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3.4 Number of UVIGs is highly correlated with number of
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ABSTRACT

Metagenomics is a powerful approach that has enhanced our understanding of

microbial communities and the roles microbes play in various environments. A deep

examination of single genes, particularly protein-coding genes, can add critical insight

to metagenomic datasets by providing functional information and allowing for the pre-

diction of observable traits and the formulation of “genome to phenome” hypotheses.

However, gene-centric approaches to metagenomics face unique challenges, and the

comparative lack of tools and approaches specifically designed to address these prob-

lems makes gene-centric analyses of microbial communities less accessible to many

researchers. Though data quality issues arise at all stages of the sample-to-sequence-

to-discovery pipeline, gene-centric studies are particularly sensitive to issues such as

those arising from misannotations of the genes under study, which necessitates time-

consuming manual curation, or from the compositional nature of metagenomic data,

which requires special statistical care. To address some of the barriers to effective

gene-centric analysis in metagenomics, this dissertation introduces three tools: PASV,

InteinFinder, and Iroki, as well as a novel framework for examining microbial commu-

nity diversity. PASV (protein amino acid signature validator) automates the manual

curation of homology search results to ensure accurate protein annotation. Intein-

Finder is a pipeline developed to automatically identify and remove inteins, the protein

equivalent of introns, from protein sequences commonly used in gene-centric studies.

Together, PASV and InteinFinder significantly reduce the amount of time and domain-

knowledge traditionally needed to manually curate single gene datasets. Iroki is a user-

friendly tool designed to automatically customize phylogenetic and other types of trees

with user supplied metadata, facilitating data interpretation. The introduced diversity

framework provides a more comprehensive and scalable view of microbial community
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diversity compared to current approaches, particularly for large metagenomic datasets.

Overall, these advancements simplify the gene-centric study of microbial communities

and enhance the metagenomic analysis pipeline.
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Chapter 1

INTRODUCTION

Metagenomics first arose in the 1990s as a method for studying unculturable

microbes [356, 131]. The field has since grown dramatically, facilitated by advance-

ments in sequencing technologies. This powerful approach has played a crucial role

in the discovery of novel taxa [275, 272] as well as metabolic and functional diversity

[25, 137], enhancing our understanding of the roles microbes play in various environ-

ments. Metagenomics has expanded our understanding of the microbial contribution

to disparate processes from biogeochemical cycling [43, 377, 125] to human health

[387, 225].

As the field of metagenomics matures, there is a growing recognition that it

is necessary to move beyond high-level surveys and conduct more in-depth analysis.

Presently, metagenomic studies typically involve clustering peptide sequences, assem-

bled DNA fragments (contigs) [11], or metagenome-assembled genomes (MAGs) [337]

to form population clusters and examining diversity at the population level [124]. How-

ever, this broad perspective can sometimes limit the conclusions that can be drawn.

While this data is often used to predict high-level metabolic potential and path-

way enrichment of microbial communities (e.g., [11, 415, 340, 405, 127]), a deep exam-

ination of single genes, particularly protein-coding genes with extensive biochemical

characterization, can add critical insight to the processes that shape microbial com-

munities, adding ecological, evolutionary, and physiological context to metagenomic

datasets. Protein-coding genes provide valuable functional information, allowing for

the prediction of observable traits and the formulation of “genome to phenome” hy-

potheses in addition to identifying taxa. For example, studies of DNA polymerase A

genes in viral metagenomes have demonstrated a connection between phage lifestyle
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and a single amino acid mutation at a critical active site [333, 168]. Genes that have

the potential to connect a microbe to its environment are especially interesting to

ecologists. For example, researchers can investigate the functional potential of specific

aspects of microbial communities by examining the presence and distribution of specific

metabolic genes in an environment across taxa [242].

1.1 Challenges in single gene analysis

Single gene approaches have inherent limitations, particularly in the context

of viruses where there are no universally shared genes. For example, only about a

quarter of viruses are estimated to carry DNA polymerase A genes [395], meaning

that any analysis based on these genes covers only a subset of the viral community.

However, this narrower scope can allow for more thorough and detailed investigations

that incorporate biochemical and functional characterization of the chosen enzymes

[333, 224, 251, 135, 168, 401].

Although single gene datasets have a narrower scope than full metagenomic

datasets, they still pose distinct challenges that must be addressed in order to fully

leverage them.

The first, and potentially largest issue lies in data quality. Gene annotation in

metagenome studies typically involves inputting contigs or MAGs into genome anno-

tation software [336] or manually performing homology searches for translated protein

sequences against large databases [124]. However, databases commonly used for this

purpose such as KEGG, Gene Ontology, and GenBank NR contain high levels of mis-

annotation [155, 335], making this step highly error-prone. This error rate is often

acceptable for large metagenomic studies where the focus is at the population level or

on predicting high-level metabolic patterns. However, when the focus moves to the level

of individual protein-coding genes, accurate annotation is crucial to avoid erroneous

conclusions–a case of avoiding the classic “garbage in, garbage out” problem.

Researchers looking at single genes may try to avoid this by setting strict simi-

larity cutoffs for homology, but this runs the risk of missing valuable data because of
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low sequence similarity, and still does not protect against misannotated sequences in a

query database. Low sequence similarity can especially be an issue for protein coding

genes, which may be less conserved than structural genes such as SSU rRNA [150].

For example, while all ribonucleotide reductases share a common ancestor, many show

similarities far below the “twilight zone” cutoff of sequence similarity [317, 212]. Low

sequence similarity is also a problem when working with viruses, whose genes may have

only distant homology to their cellular counterparts [135]. In fact, many viral genes in

metagenomic surveys are completely unknown and are even referred to as “viral dark

matter” [124, 330].

The effectiveness of homology-based annotations is partially determined by the

comprehensiveness, or lack thereof, of the databases used [414, 370, 79]. Databases

are biased towards certain environments and organisms, and against others. Many of

the common databases suffer from a “research bias”, that is, an overrepresentation of

sequences similar to early model organisms, culturable microbes, and pathogens, that

often leads to poor annotation performance for many environmentally important groups

[29, 204]. These database issues can make annotation of environmental sequences more

challenging. It is partially to address these concerns that environmental gene catalogs

are being compiled (e.g., [253, 406, 216]).

In summary, database errors and bias, and the sequence diversity of the target

gene, the target community (e.g., cellular microbes versus viruses), and sampling en-

vironment, are all factors that make recovering target genes challenging. Researchers

who want to recover as many of their target genes as possible must therefore use highly

sensitive homology searches, which increase false positive rates and the number of se-

quences that must be manually curated to ensure annotation quality. Although expert

curation is the gold standard, the process is time-consuming, still error-prone, and in-

creases in difficulty with the size of sequencing datasets. Barriers to manual curation of

metagenomic-derived gene datasets are therefore growing and may eventually become

an insurmountable obstacle.

Another obstacle to these types of studies is their relative rarity. Microbial
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amplicon and metagenomic studies are abundant and popular, which has led to a mul-

titude of tools developed for analysis purposes. For example, the QIIME platform,

designed to make amplicon sequence analysis accessible to more researchers, has over

forty thousand citations [52, 38]. Comparable tools have not been specifically designed

for gene-centric approaches in metagenomes. Instead, researchers must construct be-

spoke analysis pipelines, from the initial homology search through to diversity analysis,

which can be a significant barrier to entry.

A central issue of executing gene-centric studies with metagenomic data there-

fore lies in accessibility. First, the need for manual annotation means that a high level

of domain knowledge is currently required to perform this type of analysis. Second, the

growing size of metagenomic datasets is surpassing what current methods can handle,

and also makes analyses increasingly difficult for researchers without access to high

performance computing resources. And finally, because of lower general interest in this

area, there is less development of new tools of methods.

1.2 Addressing these challenges

In response, I have developed a suite of software tools and a new framework

for measuring diversity of microbial communities that lower these barriers along the

sample-to-sequence-to-discovery pipeline with the goal of making gene-centric analyses

more accessible to the scientific community (Fig. 1.1). Each chapter of this dissertation

will focus on one of these advancements, beginning with earlier stages of analysis and

progressing through the latter. In addition to introducing the tool or framework,

each chapter is grounded in practical examples and applications of the methodological

advances therein.

First, to address homology search issues, I developed a pipeline for automatic

protein partitioning and validation using amino acid signatures, PASV (protein amino

acid signature validator). Accurate annotation of proteins is critical, and yet, sensitive

homology searches are plagued by the same garbage in, garbage out issues mentioned
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earlier. Thus, manual curation of homology search results is critical for accurate down-

stream analyses, even in the context of huge metagenomic datasets with potentially

intractable numbers of proteins. Curation generally involves the inspection of sequence

alignments for the presence of active sites, binding sites, and other conserved residues.

This requires relatively deep domain knowledge regarding the gene of interest and, ide-

ally, alignment visualization software. Once provided with a file of reference sequences

and a list of sites to survey, PASV is able to automate the process of manual curation.

While some domain knowledge is still required (e.g., positions of conserved residues),

this method is shown to be less error-prone and much faster than manual curation.

To demonstrate PASV’s utility, I analyze misannotations and post-homology search

validation in multiple protein-coding genes, and compare the results of the pipeline

with that of expert curation.

To help further curate protein sequences, I developed InteinFinder. Inteins, the

protein equivalent of introns, are common in certain types of protein coding genes

[328]. As mobile elements, they can have separate evolutionary histories from their

host proteins and can therefore confound downstream analyses such as phylogenetic

inference. Consequently, they must be removed from protein sequences prior to anal-

ysis. However, they can be difficult to identify and remove correctly for a researcher

who is not familiar with either inteins or the host protein, and so they are likely to

be missed during curation. InteinFinder allows for the automatic identification and

removal of inteins from protein sequence, saving researchers time and making this step

more accessible by lessening the need for expert domain knowledge. I demonstrate the

utility of InteinFinder on a dataset of more than 100 million viral proteins, and chart

the abundance of inteins across ecosystems and investigate their potential ecological

impact on viruses across the biosphere.

To assist in interpretation of data, I created Iroki, which allows for automatic

customization and visualization of phylogenetic and other types of trees. While there

are several popular tree viewers already in common usage, they either require manual

mapping of metadata or have a steep learning curve. Iroki enables researchers to
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display a variety of metadata on large phylogenetic trees, allowing them to connect

metadata with a summary of community diversity. Iroki was designed to be user-

friendly, making gene-centric analyses more accessible to more researchers. Using Iroki,

I explore relationships between abiotic factors and samples from the worlds oceanic

virome, SSU rRNA abundance, phylogeny, and correlations with metadata in cattle,

and phage-host interactions using the phage proteomic tree.

Finally, I developed a diversity framework that provides a more complete view

of diversity than is available with current tools and is scalable to large datasets. Diver-

sity is a high-level summary of community structure. Accurate diversity estimates are

critical for understanding the effects of treatments and interventions on microbial com-

munities, particularly in human health. However, typical plug-in diversity measures

employed in macroecology tend to mishandle the distinctive features of sequencing data

[393]. Additionally, accurate estimates of the variance of the diversity measurements

is necessary for hypothesis testing. To address these issues, I reengineered a state-

of-the-art model for estimating diversity (DivNet [393]) to handle larger metagenomic

datasets on commodity hardware, opening up use of the method to users without access

to high performance computing.

Different aspects of diversity (e.g., types vs. traits, abundant vs. rare mem-

bers) give different views into communities. Combining these features with the use of

various gene markers enhances the understanding of diversity and its relationship to

the experimental or observed conditions of interest. Different gene markers “sense”

the environment differently–that is, their different biochemical physiologies are con-

nected in different ways to the ecology of the organisms in which they are present. In a

similar way, different weights on similarity between types or abundance of types [304]

“sense” the measured diversity in different ways by emphasizing different aspects of

the community. Tuning these components therefore allows a measure of community

diversity tuned to the specific research questions or outcomes of interest. I then lever-

age the reengineered DivNet model with varying similarity and abundance viewpoints

of multiple gene markers to explore the diversity of cattle hide and fecal microbiomes.
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Chapter 2

PASV: AUTOMATIC PROTEIN PARTITIONING AND VALIDATION
USING CONSERVED RESIDUES

2.1 Background

Next generation DNA sequencing has continued to yield ever larger sequence

datasets, enabling researchers to leverage vast amounts of sequence data in addressing

a variety of scientific questions from cataloguing variation in human genomes [371] and

connecting the gut microbiome with human health [203] to examining the circadian

clock in soybean [199] and surveying viruses of the global ocean [124]. For example,

sequencing has led to substantial advancements in understanding the community and

population biology of microorganisms in nature. Nevertheless, while generation of data

continually improves, accurate and comprehensive data analysis remains a challenge

for investigations leveraging large sequence datasets.

Building on the example of microbial ecology, for decades researchers have relied

on sequence based surveys of stable RNA genes, such as SSU rRNA, as phylogenetic

markers for assessing the composition of cellular microbial communities. However, the

focus on stable and highly conserved RNA gene sequences for microbial ecology studies

has limited researcher’s ability for fine scale delineation of cellular microbial populations

from one another [172, 31] and identification of viral populations which do not encode

SSU rRNA genes [240]. Use of protein-coding gene sequences as phylogenetic markers

for community and population ecology studies can address these shortcomings of SSU

rRNA analyses. However, accurate identification of protein-coding genes from either

targeted amplicon libraries or shotgun metagenomes remains a significant analytical

challenge.
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In microbial ecology investigations, both stable rRNA and protein coding marker

gene sequences are obtained either through targeted PCR amplification or direct se-

quencing (i.e., shotgun metagenome sequencing) of environmental DNA. Either ap-

proach has limitations that are addressed by the other. Targeted PCR amplification

can deeply sample microbial populations within a community, detecting even the rarest

of members; however, this approach may miss novel diversity by relying on previously

sequenced genes for constructing PCR primers [269, 20, 416]. While every effort is

made to ensure marker gene primers capture as much diversity as possible, amplifi-

cation bias is always present [234]. In contrast, metagenome sequence libraries from

shotgun sequencing provide a relatively unbiased picture of microbial diversity, with

the caveat of a more limited ability for sampling rare populations [399, 417]. With

sequence assembly, this approach also provides the genomic context of marker genes,

highly useful information for genome to phenome investigations [251]. Nevertheless,

shotgun metagenomics presents significant additional analytical and computational re-

quirements making this approach more expensive and difficult [363, 252]. Furthermore,

researchers still must drill down to the level of specific genes within metagenomes, such

as those that have undergone extensive biochemical characterization, to uncover inter-

esting biological and ecological patterns from the sequencing data [334, 325, 224, 60].

In the case of either approach, accurately determining the identity of a sequence is

critical in preventing subsequent errors in phylogenetic and functional analyses.

Assessing the potential gene functions within a community requires annota-

tion of peptide sequences within metagenomes. Homology-based search tools such as

BLAST [9] are the bedrock of sequence annotation, however, functional annotation of

proteins based on homology can be error prone [335, 135]. Biochemically annotated

proteins are relatively rare in major databases, and usually arise from studies of a few

select model organisms [112, 311, 351]. As a result, many environmental sequences are

annotated based solely on homology to other computationally annotated environmen-

tal sequences rather than to biochemically characterized proteins. Often, such envi-

ronmental sequence annotations are several steps away from a confident, biochemical
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annotation, which can quickly lead to inaccuracies resulting from “error percolation”

[112].

Furthermore, highly sensitive homology search tools used for annotating and

identifying marker genes within metagenomes can often have high false positive rates

[166]. Identifying false positives in functional annotations is an active area of re-

search and many techniques are available. Machine learning algorithms have been

used for identifying false positives based on characteristics of multiple sequence align-

ments (MSAs) [108, 109]. Active site profiling, or examining the characteristics of

regions close to a protein’s active sites, has been used for sensitive and functionally

relevant annotations [97, 196, 133, 171].

Even with accurate functional annotations, researchers need a means for predict-

ing if a peptide sequence represents a functional enzyme. While a protein’s function

cannot be definitively determined in silico, evidence can be gathered by examining

active sites, allosteric sites, and other key conserved residues established through bio-

chemical investigations. However, manually validating key residues in thousands of

peptide sequences using MSAs is time consuming, especially when considering the large

volume of marker gene sequences obtained through amplicon or shotgun metagenome

studies [124]. Furthermore, multiple sequence alignment quality degrades as the num-

ber of sequences in an alignment increases [236], or when the sequences to be aligned

are highly divergent from one another [407].

To address the issue of accuracy in the validation of protein-coding gene se-

quences, an automated pipeline for protein amino acid signature validation (PASV)

was developed. PASV provides researchers with a fast and accurate method for vali-

dating protein active sites and point mutations in particular genes of interest. Combin-

ing multiple sequence alignment with expert domain knowledge in an automated way,

PASV more accurately identifies functional protein sequences within large sequence

datasets. In this way, PASV can be used as a post-homology search processing step

to eliminate most false positive hits and peptides that are likely to be non-functional.

Additionally, PASV can be used to partition proteins into groups based on the residues
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present in functionally important positions of an alignment, such as conserved catalytic

residues or residues with interesting biochemical properties (e.g., variants in motif B

in DNA polymerase I [334]).

The accuracy of PASV was tested using commonly misannotated proteins: ri-

bonucleotide reductase (RNR), alternative oxidase (AOX), and plastid terminal oxidase

(PTOX) [214, 258]. In the first case, PASV was used to identify functional RNRs based

on active site residues, and to differentiate Class I alpha and Class II RNRs based on a

single amino acid residue. In the second case, PASV was used to distinguish two pro-

teins commonly found in plants, AOX and PTOX, which have been previously shown to

be difficult to differentiate with homology search alone, but can be readily partitioned

using conserved residues [258].

2.2 Methods

2.2.1 PASV pipeline overview

PASV automates the process of aligning query sequences with a set of refer-

ence sequences and subsequently validating key residues and regions within the queries

(Fig. 2.1). PASV is not a homology search tool. Rather it is a post-homology search

filtering program. PASV uses a set of user-defined key amino acid residue positions to

review alignment columns within multiple sequence alignments (MSAs). Key positions

ideally will be residues that are both essential to the protein’s function such as active

sites and allosteric binding sites, and highly conserved across the diversity of known

protein sequences. In this way, PASV leverages the user’s domain knowledge for au-

tomated filtering and validation of functional proteins discovered through homology

search. Alternatively, key positions may contain residues that, when mutated, display

interesting biochemical properties. PASV automatically bins such amino acid variants,

providing information on the functional diversity of a given protein. Finally, PASV can

automatically filter out query sequences that fail to span a region of interest (ROI) on

the reference sequences.
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Sequences grouped by key residue “signatures”

I/O File

Process

Data

Query 
sequences

Key 
residues

Align

Partition

Group 
i
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Group 
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Reference 
sequences

Figure 2.1: PASV conceptual diagram. PASV individually aligns each query
sequence with a user-defined set of reference sequences. Then, columns
of the resulting multiple sequence alignment are checked for user-defined
key residue positions and, optionally, a region of interest (ROI). Finally,
query sequences are partitioned into groups based on the amino acids at
each of the key residues and whether the sequence spans the ROI.
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Prior to using PASV, users must select a set of reference sequences for the

alignment. Special care should be taken when choosing a set of reference sequences, as

picking an optimal reference set influences PASV’s accuracy and runtime (see Results

and Discussion sections for best practices). Reference sets are tailored to the protein

of interest. That is, a set of references chosen for partitioning ribonucleotide reductase

(RNR) sequences would not be the same as a set of references used to partition alter-

native oxidase (AOX) and plastoquinol terminal oxidase (PTOX). In addition to the

reference set, which is developed once for a given protein of interest and then reused,

the main input to PASV is a set of query protein sequences, generally obtained via a

homology search for a protein of interest within a larger sequence dataset. PASV is

especially useful in cases where there are many putative protein sequences to validate.

For example, using a highly sensitive homology search tool (e.g., BLAST [9], HM-

MER [82], MMseqs2 [358], or PSI-BLAST [10]) against a metagenome often returns a

large set of putative sequences that would be impractical for manual validation. PASV

automates sequence validation avoiding time-consuming and potentially error-prone

manual validation.

In the PASV pipeline, each query sequence is individually aligned with the

reference sequences. PASV abstracts the process of aligning queries with references

and identifying residues present in specific columns. Rather than reimplementing MSA

algorithms, PASV leverages existing MSA software for aligning queries and reference

sequences. It has built-in support for Clustal Omega [344] and MAFFT [164], but

other alignment software can be specified at the command line by providing a custom

specification.

For each alignment, PASV checks the residues of the query sequence aligning

with the user-provided key residue positions in the reference set. The provided key

residue positions are interpreted with respect to the original, unaligned first reference

sequence. Each query is assigned a key residue “signature” based on these residues.

PASV also optionally checks whether each query sequence spans a user-defined region

of interest with respect to the reference sequences. Thus, PASV groups query sequences

14
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Figure 2.2: RNR classification and partitioning example. PASV aligns each
query sequence individually with all reference sequences (in this case,
four references). Labelled positions are the user-specified key residues.
The coordinates are specified with respect to the original positions on the
unaligned first reference sequence (here, E. coli). Each query is assigned
a signature based on the residues that align in the same columns as the
key residues. In the case of RNR, residues N437, C439, E441, and C462
are required, while residue 438 is diagnostic of RNR class (L438 indicates
Class I alpha and P438 indicates Class II). In this example, queries 1,
2, and 3 have NCEC in the correct positions and are considered to be
bonafide RNRs. Queries 1 and 3 can be classified as Class I alpha based
on L438, whereas query 2 can be classified as Class II based on P438.
Queries 4, 5, and 6, do not have the required NCEC signature and are
thus considered bycatch.
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based on the key residue signature, and optionally by ROI spanning status. For ex-

ample, in the case of RNR, the user may select key residue positions 437, 438, 439,

441, and 462 with respect to the first reference sequence. Then queries will be binned

according to the residues that align with the reference sequences at those positions,

i.e., their key residue “signatures” (Fig. 2.2).

2.2.1.1 Implementation & source code availability

The PASV pipeline is implemented in OCaml [193]. PASV leverages exist-

ing multiple sequence alignment software, such as Clustal Omega [344] or MAFFT

[164], thus, a multiple sequence alignment program should be installed prior to run-

ning PASV. PASV is open-source software (MIT or Apache license) and is freely avail-

able on GitHub (https://github.com/mooreryan/pasv). PASV v1.3.0 (https://

github.com/mooreryan/pasv/releases/tag/v1.3.0) was used for all experiments.

2.2.1.2 PASV result network diagrams

Resulting PASV output files were converted to a node-link network diagram with

a custom script (available on the PASV GitHub page) and visualized with Cytoscape

v3.7.1 [342].

2.2.2 Collecting RNR sequences

2.2.2.1 Retrieving RNR sequences from the RNRdb

All available Class I alpha and Class II RNRs were retrieved from the RNRdb

on August 20, 2018 [214]. These 66,209 RNR peptide sequences were dereplicated

(exact and substring matches) using CD-HIT v4.6 [106], yielding 29,401 representa-

tive sequences. Sequences were then divided into closely related groups (clades) as

defined by the RNRdb for manual assessment of active site residues and intein removal

[135]. From the 29,401 representative sequences, 286 sequences were removed as they

lacked one or more of the four residues essential for RNR function (N437, C439, E441,
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C462 with respect to Escherichia coli K12 W3110 ribonucleoside diphosphate reduc-

tase 1 alpha subunit, accession no. WP 001075164.1) [163, 219, 218, 283]. The 29,133

remaining RNRs were retained for downstream analysis.

2.2.2.2 RNRdb sequence tree & phylogenetic clustering

To reduce the number of sequences used for building a phylogenetic tree of

known RNR peptides, the 29,133 bonafide RNRdb sequences were clustered with MM-

seqs2 (version e1a1c1226ef22ac3d0da8e8f71adb8fd2388a249) [358] at 75% identity over

80% of the alignment length, resulting in a set of 2,579 peptide clusters. Cluster cen-

troids were aligned with MAFFT v7.427 using the FFT-NS-2 method [164]. Columns

of the resulting multiple sequence alignment containing >95% gaps were removed.

Finally, FastTree v2.1.10 with double precision arithmetic [294] was used to build

the tree, and the resulting tree was midpoint-rooted with a custom Python script

(https://github.com/mooreryan/midpoint-root) using ETE Toolkit v3 [144]. Dif-

ferent numbers of phylogenetic RNR clusters were generated by collapsing branches

whose lengths were below a threshold using iTOL [195]. Six different clustering scenar-

ios were used representing six levels of phylogenetic granularity (4 clusters: collapsed

branch length (BRL) < 3.75; 8 clusters: BRL < 3.1; 14 clusters: BRL < 2.85; 19

clusters: BRL < 2.65; 24 clusters: 2.485; and 29 clusters: BRL < 2.34) (Fig. 2.3).

2.2.2.3 Retrieving RNR sequences from the Global Ocean Viromes dataset

The 1,995,784 Global Oceans Virome (GOV) [320] peptides1 were searched

against RNRdb sequences with MMseqs2 (sensitivity: 7, max sequences: 1000, number

of iterations: 3, starting sensitivity: 1, sensitivity step: 7, default E-value cutoff: 0.001,

defaults for all other options). This search yielded 12,412 virome sequences. Sequences

having fewer than 100 amino acids were removed, leaving 9,906 sequences. These se-

quences were manually curated using a combination of conserved residues, domains,

1 https://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/GOV/

Contigs_set, file last modified 2017-04-23
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Figure 2.3: Phylogenetic clustering of ribonucleotide reductase proteins.
Ribonucleotide reductases (RNRs) from the RNRdb [214] were clustered
with MMseqs2 [358] at 75% identity over 80% of the alignment length.
Phylogenetic clusters (grey circles) were created in iTOL [195] by col-
lapsing clades with branch lengths (BRL) less than the amount shown.
Leaf labels show the number of sequences within the clade. Branches
without grey dots represent singleton clusters, and were not included in
the pool of potential reference sequences. Scale bar represents amino acid
substitutions per site.
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and phylogenetic placement (as in [135]) resulting in 2,916 bonafide RNRs and 6,990

non-RNRs.

2.2.3 Reference sets and PASV accuracy

2.2.3.1 Full reference set test

Given that PASV uses MSA for validating key residues, PASV’s accuracy is

dependent on the chosen reference set and aligner. An experiment testing 1,920 combi-

nations of reference sets, query sets, and aligners was used to determine those variables

most affecting accuracy (Fig. 2.4). First, randomly selected reference sequence sets

were compared to sets where selection was guided by a phylogenetic tree. For phyloge-

netically selected references, a tree containing 2,579 RNR sequences was partitioned at

six levels of granularity (4, 8, 14, 19, 24, and 29 clusters (Fig. 2.3)). Two approaches

were then taken for phylogenetic reference selection. First, phylogenetic reference sets

were generated by selecting a single reference sequence from each tree clade (clades

defined by various minimum branch lengths (BRL, Fig. 2.3) to test whether increasing

the evenness of representation among rarer or divergent clades would improve PASV

accuracy. Second, phylogenetic reference sets were generated by weighting the selec-

tion of sequences according to the number of sequences within a cluster (one reference

sequence for every 200 sequences in the cluster) (Fig. 2.3). For each of the phyloge-

netically selected reference sets (including weighted and unweighted at all six levels of

granularity), size-matched, randomly selected reference sets were included as controls.

