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ABSTRACT 

 

Advancements in the synthesis of anisotropic colloids enable complex fluid 

systems to be designed with responsive properties.  A capillary-based 

micromanipulation technique is developed to produce anisotropic droplets from the 

dispersed oil phase of partially crystalline emulsions.  These particles have distinct 

non-spherical features with characteristic length to width aspect ratios ranging from 1 

to 10.  The particles demonstrate an ability to undergo sudden shape changes in 

response to changes in interfacial tension and temperature.  During these deformation 

processes, the oil-water interface imposes a stress on the semi-crystalline network 

within each particle.  When the imposed stress exceeds the critical stress of the 

crystalline material, the network yields and causes the particle to transition to a 

spherical shape.  A model for morphological stability relating internal stress 

distributions to the interfacial Laplace pressure is developed to characterize this 

deformation.  The analytical model captures qualitative trends observed in 

axisymmetric particle deformation, including the relationship between interfacial 

tension, crystalline content, characteristic size and regions prone to deformation.  

Through the development of a preliminary discrete modeling program, we lay the 

groundwork to quantitatively predict the deformation of experimental particles.  

Continued development of this modeling program will improve understanding of this 

system, and potentially provide product engineers with a tool to evaluate new particle 

shapes and emulsion environments.  Continued experimental deformation, deposition, 

and material studies will reveal other modes of particle responsiveness and stimuli.  
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Together, the experimental, theoretical and computational approaches begun here will 

advance the understanding of anisotropic partially crystalline emulsion particles and 

their use in enhanced deposition applications. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation and Goals 

The overarching goal of this thesis is to develop means of producing and 

characterizing shape anisotropic particles from partially crystalline emulsions.  Shape 

anisotropic particles are of particular interest due to their potential in enhanced 

delivery of suspended active ingredients to substrates, such as in commercial drug 

formulations, detergents, pesticides, cosmetics and foods [1, 2]. In these applications, 

the effectiveness of active delivery is linked to the morphology of the phase in which 

the ingredient is dispersed.  The active morphology can affect the probability of 

substrate contact, the retention of phase after initial adhesion, and the area of mass 

transfer available to the active.  

In the previously mentioned applications, the morphology of the active phase 

is limited by the nature of the dispersant.  Historically, numerous pharmaceutical and 

commercial products have been emulsions where the active ingredient is suspended in 

the dispersed, liquid phase.  Using emulsions offers many practical advantages in 

these products.  Emulsions can enable the dissolution of multiple compounds, can be 

easy to prepare, and can wet and adhere to substrates like hair, skin, and other 

biological surfaces [1, 3].  However, the natural morphology of the dispersed phase in 

liquid-in-liquid emulsions often reduces active delivery effectiveness.  The 

energetically favored morphology of a liquid dispersed in another of different 

hydrophobicity (assuming the viscosity, elasticity and density of the two liquids are 



 
 
 

2 

similar), is a sphere [4].  In this state, the interfacial area per unit of volume is at a 

minimum, and hence, the interfacial energy of the system is minimized.  For the same 

reasons that a spherical morphology is energetically stable, a spherical droplet can act 

as a poor delivery vehicle.  Having a 1:1 length to width aspect ratio reduces the 

probability that the dispersed phase will contact substrate [5]; there are multiple paths 

during flow that the droplet can take that do not intercept the substrate.  If the droplet 

does contact the substrate, the low surface area of the droplet can reduce both its 

ability to adhere to the substrate and the time that the droplet remains in contact with 

the substrate.  Furthermore, the low contact area between a spherical droplet and a 

substrate limits the area for mass transfer.  Both of these scenarios are particularly true 

for droplets that exhibit poor wettability with the intended substrates. 

As a result of the limited morphology of traditional emulsions, much of the 

active ingredient in emulsion-based products is not delivered to the substrate.  Instead, 

the active ingredient remains in the dispersed phase of the emulsion.  This dispersed 

phase either does not make it to the substrate, or is removed or rinsed from the 

substrate within short time scales.  Thus, a high fraction of the active ingredient goes 

to waste.  To compensate for the active lost, many products are designed with excess 

active so that the benefits of the active are still delivered.  Active waste in products is 

detrimental due to its impact on economics and sustainability.  The active ingredient is 

also typically the most expensive component of a product [6, 7].  Reducing the amount 

of active required to achieve the same product benefits could significantly reduce the 

cost of manufacture of emulsion-based products.  Furthermore, efforts to improve the 

sustainability of products stress that limiting the use of material in products is 

desirable, as it reduces the environmental cost of obtaining and processing raw 
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components [8].  For products where the active ingredient poses some sort of 

environmental hazard, reducing the active wasted and subsequently released into the 

environment is also advantageous.  For these reasons, there is a particular need to 

improve the efficacy of delivery of actives in emulsion-based products.   

Altering the morphology of the active phase offers one potential means of 

increasing delivery efficiency.  Non-spherical particles enhance delivery by improving 

deposition, retention and mass transfer.  Figure 1.1 illustrates the potential benefits of 

using a non-spherical morphology, like a spherocylinder, over a spherical morphology 

to deliver actives.  



 
 
 

4 

 

Figure 1.1: Deposition of spherical and non-spherical droplets onto various substrates. 
A) Cross section of spherical (upper) and nonspherical (lower) droplets. 
The droplets depicted have the same volume. B) Deposition onto fine 
fibrous substrate. The sphere has a lower probability of contact than the 
spherocylinder.  C) Retention of droplets after deposition onto flat 
substrate subject to imposed flow (red arrows).  Axis-cross section of 
spherocylinder illustrated in lower panel. The smaller height of the 
spherocylinder improves its retention on the substrate. D) Contact area on 
flat or coarse fibrous substrate. Spherocylinder has increased contact area 
(outlined by dashed line). 

In Figure 1.1B, the probability of contact between the droplet and the substrate 

is greater for the spherocylinder.  Though the droplets have the same total volume, the 

effective collision volume increases with length to width aspect ratio, thus increasing 

likelihood of contact.  In Figure 1.1C, the increased height of the spherical droplet 

decreases the retention of the droplet on the substrate when an external flow is 
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imposed.  In Figure 1.1D, the spherocylinder provides an increased contact area 

between the droplet and the substrate assuming both droplets exhibit the same 

wettability.  Since the rate of mass transfer is fundamentally proportional to the area of 

contact, this also enhances delivery.  Evidence of the phenomena depicted in Figure 

1.1 is found in nature.  Bacterial cells utilize non-spherical, anisotropic cell 

morphologies to improve deposition [2, 9]. 

As described, utilizing non-spherical droplets offers high potential for 

enhanced active delivery.  For this reason, we defined the first goal at the outset of this 

work as follows: 

Goal 1: Develop a method to produce soft particles with non-spherical, 
anisotropic shapes to deliver actives in emulsion-based 
products.  

In the previous goal, “soft” refers to particles that have non-rigid, liquid 

components.  As described in Section 1.2, multiple methods have been developed to 

produce solid anisotropic colloids.  These solid colloids, however, cannot be directly 

utilized in many products, since it is often difficult to entrain liquid active ingredients 

within solids, and because the materials used in laboratory studies are not optimal for 

consumer use.  As an alternative to solid materials, partially crystalline emulsions 

(described in Section 1.3) were studied using micromanipulation, a technique previous 

used to study cell behavior [10, 11] and measure surface tension [12]. 

As described in the contents of this thesis, the first goal was accomplished by 

developing a micromanipulation method to constrain the crystallization of the 

dispersed phase of partially crystalline emulsions.  Particles produced using this 

method not only have anisotropic morphologies, but also demonstrate the ability to 

undergo morphology variation in response to external stimuli.  The dynamic 
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morphologies of the particles offer a new degree of functionality for emulsion 

products.  Active deposition can not only be enhanced, but also controlled through 

external stimuli. 

Control of droplet morphology requires a thorough, quantitative understanding 

of how different shapes and sizes respond to external stimuli.  With this in mind, we 

defined the second goal of this work as follows: 

Goal 2: Develop a model to quantitatively describe the morphology of 
anisotropic partially crystalline emulsion droplets.  

In pursuit of the second goal, theories of interfacial phenomena in emulsion 

systems (described in Section 1.5) were integrated to describe the PCE particles.  Thus 

far, the model describes qualitative modes of morphological deformation.  

In the context of the specified goals, we briefly describe previous work in 

anisotropic colloids and partially crystalline emulsions in the remaining sections of 

this chapter.  We conclude the chapter by providing an overview of the methods 

utilized and results obtained in this work, thus outlining the thesis.  

1.2 Anisotropic Colloids 

Colloids, which are particles that range in size from tens of nanometers to 

microns [13], find application in countless fields.  A colloid that has some property or 

characteristic that varies across its body is considered anisotropic. Glotzer defines 

eight common dimensions of anisotropy in colloidal particles: surface coverage, aspect 

ratio, faceting, pattern quantization, branching, chemical ordering, shape gradient, and 

roughness [14].  Advancements in the synthesis of colloidal particles have exploited 

these dimensions of anisotropy, and have allowed for particles to be tailor made for 

specific applications.   
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Of the anisotropy dimensions defined by Glotzer, aspect ratio, faceting, 

branching and shape gradient pertain to particle shape.  Multiple methods, including 

droplet templating and assembly [15], and stop-flow lithography [16], micron-scale 

molds [17] have been used to synthesize a diverse spectra of complex-shaped solid 

colloids.  These solid colloids find application in active ingredient delivery [18], self 

assembly [19], drug delivery [2, 20, 21], batteries [22], optics [23], and biomimicry 

[24], though this is hardly an all-inclusive list.  

Common materials for solid colloids include metals, silica and polymers [14, 

25 – 27].  While the solid character of shape anisotropic colloids does not inhibit their 

incorporation in the previous mentioned applications, it does limit their effectiveness 

in commercial products that utilize liquid droplets as delivery vehicles.  As previously 

discussed, liquid droplets are specifically used in certain commercial applications 

because of their ability to wet and adhere to substrates [1, 3].  Furthermore, many of 

the exotic materials (such as alloys of rare metals) used to produce shape anisotropic 

solid colloids are not suitable in commercial applications like detergents, pesticides, 

and drug delivery.  The potential chemical toxicity and the cost compared to liquid 

droplet materials used the same applications make many solid colloids incompatible 

with commercial applications.  However, by examining the nature of underutilized 

potential base materials (like partially crystalline emulsions) and developing new 

synthesis routes (as developed in this work), we can expand the application space of 

shape anisotropic particles.  

1.3 Partially Crystalline Emulsions 

Partially crystalline emulsions (PCE) have specific characteristics that lend 

themselves to the formation of anisotropic particles with liquid characters.  PCE are 
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oil-in-water emulsions that contain solid crystals within the dispersed phase.  Common 

applications of partially crystalline emulsions include drug delivery [28], foods [29, 

30], shampoos [31] and cosmetics [32]. 

Partially crystalline emulsions are prepared by first homogenizing the 

dispersed phase components at a temperature above the melting point of the crystal. 

This non-polar liquid is then emulsified in water in the presence of surfactant at a high 

temperature.  The dispersed phase naturally forms spherical droplets as surface tension 

minimizes the interfacial area between the immiscible phases.  After emulsification, 

the bulk is allowed to cool, initiating crystallization within the dispersed phase.  

The crystalline network present within the oil droplets has an inherent 

elasticity that resists deformation from the shape in which it crystalizes.  Generally, 

droplets assume a thermodynamically favorable state through minimization of the 

combined elastic energy embodied within the network and interfacial energy.  The 

drive to minimize these combined elastic and interfacial energies promotes the 

formation of anisotropic particles in the form of partially coalesced droplets, which are 

the products of droplet collisions [31, 33].  The morphologies of such particles range 

from dimpled spheres to doublets to spheroid-cylinders, depending on the degree of 

coalescence.  While this phenomenon produces non-spherical droplets readily in bulk 

(particularly in creaming, as illustrated in Figure 1.2), consistency in particle 

formation has been limited by poor control over droplet collisions [34].  Furthermore, 

the morphology of particles produced from arrested coalescence is limited in terms of 

dimension and shape.  The collision of two droplets, for example, results exclusively 

in spherical derivatives (i.e. doublets and spheroid-cylinders) whose primary length-

to-radius aspect ratio does not normally exceed two.  However, by developing the 
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methods presented in this work, we demonstrate the ability to produce and control of 

anisotropic partially crystalline emulsion morphologies.  

 

Figure 1.2: Spherical and non-spherical morphologies that result from creaming in 
partially crystalline emulsions.  
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1.4 Thesis Overview 

In this thesis, we develop means of producing and characterizing shape 

anisotropic particles from partially crystalline emulsions.  Chapter 2 describes the 

experimental techniques used and developed in this thesis.  These include 

micromanipulation, capillary assisted molding, bright field microscopy and the 

application of thermal, interfacial tension and magnetic stimuli.  Basic principles of 

these techniques are discussed along with the materials used and sample preparation 

methods.   

Chapter 3 describes the different particle morphologies produced from partially 

crystalline emulsions.  These include the spherocylinder, the “ball and stick”, the “dual 

ball and stick” and the torus.  Each of these morphologies exhibits some degree of 

dynamic behavior.  Chapter 3 describes the different degrees of morphology stability, 

including a qualitative analysis of the principle factors that affect stability: solid 

content and interface curvature.  Finally, the dynamic morphological response to 

thermal, interfacial tension, and magnetic stimuli is explored. 

Chapter 4 discusses the models developed to describe the stability of different 

morphologies.  Generally, these models were derived based on the balance between 

interfacial stresses and the resistance of the crystalline network to deformation.  The 

simplest of the models is the spherocylinder model, where the internal stress is shown 

to be proportional to the Laplace pressure difference across the interface at the ends 

(along the axis) of the spherocylinder.  To extend the fundamental Laplace pressure-

stress relation to axisymmetric particles with non-uniform curvature (i.e. the ball and 

stick morphologies), a more complex model was developed.  The three dimensional 

internal stress state at points within the droplet is shown to be a function of the 

variable Laplace pressure difference across the entire droplet interface.  Notably, the 
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generalized axisymmetric model reduces to the same preliminary model in the 

spherocylinder case, indicating consistency between models.  Internal stress 

distributions for idealized axisymmetric particles are presented, as well as their 

qualitative agreement with experimental observations.  Finally, the entirely different 

approach used to model the dynamic deformation of torus shaped particles is 

described.  

Chapter 5 details the preliminary discrete modeling program developed to 

characterize experimental particles through the lens of the axisymmetric model.  The 

successes and limitations of this discrete modeling program are discussed, as well as 

suggestions for future program development.  Finally, Chapter 6 summarizes our 

conclusions and proposes future direction for this work.  
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Chapter 2 

MATERIALS AND METHODS 

The aim of this thesis is to develop means of producing and characterizing 

shape anisotropic particles from partially crystalline emulsions.  To accomplish this 

goal, a technique derived from basic micromanipulation, named capillary assisted 

molding, was developed.  This chapter describes the apparatus constructed to perform 

the micromolding technique.  Protocols used to subject anisotropic partially crystalline 

emulsion particles (APCE) to external stimuli are also described, along with bright 

field microscopy techniques used to image droplet morphology.  Finally, the materials 

used in the study are detailed along with sample preparation techniques. 

The materials and methods described in this chapter were first developed 

during a summer internship at Procter & Gamble Co. in Cincinnati, OH in 2011.  

When the fundamental study of APCE was relocated to the University of Delaware in 

the fall of 2011, these techniques were marginally adapted to utilize existing 

equipment.  The equipment and material specifications provided here describe those 

used at the University of Delaware, although some of the results presented in this work 

were obtained using the equipment at Procter & Gamble.  Differences between 

University of Delaware and Procter & Gamble equipment and protocols were designed 

to be minimal so that results obtained at the two locations could be compared.  As 

such, we do not detail the similar apparatus and protocols used at Procter & Gamble 

here. 
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2.1 Experimental Methods 

The following describes the experimental techniques employed to produce and 

study the anisotropic partially crystalline emulsion particles.  

2.1.1 Capillary Assisted Molding Apparatus  

The capillary assisted molding (CAM) apparatus was designed based on 

micromanipulation apparatuses used in biological cell and surface tension studies [10-

12].  This apparatus was first designed and constructed at Procter & Gamble in 

Cincinnati, OH for the study of Pickering emulsions and partially crystalline 

emulsions [31].  A secondary apparatus was designed and constructed in Newark, DE 

when the fundamental study of APCE was moved to the University of Delaware.  

Figure 2.1 provides a schematic of the secondary apparatus. 

 

Figure 2.1: Schematic of capillary assisted molding apparatus with inset of 
micromanipulation chamber. Note that individual components are not 
depicted to scale. 

The CAM apparatus consists of a glass chamber used to hold the emulsion 

sample; microcapillaries connected to fluid reservoirs used to manipulate and mold the 
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droplets; coarse micromanipulators (not depicted in Figure 2.1) used to adjust the 

position of the microcapillaries; a Peltier heater used to supply heat and melt the 

crystals in the emulsion; a microscope used to image the sample; and a custom 

fabricated stage (not depicted in Figure 2.1) used to support the chamber.  Each of 

these components is described in the following subsections.  

2.1.1.1 Chamber 

The sample chamber (Figure 2.1 inset, Figure 2.2) is fabricated from glass 

slides and UV initiated thiolene resin (Norland Optical Adhesive 81).  Eight glass 

spacers are first cut from a large 75 x 25 x 1mm microscope slide (Fischerbrand Plain 

Microscope Slide).  The spacers are cut to be ~ 5 mm in width.  Thiolene resin is then 

applied on one side of two separate spacers, and the spacers are set on a large 75 x 50 

x 0.15 mm microscope slide (Thermo Fischer Scientific), which serves as the bottom 

of the chamber.  The spacers are positioned such that there is approximately 25 mm 

between them.  The spacers and glass slide are then exposed to an ultraviolet flood 

lamp (Spectronics Corp. 365 nm, 120 V, 1.05 Amps, Model SB-100P) approximately 

12 cm above the sample for 30 s.  This exposure cures the resin, bonding the spacers 

to the glass slide.  The 6 remaining spacers are then equally distributed between the 

two spacer column bases and bonded sequentially in the same manner.  The final 

result is a large base slide with two, 4 spacer high columns.  

Two lines of thiolene resin are then applied between the spacer columns (the 

lines are applied perpendicular to the columns, at each column end).  The lines are 

cured under the UV lamp for 30 s.  The lines serve to help prevent the liquid sample 

(held within the chamber by capillary action) from leaking out the open sides of the 

chamber.  
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Finally, a 75 x 25 mm glass coverslip (Fischer Scientific) is bonded to the 

glass columns.  Resin is applied to each of the top spacers, the glass coverslip is 

positioned on top of the spacers, and the entire chamber is cured for at least 5 minutes. 

The long exposure time ensures all the resin in the chamber completely cures.  

 

Figure 2.2: Glass micromanipulation chamber. A) Side View. B) Isotropic View 

2.1.1.2 Microcapillaries 

Tapered capillaries are fabricated from standard borosilicate glass capillaries (1 

mm OD and 0.5 mm ID, Sutter Instruments) with a Micropipette Puller (P-97; Sutter 

Instruments, Taper settings: Prog. #2, Heat Ramp +15, Pull 0/55, Velocity 20/65, 

Time 200t/150t, Pressure 400).  The tip of the pulled capillary is flattened using a 

Microforge (Model MF-830; Narishige Int’l. USA).  Capillary tips range in diameter 

from 20 – 50 μm depending on the experiment.  Microcapillaries are mounted on the 

micromanipulators, described in Section 2.1.1.5. 

2.1.1.3 Hydrostatic Reservoir 

The pressure exerted at the end of each microcapillary is controlled 

hydrostatically by varying the height of liquid reservoir attached to the 
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microcapillaries.  Each capillary is attached to the reservoir with rubber tubing (Tygon 

ID 1/32 in).  The rubber tubing is attached to the reservoir (10 mL syringe, BD 10 mL 

Luer-Lok) with a 16-gauge syringe needle (BD 16 G).  The reservoir is mounted on a 

450 mm long linear translation stage (Zaber, Model T-LSR450A-KT02) that controls 

the position of the reservoir within ±68 μm.  The position of the stage can be varied 

manually using an integrated knob or digitally by specifying the position on a 

computer.  The translation stage is oriented vertically next to the microscope on the 

microscope table, with the midpoint of the translation stage at the same height as the 

micromanipulation chamber.  This positioning allows for both negative and positive 

pressure to be exerted at the end of the capillary when the reservoir is below and 

above the translation stage midpoint respectively.  
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Figure 2.3: Hydrostatic reservoir mounted on Zaber translation stage. Reservoir is 
connected to capillary with Tygon tubing.  

2.1.1.4 Peltier Device 

A Peltier device (Tellurex, Model C2-15-0404) supplies heat to the 

micromanipulation chamber.  The Peltier device is a 15 x 15 x 3.6 mm thermoelectric 

module that transfers heat from one side of the module to the other by passing DC 

current across the device.  In our apparatus, the hot side of the Peltier device is 

positioned so that it is flush with the top coverslip on the micromanipulation chamber.  

The device is attached to the coverslip using double-sided tape.  The heat transferred 

with the device raises the bulk temperature of the emulsion above 60 °C, thereby 

melting the crystalline material in the dispersed phase.  A DC power source (TE 



 
 
 

18 

Connectivity, 30 V, 5 Amps, Model HY2005-3) controls the voltage passed through 

the device, to control the rate of heat dissipation.   

