading, which can ensure
the credibility and reliability of the data. The encryption scheme
is applied to achieve the required transmission security level
and defend the rights and interests of the edge server. On
the other hand, implementing security measures will consume
the computation and communication resources of the vehicles.
We formulate an optimization problem that maximizes the
revenue of vehicles in data trading under the constraints of time
delay, energy consumption, and security level. Simulation results
demonstrate that the proposed scheme is effective and efficient
for vehicle reputation management, data trading selection, and
resource allocation.

Index Terms—Data trading, multi-armed bandit algorithm,
reputation management, resource optimization, vehicular edge
computing.

I. INTRODUCTION

Along with the continuing development of on-board sensors,
intelligent devices, and wireless communication technology,
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connected and autonomous vehicles (CAV) can acquire and
produce vast amounts of useful data with great potential for
new data-driven services [1]. The combination of massive data
and machine learning makes the vehicle data valuable to many
new services, such as assisted driving, simultaneous local-
ization and mapping, objective tracking, and entertainment
recommendation, etc. Edge servers may request data from
vehicles in vehicular edge computing (VEC), and vehicles
should upload the data to the edge server to support various
intelligent applications. However, economic challenges and
privacy concerns hinder the integration of data sharing in edge
servers. Instead of free access to shared data, encrypted data
trading will alleviate the security and privacy concerns of users
and provide an incentive to vehicle owners to share their data.

Vehicles as data sellers are able to connect with the edge
server, sharing and further increasing the data utility via push-
ing data as a kind of commodity in a digital market [2]. Ensur-
ing the credibility and availability of trading data is a critical
problem for edge servers. Trust and reputation systems can
provide protection based on social control norms, which are
considered as part of the next-generation security mechanisms
named soft security [3]. This contrasts with traditional security
mechanisms (hard security) such as authentication and access
control. Moreover, it has been proposed for various applica-
tions, for example, to validate the trustworthiness of sellers and
buyers in online transactions. Reputation management plays a
vital role for data trading in vehicular networks and should
be adaptive to the changing behaviours and the types of data
[4]. Frequent changes in vehicle location bring difficulties to
reputation management, and variations in the environment will
also change the quality and correctness of vehicle data. It is
necessary to maintain a globally updated reputation value to
share the vehicle’s reputation knowledge. In traditional trading
systems, introducing reputation (or credit) can make economic
transactions more efficient to grow the economy. Similarly,
in data trading, we also apply the reputation concept. Each
vehicle can be associated with a reputation score that is saved
in the cloud server and can be accessed by all edge servers.
After each data trading transaction, the edge server involved
can report the satisfaction level to update the reputation score
of the vehicle.

For data sellers, only if they get enough revenue from the
data trading are they willing to consume computation and
communication resources and compromise privacy to a certain
degree to share data. In addition, encryption is needed to
protect data security and privacy, so edge servers are willing
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to pay for the uploaded data. The data quality, including the
security level, and the response time of data transactions,
affect the vehicle’s reputation value evaluated by the edge
server. However, implementing security measures also con-
sumes more computing and communication resources of the
vehicles. There is a tradeoff between security and efficiency,
and vehicles need to make resource allocation decisions to
maximize revenue, save energy, and reduce latency [5], [6].
Due to the avalanche effect [7] of the encryption scheme and
data availability, edge servers need accurate encrypted data
from vehicles with high reputation value. Vehicles aim to
obtain high revenue and a benign reputation with the lowest
energy consumption.

To solve the above problems, in this paper, a multi-armed
bandit (MAB)-based reputation management scheme is pro-
posed to select the high reputation vehicle to trade data. Thus,
vehicles have the incentive to maintain a high reputation.
The original MAB problem is finding the most profitable
slot machine among many machines [8], in which flexibility
and adaptivity are suitable for dynamically changing vehicular
networks. Encrypt trading data with a lightweight and fast
block cipher can protect the security and privacy of the
vehicle data and defend the rights and interests of the edge
server. Each vehicle aims to jointly optimize transmit power,
computation frequency, and block length to maximize revenue
while meeting latency and security requirements. The main
contributions of this paper are summarized as follows

• We propose a MAB-based reputation managemen-
t scheme to select a high reputation vehicle for trading
data, which can dynamically update the reputation value
based on changing environment and vehicle status.

• We formulate an optimization problem that maximizes
the revenue of vehicles in data trading under the con-
straints of time delay, energy consumption, and security
level requirement. Also, the edge servers can securely
acquire high-quality and low-error data traffic.

• We obtain the closed-form solutions for setting compu-
tation frequency and block length, and a minorization-
maximization (MM) algorithm is developed to obtain
optimal transmit power.

• Simulation results demonstrate that the proposed scheme
is effective and efficient for vehicle reputation manage-
ment, data trading selection, and resource allocation.

The remainder of this paper is organized as follows. The re-
lated works are described in Section II. Section III depicts the
system model and problem formulation. Section IV presents
the solution to the optimization problem. Section V presents
the simulation results. The conclusion and future research
issues are given in Section VI.

II. RELATED WORK

The revenue model is a critical problem in data trading [2].
There are different measures to price the data by applying
economic factors to auction mechanisms, game theory, the
optimization problem, and blockchain technology. X. Cao et
al. [9] formulated an iterative auction mechanism to coordinate
the trading between multiple data owners, collectors, and

users, which also avoids access to the agents’ private infor-
mation directly. In [10] and [11], the non-cooperative games
are performed among multiple data consumers, and Nash
equilibrium is analyzed and solved under different conditions
to obtain the optimal transfer payment. The authors in [12]
applied consortium blockchain technologies to ensure secure
and trustful data trading and proposed a general blockchain-
based data trading framework for the internet of vehicles. Also,
an iterative double auction mechanism is used to achieve social
welfare maximization to decide the amount of traded data
and the price among buyers and sellers. A family of data
pricing mechanisms for revenue maximization under different
market settings is proposed in [13]. Their MGneral mechanism
optimally solves the problem of revenue maximization by
formulating it as a polynomial size convex program when mul-
tiple types of buyers coexist. For the problem of maximizing
revenue in data trading, the above schemes rarely consider the
encryption scheme for data security, and the iterative process,
such as the auction and game theory method, will significantly
increase the communication cost. Blockchain often leads to
efficiency and throughput problems.

