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ABSTRACT

With continuous efforts in identifying protein-protein interactions (PPIs) through

both high-throughput wet-lab experiments and computational methods, an increas-

ing number of new PPIs have been discovered and validated, enabling sizeable (even

genome wide) PPI networks to be formed. Therefore, it has become feasible and also

imperative to study PPIs, as a whole, at the network level; to gain knowledge about

the network topology and evolution; and to leverage the newly gained knowledge to

advance the reconstruction of PPI networks, which are still quite sparse in most cases,

by inferring de novo PPIs that are difficult to predict without a network context.

In this dissertation, we systematically studied the PPI networks in terms of

network evolution analysis and network completion with predicting de novo PPIs, and

have proposed and developed a suite of novel methods from selecting evolutionary mod-

els to utilizing network evolution and topology, and leveraging multiple heterogeneous

data sources for predicting PPIs.

PPI evolution analysis aims at identifying the underlying evolution/growth

mechanism of PPI networks, which plays a crucial role for understanding PPIs as

a network system and for predicting new interactions. By exploring the state-of-the-

art PPI network evolution models, we developed a novel sampling method based on

Approximate Bayesian Computation and modified Differential Evolution algorithm to

select the most fitting evolution model for different PPI networks. The results from our

analysis based on Human and Yeast PPI networks show that different PPI networks

may have different evolution/growth models: for Human PPI networks, Duplication-

Attachment is the predominant mechanism while Scale-Free is the predominant mech-

anism for Yeast PPI networks. Equipped with the evolution models for different PPI

xiv



networks, we designed a novel PPI prediction method to include the evolution informa-

tion into the geometric embedding, which consequently improves the PPI prediction

performance by about 15%.

Despite of the rapid growth, PPI networks by and large remain incomplete and

sparsely disconnected for most organisms, and therefore network completion poses a

grand challenge in systems biology. Many traditional network-level PPI prediction

methods use only connectivity information of existing edges to predict PPIs. However,

from a PPI prediction perspective, what is particularly useful is to incorporate pairwise

features for node pairs that are not currently linked by a direct edge but may become

linked. In this dissertation, we developed novel PPI network inference methods that can

utilize pairwise features for all node pairs, regardless whether they are currently directly

connected or not. In particular, our methods can help integrate various heterogeneous

feature kernels, e.g. gene co-expression kernel, protein sequence similarity kernel, etc.,

to build the PPI inference matrix, whose element is interpreted as probability of how

likely the two corresponding proteins will interact. Specifically, we adopt two strategies

to optimize weights for various feature kernels to build the kernel fusion and eventually

the PPI inference matrix. Tested on Yeast PPI data and compared with two control

methods, our proposed methods shows a significant improvement in performance as

measured by receiver operating characteristic.

Another challenge of PPI prediction is how to train prediction model over ex-

tremely sparse and disconnected PPI networks. Many of existing network level methods

assume the training network should be connected. However, that assumption greatly

affects their predictive power and limits the application area because current golden

standard PPI networks are actually very sparse and disconnected. We developed a

novel PPI prediction method based on deep learning neural network and regularized

Laplacian kernel. We use the neural network to implicitly simulate and guide the evo-

lution process of a PPI network by using rows of an ancient network as inputs and

rows of the disconnected training network as labels. After the training step, an evolved

PPI network whose rows are outputs of the neural network can be obtained. Then we

xv



predict PPIs by applying the regularized Laplacian kernel to the transition matrix that

is built upon the evolved PPI network. The results from cross-validation experiments

show that the PPI prediction accuracy for yeast data and human data can be further

improved. Meanwhile, the transition matrix based on the evolved PPI network can

also be used to leverage complementary information from the disconnected training

network and multiple heterogeneous data sources.

In sum, the work in this dissertation contributes to the understanding of PPI

networks, especially, those that are large and sparse, by novel methods in selecting net-

work evolutionary models and leveraging network topology and heterogeneous features

to improve the prediction performance. We believe methods proposed in this disser-

tation will be useful tools to help researchers further analyze PPI data and predict

PPIs.
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Chapter 1

INTRODUCTION

Protein-protein interaction (PPI) plays an essential role in many cellular pro-

cesses. The study of PPIs can help us to have a better understanding of intracellular

signaling pathways, modeling of protein complex structures and elucidating various

biochemical processes. In this chapter, firstly we provide a brief background on the

biological and computational concepts. Then we discuss recent related works and mo-

tivations of our research. After that, we briefly summarize our contributions to this

research topic. Meanwhile, we also list some publicly accessible data sources that

relevant to or have been adopted in our research.

1.1 DNA, RNA, and Proteins

DNA, RNA and Proteins are three essential macromolecules of life. DNA or

otherwise called deoxyribonucleic acid is made up of four nucleotide bases: Adenine

(A), Guanine (G), Thymine (T) and Cytosine(C), which is the building block of the life

and carries genetic information and consists of thousands of genes. A gene is a segment

of DNA that encodes functional RNA and protein products. To a certain extent, RNA

is similar to DNA, both of them are nucleic acids of nitrogen-containing bases joined by

sugar-phosphate backbone. However, structurally, RNA is a single-stranded where as

DNA is double stranded; and DNA has Thymine, while as RNA has Uracil. Moreover,

RNA nucleotides include ribose sugar, rather than the Deoxyribose sugar included by

DNA. Functionally, DNA maintains the genetic information, whereas RNA uses the

information to synthesize the particular protein.

The general process from DNA to protein that consists of transcription, trans-

port, and translation, which is also called central dogma of life. More specifically, the

1



corresponding genes are transcribed into RNA; then the RNA is first processed so that

non-coding parts are removed and is then transported out of the nucleus. After that,

the proteins are built based on the code in the RNA.

Proteins are large, complex molecules consists of one or more long chains of

amino acid residues, which play many critical roles in the living organisms. Their di-

verse functions can be providing structures, regulating biological process, transporting

materials, building immunization system, etc.

1.2 Protein-Protein Interaction (PPI) and PPI Networks

It is well known that proteins are rarely perform their functions alone, but coop-

erate with some other function-similar proteins to form protein complex through PPIs.

PPIs imply physical contacts between two or more proteins as a result of biochemi-

cal events and/or electrostatic forces, which relates almost all the biological processes.

Consequently, PPI analysis and prediction remains central task in system biology; and

efficient and accurate methods are urgently needed.

Traditionally, many high-throughput experimental methods, such as yeast two-

hybrid system, co-Immunoprecipitation (Co-IP) and so on, have been used by biologists

to uncover protein interactions. However, it has been demonstrated that these tradi-

tional wet-lab methods are prone to having high false-positive rates, besides their high

cost. Consequently, Many computational approaches have been developed to predict

if any given pair of proteins interact with each other by calculating their similarities

based on various biological properties, such as sequence homology, gene co-expression,

phylogenetic profiles, etc.

Recently, with continuous efforts in identifying PPIs through both high-throughput

wet-lab experiments and computational methods, an increasing number of new PPIs

have been discovered and validated, enabling sizeable (even genome wide) PPI networks

to be formed, where proteins represent nodes, and interactions represent edges. As a

result, researchers have begun to devote more attention to study PPI networks, aiming
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at gaining an better understanding about biological function of individual proteins,

protein complexes and even larger subcellular machines as a complex system.

1.3 Related Works

To computationally predict PPIs at network level, the most direct way is to

calculate confidence scores (similarities) based on pair-wise topological features or net-

work structure for protein node pairs. On the other hand, some researchers try to

indirectly predict PPIs through evolution analysis of PPI networks, aiming to under-

standing the underlying mechanism of PPI formation. In this section, we plan to have

a systematically study about the PPI networks from these two aspects.

1.3.1 Evolution Analysis of PPI Networks

Given there are no chronological PPI networks of a certain species available for

evolution analysis, one effective way is to design models that can be used to simu-

late the evolution or growth process of PPI networks. In the past of few years, many

popular PPI evolution models have been proposed. some early studies suggested scale

free [11] model may fit PPI network well [15, 30], but there are several statistical

challenges for this claim [51, 87]. It is commonly believed that one main mechanism

by which PPIs network evolve is gene duplication, subsequently, another mechanism

named post-duplication divergence may cause the PPI network further evolve. Briefly,

the whole process can be described as follows: given an original PPIs network, any

node may be duplicated at a certain probability; and then during the divergence pro-

cess, some new connections may be formed between the duplicated node and existing

nodes, meanwhile, some existing edges may be deleted. Based on the duplication and

divergence mechanisms, many evolution models have been proposed [41, 42, 71] among

which post-duplication divergence is the main difference. However, the limitation of

gene duplication based models is that they may not generate networks with a module

structure that resembles the module structure one can find in golden standard PPI

networks [26]. To solve that, Bottinelli et al. [14] proposed a novel gene duplication
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based evolution model that enables to simultaneously simulate the formation of protein

modules during evolution the PPI network. Furthermore, there are many other models

tried to uncover the evolution mechanisms from different perspectives, e.g. evolution

model learned by data-driven approach [69], network evolution based on parsimony

approach [68], network growth and the spectral evolution model [55], and kinetic evo-

lution model [70]. However, there are still many controversies about the underlying

evolution mechanisms for PPI networks; especially, PPI network of different species

may evolved in totally different ways. Therefore, further indepth studies of evolution

model are still needed.

On the other hand, with the increasing number of evolutionary models, it has

become urgent to develop accurate analysis methods for evaluating the fitness of evolu-

tionary models. Traditionally, researchers would like to evaluate the difference between

simulation network and observed network using metrics on the basis of topological fea-

tures [100], such as node degree [46, 67], betweenness [48], modularity [77], diameter

[92], clustering coefficient [75], assortativity [61, 95] and so on. While these metrics are

useful for their specifically designed purposes, it remains difficult to describe the PPIs

network as a whole in terms of the summary statistics for the noise and incompleteness.

To deal with this problem, most recently, Thorne, T. and Stumpf, M. P. [89] developed

Approximate Bayesian computation and sequential Monte Carlo method (ABC-SMC)

to do graph spectral analysis, which compares the simulated networks and observed

networks comprehensively using graph spectral analysis and enables model selection

and parameter estimation over a number of network evolutionary models. It has been

demonstrated that the graph spectra based ABC-SMC can capture network data more

naturally than the traditional summary statistics. However, it cannot differentiate

similar models accurately, especially for these duplication-divergence based models.

Moreover, for each time, the sequential Monte Carlo sampling based ABC-SMC needs

to choose a proper threshold value ε that is used to accept or reject a particle, which

highly increase the computational complexity. Thus, developing more efficient and

accurate methods for evaluating the fitness of evolutionary models is still a urgent
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problem need to be solved.

1.3.2 Network Level PPI Prediction

Generally, current computational methods for PPI prediction can be classified

into two categories: (a) pair-wise biological similarity based methods, and (b) network

level based methods. For category (a), computational approaches have been developed

to predict if any given pair of proteins interact with each other, based on various

properties such as sequence homology, gene co-expression and phylogenetic profiles, etc.

[78, 21, 29]. Moreover, some previous work also demonstrated that three-dimensional

structural information, when available, can be used to predict PPIs with accuracy

superior to predictions based on non-structural evidence [102, 80]. However, with no

first principles to tell deterministically yet if two given proteins interact or not, the

pair-wise biological similarity based on various features and attributes can run out its

predictive power, as often the signals may be too weak or noisy. Therefore, recently

many researches have been focused on integrating heterogeneous pair-wise features, e.g.

genomic features, semantic similarities and etc., in seek of better prediction accuracy

[24, 85, 19, 49]. It is biological meaningful if we can disentangle the relations among

various pair-wise biological similarities and PPIs, but it is still in early stage for the

incomplete and noisy pair-wise similarity kernels.

To circumvent the limitations with using pair-wise biological similarity, efforts

have also been made to investigate PPI prediction in the context of networks, which

may provide extra information to resolve ambiguities incurred at pairwise level. A net-

work can be constructed from reliable pair-wise PPIs, with nodes representing proteins

and edges representing interactions. Topological features, such as the number of neigh-

bors, can be collected for nodes and then are used to measure the similarity for any

given node pair to make PPI prediction for the corresponding proteins [18, 59, 57, 73].

Meanwhile, inspired by the PageRank algorithm [63], variants of random walk based

methods have been proposed to go beyond these node centric topological features to get

the whole network involved: the probability of interaction between given two proteins
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is measured in terms of how likely a random walk in the network starting at one node

will reach the other node [90, 58, 6]. These methods are suitable for PPI prediction in

cases when the task is to find all interacting partners for a particular protein, by using

it as the start node for random walks. The computational cost increases from O(βN)

to O(βN2) for all-against-all PPI prediction for a PPI network with N proteins. To

overcome the limitation of single start-node random walk, many kernels on network for

link prediction and semi-supervised classification have been systemically studied [28],

which can measure the random-walk distance for all node pairs at once. Compared

with the random walk methods, kernel methods are obviously more efficient and ap-

plicable to various network types. But both the variants of random walk and random

walk based kernels cannot differentiate faraway interacting candidates well. Besides,

instead of computing proximity measures between nodes from the network structure

directly, Kuchaiev et al.and Cannistraci et al. proposed geometric de-noise methods

that embed PPI network into a low-dimensional geometric space, in which protein pairs

that are closer to each other represent good candidate interactions [53, 16].

Moreover, when the network is represented as adjacent matrix, the prediction

problem can be transformed into spectral analysis and matrix completion problem. For

example, Symeonidis et al. [86] did link prediction for biological and social networks

based on multi-way spectral clustering. Wang et al. [96] and Krishna et al. [62] pre-

dicted PPI interactions through matrix factorization based methods. By and large, the

prediction task will be reduced to convex optimization problem, and the performance

depends on the objective function, which should be carefully designed to ensure fast

convergence and avoidance of being stuck in the local optima.

Actually, the two kinds of methods, pair-wise biological similarity based methods

and network level based methods, can be mutually beneficial. For example, weights

can be assigned to edges in the network using pair-wise biological similarity scores. In

Backstrom et al. [6] a supervised learning task is proposed to learn a function that

assigns weighted strengths to edges in the network such that a random walker is more

likely to visit the nodes to which new links will be created in the future. The matrix
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factorization based methods proposed by Wang et al. [96] and Krishna et al. [62]

also included multi-modal biological sources to enhance the prediction performance. In

these methods, however, only the pair-wise features for the existing edges in the network

will be utilized, even though from a PPI prediction perspective what is particularly

useful is to incorporate pair-wise features for node pairs that are not currently linked

by a direct edge but will if a new edge (PPI) is predicted. Therefore, it would be of

great interest if we can infer PPI network directly from multi-modal biological features

kernels that involve all node pairs. In Yamanishi et al. [98] a method is developed

to infer protein networks from multiple types of genomic data based on a variant of

kernel canonical correlation analysis. In that work, all genomic kernels are simply

added together, with no weights to regulate these heterogeneous and potentially noisy

data sources for their contribution towards PPI prediction.

The last but not the least, almost all the methods discussed above need con-

nected training networks to measure node-pair similarities, although existing PPI net-

works are usually very sparse and disconnected. Consequently, these traditional meth-

ods only keep the maximum connected component of the original PPI network as

golden standard data which is divided as a connected training network and testing

edges. That is to say, these methods cannot effectively predict interactions for proteins

that are not in the maximum connected component. Therefore, it is of great interest

and making more sense if we can infer PPI network from a small amount of interaction

edges that do not need to form a connected network.

1.4 Our Contributions

In this dissertation, we contribute to finding solutions for challenges that are
discussed in the section 1.3, which generally including:

• How to develop effective and reliable evaluation method for various PPI network
evolution models?

• How to utilize evolution analysis to help predict de novo PPIs?

• How to infer PPI network from multiple heterogeneous data sources?
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• How to accurately and efficiently find optimal weights for those multiple hetero-
geneous data?

• How to infer de novo PPIs based only on a minimal disconnected training net-
work?

First of all, we develop a novel method based on Approximate Bayesian Com-

putation and modified Differential Evolution algorithm (ABC-DEP) that is capable

of conducting model selection and parameter estimation simultaneously and detecting

the underlying evolutionary mechanisms for PPI networks more accurately. Then we

propose a method that enables us to incorporate evolutionary information into geomet-

ric space to improve PPI prediction, which in turn can be used to select and evaluate

various evolutionary models.

We next focus on finding optimal weights for heterogeneous data to build kernel

fusion, thereby improving PPI prediction performance. Two methods are developed to

solve this problem: (a) The method based on our revised ABC-DEP; (b) The method

based on Barker algorithm, random walk and linear programming. Both of those two

methods adopt Regularized Laplacian (RL) kernel to make prediction. The former

show that the accuracy of PPI prediction measured by AUC is increased by up to 23%,

as compared to a baseline without using optimal weights. The latter can learn optimal

weights more efficiently while without obvious loss on prediction performance.

Finally, we develop novel PPI prediction method based on deep learning neural

network and regularized Laplacian kernel. We use the neural network to implicitly

simulate and guide the evolution process of a PPI network. After the training step,

an evolved PPI network can be obtained from the extremely sparse and disconnected

network. Then we can predict PPIs by applying the regularized Laplacian kernel to

the trainsition matrix that is built upon the evolved PPI network. The results show

the prediction performance can be effectively improved, although only a really small

amount of interaction edges have been used for training. Moreover, the evolved PPI

network obtained by the neural network can also help us to leverage complementary

8



information from the disconnected training network and multiple heterogeneous data

sources, which can further improve the prediction performance.

1.5 Protein Datasets

In this section, we list some publicly accessible PPI databases and web-services
that related to our research.

