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ABSTRACT 

Electricity generation and storage systems are experiencing dramatic shifts in the 

United States. Each decision underpinning these shifts involves a variety of complex trade-

offs. From an economic welfare perspective, these trade-offs are described in terms of 

social costs and social benefits. Three essays presented in this dissertation explore aspects 

of social costs—and to a lesser extent social benefits—of electricity generation and storage 

technologies in the Mid-Atlantic region. While the social costs of mature technologies are 

generally well known, the social costs of emerging technologies or mature technologies in 

emerging environments have not been studied extensively.  

The first essay investigated the economics of vehicle-to-grid enabled electric school 

buses. This emerging storage technology was found to impose a variety of novel costs that 

have been frequently overlooked in the literature. Contrary to previous findings, a vehicle-

to-grid enabled electric school bus was found to increase net present cost per seat relative 

to a conventional diesel bus. Vehicle-to-grid technology may become economically 

justifiable in future years contingent upon favorable technological, market and regulatory 

developments.  

A second essay investigated cost increases at a nuclear generating station from 

expected future salinity increases in the Delaware River and Estuary. This mature 

technology is projected to encounter an emerging operational environment as ambient 

water used for cooling increases in salinity from sea level rise and a deepened navigational 



 

xiv 
 

channel. To estimate cost increases, a linked physical-economic model was developed to 

generate daily forecasts of ambient salinity under different future conditions and the 

resulting changes in the facility’s cooling water treatment and pumping requirements. On 

an equivalent annual basis (discounted at 5%), average cost increases were estimated as 

$0.4M per year. Methods developed here can be adapted to other estuarine facilities to 

estimate future cost increases under different salinity and operating regimes.  

The final essay investigated recreational impacts from offshore wind power 

projects by analyzing data from four in-person survey events. Respondents (n≈1500) were 

provided with simulated images of a large offshore wind project at different distances from 

shore and indicated if their beach enjoyment would have been made better or worse. In 

addition, respondents indicated whether they would have canceled their last beach trip due 

to the presence of the project at each distance. At policy relevant distances of 12.5 - 15 

miles, mostly neutral and positive impacts to beach recreation were found. In addition, 

cancelation rates at these distances were generally under 10%. Trip cancelation rates varied 

significantly across surveys, suggesting responses may be sensitive to seemingly minor 

changes in survey format, wording and/or timing.  

These essays provide estimates and insights that can assist in identifying socially 

optimal electricity generation and storage systems. In addition, they illuminate ongoing 

uncertainties in the fields of vehicle-to-grid, salinity-induced cost increases to 

evaporatively cooled generating stations and visual impacts from offshore wind power. 
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NOMENCLATURE 
 

 
BEV:   Battery Electric Vehicle 

CBA:  Cost Benefit Analysis 

COC:  Cycles of Concentration 

CNG:   Compressed Natural Gas 

FR:   Frequency Regulation 

HCGS:  Hope Creek Generating Station 

Kgal:  Thousand Gallons 

kWh:   Kilowatt Hour 

MGD:  Million Gallons per Day 

MW:  Megawatt 

NPC:   Net Present Cost 

PJM:   Pennsylvania – New Jersey – Maryland Grid 

PLI:  Possible Logical Inconsistencies 

ROMS: Regional Ocean Modeling System 

PSU:  Practical Salinity Units 

SLR:  Sea Level Rise 

USACE: U.S. Army Corps of Engineers 

V2G:  Vehicle-To-Grid 
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Chapter 1 

INTRODUCTION 
 
 

This dissertation aims to estimate social cost elements of three electricity generation 

and storage technologies. Modern society depends on widely accessible, reliable and 

affordable electricity. The system of electricity generation and transmission, however, is 

undergoing dramatic transformation in the US and other parts of the world. For 

environmental, health and financial reasons, the way society generates electricity is 

changing from one based primarily on fossil fuels to a non-fossil system. In addition, the 

process of electrification is converting an increasing number of services and processes to 

electrical power. These changes are accelerated by forces in the political and technological 

landscape.  

The bulk of this transformation, however, is likely to take many years and neither 

the path nor the destination of this transformation is determined. Optimal solutions depend 

in part on local factors, like supply chains, climatological factors, technological progress, 

patterns of land use, and culture, among many others. Complicating these efforts are long 

lead times for large projects and interactive effects between different electricity system 

technologies.  
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A robust framework is required to find optimal solutions to this transition. Perhaps 

chief among the various elements of this framework, are estimates of the costs and benefits 

to society of various alternatives. This dissertation informs small elements of this vast 

intellectual space by illuminating certain elements of social costs from three select 

technologies. However, the contributions of the present work are not as narrow as nominal 

results suggest. For example, a chapter on battery electric buses in a Philadelphia suburb 

has implications for calibrating owner/operator expectations on all electric vehicles costs 

and benefits, as well as implications for benefits and limitations of battery-based storage 

systems generally. Likewise, a chapter on a nuclear generating facility facing increasing 

cooling water salinity in coming decades establishes a methodology that can be adapted to 

any evaporatively cooled generating station expecting elevated salinity regimes. Lastly, a 

chapter on recreational impacts from offshore wind power projects highlights areas of 

concern for survey-based assessments for wind power siting more generally.  

While the market and non-market cost of development in the electricity sector are 

well understood for existing technologies in existing conditions, understanding of other 

elements remains incomplete. For example, the costs associated with emerging electricity 

generating technologies, or mature technologies in emerging environmental conditions are 

not fully understood.  

Three essays are reported here to further quantify elements of social cost and to a 

lesser extent, benefits, of electricity generation and storage in the Mid-Atlantic region. 

Each explores multi-disciplinary areas that leverage distinct methodologies. One essay 

conducts a cost-effective analysis of alternatively fueled buses and ancillary market 
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electricity grid services including health and environmental externalities.  Another 

integrates hydrodynamic, engineering, and economic models to estimate changes to 

operating costs for an evaporatively cooled nuclear generating station facing future salinity 

rise. The last essay estimates impacts of offshore wind power projects to recreation through 

survey instruments and statistical interpretations. Overviews of each essay are provided 

below.  

These essays are accompanied by related co-authored publications published 

during my doctoral studies (Carr et al., 2018; Kecinski et al., 2017; Shirazi et al., 2018; 

Veron et al., 2018;). 

 

Essay 1 (Ch. 2): A cost-benefit analysis of alternatively fueled buses with special 

considerations for V2G technology1  

This first essay in this dissertation explores the cost and benefits of replacing a 

diesel-powered school bus with one powered by either compressed natural gas or electricity. 

Both marginal and fleetwide models are explored. The electric bus has the additional 

opportunity to be outfitted with special hardware allowing it to participate in electricity 

grid services through a concept called Vehicle-to-Grid (V2G). This study models the total 

cost of ownership and external costs for each technology over a 14-year horizon. The 

electric bus is modeled to benefit from additional revenues and costs from V2G operation. 

V2G buses were found to be uneconomic from a social perspective in the present and near 

future given current projections for the relevant inputs. This is true despite not quantifying 

                                                 
1 This essay was published in 2015 in Energy Policy 87 (591-603).  
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several additional unique cost elements for the V2G bus. One main contribution of this 

study is the identification of V2G cost elements that are both large in magnitude and 

frequently overlooked in existing V2G analyses. For example, aggregator fees, electrical 

losses, low temperature limitations, demand charges, and appropriate normalization for 

capacity reductions are all highlighted as necessary cost elements that are frequently 

overlooked. However, electric buses may make financial sense to fleet operators given 

available subsidies.  

 

Essay 2 (Ch. 3): Increased operational costs of electricity generation in the Delaware 

River and Estuary from salinity increases due to sea-level rise and a deepened channel2 

Like many estuaries in the world, salinity levels in the Delaware River and Estuary 

are expected to increase due to a deepened navigational channel and sea-level rise. This 

study estimated operational cost increases resulting from increased ambient salinity likely 

to be incurred at PSEG-Hope Creek, an evaporatively cooled electricity generating station. 

To estimate cost increases, a linked physical-economic model was developed to generate 

daily forecasts of salinity and the resulting changes in facility’s cooling water treatment 

and pumping requirements. Salinity increases under potential future bathymetric 

configurations were simulated using a hydrodynamic model. On an equivalent annual basis 

(discounted at 5%), average cost increases were $0.4M per year, or approximately 0.1% of 

estimated total annual operating costs for the facility. Methods developed here could be 

employed at other facilities anticipating future salinity increases. Results inform cost-

                                                 
2 This essay was published in 2019 in Journal of Environmental Management 244 (228-234) 
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benefit analyses for dredging projects and contribute to estimates of the indirect costs to 

society from carbon emissions through sea-level rise. Future research refinements can 

focus on modeling changes in suspended sediment concentrations and estimating their 

impacts on operational costs. 

 

Essay 3 (Ch. 4): Visual impacts of offshore wind projects on beach recreation: Results 

from four in-person person surveys  

This final essay analyzes data from four in-person survey events regarding 

recreation impacts from offshore wind power projects. Offshore wind power features 

prominently in some visions of future electricity generation on the East Coast of the US. 

One concern with offshore wind development is potential impacts to recreational activity 

and enjoyment along adjacent coastlines. This study presents results from four in-person 

surveys on the impacts to beach-based recreation. Surveys were implemented over a 

sample of nearly 1,500 respondents in Delaware between 2013 and 2017. Respondents 

were provided with simulated images of a large offshore wind project at distances of 2.5 

to 20 miles from shore and asked if their last beach trip would have been made better or 

worse at each distance if the project was present. In addition, respondents were asked if 

they would have canceled their last beach trip due to the presence of the project at each 

distance. This study is a companion study and validity check to a similar survey conducted. 

Regressions models identify variables explaining differences in cancellation rates across 

the sample observations. Cancelation rates show significant differences across the surveys, 
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suggesting responses may be sensitive to seemingly minor changes in survey format, 

wording and/or timing.  

These essays aim to inform market participants, academics, and policymakers at 

the local and national levels on additional cost elements of technologies explored here. 

They should be understood as steps along an intellectual journey subject to much further 

refinement. However, I am confident that each essay as it currently stands offers 

meaningful contributions that can help inform the transformation to a future and more 

socially desirable electricity system.  
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Chapter 2 

A COST-BENEFIT ANALYSIS OF ALTERNATIVELY FUELED BUSES WITH 
SPECIAL CONSIDERATIONS FOR V2G TECHNOLOGY  

 
 

2.1 Introduction 

For decades, school buses have been powered almost exclusively by diesel and 

gasoline. The long history of mass production and adoption of these vehicles provides for 

significant economies of scale, as well as predictable performance characteristics and 

maintenance schedules. 

While diesel touts numerous desirable properties as a fuel for heavy-duty 

vehicles, concerns over volatile petroleum prices, as well as health and environmental 

externalities have spurred interest in alternative fuels for heavy-duty vehicles (US DOE, 

2014a).  

A combination of factors--both technological and social--have recently expanded 

the available fuel technologies for transportation. Compressed natural gas (CNG) is a 

popular fuel for municipal and commercial fleets in the US due to its low cost, reduced 

emissions, and domestic extraction (National Research Council, 2010). Major school bus 

manufacturers, including Thomas, Blue Bird and International, offer CNG and/or 

propane options (Florida Department of Education, 2014). 
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Battery-electric buses, or eBuses, have also been developed, albeit by more 

specialty manufacturers. Proterra, BYD, and New Flyer manufacture transit eBuses, 

while eTrans and TransPower manufacture eBuses specifically for school applications. 

Battery-electric vehicles (BEVs) derive energy from an on-board electrochemical battery, 

typically of a lithium-ion variety. These vehicles offer zero tailpipe emissions, decreased 

fuel costs, lower maintenance costs, but higher initial purchase costs relative to diesel 

counterparts (Electrification Coalition, 2010). 

Successful pilot runs have been demonstrated for school eBuses in California 

(Clements and Nagrani, 2014; Ramsey, 2011; TransPower, 2014). Pilot projects for 

electric transit buses are also underway in various European cities under the Zero 

Emission Urban Bus System (ZeEUS, 2015).  

BEVs with Vehicle-to-grid (V2G) 

If properly equipped, BEVs can also perform vehicle-to-grid (V2G) services 

while not operating routes, receiving payment in return and thereby offsetting a portion of 

total ownership costs. During V2G, a vehicle’s battery provides services to the electrical 

grid, helping to maintain high quality and reliability of electricity for grid customers. 

The specific grid service most lucrative for V2G is frequency regulation 

(Kempton and Tomić, 2005). Frequency regulation (FR) is the contracted availability to 

provide short bursts of power into and/or out of the electrical grid as directed by the grid 

operator. Vehicles that provide FR are compensated primarily as a function of total hours 

of service, amount of service offered (measured as power), and market rates during each 

hour service is offered. 
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Kempton and Tomić (2005) conducted the first cost-benefit analysis (CBA) for a 

V2G-enabled vehicle. The battery-electric version of a Toyota RAV4, a compact sport-

utility vehicle, was found to generate $411 in monthly revenue and $213 in monthly 

profit providing FR services to the California-area grid.  

More recently, Noel and McCormack (2014) present the economics of operating a 

school eBus with V2G capabilities in PJM, the electrical grid across thirteen states in the 

eastern US. Their analysis advances the limited literature regarding V2G economics by 

considering new FR pricing regimes in the aftermath of the 2012 implementation of US 

FERC Order 755, and by explicitly accounting for environmental externalities. The 

authors report that a 24-seat V2G-capable eBus yields a $6,070 lower net present cost 

(NPC) per seat than a 32-seat diesel counterpart over an expected 14-year life. The higher 

purchase price for the eBus is more than offset by V2G revenues, as well as lower fuel, 

maintenance and externality costs. 

However, Noel and McCormack (2014) overlook several substantive issues that 

are addressed in the current study. Such omissions, including driver salary, electrical 

losses from V2G, non-taxable diesel-fuel for school districts and reduced V2G 

availability during cold weather, skew the findings of that paper in favor of the V2G-

enabled eBus. 

The present analysis fills considerable literature gaps by identifying nuanced 

technical, regulatory, and economic challenges imposed by V2G-enabled vehicles. In 

addition to incorporating oft-overlooked inputs in the cost-benefit calculations, this 

analysis provides more robust assumptions and includes an additional alternative fuel 
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(CNG) for a three-way analysis. The present analysis is also the first of its kind to 

highlight the importance of operating temperature impacts on expected V2G revenue 

generation.  

Temperature and V2G 

Previous attempts to estimate V2G revenue rely on applying an average price for 

FR derived from a simple average of all hours over some previous period. (Kempton and 

Tomić, 2005; Noel and McCormack, 2014). Such approaches do not represent actual 

price conditions fleet operators are likely to expect for their fleets. Because V2G 

participation for fleet vehicles exhibits recurring and predictable availability with respect 

to time of day (business hours) and ambient temperature (due to constraints in battery 

performance at extreme temperatures), average prices are best computed from prices that 

prevail only during these conditions.  

Of particular concern are low ambient temperatures. During extremely low 

temperatures, FR prices can spike to one-hundred times higher than average, greatly 

increasing average FR prices. However, V2G during these hours is likely not possible 

due to thermal limitations of the lithium-ion cells. 

Like many fleet vehicles, school buses are parked outside, exposed to ambient 

conditions. Outside of narrow optimal temperatures (roughly 10º - 30º C), lithium-ion 

cells suffer degraded performance, longevity and/or efficiency (Concha, 2007; Pesaran et 

al., 2013). Thermal management systems can alleviate some shortcomings outside of this 

range, but only with increasing efficiency penalties. Much below freezing (below -5º to -

10º C), typical lithium-ion batteries are only able to operate under limited power, if at all, 
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due to reductions in power capacity as well as programmatic cut-offs designed to 

preserve long-term battery longevity (Pesaran et al., 2013; Zhang et al., 2011; personal 

experience with University of Delaware V2G fleet).  However, the exact ambient 

temperature cutoff for these batteries varies by a myriad of factors including cell 

chemistry, form factor, arrangement of cells within the vehicle, and others (Samadani et 

al., 2013). 

Outline 

We investigate the costs and benefits of V2G-enabled school buses compared to 

CNG and diesel counterparts using a Monte Carlo-based NPC framework in two distinct 

scenarios. The first scenario adopts the framework and vehicles of Noel and McCormack 

(2014), consisting of a marginal addition of a single small school bus to an existing fleet. 

Both Noel and McCormack (2014) and this analysis compare a Type C diesel bus with a 

smaller TransTech eBus, using current prices for bus purchase costs. However, the 

present work differs in that it re-specifies inputs with more realistic values, enhances the 

model with previously omitted factors, and includes a CNG bus for a three-way 

comparison.  

The second scenario analyzes the NPC implications of establishing and operating 

an entire fleet of large school buses of a specified technology (either eBus, diesel or 

CNG).  Importantly, it assumes a projected eBus purchase price benefitting from the 

significant future price decreases anticipated in coming years. The diesel and CNG in this 

scenario, however, do not benefit from any advancements in cost or performance. As a 

result, this scenario structurally favors the V2G-enabled eBus. 
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 For both analyses, findings represent optimistic accounting of eBus costs due to 

the several additional challenges identified but not accounted for explicitly in the 

analysis. The additional challenges to eBus implementation are discussed qualitatively in 

Section 4.5 and should be carefully considered when interpreting results presented here 

and in related studies. These additional factors, often unacknowledged in V2G literature, 

further deteriorate V2G-enabled eBus economics in real world implementation. 

2.2 Methods 

2.2.1 Frequency Regulation Pricing with Temperature Considerations 

We estimate eBus revenue while performing V2G services in the PJM frequency 

regulation market, incorporating limitations in bus timing and temperature availability. To 

address these limitations, we model revenue using frequency regulation prices for those 

hours outside of normal school bus operating hours (5AM - 8AM and 2PM - 5PM) on 

school days using a local academic calendar.  

We also use a range of cutoff temperatures of 0ºF (-18ºC) to 50ºF (10ºC) using U.S. 

NOAA National Climatic Data Center temperatures for Philadelphia International Airport, 

PA (USA). Hourly time-series data for the regulation price is based on dynamic frequency 

regulation market for the PJM grid in 2014 (PJM, 2015b). The resulting effective regulation 

price is used to inform subsequent sections of this analysis. 