Finally, for each reference set selection criteria (phylogenetic or random, single or multi,

reference set size), ten replicates were generated. Each reference set was tested with

two aligners, MAFFT v7.427 [164] and Clustal Omega v1.2.4 [344], and two different

query sets (RNRdb queries: 100 bonafide RNRs and 100 invalid RNRs missing key

functional residues; Global Ocean Virome (GOV) queries: 200 bonafide RNRs and 100

invalid RNRs missing key functional residues). All experiments were run on an Intel(R)

Xeon(R) CPU E5-2695 v4 @ 2.10GHz server with 36 cores (2 threads per core) and

512 GB of ram, with PASV set to use 68 threads (i.e., process 68 queries concurrently).
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Figure 2.4: PASV reference set test. Conceptual diagram of the validation ex-
periment testing the effects of reference set, query set, and aligner on
PASV accuracy. One experiment is a PASV run with a unique com-
bination of a reference set, a query set, and an aligner. The reference
sequence selection strategy (phylogenetically-guided or random), the size
of the reference set (numbers of sequences and their distribution across
the known diversity of a protein), and the length of reference sequences
(full length or smaller region of interest) were tested for their impact
on PASV accuracy in correctly identifying manually curated sequences.
For each reference set category, 10 random samples (i.e., replicates) were
generated. For each reference set, two aligners (Clustal Omega [344],
and MAFFT [164]), and two query sets (RNRdb [214] and Global Ocean
Virome (GOV) [320]) were run.
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In summary, a total of 1,920 experiments were conducted. Six levels of phylo-

genetic tree partitioning were used (6 reference sets) (Fig. 2.3), each generating either

a single (unweighted) or multiple (weighted) reference sequences per clade (6 * 2 =

12 reference sets). For each of these twelve groups, ten replicates were made (12 * 10

= 120 reference sets). For each of these 120 reference sets, size-matched, randomly

selected reference sets were used as controls (120 * 2 = 240 reference sets). For each of

these 240 reference sets, both full-length reference sequences, and reference sequences

trimmed to the shorter region of interest (ROI, positions 437 - 605, E. coli number-

ing) were tested (240 * 2 = 480 reference sets). For each of these 480 reference sets,

two aligners (Clustal Omega or MAFFT) were tested (480 * 2 = 960 reference sets +

aligners). For each of these 960 reference set plus aligner pairs, two different query sets

(RNRdb or GOV) were tested (960 * 2 = 1,920 experiments) (Fig. 2.4).

2.2.3.2 Putative GOV RNR queries test

GOV RNR sequences (9,906 sequences) were used to test PASV on a dataset

more reflective of an actual use case. Because most of the variables tested in the full

reference set test had little effect on PASV accuracy (see Results), and due to the size of

the query set, a reduced set of variables was used to generate reference sets. References

from three clustering levels (8, 19, 29) with both phylogenetic and random sequence

picking were generated in triplicate, yielding 18 reference sets. For the other variables

included in the full reference set test, only the top performing options were used in this

experiment: Clustal Omega rather than MAFFT, full-length references rather than

trimmed, and one sequence per clade vs one sequence for every 200 sequences per

clade. All experiments were run on the same server as the full reference set test with

PASV set to run 68 concurrent alignment jobs.
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2.2.3.3 Data analysis

Data analysis was performed in R v3.6.3 [300] with tidyverse v1.3.0 [390] and

ggplot2 v3.3.0 [389]. All true positive and true negative rate linear models were calcu-

lated with the lm function in R. Model coefficients were considered significant if their

p-values were less than 0.05 as reported by the R function summary.lm. All box and

whisker plots were made using the geom boxplot function from ggplot2. All scatter

plot regression lines were made using the geom smooth function from ggplot2 using

locally estimated scatterplot smoothing (LOESS, default parameters) with 95% con-

fidence intervals, except for Additional Files 1 and 4 which use linear regression with

95% confidence intervals calculated with geom smooth using lm. All point jittering was

done using the geom jitterdodge function from ggplot2.

2.2.4 Analyzing putative and bonafide GOV RNRs

2.2.4.1 GOV RNR trees

The 9,906 putative RNR sequences identified through homology search alone,

and the 2,914 PASV-predicted bonafide RNR sequences (using the reference set chosen

from the best practices according to the full reference set test and the GOV RNR

queries test) were aligned with MAFFT v7.427 FFT-NS-2 [164]. Columns with >95%

gaps were removed and a phylogenetic tree was inferred with FastTree v2.1.10 double

precision arithmetic [294]. The resulting Newick tree files were visualized with Iroki

[244].

2.2.4.2 Annotating GOV tree sequences

Sequences were manually selected from clades containing only non-RNRs (ac-

cording to manual curation) from the phylogenetic tree containing all 9,906 putative

RNRs from GOV. Sequences were searched against National Center for Biotechnology

Information’s Conserved Domain Database (NCBI CDD) v3.18 and the top domain

hit by e-value was recorded [221]. All sequences that had a mismatch between man-

ual curation and PASV prediction in any of the 18 full GOV experiments were also
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searched against the conserved domain database using Batch CD-Search [222] and the

top domain hit was recorded. In the case that multiple domains were identified, the

top hit was recorded for each domain (Additional File 10).

2.2.5 Partitioning RNR classes

To test PASV’s ability to partition Class I RNR alpha subunit sequences from

Class II RNR sequences, the 2,579 clusters from the RNRdb tree (Fig. 2.3) were used

as PASV query sequences with the “best practices” RNR reference set. In addition

to the same N437, C439, E441, and C462 key residues (E. coli numbering) used in

previous experiments, residue L/P438 was also included. Any sequence PASV identified

as having NLCEC was labeled as a Class I alpha RNR, whereas any sequence with

NPCEC was classified as a Class II RNR. Any sequences with key residue signatures

other than the NLCEC for Class I alpha and NPCEC for Class II were grouped into

the “Other” category. The PASV predictions were compared with RNRdb assigned

class annotations.

2.2.6 Partitioning AOX and PTOX

Alternative oxidase (AOX) and plastid terminal oxidase (PTOX) peptide se-

quences were collected from a recent study [258]. Sequences from supplemental data

sheet 1, containing 14 full-length PTOX proteins that were previously erroneously an-

notated as AOX, and sequences from supplemental data sheet 2, representing trimmed

AOX and PTOX sequences, were obtained. Some of the trimmed sequences in supple-

mental data sheet 2 had accession numbers with which the corresponding full length

sequences could be recovered from NCBI databases using the Entrez Direct efetch [160].

Forty-eight full-length AOX and eight PTOX sequences were recovered in this manner.

Recovered full length sequences were combined with trimmed sequences yielding a set

of 336 query sequences for PASV testing.

The ability of PASV to classify both AOX and PTOX sequences within a mixed

set of peptide sequences was tested with two separate PASV runs: once with an AOX
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reference set (UniProt entry IDs O22048, O22049, and E1CIY3; sequences selected

from those manually annotated as AOX in [258]) and once with a PTOX reference

set (UniProt entry IDs A0A061GHF5, B9RXE2, and Q56X52; sequences selected from

those manually annotated as PTOX in [258]) sequences. In the AOX run, all query

sequences were checked for conserved residues from AOX motifs 1 (E233, R234, M235,

H236, L237, M238, T239) and 2 (L283, E284, E285, E286, A287), and sequences con-

taining the correct residues were labeled as AOX, while sequences with other residues at

these positions were labeled as non-AOX (numbering with respect to sequence O22048)

[258]. For the PTOX run, all queries were checked for conserved residues from PTOX

motifs 1 (G157, W158, R160, R161) and 2 (H177, H178, L179, L180, M182, E183),

and any sequences containing the correct residues were labeled as being PTOX, while

sequences with other residues at these positions were labeled as non-PTOX (numbering

with respect to sequence A0A061GHF5) [258]. Finally, the sequence labels from the

AOX and the PTOX run were combined for the final classification. Two positions were

excluded from the motifs that were presented in [258] (159 in motif 1, and 181 in motif

2) as these positions were more variable than the other motif positions.

2.3 Results

2.3.1 What factors influence PASV accuracy?

True positive and true negative rates for PASV validated RNR peptide sequences

were explored with linear models. For GOV query sequences, aligner and reference

trimming had a significant (p-value < 0.05) association with both true positive and

true negative rates (Fig. 2.5). Clustal Omega was associated with an 11.1% increase

in true positive rate and a 0.2% decrease in true negative rate as compared to MAFFT.

Full length references had a 12.6% increase in true positive rate and a 0.07% increase in

true negative rate as compared to references trimmed to the region of interest. While

statistically significant according to the linear model, variables associated with true

negative rate had negligible effect in practice for GOV queries. For RNRdb queries,

when all variables were included as predictors, aligner and reference trimming were
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both significant predictors of true positive rate. Clustal Omega was associated with

a 1.5% increase, and full length references were associated with 2.7% increase in true

positive rate. For true negative rate, all variables other than replicate were significant;

however, all effects were quite small (< 1.3%).

Given that full-length references were superior to those trimmed to a ROI (Fig.

2.5), only full-length references were included in subsequent analysis of covariate effects

on PASV accuracy. Full-length reference sets split into groups based on query set

(GOV vs RNRdb) and aligner (Clustal Omega vs. MAFFT) were re-run through

linear models on the following five remaining covariates: (1) number of tree clusters;

(2) number of reference sequences; (3) single or multiple reference sequences chosen per

clade (single/multi); (4) random or phylogenetically-guided reference sequence choice

(random/phylo); and (5) reference set replicate (Table 2.1).

The PASV true positive rate decreased with the number of tree clusters used

in the phylogenetically-guided reference sequence choice approach (Fig. 2.3), but in-

creased with respect to the number of references for GOV-MAFFT, RNRdb-MAFFT,

and RNRdb-Clustal groups (Table 2.1). When using MAFFT, picking a single ref-

erence from each clade as opposed to weighting the number of references by number

of sequences in the clade was associated with a significantly higher true positive rate

for both GOV and RNRdb query sets; however, this trend was not seen when using

Clustal (Table 2.1). Overall, choosing references randomly (when using MAFFT, but

not Clustal) and including more sequences in the reference set were associated with

better PASV accuracy. However, the positive effect of the number of reference se-

quences on true positive rate plateaued after ca. 20 reference sequences (Fig. 2.6).

Additionally, the effect of increasing the number of references is more pronounced with

the MAFFT aligner than with Clustal Omega (Fig. 2.6).

While using an increasing number of references boosted PASV accuracy, it also

increased runtime (Additional File 1), as more sequences needed to be aligned. Using

full-length references as opposed to references trimmed to the region of interest also

increased the runtime. This is due to full-length references containing more bases that
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Figure 2.6: PASV true positive rate increases with number of references.
Number of references per reference set versus PASV true positive rate
for full-length reference sets. GOV query set and RNRdb query set are
shown in panel A and panel B, respectively. Each dot represents a single
PASV run (i.e., one reference set with an aligner: Clustal Omega – purple,
MAFFT – orange). Locally estimated scatterplot smoothing (LOESS)
lines with 95% confidence intervals are shown for each aligner. (Note the
difference in y-axis scale between panels A and B.)
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Table 2.2: Confusion matrix of PASV results for 18 references sets against putative
GOV RNR sequences.

PASV Prediction
Manual curation

Positive Negative

Positive 2894.6± 5.3 12.5± 0.8
Negative 21.4± 5.3 6977.5± 0.8

Mean ± 95% confidence interval for 18 PASV runs. Each run is one of 18 reference
sets with the full 9,906 sequence Global Ocean Virome (GOV) query set.

need to be aligned. Another consideration for run-time is the alignment algorithm:

running PASV with Clustal Omega was faster than with MAFFT (Additional File 1).

In summary, variables that had the most impact on PASV true positive and true

negative rate were alignment software (with Clustal Omega outperforming MAFFT)

and reference trimming (full-length references performing better than those trimmed

to the ROI) (Fig. 2.5, Table 2.1, Additional File 2).

2.3.2 Testing PASV with the full GOV query set

PASV was tested on a large metagenomic query set using best practices deter-

mined from the 1,920 reference set tests. The only variable significantly associated

with PASV accuracy was phylogenetic vs. random reference picking, which affected

the true negative rate; however, the size difference was small (0.027%) (Additional File

3). As the different reference sets all had comparable results, the mean and 95% CI

of all 18 reference set runs was used for the confusion matrix. Overall, PASV was

highly concordant with the manual curation, with >99% agreement between PASV

predictions and manual curation (Table 2.2). As in the full reference set tests, runtime

increased with increasing numbers of reference sequences (Additional File 4) (linear

model: runtime = (−13.5± 6.8) + (5.26± 0.3) ∗ number of reference sequences).

PASV provides a means for automating the process of validating the identity

of peptide sequences collected through homology search. The algorithm partitions
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query peptides into bonafide and by-catch sequences (Fig. 2.1). Given this, the im-

pact of including by-catch sequences in a phylogenetic analysis of metagenomic RNR

sequences was examined. Phylogenetic trees of putative RNR sequences from GOV

(9,906 sequences), and sequences from the putative RNRs that PASV identified as

bonafide (i.e., those sequences with N437, C439, E441, C462, E. coli numbering) were

compared (Additional File 5). For this PASV run, the best performing reference set

(hereby referred to as the “best practices” reference set) of the 18 tested on the full

GOV query set that also followed the best practices observed in the full reference

set test (i.e., full-length, single sequence per clade, random selection) was used. This

PASV run yielded 2,914 bonafide RNR sequences (i.e., those sequences with N437,

C439, E441, C462, E. coli numbering).

The tree including all putative RNRs contained a high proportion of sequences

on long branches, indicative of distantly related sequences or sequences with poor align-

ment (Fig. 2.7A). In contrast, the bonafide PASV sequence tree contained fewer long

branches and more reasonable topology [134] (Fig. 2.7B). In the case of both trees,

clades with long branches did contain non-target sequences such as helicases, DNA

polymerases, terminase, and thioredoxin (Fig. 2.7 and Additional File 6). However,

the tree containing bonafide RNR sequences had substantially fewer long branches,

and those that were present would be relatively easy to identify and remove. In prac-

tice, having fewer long branches reduces the time necessary for manual curation of

phylogenetic trees.

Across all 18 GOV PASV runs (1 run per generated reference set), a total

of 187 sequences out of 9,906 showed disagreement between PASV predictions and

manual curation. These 187 sequences were annotated using NCBI CDD (Table 2.3,

Additional File 3). Annotations of the 162 PASV predicted negative, manual curation

positive sequences included three Class I RNR alpha subunits, 63 Class II RNRs, and

96 RNRs with unknown subclass. Sequences with hits to the RNR PFL superfamily

were considered to be either Class I alpha or Class II RNRs for two reasons: 1) other

members of the supergroup, pyruvate formate lyase (PFL) and Class III RNRs, are

30



Table 2.3: NCBI CDD annotations of sequences with mismatched PASV prediction
and manual curation.

Annotation
Count

PASV positive,
manual curation

negative

PASV negative,
manual curation

positive

RNR (subclass unknown) 5 96
Class I RNR alpha subunit *4 3
Class I RNR beta subunit 2 -
Class II RNR *2 63
Helicase 4 -
Pol I 3 -
Endonuclease 2 -
Terminase 1 -
Ankyrin repeat 1 -
No match 1 -

Counts are totals across 18 PASV runs: the full 9,906 sequence Global Ocean
Virome query with 18 different reference sets.
*Sequences erroneously categorized as non-RNR by manual curation
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Table 2.4: PASV Class I alpha and Class II predictions.

PASV Prediction
Manual annotation

Class I alpha Class II

Class I alphaa 98.96% 0.30%
Class IIb 0.08% 98.27%
Otherc 0.96% 1.43%

aNCEC sequences with L438 (E. coli numbering)
bNCEC sequences with P438 (E. coli numbering)
cNon-NCEC sequences or those with any other residue at position 438

oxygen-sensitive [332, 259], and thus unlikely to be found in the environments sampled

in the GOV study [320]; and 2) these sequences grouped with other Class I alpha and

Class II sequences on the phylogenetic trees (Fig. 2.7). The 25 remaining mismatched

sequences (i.e., PASV predicted positive, manual curation negative) had more hetero-

geneous annotations. Twelve of these had hits to non-RNR domains: four helicases,

three Pol Is, two endonucleases, one terminase, one Ankyrin repeat, and one with no

match. Thirteen had hits to RNR domains: four Class I alpha subunit, two Class I beta

subunit, two Class II RNR, and five RNRs with unknown subclass. The six sequences

annotated as RNR Class I alpha subunits and Class II represent sequences that were

likely erroneously categorized during manual curation. To summarize, 187 sequences of

9,906 had mismatched PASV predictions and manual annotations–of those 187, PASV

was likely incorrect according to CDD annotations in 175 of the cases (yielding 98.2%

accuracy and 1.8% error rate).

2.3.3 Partitioning RNR Class I alpha subunit & Class II sequences

PASV’s ability to partition two biochemical classes of RNR sequences (Class

I alpha subunit and Class II [305, 259]) was examined. The 2,579 RNRdb sequences

used to make the RNR tree for phylogenetic clustering (Fig. 2.3) were partitioned

into Class I alpha subunits and Class II sequences using PASV. As the NCEC residues

within the RNR PASV profile are required for RNR function [163, 219, 218, 283], any

32



dnaB-like 
Helicase

Terminase

Class I RNR 
beta subunit

RNR*

RNR

Class II RNR
Class II RNR

Class I RNR 
alpha subunit

RNR

Class I RNR 
alpha subunit

Class I RNR alpha subunit

1

1

Class II RNR

GP4d Helicase
GP4d Helicase

GP4d Helicase

Class I RNR beta subunit/
Glutaredoxin

Class I RNR alpha subunit

Glutaredoxin

UvsW Helicase

Large terminase

HepA Helicase

HTH XRE

Methyltransferase

Glycosyltransferase

Class II RNR

RNA polymerase

Class I RNR beta subunit

Class I RNR beta subunit

DNA Helicase

A

B

Class I RNR 
alpha subunit

Class II RNR

Glutaredoxin

Class II RNR

Manual curation: RNR
Manual curation: non-RNR

Class II
Class I

Figure 2.7: Phylogenetic trees of putative and bonafide GOV RNR se-
quences. Approximately-maximum likelihood trees of (A) 9,906 puta-
tive GOV RNR sequences identified by MMseqs2 using sensitive homol-
ogy search parameters, and (B) 2,914 PASV validated, bonafide GOV
RNR sequences (i.e., sequences with N437, C439, E441, C462, E. coli
numbering). In panel B, the dotted line indicates the divide of Class I
and Class II RNR sequences. Branch colors correspond to the results of
manual curation. Blue branches indicate sequences manually annotated
as RNR, whereas yellow branches represent sequences annotated as non-
RNR or non-functional RNR sequences. Labelled sequences represent
a sampling of sequences with homology to RNR, but manually curated
as non-RNR or nonfunctional RNR. Note that some yellow branches in
panel B, which were originally annotated as RNRs through manual cura-
tion, but having the correct residues according to PASV, were found to
have correct RNR annotations according to the NCBI CDD [221]. The
branch labeled “RNR*” in panel B indicates 3 branches annotated as
RNR by the CDD.
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sequence without NCEC at residues 437, 439, 441, and 462 (E. coli numbering) in the

PASV run were grouped into the “Other” category. These included five Class I alpha

and four Class II sequences. For the remaining 2,570 NCEC sequences, any sequence

that PASV predicted as having an leucine at position 438 was labeled as a Class I

alpha subunit, whereas any sequence with a proline at that position was predicted to

be Class II. These PASV predictions were compared to RNRdb annotations, and the

results were recorded in Table 2.4 (Additional File 7). Of the 1,244 annotated Class

I alpha sequences, PASV predicted 1,236 of them to be Class I alpha (correct PASV

predictions: 98.96%), one to be Class II (0.08%), and seven to be “Other” (0.96%).

For the 1,326 annotated Class II sequences, PASV predicted 1,307 of them to be Class

II (correct PASV predictions: 98.27%), four to be Class I alphas (0.30%), and 15

“Others” (1.43%).

2.3.4 Partitioning AOX and PTOX sequences

A total of 336 alternative oxidase (AOX) and plastid terminal oxidase (PTOX)

peptide sequences were recovered from a previous study examining misannotation of

the AOX and PTOX gene groups in plants [258]. These sequences were classified with

PASV using residues from the diagnostic, conserved motifs identified in [258]. This

experiment tested the ability of PASV for correctly binning a mixed collection of AOX

and PTOX peptide sequences. While distinct proteins, AOX and PTOX share regions

of homology and are frequently missanotated by standard methods [258]. However, two

motifs for each protein, when used in conjunction with MSA, enables correct classifi-

cation of the proteins. Two reference sets were constructed, one to classify AOX and

one to classify PTOX. The entire query set (336 total sequences, 254 AOX, 82 PTOX)

was run through the PASV algorithm against both reference sets (Additional Files 8

& 9). In the AOX run, any sequence with the correct residues in the conserved motifs

as identified by PASV was considered an AOX (motif 1: E233, R234, M235, H236,

L237, M238, T239; motif 2: L283, E284, E285, E286, A287, numbered according to se-

quence O22048). Any sequence containing any other residue in any of these positions
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was considered to be non-AOX. In the PTOX run, sequences that PASV identified

as having the correct residues in motifs 1 and 2 were annotated as PTOX (motif 1:

G157, W158, R160, R161; motif 2: H177, H178, L179, L180, M182, E183, numbered

according to sequence A0A061GHF5). Sequences containing different residues in any

of these positions were annotated as non-PTOX. When these two annotations were

combined, PASV correctly identified all 254 AOX and 82 PTOX peptide sequences

and misannotated none.

2.4 Discussion

Homology tools used for collecting gene sequences from databases and meta-

genomes, such as BLAST [9], HMMER [82], MMseqs2 [358], or PSI-BLAST [10], are

sensitive and have the ability to detect remote homology between sequences. While

detecting distant homologs is useful, especially when analyzing environmental metage-

nomic data, such sensitivity often comes with a price: increased levels of false positive

sequences [166]. In the context of viral and microbial ecology, false positives can include

non-functional versions of the protein of interest, correctly annotated proteins that do

not span a predetermined region of interest, and proteins that share a conserved region

or domain with the protein of interest, but are not the desired protein.

Including such false positives in analyses of functional proteins causes a number

of problems. False positives interrupt multiple sequence alignments and subsequent

phylogenetic analyses, which leads to inaccurate conclusions as to the evolutionary

history of a protein [263, 398]. In ecological studies, inclusion of false positive sequences

in marker gene phylogenetic analyses can lead to erroneous identification of microbial

or viral populations [378, 258, 135].

Manual validation of proteins becomes increasingly error-prone and impracti-

cal with increasing dataset size. While larger datasets provide the means for deeper

exploration of microbial communities and protein diversity and evolution, they also

yield more protein sequences for validation. Sensitive homology searches can result in
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thousands of protein sequences from a single metagenome library, making automatic

validation an attractive option.

2.4.1 Using RNRs to test PASV

Any protein containing conserved residues, whether these are discovered purely

through computational methods or are backed by biochemical characterization exper-

iments can be validated using PASV. Ribonucleotide reductase (RNR), an ancient

enzyme with well understood structural biochemical features [156] that is often misan-

notated in sequence databases [214], was an excellent experimental model for testing

PASV’s ability to validate and partition putative RNR sequences collected from large

sequence datasets by homology search. RNRs contain many immutable residues that

have been discovered through decades of structural biology research [173]. There is

at least one documented case of a gene with high sequence homology to RNR with

mutated active sites that has evolved to perform an alternative function [187].

While RNRs are evolutionarily related, perform the same function, and are

biochemically conserved, some share only 10-20% primary sequence similarity, a level

below the “twilight zone” of homology search similarity [318, 374, 213]. Searching for

RNRs, therefore, requires sensitive homology searches, which can return many false

positive sequences. Due to the low level of sequence similarity among RNRs in gen-

eral, and its many classes and subclasses, RNRs can be difficult to annotate. In one

survey of RNRs recovered from GenBank, only 23% were deemed to be annotated cor-

rectly and 16% had not been annotated as RNRs at all [214]. Given the frequency of

misannotation, low sequence homology, presence of immutable residues, and the RN-

Rdb, a large, hand-curated database of bonafide RNR sequences [214], RNR provided

an excellent model system for testing PASV. In addition, RNRs are of interest to re-

searchers in many fields, including evolution, biochemistry, cancer research, and viral

ecology [259, 325].

Here, the focus was on Class I and II RNRs, which are the two most closely
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related extant RNRs. Class I RNRs are encoded by two genes, one each for the al-

pha and beta subunits comprising the active protein [156]. The larger alpha subunit

is hypothesized to be the direct descendent of Class II RNRs [213], while the beta

subunit belongs to the ferritin-like superfamily [13] and bears no homology to either

Class I alpha or Class II RNRs. Class I and II RNRs require different cofactors for ri-

bonucleotide reduction, so differentiating the classes is crucial for subsequent ecological

analyses [325, 135].

PASV was tested using RNRs from two contrasting datasets: the RNRdb [214]

and Global Ocean Viromes (GOV) [320]. The majority of RNRs in the RNRdb are

from known organisms within large sequence databases (e.g. GenBank, SwissProt,

etc.), with relatively few sequences originating from metagenomes. Virus sequences

are relatively rare in curated databases as compared to sequences from eukaryotes and

bacteria. In fact, viral sequences make up only 2.7% of the Class I alpha and Class II

RNRs in the RNRdb. GOV, in contrast, is an environmental dataset of viral sequences.

Thus the RNRdb and GOV represented different challenges for PASV.

2.4.2 Factors influencing PASV accuracy

The most important factors influencing PASV accuracy surrounded the rela-

tive length of reference sequences and the approach used for choosing them. Using

full length reference sequences, picking references randomly from a pool of potential

sequences rather than based on phylogenies, and using more reference sequences all

increased accuracy as measured by true positive and true negative rate. The benefit

of using more reference sequences, however, plateaued after ca. 20 sequences in the

reference set (Fig. 2.6), while the computing time required by PASV continued to

increase (Additional File 1).

For each phylogenetically-informed reference set generated, a size-matched set

of randomly selected RNRs were chosen to act as a control. It is important to note

that while the randomly selected sequences are random with respect to their position

on the tree, sequences from the RNRdb are biased with respect to class and subclass
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representation. Therefore, the “random” controls can also be seen as weighted by the

composition of the RNRdb.

Alignment software was also a factor, with Clustal Omega generally outperform-

ing MAFFT. However, this advantage was mostly lost when using full-length reference

sequences rather than references trimmed to the region of interest. This result may

also differ depending on the protein to be aligned, as some datasets are more difficult

to align than others [386].

Reference sets representing as much of the known diversity of RNRs as possible

(i.e., those taken evenly from across major clades of a phylogenetic tree) were hypothe-

sized to increase PASV accuracy. This hypothesis was built on the idea that including

diverse RNRs would prevent large irregularities in the alignments from more divergent

query sequences. However, including diverse RNRs had the opposite effect and statis-

tical tests showed that randomly selecting full-length reference sequences resulted in

greater accuracy. One explanation for this phenomenon is that accuracy of multiple

sequence alignment decreases with increasing sequence heterogeneity [407, 236]. As a

consequence, forcing divergent sequences into the reference sets likely destabilized the

alignments and decreased PASV’s accuracy.