• STRING: STRING is a database of known and predicted protein interactions.
The interactions include direct (physical) and indirect (functional) associations.
http://string-db.org

• DIP: DIP database catalogs experimentally determined interactions between pro-
teins. It combines information from a variety of sources to create a single, con-
sistent set of protein-protein interactions. http://dip.doe-mbi.ucla.edu/dip/

• BioGRID: BioGRID is an interaction repository with data compiled through
comprehensive curation efforts.http://thebiogrid.org/

• Ensembl:Ensembl is one of several well known genome browsers for the retrieval
of genomic information. http://www.ensembl.org

• GenBank:GenBank is the NIH genetic sequence database, an annotated collection
of all publicly available DNA sequences. http://www.ncbi.nlm.nih.gov/genbank

• Gene Ontology (GO) Database: The GO Consortium provides an ontology of
defined terms representing gene product properties, including cellular component,
molecular function, biological process. http://www.geneontology.org

• Pubmed: PubMed is a search engine accessing primarily the MEDLINE database
of references and abstracts of papers on life sciences and biomedical topics.
http://www.ncbi.nlm.nih.gov/pubmed

• HPRD: The Human Protein Reference Database (HPRD) includes Human PPI
data that has been manually extracted from the literature by expert biologists.
http://www.hprd.org/index.html

• PrePPI: PrePPI is a database that combines predicted and experimentally deter-
mined PPIs using a Bayesian framework. http://bhapp.c2b2.columbia.edu/PrePPI
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Chapter 2

EVOLUTIONARY MODEL SELECTION AND PARAMETER
ESTIMATION FOR PROTEIN-PROTEIN INTERACTION NETWORK

BASED ON DIFFERENTIAL EVOLUTION ALGORITHM

2.1 Introduction

Revealing the underlying evolutionary mechanism plays an important role in

understanding protein interaction networks in the cell. While many evolutionary mod-

els have been proposed, the problem about applying these models to real network data,

especially for differentiating which model can better describe evolutionary process for

the observed network remains a challenge. The traditional way is to use a model with

presumed parameters to generate a network, and then evaluate the fitness by summary

statistics, which however cannot capture the complete network structures information

and estimate parameter distribution.

In this chapter, we develop a novel method based on Approximate Bayesian

Computation and modified Differential Evolution algorithm (ABC-DEP) that is capa-

ble of conducting model selection and parameter estimation simultaneously and detect-

ing the underlying evolutionary mechanisms for PPI networks more accurately. We test

our method for its power in differentiating models and estimating parameters on simu-

lated data and found significant improvement in performance benchmark, as compared

with a previous method. We further apply our method to real data of protein interac-

tion networks in human and yeast. Our results show Duplication Attachment model

as the predominant evolutionary mechanism for human PPI networks and Scale-Free

model as the predominant mechanism for yeast PPI networks.

In the following sections, we firstly give a detailed introduction about our

method. Then we demonstrate the accurateness, robustness, and reliability by testing
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ABC-DEP based on simulation networks. To show the promising ability of ABC-DEP,

we apply it to PPIs network downloaded from PrePPI database [102, 101]. Finally, we

conclude by discussing the results and the significance of our method.

2.2 Methods

In this section, we introduce several key parts of our method, and then outline

ABC-DEP framework.

2.2.1 Approximate Bayesian Computation (ABC)

Given an observed PPI network, D, and a set of evolutionary models mi with

parameters θ, we develop an efficient method that can carry out model selection and

parameter estimation simultaneously to detect the underlying evolutionary mechanism.

Being a probabilistic approach, our method is based on the Bayesian analysis to com-

pute the posterior probability of any model mi, given a network D :

p(mi(θ)|D) =
p(D|mi(θ))p(mi(θ))

p(D)
(2.1)

Where p(D|mi(θ)) is the likelihood, p(mi(θ)) is the prior, and p(D) is the evidence. The

prior p(mi(θ)) is assumed to be known and is often specified by choosing a particular

distribution; here the uniform distribution has been chosen for our method. However,

it is often difficult, or even practically impossible to directly evaluate the likelihood

p(D|mi(θ)). In this work, we choose to evaluate the likelihood using approximate

Bayesian computation (ABC) instead. ABC based methods estimate the likelihood

by simulations whose outputs (simulation network) are compared with the observed

network [22]. More specifically, a set of parameters for a certain model is sampled

through a presumed prior distribution. The model and its parameters form a so-called

”particle” mi(θ) with which we can simulate a network D′. The distance between

simulation network D′ and the observed network D is computed in order to accept or

discard this particle. If the distance is smaller than a pre-set threshold, the sampled
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particle will be accepted, otherwise, will be discarded. The basic formula can be given

by:

p(mi(θ)|D) ≈ p(mi(θ)|d(D′, D) < ε) (2.2)

Where ε represents the threshold to judge the distance, and d(D′, D) represents the

distance between network D′ simulated by particle mi(θ) and observed network D.

2.2.2 Distance Computing Method for Networks

As described in last subsection, we need to evaluate the distance between the

simulated network and the observed network. To begin with, we represent a network by

adjacency matrix that is supposed to capture all the structure information of the net-

work, if only implicitly. Given a network with N nodes and E edges, the corresponding

adjacency matrix A with N ×N dimension can be given by:

ai,j

 1, if(i, j) ∈ E

0, if(i, j) /∈ E
(2.3)

Where i and j are two nodes in the nodes set N , and (i, j) represents an edge between

i and j, (i, j) ∈ E. Suppose the simulation network D′ and the observed network D

are represented by matrices A and B respectively. In theory, the distance between A

and B can be computed as follows:

d(A,B) =
∑
i

∑
j

(ai,j − bi,j)2 (2.4)

where ai,j and bi,j are elements in matrix A and B. While this node-wise comparison

of two networks may be as comprehensive as it can be, it will not be very useful if the

correspondence between the nodes from the two networks is not fixed – as the distance

will likely be different for any different mapping of nodes. Indeed, the PPI networks

are usually unlabeled and undirected, which means the actual mapping between the

simulation network and observed PPI network is not known or easily attainable. In

theory, a sensible remedy is to use either the minimum distance or the average dis-

tance among all possible mappings. However, considering that the PPI networks are
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with large size while very sparse, for example, the human high-confidence PPI network

[102, 101] has 4003 nodes and 6780 edges, so it is extremely expensive to get either

the minimum or the average distance between the observed PPI network and the cor-

responding simulation network by permuting all possible mapping strategies between

them.

Therefore, we adopt the theorem of Umeyama [94] by which the approximate

lower bound on the edit distance between two networks can be obtained. It has been

demonstrated in Wilson and Zhu [97] that the lower bound on edit distance is an

excellent approximation of edit distance between two networks, as defined in Eq. (2.4).

The measure formula is shown by

d(A,B) =
∑
i

(αi − βi)2 (2.5)

Where A and B are Hermitian matrices, and αi and βi are their ordered eigenvalues

respectively. We will further demonstrate the reliability of 2.5 when we do distance

analysis in the later subsection.

2.2.3 Differential Evolution Algorithm

Differential evolution (DE) is a population based, stochastic function optimizer,

which is shown to be among the best genetic type of algorithms for solving the real-

valued test function suite of the First International Contest on Evolutionary Compu-

tation [74]. It has been widely applied to optimization problems of different kinds

in various research fields. DE has been adopted as the foundation of our ABC-DEP

algorithm for its efficiency, accuracy and reliability. Briefly, the central idea behind

DE is a self-organizing scheme for generating trial parameter vectors by mutation and

crossover, and then the trial vector will be accepted or rejected based on an objective

function. Fig. 2.1 shows the more detailed process of DE algorithm. Given a popula-

tion of particles Px,g each of which consists of an object function f() and a parameter

vector XNi−1,g (i = 0, 1...Np−1), a target vector XNi−1,g (i = 0, 1...Np−1), a randomly

chosen base vector Xr0,g and other two different random vectors Xr1,g and Xr2,g are
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Figure 2.1: Flowchart of DE algorithm [74].

needed to do mutation, which adds the weighted difference between the two random

vectors to the base vector. After that, a crossover between the mutant vector VNi−1,g

(i = 0, 1...Np− 1) and the target vector XNi−1,g (i = 0, 1...Np− 1) is used to generate a

trial vector UNi−1,g (i = 0, 1...Np − 1). Finally, a choice between target vector XNi−1,g

and trial vector UNi−1,g is made by evaluating their objective function values to get the

new particle XNi−1,g+1 for the next generation. Typically, the whole process needs to

be repeated multiple times in order to get the optimization output. It should be noted

that, inspired by the method of Toni and Stumpf [91] and Thorne and Stumpf [89], the

models and parameters are treated analogously, i.e., the different models are encoded as

another parameter, which is concatenated with the parameter vector, enabling model

selection and parameter estimation simultaneously to be carried out.

2.2.4 ABC-DEP for Model Selection and Parameter Estimation

As mentioned in the previous section, DE is an excellent method for solving

the optimization problem. However, the problem we need to solve is model selection

and parameter estimation by evaluating the posterior probability, which is based on

importance sampling. We make a population of two-tuple particles, each of which
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Figure 2.2: ABC-DEP process.

consists of a certain model and its parameter vector. The DE algorithm may help

find some good particles, but what we actually need is the posterior distribution of

particles. To address this issue, as illustrated in Fig. 2.2, we propose another evolution

kernel, propagation, and combine it with DE. Note that the terms evolution, mutate,

population, etc., used in the section are in the context of evolutionary computation,

and are not in the context of PPI network evolution, for which the method is designed

to identify the optimal one among a set of candidate models.

2.2.4.1 Initialization

To do initialization, we randomly choose one out of the six evolutionary models

and then randomly assign values from a preset range to the parameters for this model,

and make the model and its parameters into a particle, with which we can generate a

simulated network D′. Next, we evaluate the distance between the simulation network

and the observed network D. If d(D′, D) < ε, we accept this particle and assign it

an initial weight w = 1, otherwise, it is discarded. Here ε is a threshold used to

control the quality of particles in a fixed scale of population. Different from ABC-

SMC[19] that highly depends on a set of thresholds ε to guarantee the accuracy of

final posterior probability, we only need one threshold ε for the initialization. The
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Figure 2.3: Functions of DE and Propagation.

initialization process will be carried out repeatedly until N particles have been accepted

into the population.

2.2.4.2 Evolution

Once N particles have been initialized, the procedure goes into the evolution

part that includes two kernels: DE and Propagation. As we mentioned in previous

sections, we need to randomly select other three different particles for the target particle

to do mutation. However, the DE kernel tends to reduce the diversity of the population

after several iterations, making it difficult to find other three different particles with the

same model but different parameters, which are used to form a mutant to crossover with

the target particle. Whenever this happens, ABC-DEP will switch into the propagation

kernel: a multivariate Gaussian distribution with zero mean and a proper variance is

used to perturb the parameter vector of any target particle for which no three other

different particles can be found to form a mutant. As illustrated in Fig. 2.3, while

DE can help find several optimized particles, propagation enables us to find some good

neighbors around the optimized particles and diversify the population. Each particle

in the population will be selected at one time as a target particle to do evolution.

Then, we can obtain a trial population that has the same size of the target population.

For every pair of particles, one from each of these two populations, we will use them
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to generate a simulated network respectively. Suppose network D′P i is simulated by a

target particle P i, and D′Zi is simulated by the trial particle Zi, where Zi is evolved

from P i. Then ABC-DEP adopts Metropolis-hasting acceptance scheme to determine

whether the trial particle Zi should be accepted to replace the target particle P i.

The probability for acceptance in the Metropolis-hasting scheme can be evaluated as

follows.

min(1,
d(D,D′P i)t(P i|Zi)

d(D,D′
Zi)t(Zi|P i)

) (2.6)

where the distance d(D′, D) is used to evaluate the fitness of simulation network, and

t(b|a) represents the transfer probability from a to b. Here we simplify the problem by

not differentiating the propagation direction. That is, t(Zi|P i)and t(P i|Zi) are equal;

they are given by the following formula.

t(Zi|P i) =

t(P i|Zi) = CR
∑
j

∑
k

∑
f

P j.θ + F (P k.θ − P f .θ)
(2.7)

CR is the crossover probability and F is the weighting factor in DE. On the basis of

(6) and (7), therefore, the Metropolis-hasting acceptance probability is simplified as

follows.

min(1,
d(D,D′P i)

d(D,D′
Zi)

) (2.8)

The trial particle may be accepted with the probability given in Eq. (2.8) to replace

the target particle; otherwise, the target particle will be kept for the next generation.

Next, ABC-DEP updates particle’s weight by the method shown in Algorithm DEP.

The importance of updating weight by multiplying ε
D′,D

is to incorporate the fitness of

the particle, namely, the better (i.e., with a smaller d) the simulated network is, the

higher the weight of that particle is. Unlike the ABC-SMC [89] which may inefficiently

try hundreds or thousands times to get a satisfying particle for the continuously strict

acceptance threshold ε and which is a problem that becomes especially serious during

the last few iterations, our method only need one trial to select a particle based on Eq.

(2.8) for the next generation.
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2.2.4.3 Sampling

Before sampling, the weights of the Np particles through evolution are normal-

ized first. Then a model’s intermediate posterior probability can be obtained by adding

the weights of its particles. For instance, there are n particles that belongs to model i,

n < Np then the model i′s posterior probability is given by

Promodel[i] =
n∑
j=1

wj (2.9)

During sampling, a model is selected based on its intermediate posterior probability,

and then for the selected model a specific particle is chosen based on the particle’s

weight, i.e., the particle with higher weight and belongs to a model with higher posterior

probability will get more chance to survive for the next generation. Besides, in order

to prevent a certain model from being extinct during the model selection, there is a

probability p to stay at any selected model, and a probability 1− p to jump randomly

to other models. Therefore, we assign the new sampled particle with a weight by

wparticles∈model[i] =

p× Promodel[i] + (1− p)
∑
j 6=i

Promodel[j]
(2.10)

where (1 − p) represents the transfer probability. This sampling procedure should be

continued until Np particles have been sampled. Together, the evolution and sampling

steps are repeated without decreasing the acceptance threshold ε until converged model

posterior probabilities are obtained.

2.3 Results and Discussion

We test our method extensively on simulated data first, as they, unlike the real

PPI networks, offer ground truth and controllability for reliable assessment of perfor-

mance. To compare with the work reported in T. Thorne and M. P. H. Stumpf [89], the

same six evolution models are included in our experiments: Duplication Attachment

(DA), Duplication Attachment with Complementarity (DAC), Linear Preferential At-

tachment (LPA) [11], the general Scale Free (SF) [25], Combination model of DAC
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Algorithm 1 ABC-DEP

Input: Modeli ← evolution models
M ← iterations times
N ← particles

while t ≤M do
if t = 1 then

Initialize N particles satisfy d(D,D′) < ε

Pt,Wt ← {P i,W i}Ni=1 // P i is a particle, W i is the weight of P i. Pt, Wt

represents the tth generation of particles and weights.
else
{Pt,Wt}Ni=1 ← Sampling((Pt−1,Wt−1))

end if
(Pt+1,Wt+1)← DEP (Pt,Wt)
t← t+ 1

end while
Normalize((PM ,WM))
PosteriorPro(Modeli, (PM ,WM)) // Cacluating posterior probability for each
model.

and LPA (DACL) and DAC model with random edges addition(DACR). The experi-

ments based on simulated data aim to evaluate how accurately ABC-DEP can detect

the underlying model that is used to simulate the testing networks. Finally, we apply

ABC-DEP to analyze the possible evolutionary mechanism for real PPI networks.

2.3.1 Results based on the Simulated Data

DACL and DACR are the most similar pair among the six models included in

our experiment, making them the hardest to differentiate from each other. In Thorne

and Stump [89], networks generated by DACR were used as the target to see if they

could be detected correctly or would be mistaken as DACL. Here we did the same test

for comparison. In addition, we also did the test in the reversed direction, namely,

using the networks generated by DACL as the target to see how well ABC-DEP can

detect and differentiate them from DACR and other models.
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Algorithm 2 DEP

Input: Population with size Np

for i = 1 to Np do
Randomly select P f , P j, P k where i 6= j 6= k 6= f and P i.m = P j.m = P k.m =
P f .m
// P i is the target particle, P f , P j and P k are three randomly selected particles.
P i.m, P j.m, P k.m and P f .m represent particles’ models. P i.θ, P j.θ, P k.θ and
P f .θ represent particles’ parameter vectors.
if P i.θ = P j.θ = P k.θ = P f .θ then
Zi = Propagation(P i)

else
Zi = DifferentialEvolution(P i, P j, P k, P f )

end if
end for
for i = 1 to Np do

Simulate D′Zi by particle Zi and D′P i by particle P i // D is the observed network,
D′Zi and D′P i are simulated networks. d(, ) is the distance.

if rand(0, 1) ≤ min(1,
d(D,D′

Pi )

d(D,D′
Zi )

) then

if
d(D,D′

Pi )

d(D,D′
Zi )
≥ 1 then

W P i ← W P i × ε
d(D,D′

Zi )

else
W P i ← W P i × d(D,D′

Pi )

d(D,D′
Zi )
× ε

d(D,D′
Zi )

end if
P i ← Zi

else
P i ← P i W P i ← W P i × ε

d(D,D′
Pi )

end if
end for
Normalize(P i,W P i

)
Probmodel(P

i,W P i
) // Cacluating intermediary probability for each model.
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Figure 2.4: Posterior probabilities based on test data simulated by DACR.

2.3.1.1 Data Simulated by DACR

The first test data is simulated by DACR, with the parameters being set at the

following values: δ = 0.4, α = 0.25, p = 0.7 and m = 3. The network sizes are con-

trolled at 5000 nodes with 25009 edges. The posterior model probabilities illustrated in

Fig. 2.4 show that the DACR has the highest average probability, which means ABC-

DEP can accurately detect the model that is used to generate the test data. From the

boxplot in Fig. 2.5(a)(1), we see that DACR’s posterior probabilities converge rapidly

and smoothly towards their expected values respectively. Contrast to the traditional

method ABC-SMC [89] which mistakenly predicted DACL as the underlying model

for networks generated by DACR, our method is obviously more accurate and detects

the target correctly. Moreover, for the parameter estimation of DACR shown by Fig.

