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Dynamic effects of single fiber break in unidirectional glass fiber-
reinforced composites 
Raja Ganesh1,2* , Subramani Sockalingam1,2 , Bazle Z. (Gama) 
Haque1,2  and John W. Gillespie, Jr. 1,2,3,4 
Abstract  

In a unidirectional composite under static tensile loading, breaking of a fiber is 
shown to be a locally dynamic process which leads to stress concentrations in the 
interface, matrix and neighboring fibers that can propagate at high speed over long 
distances. To gain better understanding of this event, a fiber-level finite element model of 
a 2-dimensional array of S2-glass fibers embedded in an elastic epoxy matrix with 
interfacial cohesive traction law is developed. The brittle fiber fracture results in release 
of stored strain energy as a compressive stress wave that propagates along the length of 
the broken fiber at speeds approaching the axial wave-speed in the fiber (6 km/s). This 
wave induces an axial tensile wave with a dynamic tensile stress concentration in 
adjacent fibers that diminishes with distance. Moreover, dynamic interfacial failure is 
predicted where debonding initiates, propagates and arrests at longer distances than 
predicted by models that assume quasi-static fiber breakage. In the case of higher strength 
fibers breaks, unstable debond growth is predicted. A stability criterion to define the 
threshold fiber break strength is derived based on an energy balance between the release 
of fiber elastic energy and energy absorption associated with interfacial debonding. A 
contour map of peak dynamic stress concentrations is generated at various break stresses 
to quantify the zone-of-influence of dynamic failure. The dynamic results are shown to 
envelop a much larger volume of the microstructure than the quasi-static results.  The 
implications of dynamic fiber fracture on damage evolution in the composite are 
discussed. 
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Introduction 
Glass fibers exhibit a statistical distribution of strength that depends on the size 

and spatial distribution of critical defects within the fiber. Under quasi-static axial tensile 
loading of a unidirectional glass fiber-reinforced polymer matrix composite, the stiff 
glass fibers are the major load carrying members.  In the case of composites with 
matrices having higher strain to failure than the fibers, the fibers tend to fail first1. Based 
on classical shear lag theory that considers pre-broken fibers under quasi-static loading 
(i.e. neglects dynamic effects), neighboring fibers experience a stress concentration at the 
break location. Stresses are transferred back into the broken fiber through shear in the 
interface and matrix to the original far-field stress state in a characteristic distance 
commonly referred to as the ineffective or recovery length. Depending on the magnitude 
of the stress concentrations and the stress recovery length, the initial breaks could trigger 
interfacial debonding and additional fiber breaks in the vicinity of the broken fiber, 
leading to formation of localized clusters of fiber breaks. It is hypothesized that once a 
critical cluster size is reached, the composite fails catastrophically2–4. These scenarios for 
predicting composite damage from a series of fiber breaks are based on classical shear lag 
mechanics associated with pre-broken fibers, where the dynamic aspects of brittle fiber 
failure are not considered. 

The effect of a single pre-broken fiber in a composite has been studied 
extensively using analytical approaches based on the quasi-static shear lag analysis 
developed by Cox5. In this approach, it is assumed that the axial tensile load is carried 
entirely by the fibers and the matrix is capable of only carrying shear loads. The approach 
was applied to unidirectional composites by Hedgepeth6 when he studied the stress 
concentrations due to a pre-broken fiber within an infinite 2-dimensional array of fibers. 
This was further extended to infinite hexagonal and square arrays of fibers by Hedgepeth 
and van Dyke7. Beyerlein and Phoenix8 developed a technique called quadratic influence 
superposition to improve the predictions of the 2D shear lag model by considering local 
matrix yielding. Landis and McKeening enhanced the shear lag approach to take into 
account the effect of interface sliding9 and plasticity in a ductile matrix10. Beyerlein and 
Landis11 developed a shear lag model which considers the axial load carrying capability 
of the matrix.  Okabe et al.12 developed a 3D shear lag model with a square packing of 
fibers where the matrix is modeled as shear springs connecting neighboring fibers. All of 
these analytical studies consider the mechanics of a pre-broken fiber and neglect dynamic 
effects associated with brittle fiber failure in the composite. However, they provide useful 
baseline results to compare with the results presented in this paper in order to understand 
the importance of dynamic fiber failure. 

With the increase in computational capabilities over the years, Finite Element 
(FE) Modeling has become an excellent alternative for studying stress redistributions at 
the fiber length-scale while eliminating many of the inherent assumptions in the various 
shear lag models 1.  Nedele and Wisnom 13,14 used a 3D FE model to study the stress 
concentration factors in the vicinity of a single pre-broken fiber in a hexagonally packed 
unidirectional composite. They assumed that the matrix remains entirely elastic and that a 
perfect bonding exists between the fiber and matrix materials. Goda et al.15 used a 



simplified FE model where the interface was modeled using discrete spring elements in 
order to study the effect of interface shear strength on the macroscopic strength of a 
unidirectional composite. van Den Heuvel et al. 16 used a 3D FE model where they 
included the effects of matrix plasticity. They studied the effects of interface failure by 
explicitly introducing partial debonding of the interface along the broken fiber prior to 
loading but did not study debond growth. These numerical studies on quasi-static loading 
of pre-broken fibers show that interface debonding is an important failure mechanism to 
include in our study on dynamic effects of fiber breaks in composites. 