2.4.3 Using PASV to eliminate bycatch of non-target sequences

The GOV dataset provided an alternative experimental model for testing how

PASV performed as a post-processing step after a homology search of a metagenomic

sequence library. PASV effectively filtered out false-positive bycatch sequences re-

covered from the environmental metagenomes while searching for the gene of interest,

RNR. Of the nearly 10,000 putative RNR sequences identified by MMseqs2, only about

one-third were validated as functional RNRs by both PASV and manual curation. The

other two-thirds were considered bycatch sequences. Common gene families within the

bycatch sequences included RNR Class I beta subunits, thioredoxins, glutaredoxins,

polymerases, helicases, and terminases (Additional File 6). Given the sensitivity of

MMseqs2 [358], it is likely to find significant hits in sequences only distantly related to
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RNR or to sequences with domains similar to those occasionally found in RNRs. Some

RNR Class I beta subunits are known to contain fused glutaredoxin domains [323].

RNRs may also have regions of remote homology to polymerases, helicases, and termi-

nases as all of these proteins bind DNA. Some RNRs are known to contain zinc-finger

domains [205], and at least one of the helicases examined with the CDD contained a

zinc-finger domain as well (Additional File 6).

Overall, PASV did an excellent job of removing most bycatch sequences (Table

2.2). Across the 18 reference set experiments that used the full GOV query set, only 187

of 9,906 RNR sequences had PASV predictions that disagreed with manual curation

(Additional File 10). In most instances these sequences, annotated as terminases, poly-

merases, and helicases by NCBI CDD, existed on long branches indicating significant

evolutionary distance from true Class I large subunit and Class II RNR sequences (Fig.

2.7B). Many of the false-positives identified by PASV (those sequences that PASV pre-

dicted to be RNRs, but manual curation predicted to be non-RNR) were likely RNR

sequences that were missed during manual annotation. This can be attributed to the

challenge of manually curating thousands of sequences and the problems inherent when

performing large multiple sequence alignments.

2.4.4 Partitioning sequences by key residues

PASV was conceived as a tool for validating the identity and functionality of

protein sequences following homology searches. However, use cases for PASV extend

beyond separation of bonafide and bycatch sequences. PASV provides an automated

method for applying domain knowledge of a target protein to a large number of se-

quences. From this domain knowledge, PASV can partition sequences into groups

based on structural characteristics that may be linked with protein biochemistry or

phylogeny.

PASV was used in such a way to partition Class I alpha and Class II RNRs.

While many amino acid residues in the active and allosteric sites of Class I alpha and

Class II RNRs are conserved, other residues may be diagnostic of class [135]. Prior
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work based on protein alignments and phylogenetic trees suggests that the residue

in position 438 (E. coli numbering) may be diagnostic of RNR class. Thus, PASV’s

ability to leverage this domain knowledge was tested by sorting RNRdb sequences into

class based on the identity of the residue in position 438. The function of residue 438 is

unknown, but it is known to be conserved and sits within the active finger loop domain

that contains the immutable active sites N437, C439, and E441 [84]. The sorting by

PASV agreed almost perfectly with the RNRdb class annotations (Table 2.4), with

>98% of Class I alpha and Class II sequences correctly identified.

An extension of this use case are peptides that cannot be differentiated by homol-

ogy searches alone. Alternative oxidase (AOX) and plastid terminal oxidase (PTOX)

are membrane-bound di-iron carboxylate proteins that oxidize a quinol substrate [32].

Although the proteins function within different organelles (AOX functions within the

mitochondrial electron transport chain [3, 230] while PTOX is a chlororespiration en-

zyme only found within plastids and cyanobacteria [55]), their shared homology and

function has led to high levels of misannotation [258]. However, using the amino acid

signatures presented previously [258], PASV was able to sort AOX and PTOX proteins

from each other with 100% accuracy. In this way, PASV leverages expert knowledge

in an automated fashion.

It has been shown that PASV can accurately partition Class I alpha and Class

II RNRs using a residue diagnostic of these classes (Table 2.4), and AOX sequences

from PTOX sequences using conserved motifs [258]. Given its success with these two

disparate examples, it is likely that PASV could be effectively applied to other gene

partitioning tasks as well. For example, a single amino acid mutation at position 762

(E. coli numbering) of motif B of DNA polymerase I (Pol I) imparts dramatic changes

in either the fidelity or efficiency of replication [368]. Subsequent work has hypothesized

that Pol I 762 mutations predict the life history characteristics [334] and the genetic

composition of the replication module [251] of bacteriophages using Pol I for genome

replication. PASV could be used to automatically partition viral Pol I sequences based

on the 762 position, providing a means to further test hypothesized connections between
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Pol I biochemistry and phage life history using large metagenomic datasets. There

are many examples of point mutation(s) in bacterial proteins that prevent antibiotics

from binding and, thus, inhibit the function of the antibiotic (e.g., K88R in rpsL [23],

C117D in murA [72], H526T in rpoB [324], Q124K in EF-Tu [420], V246A and V300G

in ndh [381]). Such point mutations within a protein would not be readily apparent

from homology search alone. Thus PASV could be used for validating and grouping

these peptide sequences according to key point mutations following identification via

homology search.

2.5 Conclusions

Studies using gene sequences of functional proteins collected from metagenomes

for investigating microbial diversity provide new challenges not faced when using genes

for stable RNAs like SSU rRNA. These challenges include detecting and preventing

false-positive bycatch sequences within datasets, validating key functional residues in

proteins of interest, and partitioning peptide sequences into groups or classes. The

PASV pipeline provides researchers with a means for addressing these challenges in

an automated and highly accurate fashion by combining multiple sequence alignment

with expert-curated domain knowledge. The PASV program and source code is freely

available under the MIT license and can be found, along with documentation and usage

examples, on GitHub: https://github.com/mooreryan/pasv.

2.6 Additional information and declarations

2.6.1 Availability of data and materials

PASV source code and documentation are available on GitHub at https://

github.com/mooreryan/pasv. The PASV Docker image is available on DockerHub at

https://hub.docker.com/r/mooreryan/pasv. Data sets and miscellaneous scripts

used in the preparation of the manuscript are available on Zenodo at https://doi.

org/10.5281/zenodo.4426410. Additionally, a snapshot of the PASV source code

v1.3.0 is available on Zenodo at https://doi.org/10.5281/zenodo.4426410.
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2.6.2 List of abbreviations

� AOX: alternative oxidase

� BRL: branch length

� CDD: conserved domain database

� GOV: global ocean virome

� IQR: interquartile range

� LOESS: locally estimated scatterplot smoothing

� MSA: multiple sequence alignment

� NCBI: National Center for Biotechnology Information

� PASV: protein amino acid signature validator

� PFL: pyruvate formate lyase

� Pol I: DNA polymerase I

� PTOX: plastid terminal oxidase

� RNR: ribonucleotide reductase

� ROI: region of interest
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Chapter 3

INTEINFINDER: AUTOMATED INTEIN DETECTION FROM LARGE
PROTEIN DATASETS

3.1 Introduction

Inteins (intervening proteins) are intervening polypeptides found within the cod-

ing regions of their host genes and are the protein equivalent of introns [328]. They are

transcribed and translated along with host protein fragments (exteins) before autocat-

alytically splicing out from the precursor protein [189, 277]. Inteins contain multiple

domains. Two of these are required and involved in protein splicing (N-terminal and

C-terminal domains) [289], while the third is an optional homing endonuclease domain

that disrupts the two protein splicing domains and enables intein mobility [26]. Inteins

that lack the endonuclease domain are called mini-inteins [328]. Some mini-inteins

are split and are transcribed and translated as two separate polypeptides that spon-

taneously assemble and then ligate their exteins in trans [341]. Inteins are distributed

widely, if sporadically, across taxa. They are especially common among microbes in-

cluding archaea, bacteria, single-celled eukaryotes, and viruses, with approximately

half of archeal genomes and a quarter of bacterial genomes in NCBI containing inteins

[167, 261].

Because of their unique properties, inteins have broad applicability in biotech-

nology and genetic engineering and are highly studied in those fields. Of particular

interest is their ability to regulate extein function at the post-translational level in con-

ditional protein splicing (CPS) systems [246]. In this context, split inteins have been

used for controlling transgene expression in Caenorhabditis elegans [384], generating
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bi-specific antibodies (those with two different antigen-binding arms) [128], and devel-

oping tumor-targeting protein delivery systems for protein toxic drugs [58], to name

only a few applications.

Inteins were traditionally thought to be parasitic genetic elements providing

no benefit to the host organism [117, 250], but recent studies have challenged this

idea. Inteins may provide selective advantages to their host organism through post-

translational regulation and CPS. It has been posited that some inteins have evolved to

function as a “pause button” that controls host protein function: intein presence in the

intein-extein precursor pauses the function of the host protein, with conditional intein

splicing providing a means of rapid protein activation [189]. Such naturally-occurring

CPS has been reported in a variety of systems, controlled by mechanisms including

the presence of the extein’s substrate [191], the addition of a reducing agent [48, 47],

reactive oxygen and nitrogen species [372], and temperature [190, 373]. In some cases,

these mechanisms of CPS control are connected to conditions favorable to the host

organism, effectively acting as a sort of environmental sensor, preventing splicing until

optimal growth conditions for the host organism occur (e.g., [373]).

Lending support to this idea, intein distribution is biased towards specific types

of proteins, suggesting selective retention of inteins [262, 261]. Inteins are most com-

monly found in proteins related to replication, recombination, and repair (e.g., poly-

merases, helicases, and ribonucleotide reductases) [262], and in viral-specific genes (e.g.,

the large terminase subunit, which translocates DNA into empty capsids) [167].

Intein (and intron)-encoded endonucleases have been shown to provide compet-

itive advantage to their viral hosts. These endonucleases serve as a mechanism for

exclusion processes during competitive infection by multiple viruses [118, 28, 413]. For

example, if viruses involved in a mixed-infection differ by the presence of an intein-

encoded endonuclease within the same gene, the intein-free copy can be cleaved by the

endonuclease resulting in a reduction of fitness of the intein-free virus [75]. Work with

giant viruses has demonstrated that intein (and intron)-encoded endonucleases can be

anti-viral weapons, rather than simply being genomic parasites [98]. Thus, there is
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growing evidence that inteins are not merely selfish genetic elements, but provide a

potential benefit to their host.

Accurate intein identification is critical for studying the biology, ecology, and

evolution of these fascinating mobile genetic elements and their host proteins. Inteins

can be useful for exploring non-vertical evolutionary relationships between the host

organisms in which they reside. For example, the distribution of closely related inteins

in distantly related organisms, or vice versa, may indicate gene flow and the occurrence

of horizontal gene transfer events [352, 353]. The presence of inteins with endonucleases

especially may indicate frequent genetic exchange in the types of genes that carry them

[117, 80]. Additionally, there is no clear picture of the distribution of inteins themselves

across taxa, despite recent studies in this area [167, 261].

Intein identification is also important for investigations where intein presence

can confound phylogenetic and ecological analyses. Ecological studies of viruses and

cellular microbes often utilize peptide coding genes as a means for assessing diversity

and population dynamics [2, 395]. In particular, ecological and phylogenetic studies of

viruses often use genes that commonly contain inteins, such as DNA polymerase [143,

334, 388, 251, 168], ribonucleotide reductase [80, 325, 135, 401], and terminase [167,

209]. The presence of inteins in these viral genes confounds their phylogenetic analysis

as the intein sequences themselves provide little phylogenetic information for their

extein sequence [117]; because they are mobile, most inteins generally do not cluster

based on the phylogenetic or taxonomic classification of their host organism or virus

[281]. Thus, intein sequences should be identified and removed prior to evolutionary

or population-scale analyses [68, 243, 325, 135].

Studies that have identified inteins within a set of genomes or other large pep-

tide datasets have followed a similar general workflow [352, 261, 167, 121]: creating a

reference intein database (e.g., using intein sequences from InBase [282] or conserved
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domains); identifying intein-containing sequences by homology search against the refer-

ence intein database; and validating putative inteins through conserved residues or an-

notation using methods such as CD-Search [221] or InterPro [101]. To date, intein dis-

covery and validation workflows have not been consolidated into a single pipeline that

automates this multi-step bioinformatic process. InteinFinder provides a standardized

and automated pipeline for identifying, cataloging, and removing inteins from peptide

sequences. The pipeline can handle large datasets with millions of peptide sequences

and can be incorporated into existing workflows focused on phylogenetic analysis of

marker gene sequence data.

3.2 Methods

3.2.1 Building search databases

InteinFinder uses two databases in the initial search stage of the pipeline. One

consists of full length intein sequences (intein sequence database – ISDB), and the other

includes conserved domain models associated with inteins (intein conserved domain

database – ICDDB).

3.2.1.1 Intein sequence database (ISDB)

InteinFinder’s intein sequence database (ISDB) contains experimentally and

computationally predicted intein sequences. All intein sequences from InBase [282] (In-

Base last updated Nov. 5, 2010) were downloaded. Resulting sequences were checked

manually and errors corrected (e.g., FASTA header lines included inside the sequence

definition, or errors in sequence IDs). A subset of intein sequences in InBase included

up or downstream extein residues (e.g., -1 and +1 extein residues). For consistency,

any extein residues included in the intein sequences were removed. Inteins identified

in other studies [167, 121] were also collected and subjected to similar manual post-

processing. Finally, all intein sequences were combined into a single, non-redundant

database by clustering all sequences using CD-HIT version 4.6 [106] at 100% global
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sequence identity over 100% coverage of the smaller sequence to remove exact and

substring matches.

3.2.1.2 Intein conserved domain database (ICDDB)

Conserved domain models (CDs) were selected from NCBI’s Conserved Domain

Database (CDD) FTP (accessed March 27, 2017) based on their membership in the

following superfamilies often to be associated with inteins: Hint superfamily (Hint:

cl22434), HNHc Superfamily (HNHc: cl00083), Intein splicing (cl25944), and LAGLI-

DADG WhiA (cl08299). A full listing of included CDs can be found in Table 3.1.

3.2.2 InteinFinder pipeline

The InteinFinder pipeline consists of three parts (Fig. 3.1): (1) homology search

against known intein sequences and intein-associated conserved domain models, (2)

validation of conserved splice junction residues [281], and (3) refinement of predicted

intein region(s). Each step of the pipeline yields additional evidence for the presence

of inteins in query sequences. Through multiple rounds of validation, InteinFinder

partitions query sequences into different confidence tiers based on the evidence for an

intein sequence.

InteinFinder is implemented in OCaml [193] with source code and precompiled

binaries for MacOS and Linux available on GitHub1 under the MIT or Apache li-

cense. It uses the following third-party software for homology searches and sequence

alignments: MMseqs2 [358], MAFFT [164], and RPS-BLAST [221].

3.2.2.1 Defining putative intein regions

InteinFinder identifies query peptides containing putative intein sequences using

two separate homology searches. Query peptides are searched against ISDB using

MMseqs2 [358], and searched against ICDDB using RPS-BLAST [221]. Queries that

1 https://github.com/mooreryan/InteinFinder
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Table 3.1: Superfamilies and conserved domain models included in the InteinFinder
Intein Conserved Domain Database (ICCDB).

Superfamily Superfamily ID CD CD ID

Hint cl22434 Hint cd00081
Hint cl22434 Hint 2 pfam13403
Hint cl22434 HintN smart00306
Hint cl22434 intein Nterm TIGR01445
Hint cl22434 Vint pfam14623

HNHc cl00083 Colicin-DNase pfam12639
HNHc cl00083 Csn1 cd09643
HNHc cl00083 DUF1524 pfam07510
HNHc cl00083 EndA COG2356
HNHc cl00083 Endonuclease 1 pfam04231
HNHc cl00083 HNH pfam01844
HNHc cl00083 HNH 2 pfam13391
HNHc cl00083 HNH 3 pfam13392
HNHc cl00083 HNH 4 pfam13395
HNHc cl00083 HNHc cd00085
HNHc cl00083 HNHc smart00507
HNHc cl00083 McrA COG1403
HNHc cl00083 PRK11295 PRK11295
HNHc cl00083 PRK15137 PRK15137
HNHc cl00083 TIGR02646 TIGR02646
HNHc cl00083 WHH pfam14414
HNHc cl00083 zf-His Me endon pfam05551

Intein splicing cl25944 HintC smart00305
Intein splicing cl25944 Hop COG1372
Intein splicing cl25944 intein Cterm TIGR01443
Intein splicing cl25944 Intein splicing pfam14890

LAGLIDADG WhiA cl08299 Hom end pfam05204
LAGLIDADG WhiA cl08299 LAGLIDADG 3 pfam14528
LAGLIDADG WhiA cl08299 LAGLIDADG WhiA pfam14527
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Figure 3.1: InteinFinder conceptual diagram. Query sequences are searched
against two databases. One consists of a set of curated, dereplicated
intein sequences (Intein Sequence Database–ISDB), and the other con-
sists of conserved models of protein domains typically associated with
intein sequences (Intein Conserved Domain Database–ICDDB). Overlap-
ping significant hits from these searches are used to predict and extract
(“clip”) putative intein regions on query sequences. Query sequences that
had significant hits to curated intein sequences (ISDB) are aligned with
the top scoring hit and the clipped putative intein to further refine the
boundaries of the putative intein, repeating this process with the next
top scoring hit until the intein region N- and C-terminal boundaries are
validated or all hits have been tested. The ensemble homology approach,
alignment, and region refinement, bins query sequences into groups based
on user-specified tiers of evidence that an intein is present, e.g., putative
intein region, bonafide intein, etc.
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Figure 3.2: Putative intein regions are defined by overlapping significant
hits to InteinFinder’s databases. Putative intein regions represent
contiguous regions on the query sequence that are covered by significant
hits to InteinFinder’s databases: Intein Sequence Database (ISDB) and
Intein Conserved Domain Database (ICDDB). Hits are “tiled” along the
query sequence, and regions of the query sequence with unbroken cover-
age are considered putative intein regions. These regions are extracted
as “clipping regions” used in InteinFinder alignments.

show significant homology (E-value ≤ 1e-3 by default) to subject sequences in these

two search databases are retained for further analysis.

Next, putative intein regions are identified on query sequences showing signif-

icant homology to a known intein sequence or conserved domain. A putative intein

region is defined as the portion of a query sequence having overlapping hits to either

database in the homology search (Fig. 3.2). Query sequences may have more than

one putative intein region. For example, if query A has three significant hits spanning

positions 100-200, 150-250, and 200-250, then the putative intein region for query A

would be positions 100-250. If query A also had hits spanning region 500-600 and 550-

700, then query A would have an additional putative intein region in position 500-700.

Any putative intein regions longer than a user-specified length cutoff (default ≥ 100

peptides) are retained for further analysis.
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3.2.2.2 Conserved residue validation

For each putative intein region that has a significant hit to an intein in the

ISDB, sequence alignment is used for refining and verifying conserved intein residues

using the following procedure. (Putative intein regions that only have hits to conserved

domain models in the ICDDB do not go through the refinement and verification stages

of the pipeline.)

3.2.2.2.1 Procedure

First, the putative intein is “clipped” from the query sequence using the bound-

ary defined by the tiling procedure described above. All intein subject sequences from

ISDB having significant homology to the putative intein region are sorted according to

hit quality (as measured by bit score), and the top ISDB intein hit is selected. Next,

the full-length query sequence, the clipped putative intein, and the selected ISDB hit

are aligned using MAFFT. Including the clipped region in the multiple sequence align-

ment helps guide the alignment in cases where low-complexity regions cause issues or

in cases where the query sequence contains multiple inteins (Fig. 3.3). Finally, using

this alignment, four validation criteria are checked: (1) alignment of the ISDB intein

within the putative intein region of the query peptide, (2) the presence of the intein

N-terminal residue, (2) intein C-terminal dipeptide, and (4) the C-extein start residue.

If at least one validation criteria is not met, then the process is repeated with the next

highest scoring intein. This process repeats until a putative intein region is found that

satisfies all four criteria, or until all significant ISDB intein hits are exhausted.

3.2.2.2.2 Confidence tiers

After validation, putative inteins are assigned Pass/Fail values for each valida-

tion check. The Pass values for residue checks (N-terminal, C-terminal, and C-extein

start) are more granular and include user-defined confidence tiers. These tiers allow

the partitioning of residues based on user requirements. For example, an N-terminal
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Figure 3.3: Clipped query sequences resolve overextension of alignments
and refine putative intein boundaries. The alignment (top) of a
query sequence (purple) to its top scoring homologous hit (orange) to
Intein Sequence Database (ISDB) often results in a spurious, extended
alignment, possibly due to low complexity regions, multiple inteins per
query sequence, etc. InteinFinder resolves this issue and refines intein
boundaries by including the clipped putative intein region (lilac) defined
by overlapping hits from the ensemble homology search. Numbers at the
bottom of the alignments represent the alignment column.

cysteine is assigned a Tier 1 Pass by default, as it is commonly found in known in-

teins and is well-supported in the literature. Other residues may be placed in lower

confidence tiers as required. An overall validation result is determined by the results

the four validation checks. If a putative intein fails at least one check, then its overall

check also fails; however, if it passes each check, then its overall check also passes. The

overall check is also assigned a confidence tier determined by the lowest tier among the

individual checks. Putative intein regions that pass the overall check are referred to as

“bonafide” inteins in later sections, whereas any that do not are referred to as putative

inteins or putative intein regions.

3.2.2.2.3 Region refinement

For those putative intein regions that pass the overall check (i.e., bonafide in-

teins), the regions on the query sequence predicted from the initial homology search

are refined. That is, boundaries for the putative intein region are adjusted to the posi-

tions of the first and last non-gap position of the subject ISDB intein sequence aligned

against the query sequence. These intein sequences may also be removed from query
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sequences using the RemoveInteins program included in the InteinFinder repository.

3.2.3 Constructing test query data sets

Various controlled test data sets were used to examine InteinFinder’s effective-

ness at identifying inteins. After construction, each of the following data sets were used

as queries in the InteinFinder pipeline.

3.2.3.1 UniProt-test-data

UniProt provides a list of 104 SwissProt entries with one or more inteins, with

a total of 118 (114 unique) inteins referenced as of the March 2018 release. These

protein sequences were downloaded, run through the InteinFinder pipeline, and the

results were manually compared to the SwissProt annotations.

3.2.3.2 RNR-real-test-data

A subset of 100 viral ribonucleotide reductase sequences (RNR) from the RNRdb

[214] were selected and manually screened for inteins. Sequences were selected so that

twenty sequences contained at least one intein and 80 had no inteins.

3.2.3.3 RNR-in-silico-test-data

A subset of 1000 manually-screened, intein-free Class I alpha subunit RNR

sequences were selected from the RNRdb [214]. ISDB inteins were added in silico to a

randomly selected subset of 500 RNRs: 250 of these received a single, randomly selected

ISDB intein inserted at position 101; 250 received two randomly selected inteins (each

unique) inserted at positions 101 and 201 of the original RNR sequence. Directly

following each added intein, one of S, T, or C amino acids was inserted in the RNR

sequence, as InteinFinder checks the C+1 extein residue.

3.2.3.4 RNR-ISDB-test-data

An in silico intein-containing RNR intein dataset was constructed using the full-

length inteins from the ISDB. A set of intein-free RNR sequences taken from the same
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set of intein-free RNR sequences used in the RNR-in-silico-test-data were randomly

selected, one for each intein in the ISDB. A single intein was added to each of the

intein-free RNR sequences, in the same way as in the RNR-in-silico-test-data.

3.2.4 InteinFinder sequence database characteristics

Various analyses were conducted to describe the properties of the 792 inteins in

InteinFinder’s ISDB.

3.2.4.1 ISDB sequence similarity

To examine the relationship of ISDB inteins to one another, all-versus-all global

percent identity was calculated using a custom program (align version 1.0.0 available

on GitHub2) that leverages the pairwise global aligner from Rust-Bio v1.1.0 [176] with

the BLOSUM62 scoring matrix, a gap-open penalty of 10, and a gap-extend penalty

of 1. Percent identity scores were visualized with a heatmap in R v4.1.2 using the

heatmap.2 function from the gplots package v3.1.3. Heatmap dendrograms based on

sequence percent identity (converted to distances with 100−P where P is the percent

identity) were made using the hclust function in R using the Ward D2 option for

dendrogram agglomeration. Data range was calculated with the quantile function in

R.

3.2.4.2 Sensitivity of individual ISDB inteins

Rather than using the full ISDB in each InteinFinder run, a reduced intein

sequence database containing a single entry from the standard ISDB was used (i.e.,

the InteinFinder pipeline was run once for each of the 788 full-length inteins in the

ISDB, using a reduced intein sequence database containing a single intein from the

ISDB). The query set used for each run was the RNR-ISDB-test-data, excluding the

RNR with the intein currently being used as the target database. The number of

putative and bonafide inteins was recorded for each run, along with their percent

2 https://github.com/mooreryan/align
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identity to the single sequence in the target database. These scores were then plotted

using kernel density estimation from the ggplot2 R package. To evaluate the differences

in percent identities between bonafide and putative inteins, the Wilcoxon rank sum test

for difference in location was used.

3.2.4.3 Intein collectors curve

As a proxy for the comprehensiveness of ISDB, a collectors curve was generated

from the ISDB intein sequences. The ISDB sequences were clustered at 30% peptide

identity using MMseqs2 [358] followed by rarefaction analysis in QIIME [52]. Finally,

the curve was visualized using ggplot2 in R.

3.2.5 IMG/VR Methods

The IMG/VR database of uncultivated viral genomes (UViGs) v4.1 (released

Dec. 2022) from the JGI Genome Portal, which included a set of 112,567,455 high-

confidence peptide sequences, was obtained [49]. IMG/VR uses the first four levels

(Ecosystem, Ecosystem Category, Ecosystem Type, and Ecosystem Subtype) of the

JGI GOLD classification system [151] to provide detailed ecosystem information for

the UViGs.

3.2.5.1 Identifying inteins from IMG/VR peptide sequences

InteinFinder (version 1.0.0-SNAPSHOT [7a303c7], default settings except –

MMseqs2 number of search iterations: 1, MMseqs2 sensitivity: 4) was used to identify

putative inteins from this data set. Third-party software versions used in the pipeline

were as follows: MAFFT version v7.490, MMseqs2 version 5ae55, rpsblast and make-

profiledb version 2.13.0+. InteinFinder pipeline databases, ISDB and ICDDB, were

the default databases for the version of InteinFinder used for the experiment.

3.2.5.2 Intein distribution across ecosystems

Intein under- and over-representation was estimated using a ratio of bonafide

inteins to background sequences per environment (Bonafide to Background ratio). The
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Bonafide to Background ratio for each ecosystem was calculated as follows: (1) calcu-

late the proportion of all bonafide inteins in that were identified in that ecosystem, (2)

calculate the proportion of total UVIGs originating from that environment, (3) calcu-

late the log2-ratio of the value from (1) to the value from (2). Note that the number

of UVIGs and the number of protein sequences per ecosystem were highly correlated

(r = 0.97), and so the former was used as an estimate of the latter, as the data was

more readily available (Fig. 3.4). The result is a value ranging from [−∞,∞]. A value

of zero indicates an environment with exactly the expected number of inteins given

the size of that ecosystem. Positive numbers indicate over-representation and negative

numbers indicate under-representation. For example, if an environment contained 50%

of all bonafide inteins, but only 25% of total UVIGs from the IMG/VR dataset, its

Bonafide to Background ratio would be log2(0.5/0.25) = 1, indicating about twice as

many inteins as expected.

