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Abstract 

 In this work, we proposed a two-stage stochastic programming model for a four-echelon supply 

chain problem considering possible disruptions at the nodes (supplier and facilities) as well as 

the connecting transportation modes and operational uncertainties in form of uncertain demands. 

The first stage decisions are supplier choice, capacity levels for manufacturing sites and 

warehouses, inventory levels, transportation modes selection,  and shipment decisions  for the 

certain periods, and the second stage anticipates the cost of meeting future demands subject to 

the first stage decision.  Comparing the solution obtained for the two-stage stochastic model with 

a multi-period deterministic model shows that the stochastic model makes a better first stage 

decision to hedge against the future demand. This study demonstrates the managerial viability of 

the proposed model in decision making for supply chain network in which both disruption and 

operational uncertainties are accounted for.   

1. Introduction and Literature Review

Recent events worldwide have caused fundamental changes in consumer behavior and supply 

chain entity dynamics. These changes on the other hand have knocked supply chain network off 

balance causing disruptions. Disruptions in supply processes pose significant threats to business 

operations1 and can lead to increased operational cost, loss of profits, and damage the company's 

reputation2. Hedging against disruption is a call for concern in the supply chain community and 
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there is evident that superior contingency planning can significantly mitigate the effects of 

disruptions. Developing a model that considers robust alternatives for supply chain is germane.  

The nature of the global market has been forcing enterprises to expand their supply chain 

network consequently making the structure more complex and more susceptible to threats in the 

form of risks and uncertainties3–5. These risks are categorized into two: operational or 

disruptive6. The operational risks are due to uncertain parameters between the supply chain 

entities. Works in the literature have addressed mainly operational uncertainties7–10. Such 

uncertainties are due to supply-demand coordination events and may result from inadequate 

coordination between supply chain entities, thus leading to imperfect information and failed 

processes. Disruption uncertainties on the other hand results from man-made/natural disaster, 

pandemics, etc. Generally speaking, the supply chain disruptions are caused by events that are 

neither planned nor anticipated. These events are external to the supply chain network and 

deforms the existing supply chain topology11,12. We argue that in order to ensure that the supply 

chain achieves a balance between the total operating cost and service level, a supply chain 

network should be designed and operated with buffers to hedge against disruptions. This way the 

supply chain network can adapt to evolving supply/demand at the operational level and manage 

uncertainty effectively. Some strategies to incorporate buffers into supply chain includes (i) 

making the supply chain more flexible by expanding capacities and increasing sourcing options 

(alternative suppliers and backup suppliers); (ii) enhancing collaborations between supply chain 

entities by sharing information to improve forecasts and using clients' locations to store extra 

inventory; and (iii) improving the network's agility by introducing product commonality and 

holding reserve inventory.  These not only help to keep supply chain functional during a 

disruption, but it also helps to prevent future delays. 
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Works of literature have pointed out the vulnerability of today's supply chains to disruptions and 

the need for a systematic analysis of supply chain vulnerability, security, and resiliency1,6,13. 

Furthermore, strategies to manage disruptions can be categorized into three main groups: 

mitigation strategies, recovery strategies and the passive acceptance approach14. The mitigation 

strategies are proactive measures and act in advance, irrespective of whether disruptions actually 

occur examples of such strategy include increasing amount of safety stock, multiple sourcing, 

capacity expansion and multimodal transportation options, while recovery strategies generally 

take actions after the occurrence of a disruption some of these strategies are alternative sourcing, 

rerouting of products, alternative inventory locations, outsourcing productions, and cooperation 

among supply chain entities. The third group accepts the risk of disruptions without any action. 

Such strategy may be appropriate when the mitigation or recovery cost outweighs their potential 

advantages.   

Broadly speaking, the review of supply chain disruption frameworks can be grouped under 

simulation approaches and mathematical programming approaches11,15. The simulation approach 

has been used to study how different supply chain entities interact, and it provides dynamic 

details and behaviors of a network over time. The decisions are made from logical rules of each 

supply chain entity. There are notable studies on simulation of supply chain network under 

disruptions16–22, these studies have given insights into best ways to manage disruptions and the 

potential benefits of such actions. Conversely, mathematical programming follows an analytical 

approach to make decisions using various optimization tools. This review focuses on the 

mathematical frameworks for supply chain models under disruption. Three dimensions are 

considered for the discussion of the mathematical frameworks: the first is the disruption 

management strategies which includes mitigation, recovery, or passive acceptance23,24. The 
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second dimension is the nature of the model’s formulation which corresponds to a Mixed Integer 

Programming (MIP) that could be linear or non-linear. The final dimension of the formulation is 

how the disruption is incorporated into the model. This could be deterministic or stochastic. In 

the deterministic formulation the disrupted entities are not considered while solving the 

optimization problem while the stochastic formulation treats the entities as random variables 

25,26. For an excellent review of literature Snyder et al 25 gave a summary for models used in the 

study of supply chain disruptions.  

In a mathematical model, the supply chain network is viewed as a set of interconnected nodes or 

supply chain entities that are connected by directed arcs or the logistic chains. Disruptions can 

either happen to the arcs or the nodes. It is worth noting the works of Sawik27–31, who developed 

an integrated approach for portfolio optimization under disruption. The stochastic programming 

model was used to integrate supplier selection, demand allocation, and customer order 

scheduling in a multi-echelon supply chain. The model was further improved by jointly 

optimizing supplier, production, and distribution. Namdar et al.32  solved a stochastic MILP and 

considered sourcing options, collaborations, and visibility as strategies. Results indicates that the 

information sharing in this case buyers’ warning capabilities plays a vital role in enhancing 

supply chain resilience. A bi-objective stochastic MILP was considered in Yoon et al.33, the 

mitigation strategies considered was supplier selection. Moreover, the authors suggested that a 

combination of upstream and downstream risk mitigation strategies should be considered with 

supplier selections rather than considering these decisions independently. Using a bi-objective 

two-stage stochastic programming model,  Torabi et al 34 developed a MILP model to address 

supplier selection and order allocation problem. To enhance the resilience level, the model 

applies several proactive strategies, suppliers’ business continuity plans, fortification of 
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suppliers, and contracting with backup suppliers. Jahani et al.35 used a two-stage MIP model to 

study the impact of capacity/inventory disruption on a supplier's cost when the supplier has 

different service agreements with customers. The model can assist suppliers in determining their 

capacity level and location, allocating capacity to customers, and negotiating service level terms. 