Even under static applied loads, the breaking of glass fibers is a locally dynamic 
event due to the brittle nature of their failure. Swolfs et. al.17 used Synchrotron radiation 
computed tomography for in-situ observation of tensile failure in unidirectional 
composites. They loaded the composite specimen to different percentages of its nominal 
failure load and observed that co-planar clusters of fiber breaks formed within a single 
strain increment. They simulated the experiment using a  strength model 18,19 where the 
stress concentration profiles due to a fiber break were determined using a quasi-static FE 
model with a pre-broken fiber. The model predicted a more gradual progressive 
development of clusters as opposed to the sudden formation of co-planar clusters 
observed in the experiment. The authors pointed out that one of the main reasons for this 
discrepancy could be the fact that the state-of-the-art models ignore the dynamic effects 
of fiber failure.  

However, very little work has been done in terms of studying the dynamic effects 
of a fiber break. Hedgepeth 6 had modeled the dynamic stress concentrations at the plane 
of the fiber break in a fiber next to a broken fiber using his simplified shear lag solution. 
He illustrated that the stress concentration factor exhibits an oscillation that decays to the 
steady-state (static) value in a few cycles. Ji, Liu and Chou 20 modeled the dynamic stress 
concentration factors not just at the plane of the fiber break, but also along the entire 
length of a fiber next to a broken fiber using the classical shear lag approach. Their 
results indicate that the dynamic effects are significant only for a very short time scale of 
the order of 10√(𝑚𝑚𝑓𝑓𝑑𝑑/𝐺𝐺𝑚𝑚 ), where  𝑚𝑚𝑓𝑓, 𝑑𝑑 and 𝐺𝐺𝑚𝑚 represent the mass-per-unit-area of 
the fiber, the fiber diameter, and the shear stiffness of the matrix, respectively. For typical 
Glass-epoxy composites such as the one considered in this paper, this time scale is in the 
order of 50 nanoseconds.  Current advanced high-speed sensing capabilities using Phase 
Contrast Imaging (PCI) in an X-ray synchrotron can only achieve a temporal resolution 
of 100 nanoseconds 21. Thus, it is extremely challenging to experimentally characterize 
dynamic effects of fiber breaks within a composite in real time. Therefore, numerical 
modeling becomes an essential tool to study and quantify these effects while eliminating 
many of the assumptions in shear lag theory. 

In this paper, the problem of a single fiber break and the associated stress 
redistribution is studied using an FE model of a 2D-planar array of fibers interspersed 
with matrix regions. In reality, fibers have a circular cross-section and they are packed 
randomly in the cross-section of the composite. However, since the focus of the present 
paper is on elucidating the mechanisms associated with dynamic fiber break, we are using 
a 2D-planar array of fibers in our models. This also allows us to compare our results with 
the analytical shear lag solution. The problem is first studied using a quasi-static model 



with a pre-broken fiber which does not consider any dynamic effects. Next, the same 
problem is simulated as a transient dynamic problem where the inertial effects of the fiber 
break and the associated wave propagation mechanisms are captured.  

The remainder of the paper is organized into 3 major sections: 1) ‘Physical 
problem formulation’ which briefly describes the physics of the dynamic problem along 
with the material properties of the fiber and the matrix. 2) The subsequent section 
describes the details of the FE models used. These are 3D FE models with unit thickness 
and with the through thickness Poisson’s ratios set to zero. The fiber and matrix are 
modeled as elastic materials and the interfacial debonding mechanism is captured using a 
traction law that is derived from micro-droplet experiments on the same fiber-matrix 
system. This section ends with a numerical validation of the FE model. This is achieved 
by incorporating all the assumptions used in the classical dynamic shear lag solution into 
a simplified version of our FE model and then comparing the two solutions. 3) The 
‘Results and Discussion’ section describes the key results of this work and their 
implications. 

Physical problem formulation 
Let 𝝈𝝈 denote the Cauchy stress tensor at a material point in the composite. From 

conservation of linear momentum, after neglecting body forces, we get the following 
governing equation (Eq. 1) which has to be satisfied at every material point: 

 𝛁𝛁.𝝈𝝈 = 𝜌𝜌𝒂𝒂 (1) 

where, 𝜌𝜌 denotes the mass density and 𝒂𝒂 denotes the acceleration vector at the same 
material point. The ′𝜌𝜌𝒂𝒂′ term on the right hand side is the inertial term which 
incorporates the effects of dynamic fiber break. If the dynamic effects of fiber failure are 
ignored, then the problem can be formulated as a quasi-static problem with a pre-broken 
fiber and the governing equation reduces to the static equilibrium equation:  

 𝛁𝛁.𝝈𝝈 = 𝟎𝟎 (2) 

Material properties 

In the present study, an S2-glass/Epoxy composite is considered. The fiber 
diameter (d) is chosen to be 10 microns, which is the typical diameter of an S-2 glass 
fiber 22. The fiber volume fraction is considered to be 50%, which corresponds to an 
inter-fiber distance of 10 microns, since this is a 2D planar arrangement of fibers. Both 
the fiber and matrix materials are assumed to be linear-elastic. The elastic material 
properties used in this model are obtained from Sockalingam et. al. 23, and are listed in 
Table I. The density of S2-glass fibers is obtained from Song et. al. 24. 