Vehicles within a road segment generate amounts of repet-
itive information in VEC. The buyers can select more trusted
vehicles for data trading through reputation management. In
[14], a centralized reputation management scheme is proposed
to detect malicious nodes in the vehicular network, and they
evaluate the performance under malicious attacks. However,
there are no specific items and basis for reputation scoring in
the paper. RLE [15] is a reputation-based leader election sys-
tem for an opportunistic autonomous vehicle platoon, where
reputation value is recorded on the blockchain. Z. Tian et al.
[16] propose a reputation framework for identifying denial
of traffic service to resolve the trustworthiness problem in
the application level of the internet of connected vehicles.
A consortium blockchain-based resource sharing paradigm
in the internet of vehicles is provided in paper [17], in
which the interactions are encapsulated as transactions and
recorded in RSUs. A lightweight consensus mechanism is
also proposed to reduce computational power consumption
and motivate vehicles to participate in resource sharing. The
above reputation management solutions are still too heavy for
dynamically changing vehicles on the road.

It is necessary to meet latency requirements and energy con-
sumption constraints through resource optimization in VEC.
An optimization problem is formulated in [18] to maximize the
long-term utility of the vehicle edge computing network. They
use the Markov process, Q-learning, and deep reinforcement
learning to obtain the optimal resource allocation policies. In
[19], the authors formulate the problem of joint node selection
and resource allocation to minimize the total computation
overhead in terms of the weighted sum of task completion
time and monetary cost for computation resources. Based on
Stackelberg dynamic game, H. Xu et al. [20] propose a re-
source pricing and trading scheme to allocate edge computing
resources, and blockchain technology is applied to record
the entire resource trading process to protect security and
privacy. Optimizing resources and improving security levels
are contradictory. Using deep learning to optimize resources
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Fig. 1: The system scenario.

or blockchain to protect security and privacy will sacrifice
enormous computing and communication resources.

Many previous data-trading proposals based on auction or
blockchain technologies are quite heavy and cannot quickly
adapt to the highly dynamic vehicle network environment.
How to leverage the reputation and optimize encryption and
resource allocation to support fast and low-overhead data
trading for vehicular edge computing applications remains an
open issue, which motivated this work.

III. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. System Scenario

Future smart vehicles on the road can sense and acquire
valuable data. Selling the data to edge servers will maximize
the value of the data and benefit intelligent transportation and
smart city applications. Appropriate compensation for the data
can provide the incentive to vehicles to sacrifice some energy
and a certain degree of privacy to share their data. To protect
the security and privacy of the vehicle data and the rights
and interests of edge servers, who purchase the data should
be encrypted. Furthermore, the edge server hopes to trade
data with vehicles with high reputation values to ensure the
credibility and reliability of the data.

In the system scenario in Fig. 1, data trading is between
the vehicles and edge servers (e.g., located at the roadside
unit, RSU). Meanwhile, all edge servers can communicate
with the cloud server, which maintains the reputation val-
ues for all vehicles. The flexibility and adaptivity of the
MAB algorithm are suitable for updating reputation values
for dynamic changing vehicular networks. Denote the vehicle

group as I = {1, 2, 3, · · · , I}. Once the vehicle is within
the coverage of an edge server, the server can obtain the
vehicle’s reputation value and MAB learning parameters from
the cloud. The edge server can choose a vehicle i ∈ I to
obtain data according to its reputation value. When the server
uses the reputation value to process encrypted data trading
with the chosen one, the MAB algorithm can be utilized to
update the reputation of the vehicles online. By setting the
parameters, the MAB algorithm can tradeoff exploration and
exploitation, so vehicles other than the one with the highest
reputation can be selected when desirable considering other
factors such as communication cost. When the vehicle leaves
this coverage area, the edge server can update its reputation
value and MAB learning parameters to the cloud to be shared
by other edge servers. Once the edge server selects a vehicle
for data trading, the vehicle can allocate computation and
communication resources, and decide the security settings to
maintain its reputation and maximize revenues.

B. Reputation and Security Level Measurement

The reputation management in the edge server for the
vehicles in the data trading requires a trust and reputation
calculation model. The vehicle needs to encrypt trading data
to alleviate the vehicle’s privacy concerns and ensure the rights
and interests of edge servers.

1) Trust and Reputation Modeling: Trust and reputation
systems generally prepare scores to evaluate the behaviors of
the vehicles in VEC. These scores help the edge servers to
improve the quality of their decision by deploying incentive
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mechanisms and ensuring the trading data has a higher credi-
bility level.

The trust and reputation evaluation of the edge server to
the vehicle i is denoted as ϱi := {bi, di, ui, ϑi}, where
bi, di, ui, ϑi ∈ [0, 1] and bi + di + ui = 1. Here, bi and
di refer to the belief and unbelief of the vehicle i for the
edge server, respectively. Belief is the probability that the data
information is true, whereas disbelief is the probability that
the data information is false. ui is the uncertainty of vehicle
i, which is the individual confidence in the knowledge of an
edge server on vehicles. ϑi is the base rate [21], which is a pre-
defined constant formed from an existing impression without
solid evidence. The communication quality of a link between
the vehicle i and the edge server is qi, i.e., the successful
transmission probability of the data packet, which determines
the uncertainty ui. So bi, di, and ui can be calculated from
the statistics of past communication experience between the
edge servers and the vehicle i as follows

bi = (1− ui)
γi

γi + ρi
,

di = (1− ui)
ρi

γi + ρi
,

ui = 1− qi,

(1)

where γi indicates the number of positive interaction records,
and ρi is the number of negative interaction records [22].
Eventually, we obtain trust and reputation score ri of vehicle
i as follows

ri = bi + uiϑi. (2)

2) Transmission Security Level: It is insufficient to consider
the correctness and availability of information and the quality
of communication links in data trading only. Most of the
data collected by the vehicles involve private information of
users, such as images, locations, trajectories, and so on. To
maximize the utility of data for more revenues, users may be
willing to sacrifice a certain degree of privacy to share data
with edge servers. However, if the trading data is transmitted
directly, the privacy will be leaked to eavesdroppers, which
also violates the rights and interests of the edge server who
paid to purchase the data. Therefore, encryption schemes
should be implemented to ensure confidentiality and realize
a certain transmission security level.