2.2.2 Net Present Cost Framework Calculation 

Costs and benefits of purchasing diesel, CNG, and eBus technologies are modeled 

using a Monte Carlo net present cost (NPC) framework. The Monte Carlo approach 
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iteratively runs model simulations for which it randomly assigns a value to each model 

input according to user-defined probability density function for each model variable. All 

results are interpreted from Monte Carlo analyses of 100,000 iterations.  

The analysis horizon is 14-years for a newly purchased bus, in accordance with 

National Association of State Directors of Pupil Transportation Services (NASDPTS, 

2010). Variables used in the NPC framework calculations are provided in Table 2.1. The 

discount rate is set to 3%, as recommended in governmental CBAs (Boardman et al., 

2010), and results are tested for sensitivity to different rates  

NPC for diesel and CNG vehicles are estimated using the following equation: 

𝑁𝑃𝐶஽௜௘௦௘௟ ௔௡ௗ ஼ேீ = 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 +  

           (1) 

෍
𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 +  𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑦௛௘௔௟௧௛  +  𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 ௖௔௥௕௢௡ +  𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 +  𝑠𝑎𝑙𝑎𝑟𝑦

(1 +  𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒)௬

௬ ୀ ଵସ

௬ ୀ ଴

 

 

Because V2G profit offsets total ownership costs for the eBus, V2G profit is 

subtracted from costs to determine total eBus NPC (see section 2.3.6): 

𝑁𝑃𝐶஽௜௘௦௘௟ ௔௡ௗ ஼ேீ = 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 +  

           (2) 

෍
𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 +  𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑦௛௘௔௟௧௛  +  𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 ௖௔௥௕௢௡ +  𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 +  𝑠𝑎𝑙𝑎𝑟𝑦 − 𝑉2𝐺 𝑝𝑟𝑜𝑓𝑖𝑡

(1 +  𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒)௬

௬ ୀ ଵସ

௬ ୀ ଴

 

 

 
Table 2.1:   Model variables and ranges of assigned values.  
 

Description and units Value (Lower Bound, 
Baseline, Upper Bound) 

Source(s) 

General  
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Hours/day driving students* 5, 6, 7 Rineer, J. (2014) 

Driver salary + benefits (46% of 
salary) 

$19,341; $30,622; $43,418 BLS (2015) 

Miles driven per year* 8000, 8500, 9000 Rineer, J. (2014) 

Monetary discount rate (%)* 2.0, 3.0, 6.0 Boardman et al., 
4th ed. (2011) 

Number of school days per year 180  

Life of bus (years) 14  

Diesel  

Diesel health externalities 
($/mile)* 

0.0124, 0.0917, 0.5444 NRC, 2010 

Price of diesel less taxes* ($/gal) 
(year 1 costs) 

2.17, 2.76, 3.65 American 
Petroleum 
Institute (2015); 
EIA (2014) 

Diesel fuel carbon emitted (lbs. 
C/gal)  

22.2 EPA (2005)  

Small Diesel MPG* 7, 8, 9  Rineer, J. (2014) 

Large Diesel MPG* 6, 7, 8 Rineer, J. (2014) 

Social cost of carbon 
($/MgCO2e) 

$41.05 EPA (2013) 

Diesel maintenance rate ($/mile)* $0.15, $0.44, $0.60 Rineer, J. (2014) 

Compressed Natural Gas (CNG)  

CNG health externalities 
($/DGE)* 

0.039, 0.052, 0.065 NRC (2010) 

Price of CNG ($/DGE) (year 1 
costs)* 

2.34, 2.42, 2.45 EIA (2015) 
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Small CNG MPGe* 6, 7, 8  Rineer, J. (2014) 

Large CNG MPGe* 5, 6, 7  Rineer, J. (2014) 

CNG Maintenance Rate ($/mile)* $0.15, $0.44, $0.60 Rineer, J. (2014) 

CNG CO2 emissions (kg 
CO2/DGE) 

7.57792  

CNG Station costs (2 hose, time-
fill) 

$48,545 Smith and 
Gonzales (2014) 

Electric Bus (eBus)  

Price of electricity (¢/kWh) (year 
1 costs)* 

10.00, 10.14, 10.37 EIA (2014) 

% Coal used for generation in the 
Reliability First Corporation/East 
(year 1) 

29.6 EIA (2014) 

 

Carbon dioxide produced per unit 
electrical energy (kg CO2/kWh) 

0.50 PJM (2014) 

 

Regulation Price from 2012-2014 
($/MW-h) before adjustments 

30.28 (with Stand. Dev. of 
13.3, negative values set to 
zero) 

PJM (2015b) 

 

Round-trip electrical efficiency 
(AC-DC-AC) (%) 

73   Kempton and 
Tomić (2005) 

*Denotes triangular distribution bounded with low, modal, and high values. 

 
 
 
Marginal Analysis: NPC for an additional small bus 

This marginal approach investigates the financial impacts of replacing a single 

bus with a new bus of the specified technology. Similar to Noel and McCormack (2014), 
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we compare a Type C bus with a slightly smaller eBus.3 Because the eBus is two to three 

times the cost of the other buses, school districts are likely to consider the smallest eBus 

varieties in order stay within yearly expenditure limits.  

Fleet-wide Analysis: NPC for a fleet of large buses  

An analysis was also conducted for a large bus fleet. This latter approach captures 

a schedule of costs for 100 new buses for each bus type. Similar to the small bus, a 

marginal analysis was also conducted for large buses. However, these results are not 

reported as they are similar in all important respects to the fleet-wide analysis. 

2.2.3 Materials: Diesel, CNG, and eBus 

The diesel and CNG buses are current Thomas Built4 buses. The small eBus is the 

TransTech eTrans, while the large eBus is the TransPower EESB (TransPower, 2014). 

Bus operational characteristics are based on data from the Lower Merion School 

District (LMSD) in Pennsylvania, USA (Personal Communication, Gerald Rineer, 

November 2014). All buses are assumed to operate 180 school days per year. On school 

days, buses average six hours driving routes, divided into 5AM to 8AM block, and a 2PM 

to 5PM block (Personal Communication, Gerald Rineer, November 2014). Furthermore, 

buses are assumed to average 8,500 miles per year and operate within 14-year lifetimes. 

During all non-route hours (including the entirety of non-school days), the eBus is 

assumed to perform V2G. In reality, eBuses would experience additional non-V2G hours 

                                                 
3 While the same bus sizes are used, this study accounts for seating capacity slightly differently than in 
Noel and McCormack (2014). This analysis includes wheelchair wells in capacity determination. 
4 Thomas Built is one of the three main companies in the US mass producing large school buses.  
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due to maintenance, charging5, and other downtime.  However, this is optimistically 

assumed in our model and serves as an upper-bound on V2G revenues.  

Bus driver compensation averages $30,622 in salary per year plus an additional 

46% to account for benefit compensation also borne by the school district (Bureau of 

Labor Statistics, 2015).  

2.2.3.1 Bus Costs 

Marginal Analysis (Small bus) 

For the marginal analysis of a small bus, the CNG and diesel buses are modeled 

as the Thomas Built 310TS Type C with 32 seats in addition to wheelchair lift and 3 

wheelchair wells (Thomas, 2004). The price of this vehicle in diesel configuration is 

$88,691, while the estimated6 CNG configuration is $108,687 (Florida Department of 

Education, 2014). The small V2G-enabled eBus is a Smith-Newton eTrans with 24 seats, 

wheelchair lift and two wheelchair wells. As specified by Noel and McCormack (2014), 

this vehicle costs $230,000 with an 80-kWh A123 lithium iron-phosphate battery. 

Additional specifications for all buses are outlined in Table 2.2. 

Fleet-wide Analysis (Large bus) 

The large CNG and diesel buses are modeled as the lift-equipped Thomas HDX 

141YS Type D with 54 seats, wheelchair lift and 3 wheelchair wells (Thomas, 2003). The 

                                                 
5 The optimal battery state for V2G is 50% charge. Upon returning from school routes, eBuses would 
charge to 50% before beginning V2G. At some point before their next driving event, (ranging from minutes 
to an hour) eBuses would cease V2G in order to charge from 50% to 100%. 
6 CNG conversion costs are listed as $24,995 incrementally more than the diesel for large-sized Thomas 
Built Type D buses. We assume conversion costs are proportional to fuel tank size, and price the small 
CNG at $19,996 incrementally more than the diesel variety, reflecting relative tank size. 
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price for diesel is $115,118, and $140,113 for CNG (Florida Department of Education, 

2014). 

The large eBus is a similarly sized TransPower Thomas HDX Type D. Due to 

anticipated cost reductions in electric vehicle production, we apply a projected purchase 

cost estimate for large eBuses in mass production. TransPower currently produces only 

prototype vehicles and does not provide pricing information on these pilot vehicles. 

Projected purchase price in mass production was estimated at $200,000, not including the 

on-board bi-directional charger (Personal Communication, Joshua Goldman, February 

2015). Because this value is highly uncertain, we vary this value between $180,000 and 

$250,000, representing relatively greater risk for slower-than anticipated cost reductions.7  

 

Table 2.2:   Bus types, sizes and specifications used in the analyses 

 Fuel  Vehicle Chassis Capacity  Length 
(m) 

Price Driving 
Efficiency 

Small bus 

CNG Thomas 310TS  Type C 35 11.0 $108,687  7 MPGe 

Diesel Thomas 310TS  Type C 35 11.0 $88,691 8 MPG 

eBus TransTech EN200DSFP900 26 9.1 $230,000  1.54 kWh/mi 
(AC) 

Large bus 

CNG Thomas 141YS Type D 57 12.2 $140,113 6 MPGe 

                                                 
7 This anticipated future purchase price averages less than the current purchase price for the small eBus. 
The larger eBus offers over twice the seating capacity, 28kwh additional battery capacity and a more 
powerful motor. 
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Diesel Thomas 141YS Type D 57 12.2 $115,118 7 MPG 

eBus Thomas ‘84 seat’ Type D 57 12.2 $200,000 2.35 kWh/mi 
(AC) 

 
 
2.2.3.2   Fueling Infrastructure Costs 

Fueling infrastructure is necessary for all buses. The marginal analysis assumes 

that infrastructure already exists for an additional diesel bus, but CNG infrastructure 

would need to be installed at a cost of $50,000 to service a single bus (Smith and 

Gonzales, 2014). Infrastructure costs for all eBuses consist of a 70 kW on-board bi-

directional charger priced at $30,000 per vehicle (Noel and McCormack, 2014). 

Fueling Infrastructure to service a fleet of 100 buses are modeled as $500,000 for 

diesel and $1.8 million for CNG (Smith and Gonzales, 2014). While fueling also has 

operation and maintenance costs, EIA already embeds these in diesel and CNG fuel 

estimates. 

2.2.3.3   Fuel Costs  

Fuel costs for all buses are obtained from EIA’s 2014 Annual Energy Outlook 

(EIA, 2014) for the transport sector and the geographic region corresponding to 

Philadelphia, PA. Prices in future years are modeled from the 2014 EIA Reference, High 

Growth, and Low Growth scenarios using a triangular distribution for all fuels. EIA 

Reference is our mean estimate, while EIA High Growth and Low Growth represent our 

upper and lower bounds, respectively. Diesel fuel prices are adjusted to account for 

federal and Pennsylvania taxes, from which school districts are exempt, by subtracting 
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$.0886/diesel gallon (American Petroleum Institute, 2015; IRS, 2014; Transportation 

Research Board, 2009).  

Driving efficiencies are informed by the experience of Lower Merion School 

District (LMSD) outside of Philadelphia, PA (Personal Communication, Gerald Rineer, 

November 2014) for their fleet of variously sized buses. Small diesel buses are assumed 

to average 8 MPG while small CNG buses average 7 MPGe. Large bus efficiencies are 

slightly lower at 7 MPG and 6 MPGe, respectively. These values are similar to those 

found in other reports (see for example Wyoming DAI, 2012).  

Because empirical data on driving efficiency for the eTrans small eBus are not 

available, we estimate efficiency from similar vehicles. An eBus pilot project in Kings 

Canyon, CA tested an eBus with two-thirds the seating capacity and a Gross Vehicle 

Weight Rating (GVWR) roughly half that of the eTrans. Reported driving efficiency for 

that eBus was about 1.18 kWh/mi AC (Clements and Nagrani, 2014). 

NREL reports operational statistics for a geographically dispersed fleet of 

commercial vehicles.8 They report average efficiency of 1.54 kWh/mi AC for this fleet of 

vehicles (US DOE, 2014b). Though these vehicles are also smaller than the eTrans 

specified here, we adopt the 1.54 kWh/mi AC driving efficiency for the eTrans eBus in 

our model. 

Driving efficiency for the large eBus is reported from empirical field trials as 2.2 

to 2.5 kWh/mi AC (TransPower, 2014) based in southern California. We use the 

                                                 
8 Similar to the eTrans, vehicles in NREL’s test fleet are electrified with Smith-Newton componentry. 



 

 22

midpoint of these values for driving efficiencies of 2.35kWh/mi AC, but again note this 

may be optimistic due to the relatively mild climate of the trial location.  

2.2.3.4   Maintenance Costs 

Diesel maintenance rates are reported in a variety of outlets (Chandler and 

Walkowicz, 2006; Clark et al., 2007; Laughlin and Burnham, 2014; Stasko and Gao, 

2010; Transportation Research Board, 2009), ranging from $0.15-$0.60 per mile. Various 

sources report CNG maintenance rates equivalent to those of diesel (Wyoming DAI, 

2012). The similarity in maintenance costs between diesel and CNG was also found by 

LMSD for their current fleet of CNG buses. This analysis assumes a modal value 

maintenance cost of $0.44/mi for diesel and CNG buses, as observed by LMSD (Personal 

Communication, Gerald Rineer, November 2014), and lower and upper bounds of $0.15 

and $0.60 per mile reported in the literature.  

In a cost-benefit analysis of city buses, Lajunen (2014) sets maintenance costs 

equal across variously fueled buses including diesel and eBus. Chandler and Walkowicz 

(2006) distinguish between propulsion-related maintenance costs ($0.12/mi) and non-

propulsion costs ($0.36/mi) for diesel city buses. Variation in maintenance costs between 

the present fuel technologies arises almost exclusively from variation in propulsion-costs. 

According to this assessment, eBus maintenance costs are at least three-quarters those of 

diesel. 

The Electrification Coalition (2010), an advocacy group promoting electric 

transportation, estimates that heavy-duty electric vehicles incur half the maintenance 

costs of heavy-duty diesel vehicles. We adopt the Electrification Coalition’s (2010) more 
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aggressive savings in maintenance costs for BEV’s to assume that eBus maintenance 

rates are half those of diesels, with a modal value of $0.22/mile and a range of $0.075 to 

$0.30/mile.  

Finally, due to battery degradation over time, we model both large and small 

eBuses needing to replace the entire battery once during the operating life, occurring in 

year 9, similar to Noel and McCormack (2014). Battery replacement costs are estimated 

at $300/kWh9 of installed battery capacity per US Department of Energy goals (Howell, 

2009). 

2.2.3.5   External Costs 

All three fuel types generate externalities through health and environmental 

impacts, and thereby impose societal costs. This study attempts to quantify these costs 

and attribute them to the offending bus. 

Greenhouse gas emissions impose social costs related to climate change, and are 

valued at $41.05/MgCO2e (EPA, 2013). Only per-mile direct emissions from the bus (or 

electrical grid for the eBus) are included in the emission total and are listed in Table 2.1. 

Externalities from other aspects of the bus lifecycle are omitted.  

Per-mile health damages from all three vehicles are also quantified using 

estimates from the National Research Council (2010). For the health impacts from the 

eBus, only damages from that fraction of electricity generated from coal are considered 

as this source of electricity drives the majority of health damages. Current and projected 

                                                 
9 This cost projection is for standard vehicle grade li-ion batteries, not the high performance A123 li-ion 
batteries specified in the eBus. A123 batteries command price premiums over standard vehicle grade 
batteries. 
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coal generation for First Reliability Corporation East is provided by the EIA Annual 

Energy Outlook. As a result, all non-coal generation is assumed to impose no health cost 

on society10. 

 
2.2.3.6   V2G Profit 
 

V2G profit in both marginal and fleet-wide scenarios equals V2G revenues minus 

V2G costs. Annual V2G revenue is approximated with the following equation: 

 

𝑉2𝐺 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 =  𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑖𝑐𝑒 ∗  𝐴𝑛𝑛𝑢𝑎𝑙 𝑉2𝐺 ℎ𝑜𝑢𝑟𝑠 ∗  𝑃𝑜𝑤𝑒𝑟 𝑂𝑓𝑓𝑒𝑟𝑒𝑑          (3) 

where Effective Regulation Price is the average price of FR in the 2014 PJM during 

which a school bus would be able to perform V2G assuming a thermal cutoff of 20ºF (-7º 

C); where Annual V2G hours is the total hours the eBus is not operating school routes; 

and where Power Offered is 70 kW (0.07 MW) for both the large and small eBus, limited 

by the onboard bi-directional charger. 

As mentioned previously, the eBus is optimistically assumed to provide V2G 

services all hours outside of the school operations determined annually by the following 

equation: 

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑉2𝐺 𝐻𝑜𝑢𝑟𝑠 =  𝑠𝑐ℎ𝑜𝑜𝑙_𝑑𝑎𝑦_𝑉2𝐺 ∗  180 +  (24 ∗  (365 − 180))           (4) 

                                                 
10 Health damages from electricity generation in this analysis is premised on the average mix of generation 
on the local electricity grid in future years. A superior approach would be premised on expected marginal 
generation in future years.  
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where schools meet 180 days per year; and where school_day_V2G is the number of 

hours each school day the bus is not running school routes. 

 

2.2.3.7 V2G Costs 

V2G operational costs have been previously accounted for in a number of ways or 

ignored. Kempton and Tomić (2005) calculate increased battery degradation rates and 

electrical energy losses resulting from V2G, while and Noel and McCormack (2014) do 

not account for V2G operational costs in their calculations. The present model accounts 

for V2G costs arising from electrical energy losses while performing V2G. Accelerated 

battery degradation is not accounted for but is discussed in section 4.5.  