Table I. Baseline properties of fiber and matrix 

Property S-glass Fiber Epoxy DER353 

Young’s Modulus (GPa) 90.0 3.2 

Poisson’s ratio 0.17 0.36 

Density (gm/cc) 2.45 1.5 

S2-glass fibers exhibit a statistical strength distribution which is typically 
described using a Weibull probability density function in the following form 25:  

 
𝑃𝑃(𝜎𝜎, 𝐿𝐿) = 1 − exp �−

𝐿𝐿
𝐿𝐿0
�
𝜎𝜎
𝐴𝐴
�
𝛽𝛽
� (3) 

where, 𝑃𝑃(𝜎𝜎, 𝐿𝐿) is the cumulative probability of failure of a fiber of gage length L at a 
stress level of 𝜎𝜎. 𝐴𝐴 and 𝛽𝛽 are experimentally-determined constants called the scale and 
shape parameters, respectively, and 𝐿𝐿0 is the reference gage length at which these 
parameters are determined. The Weibull probability distribution for 5 mm gage length 
(L=5 mm) epoxy-compatible S-glass fibers obtained from Gurvich et. al. 26 is considered 
in this paper. The Weibull scale and shape parameters are 𝐴𝐴 = 2644.8 𝑀𝑀𝑃𝑃𝑀𝑀 and 𝛽𝛽 =
4.52 for a reference gage length (𝐿𝐿0) of 25.4 mm. The distribution is shown in Fig. 1. 
The average of the distribution is 3.5 GPa for a gage length of 5 mm. 

 

Fig 1: Weibull probability of failure distribution for 5-mm gage length S-glass fibers 26 



 

Dynamic progression of events after fiber fracture 

Fig. 2 summarizes the dynamic progression of events immediately following a 
fiber break. We assume that the central fiber (Fiber 0) breaks at the x=0 plane at a break 
strength of 𝜎𝜎𝑏𝑏. Just before the fiber break, the composite is in a state of iso-strain in the 
axial direction, i.e., 𝜖𝜖𝑥𝑥 = 𝜖𝜖𝑏𝑏 = 𝜎𝜎𝑏𝑏/𝐸𝐸𝑓𝑓  everywhere in the composite. As soon as the fiber 
breaks (Fig. 2a), the fiber free ends begin to spring back initiating a compressive axial 
stress wave along the length of the broken fiber (Fig. 2b). Due to the energy released 
from the fiber break, debonding initiates in the interface surrounding the broken fiber 
(Fig. 2c). The axial deformation associated with the unloading of the broken fiber induces 
a shear wave in the matrix.  The shear wave induces axial stress in the adjacent fiber 
(Fiber 1).  This axial stress is compressive downstream of the shear wave front and 
tensile behind the shear wave front.  These axial stress waves, when superposed with the 
applied tensile stress, lead to the dynamic lowering and increasing of the tensile stresses 
in the adjacent fiber that propagate and decay in magnitude over long distances. The 
increase in axial stress due to the tensile part of the stress wave causes dynamic stress 
concentrations in the adjacent fiber. 

 

 

Fig 2a: Time, t = 0 ; Dynamic fiber fracture 



 

Fig 2b: Time, t1 > 0; Compressive stress wave initiates in broken fiber 

 

Fig 2c: Time, t2 > t1; Stress concentration propagates as a tensile stress wave in the 
neighboring fibers. Interfacial debonding propagates along the boundaries of the broken 
fiber 

 

The longitudinal wave-speed in S-2 glass fiber is 𝑐𝑐𝑓𝑓 =  �
𝐸𝐸𝑓𝑓
𝜌𝜌𝑓𝑓

= 6.06 𝑘𝑘𝑚𝑚/𝑠𝑠. A 

characteristic time, 𝑡𝑡𝑐𝑐, is defined as the time taken by the stress wave to propagate 
through a distance of one fiber diameter. This characteristic time is used to normalize the 
time dependent results presented below. For a fiber diameter of 10 microns, this 
translates to a characteristic time, 𝑡𝑡𝑐𝑐 = 𝑑𝑑

𝑐𝑐𝑓𝑓
= 1.65 𝑛𝑛𝑠𝑠. Since the Weibull strength 

distribution in the fibers is typically determined from tests where the stress in constant 
over the cross-section, the Stress Concentration Factor (SCF) in any fiber cross-section is 



defined as the ratio of the average axial stress (𝜎𝜎𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎) in that cross-section over the 
applied nominal stress in the fiber, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎. This is analogous to the definition of SCF used 
in 27. It should be noted that in reality, the strength distribution of the fibers is expected to 
be governed by critical surface defects on the fiber. In the present problem, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜎𝜎𝑏𝑏 for 
all the fibers. In a given fiber, the SCF in a cross-section at the location 𝑥𝑥′ is defined as: 