Symmetric encryption means encrypting and decrypting
data using the same key. Its convenience, speed, and flexibility
are ideal for dynamically moving VEC scenarios. Under
determining the secret key, the block cipher algorithm uses
the symmetric key and algorithm to encrypt and decrypt the
N-bit blocks of the original data [23]. Considering the brute
force attack to break the cipher, the transmission security level
is proportional to the block length of the encrypted message.
Assuming the block length of vehicle i is denoted as Ni,
there are 2Ni combinations. The transmission security level
is defined as

Ξi = log2(Ni), (3)

which should be considered in calculating reputation value for
a data trading transaction, and it will also affect the reputation
of the vehicles.

C. MAB-based Online Reputation Management Algorithm

The flexibility and adaptivity of the MAB algorithm are suit-
able for updating reputation values for dynamically changing
vehicular networks. MAB is a framework to model a sequen-
tial decision-making problem, which has an agent repeatedly
choosing one of the multiple actions, also called arms [24].
The agent draws an arm and observes a reward from the envi-
ronment. Before actually selecting that arm, an instantaneous
reward is unknown to the agent. The objective of each action
is to maximize the total reward of the iterative process. The
optimality of action and the selection of algorithms mainly
depend on the environment. There are generally three types of
environments [25]: stationary stochastic environment, switch-
ing stochastic environment, and adversarial environment. The
reward distributions cause the difference in the environment,
and there are various mature MAB algorithms suitable for the
above environments, such as upper confidence bound (UCB)
[26], Thompson Sampling (TS) [27], and exponential-weight
algorithm for exploration and exploitation (EXP3) [28]. The
condition of the vehicles not only shows regularity due to
hardware, weather, configuration and so on, but also will affect
its data trading settings change over time because of their
mobility on the road. Therefore, the reputation value of the
vehicles needs a dynamic observation process, and a certain
observation opportunity is given to the vehicles whose state
changes. MAB online learning tools can be well adapted to
these problems.

Low latency is critical in the VEC. Assuming the latency
requirement of the edge server for data trading is Tmax, and
the time delay of vehicle i is represented as Ti. When the
vehicle takes more than Tmax to process and transmit trading
data, we reduce its reputation value to zero for this transaction.
Therefore, the delay indicator function is given by

Φ(Ti, T
max) =

{
1, if Ti ≤ Tmax

0, if Ti > Tmax , ∀i ∈ I. (4)

We apply the following method to calculate the reputation
value for the vehicle i in transaction m,

Υm
i =

Ξi

Ξmax
· ri · Φ(Ti, T

max), (5)

where Ξmax is the maximum transmission security level ac-
cording to the maximum encryption block length.

Taking Υm
i as the reward of the vehicle i in the mth iteration

of the MAB algorithm, the goal is to select the vehicle with a
large reward value (reputation value) each time the edge server
conducts data tradings to ensure the credibility and availability
of the acquired data. We achieve the target by choosing the
largest value of Am

i to realize action Am in the vehicle group
for each transaction. The specific representations are as follows

Am = argmax [Am
i ] , (6)

and

Am
i = Υm−1

i +

√
2 lnm

Qm−1
i

, (7)

where Υm−1
i is the average reputation value of vehicle i in the
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previous m−1 transactions, and Qm−1
i is the number of times

that the edge servers select vehicle i till the transaction m−1.
The transaction count of each vehicle is dynamically updated
by the edge servers and uploaded to the cloud for experience
sharing. Therefore, action Am tends to give a new vehicle in
the reputation management system more opportunity to record
its truest reputation status. In order to save storage resources
by not storing the reputation value Υm

i of each transaction m
for each vehicle i, we use the following exponential weighted
moving average method to obtain the average reputation value
Υm

i of each vehicle i in transaction m,

Υm
i = (1− 1

Qm
i

)Υm−1
i +

1

Qm
i

Υm
i , (8)

where Qm
i is the number of times that the edge servers select

vehicle i till the transaction m, so we only store the average
reputation value and compute the new reputation value in the
current transaction to update the new average one.

Algorithm 1 ε-greedy Multi-Armed Bandit (MAB)-based
Online Reputation Management Algorithm

Initialization:
• Initialize the communication quality q = {qi} and

the probability of positive interactions Prob =
{P (posi)} from the distribution.

• Set m = 1 and the specified greedy parameter ε.
• Let γ = {γi}, ρ = {ρi}, Qm = {Qm

i } and Υm =
{Υm

i } to zero.
• Iteratively select each vehicle and optimize resources

for the data trading process. Increase the m, Qm and
record the Υm.

Iteration:
1: while m > I do
2: if A rand value ∈ [0, 1] < ε then
3: Choose random vehicle i to trade data.
4: else
5: Compute Am

i = Υm−1
i +

√
2 lnm
Qm−1

i

.

6: Choose vehicle i with Am = argmax [Am
i ].

7: end if
8: Update Qm

i = Qm
i + 1.

9: Vehicle i jointly optimize resource to get optimal Pi,
fi and Ni to maximize utility.

10: Update γi = γi + 1 or ρi = ρi + 1.
11: Compute Φ(Ti, T

max), ri and security level to get
reputation value Υm

i = Ξi

Ξmax
· ri · Φ(Ti, T

max).