Lim et al 36 considered a facility location problem in the presence of random disruption, they 

investigated the impact of misestimating the disruption probability and misestimating the 

correlation degree. Results indicate that the impact of disruption is much significant. Gholami-

Zanjani et al.37 applied stochastic programming/robust optimization to study the resilient supply 

chain design and inventory decisions, considering food product-specific characteristics and 

potential disruptions. The model allows the analysis  of three resilient strategies to hedge against 

ripple effects for food supply chain network. Rezapour38 proposed a supply chain network design 

problem under competition and disruption. The model is designed to find the most profitable 

network and risk mitigation policies. Sadeghi et al.39 developed a multi-objective model for 

designing a supply chain network, considering resilience and sustainability, and used a robust 

scenario-based stochastic programming approach for potential disruption scenarios. This 

approach allows the average performance of the supply chain in each objective to improve. Azad 

et al40 studied the design of a supply chain network in the presence of random disruption in 

capacity of distribution center and transportation modes. Conditional value at risk approach was 

used to control the risk of the decisions made in the presence of disruptions. The central theme of 

the mathematical programming approaches and simulations methods used in the literature has 

been to address the disruptions in a proactive or reactive manner.  It is interesting to note that 

both strategies have its pros and cons. Interested readers are directed to the review articles by 

Kamalahmadi and  Parast 41,42,  Shekarian12,  Ivanov et al11,13, and Snyder et al25. 
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Within Process Systems Engineering (PSE), disruption has been addressed by enhancing 

manufacturing site and distribution centers’ robustness which improves the supply chain 

network's overall resiliency. To account for potential disruptions, Terrazas-Moreno et al.43 

developed a model that considers process capacity, parallel units, and intermediate storage as 

buffers for disruption. The objective is to balance capital investment with process robustness in 

the presence of uncertainty. Moreover, the expected stochastic flexibility was used to measure 

the process robustness. Using a similar robustness metric, Zhao et al.44 utilized a  bi-objective 

two-stage adaptive robust fractional programming model with decision-dependent uncertainty set 

to determine the optimal design and operating level parameters. Garcia-Herreros et al.45 

developed a framework for multicommodity supply chains with a focus on disruptions at the 

distribution centers. The model optimizes the distribution strategy in disruption situations to find 

design solutions that optimize investment and predicted distribution costs over a fixed time 

horizon. A MIP framework was developed by Ye et al.46 where the goal is to optimize 

availability in serial systems when single units have fixed probabilities of being available. This 

was extended to include a stochastic failure process by modeling failures and repairs as a 

continuous time Markov chain47.  Using a multi-objective two staged adaptive robust mixed 

integer fractional programming, Gong and You48 optimized resiliency and cost of a network 

optimizing the network topology and design capacities in the first stage and optimal operation 

level in the second stage.   

Despite the useful insights on ways supply chain can adapt to disruption situations, there are 

some shortcomings some of them are that most papers consider single source of disruptions, and 

the papers that considers multiple source of disruption focuses on nodes (supplier, facility or 

demands), address operational uncertainties, and include recovery costs in the model. Decisions 
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are made with information about future disruptions and uncertain information about the 

operational parameter. To this end, we develop a multi-product supply chain disruption model 

with uncertain demand. We improved the model developed by Badejo and Ierapetritou49 to tackle 

but operational and disruptive uncertainties simultaneously.  . In particular, the model would 

incorporate the following:  hedging against disruptions with alternative sourcing options; 

increased capacity utilization, outsourcing of products and multi-modal transportation options; 

adopting inventory policies that models the safety stock as well as alternative warehouse options; 

addressing the operational uncertainties using the two-stage formulations, and adopting a cost 

structure that ensures economy of scale.  

To determine the efficacy of the stochastic model, a deterministic model is solved using the 

expected operational parameters. The results as well as the decisions are compared. The rest of 

the paper is organized as follows. Section 2 discusses the problem statement and the model 

development.  The case study in section 3 demonstrates the performance of the model and 

solution framework. Section 4 discusses the results and section 5 concludes the paper.   

2. Problem statement and theoretical framework

2.1. Problem Statement 

The problem considers a multi-products customer-driven supply chain network which produces 

variety of products (𝑝𝑝 ∈ 𝑃𝑃 ) to meet the need of customer zones (𝑐𝑐 ∈ 𝐶𝐶 ). A comprehensive 

notation can be found in the appendix.  Each product is typically composed of different raw 

materials (𝑟𝑟 ∈ 𝑅𝑅). And these materials are sourced from different suppliers (𝑠𝑠 ∈ 𝑆𝑆) with 

different capacities. As shown in Figure 1, the supply chain network consists of four echelons 

and can be represented by a directed graph with four sets of nodes: the supplier nodes (𝑠𝑠 ∈  𝑆𝑆), 

the manufacturing facilities ( 𝑓𝑓 ∈  𝐹𝐹 ), the warehouses ( 𝑤𝑤 ∈  𝑊𝑊) and the customer zones ( 𝑐𝑐 ∈
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 𝐶𝐶) . The arcs represent the connecting links between nodes and embedded in each arc are (𝑚𝑚 ∈

𝑀𝑀) modes of transportation.  The reliability of each transportation nodes differs and affects the 

cost of using the transportation mode.  The topology of the supply chain is such that during 

disruption, there are strategies to ensure robust delivery for its entities (nodes and arcs).  

Following a discrete time paradigm, the horizon considered is discretized into 𝑇𝑇 planning periods 

denoted by 𝑡𝑡 ∈ { 1, . . . , |𝑇𝑇|}.  The supplier sets contain a set of main supplier that can supplier 

raw material r  𝑠𝑠 ∈ 𝑆𝑆𝒶𝒶𝑟𝑟 ⊂ 𝑆𝑆 and backup suppliers 𝑠𝑠 ∈ 𝑆𝑆𝒷𝒷𝑟𝑟 ⊂ 𝑆𝑆. It should be noted that within the 

sets of main suppliers there are alternative suppliers for raw material 𝑟𝑟. And there are backup 

suppliers for all raw materials as well. Such a strategy ensures that raw materials are delivered, 

irrespective of the disruption. Also, the main suppliers are preferred for two main reasons, the 

cost of supply 𝛼𝛼𝑠𝑠 is lower and the quality of raw material 𝛾𝛾𝑟𝑟𝑠𝑠 is better. Thus, the backups are only 

used when main suppliers are disrupted. At the manufacturing facility nodes, each manufacturing 

facility operates at a fixed cost of 𝛼𝛼𝑓𝑓𝐹𝐹𝐹𝐹 , and a unit production cost of 𝛼𝛼𝑓𝑓𝑣𝑣. The former can be 

attributed to utilities, labor, and other operational costs. Additionally, each facility has a potential 

for expansion where extra capacity 𝑢𝑢 ∈ 𝑈𝑈 with capacity 𝐶𝐶𝑓𝑓𝑢𝑢 is added to the main production line. 

This comes at a cost of 𝛼𝛼𝑓𝑓𝑢𝑢. Products that cannot be met are outsourced so as to reduce the 

backorder.  At the warehouse nodes, there are two sets of warehouses: the main warehouses 𝑤𝑤 ∈

𝑊𝑊𝑎𝑎  ⊂ 𝑊𝑊 owned by the enterprise and the backup warehouses 𝑤𝑤 ∈ 𝑊𝑊𝒷𝒷 ⊂ 𝑊𝑊 located at the 

customer locations. Similar expansion approach applied at the manufacturing nodes is available 

at the main warehouses as well. Thus, using extra units comes at an extra cost of 𝛼𝛼𝑤𝑤𝑢𝑢 . 

Furthermore, the unit cost of storing inventory in the warehouse is 𝛼𝛼𝑤𝑤𝐼𝐼𝐼𝐼𝑣𝑣, This cost is higher for 

the backup warehouses. Within the supply chain network, products and raw materials are 
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transported between adjacent nodes through the multi-modal arcs with 𝑚𝑚 available transportation 

modes. Each arcs modes incurs a cost 𝛼𝛼𝑖𝑖𝑖𝑖𝑚𝑚 where (𝑖𝑖, 𝑗𝑗) ∈ {(𝑠𝑠,𝑓𝑓), (𝑓𝑓,𝑤𝑤), (𝑤𝑤, 𝑐𝑐)} .  