 
𝑆𝑆𝑆𝑆𝑆𝑆 (𝑥𝑥 = 𝑥𝑥′) =

𝜎𝜎𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥 = 𝑥𝑥′)
𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎

 (4) 

Finite Element Model 
A 3-dimensional finite element model with one element through the thickness is 

constructed using the commercial FE code ABAQUS. A 3D formulation with unit 
thickness is used instead of using 2D plane stress elements, since the surface-based 
cohesive contact can be used only between 3D solid elements in ABAQUS. The fiber and 
matrix are modeled using first order 8-noded hexahedral elements with full integration. 
The Poisson’s ratios along the thickness directions (νxz and νyz)  are set to zero in all the 
elements in order to eliminate the creation of stresses in the through thickness direction 
due to the mismatch in Poisson’s ratio between the fiber and the matrix. The central fiber 
is allowed to break at a specified stress by releasing the tractions in the cross-section at 
x=0. The interface between the central fiber (the fiber that will break) and the matrix is 
modeled using surface-based cohesive contact. A uniform element size of 1.25 um is 
employed in the entire model. The absolute difference in the peak dynamic SCF between 
models with element size of 2.5 um and 1.25 um is only 1.5% (Peak dynamic SCF is 
1.352 for element size of 2.5 um and 1.367 for element size of 1.25 um). Also, the 
absolute difference in the static SCF is only 2.1 % (1.199 for 2.5 um and 1.225 for 1.25 
um). The length of the model is chosen to be 2000 um and the model contains 10 fibers 
on one side of the broken fiber with matrix regions interspersed between them. These 
overall dimensions are sufficient enough to ensure that the stress waves do not reach any 
of the boundaries throughout the simulation. Fig. 3 shows the FE model along with the 
boundary conditions used.  



 

Fig. 3: Fiber-level FE model 

Traction law for fiber-matrix interface 

The fiber-matrix interface is modeled using surface-based cohesive contact 
formulation in ABAQUS. A mixed-mode bilinear traction-separation law is used to 
define the constitutive behavior of the interface. Damage initiation is modeled using a 
mixed-mode quadratic criterion and post-damage softening using a power law. The 
traction law for Mode I (opening mode) is assumed to be the same as for Mode II (shear 
mode). The parameters of the traction law are chosen from the FE modeling of the 
microdroplet experiment on the same fiber-matrix system 23. A peak traction of 120 MPa 
and a Mode II critical energy release rate (GIIc) of 160 J/m2 is used for the interface. For 
details on this interface model, the reader is referred to Sockalingam et. al. 23.  

Modeling the fiber break 

The fiber break is also modeled using a zero-thickness cohesive surface with a 
bilinear traction-separation behavior as shown in Fig. 4. The Stiffness of the cohesive 
surface is chosen to be a sufficiently high value (9x109 GPa/m) in order to maintain 
continuity of displacements across the cohesive surface until the fiber breaks.  Mode I 
fracture of the cohesive surface is initiated at a specified value of average fiber axial 
stress using a maximum stress criterion. The critical strain energy release rate in the fiber, 
GIc is  10 J/m2  and is typical of the surface energy in silica-based glass28. Due to the low 
value of GIc, the fiber break takes place within a single time-step (< 0.1*tc) in the model. 
i.e., the fiber break  occurs instantaneously across the entire cross section which is 
equivalent to the assumption used in previous analytical dynamic shear lag theory 
solutions 7,20. This allows us to validate the numerical model with the analytic solution 
before incorporating dynamic debonding effects.  



 

Fig. 4 : Cohesive traction law used for modeling dynamic fiber break at a break strength 
of 2.3 GPa 

Model validation with classical dynamic shear lag solution   

The classical shear lag solution for dynamic stress concentration factors obtained 
by Hedgepeth6 and later by Ji, Liu and Chou 20 employed the following assumptions: 

• Fiber and Matrix are linear elastic 

• Fibers carry only axial load 

• Matrix carries only shear 

• There is perfect bonding between the fiber and the matrix 

• Mass is concentrated at the fiber centers 

• Poisson’s effects are ignored 

• Strain rate effects are ignored 

Based on these assumptions, considering a 2-dimensional arrangement of fibers 
with unit thickness, the dynamic equilibrium equation in the nth fiber is: 

 
𝐸𝐸𝑓𝑓𝑑𝑑 �

𝜕𝜕2𝑢𝑢𝑛𝑛
𝜕𝜕𝑥𝑥2

� +
𝐺𝐺𝑚𝑚
ℎ

(𝑢𝑢𝑛𝑛+1 + 𝑢𝑢𝑛𝑛−1 − 2𝑢𝑢𝑛𝑛) = 𝑚𝑚𝑓𝑓 �
𝜕𝜕2𝑢𝑢𝑛𝑛
𝜕𝜕𝑡𝑡2

�   

(𝑛𝑛 =  −∞, … …− 2,−1, 0, 1, 2, … … ,∞) 
(5) 



 

where, 𝐸𝐸𝑓𝑓 is the young’s modulus of the fiber, 

 𝑚𝑚𝑓𝑓 is the mass per unit area of the fiber, 

 𝐺𝐺𝑚𝑚 is the shear modulus of the matrix, 

 𝑑𝑑 is the fiber diameter 

 ℎ is the width of the matrix region between two neighboring fibers 

 𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡) is the displacement field in the nth fiber.  