12: Record Υm
i = (1− 1

Qm
i
)Υm−1

i + 1
Qm

i
Υm

i .
13: Update m = m+ 1.
14: end while
Output: Share reputation value Υm

i and parameters ε, m,
Qm

i , γi, ρi to the cloud.

We employ the ε-greedy algorithm to give the state-
changing vehicles ample opportunity to trade data. The spe-
cific procedure of the ε-greedy MAB-based online reputation
management algorithm is described in Algorithm 1. Properly
increasing ε can enhance the probability of the edge server ran-

domly selecting vehicles with fewer transaction experiences,
and reducing ε can stick out the high reputation vehicles.

D. Resource Optimization Problem of Vehicle

While the edge server performs the MAB-based online rep-
utation management algorithm, it is accompanied by the actual
encrypted transmission and data trading from the vehicle to the
edge server, which consumes computation and communication
resources. So, after the edge server chooses a vehicle for data
trading according to the reputation value, the vehicle needs
to optimize and allocate its computation, transmission, and
security settings to maximize its revenue under the constraints
of data trading delay and energy consumption.

1) Encryption Computation: Before starting to transmit
data, the vehicle should encrypt the trading data at first.
Denote the data size to be transferred as Si, and let the
processing density of the on-board CPU be li (cycles/bit).
We can obtain the needed CPU cycles, Sili. Assuming the
encryption computation frequency is fi, the time delay of the
encryption computation is given by T en

i = Sili
fi

. We model
the computation power of the on-board CPU as kif

3
i , where

ki represents the effective switched capacitance relying on the
chip architecture [29]. Therefore, the energy consumption for
encryption computation is Een

i = kiSilif
2
i .

2) Data Transmission: Let B be the bandwidth, and N0

is the power spectral density of the additive white Gaussian
noise (AWGN). The capacity of an AWGN channel can be
expressed as follows

Ri = B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)
, (9)

where Pi and hi are the transmit power and channel fading
coefficient between vehicle i and the edge server, respectively.
di is the distance from i to the edge server and β is the path
loss exponent. Last, Γ(BER) = −2 ln(5BER)

3 denotes the signal
to noise ratio (SNR) gap, which presents how far the system
is from the achieving capacity to realize the desired target bit
error rate (BER) [30]. The transmission time delay can be
obtained as T c

i = Si

Ri
. The energy consumption to transmit

encrypted data is Ec
i = PiT

c
i .

3) Revenue: Before data trading, the edge server aims to
select a vehicle with a higher reputation value according to the
MAB algorithm. At the same time, a higher price should be
paid for a vehicle with a high reputation value to incentivize
the vehicle to increase its reputation in each transaction. After
implementing the selection decision, the edge server expects
low BER data traffic acquisition due to the avalanche effect of
the encryption scheme. Otherwise, the ciphertext may not be
decrypted correctly. The utility of the vehicles in data trading
can be represented as follows

Ui = WRΥ
m−1
i

Ri

Ni
(1− BER)Ni , (10)

where WR is the utility price, Ri

Ni
is the number of transmitted

encryption blocks per second, and (1− BER)Ni is the prob-
ability that Ni bits per block are transmitted without errors.
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On the vehicle side, to maximize revenues and reduce
its own energy consumption costs for both encryption and
communication, the revenue is given by

Gi = Ui −WE(E
en
i + Ec

i ), (11)

where WE is the energy price.
4) Problem Formulation: For vehicle i to trade data, it can

optimize transmit power Pi, computation frequency fi, and
block length Ni to maximize its profit. Eventually, we can
formulate the following resource optimization problem,

max
Pi,fi,Ni

Gi

s.t. (a) : T en
i + T c

i ≤ Tmax,

(b) : Een
i + Ec

i ≤ Emax
i ,

(c) : Ξi ≥ Ξmin,

(d) : 0 ≤ fi ≤ Fi, Pi ≥ 0,

(e) : Ni ∈ {Nmin, · · · , Nmax},

(12)

where Emax
i and Fi are the maximum energy consumption

and the maximum computation frequency, respectively. Ξmin

is the allowable lowest transmission security level for the data
trading task requirement. Nmin and Nmax are the minimum
and maximum block lengths. In (12), (a) and (b) are the time
delay and energy consumption constraints, respectively. (c)
restricts the transmission security level. (d) is the constraint of
the on-board CPU computation frequency and transmit power
of the vehicle i. (e) represents the block length as a discrete
variable with the minimum and maximum constraints.

IV. SOLUTION OF THE FORMULATED PROBLEM

The problem (12) is a mixed-integer non-linear program-
ming problem (MINLP), as shown in the previous section,
which is challenging to solve. We apply the block coordinate
descent (BCD) method here to decompose it into three sub-
problems to solve separately.

A. Block Length

To solve the problem of obtaining optimal block length,
which is a discrete variable, we relax constraint (e) into
continuous variable constraint (1e). So the relaxed problem
is as follows

max
Ni

WRΥ
m−1
i

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)
Ni

(1− BER)Ni

(1c) : log2(Ni) ≥ Ξmin,

(1e) : Nmin ≤ Ni ≤ Nmax.
(13)

We can merge (1c) and (1e) into the following inequality

max
{
⌈2Ξ

min

⌉, Nmin
}
≤ Ni ≤ Nmax, (14)

where ⌈·⌉ means round up that can acquire an integer. Due
to 0 < BER ≪ 1, the objective function in problem
(13) decreases monotonically as Ni increases. Therefore, the

optimal block length of the vehicle i can be calculated as
follows

N∗
i = max

{
⌈2Ξ

min

⌉, Nmin
}
. (15)

B. Computation Frequency

We transform the original problem (12) into the following
problem to obtain computation frequency.

min
fi

WEkiSilif
2
i

s.t. (2a) :
Sili
fi

+
Si

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

) ≤ Tmax,

(2b) : kiSilif
2
i +

PiSi

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

) ≤ Emax
i ,

(2d) : 0 ≤ fi ≤ Fi.
(16)

Constraints (2a), (2b) and (2d) can be merged into the
following new feasible interval

fi ∈

[
max

{
0,

SiliRi

TmaxRi − Si

}
,min

{
Fi,

√
Emax

i Ri − PiSi

RikiSili

}]
.