2.5(b), where the vertical line means the average value of our estimation and the ver-

tical dashed line means the gold standard value used to generate the test network,

the parameter distribution, although not very smooth, is almost centered around the

correct values. The standard deviations for the estimation of δ, α, p and m are 0.0196,

0.0300, 0.1114 and 0.0700 respectively. And the range of parameters’ distribution of

our method is narrower than that of ABC-SMC [89]. Our experiments suggest that

smoother distribution can be attained by increasing the number of particles, which can
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Figure 2.5: Results based on testing data simulated by DACR.
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Figure 2.6: Posterior probabilities based on test data simulated by DACL.
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(b) Parameter estimation based on our method.

Figure 2.7: Results based on testing data simulated by DACL.
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result in a sample mean closer to the actual value, though at additional computational

cost. We therefore strike a balance between the accuracy and computational com-

plexity. Besides, we have reproduced the traditional method ABC-SMC [89] to make

further comparison. Note that the posterior probability from ABC-SMC incorrectly

converges towards DACL for test networks generated by DACR as illustrated in Fig.

2.5(a)(2). In additional to posterior probability, we also analyzed the minimum dis-

tance, as measured by Eq. (2.5), between the simulated network and the test network,

as shown in Fig. 2.5(c). Our results show a better convergence; and also the minimum

distance obtained by our method can reach a smaller value.

2.3.1.2 Data Simulated by DACL

To further demonstrate the robustness and accuracy of our method, we test

our method by an additional simulated test data. This second test data is simulated

by DACL, also with parameters δ = 0.4, α = 0.25, p = 0.7 and m = 3, and grown

to 5000 nodes with 25009 edges. Fig. 2.6 illustrates the posterior probabilities of

six models, and Fig. 2.7(a)(1) and (2) illustrate the converging processes of posterior

probabilities and minimum distances respectively. And the histogram of parameter

estimation of DACL shown by Fig. 2.7(b) is quite smoothly distributed and centered

around the correct values, with standard deviations 0.0270, 0.0364, 0.1866 and 0.0861

for the estimation of δ, α, p and m respectively.

2.3.2 Results based on Protein Interaction Data

We then apply ABC-DEP to high-confidence human PPI network and high-

confidence yeast PPI network that were downloaded from PrePPI database [102, 101],

where high-confidence means the interactions in the datasets are at least supported by

two publications. As a quick summary, the high-confidence human PPI network has

4003 nodes and 6781 edges, and the high-confidence yeast PPI network has 3236 nodes

and 11381 edges. The results illustrated in Fig. 2.8 shows the DA is the predominant

evolutionary mechanism for the high-confidence human PPI network, while SF is the
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Figure 2.8: Evolutionary model prediction for real PPI networks.(a) is for Human,
(b) is for Yeast.
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Figure 2.9: Parameters estimation for Human and Yeast based on their preferred
models.
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predominant evolutionary mechanism for the high-confidence yeast PPI network. For

these two models, the parameter estimations are shown by Fig. 2.9(a) and Fig. 2.9(b)

respectively. The parameter estimation of w shown by Fig. 2.9(b) is presumed >

0, that is why the distribution looks a little different. Generally, the center-around

parameter distribution can help researchers to choose most suitable parameters for the

evolutionary models.

While scale-free is an important topology property of PPI network [46, 8], not

all scale-free PPI networks are born equal [36]. Considering that our graph spectra

based method can capture many aspects of network structure, so the simulation net-

works generated by different evolutionary models may be somewhat scale-free overall,

and yet different in other topological properties such as betweenness, modularity, clus-

tering coefficient and so on, a phenomenon reported in recent literature [48]. In this

regard, our finding of DA as the predominant mechanism for high-confidence human

PPI network is consistent with other recent studies [47]. There is currently no con-

sensus with respect to topological characteristics of yeast PPI networks; while some

reported scale-free [3], others did not [31].

As duplication is a main mechanism via which genomes evolve and gain bigger

sizes, it is plausible that association can be detected between genome size and PPI

network growth involving duplication-divergence (DA), and that such association may

be more pronounced for genomes of bigger sizes, like human genome, although an

affirmative answer requires more detailed investigation and is beyond the scope of

the current paper. The framework of our approach is whole network comparison, as

formulated in Eq. (2.4) and approximated in Eq. (2.5), other than based on summary

statistics, such as size, density and other topological features. There are pros and cons

for these two types of approaches, i.e., whole-network vs summary statistics. While

the whole-network approach is capable of comparing the simulated networks against

the observed network comprehensively instead of only against a selected set of features

thus avoiding potential biases due to selection of particular topological features, it

then does not provide an easy interpretation of the results in terms of specific network

26



features, such as size and density.

Given a real PPI network, although there is no guarantee to find the true un-

derlying evolution model – as it may not be one of the candidate models, our method

offers an effective way to find the relatively better one among the candidate models

in matching the data, as shown in pie charts in Fig. 2.8. In reality, it is plausible

that the true underlying evolutionary mechanism is either too complex to be captured

in a single model thus an ensemble of models would be more appropriate to provide

an equivalent representation, or is indeed just a mixture of multiple sub mechanisms.

Either way, we believe these pie charts in Fig. 2.8 should provide useful insights. Note

that the existence of a predominant model, as suggested by the pie chart, tend to sug-

gest that we are capturing something real, in contrast to a scenario where all models

get about the equal share, which may be more of a sign for random data. Also, the

method is inclusive. A new proposed evolution model can be easily included with our

encoding scheme to participate in simulation and be compared with other models.

The time cost of simulation process mainly depends on the number of particles

(i.e., simulated networks), and the number of iterations, and the size of the observed

network. Generating a simulated network is linear time with regard to the network

size. The main cost come from calculating eigenvalues for adjacency matrices, which

is in O(n3), where n is the number of nodes in the network. In our experiments, we

have used the CULAtools GPU linear algebra library (www.culatools.com) to perform

the matrix calculations. Compared to a conventional CPU implementation, its parallel

architecture greatly improved the efficiency. The parameter space for a given evolution

model can also significantly affect the computational complexity. But in practice, the

parameter spaces are usually kept at the range of 2 ∼ 5. Moreover, to follow the

principle of Occams razor, it is also better to use as fewer parameters as possible when

we design a new model. When there are many candidate models, we can deploy the

divide-and-conquer strategy or tournament scheme, i.e., we divide them into several

groups and do model selection to get a representative model for each group, and identify

the best model through the tournament. The whole process is highly parallelizable.
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The importance of our method is to help researchers analyze PPI network com-

prehensively from the evolutionary perspective, and provide a reference for them to

find a possible evolutionary model given existing PPI networks.

2.4 Conclusions

We have developed a novel model selection and parameter estimation method,

ABC-DEP, based on Approximate Bayesian Computation and modified Differential

Evolution. The results based on simulated data illustrate the efficacy of ABC-DEP.

Detailed comparisons between our method and T. Thorne and M. P. H. Stumpf [89]

have been made, which shows ABC-DEP has competitive advantages in accuracy and

efficiency. Furthermore, we applied our method to real PPI networks data from human

and yeast. The results show that DA model is the predominant evolutionary mecha-

nism for the high-confidence human PPI network, and SF model as the predominant

evolutionary mechanism for the high-confidence yeast PPI network. Given the strong

performance on the simulated data, we believe that our method provides a useful tool

for researchers to select and develop PPI evolutionary models and may also help resolve

controversy regarding topological characteristics of PPI networks from the evolutionary

perspective.
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Chapter 3

EVOLUTIONARY ANALYSIS AND INTERACTION PREDICTION
FOR PROTEIN-PROTEIN INTERACTION NETWORK IN

GEOMETRIC SPACE

3.1 Introduction

One important forefront in PPI network study is to understand how the PPI

networks evolve over time. In order to reveal the underlying evolutionary mechanism

of PPI network, many evolutionary models, such as Duplication-Divergence model [41,

42, 1, 71], Scale Free model [10] etc., have been proposed to simulate the evolutionary

processes of PPI networks. For these different evolutionary models, there are still some

controversies about fitting models to different species [47, 4, 32]. The uncertainty of

evolutionary models is attributed to several factors, including the incompleteness of the

current PPI networks, ineffective evaluation methods and limited applications. While

recent efforts have led to development of more effective evaluation methods, such as

using an Approximate Bayesian computation and Differential Evolution based method

[40] that we introduced in the Chapter 2 , the evaluation is essentially restricted to

using simulated data, primarily due to the lacking of ”ground truth” – the ancestral

networks – for real PPI network data. On the other hand, although evolutionary

models are mainly used to explain how the networks evolve from an ancient version

to what they currently are, by going back in time, namely ”removing” edges from the

current networks, it would be also useful, probably even more so, to let us ”add” edges,

i.e., to make prediction of de novo interactions.

Meanwhile, some attempts at de novo interaction prediction based on PPI net-

work topology have been made, using techniques that can be loosely categorized as
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”node neighborhood” [99, 16, 100]: assign a likelihood score to any candidate interac-

tion – a pair of non-connected proteins in a PPI network – based on the topological

properties of neighboring nodes. It is known that these methods perform poorly when

the networks are sparse and noisy [16]. Higham et al. [33] suggest that PPI net-

works may have a geometric random structure. And most recently, Zhu et al. [103]

further support the hypothesis of geometric random structure through recovering the

PPI network by geometric embedding. Moreover, geometric embedding based methods

[53, 17, 16] are demonstrated to be helpful for de-noising PPI networks. Although the

embedding based methods are rooted in the notion that a PPI network lies on a low

dimensional manifold shaped in a high-dimensional space whose topology is determined

by the constraints imposed on the protein interactions through biological evolution, no

evolutionary models are explicitly invoked.

In this chapter, we develop a novel method that combines evolutionary models

and geometric embedding to make prediction of de novo protein interactions in a PPI

network. The key idea of our method is to apply an evolutionary model onto a partial

PPI network (with some edges reserved for testing) and embed the evolved network into

a geometric space, then to predict new interactions based on Euclidean distance in that

geometric space. The cross-validation using human PPI network and yeast PPI network

data indicates that the invocation of appropriate evolutionary model can increase the

accuracy of PPI prediction measured by ROC score by up to 14.6%, as compared to

a baseline without using evolutionary information. Our approach also provides means

for assessing evolutionary models on real PPI network data. The results show that

our modified evolutionary model - combining a gene duplication/neofunctionalization

model and scale-free model - has a better fitness and prediction efficacy for these two

PPI networks.
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3.2 Methods and data

3.2.1 Overview

A PPI network can be conveniently represented as a graph G = (V,E) with V

nodes (proteins) and E edges (interactions). G is defined by the adjacency matrix A

with V × V dimension:

ai,j =

 1, if(i, j) ∈ E

0, if(i, j) /∈ E
(3.1)

where i and j are two nodes in the nodes set V , and (i, j) represents an edge between

i and j, (i, j) ∈ E. The graph is called connected if there is a path from any nodes to

any other nodes in this graph. The real PPI networks are usually disconnected due to

current incompleteness or biological features, but a maximum connected component

that includes most of the nodes and edges can be found. For example, the yeast PPI

dataset obtained from DIP (Release 20140117) [79] has 5120 proteins among which

5055 proteins belong to the maximum component. In order to avoid the problem of

spatial overlap that is caused by embedding disconnected components, this paper only

takes into consideration the maximum connected component.

The flow of our algorithm is generally illustrated in Figure 3.1. Given a PPI

network, we first find the maximum connected component and its minimum spanning

tree (MST) by Prim algorithm [72]. The MST is not unique given all the edges’

weights are equal to 1. Then MST is used as the training sub-network. The rest of

edges that are not in the MST will be used as a testing set to evaluate the performance

of the predictions. Based on the training sub-network, the distances between all pair of

nodes can be obtained to form a distance matrix. In typical embedding methods, the

distance is the shortest path between node pairs in the minimum spanning tree, which

is also called ”Minimum Curvilinearity” that proposed by the work of Cannistraci et al.

[17, 16]. In this work, we propose a new ”distance” called evolutionary distance, as we

hypothesize that, through evolutionary analysis we can get a more complete training

sub-network based on the minimum spanning tree. After applying the evolutionary

model, the evolved training sub-network is embeded into a geometric space, where
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Figure 3.1: An example to show the principle of our algorithm.(a) Ground-truth
network; (b) Maximum connected component; (c) Minimum spanning tree (training

set); (d) Evolved network (dash lines are elementary predictions based on
evolutionary analysis); (e) Distance matrix based on shortest path in MST; (f)

Distance matrix based on evolutionary distance; (g) Coordinates in geometric space;
(h) Euclidean distances in geometric space and corresponding confidence scores.

all of nodes are assigned with coordinates and the spatial distance between any node

pairs can be computed. Confidence scores are derived from various spatial distances.

Lastly, interaction prediction is made for candidate pairs based the confidences scores,

and is evaluated by comparing against the testing set. More formally, given a PPI

network with E edges, edges in the training sub-network can be represented by set

TrnE ∈ MST , and testing edge set is TstE = E − TrnE, TstE ∩ TrnE = ∅. Once

we get prediction candidate set PE, the correct prediction should be PE ∩ TstE.
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3.2.2 Network Embedding Algorithm

Multi Dimensional Scaling (MDS) [93] is a classical nonlinear dimensionality

reduction algorithm based on Euclidean distance. While the PPI network is represented

by graph without knowing the coordinates of the nodes, so instead of using MDS

directly we adopt the extension algorithm isometric feature mapping (Isomap) [88]

that based on geodesic distance. However, without considering the difference between

distance matrices, MDS and Isomap are equivalent to each other. Therefore, we choose

MDS(Isomap) embedding technique for our method. Given a set of n nodes and a

distance matrix whose elements are shortest paths between all node pairs, the basic

idea of Isomap is to find coordinates in a geometric space for all the nodes such that

the distance matrix derived from these coordinates approximates the original geodesic

distance matrix as well as possible.
More specifically, it essentially takes the following steps to accomplish the em-

bedding task.

a. Construct PPI interaction network(graph), and get the largest connected com-
ponent.

b. Compute the shortest paths of all node pairs to get matrix D.

c. Apply the double centering to D and get the symmetric, positive semi-define

matrix: A = −1

2
JD2J, J = I − n−111′, where I is the identity matrix that

has the same size as D; and 1 is a column vector with all one, and 1′ is the
transpose of 1.

d. Extract the m largest eigenvalues λ1...λm of A and the corresponding m eigen-
vectors e1 ... em, where m also means the dimensions of target geometric space.

e. Then, a m-dimensional spatial configuration of the n nodes is derived from the

coordinate matrix X = EmΛ

1

2
m , where Em is the matrix with m eigenvectors and

Λm is the diagonal matrix with m eigenvalues of A.

Besides, there are many other embedding algorithms, such as Stochastic Neigh-

bourhood Embedding (SNE) [35] and tSNE [34], Minimum Curvilinearity Embedding

(MCE), non-centered MCE (ncMCE) proposed by Cannistraci et al. [17, 16] and so

on. It is really hard to tell which one is better than others. Given the primary goal
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of our paper is to compare the prediction efficacy of different evolutionary distance

matrices and further analyze the fitnesses of different evolutionary models respect to

the real PPI networks, we only include most recent MCE [17], ncMCE [16] and method

proposed by Kuchaiev et al. [53] in our result comparison.

3.2.3 Evolutionary Distance based on Different Models

Instead of setting up the distance matrix based on shortest path between node

pairs in the minimum spanning tree [17, 16], we propose a new evolutionary distance

through analyzing the underlying evolutionary relations between node pairs. In prac-

tice, various evolutionary models may be needed for this analysis. One common mech-

anism by which PPI networks evolve is gene duplication; subsequently, another mecha-

nism named post-duplication divergence may cause the PPI network to further evolve.

Briefly, the whole evolutionary process can be described as follows: given an

ancestral PPIs network, any node (target node) may be duplicated at a certain prob-

ability; and then during the divergence process, some new connections may be formed

between the duplication node and the target node and target node’s neighbors. As

the time goes on, the PPI networks evolves to its present form. However, in our ap-

plication, the time arrow is reversed. That is, given a minimum spanning tree of a

current PPI network, it consists of all proteins already; no new proteins would be

added any more. Instead, we can infer the evolutionary relations between the exist-

ing protein pairs, for example, a protein is a duplication of its neighboring protein in

the PPI work. Inspired by the most recent evolutionary model DUNE (Gene Dupli-

cation and Neofunctionalization model) [71], for any two nodes whose shortest path

is 1 or 2 in the minimum spanning tree, they may be duplication for each other. In

this work, we analyze the evolutionary relations and compute the evolutionary dis-

tance between node pairs based on modified DUNE, named as DANEOsf in Eq. (3.2)

, where DANEOsf EvoDist(i, j) represents the evolutionary distance between nodes

(proteins) i and j, SP (i, j) represents the shortest path between nodes i and j in the

minimum spanning tree graph, deg(i) and deg(j) are the degrees for nodes i and j
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respectively, ∆(MST ) indicates the maximum degree of the minimum spanning tree,

pdup indicates the probability of interaction caused by gene duplication and divergence

(α = 0.3 in our experiments), and pneo is the probability of neofunctionalization. Dif-

ferent with the original neofunctionalization proposed by DUNE [71], we introduce the

scale-free idea into our neofunctionalization part such that, the larger the degree of a

node is, the higher the probability at which the node will initiate neofunctionlization.

Fig. 3.1 shows the whole process of our method, where panels (c) and (d) are

for the evolutionary analysis. Given a minimum spanning tree shown by Fig. 3.1(c),

take node B for example, it can be regarded as the duplication of target nodes {A, C,

D}, so there are possible connections between the duplication node B and nodes {A,

C, D, E} caused by gene duplication and divergence (red dash lines result from our

evolutionary analysis). Meanwhile, another connection, as shown by green dash line,

may be caused by neofunctionalization. After analyzing the evoluationary relations

between all node pairs, we can get the evolutionary distance matrix as Fig. 3.1(f)

shows. In other words, for any node pairs whose shortest path in MST is larger than

1, there is a predicted interaction between them if their shortest path in the evolved

network becomes equal to 1.