The axial tensile stress on the nth fiber is given by: 

 𝜎𝜎𝑛𝑛 = 𝐸𝐸𝑓𝑓 �
𝜕𝜕𝑢𝑢𝑛𝑛
𝜕𝜕𝑥𝑥

� (6) 

Assuming that the 0th fiber breaks at time, t=0, the following initial and boundary 
conditions are applied. 

 

Initial conditions: 𝜎𝜎𝑛𝑛(𝑥𝑥, 0) = 𝜎𝜎𝑏𝑏 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑎𝑎𝑎𝑎 𝑛𝑛) 
 

(7) 

𝜕𝜕𝑢𝑢𝑛𝑛
𝜕𝜕𝑡𝑡

(𝑥𝑥, 0) = 0 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑎𝑎𝑎𝑎 𝑛𝑛) 
 

(8) 

 

Boundary conditions: 𝜎𝜎0(0, 𝑡𝑡) = 0 
 

(9) 

𝑢𝑢𝑛𝑛(0, 𝑡𝑡) = 0 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≠ 0) 
 

(10) 

𝜎𝜎𝑛𝑛(±∞, 𝑡𝑡) = 𝜎𝜎𝑏𝑏 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑀𝑀𝑎𝑎𝑎𝑎 𝑛𝑛) 
 

(11) 

 

In order to match the assumptions used in the classical shear lag solution, the 
matrix is modeled as an orthotropic material with its axial stiffness reduced from 3.2 GPa 
to 100 MPa. This translates to the matrix carrying only 0.1% of the applied axial load. 



The in-plane shear modulus of the matrix was unchanged from that of the baseline matrix 
material (1.18 GPa). The density of the matrix is also made negligible as opposed to the 
density of the fiber (𝜌𝜌𝑚𝑚  ~ 0.001 ∗ 𝜌𝜌𝑓𝑓). The fiber-matrix interface is not allowed to 
debond in order to simulate perfect fiber-matrix adhesion. All Poisson’s ratios in both the 
fiber and the matrix are set to zero. Fig. 5 shows the evolution of stress concentration 
factor with time in the neighboring fiber (Fiber 1) at x=0. The solution obtained from the 
FE element model closely matches the result obtained using Hedgepeth’s solution 
proving the mesh and time resolution for our numerical model is sufficient to study the 
mechanisms of dynamic fracture.  The solution shows that the dynamic SCF is 1.53 and 
drops to the static value of 1.33 in 2 cycles over 80 characteristic times.  
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Fig. 5: Comparison of FE model results with Classical shear lag theory (SCF vs time in 
Fiber 1 at x=0). Data points in FE models collected at intervals of ~0.3 ∗ 𝑡𝑡𝑐𝑐 

 
Results and discussion 

If the shear lag assumptions are relaxed in our numerical model, it can be seen 
that the shear lag solution over-predicts both the dynamic SCF (1.53 vs 1.36) as well as 
the static SCF (1.33 vs 1.23) as shown in Fig. 5. This can be attributed to the fact that the 
classical shear lag solution ignores the axial load carrying capability of the matrix. The 



reduction in static SCF due to the consideration of the axial load carrying capacity of the 
matrix was also reported by Ochiai et. al. 29 using a modified shear lag solution. The FE 
model also correctly predicts a time delay (approximately 7 characteristic times in Fig. 5) 
to load the adjacent fiber that is associated with shear wave propagation across the 10 

micron matrix region. The shear wavespeed in the matrix is given by, 𝑐𝑐𝑚𝑚_𝑠𝑠ℎ =  �𝐺𝐺𝑚𝑚
𝜌𝜌𝑚𝑚

=

0.886 𝑘𝑘𝑚𝑚/𝑠𝑠 . Based on this value, the shear wave will propagate across the 10 micron 
matrix region in approximately 7 characteristic times.  

In the baseline model, the first fiber break is assumed to occur at a fiber stress 
level of 2.3 GPa, which corresponds to a probability of failure of 10% (see Fig. 1).  First, 
the problem is modeled as a static problem, where it is assumed that the fiber is already 
broken at the x=0 plane. The composite is then externally loaded to a strain level 
corresponding to a uniform fiber stress of 2.3 GPa. Next, the same problem is solved as a 
dynamic problem, using the Abaqus explicit solver. As soon as fiber failure occurs, an 
axial compressive stress wave is launched in the broken fiber. This stress wave 
propagates at a wave speed of 5.95 km/s. This is close to the theoretical 1-dimensional 
axial wave speed (𝑐𝑐𝑓𝑓) of 6.06 km/s in the fiber material.  