(17)
The objective function in problem (16) is a parabola, and
its minimum value can be obtained at the lower bound
of the feasible interval. Therefore, the optimal computation
frequency of the vehicle i can be calculated as follows

f∗
i = max

{
0,

SiliRi

TmaxRi − Si

}
. (18)

C. Transmit Power

Under given block length Ni and computation frequency fi,
the original problem (12) can be simplified to

max
Pi

WRΥ
m−1
i

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)
Ni

(1− BER)Ni

−WE

kiSilif
2
i +

PiSi

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)


s.t. (3a) :
Sili
fi

+
Si

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

) ≤ Tmax,

(3b) : kiSilif
2
i +

PiSi

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

) ≤ Emax
i ,

(3d) : Pi ≥ 0,
(19)

which is hard to be proved as a convex problem about Pi. But
the constraints (3a), (3b) and (3d) in (19) are convex sets,
respectively, as proved in Appendix A. We set

f(Pi) = WRΥ
m−1
i

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)
Ni

(1− BER)Ni ,

(20)
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and

h(Pi) = WE

kiSilif
2
i +

PiSi

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)
 .

(21)
f(Pi) is a logarithmic function with respect to the variable Pi,
which is a concave function. h(Pi) is also a concave function
[31], [32]. The following inequality holds for function h(Pi),

h(Pi) ≤ h(P l
i ) +∇hT (P l

i )(Pi − P l
i ), (22)

where ∇hT (P l
i ) is the value of the derivative function of

function h(Pi) at Pi shown in (23).
It is known that f(Pi) − (h(P l

i ) + ∇hT (P l
i )(Pi − P l

i ))
is always smaller than f(Pi) − h(Pi). Therefore, the MM
algorithm can be applied here to iteratively obtain the maxi-
mum values of the minorization functions to approximate the
objective value. We can convert these maximization problems
into minimization forms as follows to solve them conveniently,

min
Pi

h(P l
i ) +∇hT (P l

i )(Pi − P l
i )− f(Pi)

s.t. (3a), (3b), (3d).
(24)

Let χi = − SiΓ(BER)N0 ln 2
(Emax

i −kiSilif2
i )|hi|2d−β and ζi =

Γ(BER)BN0

|hi|2d−β
i

, we
obtain the following equations from (3a) and (3b) in the lth
iteration

P l
i,min =

(
max

{
2

Si

(Tmax−Sili
fi

)B ,
1

χi
W0(χie

χi)
}
− 1

)
ζi,

P l
i,max =

(
1

χi
W−1(χie

χi)− 1

)
ζi.

(25)
So, the newly merged constraint is as follows

P l
i,min ≤ Pi ≤ P l

i,max. (26)

The objective function in problem (24) is a linear function
that minuses the concave function, so it is a convex function
that can be differentiated to obtain a minimal value. We
represent the variable in problem (24) that minimizes the
objective function as P̂i,

P̂i =

(
WRΥ

m−1
i B(1− BER)Ni |hi|2d−β

i

∇hT (P l
i )Ni ln 2 Γ(BER)BN0

− 1

)
ζi. (27)

Combining (25), (26) and (27), we can obtain the variable that
minimizes the lth problem as follows, and it also becomes the
(l + 1)th iteration parameter,

P l+1
i =


P l
i,min, if P̂i ≤ P l

i,min,

P̂i , if P l
i,min < P̂i ≤ P l

i,max,

P l
i,max, if P̂i > P l

i,max.

(28)

The specific iterative process of the MM algorithm to obtain
optimal transmit power is described in Algorithm 2.

Algorithm 2 Minorization-Maximization (MM)-based Trans-
mit Power Allocation Algorithm

Initialization:
• Initialize the maximum number of iterations lmax and

the specified precision ϵ.
• Set the initial P 0

i .
• Let l = 0, and compute G0(Pi) = f(P 0

i )− h(P 0
i ).

Iteration:
1: while l ≤ lmax do
2: According to the equation (28), solving convex opti-

mization problem (24) to obtain the optimal solution
P l+1
i .

3: Compute Gl+1(Pi) = f(P l+1
i )− h(P l+1

i ).
4: if |G(P l+1

i )− G(P l
i )| < ϵ then

5: break.
6: end if
7: l = l + 1.
8: end while
Output: the optimal transmission power P ∗

i = P l+1
i .

D. Complexity Analysis

For the resource optimization of vehicle data sellers, since
the closed-form solution (28) is derived from the minimum
optimization problem (24), let the iteration number of Algo-
rithm 2 be M1, the algorithm complexity of the MM-based
transmit power allocation algorithm is O(M1) [33]. We also
obtain the closed-form solution (15) for the block length and
the closed-form solution (18) for the computation frequency.
Therefore, the computational complexity of the BCD method
is O(M1M2), where M2 is the iterative number of the BCD.

For the MAB-based online reputation management algo-
rithms of edge server data buyers, except for the maximum
value operation in Step 6, the rest are simple numerical oper-
ations. The algorithm complexity of the maximum operation
is O(I) [34]. So the computational complexity of edge servers
to manage reputation is O(I).

The computational complexity of the overall algorithm to
select a vehicle for one trading is O(IM1M2), which is low
thanks to the derivation of the closed-form solutions.

V. EXPERIMENT RESULT

In this section, we evaluate the proposed MAB-based repu-
tation management scheme and resource allocation algorithm
for vehicles. We first verify the convergence and effectiveness
of the algorithms. Then, the performance indicators such as
revenue, utility and energy consumption are compared and
analyzed.