As mentioned earlier, since it is not known a priori which evolutionary model

best captures the underlying evolutionary mechanisms that a given PPI network has

gone through, multiple models will be deployed, and the best one is chosen as the

model that delivers the most accurate PPI prediction. In this work, we include the

following models for the evolutionary analysis: Linear Preference Attachment (LPA)
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[10] model Eq. (3.3) and Random Mutation model (RM) Eq. (3.4).

DANEOsf EvoDist(i, j) =



1, if SP (i, j) = 1

1, at pdup = α, or SP (i, j) at 1− pdup; if SP (i, j) = 2, 3

1, at pneo = (
deg(i)deg(j)

∆(MST )2
)
SP (i,j)

, or SP (i, j) at 1− pneo;

if SP (i, j) > 3

(3.2)

LPA EvoDist(i, j) =



1, if SP (i, j) = 1

1, at plpa =
1

2

deg(i)deg(j)

∆(MST )2
, or SP (i, j) at 1− plpa;

if SP (i, j) > 1

(3.3)

RM EvoDist(i, j) =


1, if SP (i, j) = 1

1, at prm = β, or SP (i, j) at 1− prm; if SP (i, j) > 1

(3.4)

3.2.4 PPI Prediction

Each protein in the PPI network is assigned spatial coordinates from the embed-

ding of the network (its distance matrix) into a geometric space by Isomap. Euclidean

distance between all protein pairs can then be computed based on the coordinates. A

threshold ε on the pairwise distance can be chosen empirically to determine whether

there is an interaction between protein pairs. Namely, if the Euclidean distance between

any two points is less than or equal to ε, there is a predicted interaction between their

corresponding proteins in PPI networks. Otherwise, there is no interaction between

them.
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However, considering the large and sparse PPI network and some noises that

might have inevitably ”survived” despite the de-noising effect of the embedding pro-

cess, we assign a confidence score to each prediction as [53] did, instead of strictly

predicting node pairs into edges (interactions) and non-edges (non-interactions) only

based on their Euclidean distance. As previously described, we divide edges (inter-

actions) of a given PPI network into the training set (edges in MST) and testing set

(edges not in MST). The following two probability density functions: p(dist|edge) and

p(dist|nonedge) can be learned based on the PPI data. We use an Expectation Maxi-

mization (EM) algorithm [13] to construct these two density functions that containing

maximum likelihood estimates of the parameters in a Gaussian mixture model.

p(dist|edge) =
k∑
i=1

πe,iEG(dist, µe,i, σ
2
e,i) (3.5)

p(dist|nonedge) =
k∑
i=1

πne,iNEG(dist, µne,i, σ
2
ne,i) (3.6)

The density distributions p(dist|edge) and p(dist|nonedge) are computed by Eq. (3.5)

and Eq. (3.6) respectively. Eq. (3.5) and Eq. (3.6) are linear combinations of k

Gaussian distributions, where k is the number of Gaussian components in the linear

mixture model, µe,i and σ2
e,i are means and variance for edge Gaussian component

i, µne,i and σ2
ne,i are for nonedge Gaussian component i. In our experiments k was

selected to be 3, since we observed there were at most 3 modes for the histograms

corresponding to the densities of p(dist|edge) and p(dist|nonedge). Using Bayes’ rule

we can compute the posterior probability of edge and nonedge given a distance. The

computing methods for edge and nonedge are shown by Eq. (3.7) and Eq. (3.8), where

p(edge) and p(nonedge) represent the fraction estimation of edges and nonedges in the

network.

p(edge|dist) =
p(dist|edge)p(edge)

p(dist)
(3.7)

p(nonedge|dist) =
p(nondist|edge)p(nonedge)

p(dist)
(3.8)
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Table 3.1: PPI Network Information

Species Nodes Edges Nodes(MaxComp) Edges(MaxComp) TrnE TstE CdtE

Yeast 5,119 22,637 5,055 22,285 5,054 17,231 12,768,931
Human 9,673 39,240 9,270 18,459 9,269 9,190 42,952,546

Finally, the confidence score of predicted interaction between nodes i and j can be

given by Eq. (3.9). Based on that, we can draw ROC curves to compare the prediction

efficacies among different evolutionary models.

Si,j =
p(edgei,j|disti,j)

p(edgei,j|disti,j) + p(nonedgei,j|disti,j)
(3.9)

3.2.5 Data

We use yeast and human PPI networks downloaded from DIP (Release 20140117)

[79] and HPRD (Release 9) [50] to test our algorithm. The detail information of these

two datasets is shown in Table 3.1. Obviously, PPI networks of yeast and human are

very large and sparse, especially serious for human PPI network that includes 19,599

nodes while only 39,240 known interactions. The maximum connected component of

human PPI network only has 9,270 proteins, which is less than half of total. For yeast

PPI network, the maximum connected component includes most of the network’s nodes

and edges. For these two data sets, PPI prediction here means that we need to find

out the TstE (true interactions) from all the candidate interactions (CdtE). Given

the ratios of TstE to CdtE for yeast and human data sets are very small, it makes the

prediction task very difficult, especially for human.

3.3 Results and Discussion

3.3.1 Embedding Dimension

We carry out experiments to demonstrate whether the independent variable,

i.e., the dimension of the geometric space, would affect predicting efficacy. We embed

the evolved training sub-network of the yeast PPI network into an n-dimensional (n =

2, 3, 4, 5, 6, 7) geometric space, then use the testing edge set TstE to evalulate the
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Dimen=2, AUC(0.7288)
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Figure 3.2: ROC curves of different embedding dimension.

prediction efficacy. As shown in Fig. 3.2, dimension can affect the performance, though

somewhat slightly: the ROC score grows slowly, from 0.7288 to 0.7746, as dimension

increases, and begin to decrease when dimension reaches 7. Therefore, in order to

strike a balance between computational cost and prediction efficacy, dimension 5 was

chosen to do the following experiments.

3.3.2 Evolutionary Analysis and Interaction Prediction for Real PPI Net-

works

As mentioned in the method section, our method consists of two prediction

stages: elementary prediction based on evolutionary analysis and final prediction based

on Euclidean distance. To make a comprehensive comparison, we apply our evolution-

ary distance based embedding (EDE) algorithm to the three evolutionary distance

matrices (DANEOsf, LPA and RM) to compare their prediction efficacy; Moreover, we

use the minimum spanning tree based shortest path matrix (SP) as an input to the

minimum curvilinear embedding algorithms MCE-MDS, MCE-SVD and ncMCE-SVD

(Multidimensional Scaling, Singular Value Decomposition and None-centered Singular
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Value Decomposition versions) proposed by Cannistraci et al. [17, 16], and the embed-

ding method proposed by Kuchaiev et al. [53]. As mentioned in [16], the basic idea of

the embedding method adopted by Kuchaiev et al. [53] is equivalent to Isomap [88]. In

other word, it is quite similar to MCE-MDS if we use SP as the input distance matrix.

However, given the software of Kuchaiev et al. [53] is independently implemented, we

include it in our comparison by using the software directly. As shown in Table 3.1, our

experiments use 17,231 interactions as testing set and only 5,054 interactions as the

training set for yeast, and 9,190 interactions as the testing set and only 9,269 as the

training set for human PPI network.

To clearly show the results of different methods and input distance matrices, as

shown in the Table 3.2 and Fig. 3.3∼3.7, we name each result in the format of AAA-

BBB(CCC), where AAA indicates the method name, BBB indicates the embedding

techniques without considering the difference of input matrices and CCC indicates the

input distance matrix. For the results of yeast PPI prediction, as illustrated in Fig.

3.3, the DANEOsf based prediction EDE-MDS(DANEOsf) has the best ROC curve

and highest ROC score that reaches 0.7867. The ROC score of SP based prediction

for MCE-MDS, MCE-SVD ncMCE-SVD and Kuchaiev are 0.7668, 0.6851, 0.7369 and

0.6617 respectively. However, EDE-MDS(LPA) and EDE-MDS(RM) are significantly

less or almost no predictive power; especially for EDE-MDS(RM), it only has a ROC

score of 0.5041, and EDE-MDS(LPA)’s ROC score is 0.5859. This means that poor

evolutionary models bear no useful information but a lot of noise, and consequently lead

to get poor predictions. Moreover, compare with the traditional method (Kuchaiev)

[53] whose ROC score is 0.6864, our DANEOsf based prediction gets a remarkable

improvement with 0.1003 (14.6%) increase on ROC score.

Fig. 3.4 shows the ROC curves for the human PPI network. Because of its

significantly larger size and sparsity, the performance for the human PPI network is

generally not as good as that of yeast. Still, it can be seen clearly that our DANEOsf

based prediction EDE-MDS(DANEOsf) gets high ROC score of 0.6979. Especially,
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Figure 3.3: ROC curves of interaction prediction for Yeast.

when false positive rate FPR ≤ 0.2 as shown by the dash line in Fig. 3.4, our EDE-

MDS(DANEOsf) shows a clear advantage over other models.

However, in Fig. 3.4, the ROC score of ncMCE-SVD(SP) is even higher than

that of our EDE-MDS(DANEOsf). Given the ROC socre of ncMCE-SVD(SP) is obvi-

ous lower than that of our EDE-MDS(DANEOsf) in Fig. 3.3 for yeast PPI network, we

believe the performance of various embedding techniques may be sensitive to the dif-

ference PPI networks. So we make an extra comparison by using non-centered SVD as

the embedding technique for our DANEOsf evolutionary distance matrix, we name the

result as ncEDE-SVD(DANEOsf). The comparison between ncEDE-SVD(DANEOsf)

and ncMCE-SVD(SP) is shown in Fig. 3.5. Obviously, the ncEDE-SVD(DANEOsf)

has higher ROC score and gets an improvement with 5.4% increase on ROC score.

Overall, we have demonstrated that our method provides a useful tool at the

network level to make de novo PPI prediction for both yeast and human PPI net-

works To compare these three methods in more detail, 15 repeated experiments of

PPI prediction, involving all the steps described in the algorithm EDE in Fig. 3.1,

have been conducted for each methods; due to the equal weight assigned to edges,
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Figure 3.4: ROC curves of interaction prediction for Human.
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Figure 3.5: Extra comparison between ncECE-SVD(DANEOsf) and
ncMCE-SVD(SP) on interaction prediction for Human.
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Table 3.2: P values of paired-sample t-Test for ROC score vectors

P Values
Y east Human

MCE-MDS(SP )
(AUC=0.7308)

Kuchaiev(SP )
(AUC=0.6857)

MCE-MDS(SP )
(AUC=0.6430)

Kuchaiev(SP )
(AUC=0.6609)

Y east
EDE-MDS(DANEOsf)

(AUC=0.7520)

0.0237 5.1684e-09 − −

Human
EDE-MDS(DANEOsf)

(AUC=0.6835)

− − 5.2605e-10 7.8320e-07

each experiment may get a different minimum spanning tree as the training network.

In the 15 repetitions, only MCE-MDS(DANEOsf), MCE-MDS(SP) and Kuchaiev(SP)

are included. For one reason, it has been demonstrated that the performance of dif-

ferent embedding algorithms are sensitive to different PPI networks. A fair compari-

son among various distance matrices should be based on same embedding techniques

(MDS). For another, as shown in Fig. 3.3 and Fig. 3.4, the three ROC scores re-

spectively obtained by EDE-MDS(DANEOsf), MCE-MDS(SP) and Kuchaiev(SP) are

quite close to each other. Fig. 3.6 and Fig. 3.7 are the box plots of ROC scores of

EDE-MDS(DANEOsf), MCE-MDS(SP) and Kuchaiev(SP) for yeast and human PPI

prediction. It clearly shows that the EDE-MDS(DANEOsf) performs stably and bet-

ter than MCE-MDS(SP) and Kuchaiev(SP). Moreover, we conducted paired-sample

t-Test by making null hypothesis that the pairwise difference between ROC score vec-

tors (EDE-MDS(DANEOsf), MCE-MDS(SP) and Kuchaiev(SP)) has a mean equal to

zero, the result of t-Test reject the null hypothesis at 5% significance level. And the P

values are shown by Table 3.2.

3.3.3 Discussion

Note that, given the incompleteness of the current PPI networks, the evaluation

of prediction may be biased, because we do not know which missing links are truly neg-

ative and which of them are undetected links or links that will appear in the future. It

is likely that the actual prediction performance may be even better than what is shown

here, as what is considered as false positives (i.e., predicted edges are not present in the
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testing set) might turn out to be true positive when the predicted interactions are later

validated by new experiments. For example, as we further validated the false positives

(threshold for confidence score is 0.8) of HPRD by using BioGRID(version 3.2.110) [84]

which is newer, the result shows 5 of false positives appeared in the BioGRID(version

3.2.110) and none of the 5 appeared in HPRD before. However, what is uncertain is

how such changes will impact on the performance of various methods; depending on

the data, it is possible that the current top performer may be outperformed by other

methods.

Currently, there is still no consensus yet with respect to topological characteris-

tics of PPI networks; while some reported scale-free [4], others did not [31], and various

duplication-divergence based evolutionary models [41, 42, 1, 71] have been proposed.

Of particular importance is that our method offers an effective way to select evolu-

tionary models that best capture the underlying evolutionary mechanisms, evaluating

the fitness of evolutionary models from the perspective of PPI prediction on real PPI

networks.

3.4 Conclusions

In this chapter, we developed a novel evolutionary analysis and PPI prediction

method that can make de novo PPI prediction using information at the network level.

We demonstrated that incorporating evolutionary information into PPI networks can

help, in some cases very significantly, improve the prediction performance as compared

with using just geometric embedding. In addition, our method offers an effective way

to select among multiple candidate evolutionary models the one that best captures

the underlying evolutionary mechanisms, as measured by the PPI prediction on real

PPI networks instead of simulated networks. The improved PPI prediction perfor-

mance may suggest that our DANEOsf evolutionary model can uncover the underlying

evolutionary mechanism for these two PPI networks better than other tested models.
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Chapter 4

INFERENCE OF PROTEIN-PROTEIN INTERACTION NETWORKS
FROM MULTIPLE HETEROGENEOUS DATA

4.1 Introduction

Reconstruction of PPI networks is a central task in systems biology, and in-

ference from multiple heterogeneous data sources offers a promising computational

approach to making de novo PPI prediction by leveraging complementary information

and the partial network structure. In this chapter, we propose a new method based on

ABC-DEP sampling method proposed in Chapter 2 and Regularized Laplacian kernel

(RL) to infer PPI networks from multiple hetergeneous data. The method uses both

topological features and various genomic kernels, which are weighted to form a kernel

fusion. The weights are optimized using ABC-DEP sampling [40]. Unlike data fusion

with genomic kernels for binary classification [56], the combined kernel in our case will

be used instead to create a regularized Laplacian kernel [28, 43] for PPI prediction.

We demonstrate how the method circumvents the issue of unbalanced data faced by

many machine learning methods in bioinformatics. One main advantage of our method

is that only a small partial network is needed for training in order to make the infer-

ence at the whole network level. Moreover, the results show that our method works

particularly well with detecting interactions between nodes that are far apart in the

network, which has been a difficult task for other methods. Tested on Yeast PPI data

and compared to two control methods, traditional regularized Laplacian kernel method

and regularized Laplacian kernel based on equally weighted kernels, our method shows

a significant improvement of over 20% increase in performance measured by ROC score.
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4.2 Methods and Data

4.2.1 Problem Definition

Formally, a PPI network can be represented as a graph G = (V,E) with V

nodes (proteins) and E edges (interactions). G is defined by the adjacency matrix A

with V × V dimension:

Ai,j =

 1, if(i, j) ∈ E

0, if(i, j) /∈ E
(4.1)

where i and j are two nodes in the nodes set V , and (i, j) represents an edge between i

and j, (i, j) ∈ E. The graph is called connected if there is a path of edges to connect any

two nodes in the graph. For supervised learning, we randomly divide the network into

three parts: connected training network Gtn = (V,Etn), validation set Gvn = (Vvn, Evn)

and testing set Gtt = (Vtt, Ett), such that E = Etn ∪ Evn ∪ Ett, and any edge in G can

only belong to one of these three parts.

A kernel is a symmetric positive definite matrix K, whose elements are defined

as a real-valued function K(x, y) satisfying K(x, y) = K(y, x) for any two proteins x

and y in the data set. Intuitively, the kernel for a given dataset can be regarded as a

measure of similarity between protein pairs with respect to the biological properties,

from which kernel function takes its value. Treated as an adjacency matrix, a kernel

can also be thought of as a complete network in which all the proteins are connected

by weighted edges. Kernel fusion is a way to integrate multiple kernels from different

data sources by a linear combination. For our task, this combination is made of the

connected training network and various feature kernels Ki, i = 1, 2, 3...n by optimized

weights Wi, i = 0, 1, 2, 3...n, which formally is defined by Eq. (4.2)

Kfusion = W0Gtn +
n∑
i=1

WiKi (4.2)

Note that the training network is incomplete, i.e., with many edges taken away and

reserved as testing examples. Therefore, our inferring task is to predict or recover the

interactions in the testing set Gtt based on the kernel fusion.

47



4.2.2 How to Infer PPI Network?

Once the kernel fusion is obtained, it will be used to make PPI inference, in

the spirit of random walk. However, instead of directly doing random walk, we apply

Reguarized Laplacian (RL) kernel to the kernel fusion, which allows for PPI inference

at the whole network level. The Regularized Laplacian kernel [43, 81] is also called

the normalized random walk with restart kernel in Mantrach et al. [60] because of the

underlying relations to the random walk with restart model [65, 90]. Formally, it is

defined as Eq. (4.3)

RL =
∞∑
k=0

αk(−L)k = (I + α ∗ L)−1 (4.3)

where L = D − A is the Laplacian matrix made of the adjacency matrix A and

Algorithm 3 PPI Inference

Input: RL← Regularized Laplacian prediction kernel
Gtn ← training network
Gvn ← validation set
Gtt ← testing set
K ← feature kernels

Output: Inferred network
1: W opt ← ABC-DEP(Gtn, Gvn, RL,K)

2: OPT-K← W opt
0 Gtn +

n∑
i=1

W opt
i Ki // OPT-K is the optimal kernel fusion based on

optimal weights
3: RLOPT-K ← RL(OPT-K) // Apply RL model to the kernel fusion
4: Rank RLOPT-K and infer Gtt

the degree matrix D; and 0 < α < ρ(L)1 where ρ(L) is the spectral radius of L.