The set of time periods is divided into two subsets: one that is certain and the uncertain time 

period. At the beginning of the certain period, customer demands for products 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝. The 

demands for the uncertain periods are forecasted from a distribution �̂�𝑑𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃) ~ 𝑁𝑁�𝜇𝜇𝑝𝑝,𝜎𝜎𝑝𝑝�. 

During each time periods, raw materials are ordered from suppliers to production facilities and 

manufactured products sent to the warehouse. At the warehouse there are decisions on quantities 

of products to ship to customers as well as the quantity to keep as inventory based on the adopted 

inventory policy. At the end of the certain products, products are delivered to the customers from 

the warehouses or by outsourcing. The unsatisfied demands are considered to be lost sales and a 

backorder penalty cost 𝛼𝛼𝑝𝑝
𝑝𝑝𝑝𝑝𝐼𝐼 is incurred.  It should be noted that other parameters in the supply 

chain such as material costs, quality of raw materials and transportation costs can also be 

uncertain, but we have assumed that they have low variability thus, the expected values for these 

parameters will suffice. For the case of other parameters, we sample from a uniform distribution 

𝓅𝓅 ~ 𝑈𝑈(𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙), and the expected values calculated. This expected value is used. Which is 

precisely the midpoint of the intervals.  

The nodes and arcs of the supply chain network are susceptible to disruptions and each entity 

reacts to disruption in unique ways. At the supplier nodes, when the main suppliers for a 

particular material are disrupted or unable to meet the demands for raw materials, the backup 

suppliers are used. Each non-disrupted manufacturing facility can expand its capacity in order to 

manage the disruptions at the manufacturing facility nodes. Also, there are options to outsource 

products to keep the customer service level high. The warehouses that are undisrupted controls 
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the disruption at the warehouse nodes by adopting similar capacity expansion technique. 

Alternatively, inventory can be stored in the warehouses at the customer’s location.  Due to the 

multi-mode operation of the arcs connecting the adjacent nodes, disruptions in the arcs are 

managed by redistributing materials and transporting through the undisrupted arcs. The re-

distribution is done to satisfy the objective.   

It should be highlighted that the problem under consideration here takes the supply chain 

architecture as fixed by a higher-level (strategic level), and this design incorporates buffers to 

hedge against disruptions. The primary goal of the problems is to solve a tactical supply chain 

problem under uncertainty while also considering disruptions. This invariably requires balancing 

resource supply, production levels, and storage levels to uncertain product demand in an optimal 

way, while taking capacity utilization, resource availability, and disruption forecasts into 

account. The main decisions are raw material quantities from suppliers, production levels at 

manufacturing sites, capacity utilizations at the warehouses and manufacturing sites and 

transportation modes and quantities for each link in the supply chain network. The overall goal is 

to minimize the total cost and maintain a high service level. Thus, we want to utilize nodes at 

minimum cost in the network structure and find the flow path that transfers commodities at the 

lowest cost.  

2.2. Model Development  

In this section, we introduce the mathematical model for the supply chain under demand 

uncertainty and the disruption. We have adopted a two-stage stochastic modeling paradigm to 

hedge against the operational uncertianty and integrated an approach to help hedge against the 

supply chain disruption. In what follows, we describe the modeling assumptions , followed by 

the detailed formulation  
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Modeling assumptions 

Disruption is any event that affects the supply chain topology. In order to capture the nature of 

disruptions, as well as operational uncertainties, we have made some modeling assumptions as 

follows:  

1. Operational parameters are assumed to follow a known distributions, the demand uncertainty

follows a normal distribution, to account for disruption, it assumed that the variance of the

distribution is high. For other parameters, a uniform distribution is sampled, and their

expected values is used.

2. All supply chain entities can exist in two states: normal state and disrupted state. The entity is

fully functional in the normal state, while the entities cannot function in the disrupted state.

3. Disruption can occur to all nodes (suppliers, facilities, and warehouses) and arcs

(transportation routes between nodes), and in each disruption case, a subset of nodes and/or

arcs are disrupted; once this happens, total capacity is lost.

4. Disruption of each node occurs independently; the interval is determined by the geometric

distribution, which is the discrete counterpart of the exponential distribution.

5. In the event of disruptions, available measures provide alternatives, which come at extra

costs to operations. These are discussed below:

a. When a manufacturing facility node is disrupted, products manufacturing can be

outsourced, and recovery is amortized till the facility gets back to normal operation

b. When transport arcs are disrupted, the transportation is redistributed, but the recovery

fee is still present till the arc comes back to normal operation.

c. When the warehouse nodes are disrupted, products are stored in the customer location

for a specified cost.
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d. When supplier nodes are disrupted, alternate suppliers and backup suppliers are used

to hedge against raw material demands.

6. A recovering facility cannot be disrupted until after full recovery. It should be noted that

resources can be utilized to speed up the recovery process thus reducing the time for

recovery. For simplicity, this tradeoff between recovery time and recovery cost is not

considered in the model

To elaborate on assumption 5, there is a limit on the quantity of products that can be obtained 

through outsourcing; this helps to ensure that the model is as accurate as possible. Therefore, a 

sale is considered be lost whenever there is an inability to fulfill a demand from the 

manufacturing site or through outsourcing. In a similar fashion, at the supplier end, as stated in 

assumption 5d, alternative suppliers that supply the same raw material as the main suppliers can 

be disrupted. The backup suppliers provide other types of raw material. Therefore, if the main 

supplier and alternative supplier are unable to meet the demands of the manufacturing sites 

(either because of a disruption or because of restricted capacity), the backup suppliers are used, 

and more material will be required in this case to manufacture similar products at the 

manufacturing site.   

To quantify the time the disruption happens, we assumed that the amount of time before 

disruption happens is random, and the interval duration between disruptions follows a geometric 

distribution25. It should be noted that the choice of geometric distribution is because we have 

used a discrete-time model. The geometric distribution is a discrete probability distribution that 

represents the probability of the number of successive failures before success is obtained in 

Bernoulli trial50,51. The underlying assumption in using this distribution is that the average time 

between events is known, but the events' disruptions themselves are spaced at random. It is 
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possible to have back-to-back disruptions, but we can also go weeks between disruptions due to 

randomness. Thus, we assume that the waiting time until the disruption is geometrically 

distributed with a parameter  (the average rate of occurrence), and the waiting times between 

each disruption are independent and geometrically distributed. The discretization of the time 

horizon considered is done according to time interval for possible disruption event. At each 

period, Bernoulli trial is performed, and if the trial leads to a success, then we have a disruption, 

otherwise there is no disruption. It should be noted that this procedure is done independently for 

all supply chain entities (nodes and arcs). 

Model Formulation 

The overall objective of the problem is to make feasible decisions on raw material and products 

flow through arcs and nodes to satisfy the customer demands in an optimal fashion. The 

optimality in this case is defined as the decisions that minimizes the entire supply chain cost such 

decisions has to be feasible,i.e. satisfy the constraints at each supply chain node. In what follows 

we discuss the mathematical formulation of the objective function as well as the constraints.  