Lithium-ion cells are nominally estimated to achieve in excess of 90% electrical 

efficiency in converting charging energy to stored energy. However, the efficiency of in-

use lithium-ion battery systems is substantially lower than the efficiency of new 

individual cells (Heymans et al., 2014). The literature often uses the latter while the 

former is more appropriate. Thermal management, on-board power/communication 

electronics, inverter losses and increased cell resistance with age, all impart additional 

inefficiencies (Heymans et al., 2014). 

Round-trip electrical efficiency is a term used to describe the percentage of AC 

electricity that returns to the electrical outlet after passing through an inverter, the 

vehicle’s battery, and various power/communication/thermal management systems. 

While round-trip electrical efficiency for V2G is not reported widely, this value is 

estimated as 64% (Heymans et al., 2014) and 73% (Kempton and Tomić, 2005). 
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Furthermore, data from the EESB show a one-way charging efficiency of 85% at the 

midpoint (TransPower, 2014). The square of this one-way charging efficiency yields a 

round trip-efficiency for the system of 72%. This analysis adopts the highest of these 

values for a roundtrip efficiency of 73%. 

In this analysis the cost of V2G equals the quantity of electrical energy lost during 

V2G multiplied by the price of electricity.  

 

 𝑉2𝐺 𝐶𝑜𝑠𝑡𝑠 = ( 𝑃𝑜𝑤𝑒𝑟_𝑂𝑓𝑓𝑒𝑟𝑒𝑑 ∗ 𝑎𝑣2𝑔 ∗ 𝑈𝑡_𝑓𝑎𝑐𝑡𝑜𝑟)(1 − 𝑟𝑡_𝑒𝑓) ∗ 𝐸_𝑝𝑟𝑖𝑐𝑒          (5) 
 

where Power Offered is the kW of capacity offered into the FR market; av2g is the 

annual V2G hours from equation (4); Ut_factor, or the utilization factor, identifies the 

proportion of averaged one-way regulation power requested relative to power offered; 

rt_ef is round-trip electrical efficiency; and E_price is the electricity price in $/kWh. 

2.3 Results 

2.3.1 V2G Revenue and Temperature  

Frequency regulation prices in PJM exhibited a detectable correlation with 

extreme low temperature events. In particular, extremely high prices tended to coincide 

with the lowest hourly temperatures. 

Figure 2.1 shows the simultaneity of low temperatures at the Philadelphia 

International Airport in January 2014 with spikes in FR price. This month exhibits a 

Pearson Correlation coefficient of -0.397, denoting a negative correlation between 

temperature and regulation price. The Pearson correlation coefficient for the months of 

Jan., Feb. and Mar. 2014 is -0.394. 
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Figure 2.1:      Temperature at Philadelphia International Airport and PJM regulation 
price for January 2014. 

 

While the annual mean and median FR price in 2014 was $39.63/MW-h and 

$17.69/MW-h, respectively, the mean and median prices for Jan., Feb., and Mar., roughly 

double to $87.99 and $31.21, respectively. Prices peaked at $3,296 on January 7, 2014 

when temperatures fell to 4ºF (-16ºC). 

Furthermore, extremely high hourly prices (> 3 standard deviations above the 

mean) are isolated and plotted in Figure 2.2. These extreme prices are clustered at the 

lowest temperatures experienced over the year, further supporting the relationship 

between extremes in low temperature and high FR prices. Of the 115 data points 

indicating extreme prices observed, 88% occurred at temperatures below 32ºF (0ºC), 
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shown by the dark dots in Figure 2.2 below. For comparison, only 13% of hours in 2014 

experienced ambient temperatures below 32ºF (0ºC). 

 
 
Figure 2.2:   Extreme regulation prices in 2014 PJM grid. Prices shown are those above 

three standard deviations from the mean 2014 price of $39.63/MW-h. 
 

Projected 2014 V2G revenue for an eBus providing 70 kW of FR services in PJM 

are displayed in Figure 2.3 at various ambient temperature cutoffs. Ambient temperatures 

did not drop below 0ºF in 2014, thus the maximum V2G revenue possible is $18,300. 

After accounting for thermal limitations, V2G revenue decreases disproportionately to 

the hours at these temperatures. Assuming a thermal operating limit for V2G services of 

the eBus at 20ºF (-7ºC), the expected annual revenue for the eBus decreases from 

$18,300 to $14,400.  
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For analysis in subsequent sections, we adopt the three-year PJM mean value for 

FR (2012-2014) of $30.28 and adjust it downward by the ratio between $14,400 and 

$18,300, or 0.78. This adjustment estimates the proportion of FR value that would be 

unavailable to an electric vehicle exposed to the elements. 

 

 

Figure 2.3:    Annual V2G revenue for the specified eBus over a range of temperature   
cutoffs from 0ºF (-18ºC) to 50ºF (10ºC) using 2014 hourly weather and 
frequency regulation price data.  

  

The economic analyses presented below assume a V2G cutoff temperature of 

20ºF (-7ºC), in-line with the authors’ experience of V2G-enabled vehicles at the 

University of Delaware.  Adopting this threshold results in an effective FR price for the 

eBus of $23.62/MW-h.  
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Lastly, utilization of dynamic FR resources (like batteries) in the PJM grid 

averaged 0.135 in each direction (regulation up and regulation down) for 12 months of 

publicly available PJM data during May 2013 to April 2014 (2015a). This value 

represents the average power requested by PJM as a proportion of power offered for FR.  

For the e-Buses specified above offering 70 kW, this utilization rate results in average 

energy flows of roughly 9.5 kWh charged and 9.5 kWh discharged from the 80 kWh 

battery (or roughly 1/8th of a full cycle) for each hour performing V2G. 

2.3.2 Net Present Cost Analysis 

2.3.2.1 Marginal Analysis  

Total Net Present Cost 

The total NPC for each bus in the marginal analysis is detailed below in Figure 

2.4. The small diesel bus exhibits the lowest NPC at $594,200, followed by the small 

eBus and small CNG at $630,000 and $639,000 respectively. The eBus and CNG 

represent total NPC increases of 6% and 8%, respectively.   
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Figure 2.4:        Net present costs for marginal addition of a small diesel, CNG, and 
electric school bus over a 14-year life using a 3% discount rate. 

 

Despite overlapping standard deviations, the high number of simulations 

(100,000) in the Monte-Carlo analysis determines that the NPC per bus is significantly 

different (p<0.01) for all vehicles in both the small and large bus analysis.  

Net Present Cost per Seat 

NPC normalized on a per seat basis is a more meaningful measure for fleet 

operators than total bus costs as it allows for comparison across differently sized buses. 

Figure 2.5 shows NPCs per seat for the small school buses. The small diesel bus (35 

seats) represents an NPC per seat of $17,000 per seat over a 14-year life. The NPC per 

seat of the small CNG bus (35 seats) is $18,200, while the NPC per seat of the small eBus 
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(26 seats) is $24,200. Relative to diesel, the CNG and eBus exhibit capacity-normalized 

NPC increases of 7% and 42%, respectively.  

 

 

 

Figure 2.5:   Mean NPC per seat for marginal addition of a small school bus from 
Monte Carlo simulation using a 3% discount rate. Dotted line for eBus 
includes benefit of V2G profit. 

 

On a per seat basis, driver salary constituted the largest fraction of costs for all 

technologies, and was proportionally highest for the eBus, which has the fewest seats. 

Bus capital was the second largest fraction of cost, followed by fuel and maintenance. 

Health and environmental externalities were found to contribute minimally to NPC for all 

buses, accounting for $600, $210, and $130 per seat for diesel, CNG, and eBus, 

respectively. 
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The small eBus earns yields $4,500 in net present value in revenues from V2G 

and $700 in net present costs per seat from electricity losses. This results in a net V2G 

profit of $3,800 in net present value per seat. V2G revenue is subtracted from eBus costs 

to determine sum NPC, as shown by the dotted line in Figure 2.5. Despite the benefits of 

V2G revenue generation and lower fuel and externality costs, high per seat bus capital 

and labor costs result in the highest net present cost per seat of the three fuels 

technologies analyzed.  

Importantly, if a CNG bus is able to utilize an existing commercial filling station, 

the purchase of on-site fueling infrastructure would be unnecessary. The NPC for the 

CNG bus would decrease by $50,000 per bus or $1,563 per seat, making it the lowest 

cost of the three fuel alternatives.  

2.3.2.2 Fleet-wide Analysis 

The mean NPC for a fleet of 100 large buses is estimated at $63,063,000, 

$64,416,000, and $62,426,000 for diesel, CNG, and eBus respectively, as shown in Table 

2.3. All large buses in the fleet-wide analysis have 54 seats plus three wheelchair berths. 

As previously described, the fleet-wide analysis represents a structurally favorable 

scenario for eBus because it assumes aggressive decreases in production costs of the 

eBus without allowing for advances in cost or performance of CNG and diesel buses. 

Relative to the eBus, the diesel and CNG fleets result in NPC increases of 1% and 

3%, respectively. Per bus estimates can be obtained by dividing results in Table 2.3 by 

100. 
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Despite higher bus capital and infrastructure costs, the NPC of CNG are 

competitive with those of diesel due to lower fuel and externality costs. The eBus capital 

costs are roughly 40% and 70% higher than those of CNG and diesel, respectively. 

However, lower externalities, maintenance rates, fuel costs, and especially the generation 

of V2G profit reduce the eBus NPC to nominally be the least cost option.  

 

Table 2.3: Fleetwide NPC in dollars for 100 large diesel, CNG, and electric buses 
using a 3% discount rate.  

 
 Diesel CNG eBus 

Labor 41,917,000 41,917,000 41,917,000 

Maintenance 3,122,000 3,122,000 1,561,000 

Fuel 3,858,000 2,778,000 1,968,000 

Externalities 2,167,000 856,000 513,000 

V2G Profit N/A N/A -9,293,000 

Bus Capital 11,511,000 14,007,000 25,343,000 

Infrastructure 
Capital 

500,000 1,748,000 3,000,000 

Total Net Present 
Cost (NPC) 

63,075,000 64,428,000 65,029,000 

 

 

2.4. Discussion 

2.4.1 Temperature and Regulation Prices 

Temperature plays a key role in determining FR prices in the PJM grid. In turn, 

FR prices determine the economics of V2G-enabled vehicles (Noel and McCormack, 

2014). However, temperature limitations of electric vehicle batteries have been ignored in 
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V2G analyses. The temperature sensitive V2G profit analysis presented here illustrates 

that accounting for low temperature limitations meaningfully reduces effective FR prices 

and V2G profit for vehicles exposed to ambient conditions. V2G revenue is decreased by 

22% and V2G profit is decreased by 25%. Simple hourly average prices for FR should 

not be relied on to inform actual prices a fleet operator could expect. We propose the use 

of an effective FR price in future V2G analyses, to account for time-of-use and thermal 

considerations.  

2.4.2 Net Present Cost Analyses 

Our cost analyses differ considerably from previous studies in both inputs and 

results. The present findings suggest that V2G-enabled eBuses are not economical at 

current prices but may be economical at future prices in the PJM area.  Unsurprisingly, 

results suggest that eBus costs must be reduced and regulation prices must remain at or 

above current levels for future viability of V2G-enabled eBuses. 

This analysis differs from previous work by assuming lower diesel fuel costs, 

removing diesel taxes, accounting for driver cost, calculating V2G revenue based on 

temperature-dependent regulation prices, and by accounting for electrical losses during 

V2G. For all buses across both small bus (marginal) and large bus (fleet-wide) scenarios, 

the combined purchase price and driver costs account for the vast majority of total 

operating costs. While externalities contribute very little to total costs regardless of the 

technology, they vary between technologies in relative magnitude.  
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Marginal Analysis  

The small bus marginal findings presented here directly contradict those by Noel 

and McCormack (2014). Whereas Noel and McCormack find a net present decrease in 

cost of $6,070 per seat for the small eBus relative to the diesel, this analysis finds a per 

seat net present increase in cost of $7,200, or 43%, for the eBus relative to diesel.  The 

CNG is also not cost-effective, imposing a $1,200 or 8% increase in net present cost per 

seat relative to the diesel. However, the small CNG is the least cost option if there already 

exists an existing filling station with suitable properties.  

Results indicate that the relatively high purchase cost and infrastructure costs 

reduce the economic viability of the CNG and eBus options. Per seat eBus costs are 

further elevated as a result of lower seating capacity. Because findings are normalized on 

a per seat costs, fixed driver costs distributed over fewer seats severely penalize the 

smaller eBus, an important detail overlooked by Noel and McCormack (2014). 

Fleet-wide Analysis  

The fleet-wide analysis of large buses represents a structurally favorable scenario 

for the eBus. This bus is of the same capacity as the diesel and CNG versions and 

benefits from anticipated future cost reductions but does not allow for projected 

improvements in diesel or CNG technologies. 

Unlike the marginal analysis of small buses, the fleet-wide result for large buses is 

roughly even in cost across all technologies. Nominally, the large eBus is more cost-

effective than the large diesel and CNG buses. Anticipated cost reductions are a 

necessary requirement for eBuses to be the low-cost option. The additional challenges to 
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eBus adoption, found in section 2.4.5, are not explicitly incorporated into the economic 

model but must also be addressed. 

2.4.3 Sensitivity Analysis  

We performed sensitivity analyses on results from the large bus analysis to 

investigate the contribution of each variable to the overall findings. Using the Fourier 

Amplitude Sensitivity Test (FAST) method in the SALib python library11, CNG and 

diesel were most sensitive within our specified ranges of salary and discount rate. The 

eBus results were most sensitive to variations in regulation price, followed by salary and 

discount rate. For diesel (Figure 2.6a) and CNG (Figure 2.6b), variation in externalities, 

maintenance rate, MPG, fuel price and miles driven contributed minimally to cost results, 

while salary and discount rate dominated. Note that results do not sum exactly to 1.0 due 

to rounding errors. 

a  b  

  

Figure 2.6:   Sensitivity of fleet-wide Diesel (a) and CNG (b) results were driven by 
variation in the salary and discount rate variables. 

 

 

                                                 
11 <https://github.com/SALib/SALib> 
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Figure 2.7:       Sensitivity of fleet-wide eBus mean NPC to input variables. 

 

To investigate the that impact specific variables have on the relative cost 

efficiency of the three fuel technologies, we ran Monte Carlo simulations holding a 

specific variable constant at different values.  

Variation in salary does affect the NPC for each of our technologies, but as all 

vehicles have the same number of seats, each technology is affected equally and results 

co-vary perfectly. In the baseline scenario, diesel (D) has the lowest NPC (wins) in 43% 

of model runs (Figure 2.8) followed by the eBus (E) at 39%. The CNG (C) bus wins in 

18% of model runs. 
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Figure 2.8:       Distribution of NPC results from a Monte Carlo analysis allowing all 
variables to vary. Diesel (D) wins in 44.7% of model runs. CNG (C) and 
eBus (E) win in 36.3% and 19% of model runs, respectively. 

 

The relative economic efficiency of the large buses in a fleet setting are most 

sensitive to discount rate and regulation price. We investigated the response to varying 

these attributes and estimated the winning percentage while holding other variables 

constant. Given uncertainties in eBus final production prices, we also investigate the 

effect of varying the eBus price.  

Discount rate has an important effect on overall results (Figure 2.9). At low 

discount rates of 2%, the eBus wins in 49% of model runs, with the diesel winning 35% 

and the CNG winning 16%. At a high discount rate of 6%, results favor the diesel bus, 

winning 63% of model runs.  
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a b

 

c

 

Figure 2.9:       Impact of discount rates on winning percentage. 

 

Figure 2.10 presents a sensitivity analysis concerning the impact of regulation 

price on the economic favorability of eBus relative to the other technologies. At two 

standard deviations above and below a 3-year (2012-2014) unadjusted mean FR price, the 

eBus is the least cost option on 74% and 11% of model runs, respectively. 

 

 

a b c

 

 

Figure 2.10:    Impact of regulation price on winning percentage. 
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If eBus purchase price in mass production are $250,000, or 25% higher than 

forecasted cost, the winning percentage of the eBus drops to 25%, similar to the 

percentage for CNG buses (Figure 2.11). However, greater cost reductions than 

forecasted increase the economic favorability of eBus relative to other fuel technologies, 

resulting in a 49% winning percentage. 

 

a

 

b

 

c

 

 

Figure 2.11:    Impact of large eBus purchase price on winning percentage. 

 

2.4.4 Analytical Limitations 

This analysis comes with a suite of limitations. While attempting to identify the 

least cost bus technology, our analysis only selects a subset of those technologies 

commercially available. Diesel-electric hybrid buses, though not analyzed here, may be 

particularly cost-effective.12 

                                                 
12  See for example Hallmark, 2012; Hallmark et al., 2011; Transportation Research Board, 2009. 
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The models presented here do not account for various costs that might be 

associated with adoption of a CNG bus, and especially, an eBus. One consideration 

relates to the ‘soft’, or administrative, costs associated with introducing additional 

complexity to an already-established fleet’s composition. Electric vehicle pilot programs, 

for example, require additional resources dedicated to alternative training protocols, 

maintenance procedures and additional certifications that apply to mechanics and drivers 

alike. 

Furthermore, increased off-site infrastructure costs for CNG and electric fuels 

were not explicitly addressed. While we do include on-site infrastructure costs, off-site 

costs such as extending gas mains (for CNG buses) or upgrading transmission lines’ 

power capacity (for eBuses) may be substantial. For the latter, a 100 vehicle eBus fleet 

draws 7MW in peak electricity demand. Whether bus depots are serviced by electric 

infrastructure having 7MW of spare capacity, especially during peak demand when buses 

return from afternoon routes,13 is beyond the scope of this analysis but could determine 

whether fleet electrification as presented here is even technically viable.  

2.4.5 V2G and eBus Limitations 

The vast majority of V2G economic studies identify and quantify the novel 

benefits of V2G-enabled vehicles. However, we infer disproportionately less effort in the 

relevant literature examining the novel technical, economic and legal challenges that also 

emerge from V2G implementation.  

                                                 
13 eBuses return from afternoon routes with little available charge. Because the optimal charge point for 
performing V2G is 50%, charging will likely occur in the early evening. 
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The findings in this analysis highlight several novel caveats to V2G technology, 

including the coincidence of extremely low temperatures with highest pricing for FR. 