3.2.5.3 IMG/VR functional annotation

Functional annotation of IMG/VR sequences was done using the GhostKOALA

automatic KO assignment and KEGG mapping service version 2.2 (released May 15,

2019) [159], with the search parameters “genus prokaryotes + family eukaryotes +

viruses”. Given the 500,000 sequence limit per annotation job, random samples with

500,000 sequences each of the IMG/VR peptides individually were submitted. The first

five samples were generated using the sample seqs program (version 1.0.0 [accf101],

random seed: 53643). At a later date, twenty additional samples were generated with

sample without replacement program (version 1.0.0 [90a4be8]), with random seed

294342) Both programs are available on GitHub.3

KO terms were mapped to higher level KEGG terms using custom scripts to

parse the mapping provided by the KEGG BRITE database (accessed 2023-03-01).

In this way, each annotated sequence was assigned one or more “paths” through the

BRITE hierarchy: KO term → C level term → B level term → A level term → root.

3 https://github.com/mooreryan/sampling
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Figure 3.4: Number of UVIGs is highly correlated with number of proteins
per ecosystem. Scatterplot of the number of uncultivated viral genomes
(UVIGs) and the number of proteins for each ecosystem in IMG/VR.
Orange line represents log-log linear regression of number of proteins on
number of UVIGs. The solved equation is log10(y) = 1.44 + 0.97 ×
log10(x), with R2 = 0.94, where x is the number of UVIGs in a given
ecosystem and y is the number of proteins in a given ecosystem.
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Note that many KO terms (the lowest level of the hierarchy) have multiple paths to

the root. That is, nodes can have multiple parent nodes in addition to parent nodes

having multiple children. Annotations were limited to those with the following A level

terms: 09100 Metabolism, 09120 Genetic Information Processing, 09130 Environmental

Information Processing, 09140 Cellular Processes.

Principal components analysis (PCA) on the centered log-ratio proportions of

KEGG annotations at three levels, A, B, and C, were used to generate KEGG profile

ordinations for the various environments.

3.3 Results & Discussion

Inteins are autocatalytically self-splicing protein introns that are of interest to

a broad community of scientific researchers. The ability to break and form peptide

bonds has made inteins powerful biotechnological tools with applications in molecular

biology, protein chemistry, and other fields [341, 208, 385]. Evolutionary biologists have

an interest in identifying intein sequences, either because researchers need to remove

them prior to analyses (e.g., [135]) or because of their utility in tracking gene transfer

events [352, 167]. Inteins are also useful to ecologists, as it has been demonstrated

that inteins likely provide a means of post-translational regulatory control of their host

peptide sequences (exteins) through environmental “sensing” [373, 372, 192]. This

suggests that inteins have a marked impact on the fitness and ecology of the organisms

and genes in which they reside, which is in contrast to the early days of their discovery

and study when inteins were generally thought to be neutral or selfish genetic elements

[117, 250].

A common feature of intein studies, regardless of their specific focus, is the

need to identify inteins in protein data sets ranging from genome collections like NCBI

RefSeq [264] to individually collected metagenomic samples. These studies generally

follow a similar set of steps for identifying inteins: creating or using an existing ref-

erence database of intein sequences, searching the sequences of interest against that
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database, and validating the putative inteins for important protein features like con-

served residues or splice junctions (e.g., [167, 261]). Given the common features of these

studies, a similar procedure was consolidated into a reusable intein-discovery pipeline.

As the significance of inteins in various fields grows, an automated intein-discovery

pipeline will become increasingly valuable.

3.3.1 InteinFinder pipeline considerations

InteinFinder combines common practices from many large intein surveys and

adapts them to form a single pipeline (e.g., [352, 261, 167, 121]). InteinFinder’s goal

is to lessen the burden of manual identification and curation of inteins in large pep-

tide data sets by standardizing the search for inteins and increasing the accessibility

to a greater number of researcher groups. InteinFinder is scalable to datasets con-

taining hundreds of millions of peptide sequences, making it well suited to the large

metagenomic datasets common in microbiome and environmental research.

InteinFinder includes two databases: an intein sequence database (ISDB) of ex-

perimentally and computationally predicted intein sequences, and an intein conserved

domain database (ICDDB). The InteinFinder pipeline combines multiple homology

search methods to increase its ability to identify inteins. Query sequences are searched

against a curated set of validated intein sequences (ISDB) using MMseqs2 [358], and

against a set of intein-associated domain models from the NCBI conserved domain

database (ICDDB) using RPS-BLAST [408]. Its ensemble method allows InteinFinder

to identify a greater amount of inteins than using either intein or conserved domain

homology methods individually. Any query sequence that has a hit to at least one

target in either of InteinFinder’s databases and passes the user-defined length filter

will have a putative intein region predicted.

3.3.2 Validating the InteinFinder pipeline

The first consideration in developing a discovery and identification pipeline for

any protein is ensuring the results are accurate. Multiple validation experiments were
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used to test InteinFinder’s ability to recapitulate the results of manual intein curation.

To this end, three different tests were conducted to evaluate InteinFinder’s accuracy

in identifying and demarcating inteins within query sequences. Pipeline results were

compared with the known true locations of inteins.

First, InteinFinder was tested against SwissProt (March 2018 release) which

contained 104 peptide sequences having one or more inteins, with a total of 118 (114

unique) intein sequences (UniProt-test-data). InteinFinder correctly identified all 118

intein regions, with all regions marked as bonafide (Table 3.2). InteinFinder did not

identify any inteins that did not exist in the test data. SwissProt and InteinFinder

annotations disagreed in four sequences by one amino acid. Manual inspection of these

sequences found that SwissProt included the up- and down-stream extein residue(s)

in the annotation, whereas InteinFinder did not. Additionally, InteinFinder extracted

one intein sequence (P74750 (1)) as a single intein whereas SwissProt separated this

intein in two (P74750 (1 & 2)). This split intein interrupts the DNA polymerase III

alpha subunit from Synechocystis sp. (strain PCC 6803 / Kazusa). The protein is

encoded by two separate genes (dnaE-N and dnaE-C) 745 kb apart in the genome and

the two halves are spliced in trans by the split intein [400, 90], so it is logical that the

SwissProt annotation is also split. Given that the protein itself is presented as a single

entry in the database, InteinFinder’s start and stop annotations accurately reflected

the intein boundaries within the protein sequence.

Second, a set of 20 manually-annotated, intein-containing ribonucleotide re-

ductase (RNR) sequences from the RNRdb [214] were selected, containing 26 total

intein regions (RNR-real-test-data). An additional 80 manually-screened, intein-free

RNRs were randomly selected from RNRdb. InteinFinder identified all 26 intein re-

gions within the 20 intein-containing RNRs, and no inteins within the 80 intein-free

sequences. Twenty-four of the 26 intein regions were marked as bonafide, and two

regions were marked as putative. However, the two putative intein regions did contain

the true intein within the predicted start and end position.

Third, intein sequences were added to RNR sequences in silico creating a
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database containing 500 intein-free RNRs, 250 RNRs with one ISDB intein inserted at

position 101, and 250 RNRs with two ISDB inteins inserted at positions 101 and 201

(RNR-in-silico-test-data). InteinFinder did not identify inteins within the 500 intein-

free sequences. It correctly identified the start and end positions of 743 (99.1%) of the

750 total inteins added to the dataset. All seven incorrect inteins were found on RNRs

with two intein regions. While the exact start and end coordinates were incorrect, the

actual intein location was within the putative intein region that InteinFinder predicted.

Through these experiments, InteinFinder was shown to be both sensitive and

specific. Additionally, even in the few cases in which the boundaries of predicted inteins

disagreed with manual annotation, the true intein was within the boundary predicted

by InteinFinder. That is, the intein was still correctly identified, even while not being

perfectly delimited in the extein sequence.

3.3.2.1 Parameter and sensitivity tuning

Users must consider the tunable parameters of the homology search tools when

using InteinFinder. While the default parameters were shown to work well in the above

tests, it is likely that that the specific scientific question being addressed could call

for adjustments. Less stringent E-value cutoffs, higher sensitivity levels, and greater

numbers of search iterations all lead to a larger pool of putative intein sequences

and may capture inteins with distant homology to InteinFinder’s databases. This

may be desirable in cases where query sequences originate from environments not well

represented in the InteinFinder database, or in a more exploratory or discovery based

setting. This increase in sensitivity may also increase the number of false positives [40].

However, more sensitive searches could still be applied without increasing the amount

of false positive non-inteins by giving increased manual scrutiny to sequences to which

InteinFinder gives a lower confidence tier.
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3.3.2.2 Database comprehensiveness & efficacy

Expanding on the previous point regarding the tradeoffs between sensitivity and

specificity, any homology-based database-backed discovery pipeline will be limited in its

ability to discover novel features by the comprehensiveness of its database [414, 370, 79].

Many of the inteins in the ISDB are from InBase [282], which includes user-submitted

intein sequences from across the tree of life, including viruses and phages. InBase has

historically contained many inteins found in the literature, i.e., inteins that have high

importance in biochemical operations and those from commonly studied laboratory

organisms or genes. Though InBase contains inteins from a variety of organisms, it

likely suffers from the same “research bias” that affects other protein databases, that

is, sequences similar to early key model organisms will have a much higher annotation

rate, and many environmentally important groups will be underrepresented [29, 204].

To add valuable diversity to ISDB, inteins from large-scale surveys of mycobac-

terium phage [167] and microeukaryotes [121] were included. Acquisition of these

sequences was straightforward as the authors provided data in a format amenable to

data collection. At the time of data collection (2018), data or inteins from other ex-

isting large-scale studies were challenging to incorporate or were not amenable to the

curation process. However, these studies and other more recent intein surveys (e.g.,

[141]) could be added in later updates to the InteinFinder databases. Notably, users

can easily add new intein sequences or profiles to InteinFinder’s databases or even opt

to use their own databases entirely, decoupling InteinFinder’s usefulness from depend-

ing on a central curated intein database. While there have been large-scale studies of

intein discovery across protein datasets such as NCBI’s Gene database [262] and Ref-

Seq [261], to our knowledge, there are no large scale, multi-environment environmental

sequencing studies in which the focus has been intein identification. Thus, determin-

ing a baseline of global intein diversity across ecosystems remains an open question.

Regardless, care was taken to include inteins from multiple studies of different kinds of

organisms, and the collector’s curve suggests that the environments in ISDB may be

64



Table 3.3: Intein sequence database (ISDB) intra-cluster percent identity quantiles.

Cluster No. seqs
PID Quantiles

2.5% 50% 97.5%

1 49 43.3 58.2 98.8
2 48 19.5 26.0 77.0
3 88 9.9 18.8 52.9
4 47 27.7 42.1 99.1
5 47 27.2 35.0 99.6
6 15 42.3 62.5 100.0
7 39 19.1 29.7 100.0
8 13 54.2 73.9 100.0
9 20 40.4 48.2 100.0
10 21 18.3 35.8 100.0
11 119 12.9 18.3 56.1
12 286 13.3 18.5 27.2

All 792 7.6 16.2 26.7

fairly well represented4 (Fig. 3.5).

Various analyses of ISDB intein characteristics were conducted. First, the sim-

ilarity between ISDB inteins was examined. Global percent identity was calculated

for each combination of sequences in the ISDB. While most intein pairs had low per-

cent identity scores (median: 16.2%, 95% quantile range: [7.6%, 26.7%]), there were

localized groups of highly similar inteins (Fig. 3.6, Table 3.3).

Next, the sensitivity of each ISDB intein for identifying novel inteins was ex-

amined. Each full-length ISDB intein (788) was used as a target database against the

corresponding intein-containing RNR query sequences (RNR-ISDB-test-data). The

median number of bonafide inteins predicted per run was 57 (95% quantile range: [3,

159]), while the median number of putative inteins was 773 (95% quantile range: [773,

776]). The median percent identity for predicted bonafide inteins across all runs was

4 The comprehensiveness of the ISDB was examined using a collector’s curve of 30%
clusters of ISDB inteins. While the curve does not plateau completely, it does begin
to level off as the number of inteins included in the analysis increases.
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Figure 3.5: The collectors curve of 30% amino acid clusters of inteins from
InteinFinder intein sequence database (ISDB) suggests that
model systems and environments sampled in ISDB are well rep-
resented. ISDB inteins were sampled at 10 steps between 10 and 790
sequences, 10 iterations each. Intein sequences from each subset were
clustered with MMseqs2 at 30% identity. The mean number of clusters
and standard deviation was plotted at each rarefaction level.
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Figure 3.6: Sequence percent identity of Intein Sequence Database (ISDB)
shows a module-like network structure. Localized groups of highly-
similar inteins cluster together, and are highly dissimilar to most inteins
outside of the cluster. The similarity network is displayed as a heatmap,
where the yellow-orange-brown color scale represents the global percent
identity of each intein pair, and dendrograms are hierarchical clustering
of ISDB intein sequences based on the percent identity. Clusters defined
by the dendrogram are labeled from 1-12 and colored for clarity.
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Figure 3.7: Sensitivity of ISDB sequences at identifying novel inteins. Kernel
density estimates of the distributions of number of predicted inteins and
the percent identity of bonafide (orange) and putative (purple) inteins
from in the RNR-ISDB-test-data set. Distributions were significantly dif-
ferent according to the Wilcoxon rank sum test for difference in location.

21% (95% quantile range: [10%, 68%]), and median for predicted putative inteins was

16% (95% quantile range: [8%, 26%]). Wilcoxon rank sum test indicated a significant

non-zero location shift between the bonafide and putative inteins, with estimated dif-

ference in location of 5.45 (95% confidence interval: [5.40, 5.51]) (Fig. 3.7). Notably,

InteinFinder was still able to identify putative inteins in sequences even when those

sequences were quite distant from the sequence in the target database.

On average, the inteins in the ISDB have low sequence similarity scores. How-

ever, rather than the scores being uniformly low, the similarity network has a module-

like structure in which localized groups of highly-similar inteins cluster together, and

are highly dissimilar to most inteins outside of the cluster, with some cases of inter-

cluster similarity (Fig. 3.6, Table 3.3). There are many possible explanations for this

structure. First, though inteins are a diverse set of proteins [366], they have common

regions (i.e., shared blocks) [287, 88], and many share common protein domains like

HNH homing endonucleases [26, 116, 85], which could be driving the connections both
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within and between intein modules. Second, inteins show a mix of vertical and horizon-

tal descent [288, 341, 167, 121]–inteins transferred vertically may be more similar than

those transferred horizontally. Finally, inteins that incorporate in the same proteins at

the same positions are known to be more similar to one another than to inteins from

different peptides or even to other inteins at a different insertion site in the same type

of protein [281, 366]. Still, further work is needed to fully understand the mechanisms

behind the network structure.

The ICDDB includes intein-specific domains and domains for mobile elements

like endonucleases, which are associated with many inteins. Conserved domain searches

are highly sensitive and increase the ability to identify full length putative inteins that

are dissimilar to known inteins included in the ISDB. For example, in the IMG/VR

dataset (described below), of queries with at least one significant hit to one of the

InteinFinder databases, 84% of them only had hits to the ICDDB. A broad conserved

domain search will increase the search sensitivity, but can also increase false positives

because sequences with similar domains to inteins, that themselves are not inteins, may

be recovered. However, only those queries that also have hits to an intein sequence

in the ISDB are retained for alignment and validation, and false positives are reduced

through InteinFinder’s tiered evidence system.

As an example of the utility of the ensemble approach, the predicted intein

region of an RNR sequence from Fimbriimonas ginsengisoli (acc. AIE87195.1) based

only on homology to sequences from the ISDB was 815-849. This was too short to

be included in InteinFinder’s refinement steps. However, including hits to the ICDDB

expanded the putative intein region to 481-852. The final predicted intein region after

validation and refinement was 483-849, which matched manual annotation.

There were cases during pipeline development in which aligning the full length

query sequence one-by-one with its ISDB hits led to errors in the putative intein region

start and end positions due to over-extension of the alignment. InteinFinder automates

the alignment process without user supervision by leveraging the putative intein regions

defined by overlapping homology search results. The putative intein region is “clipped”
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out of the query sequence, and aligned with the full length query sequence and top

scoring hit from the ISDB. The clipped intein region guides the alignment, preventing

over-extension even in cases where queries had multiple inteins (i.e., Fig. 3.3).

Through this alignment process, key criteria of the putative intein region are

checked: N-terminal residue and position, C-terminal dipeptide and position, and the

extein C-terminal +1 residue. For example, an intein with a C-terminal dipeptide

of HN is both common among known inteins and supported in the literature, so by

default it is labeled as a Tier 1 pass, whereas other peptide pairs may be placed in

lower tiers based on their level of confidence (e.g., has literature support but is rare in

ISDB, or is common in ISDB but has no direct literature support). Thus, the subset of

putative inteins retained for analysis can be customized based on the strictness of the

research questions. If false positives are highly detrimental to the question at hand,

users may restrict downstream analysis to only putative inteins with the highest levels

of support. Contrastingly, more lenient selections may be made if a more exploratory

approach with further manual curation is desired.

The InteinFinder pipeline does not currently consider several other noteworthy

intein features. Inteins have various conserved motifs critical for proper functioning,

commonly referred to as blocks, in which certain groups of residues tend to be highly

conserved [281]. Residues in these blocks could be leveraged to provide insights into

splicing dynamics and the intein-extein relationship [104]. By identifying these blocks

in predicted inteins, valuable information can be added to downstream analyses. Apart

from blocks, specific intein residues and non-conserved regions have been identified as

critical for intein functioning [190]. Particular extein residues have even been impli-

cated in intein functionality [268]. A future version of InteinFinder could leverage this

and other information from the literature to predict and annotate these features on

predicted inteins. Many of the inteins currently in the ISDB come from InBase and are

well annotated. These annotations could be incorporated into InteinFinder’s output

to enrich the information included with the predicted inteins. Inteins have different

splicing mechanisms and there are multiple intein families [354, 141]. Automatically
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annotating these features would provide insights into possible biochemical properties

of predicted inteins. Sensitivity, or the ability to identify inteins highly divergent from

those in then InteinFinder database, may be increased by leveraging latent signatures

in the primary sequence structure of queries identified using large language models

(LLMs), or other machine learning techniques that could be integrated into the Intein-

Finder pipeline (e.g., [249, 411]).

In addition to extensions to InteinFinder’s core discovery pipeline, the intein

databases included with InteinFinder could become an independent resource. In this

study, over 70,000 bonafide inteins were identified from across the biosphere, greatly

expanding the known intein sequence space. Ideally, these inteins would be cataloged

and incorporated into a central repository like InBase; however, InBase is no longer

maintained. Given the ease at which InteinFinder allows for intein discovery, an up-

dated central repository for inteins would be a welcome addition to the field.

3.3.3 Viral intein diversity across the biosphere

While inteins possess unique characteristics that make them highly valuable for

various biotechnology applications, [385], there are two major reasons that inteins can

provide useful insights to microbial ecologists: (1) inteins are mobile elements and

are markers for gene flow and horizontal gene transfer events [352], and (2) inteins

are likely to be post-translational regulators of extein peptide function (e.g., [373,

190, 192]). Given the mounting evidence of their ecological importance, patterns of

intein distribution and ecology were explored using IMG/VR, a database of peptides

from viral genomes and viral metagenomic contigs identified in microbial metagenomes

submitted to the Joint Genome Institute’s Integrated Microbial Genomes portal [49].

IMG/VR provided the potential for novel intein discovery and ecological insight as

it spans thousands of metagenome experiments across many of Earth’s ecosystems

[49], is supported by comprehensive metadata, and focuses on viruses, which are still

comparatively understudied as compared to other microbial life [364].
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InteinFinder was used to identify inteins within IMG/VR. There were 72,249

inteins that passed InteinFinder’s checks spread across 69,605 unique extein sequences.

In addition to these “bonafide” inteins, InteinFinder identified 980,336 putative inteins.

Of these, 70,716 of the bonafide and 936,406 of the putative inteins occurred on extein

sequences that had associated metadata regarding ecosystem of origin.

To analyze the functional profile of sequences in IMG/VR, 12.5 million sequences

were submitted to GhostKOALA for KO term annotation. Of these, 1,098,487 se-

quences were successfully annotated with 493,603 sequences falling under one of the

four A level KEGG BRITE terms used in this study: 09100 Metabolism, 09120 Genetic

Information Processing, 09130 Environmental Information Processing, 09140 Cellular

Processes. While the magnitude of KEGG annotated proteins is low compared to the

total number of sequences in the IMG/VR database, bootstrap analysis showed lit-

tle variation in the proportional makeup of A term annotations (Fig. 3.8), indicating

that additional samples likely would not be drastically different in their annotations as

compared to the sequences that were annotated.

3.3.4 Environmental bias in intein distributions

For IMG/VR proteins with environmental annotations, the ratio of the distri-

bution of the bonafide-intein-containing sequence subset (designated intein-containing

peptides, ICP) to the distribution of background sequences5 was compared across en-

vironments. ICP and background distributions differed within and across ecosystems,

indicating that environmental effects on intein distribution were likely non-random

(Fig. 3.9). These observations may have multiple explanations: (1) despite best ef-

forts, InteinFinder’s databases are sufficiently biased that inteins in underrepresented

environments are too dissimilar to be identified, (2) the environments with more/fewer

ICP than expected have more/fewer of the proteins in which inteins are more common,

thus leading to their over/under representation, or (3) there is environment-specific

5 As estimated by the number of UViGs, see Section 3.2.5.2.
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Observed variation across bootstraps was very low.
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selection at work, i.e., there is some change in environmental pressures that affects

retention/fixation of inteins in the members of that environment.

The simplest explanation for the decreases in ICP compared to the background

observed in some environments is that inteins in those ecosystems are less likely to

be identified through homology because they are underrepresented in InteinFinder’s

databases. The observed median identity score between ISDB inteins (16%) is lower

than the median percent identity found in the RNR-ISDB-test-data experiment (21%).

That is, even among known inteins in the InteinFinder database, there exist high levels

of sequence diversity. Thus, it could be the case that that many environmental inteins

are too distant from the sequences in the ISDB to be identified as bonafide inteins.

However, similar, though less pronounced trends in over- and under-representation are

still observed when all putative intein regions retained, rather than restricting the anal-

ysis to bonafide inteins only (data not shown), indicating that the observed differences

between ICP and background proportions are likely not an artifact of overly strict sim-

ilarity thresholds. While including lower-confidence, putative intein regions increases

the probability that some of the putative intein regions are actually non-intein mobile

elements, the similarity in trends between bonafide and putative predicted inteins sug-

gests that a more permissive search would not markedly change the interpretation of

the result.

Another potential explanation is that environments in which inteins are more

abundant than expected contain a proportionally higher number of proteins that com-

monly harbor inteins. Inteins are not evenly distributed across protein types, rather,

they are more likely to be found in replication, recombination, and repair (RRR)

and nucleotide metabolism proteins [262, 261]. In this study, KEGG term annota-

tions were used as a proxy for protein function in the various ecosystems. Ordina-

tions were used to examine any potential connections between ecosystems, their A,

B, and C level KEGG functional profiles, intein under- or over-representation, and

total number of inteins (Fig. 3.10). However, no strong patterns were observed in

the ordinations. Bonafide/total ratios (point color), and bonafide intein counts (point
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Figure 3.9: Proportional under- and over-representation of intein contain-
ing peptides across various ecosystems. Proportional shifts between
intein-containing peptides (ICP) and the background across aquatic
(blue), terrestrial (brown), engineered (green), and host-associated (or-
ange) ecosystems. Within panels, color shades indicate more granular
ecosystem designations. Bar width indicates ecosystem proportion in the
IMG/VR dataset, with wider bars indicating a larger proportion of to-
tal IMG/VR peptides originating from that ecosystem. A positive log2-
ratio indicates higher than expected numbers of inteins in that ecosystem,
whereas as negative log2-ratio indicates a lower than expected number
of inteins.

75



size) were distributed haphazardly in all three ordinations, suggesting that there is no

measurable link between the KEGG functional profiles and the measured under- and

over-representation of inteins in specific environments. Therefore, it is unlikely that the

differences in intein proportional abundance among ecosystems are due to variations

in the protein composition of those ecosystems.

An alternative explanation for the observed differences in ICP and background

proportions across environments is that they are driven by an ecological or evolutionary

force, such as HGT or stress-response. Horizontal gene transfer (HGT) is a common

mechanism by which populations obtain inteins [167], and intein presence can be con-

sidered a marker of HGT events [353]. HGT has been observed more frequently in

extreme environments such as hot springs, certain sediments, and oil wells [107] and

in response to fluctuating environmental conditions and stressors [102, 42, 198]. Fur-

thermore, the environmental stressors that trigger mass HGT events can require rapid

survival responses [42], creating conditions in which inteins could provide particular

benefit to their host populations, as post-translational protein regulation provides a

rapid mechanism for responding to changing conditions [154, 360]. Some inteins have

also been shown to act as environmental sensors, splicing out of the extein in response

to external changes [373, 191, 190], making inteins yet more valuable in dynamic envi-

ronments.

In this study, inteins were more commonly enriched in environments that are

more extreme (e.g., high temperature, salinity, or alkalinity) or more variable (e.g.,

floodplains and some host-associated systems) (Fig. 3.9). Many of the environments

that were enriched for inteins and have been shown or hypothesized to have high

levels of HGT include thermal springs [107], sediments [107], wastewater [161, 148],

solid waste [410], contaminated soils [349], hydrothermal vents [12], and the human

microbiome [348, 126].

While some environments were enriched for inteins, others showed fewer than

expected. The marine environment, including oceanic and coastal habitats, showed

the largest proportional decrease between ICP and the background (Fig. 3.9). This
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Figure 3.10: Ordination of ecosystems using KEGG annotations does not
reveal clustering according to the per-ecosystem ratio of
bonafide inteins to total background sequences. Principal com-
ponent analysis (PCA) of centered log-ratios of KEGG functional anno-
tation proportions for ecosystems in the IMG/VR dataset. Each panel
shows a different level of annotation, with decreasing granularity from
A to C. Point shape indicates high level ecosystem (square: engineered,
circle: environmental, diamond: host-associated). Point color repre-
sents the log2-ratio of the proportion of bonafide inteins in that envi-
ronment compared to total number of inteins in all environments and
the proportion of proteins in that environment to total number of pro-
teins (i.e., showing the over- or under-representation of inteins in each
environment). Positive numbers (orange) represent more inteins that
expected, whereas negative numbers (purple) represent fewer inteins
than expected. (E.g., an environment with 50% of all bonafide inteins,
but only 25% of total proteins in IMG/VR would have a Bonafide :
Background ratio of log2(50/25) = 1; that is, there were twice as many
inteins as expected in that environment.) Point size represents the ab-
solute number of bonafide inteins identified in that ecosystem.
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decrease in intein enrichment aligns with the hypothesis that the cost of HGT may

outweigh the evolutionary benefits, particularly in nutrient-poor or more static envi-

ronments [24, 303]. Though one study did report high rates of HGT in oceanic marine

environments [229], these results were based on the ability of marine microbes to incor-

porate gene transfer agents in a laboratory setting, rather than a comprehensive survey

of HGT events in marine microbial communities. Even if high levels of HGT do exist,

it is possible that the relative stability of the ocean over short timescales may make

the rapid post-translational response mechanisms provided by inteins less necessary

compared to other environments. In such cases, the potential downsides and costs of

maintaining inteins may outweigh any benefits, potentially leading to their removal via

genome streamlining, which is common among marine bacteria [113, 273].