Here, we use kernel fusion in place of the adjacent matrix, so that various feature

kernels in Eq. (4.2) are incorporated in influencing the random walk with restart on

the weighted networks [6]. With the regularized Laplacian matrix, no random walk is

actually needed to measure how ”close” two nodes are and then use that closeness to

infer if the two corresponding proteins interact. Rather, RLK is the inferred matrix,

and is interpreted as a probability matrix P in which Pi,j indicates the probability of

an interaction for protein i and j. Algorithm 3 shows the general steps to infer PPI
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Figure 4.1: An example to show the inference process. The example comprises of a
small module in the DIP yeast PPI network, which consists of protein P25358 (ELO2,

Elongation of fatty acids protein 2) and its 1 ∼ 3 hops away neighbors. The kernel
fusion and the regularized Laplacian are shown as heatmap. The lighter a cell is, the

more likely the corresponding proteins interact.

network from a optimal kernel fusion. Fig. 4.1 contains a toy example to show the

process of inference, where both the kernel fusion and the regularized Laplacian are

shown as heatmap. The lighter a cell is, the more likely the corresponding proteins.

However, to ensure good inference, it is important to learn optimal weights for Gtn and

various Ki to build kernel fusion Kfusion. Otherwise, given the multiple heterogeneous

kernels from different data sources, the kernel fusion without optimized weights is likely

to generate erroneous inference on PPI.

4.2.3 ABC-DEP Sampling Method for Learning Weights

In this work we revise the ABC-DEP sampling method [40] to optimize the

weights for kernels in Eq. (4.2). ABC-DEP sampling method, based on approximate

Bayesian computation with differential evolution and propagation, shows strong ca-

pability of accurately estimating parameters for multiple models at one time. The

parameter optimization task here is relatively easier than that in [40] as there is only

one RL based prediction model. Specifically, given the connected training network Gtn

and N feature kernels in Eq. (4.2), the length of the particle in ABC-DEP would be
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Algorithm 4 ABC-DEP

Input: Gtn, Gvn, RL,K
M ← iteration times
Np ← particles

Output: W opt

1: while t ≤M do
2: if t = 1 then
3: Initialize Np particles, each particle contains weights Wi, 0 < Wi < 1, i =

0, 2, 3...n for training network and n-1 feature kernels
4: Pt, It ← {P i, I i}Np

i=1 // P i is a particle, I i is the weight or importance of P i.
Pt, It represents the tth generation of particles and weights.

5: else
6: {Pt, It}Np

i=1 ← Sampling((Pt−1, It−1))
7: end if
8: (Pt+1, It+1)← DEP (Pt, It, Gtn, Gvn, RL,K)
9: t← t+ 1

10: end while
11: Normalize(P, I)
12: W opt ← P i if I i = max(I)

N + 1, where particle can also be seen as a sample including the N + 1 weight val-

ues. As mentioned before, the PPI network is divided into three parts: the connected

training network Gtn, validation set Gvn and testing set Gtt. To obtain the optimal

particle(s), a population of particles with size Np is intialized, and ABC-DEP sampling

is run iteratively until a particle is found in the evolving population that maximizes

the AUROC of inferring training network Gtn, validation set Gvn. The validation set

Gvn is used to avoid over-fitting as the algorithm converges. Algorithm 4 shows the

detailed sampling process.

Algorithm 4 is the main structure in which a population of particles with random

weights is initialized. Given the particle population, Algorithm 5 samples through

the parameter space for good particles and assigns them weights according to the

predicting quality of their corresponding kernel fusion Kfusion. We accept or reject

a new candidate particle based on Similuted Annealing method [52]. Through the

evolution process, bad particles will be filtered out and good particles will be kept

for the next generation. We repeat this process until the algorithm converges. The
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Algorithm 5 DEP

Input: Gtn, Gvn, RL,K,Np

Output: P, I
1: for i = 1 to Np do
2: Randomly select P f , P j, P k where i 6= j 6= k 6= f

// P i is the target particle, P f , P j and P k are three randomly selected particles.
P i.θ, P j.θ, P k.θ and P f .θ represent particles’ parameter vectors that consist of
weights for feature kernels.

3: if P i.θ = P j.θ = P k.θ = P f .θ then
4: Zi ← Propagation(P i)
5: else
6: Zi ← DifferentialEvolution(P i, P j, P k, P f )
7: end if
8: end for
9: for i = 1 to Np do

10: r′Gtn
, r′Gvn

= Inference(RL,Zi, K,Gtn, Gvn)
11: r′ = r′Gtn

+ r′Gvn
// In the Inference function, particle Zi is used to weight

kernels in K to get kernel fusion Kfusion. r′Gtn
, r′Gvn

represent results (AUROC)
of recovering Gtn and Gvn based on Kfusion respectively

12: rGtn , rGvn ← Inference(RL,P i, K,Gtn, Gvn).
13: r ← rGtn + rGvn

14: if rand(0, 1) < e
r′−r
T (t) then

15: P i ← Zi, I i ← I i ∗ β
α−r′

16: else
17: P i ← P i, I i ← I i ∗ β

α−r
18: end if
19: end for
20: Normalize(P, I)
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optimal particle is used to build kernel fusion Kfusion for PPI prediction.

4.2.4 Data and Kernels

We use yeast PPI networks downloaded from DIP database (Release 20150101)

[79] to test our algorithm. Notably, some interactions without Uniprotkb ID have been

filtered out in order to do name mapping and make use of genomic similarity kernels

[56]. As a result, the PPI network contains 5,093 proteins and 22,423 interactions, from

which the largest connected component is used to serve as golden standard network. It

consists of 5,030 proteins and 22,394 interactions. Only tens of proteins and interactions

are not included in the largest connected component, which makes the golden standard

data almost as complete as the original network. As mentioned before, the golden

standard PPI network is divided into three parts that are connected training network

Gtn, validation set Gvn and testing set Gtt, where validation set Gvn is used to find

optimal weights for feature kernels and testing set Gtt is used to evaluate the inference

capability of our method.

Six feature kernels are included in this study and the following list is about the

detailed information of these kernels.

Gtn: Gtn is the connected training network that provides connectivity information. It

can also be thought of as a base network to do the inference.

KJaccard [45]: It measures the similarity of protein pairs i, j in term of neigbors(i)∩neighbors(j)
neighbors(i)∪neighbors(j) .

KSN : It measures the total number of neighbors of protein i and j, KSN = neighbors(i)+

neighbors(j).

KB [56]: It is a sequence-based kernel matrix that is generated using the BLAST [5].

KE [56]: This is a gene co-expression kernel matrix constructed entirely from microar-

ray gene expression measurements.

KPfam [56]: This is a generalization of the previous pairwise comparison-based matri-

ces in which the pairwise comparison scores are replaced by expectation values derived

from hidden Markov models (HMMs) in the Pfam database [83].

All these kernels are normalized to the scale of [0, 1] in order to avoid bias.
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Figure 4.2: The converging process of ABC-DEP samping that used to obtain
optimal weights.

4.3 Results and Discussion

4.3.1 Inferring PPI network

To show how well our method can infer PPI network from the kernel fusion, we

make the task challenging by randomly dividing the golden standard yeast PPI network

into following three parts: the connected training network Gtn has 5,030 nodes and

5,394 edges, the validation set Gvn has 1,000 edges, and the testing set Gtt has 16,000

edges. This means that we need to infer and recover a large number of testing edges

based on the kernel fusion and a small validation set. Firstly, we check the converging

process of finding the optimal weights that used to combine feature kernels, which is

shown by the Fig. 4.2. It clearly shows that when the AUC of predicting the training

network Gtn reaches to 1 quickly, but the AUC of predicting the validation set Gvn is

still in a upward trend. So Gtn alone cannot guarantee the optimality of the weights

when the algorithm converges, which is the reason the validation set Gvn is used. After

several iterations, the ABC-DEP algorithm is converged when both AUCs have become

steady.
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With the optimal weights obtained from ABC-DEP sampling, we build the

kernel fusion Kfusion by Eq. (4.2). PPI network inference is made with RL kernel(4.3).

The performance of inference is evaluated by how well the testing set Gtt is recovered.

Specifically, all node pairs are ranked in decreasing order by their edge weights in the

RL matrix, and edges in the testing set Gtt are the labeled as positive and node pairs

with no edges in G are labeled as negative. A ROC curve is plotted for true positive v.s.

false positives, by running down the ranked list of node pairs. Fig. 4.3 shows the ROC

curves and AUCs for three PPI network inferences: RLOPT-K, RLGtn and RLEW-K,

where RLOPT-K indicates the RL based PPI inference is from kernel fusion that built

by optimal weights, RLGtn indicates RL based PPI inference is solely from the training

network Gtn, and RLEW-K represents RL based PPI inference is from kernel fusion

built by equal weights, e.g. wi = 1, i = 0, 1...n. Additionally, Gset ∼ n indicates there

is n number of edges in the set Gset, e.g. Gtn ∼ 5394 means the connected training

network Gtn contains 5,394 edges. As shown by Fig. 4.3, the PPI reference RLOPT-K

based on our method significantly outperforms the other two control methods, with a

20% increase over RLGtn and a 23.6% over RLEW-K in term of AUC. It is noted that

the AUC of PPI inference RLEW-K based on the equally weighted built kernel fusion

is even worse than that of RLGtn based on a really small training network. It means

there should be a lot of noises if we just naively combine different feature kernels to do

PPI prediction. Our method provides an effective way to make good uses of various

features for improving PPI prediction performance.

4.3.2 Effects of the Training Data

Usually, given a golden standard data, we need to retrain the prediction model

for different division of training set and testing set. However, if optimal weights have

been found for building kernel fusion, our PPI network inference method enable us

to train the model once, and do prediction or inference for different testing sets. To

demonstrate that, we keep the two PPI inferences RLOPT-K and RLEW-K obtained

before (in last section) unchanged, and evaluate the prediction ability for different
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Figure 4.3: ROC curves of predicting Gtt ∼ 16000 by RLGtn∼5394, RLOPT-K and
RLEW-K.

testing sets. We also examine how performance is affected by sizes of various sets.

Specifically, while the size of training network Gtn for RLGtn increases, sizes of RLOPT-K

and RLEW-K are kept unchanged. Therefore, we design several experiments by dividing

the golden standard network into Gi
tn and Gi

tt, i = 1, ..., n, and building PPI inference

RLGi
tn

to predict Gi
tt for every time. To make comparison, we also use RLOPT-K and

RLEW-K to predict Gi
tn. Fig. 4.4 shows the ROC curves of predicting Gtt ∼ 15000 by

RLGtn∼7394, RLOPT-K and RLEW-K. Fig. 4.5, Fig. 4.6 and Fig. 4.7 show similar results

but just for different Gtn and Gtt sets. As shown by the Fig. 4.4, Fig. 4.5, Fig. 4.6 and

Fig. 4.7, RLOPT-K trained on only 5,394 golden standard edges still performs better

than the control methods that employ significantly more golden standard edges.

4.3.3 Detection of Interacting Pairs Far Apart in the Network

It is known that the basic idea of using random walk or random walk based

kernels [90, 58, 6, 28] for PPI prediction is that good interacting candidates usually

are not faraway from the start node, e.g. only 2,3 edges away in the network. Con-

sequently, the testing nodes have been chosen to be within a certain distance range,
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Figure 4.4: ROC curves of predicting Gtt ∼ 15000 by RLGtn∼7394, RLOPT-K and
RLEW-K.
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Figure 4.5: ROC curves of predicting Gtt ∼ 14000 by RLGtn∼8394, RLOPT-K and
RLEW-K.
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Figure 4.6: ROC curves of predicting Gtt ∼ 13000 by RLGtn∼9394, RLOPT-K and
RLEW-K.
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Figure 4.7: ROC curves of predicting Gtt ∼ 12000 by RLGtn∼10394, RLOPT-K and
RLEW-K.
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Figure 4.8: ROC curves of predicting G
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tt by RLGtn∼6394, RLOPT-K and

RLEW-K.

which largely contributes to the good performance reported by many network-level

link prediction methods. In reality, however, a method that is capable and good at

detecting interacting pairs far apart in the network can be even more useful, such as

in uncovering cross talk between pathways that are not nearby in the PPI network.

To investigate how our proposed method performs at detecting faraway interac-

tions, we still use RLGtn∼6394, RLOPT-K and RLEW-K for inferring PPIs, but we select

node pairs (i, j) that satisfy dist(i, j) > 3 given Gtn ∼ 6394 from Gtt as new testing

set and name it G
(dist(i,j)>3)
tt . Fig. 4.8 shows that RLOPT-K has not only a significant

margin over the control methods in detecting long-distance PPIs but also maintains

a high ROC score of 0.8438 comparable to that of all PPIs. In contrast, RLGtn∼6394

performs poorly and worse than RLEW-K, which means the traditional RL kernel based

on adjacent training network alone cannot detect faraway interactions well.

4.3.4 Analysis of Weights and Efficiency

As the method incorporates multiple heterogeneous data, it can be insightful

to inspect the final optimal weights. In our case, the optimal weights are 0.8608,
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0.1769, 0.9334, 0, 0.0311, 0.9837, respectively for feature kernels Gtn, KJaccard, KSN ,

KB, KE and KPfam. These weights indicate that KSN and KPfam are the predominant

contributors to PPI prediction. This observation is consistent with the intuition that

proteins interact via interfaces made of conserved domains [23], and PPI interactions

can be classified based on their domain families and domains from the same family tend

to interact [44, 66, 12]. Although the true strength of our method lies in integrating

multiple heterogeneous data for PPI network inference, the optimal weights can serve

as a guidance to select most relevant features when time and resources are limited.

Lastly, despite of the common concern of time efficiency with methods based on

evolutionary computing, the issue is mitigated in our case. In our experiments, only

a small number of particles, 150 to be exact, is needed for the initial population for

ABC-DEP sampling. Also, as shown in the Fig. 4.2 our ABC-DEP algorithm is quickly

converged, within 10 iterations. Moreover, since the PPI inference from RLOPT-K is

shown to be less sensitive to the size of training data, only 5,394 gold standard edges,

less than 25% of the total number, are used. And we do not need to retrain the model

for different testing data, which is another time saving property of our method.

4.4 Conclusions

In this chapter we developed a novel supervised method that enables inference of

PPI networks from topological and genomic feature kernels in an optimized integrative

way. Tested on DIP yeast PPI network, the results show that our method exhibits

competitive advantages over control methods in several ways. First, the proposed

method achieved superior performance in PPI prediction, as measured by ROC score,

over 20% higher than the baseline, and this margin is maintained even when the control

methods use a significantly larger training set. Second, we also demonstrated that by

integrating topological and genomic features into regularized Laplacian kernel, the

method avoids the short-range problem encountered by random-walk based methods –

namely the inference becomes less reliable for nodes that are far from the start node of

the random walk, and show obvious improvements on predicting faraway interactions.
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Lastly, our method can also provide insights into the relations between PPIs and various

similarity features of protein pairs, thereby helping us make good use of these features.

As more features with respect to proteins are collected from various -omics studies,

they can be used to characterize protein pairs in terms of feature kernels from different

perspectives. Thus we believe that our method provides a useful framework in fusing

various feature kernels from heterogeneous data to improve PPI prediction.
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Chapter 5

PROTEIN-PROTEIN INTERACTION NETWORK INFERENCE
FROM MULTIPLE KERNELS WITH OPTIMIZATION BASED ON

RANDOM WALK BY LINEAR PROGRAMMING

5.1 Introduction

In Chapter 4 we proposed a new method based on ABC-DEP sampling method

proposed in Chapter 2 and Regularized Laplacian kernel (RL) to infer PPI networks

from multiple hetergeneous data. Although the optimal weights obtained by ABC-

DEP for multiple hetergenesou data can help us remarkably improve the prediction

performance, how to quickly learn weights remains a challenge. In this chapter, we de-

velop a method to infer de novo PPIs by combining multiple data sources represented

in kernel format and obtaining optimal weights based on random walk over the existing

partial network. Our proposed method utilizes Baker algorithm and the training data

to construct a transition matrix which constrains how a random walk would traverse

the partial network. Multiple heterogeneous features for the proteins in the network,

including gene expression and Pfam domain profiles, are then combined into the form

of a weighted kernel, which provides a new ”adjacency matrix” for the whole network

but is required to comply with the transition matrix on the part of the training subnet-

work. This requirement is met by adjusting the weights to minimize the element-wise

difference between the transition matrix and the weighted kernel. The minimization

problem is solved by linear programming. The weighted kernel is then transformed to

Regularized Laplacian(RL) kernel to infer missing or new edges in the PPI network.

The results on synthetic data and real data from Yeast show that the accuracy of

PPI prediction measured by AUC is increased by up to 19% as compared to a control

method without using optimal weights. Moreover, the weights learned by our method
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Weight Optimization by Linear Programming (WOLP) are very consistent with that

learned by sampling, and can provide insights into the relations between PPIs and

various feature kernels, thereby improving PPI prediction.