However, many other novel challenges to successfully implementing V2G are difficult to 

quantify accurately at this time and are only discussed qualitatively here. Therefore, the 

present eBus results should be understood as optimistic in proportional magnitude to the 

costs imposed by unaddressed factors described below. We hope this discussion guides 

future inquiry of these issues and stimulates acknowledgement of their existence in the 

BEV and V2G-related literature. 

The first issue is demand charge, or a charge by the electric utility based on peak 

power consumption (kW) to non-residential customers. This charge allows utilities to 

recoup investment in costly infrastructure sized for peak load and incentivizes customers 

away from exhibiting ‘spiky’ electricity usage. While the cost of electricity is typically 

only modeled as energy charges, or the cost of kWh consumed, the inclusion of increased 

demand charges resulting from electric vehicle charging can dramatically increase 

electricity costs. In the Philadelphia area, for example, PECO charges general service 

business and industrial clients $4.96 per peak kW each month (PECO Energy Company, 

2015), in addition to the energy charge for electricity. If a bus depot is unable to 

discontinue large electrical loads while charging an eBus, as we expect to be the case, the 

depot would incur $386 in demand charges alone each month per eBus in addition to the 

electrical energy charge. In this case, the demand charge alone is nearly double the 

modeled electrical energy costs for the small eBus. Thus, for the small eBus, inclusion of 



 

 44

demand charge transforms electric fuel from providing a substantial cost savings (-49%) 

to a substantial cost penalty (+44%) per seat relative to diesel fuel costs. 

The low range and high variability in range of electric vehicles between recharges 

is another complication. We estimate average driving efficiency for the small eBus to be 

1.3 kWh/mi DC, resulting in expected range of 50 miles in typical conditions with the 

specified battery when new. However, this same vehicle’s range in highly unfavorable 

conditions (i.e. extremely cold), towards the end of the battery replacement cycle is likely 

under 30 miles.14 In extreme cold weather conditions, BEVs undergo demanding 

auxiliary loads such as heating the large interior cabin, experience reduced battery 

efficiency and battery effective capacity, and are unable to recapture braking energy 

through the regenerative braking process (Concha, 2007; Pesaran et al., 2013). Thus, the 

specified eBus would be at high risk of failing to complete school routes on the coldest 

days of the year, and while stranded, would not have remaining charge to heat the cabin 

area. 

Battery longevity is also inadequately acknowledged. For example, this paper as 

well as Noel and McCormack (2014) model the 80 kWh eTrans battery needing 

replacement in year nine.  However, given the eBus operating characteristics assumed in 

both analyses, along with data of PJM utilization rates presented above, the battery may 

require replacement far sooner. Hill et al. (2012) and Marongiu et al. (2014) show that 

                                                 
14 A nominal 80 kWh battery has roughly 70 kWh of usable capacity. In temperatures of 0ºF, effective 
battery capacity is reduced by roughly 40%, yielding just 42 kWh capacity (Pesaran et al., 2013). Driving 
efficiency for the small eBus may be reduced to 2.0 kWh/mi DC because of dramatically increased heating 
and the loss of regenerative braking.  
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lower depths of discharge, like those performed under FR, may actually increase battery 

degradation rates, holding energy throughput constant. In fact, results reported by 

Marongiu et al. (2014) for batteries with similar chemistry to those specified here, show 

that the eTrans batteries could experience greater than 20% capacity loss in the third year 

of operation.15 Degradation coefficients found for A123 batteries in ambient lab 

conditions as provided by Peterson et al. (2010) also suggest that battery life as modeled 

here and in Noel and McCormack (2014) are optimistic. On the other hand, this analysis 

does not address potential future trade-in value for the eBus’ battery upon replacement 

that could offset a portion of battery replacement costs. 

Legal issues may also arise with batteries performing V2G. For example, there is 

no indication that vehicle manufacturers will honor original battery warranties for 

vehicles that perform non-transport related functions, like V2G. The cost of securing 

third-party warranty coverage for a battery performing V2G is unknown and may be 

relatively expensive as the risk level imposed by V2G is highly uncertain. 

Though overlooked here as well as in Noel and McCormack (2014), PJM does not 

recognize–and therefore provides no payments to–any entity under 100 kW. Thus, the 

ability of an eBus to earn V2G revenue as specified here and in Noel and McCormack 

(2014) is nil.16 A competitive market of third-party aggregators is presumed to appear to 

act as an intermediary between PJM and V2G providers falling under the 100 kW 

                                                 
15 For the small eBus, FR offered at 0.88C for 7,680 hrs/yr at 13.5% utilization results in over 900 full 
discharge equivalents per year from V2G alone. 
16 See for example, <http://www.pjm.com/~/media/committees-
groups/committees/mic/20110510/20110510-item-03-dr-as-problem-statement.ashx>. 
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threshold. Any fee such third-party aggregators would charge further deteriorates the 

economics of a V2G-enabled vehicle, but is not modeled in this, nor other V2G economic 

analyses.17  

Lastly, national school bus standards direct all buses to meet a minimum vehicle 

driving range. A range of 200 miles is prescribed for all buses, except electric buses 

which are directed to achieve 80 miles (NASDPSTS, 2010). We find it highly unlikely 

the 80-mile range can be met in anything but favorable conditions for the eTrans, and 

only when relatively new with most of the battery capacity intact.  

2.5 Conclusions and Policy Implications 

Largely driven by health, climate and economic considerations, interest in 

alternative technologies for heavy-duty vehicles has expanded in recent years. We present 

a CBA in net present value per seat of variously fueled school buses. Results demonstrate 

that the marginal addition of a small eBus is not economical at current prices, but large 

eBuses may be economical if aggressive target price reductions are achieved, technical 

and legal issues surrounding V2G are meaningfully addressed, and other bus fuel 

technologies fail to improve their own cost structure. Such results are likely to hold true 

in European geographies as well, because diesel fuel is a highly fungible commodity and 

non-taxed motor fuel costs are similar throughout the developed world. Motor fuel taxes 

represent a wealth transfer rather than a true social cost. 

                                                 
17 A cost analysis for a V2G vehicle is provided on the University of Delaware V2G website defaults to an 
aggregator fee of 33% of V2G revenue. See <http://www.udel.edu/V2G/resources/Gasoline-Electric-
Comparison.xlsx>. 
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Furthermore, we find that CNG vehicles are generally slightly less cost-effective 

than diesel. CNG is more cost-effective than the eBus in the marginal analysis, but less 

cost-effective than the eBus in fleet-wide analysis, although at a fleet-wide level all three 

technologies are roughly on par with each other. It is important to note that if a CNG bus 

is able to utilize an existing CNG filling station, it becomes the most cost-effective 

technology.  

Results highlight the impact of accounting for cold temperatures on electric 

vehicles operations and V2G-capability. During the coldest periods of the year, frequency 

regulation prices spike, but vehicles left outside may be unable to provide regulation 

service. Furthermore, cold weather can dramatically reduce vehicle range, preventing 

electric buses from completing their routes. School districts and electric bus 

manufacturers should be cognizant of these issues.  

Findings also suggest that V2G-enabled EVs are comparatively more favorable in 

geographies with mild year-round temperatures. V2G and driving performance will be 

less impeded by low temperatures, while battery degradation is not accelerated by high 

temperatures.  

Previous studies have overlooked several key limitations of V2G-enabled 

vehicles. Our analysis underpins the importance in acknowledging the novel economic 

and technical costs of electric vehicles, and V2G specifically, rather than just the novel 

benefits. While difficult to quantify, nuanced legal, technical and economic issues should 

be further acknowledged and explored. In particular, we believe that warranty coverage, 

third-party aggregator fees, demand charges, round-trip efficiencies, extensive range 
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testing, and accelerated battery degradation rates under V2G deserve further study to 

inform more thorough cost-benefit analyses.  

Emerging and promising ‘green’ alternatives are becoming available for 

applications from power generation to environmentally friendly materials and processes. 

Yet, few of these technologies actually reach widespread commercial adoption. 

Transportation sector alternatives are no exception and lay at a critical crossroad for new 

fuel choice paradigms. In this paper, we consider the cost and benefits of three 

transportation alternatives for school districts considering alternative bus technologies, 

but these findings offer insight for other vehicle fleets compositions.   

Previous authors have argued that market failures are largely to blame for low 

rates of electric vehicle adoption, subsequently offering various solutions to the relevant 

political and economic barriers (Kempton et al., 2014). However, such conclusions may 

be overstated and should be interpreted with caution. The underlying rationale for 

policies more favorable to electric vehicles and V2G is a determination that electrified 

transport and V2G is socially optimal. The findings presented here suggest that this view 

may be based on an incomplete accounting of all benefits and costs.  First, this study 

provides an in-depth example of one case in which a V2G-enabled electric bus does not 

make economic sense despite a published finding to the contrary. More importantly, this 

study illuminates seldom-acknowledged aspects of V2G economics, representative of 

real-world conditions, which deteriorate the relative cost efficacy of V2G compared to 

alternatives.  
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As the present results suggest, nuanced cost details affect the ultimate economic 

viability for V2G-capable EVs. Policymakers and analysts should be aware of these 

nuanced costs and recognize these interrelated tradeoffs when considering this 

technology. While EVs offer some health and climate-related benefits, they are not 

necessarily the most cost-effective way to achieve societal aims, relating to health or 

environment. 
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Chapter 3 

INCREASED OPERATIONAL COSTS OF ELECTRCITY GENERATION IN THE 

DELAWARE RIVER AND ESTUARY FROM SALINITY INCREASES DUE TO SEA 

LEVEL RISE AND A DEEPEEND CHANNEL18 

 
 
3.1 Introduction 

For facilities that withdraw and utilize water from naturally brackish estuarine 

waters, total operational costs partially depend upon the characteristics of the water, 

which in turn depend upon environmental conditions. This study investigates how 

ambient salinity and the operational costs for one facility along the Delaware Estuary are 

altered by the anthropogenic factors of sea-level rise and a deepened navigational channel 

from dredging.  

 

3.1.1 The Delaware Estuary 

The Delaware Estuary is a funnel-shaped waterbody located in the US Mid-

Atlantic, bordering Pennsylvania, New Jersey, and Delaware (Fig. 1). The watershed 

spans approximately 35,000 square kilometers, including the cities of Philadelphia, PA 

                                                 
18 This work was partially funded by an NSF grant under the Coastal SEES program Award #1325102. 
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and Wilmington, DE (Bryant and Pennock, 1988; Partnership for the Delaware Estuary, 

2012). Combined, the Delaware River and Estuary have the fifth highest water 

withdrawal volumes of any river system in the United States (USEPA, 2014a). Facilities 

withdrawing water along the Delaware River and Estuary include petrochemical and 

manufacturing, oil refineries, municipal water systems, and electricity generating 

stations.  

 

Figure 3.1:  The study area showing middle and upper sections of the Delaware River 
and Estuary with evaporatively cooled generating stations. 

 

Salinity in the estuary decreases travelling upstream from the mouth of Delaware 

Bay (i.e., River KM 0). The salinity distribution in the estuary varies spatially and 
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temporally, depending upon river flow, tides, sea level, and bottom topography, among 

other factors. Prior research has reported salinity variations and trends in the Delaware 

River and Estuary (Wong, 1995).  

Salinity in the estuary is typically highest in the summer/fall, and lowest in 

winter/spring, while river discharge exhibits the opposite pattern (Ross et al., 2015). 

Compared to many estuaries, the Delaware exhibits a weak response to changes in 

discharge, as both tidal salt flux due to lateral processes and steady salt flux in the 

channel increase with discharge (Aristizábal and Chant, 2015; Garvine et al., 1992). The 

median and historic maximum locations of the salt front are located at River KM 115 and 

164, respectively (Delaware River Basin Commission, n.d.). 

Sea levels at a nearby monitoring station have risen an average 3.54mm/yr 

between 1956 and 2016 (NOAA, 2016). Higher sea levels result in greater seawater 

forcing in the upstream direction and increased average salinities in the estuary.  

In 2010, the US Army Corps of Engineers began deepening the Delaware main 

channel from 12.2m to 13.7m, partially in response to a recently expanded Panama Canal 

(USACE, 2011). As of November 2018, the Delaware deepening project was nearly 

complete (USACE, 2018). Because estuarine circulation and associated landward salt 

flux increase nonlinearly with water depth, the extent of salinity intrusion is also 

anticipated to increase with a deepened channel (Hansen, D.V., Rattray, 1965; 

MacCready and Geyer, 2010).  
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3.1.2 Electricity Generating Stations on the Delaware 

Twelve large electricity generating stations withdraw water from the lower 

Delaware River and Delaware Estuary, representing a combined generating capacity of 

over 8,000 megawatts (MW), equivalent to the average electricity draw of six million US 

homes (US EIA, 2017). These facilities include two large nuclear stations and numerous 

smaller fossil fuel-fired stations. In 2017, these 12 stations withdrew over 3,200 million 

gallons per day (MGD) or approximately 140m3/s, mostly for cooling purposes (US EIA, 

2018). Evaporatively cooled stations (Figure 3.2) were responsible for less than 2% of the 

total volume of water withdraws, yet they generated approximately half of the total 

electricity (US EIA, 2018). Continual evaporation and circulation of cooling water within 

an evaporatively cooled system decreases the volume of water withdrawals but increases 

the sensitivity of the cooling system to changes in water composition (Ting, B., Suptic, 

n.d.; Zhang and Dzombak, 2010).  

Of the evaporatively cooled stations in the estuary, PSEG’s 1,161MW nuclear 

powered Hope Creek Generating Station (HCGS) has the greatest power capacity, 

capacity factor, and water volume requirements (DRBC, 2013). HCGS withdraws 

approximately 50 MGD (US EIA, 2018) and has an average capacity factor exceeding 90% 

(Nuclear Energy Institute, 2017). HCGS is also the most seaward of the evaporatively 

cooled stations (River KM 83), located in the stretch of the estuary where salinity 

increases from SLR are expected to be the most pronounced (Hull and Titus, 1986; Ross 

et al., 2015) and where a significant signal of SLR on salinity increase has been detected 

in the historical record (Ross et al., 2015).  
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Figure 3.2:  Evaporatively cooled generating facilities in the Delaware River and 

Estuary. Bubble size represents the relative rate of water withdrawals. 
 

3.1.3 Cooling Water Systems 

Cooling water is essential to most thermo-electric generating station designs. 

Cooling water condenses the working fluid to help maintain a large pressure difference 

across the turbine. This pressure difference drives the turbine’s operation. Without 

sufficiently cool water or sufficient flow of cooling water at the low-pressure side of the 

turbine, ‘backpressure’ would build, resulting in lower power cycle efficiency and/or 

reduced electricity generation.    

Water-cooled systems use either once-through or evaporative cooling. Briefly, 

once-through systems extract cooling water from a waterbody and pass it across a heat-

exchanger before releasing it directly back. For these systems, the waterbody is the 
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primary recipient of waste heat. Once-through systems in brackish environments 

typically require limited chemical treatment, often consisting of only occasional chlorine 

pulses (Nickel Development Institute, 1994; Zhang and Dzombak, 2010). Due to 

ecological concerns, a shift away from once-through cooling began in the 1970s (US 

EIA, 2014), although many such stations still operate with decades of remaining 

operational life.  

Evaporative cooling systems, on the other hand, consist of a heat exchanger, one 

or more evaporative towers, and pumps to circulate water within the system. The 

atmosphere is the primary recipient of waste heat through the latent heat of evaporation. 

As pure water evaporates, dissolved solids (i.e., salts) concentrate in the recirculating 

water. The level to which dissolved solids concentrate in this manner is controlled by 

facility operators through a flushing process called “blowdown.” Due to the greater 

surface areas and water residence time—relative to once through systems—evaporatively 

cooled systems are typically coupled with more intensive chemical treatments to limit 

corrosion, scaling, and fouling in the cooling towers and the condenser. (Maulbetsch and 

Difilippo, 2008; Zhang and Dzombak, 2010). While costly, these chemical treatments 

increase can increase the effectiveness of the cooling system thereby increasing power 

cycle efficiency and reducing overall station costs when implemented properly. Walker et 

al. (2012), for example, explores a methodology for assessing cost-impacts of fouling in 

cooling systems.    

Prior studies have investigated the marginal costs for constructing a new 

evaporatively cooled systems using brackish or saline water (Maulbetsch and Difilippo, 
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2008) and for operating with treated municipal wastewater relative to freshwater for 

cooling purposes (Barker and Stillwell, 2016; Walker et al., 2013). Another study 

investigated the impact of sea-level rise on the increased flooding probabilities of 

electricity generating station, finding that sea-level rise will place the majority of current 

electricity generating capacity in Delaware and New Jersey at risk of major flooding 

events by the end of the century (Bierkandt et al., 2015). We are aware of no study that 

estimates cost increases for an existing facility facing future salinity increases, however.  

For an existing evaporatively cooled system, given various technical and 

regulatory constraints, costs are minimized by optimizing recirculating water chemistry. 

Allowing salinity to concentrate to high levels within the cooling system reduces the need 

for makeup water and associated pumping and treatment costs. On the other hand, higher 

salinities accelerate the processes of corrosion, fouling, and/or scaling along the surfaces 

of the cooling tower and the condenser, thereby decreasing thermal performance (Ibrahim 

and Attia, 2015; Keister, 2008; Maulbetsch and Difilippo, 2008).  

  Higher salinity in the cooling system also increases particulate emissions 

associated with “drift,” the small quantity of liquid-state emissions entrained in the 

evaporation plume. Drift contains solutes at the same concentration as the circulating 

water and is frequently regulated under air quality permits for particulate matter.  

From an economic perspective, nuclear stations comprise baseload generation, 

meaning that they tend to generate electricity nearly continuously with low marginal 

operating costs. Consequently, cost increases at HCGS due to increases in treatment and 

pumping requirements approximate a reduction in social welfare. In comparison to a 
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scenario without SLR and channel deepening, more societal resources are required to 

provide each additional unit of electricity. All else equal, this implies fewer resources 

available for other desired goods and services in the economy. 

3.2 Materials and Methods 

Future salinity forecasts were created by combining historic salinity variability, a 

modest historic trend of decreasing salinity, and estimates of future salinity increases 

from SLR and deepened channel. The resulting salinity regimes were used to inform 

changes in daily water throughput in a salinity-constrained cooling tower at HCGS. 