2.1.1.5 Microscope Stage and Micromanipulators 

A custom microscope stage (Figure 2.4) was fabricated from aluminum to 

carry out CAM.  The custom microscope stage has features that most traditional 

microscope stages do not have, including locations to mount micromanipulators and a 

smooth surface that enables the manual translation of the micromanipulation chamber 

during droplet capture.  The custom stage was designed using Autodesk Inventor 3D 

CAD (computer aided design) Software.  Appendix A contains technical drawings for 

the components of the stage.  The stage was designed for use on a Zeiss inverted 

microscope (Carl Zeiss, Inc., Axiovert 200).   

Two coarse, 3-axis micromanipulators (Narshige Int’l. USA, Model U-3C) are 

used to adjust the position of the microcapillaries.  These micromanipulators are 

mounted on the microscope stage as shown in Figure 2.4.   
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Figure 2.4: Custom fabricated micromanipulation stage mounted on Zeiss inverted 
microscope. Micromanipulators (black) and glass micromanipulation 
chamber also shown. A) Top view. B) Isotropic view.  

2.1.1.6 Microscope  

An inverted microscope (Carl Zeiss, Inc., Axiovert 200) is used to image 

APCE.  The microscope is equipped with a metal oxide semiconductor (CMOS) 

camera (Vision Research Inc. Phantom V5.1).  As described in Section 2.1.1.5, the 

microscope is outfitted with a custom stage for all CAM experiments.   

2.1.2 Capillary Assisted Molding Technique 

As discussed in Section 1.3, the dispersed phase of partially crystalline 

emulsions is spherical.  Using the technique described in this section, the spherical 

droplets are made anisotropic by recrystallizing the wax network within a capillary.  

First, the micromanipulation apparatus is prepared.  The chamber is placed on 

the microscope stage and the leads of the Peltier device connected to the DC power 

source.  The emulsion sample is then injected into the chamber using 3 mL syringes 
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(BD 3 mL Luer-Lok).  The approximate sample volume for a single chamber is 2.5 

mL.  During injection, care must be taken to avoid injecting bubbles into the sample as 

they can obscure the view of droplets during micromanipulation.  After the sample is 

injected, the reservoir and microcapillary are prepared.  The reservoir is filled with 10 

mL of ultrapure water (Millipore, resistivity >18.2 mΩ cm).  The microcapillary is 

then inserted into the Tygon tubing connected to the reservoir.  A syringe plunger is 

used to ensure that the microcapillary fills completely with water (air bubbles and 

other obstructions impede micromanipulation).  Then, the microcapillary is mounted 

on the micromanipulator and inserted through the open sides of the chamber into the 

sample.  Throughout this process, the reservoir is set to be at the same height as the 

chamber so that water is not inadvertently injected into the chamber (which dilutes the 

sample).  

After the apparatus has been prepared, capillary assisted molding takes place.  

Figure 2.5 depicts the production of a partially crystalline “ball and stick” shaped 

particle through CAM.  First, a capillary is used to capture a spherical droplet.  The 

capillary is positioned next to a spherical droplet using the micromanipulators, and the 

reservoir is moved downward 3 to 11 cm.  The motion induces a negative pressure 

difference of 290 – 1100 Pa between the droplet and the capillary tip, which draws the 

droplet toward the tip of the capillary.   Next, the bulk of the continuous phase 

surrounding the droplet is heated to melt the solid crystals within the droplet.  In our 

system, 0.9 A at 1.7 V is supplied to the Peltier device for at least 5 min to melt the 

crystals.  While the crystals melt, the droplet is partially aspirated into the capillary by 

maintaining negative pressure at the capillary tip.  Once the droplet is a homogeneous 

liquid and has been aspirated into the capillary to the desired length, power to the 
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Peltier device is turned off.  The emulsion cools for 15 min, which initiates 

crystallization of the wax network in the shape of the aspirated droplet.   

The anisotropic partially crystalline emulsion particle is ejected from the 

capillary by raising the reservoir between 15 and 22 cm, which induces positive 

pressure difference of 1470 - 2160 Pa between the end of the particle and the 

emulsion’s continuous phase.  Care is taken to eject the droplet slowly so that the 

droplet is not distorted during the process, and to avoid water from being inadvertently 

injected into the sample (which locally dilutes the stabilizing surfactant).  

 

Figure 2.5: Capillary assisted molding.  

2.1.3 Application of External Stimuli  

Capillary assisted molding produces APCE of varying morphological stability 

(discussed in Section 3.2).  In the cases where APCE is morphologically stable, 

applying external stimuli induces dynamic morphological response.  The following 

describes how the two primary external stimuli, thermal and surfactant dilution, are 
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applied.  Additionally, we describe the method of magnetic stimulation to APCE 

containing a ferrofluid.  

2.1.3.1 Thermal  

Raising the temperature of an emulsion containing an APCE induces 

morphological response by weakening the APCE internal crystalline structure.  As in 

the CAM technique, 0.9 A at 1.7 V is supplied to the Peltier device to raise the 

temperature of the emulsion sample.  This melts some of the crystals in the dispersed 

phase, thereby weakening the APCE structure.  As the structure weakens, the structure 

can no longer resist the force that the interface applies to drives the droplet toward a 

spherical morphology.  Typically, the 0.9A at 1.7V current is supplied to the Peltier 

device until the crystalline structure completely liquefies, at which point it returns to a 

spherical morphology.  

2.1.3.2 Surfactant Dilution 

Locally diluting the surfactant around an APCE induces morphological 

response by increasing the interfacial tension of the emulsion.  This stimulus is applied 

by inserting a secondary microcapillary into the system.  The secondary capillary is 

connected to a variable height reservoir (similar to the one used in CAM) filled with 

ultrapure water (Millipore, resistivity >18.2 mΩ cm).  Using a second 

micromanipulator, the secondary capillary is positioned near an APCE produced via 

CAM.  Raising the secondary reservoir injects water into the emulsion, thereby 

diluting the surfactant and raising the interfacial tension of droplets in the system.  As 

the interfacial tension increases, the crystalline structure can no longer resist the 

interfacial force driving it to a spherical morphology.  Consequently, the droplet 
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deforms.  Typically, water is injected into the system until all of the surfactant laden 

microfibrous cellulose has been driven from the view frame.  

2.1.3.3 Magnetic 

A cylindrical magnet (1.25 cm diameter) was used to stimulate APCE particles 

containing ferrofluid.  The magnet was manually brought near the micromanipulation 

chamber and the subsequent movement of the ferrofluid APCE observed using the 

microscope.  

2.1.4 Microscopy 

Standard bright field microscopy was used to image the particles. Using a 

metal oxide semiconductor (CMOS) camera (Vision Research Inc. Phantom V5.1), 

individual images were taken at 30 frames per second while videos were captured at 

10 frames per second.  Typical videos were 800 frames in length.  All individual 

images and video frames were saved as 8-bit grayscale TIFFs (tagged image file 

formats).  

2.2 Materials 

The materials used in this work are discussed in this section.  

2.2.1 Partially Crystalline Emulsions 

Partially crystalline emulsions consist of two phases, a dispersed and a 

continuous phase.  Here, preparation of the two phases and their combination are 

discussed.  
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2.2.1.1 Dispersed Phase 

The dispersed phase consists of hexadecane (99.6%, Fischer Scientific) and 

wax (White Petrolatum, USP 100%, Vaseline ® by Unilever).  Figure 2.6 shows an 

image of petrolatum dispersed in hexadecane.  Petrolatum is a mixture of long chain 

hydrocarbons (> 25 carbons) that exists as a viscoelastic gel of waxy crystalline solids 

and fluids at room temperature, while hexadecane is a liquid.  To homogenize the two 

components, they are first combined in a glass vial using a pipette.  The glass vial is 

then immersed in a 65 °C hot water bath for at least 5 minutes.  The hot bath 

immersion melts the petrolatum, and the hexadecane and petrolatum mix as liquids.  

Typical dispersed phase compositions range from 60 – 90 wt% petrolatum.  

 

Figure 2.6: Dispersion of wax (Petrolatum) in hexadecane.  

2.2.1.2 Continuous Phase 

The continuous phase is an aqueous mixture of sodium dodecyl sulfate (SDS) 

and microfibrous cellulose.  SDS (99.0%, Sigma-Aldrich) is an anionic surfactant that 

is frequently used to stabilize emulsions both in academic and industrial applications.  
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The critical micelle concentration of SDS is 8.2 mM at 25°C [35].  Microfibrous 

cellulose is a non-toxic additive typically used in industrial applications to thicken 

liquid products.  In micromanipulation experiments, the MFC gives the continuous 

phase a small yield stress, which prevents the droplets from creaming out of the 

sample or moving uncontrollably during micromanipulation [31].   Based on the 

buoyant force acting on the dispersed phase, this yield stress is at least 0.11 Pa. 

The continuous phase (0.5 wt% MFC, 10 mM SDS) is prepared by first 

massing ultrapure water (Millipore, resistivity >18.2 mΩ cm) into a glass beaker.  The 

beaker is placed on a stir plate at 300 rpm, and the MFC added slowly.  After all the 

powdered MFC has dissolved, the solution is transferred to a centrifuge tube (50 mL, 

BD) and the MFC is further mixed using a homogenizer (Biospect Products, Model 

number 985370, rotor speed 15) for 5 minutes.  The solution is then centrifuged at 

4000 rpm for 7 min to remove large cellulose aggregates from the solution.  The 

supernatant (roughly 80 wt% of the original solution) is then transferred to another 

centrifuge tube.  SDS is massed and added to the supernatant tube.  The SDS/MFC 

solution is thoroughly vortexed, and air bubbles are allowed to cream out of the 

aqueous solution overnight.  Typically, 50 mL of solution (prior to centrifugation) are 

prepared at once.  

2.2.1.3 Emulsification of the Two Phases 

The dispersed and continuous phases are prepared in 20/80 vol% ratio with a 

net volume of 10 mL.  The two phases are combined and emulsified as follows.  

Appropriate aliquots of both phases are transferred to glass vials.  Both vials are then 

added to a 65 °C hot water bath for at least 5 minutes.  The hot bath immersion 

liquefies the dispersed phase and brings the continuous and dispersed phase to the 
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same temperature.  After heating, the vials are removed from the bath and the 

dispersed phase is poured into the vial containing the continuous phase.  This vial is 

inverted several times such that the dispersed phase is suspended in the continuous 

phase in the form of droplets.  The vial is then placed under running tap water, which 

cools the bulk emulsion and induces crystallization in the dispersed phase.  An image 

of an emulsion produced according to this procedure is given in Figure 2.7. 

 

 

Figure 2.7: Partially crystalline emulsion. Dispersed phase is 70/30 wt% 
petrolatum/hexadecane.  
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2.2.2 Ferrofluid 

An oil-based ferrofluid was added to the dispersed phase of hexadecane – 

petrolatum in water emulsions to determine if a magnetic stimulus could induce a 

morphological response in APCE.  The ferrofluid (Ferrotec, EMG 905) consists of 10 

nm particles suspended in light hydrocarbon oil with a density of 1.2 g/mL and 

viscosity of 3 cP.  To combine the ferrofluid with the dispersed phase, the ferrofluid 

was first diluted in hexadecane (25 vol% ferrofluid) and vortexed.  This ferrofluid – 

hexadecane mixture was then combined with petrolatum according to the method 

described in Section 2.2.1.1.   
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Chapter 3 

ANISOTROPIC PARTIALY CRYSTALLINE EMULSION PARTICLES 

In this chapter, we present the four different anisotropic partially crystalline 

emulsion particle morphologies produced to date.  We additionally present qualitative 

characterization of morphology stability and dynamics.  Chapter 4 presents a 

quantitative analysis of the observations described here.  

3.1 Morphologies Produced 

Of the four morphologies produced to date, three morphologies were produced 

using the capillary assisted molding technique described in Chapter 2.  The forth 

morphology, a torus, was produced by collaborators at Procter & Gamble.  We include 

the torus morphology here in preparation for the related mathematical analysis 

presented in Section 4.3.  
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3.1.1 Spherocylinder 

Spherocylinders (Figure 3.1), also known as “rod” shaped particles, are formed 

by completely aspirating a droplet into a capillary during melting.  

 

Figure 3.1: Spherocylinder anisotropic partially crystalline emulsion particle (80/20 
petrolatum/hexadecane in 0.5 wt % MFC + 10 mM SDS).  
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3.1.2 Ball and Stick 

A “ball and stick” (Figure 3.2) shaped particle is formed by partially aspirating 

a droplet into the capillary during molding.  

 

Figure 3.2: Ball and stick anisotropic partially crystalline emulsion particle (80/20 
petrolatum/hexadecane in 0.5wt % MFC + 10 mM SDS). 
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3.1.3 Dual Ball and Stick 

The “dual ball and stick” (Figure 3.3) is formed using two microcapillaries.  

The procedure for forming this morphology varies slightly from that described in 

Section 2.1.2.  One capillary is first used to capture a droplet and form a singular ball 

and stick morphology.  During melting, a secondary capillary is aligned coaxially with 

the primary capillary, and some of the droplet volume is aspirated in the secondary 

capillary.  The droplet is then allowed to cool while constrained in the two capillaries. 

Since it is difficult to keep an entirely liquid droplet in this partially aspirated position 

between the two capillaries, the droplet is never completely melted during this 

process.  As such, the crystalline structure is not assumed to be homogeneous as in the 

spherocylinder and singular ball and stick case.  

 

Figure 3.3: Dual ball and stick anisotropic partially crystalline emulsion particle 
(80/20 petrolatum/hexadecane in 0.5wt % MFC + 10 mM SDS). Note 
that the two spherocylinder portions are not in the same plane, which 
causes the upper spherocylinder portion to be out of focus.  
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3.1.4 Torus 

A torus-shaped particle (Figure 3.4) was produced by our collaborators at 

Procter and Gamble.  Through a variant of CAM (which we will not discuss here) was 

used to produce this shape, we assume that the crystalline structure within the particle 

is approximately homogenous for the purposes of the mathematical analysis presented 

in Section 4.3.  

 

Figure 3.4: Torus anisotropic partially crystalline emulsion particle (70/30 
petrolatum/hexadecane in 0.5wt % MFC + 10 mM SDS) prepared by 
Jessica Lewis at Procter & Gamble; image distributed by Marco 
Caggioni, also of Procter & Gamble.  

3.2 Morphology Stability Factors 

Morphological variation in APCE is characterized by distortion of the 

anisotropic particles from the original shape that they were cast in within the capillary 

mold.  We theorize that this distortion is linked to opposing forces acting on the 

continuous-dispersed phase interface, namely compressive forces acting to reduce the 
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total interfacial area of the system, and resistance of the crystalline network to 

deformation.  Distortion is observed in APCE in two principal instances: 1) APCE can 

distort after removal from the capillary and 2) APCE can distort when their local 

environment is altered in a way that affects the crystalline network or continuous-

dispersed phase interface.  The first distortion mechanism is discussed in this section. 

Section 3.3 describes the second distortion mechanism.  

We have observed three degrees of morphological stability in axisymmetric 

APCE after capillary ejection: 1) Instantaneous instability, 2) long term instability and 

3) long term stability.  These three stability types are documented for three 

spherocylinder particles in Figures 3.5, 3.6, and 3.7 respectively.  For both types of 

instability, APCE deform from their high aspect ratio morphologies to morphologies 

that have lower surface area to volume ratios.  This transition is indicative of the drive 

to reduce the interfacial energy of the system.  For the stable case, the strength of the 

internal crystalline network is sufficient to resist this drive.  Note that throughout this 

work, a particle is considered statically stable when the particle retains its morphology 

for at least 30 minutes after ejection from the capillary. 

 

Figure 3.5: Spherocylinder APCE that deforms upon ejection (instantaneous 
instability).  APCE is 60/40 wt% petrolatum/hexadecane. 
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Figure 3.6: Spherocylinder APCE that deforms 12 minutes and 15 seconds after 
ejection (long term instability).  APCE is 80/20 wt% 
petrolatum/hexadecane.  Droplet ejection began at 00:00 min.  

 

Figure 3.7: Spherocylinder APCE that approximately maintains its aspect ratio after 
ejection (long term stability).  Deformation was not observed over 10 – 
28 minutes; as such, the APCE was not imaged beyond 28 min. after 
ejection. APCE is 100 wt% petrolatum/hexadecane.  Droplet ejection 
began at 00:00 min. 

There are three principal factors that affect APCE stability.  The first of these 

is droplet solid content.  Holding temperature constant, the yield stress of the 

crystalline network increases with solid content (petrolatum composition).  

Consequently, droplets with higher solid content exhibit higher degrees of stability 

than those with lower solid content.  This effect is illustrated in Figures 3.5 and 3.6, 

where the spherocylinder that is 60 wt% petrolatum immediately deforms while the 80 



 
 
 

35 

wt% petrolatum spherocylinder deforms over the course of 12 minutes and 15 

seconds.  Furthermore, the two droplets in Figures 3.5 and 3.6 do not assume the same 

deformed morphology.  The 60 wt% petrolatum APCE attains nearly a perfect sphere, 

while the 80 wt% APCE attains a spherocylinder-like morphology that has a lower 

aspect ratio and interfacial area.  

The second factor that influences APCE stability is the interfacial tension.  As 

discussed in Chapter 4, the Laplace pressure exerted by the emulsion interface is 

proportional to the interfacial tension.  Consequently, in systems with high interfacial 

tension (i.e. systems with low surfactant concentration), the compressive force acting 

on the internal crystalline network is higher, and APCE will deform to a spherical 

morphology more readily.  

 The third factor that influences APCE stability is the interfacial curvature.  As 

will be discussed in Chapter 4, the Laplace pressure difference across the interface is 

proportional to the mean curvature of the interface.  Anisotropic partially crystalline 

emulsion particles have interfaces that have variations in their curvature.  At the ends 

of spherocylinder and ball and stick particles (parallel to the central axis), the 

interfacial curvature is high and positive, indicating that the interface imposes a large, 

inwardly directed local force on the crystalline structure.  On the sides of the 

spherocylinder (perpendicular to the central axis), the interfacial curvature is positive 

but lower, indicating that the interface imposes a lower, inwardly directed local force 

on the crystalline structure.  Within the ball and stick particles, at the connection 

between the sphere and the spherocylinder, there can even be a negative interfacial 

curvature.  Here, the local force imposed by the interface is directed outward toward 

the continuous phase.  These differences in interfacial curvature across the APCE 
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affect the location where deformation initiates.  Specifically, ball and stick particles 

are predisposed to deform at the connection between the sphere and the 

spherocylinder.  Fluid moves toward this region because there is a lower force exerted 

by the continuous phase.  For the same reason, imperfect spherocylinder shaped 

particles that contain bends or kinks (which often form when an APCE is ejected too 

quickly during CAM) are predisposed to deform at the location of the bend.  Figure 

3.8 illustrates both of these phenomena.  

 

Figure 3.8: Long term instability in ball and stick APCE.  Deformation initiates in two 
regions of low interfacial curvature: at the connection between the sphere 
and spherocylinder, and at the bend in the imperfect spherocylinder.  

In addition to affecting the location where deformation initiates, the interfacial 

curvature affects the relative stability of the particles.  APCE with lower characteristic 

dimensions (i.e. lower spherocylinder/ball and stick radius) have higher interfacial 

curvature across the entire interface.  Since the Laplace pressure is proportional to the 

mean curvature, APCE that are thinner will deform more readily than those that are 

thicker, since the net compressive stress acting on the particle is higher. 
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3.3 Particle Response to External Stimuli 

In this section, we discuss the second deformation mechanism, where an 

APCE’s local environment is altered in a way that affects the crystalline network or 

continuous-dispersed phase interface.  

3.3.1 Thermal 

Changing the temperature of the continuous phase affects the crystalline 

content of the APCE.  Increasing the temperature of the continuous phase through 

conductive heating decreases the fraction of wax crystallized.  Since the yield stress of 

the network within each APCE is a direct function of the amount of wax crystallized, 

the yield stress decreases when heating is applied.  If the continuous phase around a 

stable APCE is sufficiently heated the internal network begins to melt, the network 

may no longer be strong enough to resist the compressive force applied by the 

interface.  Subsequently, the APCE deforms to a morphology with a lower interfacial 

area.  This phenomenon is depicted in Figure 3.9.  
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Figure 3.9: APCE ball and stick response to heating.  As the bulk temperature of the 
emulsion rises, the crystalline network begins to melt.  The reduced yield 
stress of the internal network results in morphological instability. The 
APCE deforms to a nearly spherical morphology via a rolling motion.  

As in the singular ball and stick example, applying thermal stimulus to dual 

ball and stick shaped particles initiates rolling at the junction between the sphere and 

one of the spherocylinders.  However, unlike the singular ball and stick example, the 

other spherocylinder feature maintains its shape throughout deformation (Figure 3.10). 

The two spherocylinders likely did not deform simultaneously because, as discussed in 

Section 3.1.3, the crystalline network was not completely homogenous throughout the 

droplet.  Nevertheless, the retention of the secondary spherocylinder indicates that 

features of APCE may remain stable and intact while moving throughout the 

continuous phase.  This is particularly important when considering the inevitable 

agitation and movement of APCE in emulsion products.  
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Figure 3.10: APCE dual ball and stick response to heating.  One of the spherocylinder 
features retains its shape throughout the deformation.  Note that the 
particle features and capillary are not in focus simultaneously since they 
are not all on the same plane.  

For the torus APCE morphology, deformation induced by thermal stimuli 

occurs via a different mechanism than that observed for axisymmetric APCE.  Since 

the torus particle is continuous, it cannot roll or buckle like the axisymmetric particles 

do.  Instead, the torus thins in isolated regions, breaks, and then becomes spherical (as 

seen in Figure 3.11).  
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Figure 3.11: APCE torus response to heating.  Experiment performed by Jessica Lenis; 
image distributed by Marco Caggioni, both of Procter & Gamble.   