A. Simulation Parameters

The simulation is implemented on a laptop with 16-GB
RAM, where the CPU is Intel Core i7-10510U with 1.8GHz.
All experiments were repeated 10000 times and averaged. We
consider that there are I = 10 vehicles driving on the road
segment, and edge servers running the MAB-based reputation
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∇hT (P l
i ) =

WESi

B log2

(
1 +

P l
i |hi|2d−β

i

Γ(BER)BN0

)
1− P l

i |hi|2d−β
i(

1 +
P l

i |hi|2d−β
i

Γ(BER)BN0

)
log2

(
1 +

P l
i |hi|2d−β

i

Γ(BER)BN0

)
ln 2 Γ(BER)BN0

 (23)

TABLE I: Parameter settings in the simulation.

Parameter Meaning Value
B Bandwidth 180 KHz [35]
N0 Noise power density -174 dBm/Hz [36]
BER Desired target bit error rate 10−4 [37]
β Path loss exponent 2
ki Capacitance coefficient 10−27

WR Utility price [1, 9]× 10−4

WE Energy price [1, 9]
Nmin/Nmax Minimum/Maximum block length 64 bits / 512 bits

Emax
i Maximum energy consumption 0.6 J

Tmax Maximum time delay [0.5, 4] s
Fi Maximum computation frequency 2 GHz
Si Data size [20, 200] KB
li Processing Density [700, 800] cycles/bit
di Communication distance [10m, 1km]

management for data trading next to the road. They will
upload the MAB learning parameters to the cloud to share
their reputation experience. The path loss exponent for the
edge server to vehicles is 2. Noise power density is −174
dBm/Hz. Detailed parameter settings are listed in Table I.
To highlight the advantages of using the MAB algorithm to
manage reputation value, we implement the Original scheme
to select the vehicle with the largest reputation value each
time and the Random scheme to select the vehicle randomly.
We compare the performance with new vehicles added at
intervals to highlight the dynamic characteristic of the Pro-
posed algorithm. In order to compare the performance of
resource optimization, we set up the following three schemes
for comparison.

• RPS [38]: The scheme randomly sets transmit power and
optimizes the remaining variables, such as computation
frequency and block length.

• RFS [39]: The scheme randomly sets computation fre-
quency and optimizes the remaining variables, such as
transmit power and block length.

• RNS [40]: The scheme randomly sets block length and
optimizes the remaining variables, such as transmit power
and computation frequency.

B. Numerical Results

Generally speaking, if resource allocation is involved in the
scheme, the solution process will greatly reduce the throughput
of data transactions. Commonly used search methods are
inefficient, and neural networks need to be trained in advance.
But in this paper, since closed-form solutions are obtained,
an average decision rate of 3596 data transactions per second
can be achieved in the experiment. The processing throughput
shows that the proposed scheme is effective and efficient
for vehicle reputation management, data trading selection,

Fig. 2: Principle of Minorization-Maximization Algorithm.

(a) Convergence of Algorithm 2 (b) Convergence of External Loop

Fig. 3: Convergence of Proposed Resource Optimization Algorithms

and resource allocation. Therefore, the proposed method is
suitable for large-scale, dynamic, and high-frequency data
trading scenarios in VEC.

1) Convergence and Effectiveness of Proposed Algorithms:
The numerical results of this section are to validate the
convergence and effectiveness of the proposed algorithms.

Fig. 2 shows the curve changes in the iterations of the MM
algorithm in Algorithm 2, which represents the objective Gi in
(11) and iterative approximate curves. It can be seen that as
the iteration progresses, the maximum value of the iteration
curve is closer to the position of the original target value. This
figure also shows the principle process of the MM algorithm.
Fig. 3(a) represents that the transmit power will converge into
one stable value, which demonstrates the effectiveness of the
MM-based transmit power allocation algorithm. Moreover, a
stable result can be obtained in just three or four steps at a fast
convergence rate. Fig. 3(b) shows the iterative convergence
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Fig. 4: The effectiveness of the Algorithm 1. Fig. 5: Selection ratio of the vehicle with the highest reputation under
different ε.

Fig. 6: Selection ratio of the vehicle with the different trading rounds
m under different vehicle number I .

Fig. 7: Revenue of the vehicles with the different path loss exponent
β under different communication distances d.

between the transmit power obtained by Algorithm 2 and
the other two variables. This external loop validates the fast
convergence rate and effectiveness of solving the original
problem (12) for resource optimization.

Fig. 4 verifies the effectiveness of the Algorithm 1, which
exhibits that the MAB-based online reputation management
algorithm makes the edge server more inclined to select
vehicles with high communication quality and more positive
communication records for data trading. Among the 10000
times selections, the edge servers have a proportion of 77.16%
to select the vehicle V 6 with the dynamically updated highest
reputation value. At the same time, it also maintains certain
trading opportunities for other vehicles with less reputation
value. As for the proportion of vehicles with the highest
reputation value chosen, it is closely related to the choice of
ε in the Algorithm 1. Given the different number of vehicles,

Fig. 5 compares the change in the proportion of vehicles with
the highest reputation value that the edge server selects for
different ε. The probability that the edge server randomly
selects a vehicle is greater when ε becomes larger, so the
advantage of vehicle reputation is not obvious. When just a
few vehicles are on the road, there are not many choices for
edge servers, so vehicles with higher reputation values will be
selected for data trading with a greater probability.

Fig. 6 shows the selection ratio of the vehicle with the
different trading rounds m under different vehicles number I .
For a given number of transactions, as the number of vehicles
grows from 50 to 300, the proportion of the highest reputa-
tion vehicle selected by the edge server gradually decreases.
This is because the MAB algorithm will give all vehicles
enough chances to present their true reputation condition.
As the number of transaction rounds m increases, the edge
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Fig. 8: Selection ratio for initial ten vehicles when dynamically adding
vehicles.

Fig. 9: Selection ratio of newly added vehicles.

Fig. 10: Revenue, utility and vehicular energy consumption in data
trading with different data sizes.