Increased water throughput was monetized by applying a volumetric cost for pumping 

and treatment to all incremental makeup water. The summation of discounted costs over 

baseline conditions—absent SLR and a deepened channel—represent present value of 

social costs. A Monte Carlo analysis was performed over each forecast to assess results 

over a range of input values. The presumption in this analysis is that operators respond to 

increased salinity by increasing blowdown and incurring greater pumping and treatment 

costs that result.  

3.2.1 Baseline Forecast 

Daily salinity data were derived from specific conductivity measurements at the 

USGS station at Reedy Island, DE (USGS, 2017) during the period from June 4, 1976 to 

February 28, 2010, just prior to channel deepening operations began. Conductivity data 

were converted into salinity following industry standards (Schemel, 2001).  
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From 34 years of historic daily salinities, a salinity distribution was created for 

each calendar month. These 12 distributions were sampled probabilistically within each 

month to build a forecast of daily salinities into the future.  

Because the Reedy Island station is 5km upstream from HCGS and samples 

higher in the water column, an adjustment was necessary to account for the higher 

salinity that would be present at HCGS’ intake. A 3-D hydrodynamic model of the 

estuary using the Regional Ocean Modeling System (ROMS) was used to evaluate 

concurrent salinity at Reedy Island and Hope Creek locations over a range of discharge 

conditions. Development and validation of this circulation model have been described in 

prior work (Chen et al., 2018, 2016). Based on the model results, a linear relationship 

(1.1830 x + 1.5853) was derived to estimate salinity at Hope Creek from observed 

salinities at Reedy Island. The salinity estimates resulting from the linear transformation 

ranged from 0.1psu to 19psu with a mean of 7.0psu, similar to previous reports for HCGS 

(Nickel Development Institute, 1994; PSEG Nuclear, 2010). Salinity exhibited a modest 

but statistically significant decrease over time, averaging 0.087psu/yr, explained in other 

studies by increases in regional precipitation and greater river discharge (Najjar et al., 

2012; Ross et al., 2015). This trend is captured for the duration of the analysis by 

incorporating iterative decreases in baseline salinity forecasts at the beginning of each 

model year. Because the future magnitude of this trend is uncertain, dependent on both 

future precipitation and river basin management trajectories, this factor was modeled in 

the Monte Carlo simulation between zero and twice the recently observed rate of 

decrease (-0.0174psu/yr) across model iterations.  
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3.2.2 Anthropogenic-1 Forecast  

An alternative salinity forecast (Anthropogenic-1) was created by adjusting the 

Baseline forecast upwards to account for the marginal salinity impacts from SLR and a 

deepened channel. Salinity increases from SLR required estimation of both the magnitude 

of SLR in each future year, as well as the sensitivity of salinity at this location to each 

increment of rise. Five SLR projections, (Low, Medium-Low, Medium, Medium-High 

and High) corresponding to between approximately 0.24m and 0.63m of rise by 2067 

relative to 2018 levels, were created based on the 2017 Delaware Sea Level Rise 

Technical Committee Report (Callahan et al., 2017) (Fig. 3). Callahan et al., (2017) 

provide three SLR scenarios and their respective probabilities for the state of Delaware 

based upon the work of Kopp et al., (2014) within the RCP 8.5 “business as usual” 

framework. We created two additional intermediate SLR cases through interpolation of 

the original three for more granular results.  



 

 65

 
Figure 3.3:  The five sea-level rise paths and their assigned probabilities in model 

simulations based on Callahan et al. (2017).  
 

The 3-D hydrodynamic model of the estuary was used to characterize the 

response of the salinity field to changes in water depth due to dredging or SLR. To 

incorporate the dependence of the salinity response to discharge, the model was run to 

equilibrium for constant river discharge cases of 100, 300, 600, and 1000 m3/s. Three 

versions of model bathymetry were compared: a baseline case with a 12.2m (40ft) 

navigation channel, a dredged case with a 13.7m (45ft) navigation channel, and SLR case 

with the 12.2m navigational channel plus a uniform increase in depth of 0.18m, equal to 

the SLR over a 50yr period given a constant current trend of 3.54mm/yr. The salinity 

increase from SLR relative to the baseline is expressed as a sensitivity (i.e., salinity 

increase per meter of SLR), and the salinity increases from the 0.18m SLR model case 
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were used to scale the other levels of future SLR. This approach simplifies potential 

nonlinearities in the response of the salinity intrusion to the full range of SLR scenarios 

and the combination of dredging with SLR, but within the constraints of running a 

feasible number of hydrodynamic model cases, this approach provides scaling for the 

sensitivity of the estuary to the different deepening factors.  

This hydrodynamic modeling also did not incorporate potential morphological 

feedbacks between the deepening and sediment transport processes that might mitigate 

the increase in estuary depth with SLR, nor did it evaluate inundation of land with SLR. 

For each bathymetry case, modeled salinity at the HCGS intake was evaluated to 

develop relationships between salinity and river discharge. In all cases, salinity decreased 

as discharge increased, consistent with previous observations and modeling of the 

Delaware (Aristizábal and Chant, 2015; Garvine et al., 1992).  

In the model case with 0.18 m SLR, salinity at the HCGS intake increased by 

2.6psu/m of SLR in normal and low flow conditions and increased by a smaller 

magnitude in high flow conditions (Fig. 4). For a channel deepened from 12.2m to 

13.7m, the hydrodynamic model indicated a salinity increase of 1.7psu (or 1.1psu/m of 

deepening) in normal and low flow conditions, and less of an increase in high flow 

conditions (Fig. 3.4). Refer to Table 3.1 for additional detail. Salinity increase due to 

SLR was implemented in annual increments according to the simulated SLR schedules, 

whereas salinity increase from channel deepening was implemented in full upon the first 

model year.  
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Figure 3.4:  Salinity increase over baseline due to SLR and a deepened channel for 

HCGS.  
 

Table 3.1:    Salinity increase from SLR and Deepened Channel from Anthropogenic-1 
and Anthropogenic-2, where Sb is salinity under Baseline. 

 

 

Anthropogenic-1 Anthropogenic-2 

Salinity 
increase if 
Sb >2.3 psu 

Salinity increase 
if  

Sb  <2.3 psu 

Salinity increase 
for all Sb 

SLR (psu/m) 2.6 Sb  ✕ (1.13) 4.9 

Deepened 
Channel 

(psu) 

1.7 Sb  ✕ (0.74) 0.2 
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3.2.3 Anthropogenic-2 Forecast 

A second forecast (Anthropogenic-2) was created in which salinity increases over 

the Baseline forecast were informed by a previous study of salinity increases in the DE 

Estuary (Johnson, 2010). This study, prepared for the US Army Corps of Engineers, 

estimated salinity increases at HCGS from SLR of 4.9psu/m, and increases from a 

deepened channel of 0.2psu (or 0.13psu/m of deepening). These estimates were inferred 

from the graphical outputs 40(b) and 100(b) that were specific to the HCGS location in 

Johnson (2010). In these figures, salinity increases from SLR and a deepened channel 

were weakly related to baseline salinity. Therefore, for Anthropogenic-2, one salinity 

sensitivity is applied for all flow conditions. Values for salinity increases for both 

Anthropogenic-1 and Anthropogenic-2 are displayed in Table 3.1.  

3.2.4 Operating Costs  

To determine cost increases at HCGS, the cooling system was modeled as 

continually adjusting cycles of concentration (COC) through differential rates of 

blowdown to maintain the maximum designed salinity for recirculating water. HCGS was 

reported to have a maximum recirculating water salinity of 33.6psu based on air quality 

regulations limiting particulate emissions from drift at this facility to approximately 

42lbs/hr (Sargent and Lundy LLC., 2006).  In this mode of operation, fouling and 

corrosion rates are not likely to be altered from baseline conditions because the salinity of 

recirculating water is independent of ambient salinity. Operating cost increases at HCGS 

from elevated salinity were determined by differencing the Baseline pumping and 

treatment costs from those costs under scenarios Anthropogenic 1 and 2.  
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The present value of cost increases from salinity increase at HCGS was determined 
by19: 

 

𝐶 = ∑ {𝑇𝑐௜
஺௡௧௛௥௢ + 𝑃𝑐௜

஺௡௧௛௥௢} ⋅ 𝛽௜ ௡
௜ୀଵ −  ∑ {𝑇𝑐௜

஻௔௦௘௟௜௡௘ + 𝑃𝑐௜
஻௔௦௘௟௜௡௘}  ⋅ 𝛽௜௡

௜ୀଵ       (1) 

 

where 𝑛 was the study horizon in days, Tci and Pci were the per day treatment costs and 

pumping costs in day 𝑖 for their respective scenarios. Additionally, 𝛽௜ = 1/(1 + 𝑟)௜
 was 

the discounting factor where the equivalent annual discount rate was specified as 2% or 

5%.  𝑇𝑐௜ and 𝑃𝑐௜were determined by: 

𝑇𝑐௜ = 𝑀௜ ∗  𝑇𝑟          (2) 

𝑃𝑐௜ = 𝑀௜ ∗  𝑃𝑟         (3) 

where 𝑀௜ was the quantity of makeup water in day i, 𝑇𝑟 was the volumetric treatment 

rate ($/ thousand gallons or kgal) and 𝑃𝑟 was the volumetric pumping rate ($/kgal).  

Makeup water is water withdrawn from the local water body and injected into the 

recirculating water system to maintain constant water levels. The volume of makeup 

water, M, required in day i can be approximated by (US DOE, 2011), 

𝑀௜ =  𝐸௜௝ +  𝐵𝐷௜         (4) 

where 𝐸௜௝ was the mass of water lost to evaporation day 𝑖 and season 𝑗.  

Typical evaporation rates for HCGS were reported as 13.6 kgal per minute in the 

summer months and 11.3 kgal per minute in the winter months (PSEG Nuclear, 2010). 

An intermediate value of 12.5 kgal per minute was assumed for the spring and fall 

months. BDi was the volume of blowdown discharged from the recirculating system in 

                                                 
19 While the Delaware River Basin Commission charges for surface water withdraws these fees are not 
representative of social costs. 
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day 𝑖 to maintain cooling water salinity at the desired level. Higher ambient salinities 

necessitate lower COC, requiring higher rates of blowdown and makeup. BDi, and COCi 

were defined as 

𝐵𝐷௜ = ቀ
ா೔ೕ

(஼ை஼೔ ି ଵ)
ቁ        (5) 

𝐶𝑂𝐶௜  =
௦೘

௦೔
ೌ          (6) 

where sa
i was ambient salinity in day i, sm was the maximum salinity of recirculating water 

for the cooling system, 33.6psu. Combining equations (2-6) yields,  

𝑇𝑐௜ = ቌ𝐸௜௝ +  
ா೔ೕ

ቆ௦೘

௦೔
ೌ൘ ቇିଵ

ቍ ∗  𝑇𝑟       (7) 

       𝑃𝑐௜ = ቌ𝐸௜௝ +  
ா೔ೕ

ቆ௦೘

௦೔
ೌ൘ ቇିଵ

 ቍ  ∗ 𝑃𝑟              (8) 

Average treatment rate, 𝑇𝑟, of makeup water varies in the literature between 

$0.12 and $4.60/kgal (Wolfe et al., 2009), with a median value of $1.16/kgal (Freedman 

and Wolfe, 2007) all adjusted for inflation. Values at the upper end of this range 

represent impaired water sources like treated wastewater and are not applicable here. A 

value for 𝑇𝑟 over the range of $0.12-$1.00/kgal of makeup water was assumed, with each 

increment having equal draw probabilities in the Monte Carlo analysis.  

Treatment at HCGS covers three major tasks; physical filtration, chemical 

treatment and disposal of accumulated sludge. Chemical treatments typically consist of 

chlorination (as sodium hypochlorite), scale-inhibition (as sodium hydroxide), and 

dechlorination (as ammonium bisulfite) (PSEG Nuclear, 2010; Sargent and Lundy LLC., 

2006).  
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This analysis assumes that 𝑇𝑟 remains constant at HCGS. In reality, one component 

of 𝑇𝑟, chemical treatment, is not fully independent of ambient salinity. Because losses of 

treatment chemicals increase with higher rates of blowdown (i.e. higher ambient salinity), 

chemical costs per unit of makeup water may increase with higher rates of blowdown. For 

the purposes of comparing Baseline to Anthropogenic 1 and 2 scenarios, this simplification 

is likely to slightly bias results by understating the true cost increase from sea-level rise 

and a deepened channel.  

The incremental energy required for pumping additional makeup water into the 

cooling system increase was calculated from a simple pump-lift equation where 2.7 million 

lb-ft of water is equivalent to one kWh20. The social cost of this parasitic energy was valued 

as foregone emission-free electricity. This foregone electricity was monetized as 

$0.12/kWh, composed of marginal electricity generation costs (~$0.05/kWh) and pollution 

externalities from marginal generation (~$0.07/kWh) in the PJM grid. Externality costs 

were driven primarily by air pollutants from natural gas and coal combustion. Therefore, 

𝑃𝑟, the volumetric pumping cost, was assigned to equal $0.02/kgal of makeup water.  

3.2.5 Study Horizon 

According to industry statements, HCGS is currently licensed to operate until 

2047, 30 years from the present, with the possibility of additional 20-year renewal (US 

                                                 
20 Estuarine water weighs approximately 8,400 lbs/kgal. An effective pumping height of 
30 ft and pumping system efficiency of 80% were assumed. An additional 30% energetic 
requirement per kgal is required to drive screen wash pumps and screen drive motors 
(Sargent and Lundy LLC., 2006). Therefore, total pumping energetic requirements are 
0.17 kWh/kgal of makeup water.  
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EIA, 2014c). A 20-year extension would allow for a 50-year reactor life from the present, 

totaling 80 years, considered to be an upper limit on the age of an existing reactor 

(Schwitters et al., 2013; Voosen, 2009). It was assumed that a new nuclear facility would 

not be constructed at this location after the existing facility was decommissioned. 

Therefore, the remaining facility lifetime was specified with equal probabilities as either 

30 years or 50 years. 

3.2.6 Monte Carlo Analysis 

To account for uncertainty over input values, the model described above was run 

within a Monte Carlo framework consisting of 100,000 simulations. Within each Monte 

Carlo iteration, with the exception of daily salinity, one value was chosen for each 

variable and retained within each run. These variables were daily historic salinity, 

background salinity decrease, the treatment rate of the makeup water, the remaining 

station lifetime, and predicted SLR scenario. Model inputs are presented in Table 3.2. 

 

Table 3.2: Overview of model inputs 

Variable Values 
Distribution in 
Monte Carlo 

Notes 

Background 
salinity trend 

(psu/yr) 
0 - 0.0174 Uniform 

Historic 34-yr mean 
served as the 

midpoint (USGS, 
2017)  

SLR Path 

Low, Medium-
Low, Medium, 
Medium-High, 

High 

Low:10.9% 
Medium-Low: 

23.2% 
Medium: 31.8% 
Medium-High: 

23.2% 
High: 10.9% 

See Figure 4-4, 
(Callahan et al., 

2017) 
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Remaining Life 
of HCGS 
(years) 

30, 50 Uniform 

(American Physical 
Society - Panel on 

Public Affairs, 
2013; Voosen, 

2009) 
Tr: Treatment 

Rate  
($/kgal) 

0.12 – 1.00 Triangular 
(Freedman and 

Wolfe, 2007; Wolfe 
et al., 2009) 

Pr: Pumping 
Rate ($/kgal) 

0.02 Constant 
See methodological 

discussion 
E: Evaporation 
rate (gallons per 

minute) 
11,300 - 13,600 

Constant within 
season 

(PSEG Nuclear, 
2010) 

Sa: Ambient 
Salinity (psu) 

0.1 - 18 
Probabilistic draws 
from within month 

observations 
(USGS, 2017) 

Sm: Salinty 
maximum in 

cooling system 
(psu) 

33.6 Constant 
(Sargent and Lundy 

LLC., 2006) 

Discount Rate 
(%) 

2, 5 
 
- 

Calculated 
separately 

 

3.3 Results 

3.3.1 Baseline Costs 

The present value of Baseline costs averaged $121M and $78M at discount rates 

of 2% and 5%, respectively. The highest and lowest estimates at each discount rate 

spanned nearly and order of magnitude. For example, at the 2% rate, the present value of 

costs ranged between $25 and $254M, and $17M to $152M at the at 5% rate (Figure 3.5). 

This wide variation was attributable primarily to the eight-fold range in the specified 

treatment rate of the makeup water, Tr. The largest values in each distribution plateaued 

at lower levels of probability density than the remainder of the distribution. These lower 

plateaus corresponded with the draws of a high Tr and a long (50yr) station life. The 
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plateau for the 5% discount rate scenario was less pronounced than that for the 2% 

scenario because years 31-50 were more heavily discounted. The wide range and 

substantial impact of the treatment rate for makeup water tended to flatten the remainder 

of the distributions.  

 

Figure 3.5:  Distribution of present costs estimated for the Baseline forecast at 2% and 
5% discount rates. 

 

3.3.2 Anthropogenic-1 Costs 

In the Anthropogenic-1 scenario, the estimated present value of cost increases 

over the Baseline scenario averaged $12.1M and $7.2M at discount rates of 2% and 5%, 

respectively. The range of these cost increases were $2.0M to $32.7M at the 2% rate, and 

$1.4M to $17.1M at the 5% rate. Probability densities for these cost increases are 

displayed in Figure 3.6. 
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Figure 3.6:  Distribution of cost increases over Baseline for the Anthropogenic-1 and 
Anthropogenic-2 scenarios at 2% and 5% discount rates. 

 

3.3.3 Anthropogenic-2 Costs 

In the Anthropogenic-2 scenario, the estimated present value of cost increases 

over the Baseline Scenario averaged $4.3M and $2.2M at discount rates of 2% and 5%, 

respectively. The ranges of these cost increases were $0.5M to $14.9M at 2%, and $0.3M 

to $6.7M at 5% (Figure 3.6). Average cost increases from Anthropogenic-2 are 

approximately one-third as large as those estimated under Anthropogenic-1. The smaller 

cost increases relative to Anthropogenic-1 can be explained by the substantially lower 

estimates of salinity increases from channel deepening, partially offset by higher 

estimates of salinity sensitivity to SLR. 
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3.3.4 Relative Contribution of Factors 

In Anthropogenic-1, a deepened channel accounted for approximately 85% of the 

cost increase, while SLR accounted for the remainder. A deepened channel resulted in the 

majority of the cost increases because of its large, immediate impact on salinity compared 

with an initially small increase from SLR, followed by progressive salinity increases that 

were increasingly discounted.  