3.3.2 Dilution 

Changing the local surfactant concentration of the continuous phase affects the 

forces acting on APCE interface.  The local surfactant concentration in a surfactant-

laden emulsion can be reduced through local dilution, as described in Section 2.1.3.2.  

Reducing the local surfactant concentration increases the interfacial tension and 

compressive force exerted by the APCE interface.  If the interfacial tension is 

sufficiently increased, the network may no longer be strong enough to resist the 

compressive force applied by the interface.  Subsequently, the APCE deforms to a 

morphology that has lower interfacial area.  This phenomenon is depicted in Figure 
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3.12. In Figure 3.12, dilution is visible as the fibrous MFC moves out of the view 

frame, and the continuous phase becomes transparent.   

 

Figure 3.12: APCE spherocylinder response to local dilution (injection of water via 
capillary on the right). As local surfactant concentration decreases, the 
Laplace pressure increases. The increased compressive stress on the 
network results in morphological instability. The APCE deforms to a 
nearly spherical morphology via a buckling motion.   

3.3.3 Magnetic 

Unlike the response of thermal and dilution stimuli, APCE response to a 

magnetic stimulus does not result in dramatic morphology variation.  Instead, when a 

magnetic field is introduced around a ferrofluid laden droplet, the droplet moves while 

maintaining its original morphology.  This subtle movement is illustrated in Figure 

3.13 for a pair of spherical droplet.  
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Figure 3.13: Rotation of ferrofluid laden spherical partially crystalline emulsion 
droplets during the application of a magnetic field. Comparing the 
location of dark, ferrofluid aggregates on the surface of each sphere 
between frames demonstrates that the droplets do move in response to 
magnetic stimuli; however, the droplets retain their original morphology.  

Figure 3.14 shows the response of a ball and stick APCE laden with ferrofluid 

to magnetic stimulus.   The dark ferrofluid is visibly concentrated at the spherical 

portion of the droplet in Figure 3.14.  During the CAM process, the ferrofluid 

concentrates in this region because it is not aspirated into the capillary along with the 

rest of the fluid.  Since the ferrofluid is not completely miscible with the hexadecane, 

it does not disperse uniformly in the hexadecane-petrolatum mixture.  Instead, the 

ferrofluid migrates to the interface between the aqueous phase and the hydrophobic 

hexadecane-petrolatum mixture.  Consequently, when the dispersed phase is aspirated 

into the capillary, the ferrofluid remains as a shell around the hexadecane-petrolatum 

outside of the capillary.  Movement of the concentrated ferrofluid shell, rather than the 

entire droplet, makes the motion of the APCE droplet to magnetic stimulus more 

apparent than in the spherical example.  
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Figure 3.14: Movement of ferrofluid laden ball and stick APCE during the application 
of a magnetic field.  The APCE morphology remains stable through the 
motion.  At 00:04 seconds, the magnetic field draws the APCE out of the 
microscope’s focal plane. 

3.4 Substrate Deposition 

The discovery that APCE morphology was responsive to thermal and dilution 

stimuli prompted us to consider a new potential functionality for APCE: controlled 

delivery of active ingredients in emulsion products.  

Imagine a product that contains spherocylinder or ball and stick shaped APCE.  

When this product is applied to the target substrate of the product, say a network of 

fibers, the APCE collide with fibers with a higher frequency than spherical droplets.  

On its own, the increase in collision frequency should theoretically increase the 

amount of active ingredient transferred to the fibrous substrate.  Depending on the 

collision, however, the entire APCE may not contact the fiber.  Subsequently, the 

additional benefit gained from increased interfacial area during mass transfer in an 

individual APCE is lost.  However, if the APCE is engineered so that it deforms 

around the fiber, the benefit associated with increased interfacial area is regained.  

Such deformation can be prompted by application of an external stimulus.  
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Specifically, when the emulsion product is diluted, an APCE droplet deforms to a 

more spherical morphology due to the increase in interfacial tension.  If the APCE is 

in contact with the fiber prior to dilution, the fiber may impede this deformation, and 

the APCE will deform around the fiber.  Figure 3.15 gives an idealized illustration of 

this mechanism.  

 

Figure 3.15: Idealized schematic of substrate deposition mechanism. 

In an effort to explore this potential, we conducted a proof of concept 

deposition test.  First, a spherical droplet (Figure 3.16) was made into an APCE 

through CAM.  This APCE was then contacted with a hydrophobic Teflon fiber 

secured within the micromanipulation chamber (Figure 3.17).  
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Figure 3.16: Original spherical droplet in substrate deposition test.  

 

Figure 3.17: (Top) Anisotropic ball and stick partially crystalline emulsion particle 
(Bottom) The APCE contacted to the hydrophobic Teflon fiber using 
micromanipulation. The APCE interface is outlined in red to aid in 
visualization.  
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Following the initial contact and adhesion to the fiber, the APCE was removed 

from the capillary by applying a small positive pressure at the end of the capillary 

(Figure 3.18 between 0 and 7 seconds).  Then, the surfactant was locally diluted by 

injecting water into the reservoir into the chamber around the fiber (in Figure 3.18, 

this can be seen as the fibrous MFC moves out of the view frame, and the continuous 

phase becomes transparent).  Figure 3.19 is a contrast enhanced imaged of the final 

frame of Figure 3.18, which illustrates the complete wrapping of the droplet around 

the fiber. 

 

Figure 3.18: Directed deposition of ball and stick APCE onto Teflon fiber.  APCE 
deformation was induced by locally diluting the surfactant.   
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Figure 3.19: Contrast enhanced image of the ball and stick APCE wrapped around a 
Teflon fiber after local surfactant dilution.  

3.5 Summary 

Four anisotropic partially crystalline emulsion particle morphologies have been 

produced to date: 1) the spherocylinder, 2) the ball and stick, 3) the dual ball and stick 

and 4) the torus.  Successful production of these morphologies represents significant 

progress to meeting the first goal of this work defined in Section 1.1.  Morphological 

variation in these APCE is characterized by distortion of the anisotropic particles from 

the original shape that particles were cast in within the capillary.  We hypothesize that 

this distortion is linked to opposing forces acting on the continuous-dispersed phase 

interface, namely compressive forces acting to reduce the total interfacial area of the 

system, and resistance of the crystalline network to deformation.  Distortion has been 

observed the APCE in two principal instances: 1) APCE distort after ejection from the 
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capillary and 2) APCE distort when their local environment is altered in a way that 

affects the crystalline network or continuous-dispersed phase interface.  In the first 

distortion mechanism, the time scale of distortion is influenced by three principal 

parameters: the crystalline solid content, the interfacial tension, and the interfacial 

curvature of the particle.  In the second distortion mechanism, application of heating 

and local dilution causes the particles to collapse to morphologies with smaller 

interfacial areas (nearly spherical).  Additionally, creating magnetic fields in ferrofluid 

laden APCE causes the droplets to move while retaining their morphology.  The 

application potential of morphology response to external stimuli was successfully 

explored in a proof of concept substrate deposition test.  While this proof of concept 

test illustrated the potential benefits of using APCE in emulsion products, quantitative 

understanding of morphology dynamics in this system was still poorly understood.  As 

such, we defined the second goal of this work, and developed analytical models for 

APCE morphologies, all of which are described in Chapter 4.  
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Chapter 4 

MODELING ANISOTROPIC PARTCLE STABILITY 

The second goal of this work is to develop a quantitative understanding of 

morphology deformation in anisotropic partially crystalline emulsion particles.  This 

understanding is crucial to the successful incorporation of anisotropic partially 

crystalline emulsion particles into emulsion products.  Accurate descriptions of APCE 

stability will provide product engineers with limits on the temperature, formulation 

tolerances and processing parameters that each product can be subjected to before 

undergoing unintended deformation.  In products that exploit the morphological 

response of APCE to external stimuli, quantitative descriptions will help define how 

much stimulus needs to be applied to induce response.  

Explicit models of morphological stability in anisotropic partially crystalline 

emulsion particles did not exist at the outset of this work since the APCE system itself 

was recently created.  However, by integrating fundamental, proven theories of 

emulsion, interface, stress and yielding phenomena, we were able to gain some 

understanding of the interplay between parameters in the APCE system.  This chapter 

discusses three analytical models developed to describe the morphological stability of 

APCE.  These models, developed through a mechanical, force balance approach, 

provide predictions of static APCE stability.  A particle is considered statically stable 

when the particle retains its morphology for at least 30 minutes after ejection from the 

capillary holding all formulation (crystalline content) and external (temperature, 

surfactant, etc.) parameters constant.   



 
 
 

50 

Predicting dynamic morphological evolution during processes like heating is a 

problem with inherently greater complexity.  Not only must one account for the 

balance between interfacial forces and crystalline network strength, but also for the 

shear forces imposed on the system throughout movement.  With these added 

complexities, we did not attempt to model morphology dynamics in the scope of this 

thesis.  However, development of dynamic models may also play a crucial role in 

emulsion product development.  By attempting to develop static models that describe 

qualitative features of APCE deformation here, we hope to lay the groundwork for 

future studies that include dynamic analysis.  

The three models presented in this chapter describe different APCE 

morphologies.  Each model presentation is organized as follows.  First, the 

morphologies covered by the model are listed.  Second, the modeling objectives are 

defined.  Agreement with the qualitative trends of morphological stability constitutes 

the core of the modeling objectives.  Next, each model is derived from fundamental 

Laplace pressure, differential geometry and yield criteria laws.  Finally, the 

predictions made by each analytical model for idealized particles are discussed.  

4.1 Spherocylinder Model 

The first model describes the stability of spherocylinder particles (Section 

3.1.1).  

4.1.1 Modeling Objectives 

Empirically, we found that the stability of spherocylinders increased with: 

• Increasing solid content (both a function of the original petrolatum 
composition and the emulsion temperature) 
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• Increasing surfactant concentration 

• Increasing spherocylinder radius 

The model described here seeks to explain each of these qualitative trends.   

4.1.2 Model 

The pressure difference between two fluids separated by an interface is a 

function of the interfacial tension and the shape of the interface.   When the two fluids 

are static, the interface between them is approximated as infinitesimally thin, and the 

interfacial tension is constant, the Young Laplace equation describes the pressure 

difference between the fluids 

 ∆! = P! − P! = 2!" = ! !
!!
+ !

!!
! 4.1 

where γ is the interfacial tension, H is the mean curvature of the interface, and R1 and 

R2 are the first and second principle radii of curvature of the interface.  

For the purpose of relating physical properties of the APCE system to 

mathematical description, let us define fluid 1 as the hydrophobic, dispersed phase of 

an APCE, and fluid 2 as the hydrophilic, continuous phase surrounding the APCE as 

shown in Figure 4.1.  
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Figure 4.1: Defining notation in APCE system. A) For any anisotropic PCE particle, 
fluid 1 at P1 is the hydrophobic continuous phase; fluid 2 at P2 is 
hydrophilic dispersed phase. B) Cross section of APCE. ! is the outward 
facing normal, R1 and R2 are the principal radii of curvature.  

 

If the mean curvature of the interface is positive, the pressure of the dispersed 

phase is greater than that of the continuous phase.  This is because the interface exerts 

a compressive force on the dispersed phase as the interfacial area minimizes.  In the 

APCE system, the force exerted by the interface is exerted on the semi-crystalline 

structure, rather than on the fluid alone.  Since the shape of the interface varies with 

position along the anisotropic particle, the local force also varies.  

 To elucidate the difference between forces along the shape, we introduce a set 

of mathematical parameters to describe the APCE interface.  We distinguish between 

vector and scalar quantities by bolding vectors.  First, let us define the interface of an 

APCE as the surface S in ℜ! parameterized by two variables, u and v.  Let r denote the 

radius vector from the origin of the Cartesian coordinate system (x, y, z) with the unit 

vectors (i, j, k) [36].  The surface S is defined by the vector equation  

 ! = ! !, ! = ! !, ! !+ ! !, ! !+ ! !, ! ! 4.2
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or in the parameter form  

 ! = ! !, ! !!!!!! = ! !, ! !!!!!!! = ! !, !  4.3 

Let ! denote the outward facing unit normal of the surface S, defined by 

 ! = !!×!!
!!×!!

 4.4 

where the subscript on the surface vector r denotes first derivative with respect to the 

independent parameter (Eqn 4.5),  

 !! = !!
!"  4.5 

In the APCE system, a vector that is “outward facing from the surface” points towards 

the continuous, hydrophobic phase.  

The mean curvature of such a surface S is given by [36] 

 ! = !−∇ ∙ ! = !"!!!"!!"
! !"!!!  4.6 

where 

 ! = !! ∙ !! 4.7a 

 ! = !! ∙ !! 4.7b 

 ! = !! ∙ !! 4.7c 

 ! = !!! ∙ ! 4.7d 

 ! = !!" ∙ ! 4.7e 

 ! = !!! ∙ ! 4.7f 

In the previous definitions, multiple subscripts of r denote mixed partial 

derivatives with respect to u and v:  

 !!" = !
!"

!!
!"   4.8 

Readers familiar with differential geometry convention will recognize E, F and G as 

the coefficients of the first fundamental form of a surface and L, M and N as the 
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coefficients of the second fundamental form of a surface.  However, understanding 

this distinction is not necessary to follow the remainder of the APCE model 

development.  

With these definitions in place, we express the local force normalized by a 

differential area by the surface traction, t, which is sometimes called the stress vector: 

 !(!, !) = !
!" = −2!"(!, !)!(!, !) 4.9 

where F is the force generated by interfacial tension and A is a differential area 

element oriented in the same direction as !.  As denoted by the presence of u and v in 

Equation 4.9, the surface traction, the mean curvature and the unit normal are all 

dependent on the position along the APCE interface.  The dependence of ! on position 

is simple to visualize: ! is always perpendicular to the surface and pointed outwards 

toward the continuous phase.  Since the surface traction, t, is parallel to !, t is also 

always perpendicular to the surface.  Whether t points towards the continuous or 

dispersed phase depends on the sign of H.  

The magnitude of t is defined by the position dependent mean curvature H. 

The mean curvature of a spherocylinder differs in two places.  At the hemispherical 

ends of the particle, mean curvature is 

 !!!"#$%!!"! = !
! 4.10 

where R is the radius of the spherocylinder.  Along the sides of the spherocylinder, the 

mean curvature is  

 !!"#$ = !
!" 4.11 

Equations 4.10 and 4.11 are determined by first defining the surface Sspherocylinder as a 

piecewise function that is parametric in u and v: 
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 !!"!!"#$%&'()!":!!!!!!!! !, ! = ! ! ∙ cos ! !+ ! ∙ !+ ! ! ∙ sin!(!)!! 4.12a 

 ! ! =
!! − ! − ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!0 ≤ ! < !!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ≤ ! < ! + !!!!!!!!
!! − ! − ! + ! !!!!!!!!!!!!!!!!!!!!! + ! ≤ ! < 2! + !

!! 4.12b 

 

where L is the length of the spherocylinder.  Applying Equations 4.6 and 4.7 to 

Equation 4.12 gives Equations 4.10 and 4.11. The result of this derivation, which is 

the spatial distribution of traction forces for a spherocylinder, is illustrated in Figure 

4.2b.  

With the interfacial forces acting on spherocylinder defined, we seek to 

determine the how these forces stress the semi-crystalline network within the droplet.  

Here, we examine stress in the droplet using a simplified approach.   The surface 

traction acting on an APCE droplet is the largest in magnitude at the hemispherical 

spherocylinder ends.  As such, the traction forces acting parallel to the central axis 

collectively exert a compressive stress, σc, along the central axis.  This compressive 

stress is illustrated in Figure 4.2c, and given by  

 !! = !"
!  4.13 
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Figure 4.2: Interfacial forces acting on a spherocylinder of radius R. A) Three 
dimensional spherocylinder. B) Cross section of spherocylinder with 
surface traction displayed as vectors. Green vectors have a magnitude of 
1/2R; red vectors have a magnitude of 1/R. C) Compressive stress along 
spherocylinder axis as defined by the spherocylinder model.  

A material subjected to a single, uniaxial force will undergo plastic 

deformation when the compressive stress due to that force exceeds the critical uniaxial 

yield strength, Y1D.  For spherocylindrical particles, when σc as defined in Equation 

4.13 exceeds Y1D of the crystalline network, the APCE deforms.  The equivalent 

stability expression for this is given by 

 !"#$%& → !!!!!!!! < Y!! 4.14a 

 !"#$%& → !!!!!! !"
!!!!

< 1 4.14b 

 The stability criterion given by Eqn 4.14b supports the qualitative observations 

discussed in Section 4.1.1.  The yield stress is proportional to solid content; increasing 

the solid content increases the likelihood a particle will be stable.  The interfacial 
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tension decreases with increasing surfactant concentration; consequently, increasing 

surfactant concentration increases the likelihood a particle will be stable.  Finally, 

increasing the radius reduces the magnitude of the left hand side of equation 4.14b 

thereby increasing the likelihood a particle will be stable.  

Agreement between the qualitative observations and the predictions by the 

model suggest that this simple model could be utilized practically to determine when 

spherocylinders deform.  However, since the model relies on symmetric arguments to 

isolate surface tractions parallel to the central axis as dominating compressive forces, 

the model does not lend itself to morphologies that are antisymmetric across a 

droplet’s semi-minor axis, as in the ball and stick type particles.  In the development 

of the next model, we seek to develop an all-encompassing model for axisymmetric 

APCE that considers all of the forces exerted by the APCE interface.  

4.2 Axisymmetric Model 

The second model describes more generally the stability of axisymmetric 

particles.  These include the spherocylinder, the ball and stick and the dual ball and 

stick described in Sections 3.1.1, 3.1.2, and 3.1.3 respectively.  Additionally, this 

model should also describe other theoretical axisymmetric particles that have not yet 

been produced experimentally, like an ellipsoidal or Cassinian oval-shaped particle.  

4.2.1 Modeling Objectives 

Empirically, we found that the stability of axisymmetric particles increased 

with: 

• Increasing solid content (both a function of the original petrolatum 
composition and the emulsion temperature) 
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• Increasing surfactant concentration 

• Increasing characteristic radius 

• Gradual transitions between features (i.e. ball and stick shaped 
particles with gradual slope between the sphere and the 
spherocylinder) rather than sharp transitions.  

Additionally, we found that deformation appears to be predisposed to initiate 

in regions of low curvature as discussed in Section 3.2.  The model described here 

seeks to explain both of these qualitative trends and the location predisposition.   

4.2.2 Model 

To develop the model for a generalized axisymmetric particle, we utilize the 

same notation and definition of interfacial surface forces as described in Section 4.1.2. 

Specifically, recall that the surface traction t is defined as   

 !(!, !) = !
!" = −2!"(!, !)!(!, !) 4.9 

The mean curvature and unit normal of a generalized axisymmetric particle varies 

with position, as indicated by the parameterization.   

 For a generalized axisymmetric particle, it is not possible to define H for entire 

surface regions as we did in Equations 4.10 and 4.11 for the spherocylinder; we must 

resort to Equations 4.6 and 4.7 to define H on a point-by-point basis over the surface.  

Since we cannot define a regional H, we cannot assume that tractions parallel to the 

central axis of the particle have the largest magnitude of all the tractions along the 

surface, nor can we isolate specific tractions that appear to impose a dominate stress 

acting on the network.  Instead, we utilize surface integrals to account for all of the 

tractions acting on an APCE and infer the stress on the crystalline network rather than 

relying on simplifying arguments.  We borrow this integration technique from the field 
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of material mechanics.  Within this field, the Euler-Cauchy stress principle as defined 

by Truesdall and Toupin states that for any continuous material [37], 

Upon any surface (real or imaginary) that divides the body, the action 
of one part of the body on the other is equivalent (equipollent) to the 
system of distributed forces and couples on the surface dividing the 
body.  [pg 702] 

More generally, the force on any internal section (an internal force) balances the 

external forces on the connecting surface as illustrated by Figure 4.3.  

 

Figure 4.3: Internal forces as defined by the Euler-Cauchy stress principle. Figure 
taken from Ugural and Fenster [38] 

When an internal force acts on a specific element of the continuous material, it 

subjects the element of material to stress.  This stress can have any magnitude and 

direction depending on the external forces.  Specifically, the stress of an internal 

element in some direction i is determined by integrating the surface traction 

component in the direction i exerted on a connected surface and then dividing the 

integrand by the segment area A: 

 !! = !!
!!
= !!!"

!!
 4.15 
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To develop a systematic method of expressing stresses and their directions, we 

again follow the mathematical descriptions used in the field of material mechanics.  In 

this field, the magnitude and direction of stress on a section is defined by the nine 

component Cauchy Stress tensor: 

 !!" =
!!! !!" !!"
!!" !!! !!"
!!" !!" !!!

 4.16 

In Equation 4.16, the first subscript denotes the direction of a normal to the plane on 

which the stress component acts and the second subscript denotes the direction of the 

stress itself [38].  Figure 4.4 depicts these stresses.  

 

Figure 4.4: Location of Cauchy stress components acting on an element within a 
continuum.  Figure taken from Ugural and Fenster [38]. 

The Cauchy Stress tensor can be simplified by determining the principal stresses of the 

tensor.  Roark et al. gives a complete definition of this simplification [39]: 
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Through any point in a stressed body there pass three mutually 
perpendicular planes the stress on each of which is purely normal, 
tension or compression; these are the principal planes for that point. 
The stresses on these planes are the principal stresses; one of them is 
the maximum stress at the point, and one of theme is the minimum 
stress at the point.  When one of the principal stresses is zero, the 
condition of is one of plane stress; when two of them are zero, the 
condition is one of uni-axial stress. [pg 11] 

By this definition, the principal stresses are the eigenvalues of the Cauchy Stress 

tensor (Eqn 4.17) and the principal planes are oriented by the associated eigenvectors. 