Objective Function: 

Following a two-stage approach, the goal is to minimize the expected costs.  This cost consists of 

the summations of all costs incurred, which are cost of raw materials, production of products, 

materials flow across all nodes, storage  and the penalties incurred for unment demands. 

Quantitatively, this is shown in equation (1a). The breakdown of each costs in equation (1a) is 

shown in equation (1b)- (1h). 

min𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸𝑐𝑐𝑡𝑡𝐸𝐸𝑑𝑑𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 
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𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸𝑐𝑐𝑡𝑡𝐸𝐸𝑑𝑑𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 = 𝔼𝔼 �
𝑆𝑆𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑆𝑆 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 (𝜃𝜃) + 𝑊𝑊𝑊𝑊𝑟𝑟𝐸𝐸ℎ𝐸𝐸𝑢𝑢𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝜃𝜃) +

𝑂𝑂𝑝𝑝𝐸𝐸𝑟𝑟𝑊𝑊𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝜃𝜃) + 𝑂𝑂𝑢𝑢𝑡𝑡𝑠𝑠𝐸𝐸𝑢𝑢𝑟𝑟𝑐𝑐𝑖𝑖𝑜𝑜𝑜𝑜 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 (𝜃𝜃) + 
𝐵𝐵𝑊𝑊𝑐𝑐𝐵𝐵𝐸𝐸𝑟𝑟𝑑𝑑𝐸𝐸𝑟𝑟𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝜃𝜃)

� 

𝑆𝑆𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑆𝑆𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 (𝜃𝜃) =  ���𝑠𝑠𝑢𝑢𝑝𝑝𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑠𝑠,𝑝𝑝(𝜃𝜃) +  𝑠𝑠𝑇𝑇𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑠𝑠,𝑝𝑝 (𝜃𝜃)�
𝑇𝑇

𝑝𝑝

𝑆𝑆

𝑠𝑠

 

𝑊𝑊𝑊𝑊𝑟𝑟𝐸𝐸ℎ𝐸𝐸𝑢𝑢𝑠𝑠𝑖𝑖𝑜𝑜𝑜𝑜𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝜃𝜃) =  ���𝑤𝑤ℎ𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑤𝑤,𝑝𝑝(𝜃𝜃) +  𝑤𝑤𝑇𝑇𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑤𝑤,𝑝𝑝(𝜃𝜃)�
𝑇𝑇

𝑝𝑝

𝑊𝑊

𝑤𝑤

 

𝑂𝑂𝑝𝑝𝐸𝐸𝑟𝑟𝑊𝑊𝑡𝑡𝑖𝑖𝑜𝑜𝑜𝑜𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝜃𝜃) =  ���𝑓𝑓𝑇𝑇𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑓𝑓,𝑝𝑝(𝜃𝜃) +  𝑓𝑓𝑇𝑇𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑓𝑓,𝑝𝑝(𝜃𝜃)�
𝑇𝑇

𝑝𝑝

𝐹𝐹

𝑓𝑓

 

𝑂𝑂𝑢𝑢𝑡𝑡𝑠𝑠𝐸𝐸𝑢𝑢𝑟𝑟𝑖𝑖𝑜𝑜𝑜𝑜𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡 (𝜃𝜃) =    �𝐸𝐸𝑢𝑢𝑡𝑡𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑝𝑝

𝑇𝑇

𝑝𝑝

(𝜃𝜃) 

𝐵𝐵𝑊𝑊𝑐𝑐𝐵𝐵𝐸𝐸𝑟𝑟𝑑𝑑𝐸𝐸𝑟𝑟 𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡(𝜃𝜃) =  ����𝐵𝐵𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃) × 𝛼𝛼𝑝𝑝
𝑝𝑝𝑝𝑝𝐼𝐼�

𝑇𝑇

𝑝𝑝

𝐹𝐹

𝑝𝑝

𝑃𝑃

𝑝𝑝

 

(1a) 

𝑠𝑠𝑢𝑢𝑝𝑝𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑠𝑠,𝑝𝑝(𝜃𝜃) =  ����𝑄𝑄𝑟𝑟𝑠𝑠𝑓𝑓𝑚𝑚𝑝𝑝(𝜃𝜃) × 𝛼𝛼𝑟𝑟𝑠𝑠�
𝑀𝑀

𝑚𝑚

𝐹𝐹

𝑓𝑓

𝑅𝑅

𝑟𝑟

 ∀𝑠𝑠 ∈ 𝑆𝑆 , 𝑡𝑡 ∈ 𝑇𝑇 (1𝑙𝑙) 

𝑠𝑠𝑇𝑇𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑠𝑠,𝑝𝑝(𝜃𝜃) =  ���𝑄𝑄𝑟𝑟𝑠𝑠𝑓𝑓𝑚𝑚𝑝𝑝(𝜃𝜃) × 𝛼𝛼𝑚𝑚
𝑠𝑠𝑓𝑓

𝑀𝑀

𝑚𝑚

𝐹𝐹

𝑓𝑓

𝑅𝑅

𝑟𝑟

   ∀𝑠𝑠 ∈ 𝑆𝑆; 𝑡𝑡 ∈ 𝑇𝑇 (1𝑐𝑐) 

𝑤𝑤ℎ𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑤𝑤,𝑝𝑝(𝜃𝜃) = ��𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝

𝑃𝑃

𝑝𝑝

(𝜃𝜃) ×  𝛼𝛼𝑤𝑤𝑖𝑖𝐼𝐼𝑣𝑣� +   ��𝑆𝑆𝑤𝑤,𝑝𝑝
𝑢𝑢 × 𝛼𝛼𝑤𝑤𝓊𝓊

𝓊𝓊

�  + � 𝛼𝛼𝑤𝑤| 𝑤𝑤∈𝑊𝑊𝒹𝒹
𝑟𝑟𝑝𝑝𝑝𝑝 �  ∀ 𝑤𝑤

∈ 𝑊𝑊 ; 𝑡𝑡 ∈ 𝑇𝑇 

(1𝑑𝑑) 

𝑤𝑤𝑇𝑇𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑤𝑤,𝑝𝑝(𝜃𝜃) =  ���𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑀𝑀

𝑚𝑚

× 𝛼𝛼𝑚𝑚𝑤𝑤𝑝𝑝
𝐹𝐹

𝑝𝑝

𝑃𝑃

𝑝𝑝

   ∀ 𝑤𝑤 ∈ 𝑊𝑊; 𝑡𝑡 ∈ 𝑇𝑇 (1𝐸𝐸) 
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𝑓𝑓𝑊𝑊𝑐𝑐𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑓𝑓,𝑝𝑝(𝜃𝜃) = ���𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝(𝜃𝜃) × 𝛼𝛼𝑓𝑓
ℴ𝑝𝑝

𝑀𝑀

𝑚𝑚

𝑊𝑊

𝑤𝑤

� + ��𝑆𝑆𝑓𝑓𝑝𝑝𝑢𝑢 × 𝛼𝛼𝑓𝑓𝓊𝓊 
𝒰𝒰

𝑢𝑢

� + �𝛼𝛼𝑓𝑓| 𝑓𝑓∈𝐹𝐹𝒹𝒹
𝑟𝑟𝑝𝑝𝑝𝑝 � (1𝑓𝑓) 

𝑓𝑓𝑇𝑇𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑓𝑓,𝑝𝑝(𝜃𝜃) =  ���𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑀𝑀

𝑚𝑚

𝑊𝑊

𝑤𝑤

𝑃𝑃

𝑝𝑝

× 𝛼𝛼𝑚𝑚
𝑓𝑓𝑤𝑤      ∀  𝑓𝑓 ∈ 𝐹𝐹; 𝑡𝑡 ∈ 𝑇𝑇 (1𝑜𝑜) 

𝐸𝐸𝑢𝑢𝑡𝑡𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑝𝑝(𝜃𝜃) =  ��𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃) × 𝛼𝛼𝑜𝑜

𝐹𝐹

𝑝𝑝

𝑃𝑃

𝑝𝑝

  ∀ 𝑡𝑡 (1ℎ) 

The cost of raw materials supplied is captured by equation (1b) where 𝑄𝑄𝑟𝑟𝑠𝑠𝑓𝑓𝑚𝑚𝑝𝑝(𝜃𝜃) represents the 

quantity of raw materials 𝑟𝑟 from supplier 𝑠𝑠 to manufacturing facility 𝑓𝑓 transported by mode 𝑚𝑚, at 

time period 𝑡𝑡 .  similarly, equation (1c) shows the cost of transportation from supplier to 

manufacturing facility.  Equations (1d) and (1e) represent the cost incurred at the warehouse 

nodes and transportation costs for shipping to the customers respectively. 𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝(𝜃𝜃) is the 

inventory amount of product 𝑝𝑝 stored in the warehouse 𝑤𝑤 at the end of time period p, 𝑆𝑆𝑤𝑤,𝑝𝑝
𝑢𝑢  is a 

binary variable that is 1 when the unit 𝑢𝑢 is used in warehouse 𝑤𝑤 at time period t. The last term in 

equation (1d) is the cost of recovery. At the manufacturing facilities, 𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝(𝜃𝜃) is the quantity 

of products 𝑝𝑝 from facility 𝑓𝑓 to warehouse 𝑤𝑤 using mode 𝑚𝑚 at time period 𝑡𝑡.  Equation(1f) 

shows the cost of production and recovery cost incurred by disrupted facilities. In a similar 

fashion as the warehouse the 𝑆𝑆𝑓𝑓𝑝𝑝𝑢𝑢  is a binary variable that is 1 when unit u is used in the facility 

𝑓𝑓 at time period 𝑡𝑡. Finally, the (1h) is used to calculate the cost of outsourcing productions and 

𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃) is the quantity of outsourced products 𝑝𝑝 delivered to customers 𝑐𝑐 at the end of the time 

period 𝑡𝑡.  

The problems solved in this work consider tactical decisions. These decisions are made within 

the constraints of the strategic supply chain decisions, which govern the supply chain’s topology 
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and facility design choices. This is the level where we can make decisions balancing cost and 

resiliency to disruption43,44.We have focused on the aforementioned goals of this work is to show 

the interplay between operational uncertainty and disruption uncertainty as well as compare the 

performance of the deterministic model with the risk neutral stochastic model.  The limitation of 

this work is that we have taken a risk neutral approach by using the expected cost objective.  

Constraints 

Flow Balances: The flow balance ensures continuity between the nodes through arcs. This 

balances are written for all nodes and are described by equations (2𝑊𝑊), (2𝑙𝑙), and (2𝑐𝑐).  The 

uncertainty in the demand for products p from customer locations c propagates to the continuity 

balance at the customer side as shown in equation (2a). The inventory of balance at the 

warehouse is shown in equation (2b). The balance ensures that the inventory at the beginning of 

the time period and at the end of the time is balanced by the quantity of products coming to the 

warehouse and that leaving the warehouse at the end of the time period. At the manufacturing 

sites, the quantity of products manufactured depends on the materials supplied from the suppliers 

and the corresponding yield of the raw materials. This is shown by equation (2c).  

𝒹𝒹𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃) −  ��𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑀𝑀

𝑚𝑚

𝑊𝑊

𝑤𝑤

+ 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃) = ℬ𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃)     ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑐𝑐 ∈ 𝐶𝐶 , 𝑡𝑡 ∈ 𝑇𝑇
(2𝑊𝑊) 

𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝(𝜃𝜃) = 𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝−1 (𝜃𝜃) +  ��𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝

𝑀𝑀

𝑚𝑚

𝐹𝐹

𝑓𝑓

 (𝜃𝜃) − 

��𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝

𝑀𝑀

𝑚𝑚

(𝜃𝜃)
𝐹𝐹

𝑝𝑝

  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑤𝑤 ∈ 𝑊𝑊 , 𝑡𝑡 ∈ 𝑇𝑇 
(2𝑙𝑙) 
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��𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑀𝑀

𝑚𝑚

𝑊𝑊

𝑤𝑤

 =  ��𝑄𝑄𝑟𝑟𝑠𝑠𝑓𝑓𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑀𝑀

𝑚𝑚

𝑆𝑆

𝑠𝑠

∗   𝛾𝛾𝑟𝑟𝑝𝑝    ∀ 𝑓𝑓 ∈ 𝐹𝐹 ,  𝑟𝑟 ∈ 𝑟𝑟,  𝑝𝑝 ∈ 𝑃𝑃 , 𝑡𝑡 ∈ 𝑇𝑇 
(2𝑐𝑐) 

Warehouse Disruptions:  For the warehouses, there are main warehouses and retailer location 

sites that are used as backup warehouses. Only the main warehouse can be disrupted and 

expanded.  The capacity of the undisrupted warehouses 𝑊𝑊𝒶𝒶
𝐼𝐼 can be increased. Equations (3𝑊𝑊) 

ensure the selection and feasible expansion of undisrupted warehouses by fixing the disrupted 

warehouses capacity 𝑊𝑊𝒶𝒶
𝒹𝒹 to zero and ensuring that there is no expansion for the conventional 

model. 𝑆𝑆𝑤𝑤𝑝𝑝𝑢𝑢  is a binary variable which determines if expansion unit 𝑢𝑢 is used in warehouse 𝑤𝑤 at 

time period 𝑡𝑡 Following that, equations (3𝑙𝑙) imply fixed capacity of the undisrupted warehouses 

which is to be used before considering the backup warehouse 𝑊𝑊𝒷𝒷 located at the retailer locations. 

Equations (3𝑐𝑐)  − (3𝑑𝑑) ensure that the inventory is within the utilized capacity range, while 

equation (3𝐸𝐸) enforces that materials stored at a customer location should service only that 

customer where 𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝(𝜃𝜃) is the inventory of product 𝑝𝑝 in warehouse 𝑤𝑤 at time period 𝑡𝑡; 

 𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝(𝜃𝜃) is the quantity of product from warehouse 𝑤𝑤 to customer 𝑐𝑐  using transportation 

mode 𝑚𝑚 at time period t. The safety stock for the warehouses that are non-disrupted is modeled 

by equations (3𝑓𝑓) and (3𝑜𝑜). According to equation (3𝑓𝑓) the minimum inventory which is 

reviewed every period must be proportional to the standard deviation of the products and the 

replenishment lead time. This equation is valid for the case where demand for products is 

assumed independent and identically distributed52 where 𝑧𝑧 is the cumulative normal distribution 
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coefficient for a given service level required. In this paper we have assumed a value of 1.65 and 

this means we keep a safety stock to obtain a service level of 95%.   