This compressive stress wave that travels along the broken fiber (Fiber 0 in Fig. 
2c) leads to dynamic debonding of the interface around the broken fiber. The evolution of 
debond length with time is shown in Fig. 6. The debonding initiates at 10*tc and 
propagates to a length of 6 fiber diameters before arresting at 40*tc. The velocity of the 
debond front exhibits a maximum speed of 1.06 km/s at t/tc of 25. Since this is much 
slower than the axial wave speed in the fiber material, the debond front lags behind the 
compressive stress wave front as shown in Fig. 2c. 

 

 

Fig 6: Interfacial Debond length vs time for the broken fiber (Fiber 0) 



Fig. 7 shows a plot of the stress profile and interfacial damage parameter 
associated with Fiber 0 at time, t = 100*tc. The damage parameter is a scalar variable 
which linearly varies from 0(No separation) to 1(complete separation). Interfacial debond 
length (𝑎𝑎𝑑𝑑𝑑𝑑𝑏𝑏) is calculated as the length over which the damage variable is greater than 
0.99. The length of the cohesive zone where energy absorption occurs is approximately 7 
fiber diameters long at each crack tip. The stress profile obtained from the Quasi-static 
simulation is also included for comparison (no debonding is predicted in this case). The 
ineffective length, 𝑎𝑎𝑖𝑖𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓 (length over which Fiber 0 recovers 90 % of its load carrying 
capability) increases by one debond length (𝑎𝑎𝑑𝑑𝑑𝑑𝑏𝑏) in the dynamic solution 
(𝑎𝑎𝑖𝑖𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑛𝑛~42 ∗ 𝑑𝑑) compared to the quasi-static solution (𝑎𝑎𝑖𝑖𝑛𝑛𝑑𝑑𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑎𝑎~36 ∗ 𝑑𝑑). More 
details on interfacial debonding and its implications will be presented in the following 
sections. 

 

 

Fig 7: Stress profile at time, t = 100*tc in broken fiber (Fiber 0). Figure also shows the 
profile of the interfacial damage variable in Fiber 0. 

In the neighboring fiber, a stress concentration is induced and this propagates 
along its length as a tensile stress wave with a speed of 5.87 km/s, which is once again 
approaching 𝑐𝑐𝑓𝑓 . Fig. 8 shows the evolution of stresses in the neighboring fiber vs. time at 
various distances from the fiber break. The smaller wavelength oscillations in the curves 
can be attributed to 1) secondary waves that are created due to the mismatch in Poisson’s 
ratio between the fiber and the matrix, and 2) the reflections of stress-waves from the 
lateral boundaries of the fibers (at the fiber-matrix interfaces) due to impedance mismatch 
between the two materials. The results for x/d=0 are identical to the results in Fig. 5.  At 
x/d=10, one can see the pattern of the dynamic response present at all x/d locations 
shown schematically in Fig. 2c.   The delay in arrival time of dynamic SCF is evident.  
The amplitude first decreases with the arrival of the compressive wave and then increases 



to its maximum tensile level before decaying to the static solution at large time.  One also 
observes the decay in the peak SCF with increasing distance from the fiber break plane 
(x/d =0).  
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Fig 8: Time evolution of SCF at various cross-sections in the neighboring fiber (Fiber 1). 
Data points collected at intervals of ~0.3 ∗ 𝑡𝑡𝑐𝑐 

Fig. 9 shows the SCF profile in the neighboring fiber at t = 100*tc which 
corresponds to the time at which the stress wave in the broken fiber (Fiber 0) reaches the 
boundary of the model at x/d=100. In this case, the wave in Fiber 1 has some time lag and 
has not reached the boundary.  The quasi-static solution is included for comparison 
purposes. Recall that the quasi-static solution does not have any interfacial debonding 
and exhibits the maximum SCF at the fiber break cross-section and has an overload 
length of approximately 20 fiber diameters. Also shown in Fig 8 is the envelope of 
maximum dynamic SCF along the length of the fiber during this time.  The fiber is 
subjected to significantly higher dynamic SCFs than the quasi-static model predictions 
that extend over a distance of 60 fiber diameters on either side of the break plane (x/d = 
0). The results at 100*tc show evidence of interface debonding.  At x/d=0 the SCF has 
decreased compared to the maximum SCF that occurs at 25*tc prior to the arrest of 
interfacial debonding. A 38 % increase in the overload length (length over which SCF 
drops to 1) is predicted. This is due to the interfacial cohesive traction law 23 that 
undergoes progressive softening prior to separation.  

 



 

Fig 9: SCF profiles in neighboring fiber (break strength = 2.3 GPa)  

Apart from causing an increase in the peak SCF at x=0, the dynamic effects of the 
fiber break also cause an appreciable increase in the area of influence of the fiber break. 
In order to quantify this effect, we define a zone-of-influence of the fiber break as the 
area over which the dynamic SCF in the neighboring fibers increases the probability of 
failure of additional fiber breaks.  Recall that in this baseline simulation our fiber breaks 
at 2.3 GPa that corresponds to a 10% probability of failure. The zone of influence can be 
constructed based on stress level and associated probability of failure.  For example, 
consider an SCF of 1.1 (i.e 2.53 GPa that corresponds to 15% probability of failure). As 
shown in Fig. 10, the zone of influence is about 5.3 times higher in area if we take the 
dynamic stress concentrations into account. The increase in the zone-of-influence is more 
pronounced along the fiber direction due to the higher wave-speeds along the fiber 
direction as opposed to the transverse direction since the shear wave-speed in the matrix 
(0.886 km/s) is much smaller compared to the axial wave-speed in the stiff glass fibers 
(6.06 km/s). 