5.2 Methods

5.2.1 Problem Definition

Formally, a PPI network can be represented as a graph G = (V,E) with V

nodes (proteins) and E edges (interactions). G is defined by the adjacency matrix A

with V × V dimension:

A(i, j) =

 1, if(i, j) ∈ E

0, if(i, j) /∈ E
(5.1)

where i and j are two nodes in the nodes set V , and (i, j) represents an edge between

i and j, (i, j) ∈ E. The graph is called connected if there is a path of edges to connect

any two nodes in the graph. Given many PPI networks are not connected and has many

connected component with various size, we select a large connected component (e.g.

largest connected component) as golden standard network to do supervised learning,

we divide the golden standard network into three parts: connected training network

Gtn = (V,Etn), validation set Gvn = (Vvn, Evn) and testing set Gtt = (Vtt, Ett), such

that E = Etn ∪ Evn ∪ Ett, and any edge in G can only belong to one of these three

parts.

A kernel is a symmetric positive definite matrix K, whose elements are defined

as a real-valued function K(u, v) satisfying K(u, v) = K(u, v) for any two proteins

u and v in the data set. Intuitively, the kernel built from a given dataset can be

regarded as a measure of similarity between protein pairs with respect to the biological

properties, from which kernel function takes its value. Treated as an adjacency matrix,

a kernel can also be thought of as a complete network in which all the proteins are

connected by weighted edges. Kernel fusion is a way to integrate multiple kernels from

different data sources by a linear combination. For our task, this combination is made
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of the connected training network and various feature kernels Ki, i = 1, 2, 3...n, which

formally is defined by Eq. (5.2)

Kfusion = W0Gtn +

n∑
i=1

WiKi, where Ki(u, v) =
Ki(u, v)∑
w
Ki(u,w)

(5.2)

Note that the training network is incomplete, i.e., with many edges taken away and

reserved as testing examples. Therefore, the task is to infer or recover the interactions

in the testing set Gtt based on the kernel fusion. Once the kernel fusion is obtained, it

will be used to make PPI inference, in the spirit of random walk. However, instead of

directly doing random walk, we apply regularized Laplacian (RL) kernel to the kernel

fusion, which allows for PPI inference on the whole network level. The regularized

Laplacian kernel [43, 81] is also called the normalized random walk with restart kernel

in Mantrach et al. [60] because of the underlying relations to the random walk with

restart model [65, 90]. Formally, it is defined as Eq. (5.3), where L = D − A is

the Laplacian matrix made of the adjacency matrix A and the degree matrix D, and

0 < α < ρ(L)−1 and ρ(L) is the spectral radius of L. Here, we use kernel fusion in

place of the adjacency matrix, generating a regularized Laplacian matrix RLK , so that

various feature kernels in Eq. (5.2) are incorporated in influencing the random walk

with restart on the weighted networks [6]. With the regularized Laplacian matrix,

no random walk is actually needed to measure how ”close” two nodes are and then

use that closeness to infer if the two corresponding proteins interact. Rather, RLK

is interpreted as a probability matrix P in which Pi,j indicates the probability of an

interaction for protein i and j.

RL =
∞∑
k=0

αk(−L)k = (I + α ∗ L)−1 (5.3)

To ensure good inference, it is important to learn optimal weights for Gtn and various

Ki to build kernel fusion Kfusion. Otherwise, given the multiple heterogeneous kernels

from different data sources, the kernel fusion without optimized weights is likely to

generate erroneous inference on PPI.
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5.2.2 Weight Optimization with Linear Programming (WOLP)

Given a PPI network, the probability of interaction between any two proteins is

measured in terms of how likely a random walk in the network starting at one node will

reach the other node. Here, instead of solely using the adjacency matrix A to build the

transition matrix, we integrate kernel features as edge strength. Then the stochastic

transition matrix Q can be built by:

Q(i, j) = Kfusion(i, j) (5.4)

Assuming the network is reasonably large, for a start node s, the probability distribu-

tion p of reaching all nodes via random walk in t steps can be obtained by applying

the transition matrix Q t times:

pt = Qtp0 (5.5)

where the initial distribution p0 is

p0i =

 1, if i = s

0, otherwise
(5.6)

The stationary distribution p, when letting t go to infinity, is obtained by solving the

following eigenvector equation:

p = Q p (5.7)

This stationary distribution provides constraints at optimizing the weights. For exam-

ple, the positive training examples (nodes that are closer to the start node s) should

have higher probability than the negative training examples (nodes that are far away

from s). In Backstrom et al. [6], this is used as constraint in minimizing the L2 norm of

the weights for optimal weights. In the work of Backstrom et al. [6], a gradient descent

optimization method is adopted to get optimal weights, and only the pair-wise features

for the existing edges in the network are utilized, which means Q(i, j) is nonzero only

for edge (i, j) that already exists in the training network. To leverage more information

from multiple heterogeneous sources, in our case the Q(i, j), as defined in Eq. (5.4),

are nonzero unless there is no features for edge i, j in all kernels Ka. Having many
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non-zero elements in Q makes it much more difficult for the traditional gradient descent

optimization method to converge and to find the global optima.

In this work, we propose to solve the weights optimization differently. We can

consider the random walk with restarts process shown in Eq. (5.5) as a Markov model,

with a stationary distribution p. Knowing the stationary distribution, the transition

matrix can be obtained by solving the reverse eign problem using the well-known

Metropolis algorithm or Barker algorithm. In this work, we adopt Barker algorithm

[7], which gives the transition matrix as follows.

Qb(i, j) =
pj

pi + pj
(5.8)

Now we can formulate weights optimization by minimizing the element-wise difference

between Qb and Q. Namely,

W ∗ = argmin
W

||Q−Qb||2 (5.9)

As the number of elements in the transition matrix is typically much larger than the

number of weights, Eq. (5.9) provides more equations than the number of variables,

making it an overdetermined linear equation system. This overdetermined linear equa-

tion system can be solved with linear programming using standard programs in [64, 27].

Now, in the spirit of supervised learning, given the training network Gtn and

a start node s, we calculate p′ by doing random walk that start at s in Gtn as an

approximation of p, and Qb(i, j) =
p′j

p′i+p
′
j
. Note that Qb(i, j) from Barker algorithm is

an asymmetric matrix whereas Q composed from kernel fusion is a symmetric matrix.

So, we do not need to use all equations obtained from Eq. (5.9) to calculate the

weights. Instead we can just use equations derived from the upper or lower triangle

part of the matrices Qb and Q. This reduction of number of equations will not pose an

issue as the system is overdetermined; rather this will help mitigate the issue of being

overdetermined. Specifically, as shown in Fig. 5.1, for all destination nodes V in Gtn,

namely reachable from start node s, we divide them into three subsets D, L and M ,

where D consists of near neighbors of s in Gtn with the shortest path between s and
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nodes Di satisfying d(s,Di) < ε1; and L includes faraway nodes of s in Gtn with the

shortest path between s and nodes Li satisfying d(s, Li) > ε2; and the rest of nodes are

in subset M . Then the system of equations of Eq. (5.9) is updated to Eq. (5.10), where

u < v indicates lower triangle mapping, and u > v indicates upper triangle mapping.

Start node  s: one of hubs

D node set:

L node set:

Toy network G(V, E)

! ! !!!! ! !!!M node set:

! !!!! ! !!

! !! !! ! !!

Figure 5.1: Schematic illustration of node sets D, M and L, with respect to source
node s.

W0Gtn(u, v) +
n∑
i=1

WiKi(u, v) = Qb(u, v),

if u, v ∈ D ∪ L ∧ Ki(u, v)! = 0 ∧ (u < v ∨ u > v)

(5.10)

The optimized weights W ∗ can then be plugged back into Eq. (5.4) to form an optimal

transition matrix for the whole set of nodes, and the random walk from the source

node using this optimal transition matrix hence leverages the information from multi

data sources and is expected to give more accurate prediction for missing and/or de

novo links: nodes that are most frequented by random walk are more likely, if not yet

detected, to have a direct link to the source node. The formal procedure for solving

this overdetermined linear system and inferring PPIs for a particular node is shown by

Algorithm 6.

5.2.3 PPI Prediction and Network Inference

As we discussed in introduction section, the use of random walk from a single

start node is not efficient for all-against-all prediction, especially for the large and
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Algorithm 6 Basic WOLP

Input: Gtn ← training network
s← start node
K ← feature kernels

Output: p
1: p′ ← RWR(Gtn, s) // RWR is the Random Walk with Restart algorithm [90]

2: Qb(i, j)← p′
j

p′
i+p′

j

3: W ← by solving Eq.(5.10) // W indicates the optimal weights
4: Q← by Eq.(5.2) and Eq.(5.4)
5: p← RWR(Q, s)

Algorithm 7 PPI Inference(WOLP) for the Connected PPI Network

Input: RL← Regularized Laplacian prediction kernel
G← PPI network
K ← feature kernels with same size of G

Output: Inferred network
1: {Gtn, Gvn, Gtt} ← G
2: W opt ← Supervised WOLP(Gtn, Gvn, Gtt, RL,K)

3: OPT-K←W opt
0 Gtn+

n∑
i=1

W opt
i Ki // OPT-K is the optimal kernel fusion based on weights learned

by WOLP
4: RLOPT-K ← RL(OPT-K) // Apply RL model to the kernel fusion
5: Rank RLOPT-K and infer Gtt

sparse PPI networks. Therefore, it would be of great interest if the weights learned by

WOLP based on a single start node can also work network wide. Actually, it is widely

observed that the many biological networks contain several hubs (i.e., nodes with with

high degree) [9]. Thus we extend our algorithm to all-against-all PPI inference by

hypothesizing that the weights learned based on a start node with high degree would

be utilizable by other nodes. We will verify this hypothesis by doing all-against-all PPI

inference for real PPI network.

We design a supervised WOLP version that can learn weights more accurately

for the large and sparse PPI network. Similarly, if the whole PPI network is connected,

then the golden standard network is itself; otherwise, the golden standard network

that used to do supervised learning should be a large component of the disconnected

PPI network. To do so, we divide the golden standard network into three parts:

connected training network Gtn = (V,Etn), validation set Gvn = (Vvn, Evn) and testing

set Gtt = (Vtt, Ett), such that E = Etn ∪Evn ∪Ett, and any edge in G can only belong
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Algorithm 8 Supervised WOLP

Input: Gtn, Gvn, Gtt, RL,K
Output: W opt

1: s← a start node with large degree in Gtn

2: r ← diameter of Gtn respect to the start node s
3: D ← direct neighbors of start node s
4: while r > 1 do
5: L← Vi if d(s, Vi) >= r // V is the nodes set of Gtn, d is the shortest path
6: p′ ← RWR(Gtn, s) // random walk with restarts from start node s in Gtn

7: Qb(i, j)← p′
j

p′
i+p′

j

8: W1← by solving Eq.(5.10) with upper triangle mapping
9: W2← by solving Eq.(5.10) with lower triangle mapping

10: OPT-K1←W10Gtn +
n∑

i=1

W1iKi

11: OPT-K2←W20Gtn +
n∑

i=1

W2iKi

12: R1← Inference(RL,OPT-K1, Gvn)
13: R2← Inference(RL,OPT-K2, Gvn)

// In the Inference function, RL has been applied to kernel fusion OPT-Ki to infer validation
edges Gvn. Ri represent results of inferring Gvn

14: if R1 > Ropt then
15: Ropt ← R1
16: W opt ←W1 // Ropt indicates the optimal result of inferring Gvn, W opt indicates the optimal

weights
17: end if
18: if R2 > Ropt then
19: Ropt ← R2
20: W opt ←W2
21: end if
22: r ← r − 1
23: end while
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to one of these three parts. Then we use WOLP to learn weights based on Gtn and

Gvn, and finally use Gtt to verify the prediction capability of these weights. The main

structure of our method is shown by Algorithm 7, and the supervised version of WOLP

is shown by Algorithm 8. The while loop in Algorithm 8 is used to find optimal setting

of D, L and mapping strategy(upper or lower) that can generate best weights Wopt

with respect to inferring and Gtn and Gvn.

Moreover, many existing network-level link prediction or matrix completion

methods [6, 53, 16, 96, 62] can only work well on connected PPI networks, but de-

tection of interacting pairs for disconnected PPI networks has been a challenge for

these methods. However, our WOLP method can solve the problem effectively. Be-

cause various feature kernels can connect all the disconnected components of the orig-

inally disconnected PPI network; and we believe once the optimal weights have been

learned based on the training network generated from a large connected component

(e.g. largest connected component), they can also be used to build the kernel fusion

when the prediction task scale up to the originally disconnected PPI network. To do

so, we update the Algorithm 7 to Algorithm 9 that shows the detailed process of in-

teraction prediction for disconnected PPI networks. Given an originally disconnected

network G, firstly, we learn the optimal weights by Algorithm 8 based on a large con-

nected component Gcc of G. After that, we randomly divide the edge set E of the

disconnected G into training edge set Gtn and testing edge set Gtt, and use the optimal

weights we learned before directly to linearly combine Gtn and other corresponding

feature kernels to build the kernel fusion, and finally evaluate the performance through

predicting Gtt. Here we call Gtn training edge set, because Gtn no longer needs to be

connected to learn any weights.

5.3 Results and Discussion

We examine the soundness and robustness of the proposed algorithms with use

of both synthetic and real data. Our goal here is to demonstrate that the weights
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Algorithm 9 PPI Inference(WOLP) for the Disconnected PPI Network

Input: RL← Regularized Laplacian prediction kernel
G← disconnected PPI network
K ← feature kernels with same size of G

Output: Inferred network
1: Gcc ← G // get a large connected component from G
2: {Gtn′ , Gvn′ , Gtt′} ← Gcc

3: W opt ← Supervised WOLP(Gtn′ , Gvn′ , Gtt′ , RL,K
′) // K ′ is a sub matrix of K with same size of

Gtn′

4: {Gtn, Gtt} ← G

5: OPT-K←W opt
0 Gtn+

n∑
i=1

W opt
i Ki // OPT-K is the optimal kernel fusion based on weights learned

by WOLP
6: RLOPT-K ← RL(OPT-K) // Apply RL model to the kernel fusion
7: Rank RLOPT-K and infer Gtt

obtained by our method can help build a better kernel fusion leading to more accurate

PPI prediction.

5.3.1 Experiments on Single Start Node and Synthetic Data

A synthetic scale-free network Gsyn with 5,093 nodes is generated by Copying

model [54]: Gsyn starts with three nodes connected in a triad. Remaining nodes have

been added one by one with exactly two edges for each. For instance, when a node

u is added, two edges(u, vi), i = 1, 2 between u and existing nodes vi will be added

accordingly. Node vi is randomly selected with probability 0.8, and otherwise vi is

selected with probability proportional to its current degree. The parameters we chose

is to guarantee Gsyn has similar size and density to DIP yeast PPI network [79] that

we will use to do PPI inference later. Then we build eight synthetic feature kernels

for Gsyn. The feature kernels can be classified into three categories: 3 noisy kernels, 4

positive kernels and a mixture kernel, which are defined by Eq. (5.11)

Knoise = R5093 + (R5093 + η). ∗ randdiff (J5093, Gsyn, ρi)

Kpostive = R5093 + (R5093 + η). ∗ randsub(Gsyn, ρi)

Kmixture = R5093 + (R5093 + η). ∗ randsub(Gsyn, ρi)

+(R5093 + η). ∗ randdiff (J5093, Gsyn, ρi)

(5.11)
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Where R5093 indicates a 5093 by 5093 random matrix with elements between [0, 1],

which can also be seen as background noise matrix; J5093 indicates a 5093 by 5093 all-

one matrix, randdiff (J5093, Gsyn, ρi) is used to randomly generate a difference matrix

(if (i, j) = 1 in Gsyn and (i, j) should be 0 in the difference matrix) between J5093 and

Gsyn with density ρi; randsub(Gsyn, ρi) is used to generate a subnetwork from Gsyn with

density ρi; ρi are different for each kernel; η is a positive parameter between [0, 1] and

R5093 will be rebuilt every time for each kernel.

The general process of experimenting with synthetic data is: we generate syn-

thetic network Gsyn, synthetic feature kernels K firstly, and then divide nodes V of

Gsyn into D, L and M , where D and L can be seen as training nodes, M can be seen as

testing nodes. By usingGsyn, start node s and K, we can get the stationary distribution

p based on the optimized kernel fusion KOPT = W0Gsyn(u, v) +
n∑
i=1

WiKi(u, v). Finally,

we try to prove that KOPT is better than the control kernel fusion KEW = Gsyn+
n∑
i=1

Ki

built by equal weights, if the p(M) is more similar to p′(M) based on Gsyn, as com-

pared to p′′(M) based on the control kernel fusion KEW , where p(M) indicates the

rank of stationary probabilities respect to the testing node M . We evaluate the rank

similarity between pairs (p(M), p′(M)) and (p′′(M), p′(M)) by discounted cumulative

gain (DCG) [20].

We carry out 10 experiments, each time we select one of the oldest 3 nodes

as start node, and rebuild synthetic kernel K. In Table 5.1, the results show that

DCG@20 between p(M) and p′(M) is consistently higher than that between p′′(M)

and p′(M) in all 10 experiments, indicating that the optimal weights W obtained by

WOLP can help us build optimized kernel fusion that with better prediction capability,

as compared to the control kernel fusion.

5.3.2 Experiments on Network Inference with Real Data

We use the yeast PPI network downloaded from DIP database (Release 20150101)

[79] and the high-confidence human PPI network downloaded from PrePPI database

[101] to test our algorithm.
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Table 5.1: DCG@20 of rank comparison

Repetition DCG@20(p(M), p′(M)) DCG@20(p′′(M), p′(M))

1 0.7101 0.6304
2 0.9305 0.4423
3 0.4035 0.2657
4 0.8524 0.5690
5 0.7256 0.4417
6 0.3683 0.3009
7 0.7707 0.2753
8 1.0034 0.3663
9 0.7119 0.4603
10 0.6605 0.6123

5.3.2.1 Data and Kernels of Yeast PPI Networks

For the yeast PPI network, some interactions without Uniprotkb ID have been

filtered out in order to do name mapping and make use of genomic similarity kernels

[56]. As a result, the originally disconnected PPI network contains 5,093 proteins and

22,423 interactions. The largest connected component consists of 5,030 proteins and

22,394 interactions, and is used to serve as the golden standard network. Same to the

subsection 4.2.4 in Chapter 4, six feature kernels are included in this study.