 !! =
!! 0 0
0 !! 0
0 0 !!

 4.17 

For axisymmetric partially crystalline emulsion particles, one of the principal 

stresses is always oriented along the particle’s axis of symmetry.  As such, it is 

convenient to orient one of the coordinate axes in the APCE system parallel to the 

central axis of the particle.  After doing this, we can take the components of the 

traction vector (Eqn 4.9), integrate them independently across a surface connected to 

an internal element, and obtain the net force acting in a principal direction, Fi, on that 

internal element. 

 !!(w) = !!!"!(!,!)
!! !!,!!,  4.18 

If we then divide the net force by the area of the element (which is simply bounded by 

the edge of the connected surface), we obtain the principal stress in the direction i on 

the internal element.  

 !!(w) = !!(!)
!!(!)

= !!!"!(!,!)
!! !!,!!,

!!(!)
 4.19 

In Equations 4.18 and 4.19, we have introduced the variable w to denote a point along 

the principal axis i.  The surface connected to a segment at w spans the length of the 
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central axis from the point w0 to w.  The variables w0 and w map to u,v space such that 

translating  between u0, v0 to u,v defines the entire surface.  This method of integration 

and relation to w is illustrated in Figure 4.5 for an idealized axisymmetric particle.  

 

Figure 4.5: Integrating across connected surfaces to find the principal stresses on a 
segment (in red) at position w.  For each of the principal stresses, the 
associated surfaces of integration are shown in dark blue.  The areas Ai 
bounded by the connected surface are also marked. w0 pertaining to the 
second principle axis is also marked.  

The principal stress state is a useful way to characterize an isotropically 

yielding body.  In the simplest sense, a body is said to yield plastically when it begins 

to deform irreversibly under an applied load.  The magnitude of threshold load that 

marks the transition from elastic (reversible) to plastic (irreversible) deformation is the 

yield strength, Y, which is a scalar.  Typically, the yield strength, Y, is equated to 

critical uniaxial strength, Y1D.    In order to compare the stress tensor (a field quantity 
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with magnitude and direction) with the yield strength (a scalar), we introduce a yield 

surface X, described by [39] 

 ! = Φ !! − ! = 0 4.20 

where Φ !! !is a function of the principal stress and K is a material constant related to 

Y1D . Typically, K is proportional to Y1D by a scaling factor.  X is termed a yield surface 

because in the principal axes space, it represents a closed boundary that defines the 

transition between elastic and plastic deformation (Figure 4.6).  If the function 

Φ !! !is less than K  or inside the yield surface, the material will deform elastically.  If 

the function Φ !!  is greater than K or outside the yield surface, the material will 

deform plastically [39].  The assertion that a specific functional Φ !! !exists that 

describes deformation in this manner is defined as a yield criterion. 

 

Figure 4.6: Representation of von Mises yield criterion in the principal stress space 
and the elliptical cross-section with the σ1 and σ2 plane. Figure taken from 
Roark [39].   
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In our study of APCE, we have explored applying the von Mises yield criterion 

(Eqn 4.19) to describe the deformation of APCE.  The von Mises yield criterion is 

developed from the hypothesis that irreversible deformation in a material occurs when 

the strain energy density associated with shape modification exceeds a critical 

threshold value [39] 

 Φ!" !!(!) = !!!!! !! !!!!! !! !!!!! !

!  4.21 

Thus, if the effective von Mises stress, !!", exceeds KvM for the semicrystaline 

network at any point within the APCE (denoted here by w), we expect the APCE to 

deform.  

The equivalent stability expression for this model is given by 

 !"#$%& → !Φ!" !!(!) !!!< K!" !!!!"#!!""!!"#$%&!!"!! 4.22a 

 Stable! → !!!!!!!!!!!!!!" !!(!)
!!"

< 1!!!!"#!!""!!"#$%&!!"!! 4.22b 

As we did for the spherocylinder case, we now ask if the model given by Equation 

4.22 supports the qualitative observation discussed in Section 4.2.1.  As stated, Kvm is 

proportional to the yield stress of the material.  Since the yield stress is proportional to 

the solid content, increasing the solid content increase the likelihood that a particle 

will be stable, which was one of the qualitative observations defined in 4.2.1.  

Furthermore, the effective von Mises stress is proportional to the interfacial tension 

since all of the principal stresses are proportional to the interfacial tension. The 

interfacial tension decreases with increasing surfactant concentration.  Consequently, 

increasing surfactant concentration increases the likelihood a particle will be stable; 

this was another qualitative observation defined in Section 4.2.1.    
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 The other qualitative observations defined in Section 4.2.1 relate to particle 

shape and particle size.  With the stability criterion given in Equation 4.22 defined so 

generally, it is difficult to examine from the definition alone whether the model 

supports the observations.  To aid in this examination, we have calculated and plotted 

the effective von Mises stress at different segments within idealized axisymmetric 

particles.  Plotting the distribution of effective von Mises stress values illustrates 

which regions of a particle are under the highest stress, and subsequently which 

regions are more likely to deform.  Here, we call these characteristic plots “internal 

stress distributions.”  Internal stress distributions for three different axisymmetric 

morphologies are provided in Figures 4.7, 4.8 and 4.9. 

 

Figure 4.7: Internal stress distribution for an idealized spherocylinder APCE.  The 
effective von Mises stress and the location are normalized by the 
spherocylinder radius, R.  
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Figure 4.8: Internal stress distribution for idealized ball and stick APCE.  The effective 
von Mises stress and the location are normalized by the radius of 
spherocylinder radius, R2. 

 

Figure 4.9: Internal distribution for idealized ellipsoidal APCE. The effective von 
Mises stress and the location are normalized by half of the length of the 
ellipsoid, R.   
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In Figures 4.7, 4.8 and 4.9, we have normalized the effective von Mises stress 

by the interfacial tension and the inverse of the characteristic radius for the specific 

morphology.  The ability to perform this normalization further illustrates that the Φ!" 

is proportional to the interfacial tension.  Furthermore, Φ!" is inversely proportional 

to the APCE characteristic radius.  Since Φ!" is inversely proportional to the 

characteristic radius, increasing the characteristic radius increases the likelihood that 

the APCE will be stable, which is another qualitative observation defined in Section 

4.2.1.  In spherocylinder particles, the effective von Mises stress distribution is 

uniform across the axis as shown in Figure 4.7.  The uniform Φ!" is again inversely 

proportional to the spherocylinder radius and proportional to the interfacial tension.  

With these proportionality relations, the axisymmetric model notably reduces to the 

same result as the spherocylinder model given in Equation 4.14.  

Examining the distribution of the Φ!" provides further insight into why that 

deformation appears to be predisposed to initiate in regions of low curvature. In Figure 

4.8, the highest internal stress is located at the connection between the sphere and the 

cylindrical part of the idealized ball and stick (at position 2R1).   Since the crystalline 

network in this segment is subjected to the highest internal stress, we expect it to 

undergo deformation prior to segments within the cylindrical or spherical system. This 

is consistent with the results presented in Section 3.2.  

Agreement between the qualitative observations and the predictions by the 

model suggest that this generalized model could also be practically useful to determine 

when axisymmetric particles deform statically.  Additionally, because the model is 

purposefully general, it can be used to analyze any axisymmetric shape.  Product 

engineers interested in producing an APCE that deforms at one or more specific 
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locations can draft idealized shapes, compute internal stress distributions, and infer 

where their APCE is likely to deform.  However, the potential utility of such a model 

depends on its accuracy.   In Chapter 5, we describe our preliminary attempt at 

verifying the axisymmetric model from a quantitative standpoint by analyzing 

empirical results through a discrete modeling program. 

4.3 Torus Model 

The third model describes the stability of torus particles (Section 3.1.4). 

4.3.1 Modeling Objectives 

Empirically, our collaborators found that the stability of axisymmetric particles 

increased with: 

• Increasing solid content (both a function of the original petrolatum 
composition and the emulsion temperature) 

• Increasing surfactant concentration 

Additionally, our collaborators found that the stability of axis symmetric particles was 

influenced by the characteristic aspect ratio (see following discussion). The model 

described here seeks to explain these qualitative trends.  

 

4.3.2 Model 

To develop the model for a generalized torus particle, we first define 

characteristic size parameters for the shape: R, the outer radius of the torus, and r, the 

inner radius of the torus  (Figure 4.10).  
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Figure 4.10: Cross-section of APCE torus cut along its equator. Pressure differences 
calculated at points 1 & 2 in red. 

Again, following the discussion given in Section 4.1.2, the surface traction, t, is  

 ! u, v = −2!"(!, !)!(!, !) 4.23 

At points along the inner and outer equator of the torus, the mean curvature in 

Equation 4.23 reduces to simpler expressions for perfectly symmetric toroidal 

droplets. 

 ! u!, v! = −! !
!!
− !

! !(u!, v!) 4.24 

 ! u!, v! = −! !
!!
+ !

! !(u!, v!) 4.25 

where rt is the radius of the cross section of the torus, equivalent to 

 !! = !
! ! − !  4.26 

 

From these simplified traction equations, it is possible to calculate the pressure 

difference across the particle interface, since the pressure is simply the magnitude of 

the traction vector.  The pressure gradient (i.e. the difference between the Laplace 

pressures) that exists between the points 1 and 2 in Figure 4.10 causes the torus to 

shrink over time while conserving its volume.  With the torus shrinkage, the pressure 
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gradient between the two points also evolves with time, thereby affecting the 

dynamics of the morphology evolution.  

Based on the traction equations, the pressure difference (Eqn 4.24 and 4.25) at 

the two points can be computed as a function of the torus aspect ratio for a particle 

with a specific initial aspect ratio. The torus aspect ratio is defined as the ratio between 

the outer ring radius, R, and the inner ring radius, r. 
 

 !!!
!/!!

!/! = !!
!

!!
!!

!
− !!

!!

!
− !!

!!
+ 1

!/!
∙ !

!
!!!

+ !
!

!!
!! 4.27 

 !!!
!/!!

!/! = !!
!

!!
!!

!
− !!

!!

!
− !!

!!
+ 1

!/! !
!
!!!

− 1   4.28 

 

In Eqn 4.27 and 4.28, the subscript “0” denotes the characteristic torus dimensions at 

time 0.  Plotting these pressure differences (Eqn 4.28) with respect to R normalized by 

the initial value of R shows when the pressure differences across the droplet become 

negative, and thus, when the ring becomes statically unstable.  An example of one of 

these plots is given in Figure 4.11.  The point at which the pressure differences across 

the droplet become negative defines the transition in static stability, and thus the 

stability criteria (Eqn 4.29): 

 !Stable! → ! !!!
!/!!

!/! − ! !!!
!/!!

!/! > 0!!! 4.29a 

 Stable! → !!!!
!

!
!!!

!!

!
!
!!!

! !
!
!! < 1!!!!"#!!""!!"#$%&!!"!!, ! 4.29b 
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Figure 4.11: Evolution of pressure differences across droplet interface and ring cross-
section for rings of initial aspect ratio 2. The pressure is scaled by y/V0

1/3. 

Notably, the stability criterion developed in this section and summarized in 

Eqn 4.29 are not dependent on the interfacial tension or the solid content of the 

particle.  As such, this criterion does not capture the qualitative observations described 

in Section 4.3.1.  It may, however, have greater applicability to the dynamics of torus 

evolution.  

4.4 Summary 

In this chapter, we developed three models from fundamental laws of 

interfacial phenomena and differential geometry to describe morphological stability in 

APCE.  The spherocylinder and axisymmetric model appear to capture qualitative 

trends in static APCE stability well, while the torus model may be better suited to 
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capture morphology dynamics.  The following chapter describes our preliminary 

attempt to validate the axisymmetric model (which reduces to the sphereocylinder 

model for rod shaped particles) experimentally.  
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Chapter 5 

ANALYSIS OF PARTICLES IN CONTEXT OF DISCRETIZED 
AXISYMMETRIC MODEL 

This chapter details our efforts to validate the analytical model for axisymmetric 

particle deformation presented in Chapter 4.   These efforts were made in pursuit of 

the second goal of this work: to develop quantitative understanding of morphology 

deformation in anisotropic partially crystalline emulsion particles.  Of the four 

different APCE morphologies described in Chapter 3, the three morphologies 

produced at the University of Delaware are axisymmetric.  These particle 

morphologies are the spherocylinder (Section 3.1.1), ball and stick (3.1.2) and dual 

ball and stick (Section 3.1.3).  Since we had the ability to produce these axisymmetric 

particles at the University of Delaware, we focused on validating the axisymmetric 

model rather than the preliminary torus model. 

 It should be noted that all experimental particles of the spherocylinder, ball and 

stick, and dual ball and stick types are only approximately axisymmetric due to the 

inevitable imperfections in the experimental systems.  In the APCE system, 

imperfections in the microcapillaries and bending of the particles upon ejection 

particularly cause each of the “axisymmetric” particles to be asymmetric.  Despite the 

imperfections, we seek to determine the perfectly axisymmetric model’s robustness in 

predicting the stability of particles cast in axisymmetric molds.  

To apply the axisymmetric model to droplet morphologies that were produced in 

the experiments, we developed a discrete modeling program in MATLAB that uses 
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images of axisymmetric particles to calculate the von Mises stress at different internal 

segments.  We then compared the empirical internal stress distributions between 

particles that exhibited different degrees of stability to determine if there was any 

correlation between the inferred von Mises stress and static stability.  

To date, the results of this validation attempt are inconclusive.  As is discussed in 

this chapter, numerical artifacts of the discrete modeling program (namely the error 

associated with surface curvature calculations) limit our confidence in the internal 

stress distributions produced from experimental images.  We do believe, however, that 

the accuracy of the discrete modeling program can be improved substantially by using 

more rigorous parameterization methods.  We discuss these methods in brief in 

Section 5.4, which themselves lay the groundwork for future examination of 

axisymmetric APCE and the developed axisymmetric model.  

5.1 Discrete Program Development Objectives 

The objective of the discrete modeling program is to take an image of an 

axisymmetric APCE and calculate the magnitude and location of the segment with the 

maximum von Mises stress.  This input output structure is depicted in Figure 5.1.  

 

Figure 5.1: Input-output structure for three component axisymmetric discrete 
modeling program.  
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A program that accurately accomplishes this task would be useful in two 

applications.  First, we could use the program to attempt to validate the axisymmetric 

model as previously discussed.  Second, if the axisymmetric model shows utility in 

predicting APCE static stability, the program could be used to take any sketch of an 

APCE design and determine the locations where the APCE is most likely to undergo 

deformation.  Product engineers could use the program to rapidly evaluate APCE 

morphologies, specifically those that are not easily parameterized and consequently 

not easily defined analytically.  For these reasons, we felt it was worthwhile to begin 

developing such a program.  

5.2 Working Program  

Here, we first provide an overview of the three-component method developed 

to accomplish the objectives described in Section 5.1.  We then detail each of the three 

components in the following subsections.  

5.2.1 Overview 

The discrete modeling program takes an image of an axisymmetric APCE and 

calculates the magnitude and location of the segment with the maximum von Mises 

stress.  Prior to using this program, an axisymmetric APCE is first imaged through 

brightfield microscopy as described in Section 2.1.4.  The surface profile of each 

particle is then extracted from the image by thresholding pixels of different intensity 

within ImageJ software (NIH Image).  Complete extraction of the profile results in a 

text image that gives the location of pixels along the particle’s profile.  These locations 

are then input into the first MATLAB program (Appendix B).  The first MATLAB 

program computes the instantaneous curvature of the surface by fitting multiple 
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parametric polynomials to the profile.  The instantaneous curvature is proportional to 

the local surface traction by the Young-Laplace equation where interfacial tension is 

the proportionality constant.  The output of the first MATLAB program is the surface 

tractions as a function of position.    

The output of the first program serves as the input to the second MATLAB 

program (Appendix C), which computes the internal principal stress-state within 

segments perpendicular to the axis of symmetry.  The second program effectively 

performs a discrete surface integral for the experimental particles by summing the 

tractions multiplied by the area along the profile connected to a specific segment, and 

then dividing this sum by the segment area.  Inputting the stress-state into the von 

Mises failure criteria gives a normalized average stress for the segment.  The program 

outputs the maximum average stress and the location of the maximum as a means of 

quantitatively predicting whether the particle will undergo deformation, and where the 

deformation will likely initiate.  

5.2.2 Image Reduction  

ImageJ (NIH Image) is used to extract the meridian profile of an APCE from a 

brightfield microscopy image.  Prior to extraction, each original 8-bit grayscale Tiff  

(tagged image file format) image (Figure 3.8) is rotated (Figure 5.2A) so that the 

central axis of the APCE is oriented vertically.  Rotating the image simplifies the 

process of importing the profile into the Matlab program.  Note that we have 

specifically chosen to demonstrate the profile extraction and surface curvature 

calculation process using an APCE example that is not perfectly axisymmetric (i.e. it 

is a distorted ball and stick type droplet) to showcase the distribution of surface 

curvatures present in such distorted droplets.  
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After rotating the image, the Find Edges ImageJ feature is used to isolate the 

APCE profile (Figure 5.2B).  Find Edges identifies sharp transitions in intensity 

between nearby pixels.  Adjusting the pixel intensity threshold allows the user to 

manually select the pixels that demark the APCE boundary.  Once satisfied with the 

selection, the user transforms the thresholded image into a binary image (Figure 5.2C) 

using ImageJ’s Make Binary command.  In the binary image, the black pixels were 

originally pixels that were below the intensity threshold.  As seen in Figure 5.2C, 

several pixels that are not within the profile of the APCE (namely the crystalline 

structure pixels) are below the intensity threshold and show up in the binary image.  

These pixels are manually replaced with white pixels, resulting in Figure 5.2D.  

 

 

Figure 5.2: Extraction of droplet profile using Image J.  A) Rotated bright field 
microcopy image. B) Image after Find Edges application. C) Binary 
Image. D) Binary image with all black pixels besides those demarking 
the profile removed. E) Skeletonized image.  
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In Figure 5.2D, it is apparent that the thickness of the profile is multiple pixels 

in width and that the thickness differs along profile locations.  Variable profile 

thickness often occurs because the entire APCE is not in the same focal plane.  From a 

data processing standpoint, having multiple pixels demark the location of the profile 

inhibits ordering the vectors when the pixel locations are imported to MATLAB.  As 

such, it is easier to reduce the profile thickness using ImageJ’s Skeletonize tool.  

Skeletonize finds the midpoint of a set of darkened pixels in the binary image, and then 

eliminates points other than the midpoint.  Using Skeletonize on the binary image in 

Figure 5.2D results in the profile given in Figure 5.2E,which is one pixel in thickness.  

After extracting the profile, the binary image seen in Figure 5.2E was saved as 

text file to later be used in MATLAB.  In the text file, 1’s denote black pixels while 

0’s denote white pixels.  

5.2.3 Calculating Surface Traction  

The first MATLAB program computes the local surface tractions at points 

along the APCE meridian profile.  For APCE that are perfectly axisymmetric, rotating 

the meridian profile about the central axis defines the surface of the APCE.  All points 

on the surface that are at the same axial position have the same surface curvature.  

Consequently, if the traction along the meridian profile is known, the tractions across 

the entire APCE surface are also known.  The program described here relies on this 

fundamental mathematical argument to compute the surface tractions across three-

dimensional APCE surface from a two-dimensional image of the meridian profile.  For 

APCE that are not perfectly axisymmetric (which constitutes every experimental 

APCE), modeling the three-dimensional surface introduces some error in the 
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calculation of true surface traction.  Nevertheless, we apply this simplification during 

this preliminary stage of model development.  

Prior to describing how the program operates, we define a coordinate system 

for the two-dimensional image space (Figure 5.3).  Let x and y be two perpendicular 

axes in the plane of the APCE meridian profile.  Let the meridian profile be defined as 

a parametric two dimensional vector function, f, where the components of f give the 

(x, y) coordinates of a point along the meridian profile: 

 ! ! = x ! ∙ !+ !(!) ∙ ! 5.1 

By defining the meridian profile in this way, we can define the surface of an 

axisymmetric APCE (Saxisymmetric) in ℜ!.  Using the same notation as used in Chapter 

4, we let r denote the radius vector from the origin of the Cartesian coordinate system 

(x, y, z) with the unit vectors (i, j, k).  The surface Saxisymmetric is then defined by the 

vector equation 

!!"#$%&&'()#*:!!!!!!!! !, ! = ! ! ∙ cos ! !+ !(!) ∙ !+ ! ! ∙ sin!(!)!! 5.2 
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Figure 5.3: Coordinate system in discrete modeling program.  Blue line demarks the 
meridian profile of an axisymmetric APCE.  Rotating the meridian 
profile about the central axis (dashed black line) gives the surface of an 
axisymmetric APCE.  u0 denotes a specific point in the meridian profile.  

Having defined this coordinate system and notation, we proceed to describe 

how the first MATLAB program computes the APCE surface traction program. The 

first section of the program (labeled in Appendix C) converts the text file into two 

vectors x(u) and y(u), which denote the coordinates of the meridian profile.  

Specifically, the binary text files described in Section 5.2.2 are read into MATLAB as 

a matrix of 1s and 0s with the position in the matrix corresponding to the pixel 

position in the x-y plane.  Iterating through the matrix and determining the indexes 

associated with elements equal to 1 gives a set of x-y coordinates for the meridian 

profile.   Since MATLAB reads in lines of the text file row by row, the set of x-y 
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coordinates are not ordered according to location along the meridian profile.  Lines 33 

to 71 are devoted to reordering the sets of (x, y) coordinates so that as the program 

indexes through the x and y vectors, it transverses counterclockwise about the 

meridian profile.  The index of the x and y vectors serves as a convenient parameter u 

in the program.  