 

 



 

(a)  

  

 

(b) 

Fig. 10 : Comparison of Zone-of-influence of fiber break based on SCF of 1.1 (15% 
probability of failure)  (a) Quasi-static simulation (b) Dynamic model with inertial effects 
Note that only the SCFs in the fibers are shown in the images. 

 

  



Interfacial Debonding  

Depending on the Mode II fracture properties of the interface, there exists a 
critical level of break strength,𝜎𝜎𝑏𝑏, beyond which a fiber break will lead to unstable 
debonding of the interface. This critical break strength can be calculated using a simple 
energy balance formulation since both the fiber and matrix are assumed to be linear 
elastic. If the elastic strain energy stored in the fiber per unit length of fiber before the 
break is greater than the fracture energy required to debond the entire interface around the 
fiber per unit fiber length, then unstable debonding occurs. 

The strain energy stored in the fiber per unit fiber length before the break, 

 𝑈𝑈𝑓𝑓 =
𝜎𝜎𝑏𝑏2

2𝐸𝐸𝑓𝑓
∗ (𝑑𝑑 ∗ 𝑏𝑏)     (12) 

Energy required to debond unit length of the interface on both sides of the fiber,  

 𝑈𝑈𝑑𝑑𝑑𝑑𝑏𝑏 = 𝐺𝐺𝐼𝐼𝐼𝐼𝑐𝑐 ∗ (2 ∗ 𝑏𝑏) (13) 

where, 𝜎𝜎𝑏𝑏 is the fiber break strength, 

𝐸𝐸𝑓𝑓 is the Young’s modulus of the fiber. 

𝐺𝐺𝐼𝐼𝐼𝐼𝑐𝑐 is the Mode II critical energy release rate of the interface 

𝑑𝑑 is the fiber diameter 

𝑏𝑏 is the width of the 2D composite 

 

Unstable debonding occurs when 𝑈𝑈𝑓𝑓 > 𝑈𝑈𝑑𝑑𝑑𝑑𝑏𝑏. Therefore, the critical strength at 
which a fiber break will lead to unstable debonding is the strength at which 𝑈𝑈𝑓𝑓 = 𝑈𝑈𝑑𝑑𝑑𝑑𝑏𝑏. 
i.e., when: 

 
𝜎𝜎𝑏𝑏 = �4𝐺𝐺𝐼𝐼𝐼𝐼𝑐𝑐𝐸𝐸𝑓𝑓

𝑑𝑑
 (14) 



For the current fiber-matrix-interface combination under consideration, if the fiber 
break occurs at any load above 2.4 GPa, then it will lead to unstable debonding of the 
interface. Recall, the baseline simulation results presented above were generated for a 
breaking strength of 2.3 GPa that exhibited initiation, propagation and arrest of the 
interface debonding. For fiber strengths above 2.4 GPa, in the absence of friction between 
the debonded fiber and the matrix, arrest of the interface debonding is not predicted. 
Considering the zone of influence based on SCF of 1.1 (2.53 GPa) given in Fig. 10b, 
additional fiber breaks would trigger unstable growth within this region. This unstable 
debonding  is consistent with  the axial splitting failure mode  that is experimentally 
observed in unidirectional composites under tensile loading 30.  It is noteworthy that for 
this particular composite, the threshold for unstable debonding is well below the mean of 
the fiber strength distribution for the chosen gage length of 5 mm (i.e 3.5 GPa) implying 
that the translation of inherent fiber strength into the composite is governed by the 
dynamic failure and energy absorption of the interface debonding mechanism.   

Dynamic debonding versus fiber break load   

In the stable debond regime (𝜎𝜎𝑏𝑏 < 2.4 𝐺𝐺𝑃𝑃𝑀𝑀), the length of debonding after arrest 
depends on the fiber break strength. The higher the strength at which the fiber breaks, the 
higher the strain energy that is released and higher the spring back of the broken fiber. 
This leads to higher debond lengths. The debond length vs fiber break strength curve 
shows a rapid increase in the debond length with break strength as shown in Fig. 11.  In 
the presence of stable debonding, the ineffective length to reload the broken fiber is 
increased by the debond length as shown before in Fig. 7. 