Fig. 11: Revenue and vehicular energy consumption in data trading
with different maximum time delay constraints.

server selects the vehicle with the highest reputation in a
larger proportion, because the reputation value at this time
has accumulated enough experience and transaction attempts.
The proposed lightweight algorithm can adapt to the high
transaction volume of a large number of vehicles. The revenue
of the vehicles with the different path loss exponent β under
different communication distances d is shown in Fig. 7. For a
given path loss exponent, the farther the vehicle is from the
edge server, the lower the revenue, and it will consume more
energy and delay. A larger path loss exponent also leads to a
reduction in revenue for vehicles.

2) Comparison of Reputation Management Scheme: The
numerical results of this section are to compare the perfor-
mance between MAB-based, Original, and Random reputation
management algorithms.

To simulate the characteristics of dynamic vehicle addition

in VEC scenarios, we use the initial ten vehicles for 1000
selections and add a new vehicle every 1000 intervals to
represent the relationship between the vehicle addition order
and the selected ratio. The selection ratio for the initial ten
vehicles when dynamically adding vehicles is shown in Fig.
8. The inset zooms in on the portion where the selection
ratio is below 0.1. The Original scheme always only selects
vehicle V 9 with the highest reputation value and almost
ignores other vehicles. The Random scheme has an even
chance of each vehicle being selected. The proposed MAB-
based scheme has a high proportion of vehicle V 9 with the
highest reputation value because it has better communication
quality and positive transaction records. However, for other
vehicles, there is a certain chance of being selected. Fig. 9
shows the ratio at which the next nine vehicles were selected
in their respective participations. Since the initial reputation
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Fig. 12: Revenue and vehicular energy consumption in data trading
under different minimum allowable security levels.

Fig. 13: Revenue and vehicular energy consumption in data trading
with different energy consumption price scales.

conditions of the later participating vehicles are not as good
as V 9, the Original scheme hardly selects them. The proposed
MAB-based scheme gives them enough opportunities to update
to obtain their real reputation value and does not have less
chance than existing vehicles because they are newly added
vehicles. Random scheme still gives them an even chance to
be selected. Obviously, our proposed scheme is more dynamic
and adaptive.

3) Comparison of Resource Optimization Scheme: This
section is to compare the performance between Proposed, RPS,
RFS, and RNS resource optimization algorithms. We repeat
the optimal allocation process of transmit power, computation
frequency, and block length for 10000 vehicles to obtain the
average numerical results.

Fig. 10 examines the revenue, utility, and vehicular energy
consumption with different data sizes. As the size of the
transaction data increases, the utility of the vehicle that comes
from the payment of the edge server based on the low-
error data acquisition probability will decrease slightly, and
the energy consumption will increase accordingly, resulting
in a decrease in the unit revenue of the vehicle. Although
the proposed scheme is neither the highest utility nor the
lowest energy consumption, the combined revenue of the two
is the highest. RNS has the lowest energy consumption, but
its utility is extremely low. RPS has the highest utility but
causes the heaviest energy consumption. Fig. 11 investigates
revenue and vehicular energy consumption in data trading
with different maximum time delay constraints Tmax. As
the latency requirement of the data trading task decreases,
the revenue of the vehicle will increase, and the energy
consumption will be significantly decreased, but the reduction
will gradually slow down and stabilize. RNS still has the lowest
energy consumption and revenue. Therefore, to improve the
vehicle’s revenue under the constraints of delay and energy
consumption, it is essential to optimize the block length Ni.

Fig. 12 demonstrates revenue and vehicular energy con-
sumption in data trading under different allowable lowest

security levels Ξmin. With the increase of Ξmin, the revenue
and energy consumption of the vehicle will be reduced. So
the energy consumption of vehicles must be appropriately
sacrificed to increase utility to achieve higher revenue. For
vehicles, it is reluctant to see an increase in the security
level requirement, because this will lead to a significant
reduction in utility. However, when security requirements
are particularly low, the vehicle guarantees a certain degree
of minimum transmission security level. Fig. 13 shows the
revenue and energy consumption in data trading with different
energy consumption price scales WE . To achieve a balance
between utility and energy consumption when WE increases,
the vehicle will reduce energy consumption to realize the
deceleration of revenue. This means that vehicles want to
reduce energy costs as unit energy becomes more expensive
in real life.

In summary, the proposed scheme can effectively manage
vehicle reputation, select data trading, and allocate resources,
and it is suitable for large-scale, dynamic, and high-frequency
data trading scenarios in VEC.

VI. CONCLUSION

In this work, we propose MAB-based reputation manage-
ment to select the vehicle for data trading to ensure the cred-
ibility and reliability of the data in VEC. Resource allocation
algorithms are embedded to maximize revenue for vehicles
under the constraints of time delay, energy consumption, and
transmission security level. Relying on the MAB approach, the
vehicle reputation status can be updated online dynamically,
and all vehicles have enough opportunities to trade data,
while a new vehicle can still have a chance to obtain the
actual and variational reputation value. Also, the edge servers
can securely acquire high-quality and low-error data traffic.
Encrypting trading data can protect the privacy of users and
ensure the interests of edge servers. We jointly optimize the
transmit power, computation frequency, and block length to
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higher utility and lower energy consumption. For the block
length and computation frequency, we obtain the closed-form
solution, and a MM-based algorithm is developed to allocate
transmit power. The experiment results verify the convergence
and effectiveness of the proposed algorithms and know that
the scheme is effective and efficient for vehicle reputation
management, data trading selection, and resource allocation.
How to optimize the security and resource problems for more
complex data trading scenarios in vehicle networking with
lightweight and effective methods suitable for dynamic VEC
requires further research. There will be more complicated
trading models and security relationships.

APPENDIX A
PROOF OF CONVEX SETS IN PROBLEM (19).

Constraint (3a) in problem (19) can be transformed as
follows

B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)
≥ Si

Tmax − Sili
fi

, (29)

where the left formula is a logarithmic function with respect
to the variable Pi. The upper level set of a concave function
is a convex set, so constraint (3a) as a convex set is proved.