After cataloging x(u) and y(u), we calculate the instantaneous mean curvature, 

H(u,v) at every u along the profile.  From Chapter 4, recall that the surface traction on 

an APCE is related to the mean curvature by  

 !(!, !) = !
!" = −2!"(!, !)!(!, !) 5.3 

One definition of the mean curvature is given in terms of the two principal curvatures, 

R1 and R2: 

 !(!) = !
!

!
!!
(u)+ !

!!
(!) ! 5.4 

For an axisymmetric surface with a meridian profile defined parametrically, the first 

principal curvature (the curvature associated with the meridian profile), is given by: 

[41] 

 !
!!
(!) = !! ! !×!!!! !

!! ! !  5.5 

where f’(u) and f’’(u) denote the first and second derivatives with respect to u at a 

specific u: 

 !! ! = !!
!" |!!! 5.6a 

 !!′ ! = !!!
!"! |!!! 5.6b 

The second principal curvature (the curvature associated with rotation about the 

central axis) is given by [41] 
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 !
!!
(!) = !"# ∅(!)

!(!)  5.7 

where D(u) is the distance between the point at u on the meridian profile and the 

closest point on the central axis.  ϕ(u) is the angle between the unit normal vector, !, 

of the surface and the line between the point at u on the meridian profile and the 

closest point on the central axis.  Each of these variables are marked in Figure 5.1.  

 Section 2 of the MATLAB program computes the first principal curvature 

(Equation 5.5).  To do this, the program first isolates each point along the meridian 

profile in terms of u.  For convenience, we describe a single point on the meridian 

profile as u0.  At every u0, the program fits two separate third order polynomials in x 

and y with respect to u.  Points before, after, and including u0 are included in the 

polynomial fit.  The number of points included is left as a function input to be 

specified by the user.  Typically 9 – 13 total points with u0 as the middle point are 

included in the fit.  After fitting the continuous polynomial x(u) and y(u), the first and 

second derivatives are computed according to Equation 5.6.  This section of the 

program also calculates the direction of ! which is parallel to the cross product of the 

first and second derivatives of f with respect to u: 

 !(!) = ! !! ! !×!!!! !
!! ! !×!!!! !  5.8 

Section 3 of the MATLAB program computes the second principal curvature 

(Equation 5.7).  To accomplish this, the user first has to manually select points along 

the apparent axis of symmetry of an APCE.  These points have to be manually 

selected because the axis of symmetry in an APCE image is not necessarily perfectly 

aligned with the y-axis as depicted in Figure 5.3.  Reexamination of the particle 

images in Figures 5.1 and 5.2 show the misalignment of the central axis for real 

particle images.  After selecting the axis of symmetry using the ginput function in 
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MATLAB, D(u) and ϕ(u) are calculated.  D(u) is found for every u0 using the 

Pythagorean Theorem between a point on the axis of symmetry and the point u0 in 

question. ϕ(u) is determined using Equation 5.9 

 !"#(∅) = !! ! !∙!! !
! ! ! ! !  5.9 

where ! is the unit normal vector of the surface, and c is the vector from the point 

(x(u0), y(u0)) on the meridian profile and the closest point on the central axis (parallel 

to the line marked D0 in Figure 5.3). 

In Section 4 of the MATLAB program, twice the value of the mean curvature 

at every u is found by summing the two principal curvatures (Equation 5.4). 

In Section 5, the surface traction is calculated using Equation 5.3 after 

inputting a surface tension for the system.  In our simulations, we have used 10 

dyne/cm as a reasonable surface tension estimate at moderate surfactant 

concentrations in absence of a directly measured value.  Finally, the program plots the 

surface traction along the meridian profile (see Figure 5.4).  The program also outputs 

a matrix of the unit normal, the magnitude of the surface traction as a function of the 

(x, y) position on the surface.  

5.2.4 Calculating Effective von Mises Stress for Different Segments.   

The second MATLAB program computes the effective von Mises stress at 

different segments along the APCE central axis by performing a discrete integral of 

the tractions over the surface connected to each segment to determine the net force 

acting in a principal direction.  Dividing by the area of the segment gives the principal 

stress.  This method of determining stresses is described in Section 4.2.2 for surfaces 

defined by analytical parametric equations.  Experimental particle surfaces are defined 
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by discrete points (pixels in a image) rather than by continuous analytical equations.  

Consequently, integration over the surface must be discretized in order to determine 

the local effective stress.  Such discretization introduces error into the stress 

calculation.  Despite this known error, we again proceed with the model development 

in attempt to validate the axisymmetric model.  

Using the same coordinate system and notation described in Section 5.2.3, we 

describe how the second MATLAB program computes the principal stresses acting on 

a segment along an axisymmetric particles central axis.  Note that the normal of such a 

segment is parallel to the central axis.  The first section of the program (labeled in 

Appendix C) first imports the matrix output from the first MATLAB function.  This 

matrix contains the unit normal and the magnitude of the surface traction as a function 

of the (x, y) position on the surface.  The x(u) and y(u) vectors described in Section 

5.2.3 are extracted from the columns of the matrix and redefined within the second 

program.  Next, the user manually selects points along the apparent axis of symmetry 

of the APCE.  After doing so, the program reorients the position of each point and the 

associated normal vector so that the center of each segments lies on the y-axis (x = 0) 

of the coordinate system.  The reorientation aids in summation of the individual 

components of the traction vector during discrete surface integration.  Additionally, 

defining the axis of symmetry separates the elements of the x(u) and y(u) vectors into 

two groups, one set of points which lie on one side of the central axis and the other set 

of points which lie on the other side of the central axis.  We call these groups halves of 

the meridian profile.  

The second section of the MATLAB program computes the effective von 

Mises stress from one half of the meridian profile.  In a perfectly axisymmetric 
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particle, the two halves of the meridian profile are identical; consequently, the 

effective von Mises stress is the same regardless of which half the stress is computed 

using.  In experimental particles, however, the two sides of the meridian profile are not 

identical; consequently, the effective von Mises stress differs depending on which half 

of the profile is used.  In the program and analysis presented here, we average the 

effective von Mises stress computed for the two halves of experimental particles.  

To compute the effective von Mises stress using one half on the meridian 

profile, we first recall that the principal stress in a direction i, σi, is determined by 

integrating the i component of the traction over the connected surface and then 

dividing by the area of the segment Ai.  

 !!(w) = !!(!)
!!(!)

= !!!"!(!,!)
!! !!,!!,

!!(!)
 5.10 

The principal stress in i varies with axial position, denoted by w.  For a specific point 

u0, the surface integral can be approximated as a line integral over the line s multiplied 

by a width δL (Eqn 5.11).  In this case, s is the rotation of the single point u0 about the 

central axis. δL is the distance between u0 and the following u, u0+1, which represents 

the thickness of the segment of the APCE. 

 !!!"!(!,!)
!! !!,!!, ≈ !" !!!"!(!)

!! !!,  5.11 

When integrating over a revolved curve of radius Rrev, the line integral becomes: 

 !"!!"# !!!"!
!!  5.12 

Equation 5.12 is the approximate force contribution in direction i of a discrete point in 

profile of an APCE Fi(u0).  Note that for a single point, Rrev is simply the x(u0). These 

force contributions in the first and second principal direction are given in Equations 

5.13 – 5.14: 



 
 
 

86 

 !! !! = !"#(!!) 2H u! !! u! cos ! !" = 4! !
!! ! !"#(!!)H u! !! u!  5.13  

 !! !! = !"#(!!) 2H u! !! u! !" = 4!"
! π!"#(!!)H u! !! u!  5.14 

  In the context of the defined variables in coordinate system depicted in Figure 

5.3, the first and second principal directions, A1 and A2 are 

 !! !! = 2!(!!)!"  5.15
  

 !! !! = π x(!!) !  5.16 

For the first principal direction, the F1(u0) constitutes all of the force exerted 

by the APCE in direction 1 on A1, given that segments in the APCE are oriented with 

their normals parallel to the central axis.  This, however, is not the case for principal 

direction 2.  In principal direction 2, the APCE surface connected to A2 consists of all 

the discrete points of the meridian profile from u = 0 to u0. To find the total force 

exerted on A2, all of the individual F2(u0) are summed to determine the net force on A2. 

Consequently, σ1 and σ2 are 

 !!(w) = 2H u! !! u!  5.17 

 !!(w) = !"!"#(!!)! !! !! !!!!!!
!!!

! !(!!) !
 5.18 

Recall that from Section 4.2.2 that the effective von Mises stress, !!", is a 

function of the three principal stresses computes σ1, σ2, and σ3 [40]: 

 Φ!" !!(!) = !!!!! !! !!!!! !! !!!!! !

!  5.19 

where again w denotes a position along the central axis.  For perfectly axisymmetric 

particles whose central axis is aligned with the second principal direction (see Figure 

4.5), σ3 = σ1.  This is again because all points on the surface that are at the same axial 
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position have the same surface curvature.  Since σ3 = σ1, the effective von Mises stress 

for an axisymmetric particle reduces to: 

 Φ!" !!(!) = !! − !! ! 5.20 

Using this reduced equation, the program computes the effective von Mises stress 

based on one half of the meridian profile.  

 In Section 3 of the MATLAB program, the effective von Mises stress of the 

other half of the meridian profile is computed using the same method used in Section 

2. 

 Section 4 of the MATLAB program plots the two effective von Mises stresses 

computed from the two halves of the meridian profile.  By inspecting this plot, the 

user can determine the degree to which the two effective von Mises stresses are the 

same (i.e. the degree of particle symmetry) and the location of the maximum effective 

von Mises stress.  

5.3 Preliminary Results 

Using the first MATLAB program, we were able to compute surface tractions 

like the one given in Figure 5.4.  By visual inspection, the surface traction program 

appears to give reasonable values for the magnitude and direction of the surface 

traction.  Lower tractions are observed in the spherical portion of the APCE given in 

Figure 5.4 as expected; all the vectors appear to be normal.  However, without 

comparing these tractions to a known surface, we have no basis to assert that this 

method is accurate.  
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Figure 5.4: Surface tractions in distorted ball and stick type APCE. Surface tension 
assumed to be 10 dyne/cm.  

Plotting the internal stress distributions (Figure 5.5) for nearly perfectly 

axisymmetric APCE distribution hints at inaccuracy in the model. The internal stress 

distribution is not a continuous flat profile within the cylindrical portion of the 

particle, as is expected for a perfectly axisymmetric spherocylinder particle (Figure 

4.7).  Instead, the experimental internal stress distribution contains scattered peaks 

across all axial positions.  This unexpected result could be an artifact of the 

approximations made in the surface traction function, the segment stress function, or 

both functions. 
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Figure 5.5: Internal stress distribution of experimental APCE. A) Original image of 
axisymmetric APCE ball and stick. B) Traction forces acting on surface 
obtained from first MATLAB program. C) Effective von Mises stress 
(vertical color-graded lines) for two halves of the APCE meridian profile. 
D) Local average effective von Mises stress for the two meridian profile 
halves.  

5.3.1 Theoretical Example 

To investigate the potentially inaccurate internal stress distributions produced 

by the discrete modeling programs, we began by comparing the known surface 

tractions of an analytically defined surface with those computed using the first discrete 
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modeling program.   Specifically, we modeled the meridian profile of a perfectly 

axisymmetric particle (Figure 5.6) as a Cassini oval. The Cassini oval was chosen 

specifically for this test because the Cassini oval has a highly variable curvature 

distribution, unlike simpler shapes like the spherocylinder. 

 

 

Figure 5.6: Idealized axisymmetric APCE modeled by a rotated Cassini oval. Cassini 
ovals. Various shapes of Cassini oval holding d constant with (c/d)2 of A) 
0.3; B) 0.5; C) 0.8; and D) 1.0. E) Surface generated by rotating c = 0.95 
and d = 1 Cassini oval about the central axis. Images A – D from Yeh et 
al [42].  

 The Cassini oval can be defined analytically using as a parametric two-

dimensional vector function, fcas, where the components of fcas give the (x, y) 

coordinates of a point on the oval 

 ! ! = x ! ∙ !+ !(!) ∙ ! 5.21a 

 x ! = sin u !! cos 2! + −!! + !! + !! cos!(2!) ! !/!
 5.21b 
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 y ! = cos u !! cos 2! + −!! + !! + !! cos!(2!) ! !/!
 5.21c 

In Equations 5.21b and 5.21c c and d are constants that determine the aspect ratio and 

shape of the curve (See Figure 5.6 A – D), much like the lengths of the major- and 

semi-major axis in an ellipse.  A surface formed by rotating half of the Cassini oval 

about its axis of symmetry, Scas, is given by a function parametric in u and v: 

 !!"#:!!!!!!!! !, ! = ! ! ∙ cos ! !+ y(!) ∙ !+ ! ! ∙ sin!(!)!! 5.22 

The complete Scas spans 0 ≤ u ≤  π and 0 ≤ v ≤ 2 π.  The exact surface traction of 

Scassinian can be computed directly by applying Equations 4.2 – 4.9 to Scassinian.  This 

computation was performed using Maple 15 Software (Maplesoft, see code in 

Appendix D).  

To evaluate the accuracy of the discrete program, we then took an image of the 

Cassini oval, reduced the image using the same methodology described in Section 

5.2.2, and computed the surface tractions using the first MATLAB program.  The 

Cassinian oval image (Figure 5.7) was generated using Maple 15.  Lcas is length of the 

major axis of the oval.  

 

Figure 5.7: Meridian profile of the Cassini oval (c = 0.9, d = 1). 
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Plotting the two normalized principal radii of curvature , !!
!!"##

 and  !!
!!"##

, 

computed by the surface traction program along with the analytical principal 

curvatures (Figure 5.8) illustrates which regions of the APCE image are prone to error 

in the curvature calculation.  Examining Figure 5.7 shows that the first MATLAB 

program calculates the magnitude of the first and second principal radii of curvature to 

within 9.5 % from 0.2  ≤ wnorm ≤  1.8 where wnorm is the normalized axial position, 

equivalent to 

  ! = !
!!"##

   5.23 

However, from 0  ≤ wnorm <  0.2 and  1.8  < wnorm ≤  2.0 the error in the first and 

second principal radii of curvature is greater than 38.4%. 

The larger error at the ends of the APCE is likely associated with the pixel 

resolution of the image. Fitting polynomial to flat sections (see the ends of image in 

Figure 5.7) that represent a curved interface results in error, as the surface cannot be 

modeled as a continuous profile.  
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Figure 5.8.  Magnitude of the two normalized principal radii of curvature for a Cassini 
oval (c = 0.9, d = 1) determined from an analytical parameterization 
(solid lines) and the discretized model (individual points). Magnitudes 
that are negative denote radii that point inward toward the central axis of 
the particle.  

5.4 Development Recommendations 

To improve upon the accuracy of the discrete modeling program, we could use 

meshes (three dimensional surface set by nodes) to model the droplet surface.  In the 

current program, the surface is modeled by rotating the meridian profile about the 

droplet’s central axis.  Since the experimental APCE are not perfectly axisymmetric, 

rotating the two halves of the meridian profile independently about the central axis 

results in a surface that is not continuous.  Consequently, we can only obtain an 

average local effective von Mises stress for a given segment.  Additionally, if the 

pixelated microscopy image contains aligned pixels that make it so that the local 
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parameterization of the profile is flat or jagged (see Figure 5.7), the polynomial 

parameterization of the meridian profile results in a surface that is not continuous.  

In pendant drop surface tension measurements, meridian profile images of a 

droplet hanging from a capillary are compared with a theoretical profile until the best 

fit between the meridian and the theoretical profile is obtained.  The surface tension 

corresponding to this theoretical profile becomes the measured surface tension of the 

fluid [43 – 45].  The theoretical profiles are determined by simultaneously solving the 

differential equations given by the force balance between interfacial forces (Laplace 

pressure) and gravity.  While iterating through several theoretical profiles works in the 

pendant drop case, it would not work for the APCE.  This is because there is no known 

theoretical solution to the profile.  The profile of an APCE is defined by the shape of 

the internal crystalline network, rather than a result opposing forces (gravity and 

Laplace pressure), which can be described explicitly by mathematical equations.  

Though the pendant drop algorithms are not directly applicable to the APCE 

system, we can draw from their methods to improve the accuracy of the discrete 

modeling program.  We could develop a program that takes an APCE image into the 

program, extracts the two halves of the meridian profile, and then iterate through a set 

of points out of the meridian profile plane plane that, when combined, result in a nodal 

surface that contains the two meridian profiles.  Scienti et al. have previously used 

nodal surfaces to model droplets in emulsions, and specifically emulsion droplets’ 

deformations in sheer flow [46].  By using the similar nodal surface parameterization 

methods, we could more accurately model the APCE surface.  Since the surface 

traction and stresses are computed directly from the shape of the surface, having a 

more accurate surface model should improve surface traction and stress calculations.   
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

The chapter summarizes the major conclusions made throughout this work and 

suggestions for continued study.  Since the inception of this project, the primary 

objective of this work has been to: 

Goal 1: Develop a method to produce soft particles with non-spherical, 
anisotropic shapes to deliver actives in emulsion-based 
products.  

Development of a new technique, capillary assisted molding, successfully 

accomplished this goal.  Chapter 2 describes the original methods used to produce 

anisotropic partially crystalline emulsion particles (APCE).  The first half of Chapter 3 

describes and depicts the three types of APCE morphologies—the spherocylinder, the 

ball and stick, and the dual ball and stick— produced to date using capillary assisted 

molding.  Additionally, Chapter 3 describes a fourth morphology type, the torus, 

whose production is inspired by capillary assisted molding.  By virtue of their 

anisotropy, namely their high length-to-width and high surface area-to-volume ratios, 

the four APCE show promise in enhanced delivery of actives in emulsion-based 

products.  

Further investigation of APCE shows that the particles possess an 

unanticipated and potentially useful characteristic: the ability to change their 

morphology in response to external stimuli.  When an APCE’s local environment is 

altered in way that affects the crystalline network or the continuous-dispersed phase 
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interface, the particle deforms.  Morphology stability, dynamics and evolution and 

their relation to the local emulsion are described in the second half of Chapter 3.  

Three types of external stimuli—thermal, surfactant dilution and magnetic—have been 

applied to APCE to date.  Increasing the bulk emulsion temperature and diluting the 

local surfactant causes rapid deformation of APCE to spherical droplets.  The utility of 

morphology control via eternal stimuli was demonstrated through a proof of concept 

deposition test.  While this proof of concept test illustrated the potential benefits of 

using APCE in emulsion products, quantitative understanding of morphology 

dynamics needed to be developed to successfully incorporate APCE into products.  As 

such, the second, ongoing goal of this work is to:  

Goal 2: Develop a model to quantitatively describe the morphology of 
anisotropic partially crystalline emulsion droplets.  

In the development of models for morphology stability, we build upon the 

hypothesis that APCE deformation is linked to opposing forces acting at the 

continuous-dispersed phase interface, namely the compressive forces exerted by the 

interface acting to reduce the total interfacial area of the system, and resistance of the 

crystalline network to deformation.  Chapter 4 describes three models derived from 

fundamental laws of interfacial phenomena and differential geometry to describe 

morphological stability in APCE.  The spherocylinder and axisymmetric models 

appear to capture qualitative trends in static APCE stability well, while the torus 

model shows more promise in capturing morphology dynamics.  

Chapter 5 describes the preliminary work performed to quantitatively evaluate 

the generalized axisymmetric model’s utility in predicting experimental axisymmetric 

particle stability.  A discrete modeling program is developed to take an image of 

axisymmetric APCE, apply the axisymmetric force model, and determine the 



 
 
 

97 

magnitude and location of the segment under the maximum stress.  To date, the results 

of the validation attempt are inconclusive.  As is discussed in Chapter 5, numerical 

artifacts of the discrete modeling program limit our confidence in the internal stress 

distributions produced from experimental images in this preliminary version of the 

program.   

There is significant opportunity to improve upon the accuracy of the discrete 

modeling program and potentially validate the axisymmetric model.  Specifically, we 

suggest using more rigorous, mesh-based parameterization methods to construct the 

three-dimensional surface of an APCE from a two-dimensional microscopy image.  

Complete development of the envisioned discrete modeling program would be useful 

in two applications.  First, the program could be used to validate or disprove the 

axisymmetric model as previously discussed.  Second, if the axisymmetric model 

shows utility in predicting APCE static stability, the program could be used to take 

any sketch of an APCE design and determine the locations where the APCE is most 

likely to undergo deformation.  Product engineers could use the program to rapidly 

evaluate APCE morphologies, specifically those that are not easily parameterized and 

consequently not easily defined analytically.   

There is also significant opportunity to explore the potential benefits of APCE 

experimentally.  Incorporating unique materials, such as a ferrofluid that is completely 

miscible in the dispersed phase or a UV initiated crystalline network, into APCE could 

reveal a new types of APCE response to an entirely different set of eternal stimuli.  

Deposition tests onto substrates of various geometries and chemistries would further 

determine the increased effectiveness of APCE in the delivery of active ingredients.  