 
Fig 11: Normalized debond length (𝑎𝑎𝑑𝑑𝑑𝑑𝑏𝑏/𝑑𝑑) vs break stress in Fiber 0 (𝜎𝜎𝑏𝑏) 

 

Table II summarizes the SCFs and corresponding probabilities of failure (Pfail) 
that a fiber break at various break strengths will cause additional fiber breaks within the 



zone of influence.  Results are generated from the dynamic FE model and also the 
corresponding values obtained by solving the same problem using a quasi-static model 
with pre-broken fibers. In the static models, debonding does not initiate at break strengths 
below the critical splitting stress of 2.4 GPa. This makes the problem linear and hence, 
the SCF remains constant at around 1.25. Given the SCF and fiber strength distribution, 
the probability of failure increases in the adjacent fiber at x/d=0.  If we take into account 
the dynamic effects, then there is a significant increase in the peak probability of 
additional fiber break in the adjacent fiber and due to the stress wave propagation, the 
location of this break can occur anywhere within the zone-of-influence.  The slight 
reduction in peak SCF in the dynamic models with increase in fiber break strength (𝜎𝜎𝑏𝑏) is 
because of the energy dissipated through the interfacial debonding of the broken fiber. 
Table II also quantifies the size of the influence zone which is 5-6 times larger in area 
than the quasi-static result for fiber break strengths less than stability threshold.   

The increase in the peak probability of failure due to the consideration of the 
dynamic effects of the fiber break may explain the discrepancy between the FE modeling 
results and experimental results reported in 17. The FE model used in 17 did not account 
for these dynamic effects and hence the model over-predicted the strain to failure in the 
composite as opposed to what was observed experimentally. The increased probability of 
failure in the neighboring fiber (Fiber 1) due to the dynamic stress wave propagation can 
also explain the formation of large clusters observed during a single strain increment in 
the experiment as opposed to the more gradual development of clusters as predicted by 
their FE model which assumed that the fiber break is a quasi-static process. 
Experimentally, 30% of all clusters observed were non-co-planar clusters (where adjacent 
fiber breaks are separated by an axial distance larger than a fiber radius). These clusters 
were formed within a single applied strain increment and did not grow further in size 
with additional applied strain. Since the zone of influence is 5-6 times larger in the 
dynamic models, , it is expected that the model will predict a higher number of fiber 
breaks within this zone during the same applied strain increment. The clusters could thus 
be spread over a larger volume that is not limited by the ineffective length of the broken 
fiber. But at the same time, since the dynamic SCFs are significantly higher than the 
corresponding static SCFs in the neighboring fibers at the plane of the break, 
consideration of these dynamic effects could lead to the model predicting a higher 
percentage of co-planar breaks as well. The stochastics of strength distribution need to be 
incorporated in the model to better understand the interaction between these two effects 
and this will be the focus of our future work. 

  



 

TABLE II. Increased probability of failure in Fiber 1 at different fiber break strengths in 
Fiber 0 (Comparison between Quasi-static and dynamic solutions) 

Break 
stress 
(GPa) 

Pfail 
before 
break 

Static 
model 
SCF 

Dynamic 
model   
Peak SCF 

Pfail-
Static 

Pfail-
Dynamic 

Influence zone 
size ratio 
(Dynamic/Static) 

1.4 1% 1.23 1.42 3% 6% 6.09 

1.6 2% 1.24 1.42 5% 9% 5.21 

1.9 4% 1.25 1.38 11% 17% 5.36 

2.05 6% 1.25 1.38 16% 24% 5.33 

2.3 10% 1.25 1.37 25% 35% 5.31 

2.7 20% 1.13 1.30 31% 51% Unstable 
debonding 

 

Conclusions 
The FE model presented in this paper enables us to visualize the dynamic 

progression of events after a brittle fiber fracture. The model has been validated using the 
analytical dynamic shear lag solution previously reported in literature 6,20. The dynamic 
SCF peaks propagate along the length of the neighboring fiber as a tensile stress wave 
which decays with distance from the plane of the fiber break. The compressive stress 
wave that is released in the broken fiber leads to dynamic interfacial debonding. The 
debond growth is stable up to a critical break strength which can be estimated using an 
energy balance criterion. Beyond this critical break strength, debonding propagates in an 
unstable manner along the entire length of the fiber given that interfacial debonding is the 
only energy dissipation mechanism considered in the present work. This unstable 
debonding cannot be predicted using quasi-static micromechanical models. Inclusion of 
other dissipation mechanisms such as matrix plasticity and friction between the debonded 
fiber and matrix into the stability criterion would increase the critical break strength at 
which unstable interface debonding would occur. These effects will be included in our 
future work. There is not only an increase in the peak failure probability of additional 
fiber breaks  due to the consideration of dynamic stress concentrations, but there is also a 
significant increase in the size of the zone-of-influence of a fiber break. Since the stress 
waves in the fibers travel at the sound speed in S2-glass (6.06 km/s), the time-scales 
associated with the dynamic mechanisms reported in this paper are of the order of 10s of 
nanoseconds which is beyond the temporal resolution of current advanced high-speed 



sensing capabilities 21 and hence cannot be visualized in real time. The results presented 
in this paper give us insights into key micromechanical failure mechanisms such as the 
propagation of dynamic stress concentrations as tensile stress waves over large distances 
in the neighboring fiber, and dynamic debond propagation in the interface surrounding 
the broken fiber. These mechanisms qualitatively agree with the experimental 
observations of damage in unidirectional fiber-reinforced composites under axial tensile 
loading  17,30.  
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