Some of the intein distribution patterns are best explained by factors other than

HGT rates and ecosystem stability. For example, the environment with the second-

lowest ratio of ICP to the background was plant-associated microbial communities,

specifically the “Plant; Other” category (Fig. 3.9). This category largely consists

of samples from the phyllosphere (leaf surface), which is considered to be a hostile

environment [140] and a hotbed for HGT [379], both between microbes [36, 146] and

their host plant [290], and among bacteria, plants, and fungi [200]. Together, these

factors would seem to indicate that the phyllosphere should be enriched for inteins.

Interestingly, the phyllosphere is virtually free of archaea [100, 170], which carry more

inteins than any other domain of life, with nearly half of archaea containing at least

one intein [261]. Thus, the limited proliferation of inteins in the microbial community

of the phyllosphere may be caused by lower numbers of microbes that tend to harbor

higher numbers of inteins.

In addition to carrying high numbers of inteins, archaea are also known to have

high levels of horizontal gene transfer [119]. Notably, archaea are abundant in many

of the environments enriched for inteins, like floodplains [308], terrestrial and marine

deep subsurface [351], and hydrothermal vents [78]. However, the relative abundance of

archaea in an environment cannot fully explain the observed intein enrichment patterns.
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For example, archaea constituted roughly 12% of the rice paddy rhizopshere [170], but

made up less than 10% of several peatland communities [338]; however, in this study,

both ecosystems were observed to be highly enriched for inteins. It should also be

noted that this study examined viral proteins, meaning that the relationship between

archaea, inteins, and the environment can only be examined indirectly, if at all.

The enrichment of inteins in certain environments may be driven simply by the

presence of archaea–archaea carry more inteins than any other branch of life, and are

known for thriving in extreme and highly variable environments. However, it is possible

that archaea harbor so many inteins precisely because these are the types of environ-

ments that the rapid, post-translational response mechanism provided by inteins would

be most beneficial. Future work is needed to examine the origin and distribution of

inteins in archaea across environments to attempt to untangle this causality dilemma.

3.4 Conclusions

InteinFinder is an easy-to-use tool for the automatic identification and removal

of inteins from peptide sequences. In this study, InteinFinder’s speed and accuracy was

demonstrated using IMG/VR, a large environmental dataset containing more than 100

million peptide sequences, a number that would make less automated intein identifi-

cation infeasible. This allowed for a survey of inteins and their host proteins across

a broad range of habitats, revealing that inteins are enriched in some environments

and reduced in others, supporting recent sentiments that inteins are not simply selfish

genetic elements. These enrichment patterns were unlikely to be artifacts and were

in agreement current perspectives in horizontal gene transfer, a method by which in-

teins are commonly distributed among organisms. There is still much to be discovered

about the environmental, taxonomic, and genomic distributions of inteins, as well as

their ecological and evolutionary impacts on their host proteins and organisms. Intein-

Finder provides the potential for expanding the scope and depth of future studies to

examine the many questions surrounding inteins.
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Chapter 4

IROKI: AUTOMATIC CUSTOMIZATION AND VISUALIZATION OF
PHYLOGENETIC TREES

4.1 Introduction

Community and population ecology studies often use phylogenetic trees as a

means to assess the diversity and evolutionary history of organisms. In the case of mi-

croorganisms, declining sequencing cost has enabled researchers to gather ever-larger

sequence datasets from unknown microbial populations within environmental samples.

While large sequence datasets have begun to fill gaps in the evolutionary history of mi-

crobial groups [345, 248, 181, 183, 402], they have also posed new analytical problems,

as extracting meaningful trends from high dimensional datasets can be challenging. In

particular, scientific inferences made by visual inspection of phylogenetic trees can be

simplified and enhanced by customizing various parts of the tree. Many solutions to

this problem currently exist. Standalone tree visualization packages allowing manual

or batch modification of trees are available (e.g., Archaeopteryx [129], Dendroscope

[147], FigTree [302], TreeGraph2 [361], Treevolution [329]), but the process can be

time consuming and error prone especially when dealing with trees containing many

nodes. Some packages allow batch and programmatic customizations through the use

of an application programming interface (API) or command line software (e.g., APE

[270], Bio::Phylo [383], Bio.Phylo [369], ColorTree [57], ETE [145], GraPhlAn [17],

JPhyloIO [362], phytools [310], treeman [30]). While these packages are powerful, they

require substantial computing expertise, which can be an impediment for some scien-

tists. Current web based tree viewers are convenient in that they do not require the

installation of additional software and provide customization and management features

81



(e.g., Evolview [138], IcyTree [380], iTOL [194], PhyD3 [177], Phylemon [367], Phy-

loBot [132], Phylo.io [314]), but often have complex user interfaces or complicated file

formats to enable complex annotations. Iroki strikes a balance between flexibility and

usability by combining visualization of trees in a clean, user-friendly web interface with

powerful automatic customization based on simple, tab-separated text (mapping) files.

Given its focus on automatic customization and a core set of key features, Iroki’s user

interface can remain lean and easy-to-learn while still enabling complex customizations.

In addition to specifying simple color gradients directly in the mapping file, Iroki also

provides a dedicated module allowing the user to generate custom gradients to embed

their data into color space, enhancing visualization. Iroki stays responsive even when

customizing large trees, and it does not require an account or uploading potentially

sensitive data to an external service.

Here, Iroki was used to customize large trees containing hundreds to thousands

of leaf nodes according to extensive collections of metadata. These applications demon-

strated the utility of Iroki for distilling biological and ecological insights from micro-

bial community sequence data. The particular use cases included examinations of

phage-host interactions, relative abundance of populations across sample types, and

comparisons of viral community composition across environmental gradients.

4.2 Methods

Iroki is a web application for visualizing and automatically customizing tax-

onomic and phylogenetic trees with associated qualitative and quantitative meta-

data. Iroki is particularly well suited to projects in microbial ecology and those

that deal with microbiome data, as these types of studies generally have rich sample-

associated metadata and represent complex community structures. The Iroki web

application and documentation are available at the following web address: https:

//www.iroki.net, or through the VIROME portal (http://virome.dbi.udel.edu)

[396]. Iroki’s source code is released under the MIT license and is available on GitHub:

https://github.com/mooreryan/iroki.
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4.2.1 Implementation

Iroki is built with the Ruby on Rails web application framework. The main

features of Iroki are written entirely in JavaScript allowing all data processing to be

done client-side. This provides the additional benefit of eliminating the need to transfer

potentially private data to an online service.

Iroki consists of two main modules: the tree viewer, which also handles cus-

tomization with tab-separated text files (mapping files), and the color gradient gener-

ator, which creates mapping files to use in the tree viewer based on quantitative data

(such as counts) from a tab-separated text file similar to the classic-style OTU tables

exported from a JSON or hdf5 format biom file [231].

4.2.2 Tree viewer

Iroki uses JavaScript and Scalable Vector Graphics (SVG), an XML markup lan-

guage for representing vector graphics) to render trees. The Document Object Model

(DOM) and SVG elements are manipulated with the D3.js library [41]. Rectangular,

circular, and radial tree layouts are provided in the Iroki web application. Rectangular

and circular layouts are generated using D3’s cluster layout API (d3.cluster). For

radial layouts, Algorithm 1 from [18] was implemented in JavaScript. In addition to

the SVG tree viewer, Iroki also includes an HTML5 Canvas viewer with a reduced set

of features capable of displaying huge trees with millions of leaf nodes (Supplementary

Materials Sec. 4).

Iroki provides the option to automatically style aspects of the tree using a tab-

separated text file (mapping file). Entries in the first column of this file are matched

against all leaf labels in the tree using either exact or substring matching. If a leaf

name matches a row in the mapping file, the styling options specified by the remaining

columns are applied to that node. Inner nodes are styled to match their descendant

nodes so that if all descendant nodes moving towards the inner parts of the tree have the

same style, then quick identification of clades sharing the same metadata is possible.
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Aspects of the tree that can be automatically styled using the mapping file include

branches, leaf labels, leaf dots, bar charts, and arcs.

Inner node labels may represent support values (e.g., bootstrap results) or other

comments that describe the inner nodes. If inner labels are numeric, then inner

nodes can be decorated with filled and unfilled circles that allow quick identification

of branches with high support. The semantics of support labels are key to proper tree

representations [69]. As Iroki currently does not implement tree rerooting, Iroki han-

dles these specifics implicitly rather than giving the option to map inner node labels

to branches or to the nodes themselves.

While Iroki is focused mainly on automatic customization via mapping files,

some interactive features are included such as node selection and the ability to modify

labels after a tree has been submitted. Finally, various aspects of the tree can be

adjusted directly through Iroki’s user interface.

4.2.3 Color gradient generator

Iroki’s color gradient generator accepts tab-separated text files (similar to the

classic-style count tables exported by VIROME [396] or QIIME 1 [53]) and converts

the numerical data (e.g., counts/abundances) into a color gradient. Several single-,

two-, and multi-color gradients are provided including cubehelix [122] and those from

ColorBrewer [44].

Iroki reads numerical data from tab-separated text files. Similar to the mapping

file for the tree viewer, the first column should match leaf names in the tree, and the

remaining columns describe whatever aspect of the data is of interest to the researcher

(e.g., counts or abundance). In a dataset with M observations and N variables, the

input file will then have M + 1 rows (the first row is the header) and N + 1 columns

(the first column specifies observation names). From this data, Iroki can generate color

gradients in a variety of ways.
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4.2.3.1 Observation means

A color gradient is generated based on the mean value of each observation across

all variables. In this case, an observation i would be represented as µi =
∑N

j=1 cij, where

cij is the value of observation (row) i for variable (column) j.

4.2.3.2 Observation evenness

A color gradient is generated based on the “evenness” of observation i across all

N variables. Then, each observation i is represented by Pielou’s evenness index [286]

calculated across all variables: Ei = Hi/Hmax, where Hi is the Shannon entropy for

observation i with respect to the N variables specified in the input file, and Hmax is

the maximum theoretical value of Hi. In this case, Hmax occurs when observation i has

equal values cij across all N variables. Thus, Pielou’s evenness index for an observation

i is calculated as

Ei =
−
∑N

j=1 pij log2 pij

log2N
,

where N is the number of variables and pij is the proportion of observation i in

variable j (i.e., cij/
∑N

j=1 cij).

In this way, the user can map observations with high evenness (i.e., an obser-

vation with approximately the same value for each variable) to one side of the color

gradient and observations with low evenness (i.e., an observation with high values in a

few variables and low values in most others) to the other side of the gradient for easy

identification.

4.2.3.3 Observation projection

Data reduction can be a powerful method for extracting meaningful trends in

large, high-dimensional data sets. Given that microbiome or other studies in microbial

ecology can have hundreds of samples and a rich set of metadata associated with those

samples, data reduction often proves useful. Thus, Iroki provides a method to project

the data into a single dimension and then map that projection onto a color gradient.
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For data reduction, Iroki conducts a principal components analysis (PCA) calculated

via the singular value decomposition (SVD) using the LALOLib scientific computing

library for JavaScript [184]. Briefly, performing singular value decomposition on the

centered (and optionally scaled) count matrix X, with observations as rows and vari-

ables as columns, the following decomposition is obtained: X = USV T , where the

columns of US are the principal component scores, S is the diagonal matrix of singular

values, and the columns of V are the principal axes. To illustrate as much variance as

possible in a single dimension, the first principal coordinate is mapped onto the chosen

color gradient.

4.3 Results & Discussion

4.3.1 Bacteriophage proteomes, taxonomy, & host phyla

Viruses are the most abundant biological entities on Earth, providing an enor-

mous reservoir of genetic diversity, driving evolution of their hosts, influencing compo-

sition of microbial communities, and affecting global biogeochemical cycles [365, 316].

Due to their importance, there is a growing interest in connecting viruses with their

hosts through the analysis of metagenome data. As such, researchers have used a vari-

ety of computational techniques to predict viral-host interactions including CRISPR-

spacer [321, 67, 256] and tRNA matches [27, 321, 67, 256], sequence homology [321,

67, 256], abundance correlation [67], and oligonucleotide profiles [322, 321, 247].

Iroki was used to examine phage-host interactions at the taxonomic scale by

constructing a tree based on proteomic content [315] from a subset of viral genomes

from the Virus-Host DB [238] using ViPTree [257] (Fig. 4.1; Supplementary Materials

Sec. 1). A proteomic tree clusters phage based on relationships between the collection

of protein-encoding genes encoded within their genomes [315, 255, 397]. Specifically,

ViPTree bases its clustering on normalized tBLASTx scores between genomes following

the method of [241].

Tree branches were colored by host phyla and virus family was indicated by

a ring surrounding the tree using Iroki’s bar plot options (Fig. 4.1; Supplementary
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Figure 4.1: Proteomic cladogram of viruses from Virus-Host DB. Proteomic
cladogram of viruses infecting Actinobacteria, Bacteroidetes, Cyanobac-
teria, Firmicutes, and Proteobacteria. Branches are colored by host phy-
lum. Outer ring colors represent virus taxonomic family. Virus-host data
is from the Virus-Host DB [238].
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Materials Sec. 1). As shown by the branch coloring, host phyla mapped well onto

the proteomic tree (i.e., large clusters of viruses that are similar in their proteomic

content often infect the same host phylum). Firmicutes-infecting phage (represented

by blue branches of the tree in Fig. 4.1) are confined almost exclusively to a large

cluster in the top-left quadrant of the tree. This large cluster of mostly Firmicutes-

infecting viruses can be further partitioned according to virus family, with a distinct

group of myoviruses clustering separately from the other clades which include mostly

siphoviruses. The Actinobacteriophage (pink) also cluster near each other with most

viruses being confined to a few clusters at the bottom of the tree. The tight cluster-

ing of the Actinobacteriophage phage is likely explained by the fact that many of the

viruses infect a limited number of hosts including Propionibacterium and Mycobac-

terium smegmatis from the SEA-PHAGES program (https://seaphages.org) [291].

In contrast, the Proteobacteria-infecting viruses (green) are clustered in a few locations

across the tree, with each cluster showing high levels of local proteomic similarity.

Homology and similarity-based methods have previously been shown to be ef-

fective in predicting a phage’s host [83], perhaps because viruses that infect similar

hosts are likely to have more similar genomes [382]. Given this and the fact that the

proteomic tree clusters viruses based on shared sequence content using homology and

multiple sequence alignments [315], it is unsurprising that viruses infecting hosts from

the same phylum often cluster near each other on the proteomic tree. In fact, previous

studies have used proteomic distance [256] and other measures of genomic similarity

[382] to transfer host annotations from viruses with known hosts to metagenome as-

sembled viral genomes with unknown hosts. In contrast, virus taxonomy is primarily

based on multiple phenotypic criteria including virion morphology, host range, and

pathogenicity, rather than on genome sequence similarity [346, 347]. One study found

that for prokaryotic viruses, members of the same taxonomic family (as defined by

phenotypic criteria) were divergent and often not detectably homologous in genomic

analysis [6]. In particular, multiple viral families in the order Caudovirales were inter-

spersed in their dendrograms. Similar results can be seen in Fig. 4.1, in which several
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Caudovirales viral families are intermixed in clusters throughout the tree.

4.3.2 Bacterial community diversity & prevalence of E. coli in beef cattle

Shiga toxin-producing Escherichia coli (STEC) are dangerous human pathogens

that colonize the lower gastrointestinal (GI) tracts of cattle and other ruminants.

STEC-contaminated beef and STEC cells shed in the feces of these animals are major

sources of foodborne illness [130, 54]. To identify possible interactions between STEC

populations and the commensal cattle microbiome, a recent study examined the di-

versity of the bacterial community associated with beef cattle hide [61]. Hide samples

were collected over twelve weeks and SSU rRNA amplicon libraries were constructed

and sequenced on the Illumina MiSeq platform [91]. The study found that the struc-

ture of hide bacterial communities differed between STEC-positive and STEC-negative

samples.

To illustrate Iroki’s utility for exploring changes in the relative abundance of taxa

in conjunction with metadata categories, a subset of cattle hide bacterial operational

taxonomic units (OTUs) were selected from the aforementioned study (Supplementary

Materials Sec. 2). A Mann-Whitney U test comparing OTU abundance between

STEC-positive and STEC-negative samples was performed. Cluster representative

sequences from any OTU with a p-value < 0.2 (selected to limit the number of OTUs

on the tree and to demonstrate Iroki’s features by coloring branches based on test

significance) from the Mann-Whitney U test were selected and aligned against SILVA’s

non-redundant, small subunit ribosomal RNA reference database (SILVA Ref NR) [296]

and an approximate-maximum likelihood tree inferred using SILVA’s online Alignment,

Classification and Tree (ACT) service (https://www.arb-silva.de/aligner/) [295].

Iroki was then used to display various aspects of the data set (Fig. 4.2; Supplementary

Materials Sec. 2). Branches of the tree were colored based on the p-value of the Mann

Whitney U test examining change in relative abundance with STEC contamination

(dark green: p ≤ 0.05, light green: 0.05 < p ≤ 0.10, and gray: p > 0.10). Additionally,

bar charts representing the log of relative abundance of each OTU (inner bars) and
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the abundance ratio (outer bars) of OTUs in samples positive and negative for STEC

are shown. The color gradient for the inner bar series was generated using Iroki’s color

gradient generator. Finally, leaf labels show the order and family of the OTU and are

colored by predicted OTU phylum using one of the color palettes included in Iroki.

Decorating the tree in this way allows the user to explore the data and look for

high-level trends. For example, Firmicutes dominates the tree (e.g., Bacillales, Lacto-

bacillales, Clostridiales). Members of Clostridiales are at low-to-medium relative abun-

dance compared to other OTUs on the tree. Some Clostridiales OTUs (e.g., a majority

of the Ruminococcaceae) tend to be at higher abundance in STEC-positive samples,

whereas other Clostridiales OTUs, namely those classified as Lachnospiraceae, tend to

be at lower abundance in STEC-positive samples. Previous studies have also identified

significant positive associations between STEC shedding and Clostridiales OTU abun-

dance in general [419] and Ruminococcus OTUs abundance more specifically [412]. In

contrast, other studies have found certain Ruminococcus OTUs associated with shed-

ding cattle and other Ruminococcus OTUs associated with non-shedding individuals

[404]. Apparent contradictions may be explained by the fact that the various studies

were examining the bacterial microbiome associated with different locations on the

cow (e.g., GI tract, recto-anal junction, hide). In fact, significant spatial heterogeneity

in community composition exists even among different sites along the gastrointesti-

nal tract [220]. Other potential explanations include methodological differences, or

that variation associated with STEC presence may be better explained by using more

granular groupings than taxa and OTUs (e.g., amplicon sequence variants) [46].

In this dataset, more of the OTUs had a higher average relative abundance

(brown bars) in STEC-negative samples than in STEC-positive samples (blue bars).

Similarly, in a study of the upper and lower gastrointestinal tract microbiome of cattle,

a majority of differentially abundant OTUs were found to be at higher abundance in

animals that were not shedding E. coli O157:H7 [412]. In contrast, another study

found that over 75% of differentially expressed OTUs were at greater abundance in

STEC shedding cattle [404].

90



Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae
Clostridiales_Lachnospiraceae

Clostridiales_LachnospiraceaeClostridiales_LachnospiraceaeClostridiales_Lachnospiraceae
Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae
Clostridiales_Lachnospiraceae

Clostridiales_LachnospiraceaeClostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Lachnospiraceae

Clostridiales_Clostridiaceae 1

Clostridiales_Clostridiaceae 1

Clostridiales_Family XI

Clostridiales_Peptostreptococcaceae

Clostridiales_Fam
ily XI

Clostridiales_Fam
ily XIII

Clostridiales_Rum
inococcaceae

Clostridiales_Fam
ily XI

Clostridiales_Fam
ily XI

Clostridiales_Fam
ily XIII

Clostridiales_Fam
ily XIII

Clostridiales_Rum
inococcaceae

Clostridiales_Rum
inococcaceae

Clostridiales_Christensenellaceae

Clostridiales_Peptococcaceae

U
nclassified_U

nclassified

C
lostridiales_R

um
inococcaceae

Cl
os

tri
di

al
es

_R
um

in
oc

oc
ca

ce
ae

Cl
os

tri
di

al
es

_R
um

in
oc

oc
ca

ce
ae

Clostridiales_Christensenellaceae

Clostridiales_Christensenellaceae

Deinococcales_Deinococcaceae

Spirochaetales_Spirochaetaceae

Fibrobacterales_Fibrobacteraceae

C
lo

st
rid

ia
le

s_
R

um
in

oc
oc

ca
ce

ae

Cl
os

tri
di

al
es

_R
um

in
oc

oc
ca

ce
ae

Cl
os

tri
dia

les
_R

um
ino

co
cc

ac
ea

e

Clos
trid

ial
es

_R
um

ino
co

cc
ac

ea
e

Selenomonadales_Acidaminococcaceae

Therm
om

icrobiales_JG
30-KF-CM

45

Rhodobacterales_Rhodobacteraceae Fl
av

ob
ac

te
ria

le
s_

W
ee

ks
el

la
ce

ae

M
icr

ot
ric

ha
les

_u
nc

ult
ur

ed

Un
cla

ss
ifie

d_
Un

cla
ss

ifie
d

Pr
op

ion
iba

cte
ria

les
_N

oc
ar

dio
ida

ce
ae

C
lo

st
rid

ia
le

s_
R

um
in

oc
oc

ca
ce

ae

Cl
os

tri
di

al
es

_R
um

in
oc

oc
ca

ce
ae

Clos
trid

ial
es

_R
um

ino
co

cc
ac

ea
e

Selenomonadales_Veillonellaceae

Erysipelotrichales_ErysipelotrichaceaeMollicutes RF39_Bacillales_Thermoactinomycetaceae
Therm

om
icrobiales_JG

30-KF-CM
45

Betaproteobacteriales_N
eisseriaceae

C
lo

st
rid

ia
le

s_
R

um
in

oc
oc

ca
ce

ae

Cl
os

tri
di

al
es

_R
um

in
oc

oc
ca

ce
ae

Cl
os

tri
di

al
es

_R
um

in
oc

oc
ca

ce
ae

Cl
os

tri
di

al
es

_R
um

in
oc

oc
ca

ce
ae

Cl
os

tri
dia

les
_R

um
ino

co
cc

ac
ea

e

Cl
os

tri
dia

les
_R

um
ino

co
cc

ac
ea

e

Cl
os

trid
ial

es
_R

um
ino

co
cc

ac
ea

e

Cl
os

trid
ial

es
_C

los
trid

ial
es

Clos
trid

ial
es

_R
um

ino
co

cc
ac

ea
e

Selenomonadales_Veillonellaceae

Therm
om

icrobiales_JG
30-KF-CM

45

Pseudom
onadales_M

oraxellaceae

Ba
ct

er
oi

da
le

s_
Ta

nn
er

el
la

ce
ae

Micr
oc

oc
ca

les
_In

tra
sp

ora
ng

iac
ea

e

Clos
trid

iale
s_

Rum
ino

co
cca

ce
ae

Selenomonadales_Veillonellaceae
Selenomonadales_Veillonellaceae

Therm
om

icrobiales_JG
30-KF-CM

45
Therm

om
icrobiales_JG

30-KF-CM
45

Pseudom
onadales_M

oraxellaceae Ps
eu

do
m

on
ad

al
es

_M
or

ax
el

la
ce

ae
Ba

ct
er

oi
da

le
s_

Ri
ke

ne
lla

ce
ae

Un
cla

ss
ifie

d_
Un

cla
ss

ifie
d

Ba
ct

er
oi

da
le

s_
Ri

ke
ne

lla
ce

ae
Ba

ct
er

oi
da

le
s_

Ri
ke

ne
lla

ce
ae

Ba
ct

er
oi

da
le

s_
Ba

ct
er

oi
da

ce
ae

Cory
ne

ba
cte

ria
les

_D
iet

zia
ce

ae

Cory
ne

ba
cte

ria
les

_D
iet

zia
ce

ae

Cory
ne

ba
cte

ria
les

_C
ory

ne
ba

cte
ria

ce
ae

Cory
ne

ba
cte

ria
les

_C
ory

ne
ba

cte
ria

ce
ae

Bacillales_Bacillaceae

Lactobacillales_Enterococcaceae

Lactobacillales_Aerococcaceae

Lactobacillales_Carnobacteriaceae

Ba
ct

er
oi

da
le

s_
un

cu
ltu

re
d

Micro
cocca

les_Micro
bacte

ria
ceae

Micro
cocca

les_Micro
bacte

riaceae

Clos
trid

iale
s_

Rum
ino

co
cca

ce
ae

Clostri
diales_Ruminococca

ceae

Bacillales_Family XII

Bacillales_Staphylococcaceae

Bacillales_Staphylococcaceae

Ba
cte

ro
ida

les
_P

re
vo

te
lla

ce
ae

Ba
cte

ro
ida

les
_P

re
vo

te
lla

ce
ae

Micro
cocca

les_Micro
cocca

ceae

Clostr
idiales_Ruminococca

ceae

Clostri
diales_Ruminococca

ceae

Clostrid
iales_Ruminococcaceae

Clostridiales_Ruminococcaceae

Bacillales_Planococcaceae

Bacillales_Staphylococcaceae

Bacillales_Staphylococcaceae

Bacillales_Staphylococcaceae

Bacillales_Staphylococcaceae

Micrococcales_Micrococcaceae

Micrococcales_Micrococcaceae

Actinomycetales_Actinomycetaceae

Unclassified_Unclassified

Bacillales_Planococcaceae

Bacillales_Planococcaceae

Lactobacillales_Streptococcaceae

Lactobacillales_Streptococcaceae

Lactobacillales_Streptococcaceae

Lactobacillales_Leuconostocaceae

Lactobacillales_Carnobacteriaceae

Actinomycetales_Actinomycetaceae

Lactobacillales_Streptococcaceae

Lactobacillales_Streptococcaceae

Lactobacillales_Lactobacillaceae

Lactobacillales_Lactobacillaceae

Lactobacillales_Carnobacteriaceae

Lactobacillales_Carnobacteriaceae

Micrococcales_Brevibacteriaceae

Micrococcales_Bogoriellaceae

Micrococcales_Bogoriellaceae

Unclassified_Unclassified

Micrococcales_Brevibacteriaceae

Micrococcales_Brevibacteriaceae

Micrococcales_
Micrococcales_Dermabacteraceae

Micrococcales_Dermabacteraceae

0.15

P ≤ 0.05
P ≤ 0.10
P > 0.10

Group
Significance

Actinobacteria
Bacteroidetes
Chloroflexi

Deinococcus-Thermus

Fibrobacteres

Firmicutes

Proteobacteria

Spirochaetes
Tenericutes

Unclassified

OTU Phylum

Log Abundance 4.96 Max abundance
Min. abundance

STEC +/- Ratio 3x Higher in STEC neg.
Higher in STEC pos.