By continuing study of anisotropic partially crystalline emulsion particles through the 
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three approaches—experimental, analytical, and computational—begun here, we can 

advance the understanding of this promising emulsion system and promote its 

successful incorporation into real products.  
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Appendix A 

TECHNICAL DRAWINGS FOR CUSTOM FABRICATED MICROSCOPE 
STAGE 

 

Figure A.1: Assembled 5 piece microscope stage. Note that all dimensions are in 
centimeters.  
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Figure A.2: Top piece (chamber support) of microscope stage. Note that all 
dimensions are in centimeters. 
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Figure A.3: Micromanipulator supports (2 pieces per stage). Note that all dimensions 
are in centimeters.  
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Figure A.4: Mount to microscope (2 pieces per stage). Note that all dimensions are in 
centimeters. 
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Appendix B 

MATLAB FUNCTION USED TO CALCULATE SURFACE TRACTION 

function output = surfaceTraction(textfilename, inc, polyindex, grab) 
%This function takes as an input a text file of a droplet, and 
outputs the 
%Laplace pressure difference acting at each point in the profile. 
%D is the diameter 
%inc is the spacing increments for lower resolution 
%polyindex is the number of points along the meridian curve included 
in the 
%instantaneous curvature calculation 
%grab is increment for selecting points along the axis of symmetry 
  
% % % % Section 1 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Loading Text File Data and parameterizing in terms of u% 
greyscalemat = load(textfilename); 
[rows, columns]= size(greyscalemat); 
k=1; 
  
%Makes vectors of xy-coordinates in the image that outline the 
profile 
for i=1:rows 
    for j = 1:columns 
        if greyscalemat(i,j) == 255 
            xvector(k) = j; 
            yvector(k) = -i + rows; 
            k=k+1; 
        end 
    end 
end 
  
figure (1) 
plot(xvector, yvector, '.'); 
axis equal 
division = ginput; 
Aall= size(division); 
a = Aall(1); 
for i = 1:(a-1); 
    coefdivision = polyfit(division(i:(i+1),1), division(i:(i+1),2), 
1); 
    divisionmat(i, :) = [coefdivision(1), coefdivision(2), 
division(i,2), division((i+1),2)]; 
end 
hold on 
title('Divide') 
plot(division(:, 1), division(:,2)); 
allpoints = [xvector', yvector']; 
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axis equal 
  
% Reording vectors  
k = 1; 
jleft=1; 
jright=1; 
for i = 1: length(xvector') 
    if allpoints(i, 2) < divisionmat(k,4) 
        k = k+1; 
    elseif allpoints(i, 2) > divisionmat(k,4) 
        xtest = (allpoints(i,2) - divisionmat(k, 
2))/(divisionmat(k,1)); 
        if allpoints(i,1) < xtest 
            leftx(jleft)= allpoints(i,1); 
            lefty(jleft)= allpoints(i,2); 
            jleft= jleft+1; 
        else 
            rightx(jright)= allpoints(i,1); 
            righty(jright)= allpoints(i,2); 
            jright = jright + 1; 
        end 
    end 
end 
  
figure (2) 
plot(leftx', lefty', '.b'); 
hold on 
plot(rightx', righty', '.r'); 
axis equal 
% flipping vectors 
rightxf = fliplr(rightx); 
rightyf = fliplr(righty); 
allpointsordered = [leftx', lefty'; rightxf', rightyf']; 
  
%Makes the vectors low resolution for speed 
xvectorlowres = allpointsordered(1:inc:length(allpointsordered),1); 
yvectorlowres = allpointsordered(1:inc:length(allpointsordered),2); 
  
  
%Turns off ill-conditioned polynomial warning 
warning off all  
  
%Finding distance between points before and after turn 
leftxshort = leftx(1:inc:length(leftx)); 
turnindex = length(leftxshort); 
dist = ((xvectorlowres(turnindex+1)-
xvectorlowres(turnindex))^2+(yvectorlowres(turnindex+1)-
yvectorlowres(turnindex))^2)^(1/2); 
  
  
% % % % Section 2 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
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%Radius of Curvature for Plane Curves (Parametric) and Normal vector% 
  
  
for i = 1: (length(xvectorlowres)-polyindex) 
    %Define vectors around each set of points for the regression 
    xpoly = xvectorlowres(i:(i+polyindex)); 
    ypoly = yvectorlowres(i:(i+polyindex)); 
    tvec = (i:(i+polyindex))'; 
    coefx=polyfit(tvec, xpoly, 3); 
    coefy=polyfit(tvec,ypoly, 3); 
     
    u = ceil((polyindex+1)/2); 
    v = floor((polyindex+1)/2); 
    %Middle index is i+v 
    rp(i+v,:) = 
[3*coefx(1)*(i+v)^2+2*coefx(2)*(i+v)+coefx(3),3*coefy(1)*(i+v)^2+2*co
efy(2)*(i+v)+coefy(3), 0]; 
    rpp(i+v,:) = 
[6*coefx(1)*(i+v)+2*coefx(2),6*coefy(1)*(i+v)+2*coefy(2), 0]; 
    cprod(i+v, :) = cross(rp(i+v,:), rpp(i+v,:)); 
    magcprod = (dot(cprod(i+v,:), cprod(i+v,:)))^(.5); 
    magrp = (dot(rp(i+v,:), rp(i+v,:)))^(.5); 
    %K1(i+v) = magcprod / (magrp^3); 
    if cprod(i+v,3)<0 
        K1(i+v) = (-1)*magcprod / (magrp^3); 
    else  
        K1(i+v) = magcprod / (magrp^3); 
    end 
    geofactor(i+v) = K1(i+v); 
     
    %Normal Vector 
    np(i+v,:) = [(-
1)*((3)*coefy(1)*(i+v)^2+2*coefy(2)*(i+v)+coefy(3)) , 
3*coefx(1)*(i+v)^2+2*coefx(2)*(i+v)+coefx(3)]; 
    %Making a unit normal 
    nunit(i+v,:)= np(i+v,:)./( (dot(np(i+v,:), np(i+v, :))^(.5)));  
    n(i+v,:) = nunit(i+v,:).*K1(i+v); 
     
    %Sets geofactor at the turn points to be automatically 0 if the 
turn 
    %point is far away 
    if dist > 50 
        if (i > (turnindex-polyindex)) && (i<(turnindex+1))  
            geofactor (i+v) = 0; 
        end 
    end 
end 
  
geofactor; 
%Fixing ends of of geofactor 
  
%if the ends are not connected, we set the points that are affected 
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to 0 
distend = ((xvectorlowres(1)-
xvectorlowres(length(xvectorlowres)))^2+(yvectorlowres(1)-
yvectorlowres(length(yvectorlowres)))^2)^(1/2); 
if distend > 50 
    difference = length(xvectorlowres) - length (geofactor);  
    originallength = length(geofactor); 
    for i=1:difference 
        geofactor(originallength + i) = 0; 
        %note that the points at the beginning should be 0 by default 
    end 
else %If the ends are connected 
    %Define a new set of vectors 
    xvectorend = [xvectorlowres((length(xvectorlowres)-
polyindex):length(xvectorlowres)); xvectorlowres(1:polyindex)]; 
    yvectorend = [yvectorlowres((length(yvectorlowres)-
polyindex):length(yvectorlowres)); yvectorlowres(1:polyindex)]; 
    %Radius of Curvature for Plane Curves (Parametric) 
    for i = 1: (length(xvectorend)-polyindex) 
        %Define vectors around each set of points for the regression 
        xpoly = xvectorend(i:(i+polyindex)); 
        ypoly = yvectorend(i:(i+polyindex)); 
        tvec = (i:(i+polyindex))'; 
        coefx=polyfit(tvec, xpoly, 3); 
        coefy=polyfit(tvec,ypoly, 3); 
  
        %Middle index is i+v 
        rpend(i+v,:) = 
[3*coefx(1)*(i+v)^2+2*coefx(2)*(i+v)+coefx(3),3*coefy(1)*(i+v)^2+2*co
efy(2)*(i+v)+coefy(3), 0]; 
        rppend(i+v,:) = 
[6*coefx(1)*(i+v)+2*coefx(2),6*coefy(1)*(i+v)+2*coefy(2), 0]; 
        cprodend(i+v, :) = cross(rpend(i+v,:), rppend(i+v,:)); 
        magcprodend = (dot(cprodend(i+v,:), cprodend(i+v,:)))^(.5); 
        magrpend = (dot(rpend(i+v,:), rpend(i+v,:)))^(.5); 
        K1end(i+v) = magcprodend / (magrpend^3); 
        geofactorend(i+v) = K1end(i+v); 
    end 
    %Beginning of geofactor 
    for i=1:v 
        geofactor(i) = geofactorend(i+polyindex+1); 
    end 
    for i=(length(xvectorlowres) - v):length(xvectorlowres) 
        j = i - length(xvectorlowres) + polyindex +1; 
        geofactor(i)=geofactorend(j); 
    end 
     
end 
  
%Making sure normal vector is the right size 
sizenormal = size(n); 
difference = length(xvectorlowres) - sizenormal(1) ;  
    originallength = sizenormal(1); 
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    for i=1:difference 
        n(originallength + i,:) = [0,0]; 
        nunit(originallength+i, :) = [0,0]; 
        cprod(originallength+i,:) =[0,0,0]; 
    end 
  
figure (3) 
title('K1 with vector') 
scatter(xvectorlowres, yvectorlowres, 50, geofactor, 'filled'); 
axis equal 
colorbar 
caxis([0,.03]) 
  
hold on 
title('K1 with vector') 
quiver(xvectorlowres, yvectorlowres, 100.*n(:,1), 100.*n(:,2)); 
  
% % % % Section 3 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Calculating Second Principle Curvature% 
  
%Axis of symmetry point selection 
figure (4) 
title('Axis of Symmetry') 
scatter(xvectorlowres(1:grab:length(xvectorlowres)), 
yvectorlowres(1:grab:length(yvectorlowres)), 50, 
geofactor(1:grab:length(xvectorlowres)), 'filled'); 
axis equal 
colorbar 
caxis([0,.03]) 
hold on 
title('Axis of Symmetry') 
quiver(xvectorlowres(1:grab:length(xvectorlowres)), 
yvectorlowres(1:grab:length(yvectorlowres)), 
nunit((1:grab:length(xvectorlowres)),1), 
nunit((1:grab:length(xvectorlowres)), 2), 1.5); 
hold on 
title('Axis of Symmetry') 
scatter(xvectorlowres, yvectorlowres,10, 'filled') 
xvectorgrab = xvectorlowres(1:grab:length(xvectorlowres)); 
yvectorgrab = yvectorlowres(1:grab:length(yvectorlowres)); 
nunitgrab = nunit(1:grab:length(xvectorlowres), :); 
first =1; 
for i = 1:length(xvectorgrab) 
    hold on 
    title('Axis of Symmetry') 
    scatter(xvectorgrab(i), yvectorgrab(i), 100) 
    center = input('Input 1 if you want to designate center \n'); 
    if center ~=1 
        [xsym(i), ysym(i)] = ginput(1); 
        hold on 
        title('Axis of Symmetry') 
        scatter(xsym(i), ysym(i)) 
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        gdist(i) = ((xvectorgrab(i)-xsym(i))^2+(yvectorgrab(i)-
ysym(i))^2)^(1/2); 
        %finding the angle 
        c = nunitgrab(i,:); 
        d = [1, (yvectorgrab(i)-ysym(i))/(xvectorgrab(i)-xsym(i))]; 
        magc = dot(c,c)^(.5); 
        magd = dot(d,d)^(.5); 
        theta(i) = radtodeg(acos(dot(c,d)/(magc*magd))); 
        fprintf('%g \n', theta(i)); 
        if theta(i) > 90 
            theta(i) = 180 - theta(i); 
        end 
        if theta(i)>5 
            K2(1+grab*(i-1)) = cos(degtorad(theta(i)))/gdist(i); 
        else 
            K2(1+grab*(i-1)) = 1/(gdist(i)); 
        end 
    elseif center ==1 && first ==1 
        [xcent, ycent] = ginput(1); 
        gdist(i) = ((xvectorgrab(i)-xcent)^2+(yvectorgrab(i)-
ycent)^2)^(1/2); 
        K2(1+grab*(i-1)) = 1/(gdist(i)); 
        first = 2; 
    elseif center ==1 
        gdist(i) = ((xvectorgrab(i)-xcent)^2+(yvectorgrab(i)-
ycent)^2)^(1/2); 
        K2(1+grab*(i-1)) = 1/(gdist(i)); 
    end 
    fprintf('%g \n \n', K2(1+grab*(i-1))); 
end 
  
  
%Making the complete K2  
lowi = 1; 
highi = 1 + grab; 
m = 1; 
for i=1:(length(K2)-grab) 
    if K2(i) == 0 
        if K2(lowi) ==0  
            fprintf('warning') 
        end 
        K2(i) = m*(K2(highi)-K2(lowi))/grab + K2(lowi); 
        m = m+1; 
    elseif i~=1 && K2(i)~=0 
        m=1; 
        lowi = lowi + grab; 
        highi = highi +grab; 
    end 
end 
length(K2); 
length(xvectorlowres); 
  
%Making sure K2 is the right size 
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%sizenormal = size(n); 
difference = length(xvectorlowres) - length(K2) ;  
    originallength = length(K2); 
    for i=1:difference 
        K2(originallength + i) = 0; 
        K2(originallength+i) = 0; 
        %note that the points at the beginning should be 0 by default 
    end 
     
% % % % Section 4 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Calculating Twice the Mean curvature% 
     
geofactor = K2+geofactor; 
geofactor; 
figure (5) 
title('K1+K2') 
scatter(xvectorlowres, yvectorlowres, 50, geofactor, 'filled'); 
axis equal 
colorbar 
caxis([0,.1]) 
  
figure (6) 
title('K2') 
scatter(xvectorlowres, yvectorlowres, 50, K2, 'filled'); 
axis equal 
colorbar 
caxis([0,.1]) 
  
% % % % Section 5 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Calculating Surface Traction% 
  
for i = 1: (length(xvectorlowres)-v)  
    n(i+v,:) = nunit(i+v,:).*geofactor(i+v); 
end 
  
figure (7) 
scatter(xvectorlowres, yvectorlowres, 50, (10^4)*geofactor, 
'filled'); 
axis equal 
colorbar 
caxis([-100,1200]) 
hold on 
axis off 
quiver(xvectorlowres(1:grab:length(xvectorlowres)), 
yvectorlowres(1:grab:length(yvectorlowres)), 
3000.*n(1:grab:length(yvectorlowres),1), 
3000.*n(1:grab:length(yvectorlowres),2)); 
hold on  
title(textfilename); 
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figure (8) 
scatter(xvectorlowres, yvectorlowres, 50, geofactor, 'filled'); 
axis equal 
colorbar 
caxis([-.01,.1]) 
axis off 
  
size(xvectorlowres); 
size(yvectorlowres); 
size(n); 
size(geofactor); 
  
output = [xvectorlowres, yvectorlowres,geofactor', n,];  
end 
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Appendix C 

MATLAB FUNCTION USED TO CALCULATE THE EFFECTIVE VON 
MISES STRESS 

function avgplanevonMis(mat, grab, a) 
%This function takes as an input a matrix, mat,whose columns are: 
%1) the ordered x coordinate of the meridian profile, 2) the ordered 
y 
%coordinate of the meridian profile, 3) the magnitude of the surface 
%traction, 4) the i component of the unit traction and 5) the j 
component 
%of the unit traction.  
%It also takes the variable, grab, as an input, which is the 
increment  
%of points selected along the the axis of symmetry 
  
% % % % Section 1 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Reorienting system% 
matdim = size(mat); 
  
%defining vectors for consistency with surface traction function 
  
xvectorlowres = mat(:,1); 
yvectorlowres = mat(:, 2); 
geofactor = mat(:, 3); 
n = mat(:, 4:5); 
  
figure (1) 
scatter(xvectorlowres, yvectorlowres, 10, geofactor, 'filled'); 
axis equal 
colorbar 
caxis([-.01,.05]) 
hold on 
axis on 
quiver(xvectorlowres(1:grab:length(xvectorlowres)), 
yvectorlowres(1:grab:length(yvectorlowres)), 
3000.*n(1:grab:length(yvectorlowres),1), 
3000.*n(1:grab:length(yvectorlowres),2)); 
  
%Defining the Axis of Symmetry 
symcheck = 0; 
while symcheck==0 
    axissym = ginput(2); 
    if axissym(1,1)~=axissym(2,1) 
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        coefsym = polyfit(axissym(1:2,1), axissym(1:2,2),1); 
        for i = round(axissym(1,2)):round(axissym(2,2)) 
            sympoint(i,:)= [(i-coefsym(2))/coefsym(1), i]; 
        end 
    else 
        for i = round(axissym(1,2)):round(axissym(2,2)) 
            sympoint(i, :) = [axissym(1,1) ,i]; 
        end 
    end 
    hold on 
    scatter(sympoint(1:length(sympoint), 
1),sympoint(1:length(sympoint),2)); 
    symcheck = input('If you are satisfied with your axis, input 1 
\n'); 
end 
  
if axissym(1,1)~=axissym(2,1) 
    coeforthosym = [(-1/coefsym(1)), 
(1/coefsym(1))*axissym(1,1)+axissym(1,2)]; 
end 
     
for i=1:400 
    %orthosym(i,:) = [i, (-1/coefsym(1))*(i-
axissym(1,2))+axissym(2,2)]; 
    if axissym(1,1)~=axissym(2,1) 
       orthosym(i,:) = [i, coeforthosym(1)*i+coeforthosym(2)]; 
    else 
       orthosym(i,:) = [i, axissym(1,2)];  
    end 
end     
  
%Reploting all points with the correct axis of symmetry and y-axis  
figure (2) 
scatter(xvectorlowres, yvectorlowres, 10, geofactor, 'filled'); 
axis equal 
colorbar 
caxis([-.01,.05]) 
hold on 
quiver(xvectorlowres(1:grab:length(xvectorlowres)), 
yvectorlowres(1:grab:length(yvectorlowres)), 
3000.*n(1:grab:length(yvectorlowres),1), 
3000.*n(1:grab:length(yvectorlowres),2)); 
hold on 
scatter(sympoint(1:length(sympoint), 
1),sympoint(1:length(sympoint),2)); 
hold on 
scatter (orthosym(1:length(orthosym),1), 
orthosym(1:length(orthosym),2)); 
  
  
  
%defining variables for the distance 
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asym = -1; 
bsym = 1/coefsym(1); 
csym = (-1)*coefsym(2)/coefsym(1); 
aosym = -1; 
bosym = 1/coeforthosym(1); 
cosym = (-1)*coeforthosym(2)/coeforthosym(1); 
bx = [1, coeforthosym(1)]; 
by = [1, coefsym(1)]; 
  
symindex = 0; 
k=1; 
m=1; 
  
for i = 1: length(yvectorlowres) 
    xtest = round((yvectorlowres(i)-coefsym(2))/coefsym(1)); 
    if xtest < xvectorlowres(i) 
        %leftx (i) = xvectorlowres(i); 
        %lefty (i) = yvectorlowres(i); 
        transx(i) = abs(asym*xvectorlowres(i) 
+bsym*yvectorlowres(i)+csym)/sqrt(asym^2+bsym^2); 
        transy (i) = abs(aosym*xvectorlowres(i) 
+bosym*yvectorlowres(i)+cosym)/sqrt(aosym^2+bosym^2); 
        %transforming the vector 
        transxnorm(i) = dot(n(i, 1:2), bx)/(dot(bx,bx)^(1/2)); 
        transynorm (i) = (a)*dot(n(i, 1:2), by)/(dot(by,by)^(1/2)); 
        %defining the left only 
        transxl(k) = transx(i); 
        transyl(k) = transy(i); 
        geol(k) = geofactor(i); 
        transxnorml(k) = transxnorm(i); 
        transynorml(k) = transynorm(i); 
        k=k+1; 
    elseif xtest == xvectorlowres(i) 
        symindex = i; 
        transx(i) = (-1)*abs(asym*xvectorlowres(i) 
+bsym*yvectorlowres(i)+csym)/sqrt(asym^2+bsym^2); 
        transy(i) = abs(aosym*xvectorlowres(i) 
+bosym*yvectorlowres(i)+cosym)/sqrt(aosym^2+bosym^2); 
        transxnorm (i) = dot(n(i, 1:2), bx)/(dot(bx,bx)^(1/2)); 
        transynorm (i) = (a)*dot(n(i, 1:2), by)/(dot(by,by)^(1/2)); 
    elseif xtest>xvectorlowres(i) 
        if symindex == 0 
            symindex = i-1; 
        end 
        %rightx(i-symindex) = xvectorlowres(i); 
        %righty(i-symindex) = yvectorlowres(i); 
        transx(i) = (-1)*abs(asym*xvectorlowres(i) 
+bsym*yvectorlowres(i)+csym)/sqrt(asym^2+bsym^2); 
        transy(i) = abs(aosym*xvectorlowres(i) 
+bosym*yvectorlowres(i)+cosym)/sqrt(aosym^2+bosym^2); 
        transxnorm (i) = dot(n(i, 1:2), bx)/(dot(bx,bx)^(1/2)); 
        transynorm (i) = (a)*dot(n(i, 1:2), by)/(dot(by,by)^(1/2)); 
        %defining the right only 
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        transxr(m) = transx(i); 
        transyr(m) = transy(i); 
        transxnormr(m) = transxnorm(i); 
        transynormr(m) = transynorm(i); 
        m=m+1; 
    end 
end 
  
  
%Transformed plot 
figure (3) 
scatter(transx, transy, 10, geofactor, 'filled'); 
axis equal 
colorbar 
caxis([-.01,.05]) 
hold on 
quiver(transx(1:grab:length(transx)), transy(1:grab:length(transy)), 
3000.*transxnorm(1:grab:length(transx)), 
3000.*transynorm(1:grab:length(transx))); 
  
% % % % Section 2 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Effective von Mises Stress from one side of the meridian profile% 
  