Constraint (3b) in problem (19) can be transformed as
follows

PiSi − (Emax
i − kiSilif

2
i )B log2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)
≤ 0,

(30)
where the twice derivative function of the formula on the left
with respect to Pi is

(Emax
i − kiSilif

2
i )

(
|hi|2d−β

i

Γ(BER)N0

)2
B ln 2

(
1 +

Pi|hi|2d−β
i

Γ(BER)BN0

)2 . (31)

The above function is greater than zero, so constraint (3b) as
a convex set is proved.

Hitherto, the constraints in the problem (19) are all convex
sets.

REFERENCES

[1] C. Kaiser, A. Stocker, G. Viscusi, M. Fellmann, and A. Richter,
“Conceptualising value creation in data-driven services: The case of
vehicle data,” International journal of information management, vol. 59,
p. 102335, 2021.

[2] F. Liang, W. Yu, D. An, Q. Yang, X. Fu, and W. Zhao, “A survey on
big data market: Pricing, trading and protection,” Ieee Access, vol. 6,
pp. 15 132–15 154, 2018.

[3] S. A. Ghasempouri and B. T. Ladani, “Modeling trust and reputation
systems in hostile environments,” Future Generation Computer Systems,
vol. 99, pp. 571–592, 2019.

[4] Z. Tian, X. Gao, S. Su, J. Qiu, X. Du, and M. Guizani, “Evaluating
reputation management schemes of internet of vehicles based on evo-
lutionary game theory,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 6, pp. 5971–5980, 2019.

[5] J. Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization for
efficient hierarchical federated learning in wireless edge networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
2687–2700, 2022.

[6] C. Gao, G. Wang, W. Shi, Z. Wang, and Y. Chen, “Autonomous driving
security: State of the art and challenges,” IEEE Internet of Things
Journal, 2021.

[7] S. Ramanujam and M. Karuppiah, “Designing an algorithm with high
avalanche effect,” IJCSNS International Journal of Computer Science
and Network Security, vol. 11, no. 1, pp. 106–111, 2011.

[8] S. Takeuchi, M. Hasegawa, K. Kanno, A. Uchida, N. Chauvet, and
M. Naruse, “Dynamic channel selection in wireless communications via
a multi-armed bandit algorithm using laser chaos time series,” Scientific
reports, vol. 10, no. 1, pp. 1–7, 2020.

[9] X. Cao, Y. Chen, and K. J. R. Liu, “Data trading with multiple
owners, collectors, and users: An iterative auction mechanism,” IEEE
Transactions on Signal and Information Processing over Networks,
vol. 3, no. 2, pp. 268–281, 2017.

[10] X. Huang, S. Garg, J. Nie, W. Y. B. Lim, Y. Qi, Y. Zhang, and M. S. Hos-
sain, “Toward efficient data trading in ai enabled reconfigurable wireless
sensor network using contract and game theories,” IEEE Transactions
on Network Science and Engineering, vol. 9, no. 1, pp. 98–108, 2022.

[11] Y. Zhan, Y. Xia, Y. Liu, F. Li, and Y. Wang, “Incentive-aware time-
sensitive data collection in mobile opportunistic crowdsensing,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7849–7861,
2017.

[12] C. Chen, J. Wu, H. Lin, W. Chen, and Z. Zheng, “A secure and efficient
blockchain-based data trading approach for internet of vehicles,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 9, pp. 9110–9121,
2019.

[13] W. Mao, Z. Zheng, and F. Wu, “Pricing for revenue maximization in iot
data markets: An information design perspective,” in IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, 2019, pp. 1837–
1845.

[14] S. Su, Z. Tian, S. Liang, S. Li, S. Du, and N. Guizani, “A reputation
management scheme for efficient malicious vehicle identification over
5g networks,” IEEE Wireless Communications, vol. 27, no. 3, pp. 46–52,
2020.

[15] Z. Ying, M. Ma, Z. Zhao, X. Liu, and J. Ma, “A reputation-based leader
election scheme for opportunistic autonomous vehicle platoon,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 4, pp. 3519–3532,
2022.

[16] Z. Tian, X. Gao, S. Su, and J. Qiu, “Vcash: A novel reputation frame-
work for identifying denial of traffic service in internet of connected
vehicles,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 3901–
3909, 2020.

[17] H. Chai, S. Leng, K. Zhang, and S. Mao, “Proof-of-reputation based-
consortium blockchain for trust resource sharing in internet of vehicles,”
IEEE Access, vol. 7, pp. 175 744–175 757, 2019.

[18] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[19] X.-Q. Pham, T.-D. Nguyen, V. Nguyen, and E.-N. Huh, “Joint node
selection and resource allocation for task offloading in scalable vehicle-
assisted multi-access edge computing,” Symmetry, vol. 11, no. 1, 2019.
[Online]. Available: https://www.mdpi.com/2073-8994/11/1/58

[20] H. Xu, W. Huang, Y. Zhou, D. Yang, M. Li, and Z. Han, “Edge
computing resource allocation for unmanned aerial vehicle assisted
mobile network with blockchain applications,” IEEE Transactions on
Wireless Communications, vol. 20, no. 5, pp. 3107–3121, 2021.

[21] X. Huang, R. Yu, J. Kang, Z. Xia, and Y. Zhang, “Software defined
networking for energy harvesting internet of things,” IEEE Internet of
Things Journal, vol. 5, no. 3, pp. 1389–1399, 2018.

[22] J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, “Toward
secure blockchain-enabled internet of vehicles: Optimizing consensus
management using reputation and contract theory,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 3, pp. 2906–2920, 2019.

[23] S. O. Sharif and S. Mansoor, “Performance analysis of stream and block
cipher algorithms,” in 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE), vol. 1, 2010, pp. V1–522–
V1–525.

[24] S. Deb, S. K. Ghosh, and S. C. Ghosh, “A multi-arm-bandit based
resource block allocation in ris assisted wireless network,” in 2021 IEEE
20th International Symposium on Network Computing and Applications
(NCA). IEEE, 2021, pp. 1–6.
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