𝑆𝑆𝑤𝑤,𝑝𝑝
𝓊𝓊 − 𝑆𝑆𝑤𝑤,𝑝𝑝

𝓊𝓊′ ≥ 0  ∀  𝑢𝑢 < 𝑢𝑢′ ;𝑤𝑤 ∈  𝑊𝑊 ;  𝑡𝑡 ∈ 𝑇𝑇 

𝑆𝑆𝑤𝑤,𝑝𝑝
𝑢𝑢=1 = �

1,          ∀ 𝑤𝑤 ∈ 𝑊𝑊𝒶𝒶
𝐼𝐼; 𝑡𝑡 ∈ 𝑇𝑇 

0,  ∀𝑤𝑤 ∈ 𝑊𝑊𝒶𝒶
𝒹𝒹; 𝑡𝑡 ∈ 𝑇𝑇 ; 𝑡𝑡 < 𝑡𝑡𝑅𝑅

 

(3𝑊𝑊) 

𝑆𝑆𝑤𝑤,𝑝𝑝
𝑢𝑢=1 − 𝑆𝑆𝑤𝑤′,𝑝𝑝 ≥ 0 ∀ 𝑤𝑤 ∈ 𝑊𝑊𝒶𝒶

𝓃𝓃;    𝑤𝑤′ ∈ 𝑊𝑊𝒷𝒷;   𝑡𝑡 ∈ 𝕋𝕋 (3𝑙𝑙) 

�𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝

𝑃𝑃

𝑝𝑝

(𝜃𝜃) ≤�𝑆𝑆𝑤𝑤,𝑝𝑝
𝓊𝓊

𝒰𝒰

𝓊𝓊

× 𝐶𝐶𝑊𝑊𝑝𝑝𝑤𝑤𝓊𝓊   ∀𝑤𝑤 ∈ 𝑊𝑊𝒶𝒶
𝓃𝓃  ;  𝑡𝑡 ∈ 𝑇𝑇 

(3𝑐𝑐) 

�𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝(𝜃𝜃)
𝑃𝑃

𝑝𝑝

≤ 𝑆𝑆𝑤𝑤,𝑝𝑝 × 𝐶𝐶𝑊𝑊𝑝𝑝𝑤𝑤  ∀ 𝑤𝑤 ∈ 𝑊𝑊𝒷𝒷   ;  𝑡𝑡 ∈ 𝑇𝑇 
(3𝑑𝑑) 

�𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝(𝜃𝜃) ∶= 0
𝑀𝑀

𝑚𝑚

   ∀ 𝑤𝑤 = 𝑐𝑐;   𝑤𝑤 ∈ 𝑊𝑊𝒷𝒷;  𝑡𝑡 ∈ 𝕋𝕋     
(3𝐸𝐸) 

𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝𝑠𝑠𝑠𝑠 = 𝑧𝑧�𝐿𝐿 × 𝜎𝜎𝑝𝑝 (3𝑓𝑓) 

𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝(𝜃𝜃) ≥   𝐼𝐼𝑝𝑝𝑤𝑤𝑝𝑝𝑠𝑠𝑠𝑠    ∀𝑤𝑤 ∈ 𝑊𝑊𝒶𝒶
𝓃𝓃 ∀𝑝𝑝 ∈ 𝑃𝑃 (3𝑜𝑜)  

Facility Disruption: At the facility nodes, equation (4𝑊𝑊) restricts operations to only non-

disrupted facilities 𝑆𝑆𝑓𝑓,𝑝𝑝
𝑢𝑢  is a binary variable which determines if unit 𝑢𝑢 in facility 𝑓𝑓 is in use, 𝐹𝐹𝓃𝓃, 

and ensures that facilities that are non-disrupted operate in full mode before expansion 

consideration. Thus, equation (4𝑊𝑊) enforces feasible integer selection. In equation (4𝑙𝑙), 𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝 

is the quantity of product from facility 𝑓𝑓 to warehouse 𝑤𝑤 using transportation mode 𝑚𝑚 at time 

period t , and 𝐶𝐶𝑊𝑊𝑝𝑝𝑓𝑓𝑢𝑢 expresses the total capacity of unit 𝑢𝑢 in facility 𝑓𝑓; the equation enforce that 

the amount produced does not exceed the design capacities and equation (4𝑐𝑐) sets restrictions on 

the amount of products that can be outsourced, in the equation 𝐶𝐶0 shows the maximum amount 
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that can be outsourced, and 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝 is the quantity of outsourced products transported to customer at 

the time periods.   

𝑆𝑆𝑓𝑓,𝑝𝑝
𝑢𝑢 − 𝑆𝑆𝑓𝑓,𝑝𝑝

𝑢𝑢′ ≥ 0  ∀  𝑢𝑢 < 𝑢𝑢′ ; 𝑓𝑓 ∈  𝐹𝐹 ;  𝑡𝑡 ∈ 𝑇𝑇 

𝑆𝑆𝑓𝑓,𝑝𝑝
𝑢𝑢=1 = �

1,         ∀ 𝑓𝑓 ∈ 𝐹𝐹𝓃𝓃;  𝑡𝑡 ∈ 𝑇𝑇 
0,  ∀ 𝑓𝑓 ∈ 𝐹𝐹𝑑𝑑;  𝑡𝑡 ∈ 𝑇𝑇 , 𝑡𝑡 < 𝑡𝑡𝑅𝑅

� 

(4𝑊𝑊) 

���𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑀𝑀

𝑚𝑚

𝑊𝑊

𝑤𝑤

𝑃𝑃

𝑝𝑝

≤�𝑆𝑆𝑓𝑓,𝑝𝑝
𝓊𝓊

𝒰𝒰

𝓊𝓊

× 𝐶𝐶𝑊𝑊𝑝𝑝𝑓𝑓𝓊𝓊   ∀  𝑓𝑓 ∈  𝐹𝐹 ;  𝑡𝑡 ∈ 𝑇𝑇 
(4𝑙𝑙) 

�𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃)
𝑝𝑝

≤ 𝐶𝐶𝑜𝑜 ∀𝑐𝑐 ∈ 𝑐𝑐,  𝑡𝑡 ∈ 𝑇𝑇 (4𝑐𝑐) 

Supplier Disruption:  At the supplier nodes, the main suppliers that are undisrupted, 𝑆𝑆𝒶𝒶,𝑝𝑝
𝓃𝓃  ,  are 

selected before considering backup suppliers, equation (5a) ensures these selections. Once the 

selections of suppliers are done, equation (5𝑙𝑙) limits the capacity of these suppliers.  