3.4 Discussion 

This research pursued three objectives: (i) to identify electricity generating 

stations in the Delaware River and Estuary most at risk from future salinity increase from 

SLR and a deepened channel; (ii) to model the magnitude of salinity increases from these 

factors; and (iii) to estimate the adaptations and associated social costs at the most 

vulnerable station. A method was developed to estimate the costs at evaporatively cooled 

facilities that face elevated salinities. While this paper focused on a single facility on the 

estuary, the method could be applied to other evaporatively cooled facilities subject to 

future salinity increases. Dozens of such stations exist worldwide (Eftekharzadeh et al., 

2003; Maulbetsch and Difilippo, 2008), including the nearby Chalk Point and Possum 

Point generating stations in Maryland and Virginia. Results could also inform more 

complete cost-benefit analyses on channel deepening and help to refine estimates of the 

social cost of carbon through the impacts of SLR. 

Cost increases were estimated through a novel method and are subject to several 

limitations. First, this analysis assumed that the cooling system would operate at 

maximum salinity as determined by air pollution permit compliance. In certain cases, 
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however, the economic salinity maximum may be lower than the regulatory salinity 

maximum. In such cases, estimates of cost increases using the method described here 

may be overstated. This study did not investigate other factors related to climate change, 

such as shifts in ambient water temperature or turbidity patterns that could also impact 

cooling station operation and deserve further attention.  

Further, this study omitted the social costs associated with the increased 

impingement and entrainment of aquatic organisms due to greater water throughput 

necessitated by higher volumes of makeup water. For a detailed discussion of social costs 

from impingement and entrainment of aquatic organisms, see US EPA (2014). 

At the outset of this research, cost increases were expected to be large due to the 

scale of channel deepening in the Delaware River and Estuary. The estimates presented in 

the current study, however, suggested only modest impacts relative to operational costs. 

HCGS generates approximately 10.6 million MWh per year (US EIA, 2018). Assuming 

average production costs of $27 per MWh (Lazard, 2018), yearly production costs total 

$286M. Converted to equivalent annual costs, Baseline conditions represented just $4.0M 

or 1.4% of annual facility operating costs. The additional costs imposed by elevated 

salinity under Anthropogenic-1 conditions represent an incremental $0.4M, or 0.1% of 

annual operating costs.  

3.5. Conclusions 

The results of this work lead to several general conclusions. First, the salinity 

increases calculated from ROMS diverged meaningfully from previous work. These 

divergent results may be explained by differences in model resolution and the ranges of 
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river discharge investigated, among other factors. A third study estimated salinity 

sensitivity to SLR at this location of 3.3psu/m, intermediate in magnitude to the two 

values modeled here (Ross et al., 2015). To the extent regulatory bodies like Delaware 

River Basin Commission rely on existing models for planning, they may be substantially 

underestimating the future salinity intrusion resulting from a deepened channel.  

Second, a recently updated cost-benefit analysis conducted for the Delaware 

channel deepening project estimated annual net benefits of the project of $13.7M 

(USACE, 2018). However, only a limited set of costs and benefits were included in that 

analysis, with no quantification of impacts from salinity changes. Using the 5% discount 

rate for comparability, the 85% share of costs from a deepened channel estimated in the 

Anthropogenic 1 forecast would offset approximately $0.3M, or 2% of expected annual 

benefits from dredging. At the upper end of findings for the Anthropogenic 1 forecast, 

$0.9M or 7% of net benefits would be offset. Including other indirect social costs from a 

deepened channel, for example changes in wetland carbon sequestration (Carr et al., 

2018) or increased risk of salt intrusion at Philadelphia area water intakes, could further 

reduce the estimated net benefits of the Delaware channel deepening project.  

Finally, estimates of salinity changes and associated cost increases could improve 

the capabilities of HCGS or the regional electric grid to forecast future market conditions. 

Small changes to operating conditions at HCGS could cascade into much larger social 

costs if they accelerate retirement schedules due to diminished profitability. Of course, 

factors affecting larger wholesale energy market are likely to be more influential on the 

profitability of baseload generating stations. Nevertheless, the premature loss of HCGS’s 
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annual production of 10.6M MWh of predictable, low-carbon electricity could impose 

substantial social costs through higher levels of pollution and the increased generating 

costs of any fossil fuel powered electricity generation that increases production to 

compensate (Berkman and Murphy, 2017).   
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Chapter 4 

VISUAL IMPACTS OF OFFSHORE WIND PROJECTS ON BEACH 
RECREATION: RESULTS FROM FOUR IN-PERSON SURVEYS 

 
 

4.1 Introduction 

Offshore wind power is one source of renewable electricity being considered for 

wide scale deployment on the US East Coast (McClellan, 2019). For example, the US 

Department of Energy set a goal for 54 gigawatts (GW) of offshore wind power by 2030 

(US DOE, 2008). While areas of northern Europe have decades of experience with offshore 

wind installations and roughly two-dozen operational projects, the US offshore wind 

industry is relatively nascent, consisting of just a single small-scale commercial project (30 

MW capacity) as of this writing in early 2019.  

Offshore wind power offers several advantages over many existing sources of 

electricity generation including lower environmental and human health impacts 

(McCubbin and Sovacool, 2013) primarily through reduced emissions of air pollutants. 

Further, winds offshore of the US East Coast tend to be stronger and more consistent than 

over suitable land locations nearby (Kempton et al., 2010), potentially leading to lower 

grid integration costs (Veron et al., 2018). Offshore wind on the US East Coast is also 

proximal to electricity demand (i.e., load) centers, potentially reducing capital costs and 

electrical losses from long-distance electricity transmission (Kempton et al., 2010).  
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Offshore wind power also presents several disadvantages. The levelized cost of 

energy (LCOE) of offshore wind power in this region is far higher than for natural gas 

combined-cycle, utility scale solar and onshore wind projects (Lazard, 2018). Costs are, 

however, expected to decrease in future years for all renewable technologies. 

Another potential disadvantage of offshore wind projects, like their onshore 

counterparts, is the potential for creating a viewshed disamenity (for example, Krueger, 

2011; Ladenburg and Dubgard, 2009). In the case of offshore wind projects, this change in 

amenity can manifest as changes in local housing markets as quantified through hedonic 

valuation (Carr, 2017; Gibbons, 2015; Heintzelman and Tuttle, 2012; Hoen et al., 2015; 

Lang et al., 2014) tourism patterns and recreational enjoyment as quantified through 

various survey methods (Alvarez-Farizo, and Hanley, 2002; Krueger et al., 2011; 

Ladenburg and Dubgaard, 2009), and influence willingness participate in green-energy 

programs (Knapp, 2018). One notable potential outcome of these impacts is reduced 

support for projects by local communities (Musial and Ram, 2010). High levels of local 

support and involvement are essential to a successful project implementation (Haggett, 

2011).  

Some beach recreators find that the presence of nearby offshore wind power 

projects decreases their enjoyment of beach recreation. In a recent survey, Parsons et al. 

(2019) found that negative changes to beach experiences from offshore wind power 

projects were motivated by perceived diminishment of the natural seascape and concerns 

for marine life. However, changes to an individual’s beach enjoyment need not be in the 

negative direction. Parsons et al. (2019) found that positive changes to beach experience 
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were motivated most frequently by perceived benefits to the environment and to energy 

security.   

Potential changes in beach visitation patterns are also important for nearby coastal 

communities. Robust studies that quantify impacts to tourism patterns and other socio-

economic impacts can inform the decision-making process and can help identify optimal 

locations and offshore distances of future projects.  

One strategy to mitigate visual impacts of offshore wind projects is to locate these 

projects beyond view. For offshore wind turbines of 3MW to 3.6MW, or approximately 

half the capacity of the current generation, maximum visually perceptible distance was 

found to be approximately 25 miles from shore in clear conditions. At 10 miles and closer, 

these turbines were found to be a major focus of visual attention (Sullivan et al, 2013). 

Offshore wind power projects also benefit from stronger and more consistent winds that 

tend to exist with increasing distance from shore.  

Counteracting these motivations for greater project distance from shore are project 

capital costs that tend to rise with greater distance from shore. There is likely an optimal 

project distance that solves for cost minimization in the absence of visual externalities 

(Jacobsen et al., 2016). A cost optimization solution for distance that includes visual 

externalities will likely be further from shore compared to one that does not.   

Areas designated for offshore wind power development, also called lease blocks, 

along the Delaware and Maryland coasts range from approximately 10-20 miles offshore 

(BOEM, 2018). These distances are, therefore, deemed the most policy relevant for the 

present study. 
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The US Bureau of Ocean Energy Management (BOEM) commissioned a large 

study to systematically quantify recreational impacts and how they vary with distance for 

the East Coast of the US. Findings from that effort are reported in Parsons and Firestone 

(2018), Tousssaint (2016), and Parsons et al. (2019). 

Most similar to the present study (hereafter, ‘in-person surveys’), Parsons et al. 

(2019) (hereafter ‘internet survey’) is a large internet-based study in collaboration with the 

US Bureau of Ocean Energy Management (BOEM). It represents an extensive multi-year 

undertaking to estimate the potential impact of offshore wind power projects on beach 

recreation enjoyment and the rate of beach trip cancellation or trip displacement, among 

other measures. The internet survey captured a large and detailed dataset from a random 

draw of households from 20 states on the East Coast. Respondents were shown visual 

simulations like those employed here, but the simulations differed by being viewed on a 

digital screen at the participants’ homes and in different simulated image lighting 

conditions (clear, hazy, and at night). 

The internet survey also conducted a brief review of existing studies that assessed 

trip cancellation rates to beaches near offshore wind projects through visual simulations. 

The literature on the rate of such beach avoidance ranges from approximately 1% to 

approximately 70% depending on project distance, question formulation, sample 

population characteristics, method of data analysis, etc. Highest cancellation rates were 

associated with offshore wind projects closest to shore and cancellation rates decrease 

monotonically as project distance increases. A more quantitative assessment of these 

studies is provided in the discussion.  
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The in-person survey is designed to test the validity of the visual simulations in a 

different format, i.e., in-person and non-computerized. This study was partially motivated 

by concerns raised by Parsons et al. during discussions with BOEM that an online format 

could possibly impart a systematic bias on results, particularly relating to the question of 

cancellation rates. If cancellation rates remain stable across studies despite changes in 

survey wording and social environmental factors, rates reported in the internet survey 

would enjoy greater conviction. 

In-person surveys presented here are abbreviated and conveniently sampled forms 

of the internet survey. In-person surveys were conducted over a span of four years, as we 

considered different formats of presentation, wording and populations across iterations. 

Post hoc, these iterations provided an opportunity to investigate the impacts of slight 

modifications in the in-person survey on cancellation rates. However, definitive results 

from this line of investigation are confounded by the multiple changes that occurred from 

one iteration to the next. 

4.2 Methods 

This study reports data from four survey events conducted between 2013 and 2017. 

Each survey event corresponds to a slightly improved survey instrument. All survey events 

captured in-person, convenient samples in the state of Delaware. The only qualifications 

for participation were verbal acknowledgment that the would-be participant was at least 18 

years old and had visited an East Coast beach at least once in the previous two years. In 

total we collected 1,494 surveys questionnaires. The functional form and key questions 
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were very similar across all four in-person surveys, but sample demographics, sampling 

location, and select aspects of survey wording and presentation differed.   

4.2.1 Survey Overview 

Each of the in-person survey instruments can be divided conceptually into four 

sections. Common aspects are described in the following paragraphs, while minor 

differences across surveys are described in the next section. We estimate that a typical 

respondent took 5 to 10 minutes to complete a survey.  

The surveys began by asking respondents to recall their most recent recreational 

trip to any US East Coast beach and to indicate basic aspects of that trip including date, 

location, and duration. The second section asked two questions about wind power 

generally; an attitudinal question assessing the respondent’s favorability toward wind 

power in the United States, and whether the respondent was aware of plans to install wind 

projects offshore of the US East Coast.   

The third section posed the central questions of this study. The respondent viewed 

simulated images of offshore wind projects at various distances from shore according to 

instructions and was asked to imagine the simulation depicted the beach they had most 

recently visited. At each distance, respondents indicated how their beach 

experience/enjoyment would have changed along a 5-point Likert scale (ranging from 

Much Better to Much Worse). In addition, respondents indicated if they would have 

canceled their most recent trip if the simulated project was located at each distance 

offshore. In this context, ‘cancel’ indicates either of two actions: recreating at another 
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beach or forgoing a beach trip altogether. Some surveys also included a question about a 

novelty trip specifically to see the project. 

The questions in this third section of the study had the following wording and the 

following potential responses (with small changes between surveys): 

 ‘For each image, how would the presence of offshore turbines impact your 

beach experience?’ (Much Better, Somewhat Better, Neither, Somewhat 

Worse, Much Worse) 

 ‘Would the presence of offshore turbines as shown in each image have 

caused you to cancel your last trip or caused you to modify the trip 

destination?’ (Yes, No) 

 ‘Would the presence of offshore wind turbines as depicted in these images 

have caused you to take a trip specifically to see these turbines?’ (Yes, No) 

The offshore wind project distances shown to each participant were 2.5, 5, 7.5, 10, 

12.5, 15, and 20 miles (and in one survey, a subset thereof). The foreground of each image 

is an unpopulated sandy beach on a clear day. The simulated image used an actual photo 

taken on Assateague Island, Maryland (US). Appropriately scaled wind turbines 

determined through mathematical equations were inserted into images at an attempt to 

simulate the true visual impact of the project at each distance.  Of note, previous research 

has found that mathematically correct simulations of offshore wind turbines may understate 

the visual impact of those wind-turbines compared to their real-world implementation 

(Takacs and Goulden, 2019). 
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The order in which images are viewed can influence responses of enjoyment and 

cancellation, especially for the last images seen (Day et al., 2012). This ordering effect is 

described as anchoring21 on the first images seen. All surveys incorporated two strategies 

to mitigate possible ordering effects. Respondents were instructed to view images of all 

project distances before responding to any image related questions. The second strategy 

was haphazardly dividing respondents into two approximately equally sized groups. One 

group responded to images ordered from closest to furthest, while the other group 

responded to images ordered from furthest to closest.  

The simulated wind project represented in all images was composed of 60 wind 

turbines, arranged 10 units across and 6 units deep. The distance between each turbine was 

1.2 km. Each turbine had a 100m hub height and 150m rotor diameter, equivalent in 

dimensions to the 6 MW turbines22 used in the Deepwater Block Island offshore wind 

project near Rhode Island, US. The total generating capacity of the simulated project is 

therefore 360MW. Assuming an average capacity factor of 40%, this project would serve 

the electricity demand for 115,000 homes drawing 1.25 kW each (US EIA, nd). 

The final section of each survey asks general demographic data including age, home 

zip code, gender, educational attainment, and income. An overview of important 

similarities and differences between the survey events is presented in Table 4.1.  

                                                 
21 Anchoring is a cognitive bias whereby an individual relies on an initial piece of information to a degree 
that seems irrational to an outside observer.  
22 Of note, these turbines are substantially smaller than next generation of offshore wind turbines that are 
anticipated to be important for reducing levelized costs of offshore wind from present levels. 
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Surveys were pre-tested before the first survey was conducted and at several 

additional points along the survey evolution. Pre-tests were completed by University of 

Delaware faculty, staff, and graduate students. In total, we conducted in excess of 50 pre-

tests.   

Table 4.1:  Survey descriptions 

Survey name 
Coast Day 

2013 
UD Campus 

2015 
Ag Day 2017 

Coast Day 
2017 

Abbreviation  CD13 UD15 AD17 CD17 

Date 
Conducted 

October 2013 Spring 2015 April 2017 October 2017 

Survey Format 

2-sided, single 
sheet of paper 

(8.5”w x 
11”h) 

4-sided, two 
sheets of paper  
(8.5”w x 11”h) 

4-sided 
booklet (5.5”w 

x 8.5”h) 

4-sided 
booklet (5.5”w 

x 8.5”h) 

Images 
Dimensions 

48” x 18”a 

Poster Board 
22” x 7” 

Flip Charts 
22” x 7” 

Flip Charts 
22” x 7” 

Flip Charts 
Self-

Administered 
Yes No No No 

Incentive to 
Participate in 

Study 
None None 

Voucher for 
free ice creamb 

Voucher for 
free ice creamb 

Response 
options to 

‘Cancellation’ 
question 

Yes/No Yes/No  

Yes/Probably 
Yes/ 

No/Probably 
No  

Yes/No   
with 3 levels 

of self-
reported 
certaintyc 

Distances seen 5d 7e 7e 7e 

Extended 
Preamblef No No Yes Yes 

Sample Size 177 151 588 559 

Population 
General 

Population 
Students 

General 
Population 

General 
Population 

Location Lewes, DE Newark, DE Newark, DE Lewes, DE 
a This is an approximate dimension. 
b The voucher was redeemable for one free scoop at the University of Delaware’s Creamery (UDairy). A UDairy food 
truck was operating within short walking distance at both events where this voucher was offered.  
c The three levels of self-reported certainty were described as Confident/In Between/ Not Confident 
d Participants saw one of the two following distance (miles) combinations, in order: (20, 12.5, 10, 5, 2.5) or (2.5, 7.5, 
10, 15, 20) 
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4.2.2 Survey Differences 

With each successive iteration of the survey, an opportunity existed to improve the 

instrument with respect to clarity, level of self-administration, and granularity of responses. 

Changes across surveys include the physical survey format, level of background detail 

provided, and wording of questions and possible responses.  