%Summing for the left side (actually the right side)  
%Finding the bottom of the vector to ensure correct summing 
transyl; 
[miny, minyind] = min(transyl); 
minyind 
for i = minyind: length(transxl)-(minyind+1) 
    segforcel(i, :) = abs(transyl(i)-transyl(i+1)).*[ 
transynorml(i)*pi*abs(transxl(i)), 2*transxnorml(i)*abs(transxl(i))]; 
end 
  
for i = minyind:length(segforcel) 
    stressyl(i) = (2/(pi*(transxl(i)^2)))*sum(segforcel(minyind:i, 
1)); %this is the sum 
    %stresszl(i) = (abs(transyl(i)-
transyl(i+1))/(pi*transxl(i))^2)*sum(i:length(segforcel), 2);  
    %%%%this was old%%%%% stresszl(i) = segforcel(i, 
2)/(abs(transyl(i)-transyl(i+1))*(pi*transxl(i))^2); %this is not the 
sum, instantaneous 
    stresszl(i) = segforcel(i, 2)/(abs(transyl(i)-
transyl(i+1))*(2*abs(transxl(i)))); 
    if stresszl(i)<0 %if the z stress at the interface is inward, 
take the difference 
        vonmisl(i,:) = [10, transyl(i), sqrt(abs((stressyl(i))-
abs(stresszl(i)))^2), transxl(i), stresszl(i), 
stressyl(i),abs(transyl(i)-transyl(i+1))]; 
    else 
        vonmisl(i,:) = [10, transyl(i), 
sqrt(abs((stressyl(i))+abs(stresszl(i)))^2), transxl(i), stresszl(i), 
stressyl(i),abs(transyl(i)-transyl(i+1))]; 
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    end 
end 
  
vonmisl; 
  
figure (4) 
scatter(transxl, transyl, 10) 
axis equal 
hold on 
scatter(vonmisl(:, 1), vonmisl(:,2), 10, vonmisl(:,3), 'filled') 
colorbar 
%caxis([0,300]) 
%hold on 
%quiver(transx(1:grab:length(transx)), transy(1:grab:length(transy)), 
3000.*transxnorm(1:grab:length(transx)), 
3000.*transynorm(1:grab:length(transx))); 
  
% % % % Section 3 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Effective von Mises Stress for the other side of the meridian 
profile% 
  
%Summing for the right side (actually the left side)  
%Finding the bottom of the vector to ensure correct summing 
transyr; 
[miny, minyindr] = min(transyr); 
minyindr 
for i = 1:(minyindr-1) 
    segforcer(i, :) = abs(transyr(i)-transyr(i+1)).*[ 
transynormr(i)*pi*abs(transxr(i)), 2*transxnormr(i)*abs(transxr(i))]; 
end 
  
for i = 1:(minyindr-1) 
    stressyr(i) = (2/(pi*(transxr(i)^2)))*sum(segforcer(i:(minyindr-
1), 1)); %this is the sum 
    %stresszl(i) = (abs(transyl(i)-
transyl(i+1))/(pi*transxl(i))^2)*sum(i:length(segforcel), 2);  
    %%%%stresszr(i) = segforcer(i, 2)/(abs(transyr(i)-
transyr(i+1))*(pi*transxr(i))^2); 
    stresszr(i) = segforcer(i, 2)/(abs(transyr(i)-
transyr(i+1))*(2*abs(transxr(i))));%this is not the sum, 
instantaneous 
    if stresszr(i)>0 %if the z stress at the interface is inward, 
take the difference 
        vonmisr(i,:) = [-10, transyr(i), sqrt(abs((stressyr(i))-
abs(stresszr(i)))^2), transxr(i), stresszr(i), 
stressyr(i),(abs(transyr(i)-transyr(i+1)))]; 
    else 
        vonmisr(i,:) = [-10, transyr(i), 
sqrt(abs((stressyr(i))+abs(stresszr(i)))^2), transxr(i), stresszr(i), 
stressyr(i),(abs(transyr(i)-transyr(i+1)))]; 
    end 
end 
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vonmisr; 
hold on  
scatter(transxr, transyr, 10) 
axis equal 
hold on 
scatter(vonmisr(:, 1), vonmisr(:,2), 10, vonmisr(:,3), 'filled') 
colorbar 
%caxis([0,300]) 
hold on 
quiver(transx(1:grab:length(transx)), transy(1:grab:length(transy)), 
3000.*transxnorm(1:grab:length(transx)), 
3000.*transynorm(1:grab:length(transx))); 
  
  
% % % % Section 4 % % % % % % % % % % % % % % % % % % % % % % % % % % 
% %  
%Plotting the average effective von Mises Stress% 
  
stresscheck = 0; 
while stresscheck == 1 
    dist = 100; 
    stresslocation = ginput(1); 
    if stresslocation(1) < 0 
        for i=1:(minyindr-1) 
            distcheck = abs(vonmisr(i, 2)-stresslocation(2)); 
            if distcheck<dist 
                dist=distcheck; 
                checkind = i; 
            end 
        end 
        fprintf('The stress at %g %g is %g \n', vonmisr(checkind, 4), 
vonmisr(checkind, 2), vonmisr(checkind, 3)) 
    else 
        for i= minyind:length(segforcel) 
            distcheck = abs(vonmisl(i, 2)-stresslocation(2)); 
            if distcheck<dist 
                dist=distcheck; 
                checkind = i; 
            end 
        end 
        fprintf('The stress at %g %g is %g \n', vonmisl(checkind, 4), 
vonmisl(checkind, 2), vonmisl(checkind, 3)) 
    end 
     
    stresscheck = input('To choose again press 1 \n'); 
end 
  
stresschecksum = 0; 
while stresschecksum == 1 
    dist = 100; 
    stresslocation = ginput(2); 
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    if stresslocation(1,1) < 0 
        for i=1:(minyindr-1) 
            distcheck = abs(vonmisr(i, 2)-stresslocation(1,2)); 
            if distcheck<dist 
                dist=distcheck; 
                checkindr = i; 
            end 
        end 
        fprintf('The left stress at %g %g is %g \n z is %g y is %g 
\n', vonmisr(checkindr, 4), vonmisr(checkindr, 2), vonmisr(checkindr, 
3), vonmisr(checkindr, 5), vonmisr(checkindr,6)) 
    end 
    dist = 100; 
    if stresslocation(2,1)>0 
        for i= minyind:length(segforcel) 
            distcheck = abs(vonmisl(i, 2)-stresslocation(2,2)); 
            if distcheck<dist 
                dist=distcheck; 
                checkindl = i; 
            end 
        end 
        fprintf('The right stress at %g %g is %g \n z is %g y is %g 
\n', vonmisl(checkindl, 4), vonmisl(checkindl, 2), vonmisl(checkindl, 
3), vonmisl(checkindl, 5), vonmisl(checkindl, 6) ) 
    end 
     
    %making sure profile stresses have the correct sign 
     
    if vonmisl(checkindl, 4)*vonmisl(checkindl,5)<0 
        fprintf('The right force in inward \n') 
    end 
    if vonmisr(checkindr, 4)*vonmisr(checkindr, 5)>0 
        fprintf('The left force is inward \n'); 
    end 
    %The summed z stress will be positive if inward 
    stresszsum = (abs(vonmisl(checkindl, 
4)*vonmisl(checkindl,5))*vonmisl(checkindl, 7)+ vonmisr(checkindr, 
4)*vonmisr(checkindr, 5))*vonmisr(checkindr, 7) / 
(abs(vonmisl(checkindl,4))*vonmisl(checkindl, 
7)+abs(vonmisr(checkindr,4))*vonmisr(checkindr, 7)) 
     
    stressysum = (vonmisl(checkindl, 6)*vonmisl(checkindl, 
4)^2+vonmisr(checkindr, 6)*vonmisr(checkindr, 
4)^2)/(vonmisl(checkindl, 4)^2+vonmisr(checkindr, 4)^2) 
    totalvonmis = sqrt( (abs(stressysum) - stresszsum)^2); 
    fprintf('The total vonmis stress at y = %g %g is %g \n', 
vonmisl(checkindl,2), vonmisr(checkindr, 2), totalvonmis);  
    fprintf('Scaled, this is %g \n', totalvonmis*30*10^3); 
    %totalvonmis*30*10^3 
    stresschecksum = input('To choose again press 1 \n'); 
end 
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%plotting the discrete vonmises stress 
transyl; 
transyl(length(transyl)); 
transyl(1); 
yplot = transyl(minyind):2:transyl(length(transyl)); 
for j = 1:length(yplot) 
    stresschecksum = 1; 
    stresslocation = [-10, yplot(j); 10, yplot(j)]; 
    while stresschecksum == 1 
        dist = 100; 
        %stresslocation = [-10, yplot(j); 10, yplot(j)]; 
        if stresslocation(1,1) < 0 
            for i=1:(minyindr-1) 
                distcheck = abs(vonmisr(i, 2)-stresslocation(1,2)); 
                if distcheck<dist 
                    dist=distcheck; 
                    checkindr = i; 
                end 
            end 
            fprintf('The left stress at %g %g is %g \n z is %g y is 
%g \n', vonmisr(checkindr, 4), vonmisr(checkindr, 2), 
vonmisr(checkindr, 3), vonmisr(checkindr, 5), vonmisr(checkindr,6)) 
        end 
        dist = 100; 
        if stresslocation(2,1)>0 
            for i= minyind:length(segforcel) 
                distcheck = abs(vonmisl(i, 2)-stresslocation(2,2)); 
                if distcheck<dist 
                    dist=distcheck; 
                    checkindl = i; 
                end 
            end 
            fprintf('The right stress at %g %g is %g \n z is %g y is 
%g \n', vonmisl(checkindl, 4), vonmisl(checkindl, 2), 
vonmisl(checkindl, 3), vonmisl(checkindl, 5), vonmisl(checkindl, 6) ) 
        end 
        stresszsum = (abs(vonmisl(checkindl, 
4)*vonmisl(checkindl,5))*vonmisl(checkindl, 7)+ vonmisr(checkindr, 
4)*vonmisr(checkindr, 5))*vonmisr(checkindr, 7) / 
(abs(vonmisl(checkindl,4))*vonmisl(checkindl, 
7)+abs(vonmisr(checkindr,4))*vonmisr(checkindr, 7)); 
  
        stressysum = (vonmisl(checkindl, 6)*vonmisl(checkindl, 
4)^2+vonmisr(checkindr, 6)*vonmisr(checkindr, 
4)^2)/(vonmisl(checkindl, 4)^2+vonmisr(checkindr, 4)^2); 
        totalvonmis(j) = sqrt( (abs(stressysum) - stresszsum)^2); 
        totalvonmisscale(j)=sqrt(3)*totalvonmis(j)*10^4; 
        stresschecksum = 0; 
    end 
end 
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[totalvonmisscale', yplot'] 
  
figure (5) 
title('totalvonmis') 
%scatter(vonmisr(:,2), vonmisr(:,3)) 
scatter(yplot, totalvonmisscale) 
%axis([0 300 0 .05]) 
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Appendix D 

THEORETICAL COMPUTATIONS IN MAPLE 

See supplementary PDF.  

 



(1.1)(1.1)

(1.2)(1.2)

Alexandra Bayles
Supporting Maple Files: Honors Senior Thesis

Spherocylinder Figure Generation
restart;
with LinearAlgebra :
 with VectorCalculus :
 with plots :
g d t;
 R d 1;
 l d 7;
 f d piecewise t O 0 and t ! R, sqrt R2 K gKR 2 , t R R and t % RC l,  R, t O RC l and t

! 2$RC l, sqrt R2 K gK RC l 2  ;

t

1

7

2 tK t2 0 ! t and t ! 1

1 1 % t and t % 8

K63C 16 tK t2 8 ! t and t ! 9

P3D d plot3d   f$cos theta , g, f$sin theta , t = 0 ..2$ RC l , theta = 0 .. 2$ Pi, axes = none,
 scaling = constrained, color = blue, grid = 60, 20 ; 

 P0 d plot f, Kf , t = 0 ..2$ RC l ,  axes = none, scaling = constrained,  color = blue ;
 

PLOT3D ...

PLOT ...

P1 d arrow 1, R , 2, R , 3, R , 4, R , 5, R , 6, R , 7, R , 8, R  , 0,K
1

2 $R
, shape

= arrow, color = green ;

 P2 d arrow 1,K1$ R , 2,K1$ R , 3,K1$R , 4,K1$R , 5,K1$R , 6,K1$R , 7,K1$R , 8,K1

$R ,  , 0,
1

2$R
, shape = arrow, color = green ;

 P3 d arrow 0, 0 , R, 0 , shape = arrow,  color = red ; P4 d arrow 2$RC l, 0 , 
KR, 0 , shape = arrow, color = red ;

 P5 d arrow RC
sqrt 2

2
$RC l, 

sqrt 2
2

$R , 
Ksqrt 2

2
$

1
R

, 
Ksqrt 2

2
$

1
R

,

 shape = arrow, color = red ;  P6 d arrow RC
sqrt 2

2
$RC l, 

Ksqrt 2
2

$R ,



(1.3)(1.3)

 
Ksqrt 2

2
$

1
R

, 
sqrt 2

2
$

1
R

, shape = arrow,  color = red ; 

 P7d arrow 1K
sqrt 2

2
$R , 

sqrt 2
2

$R , 
sqrt 2

2
$

1
R

, 
Ksqrt 2

2
$

1
R

, shape

= arrow, color = red ;  P8d arrow 1K
sqrt 2

2
$R , 

Ksqrt 2
2

$R , 
sqrt 2

2

$
1
R

, 
sqrt 2

2
$

1
R

, shape = arrow,  color = red ;

PLOT ...

PLOT ...

PLOT ...

PLOT ...

PLOT ...

PLOT ...

PLOT ...

PLOT ...
display P0, P1, P2, P3, P4, P5, P6, P7, P8 ;
 display P0, P3, P4 ;





display P3D



(2.1)(2.1)

Cassini Oval Figure Generation 1
restart;
 with LinearAlgebra :
 with VectorCalculus :
 with plots ;
animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot,
implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot,
listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple,
odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot,
polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors,
setoptions, setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d,
tubeplot

cd .95;



(2.2)(2.2)

 dd 1;
 Md 2$c2$cos 2$ t C 2$sqrt Kc4 C d4 C c4$ cos 2$t 2 ;

 gd cos t $sqrt
M
2

;

 Rd 1;
 ld 5;

 fd sin t $sqrt
M
2

;

 evalf subs t =
Pi
4

, f ;

0.95

1

1.8050 cos 2 t C 2 0.18549375C 0.81450625 cos 2 t 2

cos t  0.9025000000 cos 2 t C 0.18549375C 0.81450625 cos 2 t 2

1

5

sin t  0.9025000000 cos 2 t C 0.18549375C 0.81450625 cos 2 t 2

0.4640527198
plot3d   f$cos theta , g, f$sin theta , t = 0 ..2$Pi, theta = 0 ..Pi, axes = none, scaling = constrained,

 grid = 60, 20 , color = blue, ;

 plot3d   f$cos theta , g, f$sin theta , t =
Pi

3.75
.. 

Pi
4

, theta = 0 .. Pi, axes = none, scaling

= constrained, color = blue, grid = 5, 20 ; 

plot3d   f$cos theta , g, f$sin theta , t =
Pi

3.75
.. 

Pi
4

, theta =
Pi
2

.. 
3$ Pi

2
, axes = none, scaling

= constrained, color = blue, grid = 5, 20 ; 

plot3d   f$cos theta , g, f$sin theta , t = 0 .. 
Pi
4

, theta = 0 .. 2$ Pi, axes = none, scaling

= constrained, color = blue, grid = 10, 20 ;









(3.1)(3.1)

Discrete Modeling Accuracy: Analytical Curvature of Cassini Oval 
restart;
 with LinearAlgebra :
 with VectorCalculus :
 with plots ;
animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,

conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot,
implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot,
listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple,
odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot,
polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors,
setoptions, setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d,
tubeplot

c d .9; #defines the shape of the oval



(3.2)(3.2)

 dd 1;
 Md 2$c2$cos 2$ t C 2$sqrt Kc4 C d4 C c4$ cos 2$t 2 ;

 gd cos t $sqrt
M
2

;

 Rd 1;
 ld 5;

 fd sin t $sqrt
M
2

;

 evalf subs t =
Pi
4

, f ;

0.9

1

1.62 cos 2 t C 2 0.3439C 0.6561 cos 2 t 2

cos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

1

5

sin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

0.5414932485
plot3d   f$cos theta , g, f$sin theta , t = 0 ..2$Pi, theta = 0 ..2$Pi, axes = normal, scaling

= constrained, labels = "x", "y", "z" ;
 plot   f, g, t = 0 .. Pi , axes = normal, scaling = constrained, labels = "x", "y" ;

 plot3d   f$cos theta , g, f$sin theta , t =
Pi
4

.. 
Pi
2

, theta = 0 .. 2$ Pi, axes = boxed, scaling

= constrained, labels = "x", "y", "z" ;





x
0.1 0.3 0.5

y

K1

K0.5

0

0.5

1



(3.3)(3.3)

fpd diff f, t :
 fppd diff fp, t :
 gpd diff g, t :
 gppd diff gp, t :
rp d fp, gp, 0 :
 rppd fpp, gpp, 0 :
 cprodd CrossProduct rp, rpp :
magcprod d DotProduct cprod, cprod .5 :
magrp d DotProduct rp, rp .5 :

k1d

cprod 3
abs cprod 3

$magcprod

magrp3 ;

cos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2



(3.3)(3.3)

C
1
2

 

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
 

Kcos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K
1
4

 

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
3 / 2

C
1
2

 cos t  K3.240000000 cos 2 t K
1.721868840 cos 2 t 2 sin 2 t 2

0.3439C 0.6561 cos 2 t 2 3 / 2

C
2.624400000 sin 2 t 2

0.3439C 0.6561 cos 2 t 2
K

2.624400000 cos 2 t 2

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2 K

Ksin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2



(3.3)(3.3)

C
1
2

 

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
 

Ksin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

C

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K
1
4

 

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
3 / 2

C
1
2

 sin t  K3.240000000 cos 2 t K
1.721868840 cos 2 t 2 sin 2 t 2

0.3439C 0.6561 cos 2 t 2 3 / 2

C
2.624400000 sin 2 t 2

0.3439C 0.6561 cos 2 t 2
K

2.624400000 cos 2 t 2

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

 cos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2



(3.3)(3.3)

C
1
2

 

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
 

Kcos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K
1
4

 

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
3 / 2

C
1
2

 cos t  K3.240000000 cos 2 t K
1.721868840 cos 2 t 2 sin 2 t 2

0.3439C 0.6561 cos 2 t 2 3 / 2

C
2.624400000 sin 2 t 2

0.3439C 0.6561 cos 2 t 2
K

2.624400000 cos 2 t 2

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2 K

Ksin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2



(3.3)(3.3)

C
1
2

 

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
 

Ksin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

C

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K
1
4

 

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
3 / 2

C
1
2

 sin t  K3.240000000 cos 2 t K
1.721868840 cos 2 t 2 sin 2 t 2

0.3439C 0.6561 cos 2 t 2 3 / 2

C
2.624400000 sin 2 t 2

0.3439C 0.6561 cos 2 t 2
K

2.624400000 cos 2 t 2

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

2 0.5

K cos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

C
1
2

 

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
 



(3.3)(3.3)

Kcos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K
1
4

 

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
3 / 2

C
1
2

 cos t  K3.240000000 cos 2 t K
1.721868840 cos 2 t 2 sin 2 t 2

0.3439C 0.6561 cos 2 t 2 3 / 2

C
2.624400000 sin 2 t 2

0.3439C 0.6561 cos 2 t 2
K

2.624400000 cos 2 t 2

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2 C

Ksin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

C
1
2

 

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
 

Ksin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2



(3.3)(3.3)

C

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

K
1
4

 

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2
3 / 2

C
1
2

 sin t  K3.240000000 cos 2 t K
1.721868840 cos 2 t 2 sin 2 t 2

0.3439C 0.6561 cos 2 t 2 3 / 2

C
2.624400000 sin 2 t 2

0.3439C 0.6561 cos 2 t 2
K

2.624400000 cos 2 t 2

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

 cos t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

C
1
2

 

sin t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

2

C

Ksin t  0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

C
1
2

 

cos t  K1.620000000 sin 2 t K
1.312200000 cos 2 t  sin 2 t

0.3439C 0.6561 cos 2 t 2

0.8100000000 cos 2 t C 0.3439C 0.6561 cos 2 t 2

2 1.5



(3.4)(3.4)

(3.3)(3.3)

k1normd k1$1.345 :

 gnormd 
gC 1.345

1.345
:

plot gnorm, k1norm, t = 0 ..Pi ;

 #plot g, 
cprod 3

abs cprod 3
, t = 0 ..Pi ;

 evalf subs t = .1, gnorm, k1norm ;

0.5 1 1.5 2

K2

K1

0

1

1.987217288 exC K2.594983228 ey

for i from 0 to 3.14 by .1 do evalf subs t = i, k1norm ; end do;
K2.619294240

K2.594983228

K2.521832347

K2.399134332

K2.225533124

K1.998788590



(3.3)(3.3)

(3.5)(3.5)

K1.715631560

K1.372299220

K0.9670399872

K0.5053737460

K0.005185912437

0.5032241806

0.9820668915

1.392300422

1.699032803

1.875655228

1.906707031

1.789461640

1.534201325

1.163173498

0.7082539448

0.2073428153

K0.3005172946

K0.7811591954

K1.211181617

K1.580331870

K1.888087173

K2.137843638

K2.333217603

K2.476877913

K2.570518382

K2.615091078
nd K1 $diff g, t , diff f, t :

nunitd
n

DotProduct n, n .5 :

xvecd K1 $f, 0 :

K2d
DotProduct xvec, nunit
DotProduct xvec, xvec

:

k2normd K2$1.345 :
plot gnorm, k2norm, t = 0 ..Pi ;