𝑆𝑆𝑠𝑠,𝑝𝑝 − 𝑆𝑆𝑠𝑠′,𝑝𝑝 ≥ 0     ∀ 𝑠𝑠 ∈  𝑆𝑆𝒶𝒶,𝑝𝑝
𝓃𝓃  ;   𝑠𝑠′ ∈ 𝑆𝑆𝒷𝒷 , 𝑡𝑡 ∈ 𝑇𝑇 

𝑆𝑆𝑠𝑠,𝑝𝑝 = �
1, ∀ 𝑠𝑠 ∈  𝑆𝑆𝒶𝒶,𝑝𝑝

𝓃𝓃  
0, ∀ 𝑠𝑠 ∈  𝑆𝑆𝒶𝒶,𝑝𝑝

𝒹𝒹 �

(5𝑊𝑊) 

��𝑄𝑄𝑟𝑟𝑠𝑠𝑓𝑓𝑚𝑚𝑝𝑝

𝑀𝑀

𝑚𝑚

(𝜃𝜃)
𝐹𝐹

𝑓𝑓

≤ 𝑆𝑆𝑠𝑠𝑝𝑝 × 𝐶𝐶𝑊𝑊𝑝𝑝𝑠𝑠      ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑟𝑟 ∈ 𝑅𝑅, 𝑡𝑡 ∈ 𝑇𝑇 
 (5𝑙𝑙)  

Transportation Capacity: the transportation links are multimodal, and each mode can be 

disrupted; whenever this happens, flow is redistributed between the available arc modes.  Each of 

the transportation modes is limited by capacity 𝑡𝑡𝐶𝐶𝑊𝑊𝑝𝑝𝑚𝑚
𝑖𝑖𝑖𝑖      as shown in equations (4𝑊𝑊) − (4𝑐𝑐) for 

all the links.   
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�𝑄𝑄𝑟𝑟𝑠𝑠𝑓𝑓𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑅𝑅

𝑟𝑟

≤ 𝑆𝑆𝑚𝑚,𝑝𝑝
𝑠𝑠𝑓𝑓 × 𝑡𝑡𝐶𝐶𝑊𝑊𝑝𝑝𝑚𝑚

𝑠𝑠𝑓𝑓     ∀𝑠𝑠 ∈ 𝑆𝑆; 𝑓𝑓 ∈ 𝐹𝐹 ;𝑚𝑚 ∈ 𝑀𝑀 ;  𝑡𝑡 ∈ 𝑇𝑇 (6𝑊𝑊) 

�𝑄𝑄𝑝𝑝𝑓𝑓𝑤𝑤𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑃𝑃

𝑝𝑝

≤ 𝑆𝑆𝑚𝑚,𝑝𝑝
𝑓𝑓𝑤𝑤 × 𝑡𝑡𝐶𝐶𝑊𝑊𝑝𝑝𝑚𝑚

𝑓𝑓𝑤𝑤       ∀𝑓𝑓 ∈ 𝐹𝐹;𝑤𝑤 ∈ 𝑊𝑊 ;𝑚𝑚 ∈ 𝑀𝑀 ;  𝑡𝑡 ∈ 𝑇𝑇 (6𝑙𝑙) 

�𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝(𝜃𝜃)
𝑃𝑃

𝑝𝑝

≤ 𝑆𝑆𝑚𝑚,𝑝𝑝
𝑤𝑤𝑝𝑝 × 𝑡𝑡𝐶𝐶𝑊𝑊𝑝𝑝𝑚𝑚𝑤𝑤𝑝𝑝    ∀𝑤𝑤 ∈ 𝑊𝑊; 𝑐𝑐 ∈ 𝐶𝐶 ;𝑚𝑚 ∈ 𝑀𝑀 ;  𝑡𝑡 ∈ 𝑇𝑇 (6𝑐𝑐) 

The model described above is referred to as the proposed model. The solutions obtained from the 

proposed model are compared with that of the nominal model. In the nominal model, there are no 

mitigation strategies, i.e., no outsourcing, no expansion possibility in the facilities

(manufacturing facilities and warehouses), and no option for inventory storage at the customer 

locations.  

After every optimization step, three metrics are used to quantify the efficiency of the solution, as 

shown in equations (7𝑊𝑊) − (7𝑐𝑐). 

𝑢𝑢𝑜𝑜𝑖𝑖𝑡𝑡𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑝𝑝(𝜃𝜃)  =
𝑡𝑡𝐸𝐸𝑡𝑡𝑊𝑊𝑙𝑙𝐶𝐶𝐸𝐸𝑠𝑠𝑡𝑡𝑝𝑝(𝜃𝜃)

�∑ ∑ �∑ ∑ 𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝𝑀𝑀
𝑚𝑚 (𝜃𝜃)𝑊𝑊

𝑤𝑤 +  𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃)�𝐹𝐹
𝑝𝑝

𝑃𝑃
𝑝𝑝 �

(7𝑊𝑊) 

𝑠𝑠𝐸𝐸𝑟𝑟𝑠𝑠𝑖𝑖𝑐𝑐𝐸𝐸𝐿𝐿𝐸𝐸𝑠𝑠𝐸𝐸𝑙𝑙𝑝𝑝(𝜃𝜃)  =  
�∑ ∑ �∑ ∑ 𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝(𝜃𝜃)𝑀𝑀

𝑚𝑚
𝑊𝑊
𝑤𝑤 + 𝑄𝑄𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃)�𝐹𝐹

𝑝𝑝
𝑃𝑃
𝑝𝑝 �

∑ ∑ 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃) 𝑝𝑝𝑝𝑝

(7𝑙𝑙) 

𝑆𝑆𝐶𝐶𝐸𝐸𝑓𝑓𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝐸𝐸𝑜𝑜𝑐𝑐𝑆𝑆𝑝𝑝(𝜃𝜃) =  
�∑ ∑ �∑ ∑ 𝑄𝑄𝑝𝑝𝑤𝑤𝑝𝑝𝑚𝑚𝑝𝑝(𝜃𝜃)𝑀𝑀

𝑚𝑚
𝑊𝑊
𝑤𝑤 �𝐹𝐹

𝑝𝑝
𝑃𝑃
𝑝𝑝 �

∑ ∑ 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝜃𝜃)
(7𝑐𝑐) 

Equation (7𝑊𝑊) represents the cost of supplying one unit of product to the customer, which 

determines the profit an enterprise makes if the selling price is fixed or determines the main price 
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to deliver to customers if there is a limit on profit margin. Thus, lower unit cost indicates that the 

supply chain achieves service level at a low cost, and the higher unit cost indicates that the 

supply chain achieves service level at a higher cost; the latter happens when most demands are 

outsourced; disruption also increases unit costs. Equation (7𝑙𝑙) quantifies the service level, which 

is the fraction of the demand that the supply chain meets. Finally, equation (7𝑐𝑐) shows the 

supply chain efficiency, which reflects the demand the supply chain meets without outsourcing. 

In what follows we discuss the assumptions for the disruptions.  

2.3 Solution Procedure:  

Two-Stage Stochastic Model 

The developed model in section 2.2 involves both integer variables and continuous variables as 

well as operational parameters that are uncertain. Considering the length of the time periods, the 

available information about the uncertainty in the future period and the availability of disruption 

considerations. A two-stage stochastic optimization is chosen to solve the problem. This can be 

expressed as shown in equation (8). 

min
𝑥𝑥,𝑦𝑦𝑠𝑠𝑠𝑠

�
𝒄𝒄𝑇𝑇𝐸𝐸1  + 𝔼𝔼[𝒇𝒇𝑇𝑇𝐸𝐸2𝑠𝑠𝑝𝑝]
𝑠𝑠𝑢𝑢𝑙𝑙𝑗𝑗𝐸𝐸𝑐𝑐𝑡𝑡 𝑡𝑡𝐸𝐸: 

𝐸𝐸1 ∈ 𝒳𝒳1 ;  𝐸𝐸2𝑠𝑠𝑝𝑝 ∈ 𝒳𝒳2 
 � 

(8) 

where the variables 𝐸𝐸1and 𝐸𝐸2 represent the first and the second stage decisions, respectively, and 

𝒳𝒳1 and 𝒳𝒳2 captures their feasible space. These are defined by equations (2) to (6). It should be 

noted that the decisions include both binary decisions and continuous decisions. The flow of the 

solution procedure is such that the disruption profile and the certain demands for the certain 

period are first realized, for the uncertain period the demands are forecasted, and disruption 
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profiles are also predicted. This information is used to solve the two-stage stochastic model. 