CD13 was implemented at University of Delaware’s annual open exhibition of 

marine studies in Lewes, DE, called Coast Day. Delaware’s only commercial sized wind 

turbine (2MW) is located less than one-half mile away from this location. This is a popular 

one-day event each October attracting thousands of attendees from the region, showcasing 

the university’s research in marine and environmental fields. In addition to university 

research, for-profit and not-for-profit organizations host informational booths in large 

outdoor tents and food trucks are parked in a nearby lot. The survey was implemented in 

an outdoor tent that also contained posters on renewable energy and related research. This 

survey was administered by researchers, with high levels of interaction between respondent 

and researcher throughout the survey process. Researchers actively recruited participants 

from communal areas outside the tent, provided verbal instructions throughout the survey, 

and answered participant questions that arose during the survey. Unlike all subsequent 

surveys, researchers presented the simulated images on large poster boards to 1-5 

respondents at a time by shuffling among the seven large images. Seating distance of the 

respondents was calibrated to ensure accurate scaling of turbines in each image.   

UD15 was implemented over the spring and summer of 2015 on the University of 

Delaware campus in Newark, DE as part of a senior thesis project for an undergraduate 
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student in economics from the University of Delaware. Participants were recruited through 

convenience sampling at popular communal areas on campus. Due to the location of 

intercepts and the age of participants, it was inferred that most participants were primarily 

students at the university, although a question on educational status was not included. This 

survey and all subsequent surveys charged respondents with viewing all images in image 

booklets viewed individually and at the respondent’s own pace. As a result, these surveys 

were primarily self-administered. Booklets were spiral bound collections of seven 

simulated offshore wind projects, with one borderless simulated image per sheet. Each 

sheet was made of durable stock that survived survey events without observable 

degradation.  

AD17 was implemented at University of Delaware’s annual open exhibition of 

agricultural studies in Newark, DE called Ag Day. Thousands of attendees participate in 

the event each year, which showcases agriculture research and provides attendees with 

several opportunities to participate in research in exchange for cash and non-cash rewards. 

Participants were incentivized to participate in this survey with vouchers for free scoop of 

ice-cream from UDairy, the University of Delaware’s on campus creamery. Researchers 

and poster board advertisements were stationed at communal areas to recruit participants 

and provided directions to the survey location. The research team was composed of one 

faculty member and approximately ten graduate students. The survey took place in a 

classroom near the geographic center of the day’s activities. Participants were seated by 

researchers at one of four tables with seating for eight participants each. To each 

participant, a set of brief instructions was provided verbally by a researcher along with a 
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self-guided survey booklet and an image booklet. The AD17 survey also added an 

expanded project preamble before eliciting responses to the project visuals. This expanded 

preamble informed participants that, in a real-world implementation of a wind power 

project, the turbine blades would often be spinning, red lights would periodically blink atop 

the towers at night, and no noise from the turbines would be audible from shore.  These 

factors may be particularly important from an aesthetic perspective (Hevia-Koch and 

Ladenberg, 2016; Jensen et al., 2014). AD17 also changed the possible response options to 

the cancellation from two (Yes/No) to four (Yes/Probably Yes/Probably No/No) to allow 

for uncertain responses.  

CD17 was hosted at the same venue as CD13. Again, the survey was conducted in 

a large outdoor tent that included other research regarding renewable energy. Poster 

advertisements and researchers were placed outside the tent to recruit participants. 

Likewise, a voucher for ice cream was provided for successful survey completion. CD17 

used a survey instrument similar to the AD17 instrument. Similar to AD17, participants sat 

individually along several long tables, and they were provided brief verbal instructions 

along with a self-guided survey booklet and an image booklet. The only noteworthy change 

relative to the AD17 survey instrument was that the question on trip cancellation took the 

form of a two-choice response (Yes/No) with a follow-up question on the respondent’s level 

of certainty of their choice at each distance. The certainty question had three possible 

responses (Confident/In Between/Not Confident).  
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4.2.3 Data Cleaning 

All data related to enjoyment and trip cancellation were checked for indications of 

possible logical inconsistencies (PLIs). PLIs could imply lack of comprehension or that an 

individual was insufficiently motivated to respond thoughtfully.  

A small minority of respondents indicated beach enjoyment impacts that were not 

monotonic with distance. For example, enjoyment increased and decreased in complex 

patterns along the distance axis for certain individuals. However, we see no compelling 

reason why this type of pattern, or any other pattern of enjoyment by distance, is 

incompatible with a true preference pattern. Therefore, no data were removed by 

investigating enjoyment data alone.  

A different type of unusual response was identified through the comparison of 

beach enjoyment and trip cancellation for a given individual at a given distance. In 

particular, we flagged observations for which an individual indicated a trip cancellation 

without also indicating a worsened beach experience at the same distance. Of the total 2108 

indicated cancellations, 130 (6%) were paired with a change to beach enjoyment of much 

better or somewhat better, while another 251 (12%) cancellations were paired with a 

change to beach enjoyment of neither.  

We propose two possible explanations for the existence of these PLIs that do not 

rely on insufficient respondent motivation. First, it is possible that some individuals 

interpreted the enjoyment and cancellation questions with different assumptions about 

agency. An individual may have answered the enjoyment question from their personal 

perspective. For example, ‘how will this influence my beach enjoyment?’. Alternatively, 
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we recognize that beach trips are often multi-person outings with de-centralized or external 

(from the respondent) decision making. Therefore, some respondents may have answered 

the cancellation question from a group perspective. For example, ‘Would my group/family 

decide to change our beach plans?’ There was some evidence of this in the pretests.  

A second possible explanation results from a misunderstanding of the beach 

enjoyment question. Instead of indicating how the presence of an offshore wind project 

would impact enjoyment relative to exiting conditions (i.e., no wind power project), some 

respondents may have compared the images at different distances against each other or 

entered into a bargaining exercise. As an example of the latter, an individual harboring a 

strong objection to wind projects at close distances, may have indicated Better at further 

distances in an implicit bargain in order to ‘ensure’ the project would not be located close 

to shore where the respondent’s welfare losses would be far higher. While language was 

included in each survey to compare images to baseline and not to each other, some 

respondents may not have read, understood or followed these instructions. Again, there 

was some evidence of this in the pretests.  

Table 4.2 displays PLIs by distance. While the absolute number of PLIs are 

relatively stable across distances, the proportion of cancellations that are PLIs increase 

monotonically with distance. This supports the second possible explanation for the 

existence of PLIs. Respondents may indicate projects are Better at furthest distances, 

believing this metric was relative to closer distances. If this thought pattern occurs for an 

individual that would cancel at far distances, we could expect to see an increasing 

proportion of cancellations at greater distances as exhibited in Table 4.2. 
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Table 4.2:  Possible logical inconsistencies (PLIs) by distance 

Distance 
Total 

cancellations 
PLI 

cancellations  

Proportion of 
cancellations 
that are PLI 

2.5 694 51 7% 
5 547 62 11% 

7.5 363 60 17% 
10 228 66 29% 

12.5 132 54 41% 
15 85 45 53% 
20 59 43 73% 

Total  2108 381 N/A 

 

In the main analysis going forward, we do not omit observations flagged as PLIs 

because it appears there are rational explanations for their occurrences. Further, if the 

motivations behind these answers are indeed logically inconsistent, we believe they are 

more indicative of unreliable responses to the enjoyment question rather than to the 

cancellation question, due to the former’s higher susceptibility to misinterpretation. 

However, results do display the impact of omitting PLIs where noted for comparison.  

4.3 Results 

4.3.1 Demographic data 

A total of 1,494 surveys were collected. Completed questionnaires with greater than 

50% non-response in either trip enjoyment or trip cancellation questions were removed. 

Additionally, questionnaires completed by individuals providing a year of birth 

corresponding to an age less than 18 were removed. After this cleaning process, 1,475 in-

person surveys were accepted for final data analysis.  
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Demographic data for the in-person surveys are shown in Table 4.3 alongside a 

comparison to the internet survey. Participants at CD13 and CD17 were older, more likely 

to hold bachelor’s degrees or higher, and more likely to indicate Delaware as a primary 

address relative to respondents in UD15 and AD17.  

In-person respondents indicated high favorability towards wind power 

development and high awareness of plans to develop offshore wind power projects in the 

Mid-Atlantic region. These characteristics were particularly high at CD13 and CD17, two 

events which included many sustainability themed exhibits. In-person respondents tended 

to favor wind development generally, with rates at or near 90% for all surveys but UD 

Campus.  

Total support (support and somewhat support) for wind power among in-person 

participants (85%) was significantly higher (p < 0.01) than in the representative internet 

survey (66%), as was awareness to develop offshore wind power projects (p < 0.01). 

 

Table 4.3:  Descriptive statistics of respondents for in-person and internet surveys.  

 
CD13 

(n = 177) 
UD15 

(n = 151) 
AD 2017 
(n = 588) 

CD17 
(n = 559) 

All In-
person 

Surveys 
(n = 1475) 

Internet 
Survey 

(n = 1725) 

Mean age 49 22 33 51 40 - 

Delaware 
Resident 68% 26% 57% 77% 63% 1% 

Bachelor’s 
degree or higher 64% 43%a 50% 65% 58% 40% 

Aware of plans 
for offshore wind 
in Mid-Atlantic 

95% 42% 61% 88% 73% 46% 

“Support” wind 
power 70% 31% 65% 71% 64% 42% 
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“Somewhat 
Support” wind 

power 
18% 25% 23% 19% 21% 24% 

a This question was not asked in the UD Campus 2015 survey. However, intercepts were made on a college 
campus during the academic school year. Therefore, we assumed that respondents aged 22 years and 
greater held a bachelor’s degree and those over 25 years held a graduate degree.  

 

4.3.2 Impacts to beach experience 

Negative impacts to beach enjoyment were highest at the closest distances and 

lowest at the furthest distances. Positive impacts to beach enjoyment displayed the opposite 

trend (Figure 4.1).  Here, ‘Better’ captures the sum of Much Better and Somewhat Better23. 

Likewise, ‘Worse’ captures the sum of Much Worse and Somewhat Worse.  

At distances beyond 10 miles, more than half of respondents chose Neither, 

indicating that most respondents’ beach enjoyment is largely unaffected by the presence of 

offshore wind power projects at these distances.   

 

                                                 
23 In two surveys (CD13 and UD15), the gradations for ‘Better’ response options were Much 
Better/Somewhat Better, while in other surveys (AD17 and CD17) the gradations were Better/Somewhat 
Better. The is also true for ‘Worse’ response options. 
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Figure 4.1:  Impacts to beach experience averaged across in-person responses 

 

By subtracting the proportions of ‘Better’ from ‘Worse’ at each distance, we derive 

an estimate of ‘Net Worse’ that is composed of possible values ranging from negative 

100% to positive 100%. However, for the purpose of statistical testing, we remapped ‘Net 

Worse’ to a scale of 0 to 100, hereafter called an Enjoyment Index. We performed the same 

remapping for internet data. Along this re-mapped scale responses of ‘Worse’ in the 

absence of offsetting ‘Better’ responses would score 0%, equal responses of ‘Worse’ and 

‘Better’ (and also the baseline beach without an offshore wind project) would score 50%, 

and responses of ‘Better’ without any offsetting ‘Worse’ responses would score 100%. 
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This metric must be caveated in that we make no assumption that the magnitude of Better 

and Worse are symmetrical nor that they necessarily offset from an economic perspective.  

Enjoyment Index scores are generally higher for in-person data compared to 

internet data, as displayed in Figure 4.2. This is particularly true at distances of 10 miles 

and beyond. Results of a proportion Z-test are provided in Table 4.4. At 2.5 miles, internet 

data yield a significantly higher index score, while the opposite is true at 7.5 miles and 

beyond.    

Enjoyment Index scores for each of the four in-person surveys are shown in Figure 

4.3. Overall, there is modest variation across the different surveys. At distances beyond 10 

miles, there is no statistical difference between the highest and lowest values at each 

distance. 

The Enjoyment Index rises monotonically for all distances in all surveys, except 

for the 15-mile distance in the CD13 event. The UD15 survey exhibits the greatest 

sensitivity to distance as indicated by having the steepest average slope. UD15 has the 

highest Enjoyment Index score for the closest distances and the lowest Enjoyment Index 

score for the furthest turbines of any in-person survey. Data also show a bowtie effect 

where the lines converge near distances of 10 and 12.5 miles and have overall less 

convergence at closer and further distances.   
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Figure 4.2:  Enjoyment Index scores for the internet and in-person surveys  
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Figure 4.3:  Enjoyment Index scores across the four in-person surveys  

 

Table 4.4:  Differences in Enjoyment Index across surveys (Proportion Z-test) 
 

Survey Comparison Distance (Miles) 
 2.5 5 7.5 10 12.5 15 20 

Internet vs in-person **  ** *** *** *** *** 

Highest in-person vs. 
lowest in-person  

** *** **     

* Significant at p<0.10; ** Significant at p<0.05; *** Significant at p<0.01. 
 

4.3.3 Trip cancellation  

Recall that we define trip cancellation as a trip to a specific beach that no longer 

occurs due to the project. This may include either a trip to a different beach or no beach 

0

10

20

30

40

50

60

70

80

0 5 10 15 20

En
jo

ym
en

t I
nd

ex
 S

co
re

Miles from Shore

CD13

UD15

AD17

CD17



 

 106

trip at all. First, we explore average cancellation rates from all in-person survey participants 

without confidence adjustments. In other words, we treat all in-person responses with equal 

weight, all responses of Cancel as fully certain and all responses to Not Cancel as fully 

certain. We term this approach Respondent Average. 

Analyzed in this manner, cancellation rates were highest at 2.5 miles (47% 

cancellation) and decrease monotonically with greater distance from shore until 20 miles 

(4% cancellation) (Figure 4.4). A comparison to internet survey results is also provided. 

Note that internet results are reported in Parsons et al. (2019) only as cancellation adjusted. 

Survey cancellation rates are significantly lower (p < 0.05) than in-person cancellation rates 

at the distances of 2.5, 5, and 7.5 miles but are not statistically significant at the more policy 

relevant distances of 10 miles and beyond (Table 4.5).   

Another way to analyze cancellation is by adopting the certainty adjustment 

technique embedded in the cancellation data of the internet survey. CD13 and UD15 

offered only Yes/No as possible responses for the cancellation question, and therefore 

they are unable to be adjusted for certainty. AD17 and CD17 (together representing 

approximately 80% of all observations) elicited a confidence factor for cancellation 

questions at each distance, however. To adjust for certainty, we followed the approach24 

used by Parsons et al. (2019) whereby responses to the cancellation question that are self-

reported as less than certain are treated probabilistically. Cancellation data from CD13 

and UD15 are unchanged. AD17 had four possible responses (Yes/Probably 

                                                 
24 The internet survey offered respondents higher numbers of intervals to assess certainty. Whereas AD17 
and CD17 only offered 4 and 6 total ‘bins’ for certainty of response, respectively, the internet survey 
offered 20 bins.   
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Yes/Probably No/No), these were assigned cancellation probabilities of 

100%/67%/33%/0%, respectively.  CD17 had two possible cancellation responses and 

three possible certainty responses, for a total of six possible certainty combinations at 

each distance. These combinations (Yes-Certain/Yes-In Between/Yes-Uncertain/No-

Uncertain/No-In Between/No-Certain) were assigned cancellation probabilities of 

100%/80%/60%/40%/20%/0%, respectively. We term this analysis approach Certainty 

Adjusted.  

When cancellation rates are analyzed in this manner, rates at close distances are 

unchanged, while those at farther distances increase moderately (Figure 4.4). Certainty 

Adjusted data from in-person surveys are significantly higher than internet survey data at 

all distances as reported in Table 4.5.  

Comparing across the in-person surveys (Figure 4.5), cancellation rates from the 

most recent studies exceeded those in the earlier surveys at all distances. CD13 yielded the 

lowest cancellation rates at all distances. Statistical tests on the impact of the survey 

instrument were also evaluated.  
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Figure 4.4: Cancellation rates for in-person and internet surveys 

 

 

Figure 4.5:  Cancellation rates (unadjusted) for all in-person surveys 
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Table 4.5:  Differences in cancellation rates across surveys (Proportion Z-test) 

 2.5 5 7.5 10 12.5 15 20 
In-person 
(unadjusted) vs. 
Internet 

*** *** **     

In-person (certainty 
adjusted) vs. Internet 

*** *** *** ** *** *** *** 

* Significant at p<0.10; ** Significant at p<0.05; *** Significant at p<0.01. 
 

There are other possible methods to analyze cancellation rates. Taken together, 

these can serve as a robustness check on the chosen analytical approach. Three alternative 

approaches are described as a variation from the Respondent Average approach (Figure 

4.6). Rather than treating each response with equal weight, we could treat average results 

from each survey with equal weight, termed Survey Average. In other words, in the absence 

of a compelling rationale, it may not be justified to provide more weight to data from survey 

events that happened to attract more participants.   

A second alternative is to include results from only the two most recent surveys 

(AD17 and CD17). These surveys enjoyed the greatest level of survey refinement, 

including additional project background, improved instructional clarity and offered the 

ability to adjust for certainty. In addition, these survey results are also the most recent and 

capture any temporal trends that may be influencing results. We term this analysis Recent 

Surveys. 
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Lastly, it is possible to analyze cancellation data by removing all data flagged as 

PLI. Recall that responses indicating no trip cancellation are not subject to PLI detection. 

We term this analysis PLIs Omitted. 

Relative to the initially reported Respondent Average results, alternative 

approaches yield somewhat higher and lower results. Omitted PLI and Survey Average 

tend to suppress cancellation rates, whereas Certainty Adjusted and Recent Studies tend to 

increase cancellation rates. The average difference between the highest and lowest 

approach across all distances is approximately seven percentage points. Importantly, these 

analytical approaches are not mutually exclusive and can be stacked in various 

combinations.  

 

 

Figure 4.6: Cancellation rates for in-person surveys analyzed with different approaches  
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We have already discussed why we believe PLIs are not likely to be reliable 

indicators of irrational behavior with respect to the cancellation question. Certainty 

Adjusted is the approach taken by Parsons et al. (2019) for reporting the internet data, so 

we adopt this methodology for maximum comparability. Lastly, we have highest 

confidence in our recent surveys (AD17 and CD17), they comprise nearly 80% of our total 

observations, and they are the only surveys able to be certainty adjusted. The probabilistic 

cancellation data this adjustment provides also allow for a readily interpretable linear 

regression. 

To elucidate the marginal effects of various survey and respondent factors on trip 

cancellation, we estimated three regression models with cancellation as the dependent 

variable:  

 Model 1: A binary logistic regression Respondent Average (unadjusted) 

data 

 Model 2: A linear regression of the Recent Studies, Certainty Adjusted data 

 Model 3: Same as Model 2, except PLIs Omitted.25  

The explanatory variables take three categories: distance, survey, and respondent. 