5.3.2.2 Data and Kernels of Human PPI Networks

The originally disconnected human PPI network has 3,993 proteins and 6,669

interactions, which is much sparser than the yeast PPI network. The largest connected

component that serve as the golden standard network contains 3,285 proteins and 6,310

interactions.

Eight feature kernels are included in PPI inference for the human data.

Gtn: Gtn is the connected training network that provides connectivity information. It

can also be thought of as a base network to do the inference.

KJaccard [45]: It measures the similarity of protein pairs i, j in term of neigbors(i)∩neighbors(j)
neighbors(i)∪neighbors(j) .

KSN : It measures the total number of neighbors of protein i and j, KSN = neighbors(i)+

neighbors(j).
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Table 5.2: Division of golden standard PPI networks

Species Gtn Gvn Gtt

Yeast V,E = {5, 030, 5, 394} V,E = {−, 1, 000} V,E = {−, 16, 000}
Human V,E = {3, 285, 3, 310} V,E = {−, 300} V,E = {−, 2, 700}

KB: It is a sequence-based kernel matrix that is generated using the BLAST [5].

KD: It is a domain-based similarity kernel matrix measured by the method of neigh-

borhood correlation [82].

KBP : It is a biological process based semantic similarity kernel measured by Resnik

with BMA [76].

KCC : It is a cellular component based semantic similarity kernel measured by Resnik

with BMA [76].

KMF : It is a molecular function based semantic similarity kernel measured by Resnik

with BMA [76].

5.3.2.3 PPI Inference based on the Largest Connected Component

For cross validation, the golden standard PPI network (largest connected com-

ponent) is randomly divided into three parts that are connected training network Gtn,

validation edge set Gvn and testing edge set Gtt, where Gvn is used to find optimal

weights for feature kernels and Gtt is used to evaluate the inference capability of our

method. The Table 5.2 shows detailed division for yeast and human PPI networks.

With the weights learned by WOLP and using ith hub as the start node, we build the

kernel fusion WOLP-K-i by Eq. (5.2). PPI network inference is made by RL kernel

Eq. (5.3), and named as RLWOLP-K-i, i = 1, 2, 3. The performance of inference is

evaluated by how well the testing set Gtt is recovered. Specifically, all node pairs are

ranked in decreasing order by their edge weights in the RL matrix, and edges in the

testing set Gtt are labeled as positive and node pairs with no edges in G are labeled

as negative. An ROC curve is plotted for true positive v.s. false positives, by running

down the ranked list of node pairs. To make comparison, besides the PPI inferences
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RLWOLP-K-i, i = 1, 2, 3 learned by our WOLP, we also include other two PPI net-

work inferences: RLGtn and RLEW-K, where RLGtn indicates RL based PPI inference is

solely from the training network Gtn, and RLEW-K represents RL based PPI inference

is from kernel fusion built by equal weights, e.g. wi = 1, i = 0, 1...n. Additionally,

Gset ∼ n indicates there is n number of edges in the set Gset, e.g. Gtn ∼ 5394 means

the connected training network Gtn contains 5,394 edges.

The comparisons in terms of ROC curve and AUC for yeast and human data are

shown by Fig. 5.2 and Fig. 5.3, the PPI reference RLWOLP-K-i, i = 1, 2, 3 based on our

WOLP method significantly outperforms the two basic control methods, with about

17% increase over RLGtn and about 19.6% over RLEW-K in term of AUC for the yeast

data, and about 12.7% increase over RLGtn and about 11.3% over RLEW-K in term of

AUC for the human data. It is noted that the AUC of PPI inference RLEW-K based on

the equally weighted built kernel fusion is no better or even worse than that of RLGtn

based on a really small training network, especially for the yeast data. It means there

should be a lot of noises if we just naively combine different feature kernels to do PPI

prediction.
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Figure 5.2: Yeast: ROC curves of predicting Gtt ∼ 16000 by RLGtn∼5394, RLWOLP-K-i

and RLEW-K.
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Figure 5.3: Human: ROC curves of predicting Gtt ∼ 2700 by RLGtn∼3610, RLWOLP-K-i

and RLEW-K.

Besides inferring PPI network by using weights learned based on the top three

hubs in Gtn, we also test the predicting capability of PPI inferences by using top ten

hubs as start nodes to learn the weights. We make 10 repetitions for the whole process:

generating Gtn, choosing ith, i = 1, 2, ...10 hub as start node to learn the weights, then

using these weights to build kernel fusion and finally to do the PPI inference. For the

results based on top ten hubs in each repetition, the average AUC of inferring Gtt for

yeast data and human data are shown in Table 5.3 and Table 5.4 respectively. And the

comparison shows the predicting capability of our method is consistently better than

that of RLGtn and RLEW-K for both yeast and human data.

5.3.2.4 Effects of the Training Data

Usually, given a golden standard data, we need to retrain the prediction model

for different division of training set and testing set. However, if optimal weights have

been found for building kernel fusion, our PPI network inference method enable us

to train the model once, and do prediction or inference for different testing sets. To

demonstrate that, we keep the two PPI inferences RLWOLP-K-1 and RLEW-K obtained
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Table 5.3: Comparison of AUCs for yeast PPI prediction

Rep Avg AUC(RLWOLP-K-1∼10) AUC(RLGtn) AUC(RLEW-K)

1 0.8367± 0.0134 0.7127 0.6976
2 0.7937± 0.0584 0.7768 0.7014
3 0.7802± 0.0545 0.7732 0.7009
4 0.7811± 0.0507 0.7406 0.7029
5 0.8349± 0.0301 0.7477 0.6991
6 0.8160± 0.0492 0.7180 0.7091
7 0.7670± 0.0636 0.7513 0.6992
8 0.8018± 0.0539 0.7739 0.7042
9 0.7989± 0.0552 0.7302 0.7017
10 0.8172± 0.0388 0.7387 0.6953

Table 5.4: Comparison of AUCs for human PPI prediction

Rep Avg AUC(RLWOLP-K-1∼10) AUC(RLGtn) AUC(RLEW-K)

1 0.8871± 0.0122 0.8228 0.7823
2 0.8986± 0.0144 0.8106 0.8127
3 0.8988± 0.0088 0.8216 0.8088
4 0.8955± 0.0114 0.8161 0.8142
5 0.8994± 0.0089 0.8190 0.8088
6 0.8875± 0.0182 0.7927 0.8067
7 0.8904± 0.0237 0.8302 0.8096
8 0.8978± 0.0121 0.8205 0.8153
9 0.9011± 0.0101 0.7995 0.8130
10 0.8818± 0.0281 0.8078 0.8104
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Table 5.5: Effects of training data size on prediction performance (AUC) for yeast

Gtt ∼ 15000 Gtt ∼ 14000 Gtt ∼ 13000

RLWOLP-K-1:Gtn∼5394 0.8658 - -
RLGtn∼7394 0.7931 - -
RLEW-K:Gtn∼5394 0.7519 - -
RLWOLP-K-1:Gtn∼5394 - 0.8659 -
RLGtn∼8394 - 0.8538 -
RLEW-K:Gtn∼5394 - 0.7537 -
RLWOLP-K-1:Gtn∼5394 - - 0.8659
RLGtn∼9394 - - 0.8619
RLEW-K:Gtn∼5394 - - 0.7520

before (in last section) unchanged, and evaluate the prediction ability for different

testing sets. We also examine how performance is affected by sizes of various sets.

Specifically, while the size of training network Gtn for RLGtn increases, sizes of Gtn for

RLWOLP-K-1 and RLEW-K are kept unchanged. Therefore, we design several experiments

by dividing the golden standard network into Gi
tn and Gi

tt, i = 1, ..., n, and building

PPI inference RLGi
tn

to predict Gi
tt for every time. To make comparison, we also use

RLWOLP-K-1 and RLEW-K to predict Gi
tt. As shown by the Table 5.5, for yeast data,

RLWOLP-K-1 trained on only 5,394 golden standard edges still performs better than the

control methods, even for the RLGtn that employ significantly more golden standard

edges. Similarly, for the result of human data as shown by the Table 5.6, RLWOLP-K-1

trained on only 3,310 golden standard edges still performs better than the control

method RLGtn that employ over 1,000 more golden standard edges.

5.3.2.5 Detection of Interacting Pairs Far Apart in the Network

It is known that the basic idea of using random walk or random walk based ker-

nels [90, 58, 6, 28] for PPI prediction is that good interacting candidates usually are not

faraway from the start node, e.g. only 2, 3 edges away in the network. Consequently,

the testing nodes have been chosen to be within a certain distance range, which largely

contributes to the good performance reported by many network-level link prediction

77



Table 5.6: Effects of training data size on prediction performance (AUC) for human

Gtt ∼ 2600 Gtt ∼ 2100 Gtt ∼ 1600

RLWOLP-K-1:Gtn∼3310 0.9277 - -
RLGtn∼3710 0.8359 - -
RLEW-K:Gtn∼3310 0.8590 - -
RLWOLP-K-1:Gtn∼3310 - 0.9305 -
RLGtn∼4210 - 0.8779 -
RLEW-K:Gtn∼3310 - 0.8620 -
RLWOLP-K-1:Gtn∼3310 - - 0.9338
RLGtn∼4710 - - 0.9227
RLEW-K:Gtn∼3310 - - 0.8639

methods. In reality, however, a method that is capable and good at detecting inter-

acting pairs far apart in the network can be even more useful, such as in uncovering

cross talk between pathways that are not nearby in the PPI network. To investi-
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Figure 5.4: Yeast: ROC curves of predicting G
(dist(i,j)>3)
tt by RLGtn∼6394, RLWOLP-K-1

and RLEW-K.

gate how our proposed method performs at detecting faraway interactions, we still

use RLGtn∼6394, RLWOLP-K-1 and RLEW-K for yeast data, and RLGtn∼3610, RLWOLP-K-1

and RLEW-K for human data to infer PPIs, but we select node pairs (i, j) that satisfy
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Figure 5.5: Human: ROC curves of predicting G
(dist(i,j)>3)
tt by RLGtn∼3610, RLWOLP-K-1

and RLEW-K.

dist(i, j) > 3 given Gtn from Gtt as new testing set and name it G
(dist(i,j)>3)
tt . Fig. 5.4

and Fig. 5.5 show the results of yeast and human data respectively, which demonstrate

that RLWOLP-K-1 has not only a significant margin over the control methods in detect-

ing long-distance PPIs but also maintains a high ROC scores of 0.8053 (for yeast data)

and 0.8833 (for human data) comparable to that of all PPIs. In contrast, in both Fig.

5.4 and Fig. 5.5, RLGtn performs poorly and worse than RLEW-K, which means the

traditional RL kernel based on adjacent training network alone cannot detect faraway

interactions well.

5.3.2.6 Detection of Interacting Pairs for Disconnected PPI Networks

For the originally disconnected yeast PPI network, we randomly divide the edge

set E into training edge set Gtn with 6,295 edges and testing edge set Gtt with 16,128

edges. Similarity, based on a random division, the number of edges of training edge set

Gtn and testing edge set Gtt are 3,305 and 3,364 for the originally disconnected human

PPI network. The detailed information of the originally disconnected yeast and human

PPI networks can be found in the subsection of data description. The Fig. 5.6 and Fig.
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5.7 show the predicting results of yeast and human data respectively, which indicate

RLWOLP-K-i, i = 1, 2, 3 perform steady well on inferring interactions for both yeast

and human data and are obviously better than RLEW-K. RLGtn is not included in

this comparison, because it is not feasible for prediction tasks of disconnected PPI

networks.
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Figure 5.6: Yeast: ROC curves of predicting Gtt ∼ 16128 by RLWOLP-K-1 and RLEW-K

for disconnected PPI network.

5.3.2.7 Analysis of Weights

As our method incorporates multiple heterogeneous data, it can be insightful to

inspect the final optimal weights. Therefore, we compare the average of weights learned

by WOLP to the average of weights learned from revised ABC-DEP sampling method

[40], which is more computationally demanding. For the yeast data, the Fig. 5.8

shows that these two methods produce consistent results: these weights indicate that

KSN and KPfam are the predominant contributors to PPI prediction. This observation

is consistent with the intuition that proteins interact via interfaces made of conserved

domains [23], and PPI interactions can be classified based on their domain families and

domains from the same family tend to interact [44, 66, 12]. For the human data, due to
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Figure 5.7: Human: ROC curves of predicting Gtt ∼ 3364 by RLWOLP-K-1 and
RLEW-K for disconnected PPI network.

Figure 5.8: Yeast: comparison of average weights learned by WOLP and ABC-DEP
sampling method.

the extreme sparsity of the human PPI network, limited golden standard interactions

can be included in the validation set to help optimize weights, which makes the weight

optimization problem more challenging, especially for the sampling method. Although

the result of human data that shown in Fig. 5.9 is not good as that of the yeast data,

these two methods also produce quite consistent distribution, and KSN is the most
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Figure 5.9: Human: comparison of average weights learned by WOLP and ABC-DEP
sampling method.

predominant contributor. Although the true strength of our method lies in integrating

multiple heterogeneous data for PPI network inference, the optimal weights can serve

as a guidance to select most relevant features when time and resources are limited.

5.4 Conclusions

In this chapter we developed a novel and fast optimization method using linear

programming to integrate multiple heterogeneous data for PPI inference problem. The

proposed method, verified with synthetic data and tested with DIP yeast PPI network

and PrePPI high-confidence human PPI network , enables quick and accurate inference

of PPI networks from topological and genomic feature kernels in an optimized integra-

tive way. Compared to the baseline (Gtn and EW-K), our WOLP method achieved

performance improvement in PPI prediction with over 19% higher AUC on yeast data

and 11% higher AUC on human data, and this margin is maintained even when the

control methods use a significantly larger training set. We also demonstrated that

by integrating topological and genomic features into regularized Laplacian kernel, the

method avoids the short-range problem encountered by random-walk based methods –

namely the inference becomes less reliable for nodes that are far from the start node of
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the random walk, and shows obvious improvements on predicting faraway interactions;

The weights learned by our WOLP are highly consistent with the weights learned by

sampling based method, which can provide insights into the relations between PPIs

and various similarity features of protein pairs, thereby helping us make good use of

these features. Moreover, we further demonstrated those relations are also maintained

when the golden standard network (largest connected component) scale up to the orig-

inal PPI network that consists of disconnected components. That is to say, the weights

learned based on the connected training subnetwork of the largest connected compo-

nent can also help to detect interactions for the originally disconnected PPI networks

effectively and accurately. As more features with respect to proteins are collected from

various -omics studies, they can be used to characterize protein pairs in terms of fea-

ture kernels from different perspectives. Thus we believe that our method can provide

us a quick and accurate way to fuse various feature kernels from heterogeneous data,

thereby improving PPI prediction.
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Chapter 6

COMPLETING SPARSE AND DISCONNECTED PROTEIN-PROTEIN
NETWORK BY DEEP LEARNING AND REGULARIZED

LAPLACIAN KERNEL

6.1 Introduction

Many of existing network level methods predict PPIs under the assumption that

the training network should be connected. However, that assumption greatly affects

their prediction power and limits the application area because current golden standard

PPI networks are usually very sparse and disconnected. Therefore, how to effectively

predict PPIs based on a training network that has limited interactions but a large

amount of disconnected components remains a challenge. In this chapter, we develop

novel PPI prediction method based on deep learning neural network and regularized

Laplacian kernel. Inspired by the study of network evolutionary analysis discussed in

Chapter 2, we use the neural network to implicitly simulate and guide the evolution

process of a PPI network by using rows of an ancient network as inputs and rows of

the disconnected training network as labels. Instead of simulating the evolution of the

whole network structure with the growth of nodes and edges as models discussed in

Chapter 2, we only focus on the edge evolution and assume nodes are already existing.

After the training step, an evolved contact matrix whose rows are outputs of the

neural network can be obtained. Then we can predict PPIs by applying the regularized

Laplacian kernel to the transition matrix that is built upon the evolved PPI network.

The results from cross-validation experiments show that the PPI prediction accuracies

for yeast data and human data measured as AUC are increased by up to 8.4% and

14.9% respectively, as compared to the baseline. Moreover, the evolved PPI network

can also help us leverage complementary information from the disconnected training
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network and multiple heterogeneous data sources. Tested by the yeast data with six

heterogeneous feature kernels, the results show our method can further improve the

prediction performance by up to 2%, which is very close the upper bound that is

obtained by a sampling method.

6.2 Methods and Data

6.2.1 Problem Definition

Formally, a PPI network can be represented as a graph G = (V,E) with V

nodes (proteins) and E edges (interactions). G is defined by the adjacency matrix A

with V × V dimension:

A(i, j) =

 1, if(i, j) ∈ E

0, if(i, j) /∈ E
(6.1)

where i and j are two nodes in the nodes set V , and (i, j) represents an edge between i

and j, (i, j) ∈ E. We divide the golden standard network into two parts: the training

network Gtn = (V,Etn), and testing set Gtt = (Vtt, Ett), such that E = Etn ∪ Ett,

and any edge in G can only belong to one of these two parts. The detailed process of

dividing the golden standard network is shown by Algorithm 10. We set the α (the

preset ratio of Gtn(, E) to G(, E)) less than a small value to make the Gtn extremely

sparse and with a large number of disconnected components.
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Figure 6.1: The flow chart of ENN -RL method.
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The Fig. 6.1 shows the flow chart of our method that is named as evolution

neural network based regularized Laplcian kernel (ENN-RL); and the Algorithm 11

describes the detailed training and prediction processes. We use the ENN to obtain

an evolved PPI network, and thereby building a transition matrix for the regularized

Laplacian kernel to predict PPIs. We assume the ancient PPI network already has

m proteins but no interactions, which is represented by an all-zero m × m matrix.