Figure 4.2: Changes in OTU abundance in two sample groups. Approximate-
maximum likelihood tree of hide SSU rRNA OTUs that showed differ-
ences in relative abundance between STEC positive and STEC nega-
tive cattle hide samples. Branch and leaf dot coloring represents the
p-value of a Mann-Whitney U test (dark green: p ≤ 0.05, light green:
0.05 < p ≤ 0.1, gray: p > 0.1) testing for changes in OTU abundance
between STEC-positive samples and STEC-negative samples. Inner bar
heights represent log transformed OTU abundance, and outer bars rep-
resent the abundance ratio between STEC-positive and STEC-negative
samples (blue bars for higher abundance in STEC positive samples and
brown bars for OTUs with higher abundance in STEC negative samples).
Taxa labels show the predicted Order and Family of the OTU and are
colored by the predicted phylum using the Paul Tol Muted color palette
included with Iroki.
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4.3.3 Tara Oceans viromes

The ribonucleotide reductase (RNR) gene is common within viral genomes [81]

and RNR polymorphism is predictive of certain biological and ecological features of

viral populations [326, 136]. As such, it can be used as a marker gene for the study

of viral communities. To explore viral communities of the global ocean, RNR proteins

were collected from the Tara Oceans viral metagenomes (viromes). The Tara Oceans

expedition was a two-and-a-half year survey that sampled over 200 stations across the

world’s oceans [39, 284]. Forty-four viromes were searched for RNRs (Supplementary

Materials Sec. 3). Of these, three samples contained fewer than 50 RNRs and were not

used in the subsequent analysis. In total, 5,470 RNR sequences across 41 samples were

aligned with MAFFT [165] and post-processed manually to ensure optimal alignment

quality. Then, FastTree [293] was used to infer a phylogeny from the alignment. Using

this tree, the unweighted UniFrac distance [210] between samples was calculated using

QIIME [53]. A tree was generated from this distance matrix in R using average-linkage

hierarchical clustering. Additionally, Mantel tests identified that conductivity, oxygen,

and latitude were significantly correlated (p < 0.05) with the UniFrac distance between

samples (Supplementary Materials Sec. 3). Finally, Iroki was used to generate color

gradients and add bar charts to visualize the data (Fig. 4.3). Coloring of the dendro-

gram with the Viridis color palette (a dark blue, teal, green, yellow sequential color

scheme) was based on a 1-dimensional projection of sample conductivity, oxygen, and

latitude calculated using Iroki’s color gradient generator. The color gradient generator

was also used to make the color palettes used for the bar charts.

Coloring the dendrogram based on a projection of the environmental conditions

of the samples results in samples with similar environmental metadata being similar

in color. For example, the station 66 surface and deep chlorophyll maximum (DCM)

samples are nearly identical to one another with respect to conductivity, oxygen, and

latitude and have the same dark bluish branch color. In contrast, surface samples

from stations 31 and 32 both have a lighter yellowish-green branch color. As the bar

charts indicate, these two samples are very similar to one another with respect to the
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Figure 4.3: Tara Oceans virome similarity with associated metadata.
Average-linkage hierarchical clustering of sample UniFrac distance based
on RNR sequences mined from 41 Tara Oceans viromes. Major and
sub-clusters of samples (A-G) are labeled. Branch color is based on a
scaled, 1-dimensional projection of sample conductivity, oxygen, and lat-
itude onto the cubehelix color gradient. Samples that are more similar to
each other in branch color represent those that are more similar to each
other with respect to the environmental parameters in the ordination.
The first bar series (purple) represents sample conductivity (mS/cm),
the second bar series (orange) represents sample dissolved oxygen lev-
els (µmol/kg) and the third bar series (brown/green) represents sample
latitude (degrees). For the first two bar series, shorter bars with lighter
colors indicate lower values, while longer bars with darker colors indi-
cate higher values. For the third series, longer, dark brown bars indicate
samples with extreme negative latitudes, whereas longer, dark blue bars
indicate samples with extreme positive latitudes. Samples with inter-
mediate latitudes are represented by shorter, light colored bars. Sample
labels represent the station from which the virome was acquired and are
colored by sampling depth, with light blue representing surface samples
and dark blue representing samples from the deep chlorophyll maximum
at that station.
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metadata (hence their similar coloring), but are rather different from the station 66

samples in branch color, reflecting the differences in metadata between the two groups.

The combination of dendrogram coloring and bar charts assists in finding trends

in the data. Since the dendrogram is based on UniFrac distance between samples based

on RNR OTUs, samples that cluster together on the tree have more similar viral com-

munities, according to RNR gene allele content, than samples that are far from one

another. In contrast, dendrogram branch coloring and the bar charts show environ-

mental information about the samples themselves (conductivity, oxygen, and latitude).

Combining these two aspects of the samples enables visualization of the relationship

between the similarity of RNR-containing viral communities and the environments in

which they are found.

For example, the samples in the bottom half of the tree are, in general, from

northern latitudes, whereas samples towards the top tend to be from southern lati-

tudes. In a previous study of the T4-like viral communities of Polar freshwater lakes,

no significant correlation between latitude and viral community diversity was found in

the Antarctic samples [71]. Though the Arctic lakes were not tested among themselves

for significant associations between latitude and viral community richness (presum-

ably due to the small latitudinal variation in Arctic sampling locations), Arctic and

Antarctic lakes were tested against one another; however, no significant difference in

viral diversity was seen with respect to pole of origin. The Antarctic samples from

the study ranged from 67.84 degrees S to 62.64 degrees S, whereas the Tara Oceans

viromes used to build the tree in Fig. 4.3 ranged from 62.18 degrees S to 41.18 degrees

N. The increased range of samples from the Tara survey may have enabled this shift

in diversity to be detected. Additionally, the previous study used g23, the gene for

major capsid protein, to survey the viral community. It is possible that a functional

protein like RNR is more connected with environmental conditions than a structural

protein such as the T4-like major capsid protein. RNRs reduce ribonucleotides, the

rate-limiting step of DNA synthesis [175, 4]. There are several different types of RNR,
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each with specific biochemical mechanisms and nutrient requirements [260]. Accord-

ingly, the type of RNR carried by a cell or virus often reflects the environmental

conditions in which DNA replication occurs [306, 65, 326, 355, 136]. A survey based

on RNR, then, may provide more sensitivity in detecting environmental effects on vi-

ral community structure. A significant relationship between T4-like viral communities

and bacterial assemblages was found however [71], and numerous other studies have

reported a significant relationship between bacterial community diversity and latitude

(e.g., [180, 301]), latitudinal variation in bacterial communities is likely linked to viral

community variation.

Certain clusters have been marked on the tree for further analysis. Cluster A

(Station 85 DCM, Station 67 surface) contains the samples with the most divergent

RNR-containing viral populations (Fig. 4.3) according to the dendrogram. Station

85 DCM is also the sample with the lowest conductivity, highest dissolved oxygen,

and most southerly latitude, suggesting that the divergent conditions of the sample

with respect to the other included samples could be influencing the divergent RNR-

containing viral population. Clusters B and C also offer a good point of comparison

(Fig. 4.3). In addition to the similarity of their RNR-containing viral populations,

samples in cluster B have highly similar conductivity, oxygen, and latitude (as shown

by their highly similar branch color and bar charts), suggesting a close connection

between sample composition and viral population. Cluster C is separate from cluster B

on the dendrogram, implying their RNR-containing viral populations are less similar.

The sample metadata between the two clusters is less similar as well, with Cluster

B having on average a lower conductivity and higher dissolved oxygen content than

samples from cluster C.

Connections between viral community composition and environment have been

seen before. Salinity, which can be estimated from measurements of electrical con-

ductivity [278, 279], has been shown to affect viral-host interactions. In a viral-host

system of halovirus SNJ1 with its host, Natrinema sp. J7-2, viral adsorption rates and

lytic/lysogenic rates were measured at varying salt concentrations. Adsorption and
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lytic rate were found to increase with salt concentration, whereas the lysogenic rate

decreased [237]. In a system of tropical coastal lagoons, salinity was found to be one of

the main factors positively affecting viral abundance [158]. Viral community structure

has also been associated with shifts in salinity in various environments [33, 87, 394, 99].

These shifts likely effect a change in the host communities, which is reflected in the

shifts in viral communities.

Cluster C can be further divided into two clusters, C1 and C2. While the samples

in C1 are closer to those in C2 than to those in cluster B in terms of their RNR-carrying

viral populations, the samples in C1 are more similar to the samples in cluster B with

respect to their metadata projection. The similar branch coloring between samples in

clusters B and C1, despite their large differences in latitude, occurs because more of

the variation in the first principal component (the principal component on which the

Viridis coloring is based) is explained by conductivity and oxygen than by latitude (Fig.

4.4; full ordination: Supplementary Figure S1). More striking examples can be found

elsewhere in the tree. For example, station 66 surface, station 66 DCM, and station

34 surface cluster together on the dendrogram based on viral community similarity

(cluster F), but the conductivity, oxygen, and latitude values for sample 34 surface are

quite different from the station 66 samples. Thus, while these three metadata categories

were significantly correlated with sample UniFrac distance, other factors also play a

role in shaping the viral communities. Overall, using Iroki to add color and bar charts

based on environmental metadata to the dendrogram based on RNR-carrying viral

community structure helps visualize that high-level viral community structure can be

influenced by the environmental parameters of the sample from which they originate.

4.4 Conclusions

Iroki is a web application for fast, automatic customization and visualization of

large phylogenetic trees based on user specified, tab-delimited configuration files with

categorical and numeric metadata. Through the use of simple configuration files, Iroki

provides a convenient way to rapidly visualize and customize trees, especially in cases
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where the tree in question is too large to annotate manually or in studies with many

trees to annotate. While Iroki includes many key features, future work is planned

to increase its utility. There is no mechanism within Iroki to handle rerooting trees.

As such, users must use an external program to reroot their tree before viewing it in

Iroki. Customizing the tree is mainly handled by modifying the mapping file, however,

Iroki could be made more interactive by allowing the user to edit certain aspects of

the tree “by-hand” without having to reupload a new mapping file. Currently, Iroki

allows editing leaf labels after a tree is submitted. More interactive features, such as

editing label and branch styles, are planned for a future release. Finally, bringing the

full feature set of Iroki’s SVG based viewer to the Canvas viewer will allow users to

visualize and customize huge trees quickly and easily.

Various datasets from microbial ecology studies were analyzed to demonstrate

Iroki’s utility. Iroki simplified the processes of data exploration and presentation by

facilitating the mapping of various aspects of the data directly on the tree. Though

these examples focused specifically on applications in microbial ecology, Iroki is ap-

plicable to any problem space with hierarchical data that can be represented in the

Newick tree format.
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Chapter 5

A COMPOSITIONAL DIVERSITY FRAMEWORK WITH
APPLICATIONS TO CATTLE MICROBIOME

5.1 Introduction

Robust measures of diversity of microbial communities must account for im-

portant properties including the compositional nature of next-generation sequencing

(NGS) data, the sparsity of count tables generated from NGS sequencing, and other

biases across the sample-to-sequence-to-discovery pipeline.

5.1.1 Common issues in microbial diversity analysis

5.1.1.1 NGS data are compositional

The sequencing data commonly used to analyze microbial communities is in-

herently compositional [114]. Features (taxa, operational taxonomic units, amplicon

sequence variants, etc.) are subject to the constant sum constraint induced by the se-

quencing procedure itself [297]. There is a finite number of sequencing reads, resulting

in a finite number of possible observations per sequencing run. The “counts” of reads,

amplicons, contigs, etc. are not really counts at all–they represent proportions of the

total sequencing effort. Consequently, differences in counts among samples, treatments,

environments, or other metadata groupings do not necessarily indicate changes in bi-

ology or ecology, but rather reflect variations in sampling effort, sequencing efficiency,

and other factors.

Ignoring the compositional nature of the data can result in critical issues dur-

ing subsequent statistical analysis and interpretation, potentially leading to erroneous

conclusions [114, 298]. Because of the constant sum constraint, an increase in the abun-

dance of one feature necessarily requires a corresponding decrease in the abundance
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of another feature. This introduces a negative bias among all features, violating the

assumption of feature independence in many statistical methods.

Because common bioinformatic tools, pipelines, and statistical analyses gen-

erally treat data as real numbers within Euclidean space rather than as proportions

constrained to the simplex, novel specialized methods and techniques are required to

analyze NGS data. Although originally developed for other fields such as geology, com-

positional data analysis (CoDA) approaches can be applied to microbial community

diversity analyses as well. CoDA methods typically employ the log-ratio transformation

on the data, enabling the use of traditional statistical models downstream [7, 8].

The additive log-ratio (ALR) is a simple transformation in which a single ref-

erence feature is selected, and all other features are treated proportionally to that

reference. Assuming there are Q features, and given a reference feature D selected

from the Q features, the additive log-ratio transformation is defined as

alr(xq) = log

(
xq

xD

)
, q = 1, . . . , D − 1, D + 1, . . . , Q (5.1)

Another common transformation is the centered log-ratio (CLR) transformation.

Let g(x) be the geometric mean of all features in the given sample, then the CLR is

defined as

clr(xq) = log

(
xq

g(x)

)
, q = 1, . . . , Q (5.2)

Other more complex transformations, such as the isometric log-ratio (ILR) are

also used when appropriate [312]. Though each of the transformations address the

fundamental issues of compositional data, each comes with specific considerations in

terms of their implementation and interpretation. For example, it has been argued

that the ALR is sub-optimal due to its lack of isometry1; however, others have argued

that the simplicity in its interpretation, and the fact that it is a nearly isometric

1 An isometry is a distance preserving transformation from one mathematical space to
another
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transformation in the context of typical microbiome experiments, overcomes any lack

of mathematical purity [123].

In addition to the manual application of log-ratio transformations that form

the basis of CoDA methods, there are some methods specifically designed to handle

microbiome data in a compositional framework, including ANCOM [201], ALDEx2

[94, 95], propR [299], balances [313], and DEICODE [228]. These have made CoDA

methods more accessible to more researchers by providing alternatives for more tradi-

tional bioinformatic tools, e.g., ALDEx2 and ANCOM can be utilized for differential

abundance analysis, replacing non-CoDA tools such as DESeq2 [114].

5.1.1.2 Microbial communities are sparse

Microbial communities are compositionally complex, generally characterized by

a small number of highly abundant features, and an extremely long tail of type- and

trait-level diversity [350]. This long tail of microbial life, often referred to as the rare

biosphere, encompasses an enormous range of taxonomic, phylogenetic, and functional

diversity [86, 215]. It includes a diverse set of microbes from all domains of life, and

is hypothesized to act as a bank of microbial diversity–an ancient and vast source

of genetic and functional diversity existing at a low abundance until conditions are

favorable allowing them to thrive and drastically increase in abundance [19, 350]. Thus,

members of the long tail are likely critical to the long term maintenance and functional

resilience of microbial communities [350, 339, 331].

The sparsity of microbial communities poses challenges for estimating their di-

versity, and must be accounted for. Study design considerations such as increasing

sampling effort, including biological replicates, and potentially combining untargeted

shotgun approaches with approaches that specifically target rare members, should be

considered and employed when appropriate to help mitigate the issue [350, 188]. Even

in well-designed studies, the sequenced microbial community will likely yield a highly

sparse count tables [276] that requires careful bioinformatic processing to effectively

handle [267]. This sparsity necessitates special care even when using CoDA methods,
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which require a zero-replacement step. Zero-replacement can cause under-sampled

communities to appear similar to each other purely due to similar levels of sparsity,

rather than reflecting actual biological or ecological similarity, and should be considered

when interpreting results [211].

5.1.1.3 Measuring microbial community is subject to various biases

Microbial communities can be complex and highly variable, even among similar

sampling sites, making it challenging to obtaining accurate measurements of their com-

position. The measurement of microbial community diversity is subject to random and

systemic errors, as well as biases introduced at every stage of the sample-to-sequence-to-

discovery pipeline [234, 254]. Sampling effects, artifacts, and biases can arise due to the

spatial heterogeneity and variability of microbial communities, especially when under-

sampling occurs [16, 188]. Additionally, biases are introduced during DNA extraction

and amplification that affect DNA yield and cause preferential extraction, which can

cause under- and over-representation of certain taxonomic groups, and generation of

chimeric sequences [223, 269, 64, 35]. Further, bioinformatic and computational meth-

ods can introduce bias into downstream results [254, 111]. This can occur through the

use of statistical tests and models that are not appropriate for the type of data being

analyzed [114], reliance on incomplete or error-filled reference databases [233], software

bugs [70], and other factors. Additionally, certain bioinformatic methods designed to

mitigate these issues, such as rarefaction and normalization, can introduce biases and

alter the community structure [235, 392]. As these biases have a measurable effect on

the diversity estimates of microbial communities [64, 35, 343], it is crucial to address

them.

5.1.2 Addressing these issues

To effectively address these problems, it is important to consider the multiple

levels at which they exist [188]. Improving experimental design and sampling proce-

dures can help minimize the effects of random errors by addressing small sample sizes

103



and lack of replication. Optimizing DNA extraction and amplification protocols can

address primer bias and DNA extraction inefficiencies. Proper quality control in bioin-

formatics including removal of low-quality reads, chimeras, and contaminant sequences,

utilizing multiple bioinformatics tools for comparative analyses, and employing CoDA

methods all contribute to a robust discovery pipeline [114, 34].

However, there are still many outstanding problems related to estimating the

diversity of microbial communities. Due to biases and the inherent complexities of

microbial communities, diversity estimates are noisy, and typically used plug-in point

estimates of diversity2 do not account for the specific challenges presented by microbial

communities [393]. Accurate estimation of variability and variance in the estimates

themselves is critical in assessing the meaning and significance of measured levels of

diversity.

Another technical challenge that must be addressed is the presence of zero

counts, which are highly prevalent in microbial communities due to their sparsity.

In particular, CoDA methods, which involve log-ratio calculations, cannot handle data

with zero counts, and they must be replaced [7, 266, 297]. At the high levels of spar-

sity common in microbial communities, the zero-replacement procedure used in CoDA

methods can lead to detectable distortions in the inferred community structure and

diversity estimates [211].

In addition to the technical challenges, philosophical issues regarding what as-

pects of diversity should be measured must also be considered. A comprehensive un-

derstanding of community diversity requires consideration of both the abundant and

the rare microbes that make up the long-tail of the community [274]. Furthermore,

there is an ongoing debate about the relative importance and utility of type-level versus

trait-level diversity in understanding microbial community structure [120].

By approaching these questions in a principled and unified manner, it is possible

2 E.g., the Shannon index and Simpson index are commonly used plug-in estimates of
alpha diversity.
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to generate interesting hypotheses about community ecology and draw robust conclu-

sions even when using summary measures such as α- and β-diversity. To this point,

the remainder of the chapter addresses the following issues: (1) accurate estimation

of variability and variance in diversity estimates, (2) incorporating measures of both

type- and trait-level diversity, (3) considering both abundant microbes and members

of the “rare biosphere” in diversity estimates, and (4) handling high levels of sparsity

in microbial datasets.

5.2 A framework for measuring diversity of microbial communities

The proposed framework for exploring microbial community diversity integrates

a state-of-the-art compositional method for estimating community structure, diversity

indices and their variance [393], and similarity aware diversity measures [304] param-

eterized by an abundance viewpoint parameter (e.g., [375]) and a newly introduced

similarity viewpoint parameter, combined with careful selection of protein-coding gene

markers to survey communities.

5.2.1 Background

Microbial communities are highly diverse and often highly uneven, with few

taxa numerically dominating the community and many low abundance and frequently

unobserved taxa filling out the long tail of diversity. Common tasks in microbiome

studies include linking taxon abundance with biological, ecological, or clinical data,

detecting correlation between taxa, and metabolic pathway analysis These tasks are

challenging for standard analytic methods due to specific aspects of the data gener-

ated by the sequencing procedure. NGS surveys of microbial communities generally

generate data in the form of a high-dimensional count table with supporting covariate

information describing the biotic or abiotic conditions in which the communities were

observed [197]. In addition to the high dimensionality, the data vectors are sparse and

compositional, i.e., subject to the constant sum constraint. Thus, statistical methods

that explicitly take these criteria into account are required.
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A common approach for analyzing high-dimensional ecological community com-

position data is diversity analysis. Consider a community of C features present in

relative abundances z = (z1, . . . , zC). In a typical microbiome study, C will be on

the order of thousands to hundreds of thousands. An α-diversity index is a function

that summarizes the relative abundances, z, of a single sample f : SC−1 → R, where

Sd is the d-dimensional simplex.3 A β-diversity index is a function that summarizes

community composition information from two communities: g : SC−1 × SC−1 → R.

α-diversity indices are within-community structure summaries, whereas β-diversity in-

dices are between-community structure summaries.

5.2.1.1 α-diversity

Many different measures of α-diversity exist in the literature, each of them em-

phasizing different features of the community. While analyses focusing on α-diversity

are ubiquitous in microbial ecology, their statistical formalization remains an area of

active research. Diversity is commonly estimated using statistical methods that as-

sume observed counts are drawn from a multinomial distribution with an unknown

probability vector z (e.g., [418, 142, 50]). Additionally, most estimates of community

α-diversity are a function of the abundance vector of a sample in isolation, and do not

utilize information from the full community or the measured covariates that describe

experimental conditions. However, some methods use more flexible and appropriate

models from the compositional data analysis literature, including those that enable the

modeling of taxa co-occurrence [74, 15, 309, 51, 393].4

3 SC−1 is the simplex for a community with C features.

4 De’ath [74] introduces a multinomial generalized linear model that extends the logis-
tic regression model from two to two or more response categories and can link Shannon
diversity to environmental, spatial, and temporal predictors. Arbel et al. [15] use a
nonparametric Bayesian model that uses the structure of the full count table as well as
covariate information; it was specifically designed to deal with estimating community
response to environmental variables. Unfortunately, this method is computationally
prohibitive and the original model focuses on a single covariate, though the authors
claim that the process could be extended to multiple covariates. Ren et al. [309] use
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5.2.1.2 β-diversity

Similar to α-diversity, a large number of β-diversity measures also exist, each

highlighting different aspects of shared community structure [185]. Unlike with α-

diversity, there is little work on statistical estimation of β-diversity indices, rather

β-diversity estimates are generally performed with the plug-in estimates only [393].

At a high-level, small values of β-diversity correspond with compositionally similar

communities, or communities that share many features, whereas large values of β-

diversity indicate communities that are more compositionally dissimilar, or those that

share few features.

5.2.2 DivNet model overview

DivNet is a recent method that utilizes a compositional framework to model and

estimate microbial community structure, diversity indices, and their variance [393]. To

improve the accuracy of diversity estimates, it leverages the networked structure of

microbial communities and aggregates information across samples. Finally, the DivNet

model explicitly accounts for the compositional nature of sequencing data, which is

critical for accurate statistical inferences [115, 114].

The network structure of microbial communities can have a marked impact on

diversity estimates. An ecological network describes the patterns of co-occurrence seen

in microbial communities, including competition for resources, predator-prey dynam-

ics, symbiotic cooperation, and viral-host interactions. These patterns of interaction

are a hallmark of ecological communities and are repeated across different environmen-

tal settings [92, 96]. Previous methods to estimate ecological networks exist, including

a nonparametric Bayesian model for W given Z, though this method cannot handle
continuous covariates. Cao et al. [51] uses the full observed count (abundance) matrix
W to obtain a low-rank estimate of the true (and unobserved) relative abundances Z,
though no publicly available software implements this method. The DivNet method of
Willis et al. [393] will be described in detail later in this chapter.
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SparCC [105] and SPIEC-EASI [179]. A key aspect of the DivNet model is account-

ing for these network effects when estimating microbial community composition and

diversity.

While DivNet provides improved performance of diversity estimates, it is not

practical for large microbiome datasets, particularly for research groups with limited

access to high-performance computing environments. To overcome this limitation, Div-

Net was reengineered and reimplemented with a focus on performance and paralleliza-

tion in Rust, a compiled, statically-typed, non-garbage collected language well suited

to high-performance numerical programs. Additionally, this work leverages DivNet’s

community composition estimates to calculate similarity-aware measures of diversity,

a task not addressed in the original work.

The Rust implementation, divnet-rs, introduced in this manuscript and publicly

available on GitHub5, uses the same model of community composition and parameter

estimation methods as the original, though with an emphasis on improved runtime

and memory efficiency. Therefore, this section provides only a high-level overview of

the model and parameter estimation procedure. For a detailed explanation of the

DivNet model and parameter estimation procedure, readers are referred to the original

manuscript [393].

5.2.2.1 Compositional data models

The standard model for compositional data is the multinomial distribution,

which implies a negative covariance between counts of different features. An alternative

approach suggested by Aitchison [7] is to model the data in a way that explicitly

accounts for the constant-sum constraint and other aspects unique to compositional

data: the log-ratio model. This models the count matrix W as independent draws from

a multinomial distribution, where the true composition matrix Z of all communities in

question is unknown:

5 https://github.com/mooreryan/divnet-rs
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p(W |Z) ∝
N∏
i=1

Q∏
q=1

Z
Wiq

iq (5.3)

where N is the number of samples, Q is the number of features, W ∈ NN×Q is

the N -sample by Q-feature observed count matrix, Wiq is the observed count of feature

q in sample i, Z ∈ RN×Q is the latent random variable that gives the underlying true

composition of the communities, and Ziq is the unobserved, true proportion of feature

q in sample i. Note that rows of Z are the relative abundances or proportions of the

features in each sample, and so
∑Q

q=1 Ziq = 1 for each sample i. Then, the additive

log-ratio transformation is performed using a baseline reference feature D:

Yiq = ϕ(Ziq) =

{
log

(
Ziq

ZiD

)}
q=1,...,D−1,D+1,...,Q

(5.4)

A goal of DivNet is to account for the networked structure of microbial commu-

nities. Thus, the multivariate normal distribution is used to model the log-ratios, which

allows co-occurrence of the features via the covariance parameter, Σ, of the probability

mass function:

f(Yi|µ,Σ) ∝ |Σ|−1/2 exp

{
−1

2
(Yi − µi)

T Σ−1 (Yi − µi)

}
(5.5)

where µ are the means, and Σ is the covariance matrix of the features, and |Σ|

is the determinant of the covariance matrix Σ.

Finally, the mean of Yi is linked to the covariates by the following equation

µi = XT
i γ (5.6)

where X ∈ RN×P is the covariate matrix associated with the samples (P ≥ 1 is

the number of covariates) and γ ∈ Rp×(Q−1); that is γip gives an expected increase in

log(
Ziq

ZiD
) for one unit increase in Xip.

An assumption of this model is that counts are conditionally independent given

the covariate matrix X ∈ RN×P (i.e., the counts are independent of each other when
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accounting for the information provided by the covariate matrix). Though data that

is correlated spatially or temporally would violate the assumptions of this model, in

practice DivNet performs better than other methods in these cases [393].

5.2.2.2 Estimating diversity

The model is used to estimate the community (and ecosystem) compositions

from which the samples originate, which are then used to calculate α- and β-diversity

indices. A strength of the model is that its diversity estimates explicitly model the

feature-feature network structure present in sampled communities.

One of the parameters that is estimated under the log-ratio model is γ; let γ̂ be

that estimate. The expected value of the random variable Yi (the log-ratios) is defined

as Ŷi = XT
i γ̂, and define the fitted value of the latent composition of the community

as Ẑi = ϕ−1(Yi). Then the following estimate of any α-diversity index f : SC−1 → R is

used:

α̂i = f(Ẑi) (5.7)

The β-diversity is estimated in a similar way. Given a β-diversity index g :

SC−1 × SC−1 → R, the estimate of β-diversity is

β̂ij = g(Ẑi, Ẑj), (5.8)

where Ẑi and Ẑj are the fitted compositions of communities i and j, respectively.