(3.3)(3.3)

0 0.5 1 1.5 2

K3.0

K2.9

K2.8

K2.7

K2.6

K2.5

for i from 0 to 3.14 by .1 do evalf subs t = i, k2norm ; end do;
Float undefined

K2.611256655

K2.587888458

K2.551594136

K2.506991958

K2.461917843

K2.428623928

K2.423469174

K2.461052872

K2.542832914

K2.653732995

K2.772879034



(3.3)(3.3)

(3.6)(3.6)

K2.883520279

K2.974943240

K3.040884216

K3.077887712

K3.084320402

K3.059917844

K3.005713058

K2.924318972

K2.820669108

K2.703392726

K2.586637535

K2.490263924

K2.433409862

K2.422069107

K2.445767650

K2.487710516

K2.533689639

K2.574157091

K2.603303258

K2.617895154
for i from 0 to 3.14 by .1 do evalf subs t = i, gnorm ; end do;

2.000269446

1.987217288

1.948678923

1.886523777

1.803935724

1.705574889

1.597871438

1.489191834

1.388758811

1.303270497

1.234003541

1.178149374

1.131918393



(4.1)(4.1)

(3.3)(3.3)

(3.7)(3.7)

1.092126668

1.056412871

1.023018043

0.9905304278

0.9576723152

0.9231114435

0.8852619409

0.8420457381

0.7906352495

0.7274040352

0.6488158712

0.5540712308

0.4477487176

0.3385246433

0.2353839323

0.1455758840

0.0744559465

0.0257945212

0.0019958610

Effective von Mises Stress for an Idealized Rotated Surface
restart;
with VectorCalculus :
rt d fp$cos theta , gp, fp$sin theta ;
 rthetad f$ Ksin theta , 0, f$cos theta ;

 nunitd simplify  
CrossProduct rt, rtheta

sqrt DotProduct CrossProduct rt, rtheta , CrossProduct rt, rtheta
;

fp cos q exC gp eyC fp sin q ez

Kf sin q exC f cos q ez

gp f cos q

f 2 gp2 C fp2
exK

f fp

f 2 gp2 C fp2
eyC

gp f sin q

f 2 gp2 C fp2
ez

rttd fpp$cos theta , gpp, fpp$sin theta ; 
 rthetathetad f$ Kcos theta , 0, f$ Ksin theta ;
 rtthetad fp$ Ksin q , 0, fp$cos theta ;



(4.2)(4.2)

(4.3)(4.3)

(3.3)(3.3)

(4.6)(4.6)

(4.5)(4.5)

(4.4)(4.4)

fpp cos q exC gpp eyC fpp sin q ez

Kf cos q exK f sin q ez

Kfp sin q exC fp cos q ez
Ed simplify DotProduct rt, rt ;
 Fd DotProduct rt, rtheta ;
 Gd simplify DotProduct rtheta, rtheta ;
 Ld simplify DotProduct rtt, nunit ;
 LLd DotProduct rtt, nunit ; 
 Md simplify DotProduct rttheta, nunit ;
 Nd simplify DotProduct rthetatheta, nunit ;

gp2 C fp2

0

f 2

K
f Kfpp gpC gpp fp

f 2 gp2 C fp2

fpp cos q
2
 gp f

f 2 gp2 C fp2
K

gpp f fp

f 2 gp2 C fp2
C

fpp sin q
2
 gp f

f 2 gp2 C fp2

0

K
f 2 gp

f 2 gp2 C fp2

Hd
1
2

$
E$NK 2$F$MCG$L

E$GKF2 ;

1
2

 

K
gp2 C fp2  f 2 gp

f 2 gp2 C fp2
K
f 3 Kfpp gpC gpp fp

f 2 gp2 C fp2

f 2 gp2 C fp2

simplify H

K
1
2

 
gp3 C gp fp2 K f fpp gpC gpp f fp

f 2 gp2 C fp2  gp2 C fp2

dAd simplify sqrt DotProduct CrossProduct rt, rtheta , CrossProduct rt, rtheta ;

f 2 fp2 C gp2

#s1 d 2$gamma$H$nunit 2 ;

 s1 d simplify
4$b$int H2$gp$f, t = aK

R
1000

.. aC
R

1000

2$ int f, t = aK
R

1000
.. aC

R
1000

;



(3.3)(3.3)

(4.8)(4.8)

(4.7)(4.7)

(4.9)(4.9)

g K
fp2 C gp2  f 2 gp

f 2 fp2 C gp2
K
f 3 gpp fpK fpp gp

f 2 fp2 C gp2
 Kfp sin q

2
 fK fp cos q

2
 f

f 2 fp2 C gp2  gp2 f 2 cos q
2
C Kfp sin q

2
 fK fp cos q

2
 f

2
C gp2 f 2 sin q

2

#s2 d
4$ gamma$int H, t = a ..b

f 2
;

 s2 d
K4$ b$int H2$ Kfp $f, t = 0 ..a

f 2
;

2 g K
fp2 C gp2  f 2 gp

f 2 fp2 C gp2
K
f 3 gpp fpK fpp gp

f 2 fp2 C gp2
 bK a

f 4 fp2 C gp2

svmd abs s1 Ks2 ;

g K
fp2 C gp2  f 2 gp

f 2 fp2 C gp2
K
f 3 gpp fpK fpp gp

f 2 fp2 C gp2
 Kfp sin q

2
 fK fp cos q

2
 f

f 2 fp2 C gp2  gp2 f 2 cos q
2
C Kfp sin q

2
 fK fp cos q

2
 f

2
C gp2 f 2 sin q

2

K

2 g K
fp2 C gp2  f 2 gp

f 2 fp2 C gp2
K
f 3 gpp fpK fpp gp

f 2 fp2 C gp2
 bK a

f 4 fp2 C gp2

Effective von Mises Stress for a Sphere 
restart;
with VectorCalculus :
 with plots :
 Rd 1;
 fd sqrt R2 K RK t 2 ;
 fpd diff f, t ;
 fppd diff fp, t ;
 gd RKt;
 gpd diff g, t ;
 gppd diff gp, t ;
 p0d plot3d   f$cos theta , g, f$sin theta , t = 0 .. 2$R, theta = 0 .. 2$ Pi, axes = boxed, scaling

= constrained, labels = "x", "y", "z" , color = blue ;

 p1d plot3d   f$cos theta , g, f$sin theta , t =
R
5

..
R
4

, theta = 0 .. 2$ Pi, axes = boxed, scaling

= constrained, labels = "x", "y", "z" , style = surface, color = red ;

 display p0, p1 ;



(3.3)(3.3)

(4.7)(4.7)

1

2 tK t2

1
2

 
2K 2 t

2 tK t2

K
1
4

 
2K 2 t 2

2 tK t2
3 / 2 K

1

2 tK t2

1K t

K1

0

PLOT3D ...

PLOT3D ...

rt d fp$cos theta , gp, fp$sin theta ;
 rthetad f$ Ksin theta , 0, f$cos theta ;



(3.3)(3.3)

(5.1)(5.1)

(4.7)(4.7)

 nunitd 
CrossProduct rt, rtheta

sqrt DotProduct CrossProduct rt, rtheta , CrossProduct rt, rtheta
;

 simplify nunit ;
1
2

 
2 RK 2 t  cos q

2 R tK t2
exK eyC

1
2

 
2 RK 2 t  sin q

2 R tK t2
ez

K 2 R tK t2  sin q exC 2 R tK t2  cos q ez

K 2 R tK t2  cos q

2 R tK t2  cos q
2
C K

1
2

 2 RK 2 t  sin q
2
K

1
2

 2 R

K 2 t  cos q
2

2
C 2 R tK t2  sin q

2
1/2
exC K

1
2

 2 RK 2 t  sin q
2

K
1
2

 2 RK 2 t  cos q
2

2 R tK t2  cos q
2
C K

1
2

 2 RK 2 t  sin q
2
K

1
2

 2 R

K 2 t  cos q
2

2
C 2 R tK t2  sin q

2
1/2

eyK 2 R tK t2  sin q

2 R tK t2  cos q
2
C K

1
2

 2 RK 2 t  sin q
2
K

1
2

 2 R

K 2 t  cos q
2

2
C 2 R tK t2  sin q

2
1/2
ez

K
csgn R  t KtC 2 R  cos q

R
exK

csgn R  RK t
R

ey

K
csgn R  t KtC 2 R  sin q

R
ez

rttd fpp$cos theta , gpp, fpp$sin theta ; 
 rthetathetad f$ Kcos theta , 0, f$ Ksin theta ;
 rtthetad fp$ Ksin q , 0, fp$cos theta ;

K
1
4

 
2 RK 2 t 2

2 R tK t2
3 / 2 K

1

2 R tK t2
 cos q exC K

1
4

 
2 RK 2 t 2

2 R tK t2
3 / 2

K
1

2 R tK t2
 sin q ez



(3.3)(3.3)

(5.4)(5.4)

(5.3)(5.3)

(5.2)(5.2)

(4.7)(4.7)

K 2 R tK t2  cos q exK 2 R tK t2  sin q ez

K
1
2

 
2 RK 2 t  sin q

2 R tK t2
exC

1
2

 
2 RK 2 t  cos q

2 R tK t2
ez

Ed DotProduct rt, rt ;
 Fd DotProduct rt, rtheta ;
 Gd DotProduct rtheta, rtheta ;
 Ld DotProduct rtt, nunit :
 Md DotProduct rttheta, nunit ;
 Nd DotProduct rthetatheta, nunit :

1C
1
4

 
2 RK 2 t 2 cos q

2

2 R tK t2
C

1
4

 
2 RK 2 t 2 sin q

2

2 R tK t2

0

2 R tK t2  sin q
2
C 2 R tK t2  cos q

2

0

Hd
1
2

$
E$NK 2$F$MCG$L

E$GKF2 :

simplify H
 

csgn R
R

Hd
1
R

;

s1 d 2$gamma$H$nunit 1 ;

 simplify s1 ;

 #s1 d
2$gamma$t

R2 ;

 #s1 d
2$gamma$sqrt t$ 2$RK t

R2$f
;

 #s1 dK1$gamma$H$int nunit 3 , theta = 0 ..Pi ;

 s1 d
K4$gamma$int H$gp$f, t = aK

R
100

.. aC
R

100

2$ int f, t = aK
R

100
.. aC

R
100

;

1
R

K 4 g
2
 2 R tK t2  cos q



(5.7)(5.7)

(3.3)(3.3)

(5.5)(5.5)

(5.6)(5.6)

(4.7)(4.7)

R2 2 R tK t2  cos q
2
C K

1
2

 2 RK 2 t  sin q
2
K

1
2

 2 R

K 2 t  cos q
2

2
C 2 R tK t2  sin q

2
1/2

K

2 g 

aK
1

100
 R

aC
1

100
 R

K
2 R tK t2

R
dt

aK
1

100
 R

aC
1

100
 R

2 R tK t2 dt

s2 d
K4$ gamma$int H$ Kfp $f, t = 0 ..a

f 2

K

4 g KaC
1
2

 
a2

R
2 R tK t2

svmd abs s1 Ks2 ;

K

2 g 

aK
1

100
 R

aC
1

100
 R

K
2 R tK t2

R
dt

aK
1

100
 R

aC
1

100
 R

2 R tK t2 dt

C

4 g KaC
1
2

 
a2

R
2 R tK t2

 s2 t d simplify subs  a =
R
4

, t =
R
4

, s2 ;

 s1 t d simplify subs  a =
R
4

, s1 ;

svmd abs s1 tKs2 t ;

2 g
R

2 g
R



(5.8)(5.8)

(6.2)(6.2)

(3.3)(3.3)

(6.1)(6.1)

(4.7)(4.7)

(6.3)(6.3)

0

Effective von Mises Stress for a Sphereocylinder  
restart;
with VectorCalculus :
 fd R;
 fpd diff f, t ;
 fppd diff fp, t ;
 gd t;
 gpd diff g, t ;
 gppd diff gp, t ;

R

0

0

t

1

0
rt d fp$cos theta , gp, fp$sin theta ;
 rthetad f$ Ksin theta , 0, f$cos theta ;

 nunitd 
CrossProduct rt, rtheta

sqrt DotProduct CrossProduct rt, rtheta , CrossProduct rt, rtheta
;

ey

KR sin q exC R cos q ez

R cos q

R2 cos q
2
CR2 sin q

2
exC

R sin q

R2 cos q
2
CR2 sin q

2
ez

rttd fpp$cos theta , gpp, fpp$sin theta ; 
 rthetathetad f$ Kcos theta , 0, f$ Ksin theta ;
 rtthetad fp$ Ksin q , 0, fp$cos theta ;

0ex

KR cos q exKR sin q ez
0ex

Ed DotProduct rt, rt ;
 Fd DotProduct rt, rtheta ;
 Gd DotProduct rtheta, rtheta ;
 Ld DotProduct rtt, nunit ;
 Md DotProduct rttheta, nunit ;
 Nd DotProduct rthetatheta, nunit ;



(5.8)(5.8)

(6.4)(6.4)

(7.1)(7.1)

(3.3)(3.3)

(6.6)(6.6)

(6.7)(6.7)

(4.7)(4.7)

(6.5)(6.5)

1

0

R2 cos q
2
CR2 sin q

2

0

0

K
R2 cos q

2

R2 cos q
2
CR2 sin q

2
K

R2 sin q
2

R2 cos q
2
CR2 sin q

2

Hd
1
2

$
E$NK 2$F$MCG$L

E$GKF2 ;

1
2

 

K
R2 cos q

2

R2 cos q
2
CR2 sin q

2
K

R2 sin q
2

R2 cos q
2
CR2 sin q

2

R2 cos q
2
CR2 sin q

2

simplify H ;

 Hd
1

2$R
;

 ad
R
4

;

 
1

2 R

1
2 R

1
4

 R

#s1 d
4$gamma$int H$gp$f, t = aK

R
100

.. aC
R

100

2$ int f, t = aK
R

100
.. aC

R
100

;

g
R

Effective von Mises Stress for an Ellipsoid 
restart;
 with LinearAlgebra :
 with VectorCalculus :
 with plots ;
animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,



(5.8)(5.8)

(7.1)(7.1)

(3.3)(3.3)

(7.2)(7.2)

(4.7)(4.7)

conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot,
implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot,
listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple,
odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot,
polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors,
setoptions, setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d,
tubeplot

#cd.95;
 #dd1;
 #Md2$c2$cos 2$ t C 2$sqrt Kc4 C d4 C c4$ cos 2$t 2 ;
 gd t;
 Rd 1;
 ld 5;

 fd sqrt R2 K RK
g
4

2
;

t

1

5

1
4

 8 tK t2

#plot3d   f$cos theta , g, f$sin theta , t = 0 ..2$Pi, theta = 0 ..2$Pi, axes = normal, scaling
= constrained, labels = "x", "y", "z" ;

 plot3d   f$cos theta , g, f$sin theta , t = 0 .. 4$ R, theta = 0 .. 2$ Pi, axes = boxed, scaling
= constrained, labels = "x", "y", "z" ;



(5.8)(5.8)

(7.1)(7.1)

(3.3)(3.3)

(4.7)(4.7)

fpd diff f, t :
 fppd diff fp, t :
 gpd diff g, t :
 gppd diff gp, t :
rt d fp$cos theta , gp, fp$sin theta :
 rthetad f$ Ksin theta , 0, f$cos theta :

 nunitd 
CrossProduct rt, rtheta

sqrt DotProduct CrossProduct rt, rtheta , CrossProduct rt, rtheta
:

rttd fpp$cos theta , gpp, fpp$sin theta :
 rthetathetad f$ Kcos theta , 0, f$ Ksin theta :
 rtthetad fp$ Ksin q , 0, fp$cos theta :

Ed DotProduct rt, rt :
 Fd DotProduct rt, rtheta :
 Gd DotProduct rtheta, rtheta :
 Ld DotProduct rtt, nunit :
 Md DotProduct rttheta, nunit :
 Nd DotProduct rthetatheta, nunit :



(5.8)(5.8)

(7.6)(7.6)

(7.1)(7.1)

(3.3)(3.3)

(7.5)(7.5)

(7.4)(7.4)

(7.3)(7.3)

(4.7)(4.7)

H d
1
2

$
E$NK 2$F$MCG$L

E$G KF2 :

H3 dK1$ simplify H :

 H2 d evalf subs theta =
p
2

, H3 ;

 

K
8. 15. t2 K 120. tK 32.

16.C 120. tK 15. t2
3 / 2

a d .5$ R :
 b d 1 :

 s1 d
4$b$evalf int H2$gp$f, t = aK

R
1000

.. aC
R

1000

2$ evalf int f, t = aK
R

1000
.. aC

R
1000

:

 #s1 d
4$b$evalf int H2$gp$f, t = aK

R
1000

.. aC
R

1000

2 Pi$ evalf int f $sqrt fp2 C gp2 , t = aK
R

1000
.. aC

R
1000

;

#s1 d
4$b$evalf int H2$gp$f, t = aK

R
1000

.. aC
R

1000
2Pi$ subs t = a , f 2 ; 

evalf s1 ;

#surfaceAd2 Pi$ evalf int f $sqrt fp2 C gp2 , t = 0 ..
R
2

;

test d evalf int H2$ Kfp $f, t = 0 ..a :
2.299206635

s2 d
K4$ b$evalf int H2$ Kfp $f, t = 0 ..a

subs t = a , f 2 ;

3.764705884

 #s2 t d simplify subs  t = a , s2 ;

svm d abs s1 Ks2 ;

 evalf svm ;

1.465499249

1.465499249



(5.8)(5.8)

(7.1)(7.1)

(3.3)(3.3)

(8.1)(8.1)

(4.7)(4.7)

(8.2)(8.2)

Effective von Mises Stress for Junction of Ball and Stick
restart;
 with LinearAlgebra :
 with VectorCalculus :
 with plots ;
animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot,
implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot,
listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple,
odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot,
polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors,
setoptions, setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d,
tubeplot

cd .95;
 dd 1;
 Md 2$c2$cos 2$ t C 2$sqrt Kc4 C d4 C c4$ cos 2$t 2 ;

 gd cos t $sqrt
M
2

;

 Rd 1;
 ld 5;

 fd sin t $sqrt
M
2

;

 evalf subs t =
Pi
4

, f ;

0.95

1

1.8050 cos 2 t C 2 0.18549375C 0.81450625 cos 2 t 2

cos t  0.9025000000 cos 2 t C 0.18549375C 0.81450625 cos 2 t 2

1

5

sin t  0.9025000000 cos 2 t C 0.18549375C 0.81450625 cos 2 t 2

0.4640527198
#plot3d   f$cos theta , g, f$sin theta , t = 0 ..2$Pi, theta = 0 ..2$Pi, axes = normal, scaling

= constrained, labels = "x", "y", "z" ;



(5.8)(5.8)

(7.1)(7.1)

(3.3)(3.3)

(4.7)(4.7)

 plot3d   f$cos theta , g, f$sin theta , t =
Pi
4

.. 
Pi
2

, theta = 0 .. 2$ Pi, axes = boxed, scaling

= constrained, labels = "x", "y", "z" ;

fpd diff f, t :
 fppd diff fp, t :
 gpd diff g, t :
 gppd diff gp, t :
rt d fp$cos theta , gp, fp$sin theta :
 rthetad f$ Ksin theta , 0, f$cos theta :

 nunitd 
CrossProduct rt, rtheta

sqrt DotProduct CrossProduct rt, rtheta , CrossProduct rt, rtheta
:

rttd fpp$cos theta , gpp, fpp$sin theta :
 rthetathetad f$ Kcos theta , 0, f$ Ksin theta :
 rtthetad fp$ Ksin q , 0, fp$cos theta :

Ed DotProduct rt, rt :
 Fd DotProduct rt, rtheta :



(5.8)(5.8)

(7.1)(7.1)

(3.3)(3.3)

(4.7)(4.7)

 Gd DotProduct rtheta, rtheta :
 Ld DotProduct rtt, nunit :
 Md DotProduct rttheta, nunit :
 Nd DotProduct rthetatheta, nunit :

Hd
1
2

$
E$NK 2$F$MCG$L

E$GKF2 :

H3dK1$ simplify H :

 H2d evalf subs theta =
p
2

, H3 :

 Htestd evalf subs t = 0.0001 , H2 ;
 plot g, K1$ H2, t = 0 ..Pi ;
 plot t, K1$ H2, t = 0 ..Pi ;
 

K1.341640782

K1 K0.5 0 0.5 1

K1

K0.5

0.5

1



(5.8)(5.8)

(7.1)(7.1)

(3.3)(3.3)

(8.3)(8.3)

(4.7)(4.7)

1 2 3

K1

K0.5

0

0.5

1

ad
Pi

5.75
:

 bd 1 :

 s1 d
4$b$evalf int H2$gp$f, t = aK

R
1000

.. aC
R

1000

2$ evalf int f, t = aK
R

1000
.. aC

R
1000

;

 #evalf s1 :
 testd evalf int H2$ Kfp $f, t = 0 ..a ;

 evalf subs t =
Pi

2.05
, f ;

1.817476609

0.1888582033

0.8657073885

#s2 d
K4$ b$evalf int H2$ Kfp $f, t = 0 ..a

subs t = a , f 2 ;



(5.8)(5.8)

(7.1)(7.1)

(3.3)(3.3)

(8.4)(8.4)

(8.5)(8.5)

(4.7)(4.7)

s2 d
4$ b$test

evalf subs t = a , f 2 ;

2.567025713

 #s2 t d simplify subs  t = a , s2 ;

svmd s1 Ks2;

 evalf svm ;

K0.749549104

K0.749549104