Then a deep learning model, the evolution neural network, is adopted to drive and

guide the ancient PPI network to evolve interactions among proteins. To guide the

evolutionary direction, we define the evolution as a supervised learning problem by

using the training network Gtn as the target/label for the evolution neural network.

Each protein is represented by the corresponding row of the matrix that contains the

interaction information for that protein. We train the evolution neural network by each

row of the ancient matrix as the input and the corresponding row of trainingAdj as

the label, where trainingAdj is the adjacent matrix of Gtn. After the training process

is completed, we build the evolved PPI network/matrix EA by the outputs of neural

network’s last layer. Based on EA, we build a transition matrix by Eq. (6.2), where

EA+ EA′ makes the transition matrix symmetric and positive semi-definite. Finally,

we apply the regularized Laplacian (RL) kernel defined by Eq. (6.3) to the transition

matrix T to get the inference matrix P , in which Pi,j indicates the probability of an

interaction for protein i and j. For Eq. (6.3), L = D−T is the Laplacian matrix made

of the transition matrix T and the degree matrix D, and 0 < β < ρ(L)−1 and ρ(L) is

the spectral radius of L.

T = sigmoid(EA′ + EA+ trainingAdj) (6.2)

RL =

∞∑
k=0

βk(−L)k = (I + β ∗ L)−1 (6.3)
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Algorithm 10 Division of Edges

Input: G← PPI network
m← The number of nodes
α← The preset ratio of Gtn(, E) to G(, E)

Output: Gtn and Gtt

1: for each node w ∈ V do
2: nb← neighbors(w) // nb is neighbor set of node w
3: nb← shuffle(nb) // Shuffle the neighbor set
4: t← length(nb) ∗ α // Set a threshold for dividing neighbors of w
5: for i = 1 to length(nb)− 1 do
6: if i < t then
7: Gtn ← Gtn ∪ (w, nb[i]) // (w, nb[i]) indicates an edge between w and nb[i]
8: else
9: if (nb[i], w) /∈ Gtn then

10: Gtt ← Gtt ∪ (w, nb[i])
11: end if
12: end if
13: end for
14: end for

Algorithm 11 ENN-RL PPI inference

Input: ENN ← Evolution neural network
RL← Regularized Laplacian prediction kernel
Gtn ← Training network
Gtt ← Testing set
m← The number of nodes

Output: Inferred interactions
1: intialAdj ← allzero(m,m) // intialAdj a m×m all-zero matrix
2: trainingAdj ← edgesToAdjMatrix(Gtn) // Transform edges into adjacency matrix
3: for i ∈ 0, ...,m− 1 do
4: inputi ← initialAdj[i][:] // inputi is ith row of initialAdj
5: labeli ← trainAdj[i][:] // labeli is ith row of trainAdj
6: ENN(inputi, labeli) // Training the evolution neural network ENN
7: end for
8: EA← allzero(m,m) // EA is a m×m all-zero matrix
9: for i ∈ 0, ...,m− 1 do

10: inputi ← initialAdj[i][:]
11: EA[i]← ENN(inputi) // EA[i] is the output of last layer of ENN given the input inputi
12: end for
13: P ← RL(sigmoid(EA+ EA′ + trainAdj)) // Get the inference matrix P based on RL
14: Rank P and infer Gtt
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6.2.2 Evolution Neural Network

The structure of the evolution neural network is shown in the Fig. 6.2, which

contains five layers including the input layer, three hidden layers and the output layer.

Sigmoid is adopted as the activation function for each neuron, and layers are connected

with dropouts. Dropouts can not only help us prevent over-fitting, but also indicate

the mutation events during the evolution process here. For specific configuration of the

neural network in our experiments, the number of neurons in the input and output layer

depends on the network size m of specific PPI data; a typical autoencoder structure

is chosen for the three hidden layers, where encoder and decoder indicate biological

devolution and evolution processes respectively; and cross entropy is used as the loss

function. It is worth noting that different with the traditional autoencoder, we did

not include the layerwise isomorphism pretraining to initial the weights for our neural

network since the inputs are all zero vectors. The neural network is implemented

by the TensorFlow library [2], deployed on Biomix cluster at Delaware Biotechnology

Institute.
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Figure 6.2: The evolution neural network ENN .
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Table 6.1: PPI Network Information

Species Proteins Interactions

Yeast 5,093 22,423
Human 9,617 37,039

Table 6.2: Division of yeast golden standard PPI interactions

α Gtn Gtn(#C) Gtn(minC, avgC,maxC) Gtt

0.25 4,061 2,812 (1, 1.81, 2,152,) 18,362
0.125 1,456 3,915 (1, 1.30, 1,006) 20,967

Gtn(#C): the number of components in Gtn
Gtn(minC, avgC,maxC): the minimum, average and maximum size of components in Gtn

6.2.3 Data

We use yeast and human PPI networks downloaded from DIP (Release 20140117)

[79] and HPRD (Release 9) [50] to train and test our method. After removing the self-

interactions, the detailed information of these two datasets are shown in the Table 6.1.

6.3 Results and Discussion

6.3.1 Experiments on Yeast PPI Data

To show how well our model can predict PPIs from the extremely sparse training

network with disconnected components, we set α, the ratio of interactions in Gtn to

total edges in G, to be less than 0.25. As shown in the Table 6.2, the Gtn has only

4,061 interactions, and contains 2,812 disconnected components, where the minimum,

average and maximum size of components are 1, 1.81 and 2,152 respectively. Based

on the Gtn, we train our model and predict the large testing set Gtt that has 18,362

interactions according to the Algorithm 11.

Then we compared our ENN-RL method to the control method ADJ-RL which

applies regularized Laplacian kernel directly to the training network Gtn. As shown in

Fig. 6.3, the AUC increase from 0.8112 for the control method to 0.8358 for ENN-RL.
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Table 6.3: AUC summary of repetitions for yeast PPI data

Methods Avg±Std (α = 0.25) Avg±Std (α = 0.125)

ENN-RL 0.8339± 0.0016 0.8195± 0.0023
ADJ-RL 0.8104± 0.0039 0.7403± 0.0083

Moreover, we make the prediction task more challenging by setting the α to be less

than 0.125, which makes the Gtn sparser with only 1,456 interactions, but 3,915 discon-

nected components; and the maximum component in Gtn only has 1,006 interactions.

The results in Fig. 6.4 shows the gap between ENN-RL ROC curve and ADJ-RL ROC

curve is obviously increased; and our ENN-RL gained %8.39 improvement in AUC. If

comparing Fig. 6.3 and Fig. 6.4, it is easy to see that the AUC of ADJ-RL decreases

by 0.055 from 0.8112 in Fig. 6.3 to 0.7557 in Fig. 6.4. However, our ENN method per-

forms stably with only 0.016 decrease in AUC. This suggests that traditional random

walk methods usually need the training network to be connected; and the prediction

performance largely depends on the size and density of the maximum connected com-

ponent. However, when the training network becomes sparse and disconnected, the

traditional random walk based methods will lose the predictive power because they

cannot predict interactions among those disconnected components. We repeated the

whole experiments up to ten times, the Table 6.3 shows the average performance with

the standard deviation. All these results show our method performs stably and effec-

tively in overcoming the limitation of traditional random walk based methods; and the

improvements are statistically significant.

6.3.2 Experiments on Human PPI Data

We further tested our method by the human PPI data downloaded from HPRD

(Release 9) [50], which is much larger and sparser than the yeast PPI network. Simi-

larly, we carried out two comparisons by setting the α to be less than 0.25 and 0.125

respectively to divide G in to training network Gtn and testing set Gtt. The detailed

information about the division can be found in the Table 6.4.
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Figure 6.3: Yeast: ROC curves of predicting Gtt ∼ 18362 with α = 0.25.
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Figure 6.4: Yeast: ROC curves of predicting Gtt ∼ 20967 with α = 0.125.

The prediction performances in Fig. 6.5 and Fig. 6.6 show our ENN-RL has

obviously better ROC curves and higher AUC than that of ADJ-RL. Especially for

the test with α = 0.125, our ENN-RL method obtains up to 14.9% improvement

for predicting 34,779 testing interactions based on a training set Gtn with only 2,260
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Table 6.4: Division of human golden standard PPI interactions

α Gtn Gtn(#C) Gtn(minC, avgC,maxC) Gtt

0.25 6,567 5,370 (1, 1.79, 3,970) 30,472
0.125 2,260 7,667 (1, 1.25, 1,566) 34,779

Gtn(#C): the number of components in Gtn
Gtn(minC, avgC,maxC): the minimum, average and maximum size of components in Gtn

interactions but 7,667 disconnected components. Similar tendency is also observed

from Fig. 6.5 and Fig. 6.6. When α is decreased from 0.25 to 0.125, the AUC of

ADJ-RL decreases by up to 0.072, while our ENN-RL only decreased by 0.021. We

also did ten repetitions as shown in Table 6.5 to demonstrate the stable performance

of the ENN-RL. All these results on human PPI data further indicate our ENN-RL

model is a promising tool to predict edges for any sparse and disconnected training

network.
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Figure 6.5: Human: ROC curves of predicting Gtt ∼ 30742 with α = 0.25.
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Figure 6.6: Human: ROC curves of predicting Gtt ∼ 34779 with α = 0.125.

Table 6.5: AUC summary of repetitions for human PPI data

Methods Avg±Std (α = 0.25) Avg±Std (α = 0.125)

ENN-RL 0.8320± 0.0012 0.8140± 0.0013
ADJ-RL 0.7795± 0.0047 0.6970± 0.0059

6.3.3 Optimize Weights for Heterogeneous Feature Kernels

Most recently, Huang et al. [39, 37] developed a method to infer de novo PPIs

by applying regularized Laplacian kernel to a kernel fusion that based on optimally

weighted heterogeneous feature kernels. To find the optimal weights, they proposed

weight optimization by linear programming (WOLP) method that based on random

walk over a connected training networks. Firstly, they utilized Barker algorithm and

the training network to construct a transition matrix which constrains how a random

walk would traverse the training network. Then the optimal kernel fusion can be

obtained by adjusting the weights to minimize the element-wise difference between the

transition matrix and the weighted kernels. The minimization problem is solved by

linear programming.
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Given a large disconnected network, although Huang et al. [39, 37] demon-

strated that the weights learned from the maximum connected component can also be

used to build kernel fusion for that large disconnected network, the weights will not be

optimal when the maximum connected component is very small compared to the orig-

inal disconnected network. As we all know that current available golden standard PPI

networks are usually disconnected and remains far from complete. Therefore, it would

be of great interest if we can obtain the transition matrix directly from these discon-

nected components, including but to limited to the maximum connected component,

and use that transition matrix to help us find the optimal weights for heterogeneous

feature kernels. To verify this idea, we use the transition matrix T obtained by Eq.

(6.2) to find the optimal weights based on the linear programming Eq. (6.4).

W ∗ = argmin
W

||(W0Gtn +
n∑
i=1

WiKi)− T ||2 (6.4)

We tested this method by the yeast PPI network with same setting in Table 6.2; and

six feature kernels are included:

Gtn: Gtn is training network with α = 0.25 or 0.125 in Table 6.2

KJaccard [45]: It measures the similarity of protein pairs i, j in term of neigbors(i)∩neighbors(j)
neighbors(i)∪neighbors(j) .

KSN : It measures the total number of neighbors of protein i and j, KSN = neighbors(i)+

neighbors(j).

KB [56]: It is a sequence-based kernel matrix that is generated using the BLAST [5].

KE [56]: This is a gene co-expression kernel matrix constructed entirely from microar-

ray gene expression measurements.

KPfam [56]: Similarity measure derived from Pfam HMMs [83].

All these kernels are normalized to the scale of [0, 1] in order to avoid bias.

To make a comprehensive analysis, we also included prediction results based

on the kernel fusion built by the approximate bayesian computation and modified

differential evolution sampling (ABCDEP) method [38], and the kernel fusion built

by equally weighted feature kernels EK for comparison. Similar to the comparison

in [39, 37], the ABCDEP and EK based results can serve as the upper bound and
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lower bound of the prediction performance. Comparisons for two settings α = 0.25

and α = 0.125 are shown by the Fig. 6.7 and Fig. 6.8 respectively. In the Fig.

6.7, the AUC of ENNlp-RL increase by up to 0.02 compared to ENN-RL, which is

obvious better than other methods and very close to the upper bound 0.8529 obtained

by ABCDEP-RL. Similarly, in Fig. 6.8, although the maximum component of Gtn has

only 1,006 and total number of training interactions is just 1,456, the ENNlp-RL still

get about 0.02 increase from the ENN-RL, which is also very close to the ABCDEP-RL.

Therefore, all these results indicate that the transition matrix T learned by our ENN

model can further improve the prediction performance by leveraging useful information

from heterogeneous feature kernels.
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Figure 6.7: Yeast: ROC curves of predicting Gtt ∼ 18362 with α = 0.25.

6.4 Conclusions

In this chapter we developed a novel method based on deep learning neural

network and regularized Laplacian kernel to predict interactions for sparse and dis-

connected PPI networks. We built the neural network with a typical auto-encoder

structure to implicitly simulate the evolution processes of PPI networks. Based on
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Figure 6.8: Yeast: ROC curves of predicting Gtt ∼ 20967 with α = 0.125.

the supervised learning using rows of assumed ancient network as inputs and rows of

sparse and disconnected training network as labels, we can obtain an evolved PPI net-

work as the outputs of the deep neural network. Then we predicted PPIs by applying

regularized Laplacian kernel to the transition matrix built upon that evolved PPI net-

work. Tested on DIP yeast PPI network and HPRD human PPI network, the results

show that our method exhibits competitive advantages over the traditional regular-

ized Laplacian kernel that based on the training network only. The proposed method

achieved significant improvement in PPI prediction, as measured by ROC score, over

8.39% higher than the baseline for yeast data, and 14.9% for human data. Moreover,

the transition matrix learned from our evolution neural network can also help us to

build optimized kernel fusion, which effectively overcome the limitation of traditional

WOLP method that needs a relatively large and connected training network to obtain

the optimal weights. Then we also tested it by the DIP yeast data with six feature

kernels, the prediction result shows the AUC can be further improved and very close

to the upper bound. Given current golden standard PPI networks are usually dis-

connected and very sparse, we believe our model will be a promising tool that can
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effectively utilize disconnected networks to predict PPIs.
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Chapter 7

CONCLUSIONS

In this dissertation, after discussing the background, related works, and moti-

vation of the PPI network study. We presented various algorithms/methods that we

have developed in advancing the state-of-the-art of network level PPI analysis and pre-

diction. In Chapter 2, we developed a novel method based on Approximate Bayesian

Computation and modified Differential Evolution algorithm (ABC-DEP) that is capa-

ble of conducting evolution model selection and parameter estimation simultaneously

and detecting the underlying evolutionary mechanisms for PPI networks more accu-

rately. In Chapter 3, we developed a novel method that combines evolutionary models

and geometric embedding to make prediction of de novo protein interactions in a PPI

network. In addition, with this method, we can evaluate the fitness of given evolution

models in terms of their prediction capacities. In Chapter 4 and 5, we proposed two PPI

network inference methods that show obvious advantages over traditional network-level

prediction methods in terms of features utilization, prediction for far-away interactions,

and demand of golden standard training data. Chapter 4 is a sampling based method

that can help us get the optimal kernel fusion with maximum prediction power; Chapter

5 is based on linear programming, which strikes a balance between the prediction power

and computational efficiency. In Chapter 6, the method based on deep learning neural

network and regularized Laplacian kernel can directly infer PPIs from disconnected

sparse training networks, which are the typical situation in our current knowledge of

interactome of various model organisms.

While these methods have been presented separately in the preceding chapters,

they were designed to inter-operate with each other synergistically as part of a system.

The Fig. 7.1 shows schematically how these parts fit together to produce a coherent
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     PPI Network

Evolution Analysis

      Network-level

     PPI Prediction

     Network Level Study of PPIs

Figure 7.1: A system of our study.

system for PPI network study. As illustrated in Fig. 7.1, through network evolution

analysis and PPI prediction/inference, more completed PPI networks will be obtained.

And this process can continue iteratively for further improvement.

Although our methods are tested by PPI networks, we believe they can be

used by researchers to analyze and study various complex networks, including, but not

limited to, biological networks, social networks and transportation networks. Based on

the methods in Chapter 2 and 3, by using existing or new evolution/growth models as

inputs, researchers can get pie charts to show predominant models for given complex

networks. It can not only predict potential connections for regional node pairs, but

also capture the overall growth process for the given networks. For our inference

methods in Chapter 4 and 5, they can effectively infer connections for sparse complex

networks through leveraging complementary information from the sparse network and

multiple heterogeneous feature kernels. Once the optimal kernel fusion is built, it can

be reusable to predict connections for any partial training network. Meanwhile, when

new feature kernels are available, researchers can also use our method to update the

optimal weights and build new kernel fusion. When the given complex network is

disconnected or feature kernels are unavailable, the method in Chapter 6 provides a
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good solution to predict connections. We believe our methods will be very helpful

to explore new applications or enhance current application performance for various

complex networks, e.g., path analysis and module detection for biological networks,

recommendation system for social networks and consumer networks, new line planning

for transportation networks and so on.

For the future work, following derivative problems would be worthwhile to in-

vestigate and study.

Parallel implementation of sampling methods. For our ABCDEP sam-

pling methods, we have used the CULAtools GPU linear algebra library perform the

matrix calculations. Although the parallel architecture greatly improved the efficiency

compared to a conventional CPU implementation, there is still a need to pursue faster

parallel implementation to meet the computational demands as networks scale up.

Application exploration. Methods in this dissertation have been developed

with a focus to effectively predict interactions for large, sparse and disconnected PPI

networks. In future, more efforts could be made to exploring applications, such as

dynamic interaction prediction, path analysis, module detection, etc.

Quick and user-friendly server. Currently, although source code of our

methods can be accessible, it requires some programming skills, which is not very user-

friendly, especially for researchers with no computer science background. Hence, it is

important to develop quick and user-friendly tools for all public users.
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