That is, the fitted values of the latent composition of the communities, estimated

using the model described above, is used as the input to the α- and β-diversity indices.

Thus, diversity is estimated according to a model of community composition that ex-

plicitly accounts for (1) the compositional nature of the data, (2) the ecological network

of feature-feature co-occurrence, and (3) any accompanying metadata describing the

conditions from which the samples were observed. Note that this method gives the

estimated diversity of the communities from which the samples originated rather than

of the samples themselves, and that observed count information is shared across all
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samples to yield better estimates. This is in contrast to the standard plug-in diversity

estimates.

5.2.2.3 Parameter estimation

5.2.2.3.1 Estimating model parameters

Many parameters and variables in the model are unknown and must be esti-

mated from the available data. Numerical methods are used to estimate these values

as there is currently no analytical method available. In DivNet, and therefore, divnet-

rs, a custom implementation of the Expectation-Maximization (EM) algorithm [76]

with the Metropolis-Hastings (MH) algorithm [403] is used in the estimation proce-

dure. For mathematical details of parameter estimation, readers are directed to the

original DivNet manuscript [393].

5.2.2.3.2 Variance estimation

Another aspect of the DivNet model that requires attention is the estimation

of variance for the diversity estimates. Accurate estimates of variance are crucial for

hypothesis testing. While DivNet allows both parametric and nonparametric boot-

strapping estimates of variance, divnet-rs implements only the parametric bootstrap

as it was found to be more effective [393].

Recall that γ̂ and Σ̂ are the estimated values of γ and Σ. The parametric

bootstrap approach, employed by divnet-rs, estimates Var(α̂i) and Var(β̂ij) for any

α-diversity and β-diversity indices as follows. Given the fitted log-ratio model with

µ = Xγ̂ and Σ = Σ̂, simulate B datasets. Then, for each of these B datasets, cal-

culate the bootstrap estimates {(γ̂(b), Σ̂(b))}Bb=1, using the same estimation procedure

described earlier. Next, the diversity index for each community i is calculated for each

of the simulated datasets, i.e., {α̂(b)}Bb=1. Finally, the parametric bootstrap estimate of

Var(α̂i) is V̂arb(α̂
(b)
i ), where V̂ar(·) is the sample variance.

In plain language, for each bootstrap community estimate, the diversity index

in question is calculated. Then the variance of those diversity indices is calculated, and
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that value is the bootstrap estimate of the variance of the original diversity estimate.

This procedure is applicable to any α-diversity or β-diversity index that is a function

of the form given in Equations 5.7 and 5.8.

5.2.2.3.3 Feature covariance estimation

A final consideration of the model used by DivNet and divnet-rs is the param-

eter Σ, the covariance matrix of the features. As ||Σ||∞ → 0 (the infinity norm of the

covariance matrix approaches zero, i.e., the variance of the features and the covariance

between features approach zero) the distribution of the observed count matrix W con-

verges to a multinomial distribution. In the case of the multinomial distribution, the

observed count of each feature is determined by its true proportion in the community.

There is no parameter in the multinomial model to account for any variance in the

observed counts from the true proportion. In contrast, the overdispersion of features

in the log-ratio model as compared to the multinomial model is controlled by Σ, the

covariance matrix of the features.

The multivariate normal distribution used to estimate the log-ratios requires

inverting Σ, the matrix encoding covariance between features. The inverse (Σ−1) as

calculated during the estimation procedure is potentially a poor estimate of the true

Σ−1 in a typical microbial community setting where the number of features is much

greater than the number of samples. The original DivNet manuscript proposes multiple

ways to account for this, including using microbial network estimation procedures to

estimate Σ−1, or restricting the estimators to diagonal covariance matrices. The sec-

ond method is the one chosen by divnet-rs, both because it is likely a better estimate

under the microbial setting where there are many more features than samples [393],

and because it is significantly faster to calculate numerically than than using a full

covariance matrix with non-zero off-diagonal entries, or using an external method such

as SPIEC-EASI [179]. Restricting the covariance matrix to a diagonal matrix actually

ignores any covariance between features (i.e., the inter-feature co-occurrence or network

structure), but still allows overdispersion attributed to within-feature interactions as
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compared to the standard multinomial model, which does not take this overdispersion

into account. In simulation studies, it was shown that the intra-feature overdisper-

sion (i.e., modeling intra-feature interactions) was more important than inter-feature

interactions [393]. As divnet-rs prioritized computational efficiency, this tradeoff was

deemed acceptable.

5.2.3 Measures of diversity

Estimates of community composition and their bootstrap replicates are gener-

ated with divnet-rs. These data are then used as inputs to diversity index functions

in order to estimate the diversity of modelled microbial communities, as well as to

calculate the variance in those diversity estimates (as described in Section 5.2.2.3.2).

5.2.3.1 Diversity formulas

The proposed framework uses the formulation of similarity aware diversity mea-

sures described by Reeve and colleagues [304].6

In the following formulas, vectors are shown in bold font, e.g., x = (x1, ..., xN). q

is the abundance viewpoint parameter (traditionally simply referred to as the viewpoint

parameter, but in this work, a similarity viewpoint parameter is introduced, so it is

referred to as the abundance viewpoint parameter). It is the same q that determines

the order of the Hill number. Hill numbers are weighted power means of order 1 − q

that average inverses of the relative abundances of the features of a community [139].

pi is the relative abundance of feature i in a given sample. p = (p1, ..., pS) is the relative

abundances of all features in a given sample.

There are two notions of relative abundance used in Reeve’s diversity measures:

raw and normalized [304]. Raw measures take the relative abundance of features with

respect to the metacommunity, while normalized measures take the relative abundance

6 The notation and variable names used in this section match those used by Reeve
rather than those used in previous sections for easier reference to the referenced
manuscript.
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of features with respect to the subcommunity. In this work, “metacommunity” refers

to all samples within the count table generated in a study, and the “subcommuni-

ties” are samples in that table. The raw relative abundances of all features in the

metacommunity, is called P . Therefore, Pij represents the abundance of feature i in

subcommunity j relative to the total metacommunity. P.j = (P1j, ..., PSj) represents

the raw relative abundances of features in subcommunity j (again with respect to

the metacommunity). By this formulation, subcommunity j is a fraction wj of the

metacommunity (
∑J

j Pij = wj), where
∑J

j wj = 1. In other words, the count of each

element in the count table divided by the total count of the metacommunity would

yield each value Pij. Normalized relative abundances consider the features of subcom-

munity j in isolation. In other words, the normalized relative abundances control for

the size of the subcommunity via P̂.j = P.j/wj and are constrained by
∑I

i P̂ij = 1.

Raw and normalized relative abundances then can both be used to define measures of

diversity.

Z is a similarity matrix where the entries Zii′ represent the similarity between

two types or features i and i′. Zp is the matrix-by-column vector multiplication with

entries (Zp)i =
∑

i′ Zii′pi′ , and similarly for ZP.j.

The diversity measures described below are averages, that is, power means of

order 1 − q weighted by the relative sizes of the elements (where q is the abundance

viewpoint parameter). (For full exposition and interpretation of the measures, see the

original work [304].)

The power mean of order r of x weighted by u, assuming that ui > 0 for all i

(any term equal to zero should be removed prior to its calculation), is defined as:

Mr(u,x) =


[∑I

i uix
r
i

] 1
r

r ̸= 0∏
xui
i r = 0

(5.9)

Here, u = (u1, . . . , un) where
∑I

i ui = 1, x = (x1, . . . , xn), and r is a real

number. Further, at r = 0, 1
r
is undefined and so the given expression comes from the

limit as r approaches zero.
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The normal notion of Hill number of order q is defined as

qD(p) = M1−q

(
p,

1

p

)
(5.10)

The similarity-sensitive diversity is similar, though it incorporates the similarity

of features via 1
Zp

rather than using 1
p
:

qDZ(p) = M1−q

(
p,

1

Zp

)
(5.11)

Note that in the naive-type case where each feature is completely dissimilar

from every other feature, Z is the identity matrix and so Zp = p (accounting for any

necessary transpositions). Thus, in the naive-type case, the Hill number of order q (Eq.

5.10) is equivalent to the similarity-sensitive diversity of order q parameterized by Z.

5.2.3.1.1 α-diversity

For α-diversity, Reeve’s measure of subcommunity normalized α-diversity is used

(i.e., similarity-sensitive diversity of subcommunity j in isolation) [304]:

qᾱZ
j = M1−q

(
P̄.j,

1

ZP̄.j

)
(5.12)

5.2.3.1.2 β-diversity

For β-diversity, Reeve’s measure of metacommunity normalized β-diversity (i.e.,

the effective number of distinct communities) is used:

qB̄Z = M1−q

(
w,q β̄Z

)
(5.13)

where qβ̄Z is the subcommunity normalized β-diversity given by

qβ̄Z
j =

1
qρ̂Zj

(5.14)

and qρ̂Zj is the normalized ρ (that is the reversed normalized beta–the represen-

tativeness of subcommunity j):

115



qρ̄Zj = M1−q

(
P̄.j,

Zp

ZP̄.j

)
(5.15)

5.2.3.2 Transforming sequence identity

While any notion of feature similarity can be used in the similarity-aware mea-

sures described above, this work focuses on using sequence identity. Percent iden-

tity between two sequence pairs is transformed into a similarity score via the formula

S =
(

P
100

)w
, where P is the percent identity and w is the similarity viewpoint parame-

ter. The effect of this transformation is illustrated in Figure 5.1.

When combined with the similarity-aware measures of diversity described below,

this transformation allows varying the “weight” placed on sequence identity. Increasing

values of w increasingly deemphasize the similarity of sequence pairs with low percent

identity.

5.2.4 Sample distances & ordinations

A distance measure between all pairs of communities can be calculated calcu-

lated using the formula for effective number of distinct communities (Eq. 5.13). For

each pair, the effective number of distinct communities is calculated. By construction,

this measure ranges from one to the total number of subcommunities included in the

calculation. Since only two subcommunities are included in the metacommunity (as

the measure is calculated for every pair), the value ranges from one when the subcom-

munities are completely overlapping, to two, when the subcommunities are completely

distinct. Finally, 1 is subtracted from the beta diversity measure to transform it into

a distance that runs from zero to one. These pairwise distance calculations are done

for each abundance-similarity viewpoint pair.

Once distance matrices are obtained, multideminsional scaling (MDS) ordina-

tions are calculated with the base R cmdscale function. The variance in the ordina-

tions is calculated in an analogous way to the variance of the diversity indices, i.e.,
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Figure 5.1: Conversion of percent identity to similarity score is determined
by the similarity viewpoint parameter. Percent identity is trans-
formed into similarity score, S, via the formula S = (P/100)w, where P is
the percent identity and w is the similarity viewpoint. At the minimum
similarity viewpoint of 1, the transformation between percent identity
and similarity scores is linear: sequence similarity score is directly pro-
portional to the percent identity of the sequence pairs. As the similarity
viewpoint increases, the transformation becomes more non-linear, yield-
ing an increasingly more conservative evaluation of similarity by increas-
ingly deemphasizing sequence pairs with lower percent identity (i.e., at
higher similarity viewpoints more weight is given to sequence pairs with
high percent identity). This is directly analogous to the abundance view-
point parameter, q, in which increasing values yield more conservative
estimates of diversity by deemphasizing less abundant types.
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via a bootstrapping procedure. For each bootstrap estimate of community composi-

tion generated by divnet-rs, the procedure for calculating pairwise distances based on

β-diversity followed by MDS ordination is repeated. The variance in point location

in the two-dimensional ordination space is calculated and used as a proxy for the un-

certainty in the ordination of community composition. This uncertainty is shown as

ellipses centered around each plotted point.7 Ellipse diameter on the x- and y-axes

(PC1 and PC2, respectively) represent four standard deviations in the bootstrap point

locations. All abundance viewpoint parameter ordinations are plotted on the ordina-

tion, and individual ecosystems/samples are connected via a line and colored by the

viewpoint parameter to show the relationship between abundance viewpoint parameter

and ordination positioning. This process is repeated for each similarity viewpoint pa-

rameter. Thus, for each abundance-similarity viewpoint parameter pair an ordination

is calculated for the original community composition estimates as well as for each of

the bootstrap estimates.

5.3 Estimating diversity of cattle microbiome communities

To demonstrate the utility of the diversity framework introduced in this chap-

ter, a cattle microbiome dataset was used. Class I α and Class III ribonucleotide

reductase (RNR) sequences were used as gene markers for investigating the microbial

communities associated with cattle hide and fecal microbiome. Experimental meth-

ods for cattle sample collection, Shiga toxigenic Escherichia coli (STEC) detection,

microbiome sequencing, peptide assemblies, and RNR identification can be found in

Appendix A.

5.3.1 Modeling community composition

Community composition estimates were calculated using divnet-rs version 0.3.0.

Two divnet-rs runs were conducted, one for the Class I α RNR sequences, and one for

7 This style of displaying uncertainty on an ordination was influenced by the QIIME
script jackknifed beta diversity.py [52, 178].
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the Class III RNR sequences. Options shared between all divnet-rs runs are expecta-

tion maximization (EM) iterations: 6, EM burn: 3, Monte-Carlo (MC) iterations: 500,

MC burn: 250, step size: 0.01, perturbation: 0.5, and number of replicates: 6. Options

specific to Class I α – base taxa 0 (clu 95 seq 30493073), random seed: 9032874. Op-

tions specific to Class III – base taxa 9 (clu 95 seq 5546017), random seed: 2398732.

Taxa that were both highly abundant and present in a majority of samples were chosen

as base taxa for the log-ratio transformation.8 The covariates included in the model

were fraction (cellular/viral), location (fecal/hide), and STEC presence (Yes/No).

5.3.2 Diversity calculations

Abundance viewpoint parameters used were the sequence of numbers from 0 to

10 with a step of 0.5. Similarity viewpoint parameters were 1 and 8. The maximum

values of these parameters were chosen as resulting diversity estimates at higher values

were essentially indistinguishable from the chosen max values (data not shown).

Diversity values and variance in the estimates were calculated in accordance with

the DivNet model of diversity. Groupings for divnet-rs were fraction (cellular/viral),

location (fecal/hide), and STEC presence (yes/no). That is, the diversity estimate for

each group (i.e., fraction-location-presence) was calculated from “replicate 0” returned

by divnet-rs, (i.e., the diversity estimates for the groups themselves). Variance in the

diversity estimate was calculated via the bootstrap estimate of variance as described

above9, i.e., diversity was calculated for each bootstrap replicate of community compo-

sition, and then the variance was calculated from those bootstrap diversity estimates.

Diversity was calculated once for each abundance and viewpoint parameter pair, using

equation 5.12 as described above.

Significance testing for all pairs of abundance and viewpoint parameters was

done using the betta function from the breakaway R package [391], with Bonferroni

8 In accordance with guidelines proposed in [123].

9 See section 5.2.2.3.2: Variance estimation.
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multiple test correction. Alpha diversity results and hypothesis testing was plotted

using the R programming language using ggplot2.

A distance measure between all pairs of ecosystems was calculated using the

calculation for effective number of distinct communities as described above (Eq. 5.13).

To generate the ordinations, these distance matrices were used as input to multidemin-

sional scaling (MDS) using the base R cmdscale function as described above.

5.4 Results & Discussion

In this chapter, I set out to develop a framework for examining community diver-

sity that address some of the major concerns that arise when dealing with metagenomic

studies of microbial community diversity: (1) estimating microbial community diversity

of large samples using compositionally aware models in an efficient way, (2) comparing

the influence of type- and trait-level diversity when studying microbial communities,

(3) measuring the impact of both the abundant community members as well as the

influence of the “long tail” of rarer microbes, and (4) attempting to account any noise

or negative effects due to the sparsity of metagenomic community structure data.

5.4.1 Accessible compositional models of diversity

A fundamental property of microbial communities as measured by next genera-

tion sequencing data is that they are compositional [114]. That is, the observed counts

generated from the sequencing procedure are subject to the constant-sum constraint–

there is a finite number of sequencing reads, and therefore observations, per sequenc-

ing run [297]. This has profound implications for statistical methods and downstream

analyses of the data, such as inducing a negative bias between observed features, and

generating counts with magnitudes that are decoupled from biological or ecological re-

ality of the ecosystem from which they are sampled [298, 114]. Many of the frequently

used analysis toolkits do not have good support for compositional data analysis. How-

ever, there has been a growing realization of the importance of explicitly accounting
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for the compositional nature of NGS community ecology data, and some tools using a

CoDA framework have been developed (e.g., [94, 95, 299, 228, 201]).

Estimating diversity is a particular challenge for microbial communities, both

because of the compositional nature of their measurement data, and because of the

high levels of diversity coupled with highly uneven community structure, which leads to

high-dimensional, sparse count tables of compositional vectors [197, 298]. In addition,

microbial communities are highly networked, characterized by many intra- and inter-

taxa interactions that have a measurable impact on their structure [92, 96].

Diversity indices are functions that summarize relative abundance and com-

munity composition information from one or more communities, with α-diversities

summarizing within-community structures, and β-diversities summarizing between-

community structure. Microbial ecologists typically use plug-in estimates of diversity

that do not always account for important aspects of microbial community data. How-

ever, statistically sound alternatives can be found in the literature. Many statistical

models of diversity first attempt to model the community structure of the samples,

communities, or ecosystems under study, and from there, use that data to estimate

the diversity measures under question. While the statistical literature focusing on

α-diversity is rich with examples [74, 15, 309, 51], β-diversity is comparatively under-

studied.

A recent model of community composition and diversity that incorporates many

of the important properties of microbial communities is DivNet [393]. DivNet uses a

compositional model of community composition that explicitly accounts for the net-

worked structure of microbial communities, while also leveraging information across

samples and including covariate information into its model of community composition.

DivNet is highly accurate at both estimating diversity given the modeled com-

munity compositions, as well as estimating the variance of those diversity estimates

with its bootstrapping procedure [393]. However, the current implementation is lim-

ited in the sizes of datasets that it can handle, especially in cases where researchers

do not have access to high performance computing. Large microbiome datasets with
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hundreds of samples and thousands of features, are common, yet the reference DivNet

implementation struggles handling data of this size. As a workaround, taxa or features

must be grouped or collapsed based on some external metadata such as taxonomic

groups, or through other means like clustering.

To address this limitation in the original DivNet implementation, I introduced

divnet-rs, a fast, parallelizable, memory efficient implementation of the DivNet model

of community composition. While it only provides a subset of the functionality pro-

vided by the original implementation, (e.g., only the parametric bootstrap and using

the diagonal rather than full covariance matrices), it makes it possible to apply the

DivNet model to datasets with up to hundreds of thousands of features in a high per-

formance computing environment, and to datasets with tens of thousands of features

on commodity hardware. This allows researchers to avoid unnecessary grouping of

features by taxonomy or with clustering. Divnet-rs has an added advantage of making

the bootstrap estimates of community composition available to the researcher. This

enables the use of these estimates for downstream tasks, such as estimating variance

in ordinations based on the model’s output.

These modeled estimates of community composition, as well as the bootstrap

replicates, generated by divnet-rs are used as inputs to the described diversity mea-

surements parameterized by the abundance and similarity viewpoint parameters. In

this way, the diversity estimates account for critical features of the microbial com-

munities including their compositional nature, networked interactions, and covariate

information, as well as patterns of abundance and similarity of features therein.

5.4.2 Microbial community diversity “viewpoints”

5.4.2.1 Type-level vs. trait-level diversity

Some researchers have argued that focusing on the functional potential of a

microbial community is more valuable than only using a taxonomic or species based

approach [186]. This reflects the importance of the function of microbes in the envi-

ronment. Functional niche is likely a useful alternative to commonly employed species
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classification schemes, as microbial function, physiology, and biochemistry can be more

appropriate classifiers of microbes at the community level [188]. While treating func-

tional groupings as the major organizational structure of microbial communities in this

way is compelling, it is a break from the more traditional species diversity based ap-

proaches commonly employed [188]. Thus, bridging the gap between these two ideas

is an open question–one that the work presented in this chapter attempts to partially

address.

In this work, a distinction is made between type-level and trait-level measures

of diversity. By type-level diversity, I mean the diversity of the types of a community,

be they species, operational taxonomic units (OTUs), or some other constructed type.

By trait-level diversity, I mean the diversity of entities that have more of a connec-

tion to some aspect of the community than the types themselves, e.g., phylogenetic

groups, metabolic pathways, sequence similarity, or others. Note that depending on

the formulation of trait-level diversity, this distinction is ultimately semantic.

As an example of this, consider the formulation of trait-level diversity using

sequence similarity. Homology between sequences, as inferred by statistically significant

levels of similarity, likely reflects shared ancestry [162, 280]. Additionally, homology

has a long history of being used to infer function of unknown proteins (e.g., [207,

217]). In this way, similarity in the primary structure of protein sequences can be

used to infer a sort of trait-level diversity of a community, especially when used with a

protein coding marker gene that is connected to important aspects of the community

or ecosystem under study, and has a large amount of biochemical characterization

(e.g., different classes of ribonucleotide reductase (RNR) [325]). At the same time,

individual sequences themselves are “types” and can thus be used to define a type-level

view of community diversity. The problem is reconciling these two views of community

diversity.

In this study, a smooth transition between type-level and trait-level commu-

nity diversity is realized using specific protein coding gene markers, combined with

estimates of community structure from divnet-rs that are used to calculate diversity
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using the formulation of Reeve and colleagues [304]. In this setting, the α-diversity

and β-diversity diversity measures have an effective number interpretation: the effec-

tive number of distinct types. Though similarity can be any measure (phylogenetic,

number of shared traits, sequence identity, etc.), whichever notion of similarity is cho-

sen changes the effective number interpretation of the measure. For example, using

a notion of phylogenetic similarity would yield a measure of the effective number of

distinct phylogenetic groups. Here, sequence identity is used, so the interpretation is

effective number of distinct sequences.

Through the use of the similarity viewpoint parameter, introduced in this work,

the notion of “distinct” can be controlled. For example, when the similarity viewpoint

parameter is 1 (the minimum value), then the only “distinct” sequence pairs would

be those that have 0% identity. Sequences that are 50% identical would measure 0.5

on the similarity scale–exactly halfway between distinct and indistinguishable. At a

similarity viewpoint of 2, however, the same 50% identity pair would be 0.25 on the

similarity scale. And so on as the similarity viewpoint increases, sequence pairs need

ever higher percent identities to not effectively be considered as distinct (Fig. 5.1).

“Effectively” is used because while at higher similarity viewpoints sequences with low

percent identities have a similarity score very close to zero, it is never zero (rather, the

limit approaches zero as the percent identity decreases).

In the context of sequence identity, this is a particularly desirable behavior.

The so-called “twilight zone” of sequence identity occurs somewhere between 20-30%–

sequences below this level of identity are generally considered to not be related, though

exceptions, such as the RNR sequences used in this study, occur [319, 212]. The

similarity viewpoint parameter can be adjusted to account for the fact that sequences

with lower levels of percent identity are effectively distinct.

As the similarity viewpoint parameter is increased in the similarity transfor-

mation function, the differences between sequence pairs with a high percent identity

are dilated, whereas differences between sequence pairs with low percent identity are
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compressed10 (Fig. 5.1). In this way, at higher similarity viewpoint parameters, sub-

tle differences between highly similar sequences are more important in the diversity

calculations, whereas the difference in similarity between sequences with low sequence

identity has less of an effect on the calculations (i.e., they are effectively considered to

be distinct.)

Thus, coupling sequence identity of protein coding marker genes with varying

values of the similarity viewpoint parameter allows for a smooth bridging of the notions

of type- and trait-level diversity.

5.4.2.2 Abundant vs. rare community members

Microbial communities are incredibly complex, and are generally dominated by

a small number of abundant members combined with a long tail of of type- and trait-

level diversity [350]. This rare biosphere of microbial life contains an enormous amount

of taxonomic, phylogenetic, and functional diversity [86, 215], and likely plays an out-

sized role in the long term maintenance and functional health of microbial communities

[350, 339, 331]. Additionally, the long-tail of microbial diversity is likely active in im-

portant ecosystem services like nutrient cycling and pollutant degradation, in addition

10 To understand why this is desirable, consider the following scenario: A hungry
graduate student at the University of Delaware is deciding where to go for lunch.
Option A is five minutes away, Option B is ten minutes away, and Option C is twenty
minutes away (each twice as far as the previous one). There are other options, but they
are quite far indeed: Option D is 10 hours away and Option E is 20 hours away. From
the student’s perspective, and due to the constraints of their one hour lunch break,
the initial doublings in time taken to arrive at the restaurant would be perceived as
quite important–five minutes feels much quicker than twenty minutes–1/12 vs. 1/3 of
the entire lunch break. Option E is also double the time away from the student as
compared to Option D. However, the difference in distance and time taken from the
student’s point of view is essentially meaningless–both options are so far away that
they are not even considered. So, even though Option E is twice as far as Option D,
from the student’s point of view, they may as well be equally as distant. So it goes
with the sequence identity: differences between extremely similar proteins pairs by
percent identity are magnified by the transformation, whereas differences between very
dissimilar protein pairs are compressed.
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to having an active effect on health of host organisms through their associated mi-

crobiomes [285, 157]. Given the growing acknowledgement of their importance, an

increased understanding of their role in shaping community level diversity is crucial–a

comprehensive understanding of microbial communities requires an understanding of

both the abundant members and those in the long-tail of less abundant microbes [274].

Analogously to the way that varying the similarity viewpoint parameter can

give a more nuanced examination of type- vs. trait-level diversity, varying the abun-

dance viewpoint parameter yields a more nuanced examination microbial community

diversity by comparing of the effect of abundant vs. rare members on the measured

diversity. Comparing diversity calculated at different abundance viewpoint parameter

values reveals insights into the structural similarities and differences between com-

munities [376, 169]. Lower values emphasize rarer community members, while higher

values place more emphasis on abundant ones. While differences between the more

abundant community members likely reflect important ecosystem level differences in

niche preference, differences in the long-tail of abundance could be equally as interest-

ing, especially when considering the overall functional potential of a community, or its

potential resilience in the face of change.

5.4.2.3 Zero-replacement induced artifacts

Compositional data analysis involves the use of the log-ratio to transform values

in the simplex to Euclidean space. One potentially problematic aspect of the log-ratio

transformation is that any zero counts must be handled in some way. While there

are many options for zero-replacement (e.g., [266]), a commonly used strategy is to

replace all zeros with a small constant less than one. Given the sparsity of count tables

generated from microbial communities, the zero replacement procedure can lead to

noticeable distortions in downstream analyses. For example, the similarity between

samples with fewer observations may be artificially inflated due to the samples sharing

more features at very low abundance [211].
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Table 5.1: Count table for a mock community of four samples and ten taxa.