The distance variables are composed of dummies for each distance (20 miles omitted) and 

a dummy denoting whether the respondent viewed images of increasing or decreasing 

distance. Survey variables include a dummy for each of the surveys (CD13 omitted in 

Model 1; AD17 omitted in Models 2 &3). The respondent variables are age, level of 

educational attainment, a dummy for respondent being aware of existing plans for offshore 

                                                 
25 This could have alternatively been assessed through a PLI dummy variable. 
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wind project off the US east coast, and a dummy for each level of support for wind power 

generally (‘Unfavorable’ omitted).  

Results of the regressions are shown in Table 4.6. In general, coefficients variables 

in Model 1 are highly significant and have a sign as to be intuitively expected. Exceptions 

to this are the coefficients for the educational dummy variables, neither of which are 

significant, and the coefficient for somewhat_unfavorable attitude toward wind which was 

significant but not in the expected direction. Relative to the omitted unfavorable attitude, 

somewhat_unfavorable attitude significantly increases the expected probability of 

cancellation.  

Model 1 also allows for the comparison of survey coefficients. Chi-squared tests 

reveal no difference on cancellation rates between UD15 and CD13 coefficients (p > 0.10). 

However, the coefficients for AD17 and CD17 are each significantly higher than either 

those for UD15 or CD13 (p<0.05).  Lastly, the coefficient for AD17 is significantly higher 

than that for CD17 (p<0.05).  

Model 2 also estimates coefficients that are mostly significant and of the expected 

sign. Again, the exception is again the somewhat_unfavorable attitude, which has an 

unexpected sign. However, here the coefficient is not significant (p = 0.138). At distances 

of 10 miles and closer, distance coefficients suggest that each 2.5 mile closer to shore 

increases the expected probability of cancellation by approximately 10%. Beyond 10 miles, 

the marginal effect of 2.5 miles greater distances on cancellation is far lower. Responding 

to images ordered in ascending distance (near_far) decreases expected cancellation by 7%. 
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Relative to the omitted AD17 survey, the coefficient for CD17 reduces the expected 

probability of cancellation by 4%. The coefficient for aware is associated with a 5% 

expected decrease in probability of cancellation, while each unit increase in log_age is 

associated with an 8% increase in probability of cancellation. For example, an increase in 

respondent age from 20 to 55 increases ln(age) by one, whereas an increase in respondent 

age from 55 to 90 increases ln(age) by one-half. Respondents with favorable attitudes are 

associated with 38.2% increase in expected probability of cancellation, relative to 

unfavorable attitudes.  

Table 4.6: Results of regression models explaining cancellation rates (standard errors 
in parentheses)  

Variable Name Model 1 Model 2 Model 3 

Intercept -3.303*** 
(0.387) 

0.392***   
(0.044) 

0.382*** 
(0.042) 

Dist_2.5 3.378*** 
(0.149) 

0.404*** 
(0.013) 

0.417*** 
(0.012) 

Dist_5 2.964*** 
(0.149) 

0.316***  
(0.013) 

0.323*** 
(0.012) 

Dist_7.5 2.286*** 
(0.151) 

0.198***  
(0.013) 

0.202*** 
(0.012) 

Dist_10 1.591*** 
(0.156) 

0.108***  
(0.013) 

0.105*** 
(0.012) 

Dist_12.5 0.937*** 
(0.166) 

0.061*** 
(0.013) 

0.059*** 
(0.012) 

Dist_15 0.430** 
(0.178) 

0.023* 
(0.013) 

0.023* 
(0.012) 

Near-Far -0.562*** 
(0.059) 

-0.074***  
(0.007) 

-0.075*** 
(.007) 

UD15 0.081 
(0.172) 

- - 

AD17 1.162*** 
(0.140) 

- - 

CD17 0.888*** 
(0.136) 

-0.038***  
(0.008) 

-0.050*** 
(0.008) 

Aware 
-0.280*** 

(0.068) 
-0.048*** 

(0.009) 
-0.038*** 

(0.008) 
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Favorable 
-1.916*** 

(0.186) 
-0.383*** 

(0.031) 
-0.386*** 

(0.030) 
Somewhat_ 
Favorable 

-0.936*** 
(0.189) 

-0.249*** 
(0.031) 

-0.251*** 
(0.030) 

Neutral 
-0.910*** 

(0.198) 
-0.225*** 

(0.033) 
-0.209*** 

(0.031) 
Somewhat_ 
Unfavorable 

0.674*** 
(0.243) 

0.060 
(0.040) 

0.073* 
(0.039) 

Log_age 0.664*** 
(0.176) 

0.080*** 
(0.019) 

0.069*** 
(0.018) 

Bach_degree (only) -0.082 
(0.070) 

- - 

Grad_degree 0.076 
(0.073) 

- - 

Psuedo R2 or R2  0.226 0.247 0.287 

Prob > Chi-squared  0.000 - - 

Prob > F - 0.000 0.000 

                                                                                                                                                                                                                                             

4.3.4 Special Trip 

Surveys AD17 and CD17 asked participants if they would make a special trip 

specifically to see a hypothetical wind project 12.5 miles offshore of Fenwick Island, DE. 

Approximately two-thirds of respondents chose one of the options for Yes (Table 4.7). 

Approximately 12% of respondents in AD17 would take a trip from their primary 

residence. This proportion rises to 41% in the CD17 survey. This is intuitive because the 

CD17 venue is located just approximately 30 minutes from Fenwick Island, DE, while the 

AD17 venue is located approximately 2 hours away. Alternatively, respondents in AD17 

were more likely to take a trip while already in the area.  
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Table 4.7: Special trips to see an offshore wind power project 

 

Yes, from 
primary 
residence 

Yes, while in 
the area 

No 

AD17 12% 50% 39% 
CD17 41% 27% 32% 

 

It is possible to compare trip cancellation rates and special trip rates at 12.5 miles. 

Approximately 64% of respondents across AD17 and CD 17 indicated they would engage 

in a special trip to see an offshore wind project compared to 10% that indicated a trip 

cancellation at this distance. For a beach with low background visitation, special trips may 

greatly outnumber canceled trips to the beach, especially in the short term when the project 

is relatively novel. However, canceled trips and novelty trips may not be symmetrical from 

an economic impact or economic welfare perspective.  

4.4   Discussion 

4.4.1     Impacts to enjoyment and cancellation  

The enjoyment and cancellation results obtained are unexpected for several reasons. 

First, depending on the analytical approach, there are significant differences for both beach 

enjoyment and cancellation rates between the in-person and internet surveys. Further, the 

directions of these differences appear contradictory. In-person surveys elicit lower 

reductions to beach enjoyment (and even net increase to Enjoyment Index beyond 7.5 

miles) but higher cancellation rates. There are no clear explanations for this dichotomy but 

could be related to different willingness to substitute to alternative beaches between the 
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primarily Delaware respondents in the in-person survey and the respondents in the internet 

survey drawn from the eastern US.  

In addition, we observe significant differences in cancellation rates between the 

earlier and later in-person surveys. This is also surprising because all in-person surveys 

were very similar to each other. 

We propose three potential explanations that may simultaneously explain higher 

cancellation rates in the recent in-person surveys on one hand, and the internet survey and 

earlier in-person surveys on the other. First, attitudes toward the necessity of wind projects 

in the viewshed may have shifted between 2013 and 2017 alongside dramatic decreases in 

the percentage of oil imports and energy prices that prevailed over this period (EIA, 2018a; 

EIA, 2018b). This is supported by internet data that showed 23% of respondents listed 

energy independence as the primary reason for their increases in beach enjoyment (Parsons 

et al., 2019). In periods of high prices and energy insecurity, some may view offshore wind 

projects as akin to a ‘necessary blight’. As prices and concerns of energy security ease, as 

they did in the latter half of the decade, the motivation for this compromise may shift 

accordingly.   

Second, the recent in-person surveys include additional project information that are 

not present in the internet surveys nor the earlier in-person surveys. That opinions toward 

offshore wind projects can be shaped to a large degree by contextual project information is 

discussed in Bush and Hoagland (2016). Most importantly, a note was added in AD17 and 

CD17 that the wind turbines would often be spinning while the project was in operation. 

This reality may not have otherwise been obvious to many respondents. The imagined 
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spinning blades superimposed on the photo simulation may have increased apparent visual 

disamenity, leading to higher cancellation rates. In a review of wind turbine visualizations, 

Hevia-Koch and Ladenberg (2016) discuss this concept: 

 “[o]ne of the main characteristics of wind turbines is the movement of 

their blades. It has been shown that human vision responds more to moving 

objects (Franconeri and Simons, 2003), and therefore when looking at a wind 

farm this movement might make the wind turbines much more noticeable than 

if they were fully static. For this reason, visualizations that only include still 

images are unable to fully capture the visual impact arising from the movement 

of the wind turbines’ blades.” 

While the images here did not capture such movement, the explicit reminder in 

AD17 and CD17 may have had a similar impact. On the other hand, Lilley et al. (2010) 

hypothesize that disamenity rates are higher for turbines when blades are static rather than 

when spinning.  

Lastly, the cancellation response options for AD17 were unique in that they 

attempted to embed a certainty measure into the Yes/No response options, rather than as a 

follow-up to the Yes/No question. The follow-up certainty measure is the more commonly 

accepted method. It is possible that providing people a soft Yes to cancel directly in the 

primary Yes/No question may attract many respondents who would otherwise choose No 

in the context of a hard Yes/No choice.  

We also note two important factors that would be expected to decrease cancellation 

rates in the in-person surveys. The demographics of in-person surveys show high levels of 
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support for wind power generally relative to the population at large, a factor that has been 

shown to be associated with reduced cancellation rates. When coefficients from models 

reported here are enumerated with representative samples, cancellation rates would rise 

materially increase.  

Secondly, the survey instruments did not include a mechanism to minimize 

cognitive dissonance (for example, Morrison and Brown, 2009). This approach typically 

consists of an additional response option to a behavior-based question that allows people 

to show support for the pro-social cause while opting out of the pro-social behavior. In this 

case, many may deem the pro-social behavior as not canceling a beach trip to affirm their 

support of ‘green’ energy. Cognitive dissonance may be particularly acute for the in-person 

sample because 85% of in-person respondents indicated support for US wind development 

as one of the first questions to the survey. Omitting a dissonance minimizing mechanism 

also likely decreased cancellation rates. 

The cancellation results reported in this study are net of all listed potential factors 

effects, indicating that those factors driving cancellation rates higher relative to the internet 

study have greater influence than the demographic factor driving cancellation rates lower. 

We acknowledge that other factors we have not identified may also be materially impacting 

results.  

4.4.2     Comparison to other studies  

Figure 4.7, adapted from Parsons et al. (2019), plots cancellation curves from across 

the literature and includes curves from both in-person and internet surveys (Figure 4.7). 

Lilley et al. (2010) samples out-of-state tourists on Delaware beaches. Landry et al. (2012) 
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samples beachgoers in North Carolina. Voltaire et al. (2017) investigates the effects on 

beach use in Spain. Fooks et al., (2017) investigates impacts to hotel demand in Delaware.  

Except for Voltaire et al. (2017), in-person data reported here exhibit the highest 

cancellation rates over tested range of distances.  At close distances, in-person cancellation 

rates are meaningfully higher than the others, again excluding Voltaire et al. (2017). 

However, at the further and more policy relevant distances, in-person cancellation rates are 

only modest higher than other studies, in absolute terms. The same rationales suggested in 

the previous section to explain differences in cancellation rates between the in-person 

surveys and internet survey can be applied to the other surveys listed below.  

However, wind turbine size is not held constant across studies. In general, the prior 

surveys base photo simulations around individual wind turbines of roughly half the 

generating capacity, and concomitant reduction is physical size per turbine.  On one hand 

a larger turbine may have a greater impact on the visual amenity, all else equal. On the 

other hand, larger turbines are associated with higher generating capacities, meaning fewer 

are needed. This latter factor may reduce the impact on visual amenity. How these two 

counteracting factors impact net visual amenity is not clear but is an important research 

question. However, it seems likely that for a given offshore project capacity, fewer larger 

turbines interrupt the seascape to a greater degree than more numerous smaller turbines. 

Future wind power projects turbines are anticipated to be composed of turbines far larger 

than current iterations (Wiser et al., 2016).  
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Figure 4.7: Cancellation rates compared to other studies  

 

4.5 Conclusion 

The present study reports estimated changes in beach enjoyment and trip 

cancellation rates for wind power projects at different distances offshore.  In addition, we 

have reported rates of special trips for a specific hypothetical project.  

The cancellation rates estimated here are generally higher than a similar internet-

based study and are also generally higher than rates reported in the existing literature. The 

wide range of estimated cancellation rates among these suggest that survey methodology 

can benefit from future refinement. In addition, the divergent cancellation rates among the 

in-person surveys rates suggest respondents may be highly sensitive to seemingly minor 

changes in survey wording, presentation, or timing. It is not possible to know with the 

available data which factors contribute most to this difference, but future studies can 
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include additional A/B tests within the context of larger studies to identify drivers 

impacting stated cancellation.  

Limitations of this study revolve generally around survey methodology and sample 

demographics. Future efforts should enumerate data reported here with demographics from 

a representative population. In addition to hypothetical biases inherent to survey research, 

respondents might change attitudes and behaviors in unexpected ways as projects are 

commissioned and after recreators become accustomed to this feature along the seascape. 

Decision-makers can benefit from insight into the magnitude of changes in amenity 

and disamenity values caused by offshore wind projects, and how these changes manifest 

in socioeconomic environment. It is also desirable to optimize decisions regarding project 

characteristics. For example, offshore wind projects are typically costlier to install and 

operate at greater distances from shore, while disamenity typically exhibits the opposite 

pattern (Parsons et al., 2019). An informed balance between these trade-offs (among 

others) can be achievable with robust data that captures each factor’s sensitivity to distance 

at each point along the coast.  
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Chapter 5 

CONCLUSION 

 

A variety of electricity generating and storage technologies exist and can be 

incorporated into a future electricity grid in near limitless possible combinations. 

Identifying the combination that imposes the lowest net social costs is a worthwhile but 

difficult endeavor. Research like that presented here can help inform a more complete 

ledger of social costs and social benefits, while also highlighting interactive effects 

between certain combinations of technologies, reducing uncertainty about technology 

implementation and subsequent impacts.   

In the Mid-Atlantic region, some evaporatively cooled stations are poised to 

continue generating for several more decades and will have to adapt to emerging conditions 

both in the physical operating environment and in the electricity marketplace. Offshore 

wind generation and V2G storage, on the other hand, seem poised for growth from very 

low current rates of penetration. All three technologies will likely have a place in a future 

electricity grid. Each technology offers a unique set of social costs and benefits that should 

be well understood for informed decision making.  

The main findings presented above include V2G is not currently economically 

efficient from a social welfare perspective at present but may be in future years if a variety 

of improvements are realized. Some existing electricity generation on the Delaware 

Estuary will be impacted by future salinity increases which will modestly increase 
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operational costs. Offshore wind power has complex impacts on recreational measures and 

can either enhance or deter recreational activity depending on the project distance and 

certain other factors. 

Emerging generation technologies are primarily low carbon and exhibit intermittent 

generation. While these technologies can be more expensive than existing conventional 

generation based on market costs alone, their total social cost including external effects can 

sometimes yield comparable or lower costs per unit of energy generated. Future price 

declines in these low carbon technologies, to the extent realized, are likely to promote their 

increased adoption and an increased need for energy storage technologies to ensure 

consistent and reliable electricity supply.  

Regardless of the rate of adoption of these low carbon technologies, real economic 

costs will be borne by society. In the case of rapid transition to a low carbon energy system, 

social costs will be incurred through elevated incremental cost to install and operate the 

new technologies (Nordhaus et al., 2018). Alternatively, continuing with business as usual 

will yield large social costs through the myriad impacts of climate disruption, ocean 

acidification and other natural process sensitive to global warming and carbon emissions 

(Nordhaus et al., 2018).    

As illustrated in the previous chapters, the costs and benefits of electricity 

generation and storage technologies are often difficult to identify, let alone quantify and 

monetize. The robust efforts presented here, undertaken by interdisciplinary teams with 

diverse backgrounds have material shortcomings and uncertainties. Improving these 

analyses by reducing uncertainty, validating input values, and expanding the geographic 
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scope will all be crucial in delivering higher quality findings for future decision-making 

efforts.  

In addition to findings about the topics, this research also uncovered insights into 

the individual research fields themselves. In the case of V2G, it was found that existing 

economic literature greatly overstates the net benefits of V2G primarily through failing to 

acknowledge many of its unique costs. Because the costs of V2G are numerous, novel and 

dispersed across widely disparate fields, a comprehensive outline of V2G social costs and 

benefits should be created to guide future research. 

Regarding the field of offshore wind impacts on recreation, data suggest survey 

responses are sensitive to seemingly minor aspects of survey design, timing, and/or 

wording in ways not previously recognized in the literature. As a result, substantive 

questions remain regarding the robustness of findings in survey implementations. 

Regarding evaporative cooling in estuarine systems, channel deepening and SLR increased 

costs in previously unexplored ways, highlighting the existence of indirect impacts of these 

two processes that remain unidentified and/or unquantified in existing cost-benefit analyses. 

As the methods and findings here show, many elements of social costs and benefits 

are inconspicuous or dispersed across several disciplines. The research methods employed 

here were necessarily varied and multi-disciplinary. Principles from survey research, 

engineering, hydrodynamics, and welfare economics among others were all necessary in 

pursuit of the research questions. In society’s quest to identify low cost electricity 

generation scenarios, society should be open to diverse research approaches and a full 

accounting of all material impacts.   



 

 129

 
 

REFERENCES 
 

Nordhaus, William. 2018. "Projections and Uncertainties about Climate Change in an Era 
of Minimal Climate Policies." American Economic Journal: Economic Policy, 10 (3): 
333-60. 



 

 130

 Appendix A 

HUMAN SUBJECTS 
 

 

Chapter 4 involved the use of human subjects through intercept surveys. My role 

consisted of data analysis only. Dr. George Parsons sought and received IRB approval for 

this study and the required survey intercepts.   
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