Sample T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

A1 5 4 3 2 1 0 0 0 0 0
A2 5 4 3 2 1 1 1 1 1 0
B1 0 0 0 0 0 1 2 3 4 5
B2 0 1 1 1 1 1 2 3 4 5

Another benefit of varying the abundance viewpoint parameter is a technical

one. Given that the zero-replaced values distort the rare members of the community,

one may expect to notice such distortions only when utilizing low abundance viewpoint

parameters. For example, selecting an abundance viewpoint parameter of zero is ef-

fectively a measure of richness–all species are treated the same regardless of whether

they were observed a single time or a million times. In data processed with a zero-

replacement procedure prior to analysis, all samples will have a richness value equal

to the total number of features, as any feature absent from a sample will be replaced

with some non-zero value. The closer to zero that the abundance viewpoint parameter

is, the more of an effect the zero-replaced values will have. A smooth increase in the

abundance viewpoint parameter can thus be used to examine any possible artifacts of

the zero replacement procedure.

As an example, consider the mock community presented in Table 5.1 consisting

of four samples and ten taxa. The sample pairs A1-A2 and B1-B2 are structurally

similar, though they differ in the amount of taxa with zero counts, with A1 and B1

containing 50% zero count entries, whereas A2 and B2 contain only 10% zero count

entries.

Zeros were replaced by a constant value of 0.05 and β-diversity was calculated

and converted as described above for sample pairs A1-B1 and A2-B2 for varying values

of abundance viewpoint parameter (Fig. 5.2). Intuitively, the β-diversity calculation

for A1-B1 should be more affected by the zero replacement as 50% of the values in both

samples are replaced, whereas the calculated β-diversity for A2-B2 with only 10% zero
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values should be less affected.

As the abundance viewpoint moves from zero (richness) to one (Shannon) and

beyond the rate at which the distance increases is different, with the 50% zero pair (A1-

B1) distance increasing more sharply than the 10% zero pair (A2-B2). This indicates

that the similarities between the communities represented by A1 and B1 are mostly

restricted to the rarer members of those communities. As the rarer taxa are increasingly

deemphasized, the sample pair looks increasingly distinct. Samples A1 and B1 share

no taxa in the count table, and so the similarity seen between the two samples at

lower abundance viewpoints is an artifact of the zero replacement procedure. Compare

that to the behavior of sample pair A2-B2, which have considerably more overlap in

their taxa, as well as having fewer zero counts. For this pair, the rate of increase

of the distance with increasing abundance viewpoint is much less than that of pair

A1-B1, indicating that an increasing deemphasis of rare members has less of an effect

on the distance between the sample pairs. In the case of the mock community, the

sharp increase in distance seen in the A1-B1 calculations can mostly be attributed to

the noise introduced by the zero replacement procedure. In real data, that cannot be

known for certain; however, such a comparison could potentially guide the researcher to

more critically examine samples whose patterns of diversity show rapid or unexpected

levels of change in the extreme low range of the abundance viewpoint parameter.

5.4.3 RNR diversity in cattle hide and fecal microbiome

Ribonucleotide reduction is the rate limiting step of DNA synthesis and is cat-

alyzed by the enzyme ribonucleotide reductase (RNR) [174, 5]. RNRs provide the only

method of de novo deoxyribonucleotide production and are therefore present in virtu-

ally all cellular life and common in the genomes of lytic dsDNA viruses [80, 327, 149].

Despite sharing a common ancestor [14, 212], they are biochemically diverse and require

different cofactors and environmental conditions [307]. Class I RNRs are O2-dependent

and most require a di-metallic cofactor, with the identity of the cofactor further dividing

Class I RNRs into several subclasses. Class II RNRs are O2-independent and require
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adenosylcobalamin (a form of B12). They come in two main sub-types: monomeric

and dimeric. In addition to differences in quaternary structure, most dimeric Class

II RNRs also require a zinc atom [206]. Class III RNRs are O2-sensitive and use an

iron-sulfur cluster as a cofactor. Because of the large biochemical differences between

RNR types, organisms tend to carry the type, or types, best suited to their ecological

niche [307, 66], making them interesting targets for microbial ecologists. For example,

Class III RNRs are only found in strict or facultative anaerobes.

5.4.3.1 Cattle microbiome RNRs

Putative RNR sequences were defined as any sequence that had significant ho-

mology (E-value < 10−1) to some sequence in the RNRdb [214]. By this criteria,

344,025 putative RNR sequences were identified from the 52,891,368 OTUs generated

from the clustered Plass assembly sequences. Given the lenient criteria acceptance

criteria, the putative RNRs were subjected to post-homology search validation with

PASV11 and via manual curation.

Due to the significant variation in oxygen exposure between cattle hide and

fecal samples, this analysis focuses on Class I and Class III RNRs. In total, 344,025

sequences of the 52,891,368 OTUs generated from the clustered Plass assembly of cattle

hide and fecal metagenomes had significant homology (E-value < 10−1) to sequences in

the RNRdb [214] (i.e., putative RNR sequences). The post-homology search validation

process yielded 1,464 Class I α and 6,224 Class III RNRs. After 95% clustering, 3,474

Class III RNR sequences remained. These RNR sequences were used as gene markers in

the diversity framework described above to examine differences between hide and fecal

samples, viral and microbial metagenomes, and STEC positive and negative samples

(Fig. 5.3).

Class I RNRs showed similar amounts of trait-level alpha diversity, but cellular

and viral fecal metagenomes had higher levels of type-level alpha diversity as compared

to cellular hide metagenomes (Fig. 5.3). This could potentially be due to higher

11 See Chapter 2 for a discussion of PASV.
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Figure 5.3: Class I and III RNR diversity of the cattle microbiome. α- and β-diversity values with
varying abundance and similarity viewpoints for Class I (panel A) and Class III (panel B) ribonu-
cleotide reductase (RNR) from cattle hide and fecal microbiomes. Each column represents a different
similarity viewpoint (left column: 1–more emphasis on trait-level diversity, right column: 8–more
emphasis on type-level diversity). Within panels, the top row shows α-diversity and the bottom row
shows β-diversity ordinations, both for varying abundance and similarity viewpoints. The x-axis for
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emphasis of rare types; the y-axis gives the effective number measure of diversity parameterized by
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β-diversity plots, the measure of diversity becomes increasingly more conservative with respect to
abundance and similarity as their respective viewpoint parameters are increased.
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mutation rates of Class I RNR within the gut as opposed to on the hide. Mutation rates

are known to increase due to stress events [93]. One common source of stress in cattle

is heat stress, which is known to cause changes in the gut microbial community [63,

271]. Throughout the sampling period, temperatures regularly reached or surpassed

temperatures used for the stress treatment in cattle heat stress studies [63, 271]. In one

study of heat stress in beef cattle, the relative abundance of protein-coding genes was

affected, though the predicted functional profile of the rumen microbial community

did not change [271]. While the effect of heat stress on cattle hide microbiota has not

been studied, these microbes are routinely exposed to ultraviolet radiation, a known

mutagen, so it is possible that heat stress is not significant by comparison for the hide

microbial community. In fact, one study found that the percentage of animals suffering

from digital dermatitis, a common bacterial infection of bovine hooves [89], actually

decreased with increasing temperatures [110].

Additionally, mutation rates have sometimes been measured to be higher for

genes with lower rates of transcription [152, 226]. Some facultative anaerobes and

their viruses (e.g., E. coli and bacteriophage T4) are known to carry both Class I and

Class III RNRs and switch between the types depending on environmental conditions

[103, 409, 239, 45, 80]. This could be beneficial as most of the cattle gut is not strictly

anoxic [202]. Oxygen concentrations decrease sharply after the mouth, meaning that

oxygen is quickly depleted and present in very low concentrations throughout most

of the gut [227]. Consequently, although microbes may benefit from carrying Class I

RNRs, they are likely seldom used within the gut and therefore transcribed infrequently,

potentially leading to increased mutation rates.

For Class III RNRs, there were no differences in type-level or trait-level alpha

diversity among any of the groups (Fig. 5.3). Cattle hides are exposed to oxygen,

making them inhospitable environments for Class III RNRs, so it was initially sur-

prising that the hide samples contained the same trait-level diversity as fecal samples.

However, fecal contamination is common on cattle hides [232, 56]. In one survey of

microbial diversity in cattle hide and feces, less than 3% of the SSU rRNA OTUs were
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specific to the hide [59]. This suggests that microbes carrying Class III RNRs are

highly likely to be present on the hides as well, potentially due to cross-contamination,

which could result in similar levels of diversity.

In both Class I and Class III RNRs, there were little differences in β-diversity

at the type-level, but there were some changes in trait-level β-diversity at a higher

similarity viewpoints (Fig. 5.3). β-diversity of each sample type was more similar

at low abundance viewpoints and then diverged at higher abundance viewpoints, with

PC1 showing an increasing divide between cattle and hide communities. This indicates

that the cattle and hide communities share many rare members, but differ in their

highly abundant members. This pattern may reflect the Baas Becking hypothesis

that “everything is everywhere, but the environment selects” [73], i.e., that while the

microbial communities measured in this study are highly similar in terms of their rarer

members, their unique niches have allowed different microbes to flourish. It is also

important to note that any examination of rare members of the community is more

likely to be influenced by zero replacement artifacts, which my contribute to more

similar β-diversity measures at lower abundance viewpoints; however, unlike in the

mock communities shown in Fig. 5.2, transitions from lower to higher abundance

viewpoints were more gradual and so, potentially less influence by zero-replacement

induced noise.

Regardless, further investigation is necessary to explore these hypotheses, ideally

including other marker genes to include more “views” into the cattle microbiome.

5.5 Conclusions

In this chapter, I have introduced a diversity framework that combines state-

of-the-art compositional models of microbial community composition, with similarity-

aware measures of diversity. Combining these diversity measures with varying values

of similarity and abundance viewpoint parameters, as well as a careful choice of protein

coding marker genes, allows for subtle and nuanced queries of microbial community

diversity. These include connecting summaries of community diversity to questions of
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the differences in type-level and trait-level diversity as well as of the differences between

diversity of abundant community members and the “long tail” of the rare biosphere.

Finally, particular genome-to-phenome hypotheses are enabled in this framework by

the principled choice of appropriate protein coding marker genes.
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CONCLUSIONS

Together, the tools and frameworks presented in the previous chapters advance 

gene-centric approaches for microbial ecology by making specific “pain points” in the 

sample-to-sequence-to-discovery pipeline more accessible, and increasing the quality of 

metagenomic analyses. The selected applications span a wide variety of microbial and 

viral systems, with a particular focus on environmental viruses. PASV gives researchers 

the ability to validate large peptide datasets rapidly and puts the domain knowledge 

of individuals or research groups in the hands of non-domain experts, democratizing 

the study of single genes. InteinFinder lessens the burden of manual identification 

and curation of inteins in peptide data sets by standardizing the search for inteins, 

opening the possibility for intein screening to become routine, even in large datasets. 

Iroki makes powerful visualizations of phylogenetic data with metadata available to 

researchers without a strong background in programming or command line tools for 

batch processing. And lastly, the diversity framework makes compositional data mod-

els of microbial community structure more accessible to research groups without access 

to a high performance computing environment, allowing for accurate estimations of 

diversity on commodity hardware. By reducing the complexity and the amount of 

domain knowledge traditionally needed for gene-centric study of microbial communi-

ties, the work of this dissertation makes a marked improvement in the metagenomic 

sample-to-sequence-to-discovery pipeline.
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Noordewier, Michael S Rappé, Jay M Short, James C Carrington, and Eric J
Mathur. Genome streamlining in a cosmopolitan oceanic bacterium. Science,
309(5738):1242–1245, August 2005.

[114] Gregory B Gloor, Jean M Macklaim, Vera Pawlowsky-Glahn, and Juan J
Egozcue. Microbiome datasets are compositional: And this is not optional. Front.
Microbiol., 8:2224, November 2017.

[115] Gregory Brian Gloor, Jean M Macklaim, Michael Vu, and Andrew D Fernandes.
Compositional uncertainty should not be ignored in high-throughput sequencing
data analysis. AJS, 45(4):73–87, July 2016.

147



[116] J Peter Gogarten and Elena Hilario. Inteins, introns, and homing endonucleases:
recent revelations about the life cycle of parasitic genetic elements. BMC Evol.
Biol., 6:94, November 2006.

[117] J Peter Gogarten, Alireza G Senejani, Olga Zhaxybayeva, Lorraine Olendzen-
ski, and Elena Hilario. Inteins: structure, function, and evolution. Annu. Rev.
Microbiol., 56:263–287, January 2002.

[118] H Goodrich-Blair and D A Shub. Beyond homing: competition between intron
endonucleases confers a selective advantage on flanking genetic markers. Cell,
84(2):211–221, January 1996.

[119] Uri Gophna and Neta Altman-Price. Horizontal gene transfer in Archaea-From
mechanisms to genome evolution. Annu. Rev. Microbiol., 76:481–502, September
2022.

[120] Matti Gralka. Searching for principles of microbial ecology across levels of bio-
logical organization. Integr. Comp. Biol., June 2023.

[121] Cathleen M Green, Olga Novikova, and Marlene Belfort. The dynamic intein
landscape of eukaryotes. Mob. DNA, 9:4, January 2018.

[122] D. A. Green. A colour scheme for the display of astronomical intensity images.
Bulletin of the Astronomical Society of India, 39(2):289–295, 2011.

[123] Michael Greenacre, Marina Mart́ınez-Álvaro, and Agust́ın Blasco. Compositional
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A unique cysteine-rich zinc finger domain present in a majority of class II ribonu-
cleotide reductases mediates catalytic turnover. J. Biol. Chem., 292(46):19044–
19054, November 2017.

[206] Christoph Loderer, Venkateswara Rao Jonna, Mikael Crona, Inna Rozman Grin-
berg, Margareta Sahlin, Anders Hofer, Daniel Lundin, and Britt-Marie Sjöberg.
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Josep M. Gasol, Dolors Vaqué, Peer Bork, Silvia G. Acinas, Patrick Wincker,
and Matthew B. Sullivan. Ecogenomics and potential biogeochemical impacts of
globally abundant ocean viruses. Nature, 537(7622):689–693, 2016.

[322] Simon Roux, Steven J. Hallam, Tanja Woyke, and Matthew B. Sullivan. Viral
dark matter and virus–host interactions resolved from publicly available microbial
genomes. eLife, 4:1–20, 2015.

[323] Inna Rozman Grinberg, Daniel Lundin, Margareta Sahlin, Mikael Crona, Gustav
Berggren, Anders Hofer, and Britt-Marie Sjöberg. A glutaredoxin domain fused
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[401] Ling-Yi Wu, Gonçalo J Piedade, Ryan M Moore, Amelia O Harrison, Ana M
Martins, Kay D Bidle, Shawn W Polson, Eric G Sakowski, Jozef I Nissimov, Ja-
cob T Dums, Barbra D Ferrell, and K Eric Wommack. Ubiquitous, b12-dependent
virioplankton utilizing ribonucleotide-triphosphate reductase demonstrate inter-
seasonal dynamics and associate with a diverse range of bacterial hosts in the
pelagic ocean. ISME Commun, 3(1):108, October 2023.

[402] Zhiqiang Wu, Li Yang, Xianwen Ren, Guimei He, Junpeng Zhang, Jian Yang,
Zhaohui Qian, Jie Dong, Lilian Sun, Yafang Zhu, Jiang Du, Fan Yang, Shuyi
Zhang, and Qi Jin. Deciphering the bat virome catalog to better understand
the ecological diversity of bat viruses and the bat origin of emerging infectious
diseases. The ISME Journal, 10(3):609–620, 2016.

[403] Fan Xia, Jun Chen, Wing Kam Fung, and Hongzhe Li. A logistic normal multi-
nomial regression model for microbiome compositional data analysis. Biometrics,
69(4):1053–1063, December 2013.

[404] Yong Xu, Eric Dugat-Bony, Rahat Zaheer, Lorna Selinger, Ruth Barbieri, Krysty
Munns, Tim A. McAllister, and L. Brent Selinger. Escherichia coli O157:H7
Super-Shedder and Non-Shedder Feedlot Steers Harbour Distinct Fecal Bacterial
Communities. PLOS ONE, 9(5):e98115, May 2014.

[405] Ming-Yuan Xue, Yun-Yi Xie, Yifan Zhong, Xiao-Jiao Ma, Hui-Zeng Sun, and
Jian-Xin Liu. Integrated meta-omics reveals new ruminal microbial features as-
sociated with feed efficiency in dairy cattle. Microbiome, 10(1):32, February
2022.

[406] Ming Yan, Akbar Adjie Pratama, Sripoorna Somasundaram, Zongjun Li,
Yu Jiang, Matthew B Sullivan, and Zhongtang Yu. Interrogating the viral dark
matter of the rumen ecosystem with a global virome database. Nat. Commun.,
14(1):5254, August 2023.

[407] Kuan Yang and Liqing Zhang. Performance comparison between k-tuple distance
and four model-based distances in phylogenetic tree reconstruction. Nucleic Acids
Res., 36(5):e33, March 2008.

[408] Mingzhang Yang, Myra K Derbyshire, Roxanne A Yamashita, and Aron
Marchler-Bauer. NCBI’s conserved domain database and tools for protein domain
analysis. Curr. Protoc. Bioinformatics, 69(1):e90, March 2020.

177



[409] P Young, M Ohman, M Q Xu, D A Shub, and B M Sjöberg. Intron-containing
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Appendix A

CATTLE MICROBIOME EXPERIMENTAL METHODS

A.1 Sample collection, STEC detection, and microbiome sequencing

A.1.1 Sample collection

Cattle population characteristics, sample collection, and STEC detection in fe-

cal and hide samples is described in detail elsewhere [77, 62]. A brief overview will be

provided here; for full details, see the original cited works. Over a twelve week period

in from June to August 2013, fecal and hide samples were collected. Fecal samples

were taken at the feedlot and hide-on carcass surface sponge samples were taken at

the abattoir as described in [77]. Twenty-four pen-floor fecal samples were collected

each week from two pens 12 to 24 hours prior to transport to the harvesting location,

where 24 hide-on carcass samples (12 samples from two separate pens (pens changed

each week)) were collected using 11.5 * 23.0-cm sponges (Speci-Sponge®; Nasco, Fort

Atkinson, WI) pre-moistened with 35 mL of 0.1% sterile buffered peptone water (BPW)

[77]. After cattle were stunned and bled, but prior to hide removal, 1000 square cen-

timeters of the hide was swabbed 15 cm from the midline at the level of the diaphragm.

Five gram and 5 mL aliquots from each fecal and hide sample, respectively, were re-

served for microbiome analysis. Aliquots were snap-frozen in liquid nitrogen (LN2)

within 1 hour of collection for fecal samples and 2 hours for hide samples, then stored

at -80 degrees C until completion of a molecular detection assay for EHEC. Detailed

descriptions of the sampling procedure and characteristics of the study population are

presented in [77].
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A.1.2 STEC detection in hide samples

The prevalence of EHEC in hide samples (the 35 mL sample-BPW suspension

plus 90 mL E. coli broth (EC; Oxoid Lt., Hampshire, UK)) was tested in a previ-

ous study [359] using the NeoSEEKTM STEC Detection and Identification test (NS;

Neogen Corp., Lansing, MI). The NeoSEEKTM test determines the presence or absence

of EHEC O26, O45, O103, O111, O121, O145, and O157 using PCR and mass spec-

trometry to test for more than 70 markers including O-group, Shiga toxin, and intimin.

NeoSEEKTM testing was conducted at GeneSEEK® Inc. (Lincoln, NE).

A.1.3 STEC detection in fecal samples

Pen floor samples were collected from the feedlot, snap frozen, and processed

for extraction of microbial nucleic acid extraction and detection of STEC prevalence.

STEC prevalence and serogroup identification was conducted by a collaborating lab by

PCR for various genes associated with STEC: hly, eae, stx1, stx2, and O-group [77].

Specifically, two grams from each fecal sample was enriched in E. coli broth followed by

980µL aliquot added to serogroup-specific IMS beads (Abraxis®, Warminister, PA) for

specific STEC serogroups (O26, O45, O103, O111, O121, O145, and O157). These IMS

suspensions were cultured on MacConkey agar with cefixime and potassium tellurite for

O157 and/or modified Poss [292] for the non-O157 serogroups. After 24h incubation,

six colonies from each plate were selected and streaked on blood agar plates for an

additional incubation of 24 hours at 37 degrees C. On the O157 plates, any colonies

that were positive for latex agglutination and indole production were used in a multiplex

PCR to identify key O157 genes: fliC (encodes the E. coli flagellum), rfbE (encodes the

E. coli O157 serotype), ehxA (enterohemolysin), stx1, stx2 [22]. Non-O157 serogroups

were tested for a variety of serogroup specific genes (O26, O45, O103, O111, O121, and

O145) [265]. If positive, these were further subjected to tests for a suite of virulence

genes including eae, stx1, and stx2 [21].
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A.1.4 Microbiome sequencing

Microbial nucleic acid was extracted with the MO BIO PowerViral® DNA/RNA

isolation kit (MO BIO Laboratories, Inc.). DNA concentrates were sent to the sequenc-

ing center at the University of Delaware for standard library preparation for Illumina

HiSeq 2500 SBS 2x251 sequencing.

Cell-free DNA extracts (viromes) were constructed from the microbial extrac-

tions using an adapted FeCl3 method [153]. Fecal samples were diluted to 50mL with

phosphate buffered saline and gently shaken for one hour, then filtered with a 0.22 µm

polycarbonate filter and spiked with 50µL of FeCl3, and left for incubation at room

temperature for one hour. FeCl3 flocculate was then filtered onto a 1.0 µm polycarbon-

ate filter. Phages in Fe precipitates were resuspended in 500 µL of oxalic acid buffer.

Remaining free cellular DNA was digested with a two hour DNAse incubation, then

0.22µm filtered again. Finally, a SSU rRNA PCR was performed to ensure phage con-

centrates were free from cellular DNA contamination [59]. Viromes underwent library

preparation for and sequencing on the Illumina HiSeq 2500 1x151.

A.2 Bioinformatics methods

A.2.1 Read quality control

A quality control pipeline constructed from standard read quality control pro-

grams was used. First, adapters were trimmed from the forward and reverse reads using

Trimmomatic version 0.35 [37] (default settings except – seed mismatches: 2, palin-

drome clip threshold: 30, simple clip threshold: 10). Then, single-end quality trimming

was performed on any read pairs that were broken up by the adapter trimming. Next,

the read pairs that remained after adapter trimming were merged using FLASH ver-

sion 1.2.11 (default settings except – max overlap: 250). Then, reads were subjected to

quality trimming with Trimmomatic version 0.35 [37] (default settings except – head-

crop: 0, sliding window size: 10 with minimum quality score of 15, minimum length:

50). After adapter trimming, paired-end merging, and quality trimming, reads were

mapped against Homo sapiens (genome assembly GRCh38.p13, NCBI RefSeq assembly

182



accession GCF 000001405.39) and Bos taurus (genome assembly ARS-UCD1.2, NCBI

RefSeq assembly accession number GCF 002263795.1) to remove contaminant reads

(Bowtie2 version 2.3.5.1 [182]; default settings except – sensitive, end-to-end, random

seed 123123). Many of these steps can lead to broken read pairs. When this occurred,

broken read pairs were repaired with the FixPairs program1 called as part of the QC

pipeline script). The qc pipeline script was version 0.8.2 and is available on GitHub

https://github.com/mooreryan/qc, and was run with Ruby version 2.6.5p114 and

Java OpenJDK version 11.0.5.

A.2.2 Generating peptide data

De novo peptide assembly directly from the reads was performed with Plass

[357] version c4f7b with the default settings. Each sample was assembled individually.

In addition to individual samples, the eleven fecal viromes were co-assembled.

Next, MMseqs2 version 5ae55 was used to cluster all the peptides generated

in the Plass assemblies (including each individual sample, plus the viral co-assembly)

(default settings except–coverage mode: 1, minimum sequence identity 0.95, alignment

coverage 0.70) [358]. Cluster centroids were treated as operational taxonomic units

(OTUs) going forward.

To assign a count to each of the OTUs, QC reads from each sample were

mapped to OTUs using MMseqs2’s map submodule (default settings except – cov-

erage: 0.95, coverage mode: 2, minimum sequence identity: 0.9, maximum sequences:

50, split memory limit: 85g). This mapping was converted to btab format with

mmseqs convertalis command. All btab tables were collated into a final count table,

with special care taken to avoid double counting and to select only the best mappings

for counting. First, “best” hits were selected from the hit tables according the follow-

ing sort order: bit score (higher is better), percent identity (higher is better), E-value

(lower is better), target sequence coverage (higher is better), alignment length (higher

is better). Any ties are broken by proceeding to the next lowest level. Bit score is used

1 Available on GitHub: https://github.com/mooreryan/FixPairs
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as a determiner of “best” hit in most cases except when two hits have the same bit

score, then percent identity is used, and so on down the line of sorting criteria until

the tie is broken. Finally, the count is corrected for any double counting induced by

both reads from a single fragment mapping to the same OTU. These last two steps

were done with custom scripts written in the Crystal language version 0.31.1.

A.2.3 RNRs from Plass assemblies

MMseqs2 version e1a1c was used to search the Plass assembly OTUs against

ribonucleotide reductase (RNR) sequences from the RNRdb [214] (default settings

except – max sequences: 300, number of iterations: 3, starting sensitivity: 1; sensitivity

steps: 3, sensitivity: 7, max accept: 1, format mode: 2). The query sequences were the

Plass assembly OTUs and the target sequences were the sequences from the RNRdb.

Due to the set up of this homology search, significant hits are treated as the putative

RNR sequences.

Post-homology search filtering of putative RNRs was done with PASV version

1.3.0 (library version 0.5.0). Class I α RNR PASV options include using Clustal Omega

[344] as the aligner, key residues of 437, 439, 441, 462, and 621 with respect to the E.

coli reference (Escherichia coli str. K-12 substr. W3110, ribonucleoside diphosphate

reductase 1, alpha subunit) and start and end positions of 437 and 625, respectively.

Class III RNRs use a different PASV profile with key residues, 79, 290, 543, 546, 561,

564, 580, and no start and end region. The Class III reference was NRDD BPT4

Anaerobic ribonucleoside-triphosphate reductase. Each sequence was assigned a “sig-

nature” based on the PASV results for each of the searches. Sequences that had NCECP

were considered putative Class I α RNRs. Sequences that had CCCCCCG were consid-

ered putative Class III RNRs. These sequences went through an additional round of

manual validation.

For any Plass OTU identified as an RNR sequence, the abundance of that OTU

as calculated above is used for the abundance of that RNR.
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Table A.1: Cattle microbiome sequencing yield

Fraction Location Samples
Reads (M) Bases (Gb)

Raw QC Raw QC

cellular fecal 17 413 410 207 137
cellular hide 17 445 409 223 101
viral fecal 11 163 155 49 34

Total 45 1021 974 480 272

To generate similarity scores between RNR sequences, multiple sequence align-

ments were constructed. Class III RNRs were clustered at 95% identity over 80% of the

alignment length using MMseqs2 version 45111. All classes of RNR were aligned (each

class aligned separately) using the MAFFT plugin in Geneious, then 95% gap columns

were masked. Sequence identity was calculated with a custom program, msa pairwise2

version 0.2.0 using option “identity”.

A.3 Sequencing yield

In total, cattle microbiome samples were sequenced: 17 each of cellular fraction

fecal and hide samples, and 11 fecal viromes. Total sequencing yield was 480 gigabases

(Gb) (after quality control and read merging, 272 Gb) (Table A.1).

2 Available on GitHub: https://github.com/mooreryan/bio_ballyhoo
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