Based on the structure of information, the integer decisions determine the arrangement of nodes, 

and the continuous variables are constrained by this arrangement. The decisions in the first stage 

include the integer decisions on the configuration of the facilities for all periods, the amount of 

products flowing across the adjacent nodes at the certain period, and the inventory stored at the 

end of the certain period. The second stage decisions, which are adjusted with respect to the 

uncertainty realized thus far, includes the products flowing across adjacent nodes for all possible 

scenarios of the uncertain period, and inventory policies to be adopted for all scenarios These 

second stage decisions determine the recourse cost, which is the second term in equation (8). 

Stochastic programming (SP) is a direct extension of deterministic mathematical programming. 

It considers the temporal relationships between decisions and observations of uncertainty early 

on by introducing the idea of recourse to ensure feasibility53,54. The two-stage models enable the 

decision-maker to adapt decisions at a later stage to the already observed realization of the 

uncertain data53. In robust optimization, the parameter uncertainties are reduced to a few 

uncertainties set by perturbing individual parameters away from some nominal problem 

instance55. The method optimizes the worst case, by guaranteeing outcomes under any possible 

realization. This approach ignores temporal context, and often times the decisions are 

conservative56. One reason the stochastic approach is selected is because we want to understand 

the interplay between the spatiotemporal decisions, operational uncertainty, and disruptions. In 

Markov decision process (MDP), decisions (or actions) are made sequentially based on how the 

system evolves over time, the evolution is characterized as a stochastic process51. The MDP 

procedure adapts a discrete time Markov chain into an optimization framework and makes 

optimal decisions which involves moving from one state to the other. This requires that the 
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transition probability between states be determined57. For a large supply chain problem, 

characterizing the transition probability between states is non-trivial.  

Rolling Horizon strategy 

The purpose of the rolling horizon simulation is to examine the outcomes of implementing 

solution over a planning period. The solution to each time period captures only the spatial 

decisions of the supply chain; the effect of these decisions is further examined across the 

planning horizon using by the rolling horizon strategy, thus, accessing the spatial and temporal 

decisions of the supply chain. This strategy is applied to both the stochastic model and the 

deterministic model.  

As shown in Figure 2, at the beginning of a planning period, the demand for the period and the 

disruption forecasts are available. The demand for the rest of the prediction horizon is uncertain 

and available in form of random variable. The prediction horizon is all time period considered in 

the problem.  The model is solved considering all the prediction horizon, and the decisions for 

the current planning periods are implemented. The current state of the supply chain is passed to 

the next time period. This state includes the predetermined decisions from implementing the 

policies in the previous time period and act as the initial conditions.  At the beginning of the next 

time period, the demands for that period and disruption forecasts are realized, while the demands 

for the following time periods in the prediction horizon are random variables. This process is 

repeated until the end of the time horizon under consideration. The difference between the 

implementation of the rolling horizon in this paper and others is the simultaneous consideration 

of the disruption events and the demand uncertainty. At each time period, there is a realized 

demand and also realized disruptions. This disruption affects the state of the supply chain thus a 

new configuration must be adopted.  
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It should be noted that there is a similarity between the solution approach used here and the 

Model Predictive Control (MPC) philosophy. The key notion in MPC is to use a process model 

which can be mechanistic or empirical based to optimize the process inputs over forecasts of a 

process behavior made over a finite time horizon with a goal to make decisions that are feasible 

and robust58,59. In this work the model represents the supply chain and optimization is done 

across time periods over the supply chain components (nodes and arcs). While the optimized 

variables in MPC are the process inputs required to keep the system in safe operating range, the 

optimized variables in the case of the supply chain model are the spatial decisions (quantity of 

flows across arcs, the production and storage at transshipment nodes) to ensure that temporal 

demands are satisfied.  This representation of the supply chain problem, requires a new modeling 

framework which is outside the scope of this work60,61. 

3. Case Study

In this section, we discuss a case study to explore the behavior of the proposed model in terms of 

the way decisions are made. For the case study, the deterministic model, and the two-stage 

stochastic model are solved under similar conditions and the results are compared. The behavior 

of a model implies the decisions made to keep efficiency and service level of supply chain high 

at optimal cost, as well as the computational efficiency.  

The case study Figure 3, shown in is a generic four-echelon supply chain where three products 

are manufactured using two raw materials. There are six suppliers are available for the raw 

materials, four actual suppliers and two backup suppliers. Furthermore, the enterprise operates 
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four manufacturing facilities, two warehouses, and supplies products to five customer zones. In 

addition to the available warehouses, products can be stored in the customer locations as well, in 

this case products are sent from the manufacturing facilities directly to the customer locations to 

be stored. This brings the total number of warehouses to seven. For the actual warehouses, when 

undisrupted, the enterprise runs inventory policies to keep a safety stock. The flows between the 

supply chain entities are managed by multi-modal arc.  

The problem considers one month for every period thus the demand for a month is known apriori 

and make a forecast of the next four time periods to hedge against the future uncertainty. At the 

beginning of every time period, the demand for products is realized and there is an available 

forecast for future product demands. The goal is to make optimal tactical decisions amidst the 

disruption to minimize the total cost of operation for the certain period in the supply chain 

network, as well as hedge against the operational uncertainty for subsequent periods. The 

decisions made are the quantity of flow of each materials between adjacent nodes, production 

amount at each manufacturing site -which is a direct indicator of the use of the expansion, the 

inventory amount, quantity of products delivered to the customer from the supply chain network 

itself, the outsourced demands and the unmet demands. In the next section, we discuss the results 

obtained.  

4. Results and Discussions

In this section, we discuss the results obtained from the case study. All computations were done 

on a PC with intel® core™ i7 -10510U, 2.30GHz, and 16GB of RAM. To investigate how the 

proposed model responds to disruption and operational uncertainty, we compare the results 

obtained from the two-stage model with the deterministic model. Twenty demand scenarios were 

sampled for each product for the uncertain periods and five time periods considered with only 
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the first time period being certain. For the deterministic model, the expected values of the 

scenarios were used, and the stochastic model makes use of all scenarios. Both models were 

formulated and solved in GAMS/CPLEX (v 38.2.1). The deterministic model contains 6851 

constraints, 8809 continuous, and 2262 binary variables, while the two-stage model 63781 

constraints, 67139 continuous variables and 2262 discrete variables. The deterministic model 

obtained solutions to the model in 25 seconds and the two-stage model solves in 260 seconds. 

Table 1 shows the detailed breakdown of the metrics for both models. The total cost is the cost 

obtained from the optimization problem, while the implemented cost is the cost that is actually 

incurred in a certain period. The service level and supply chain efficiency indicate the fraction of 

demand satisfied and the fraction of demand that the supply chain satisfied without outsourcing. 

The cost per period shows the average cost for manufacturing all products. As noticed from 

Table 1, the total cost and implemented costs were higher for the stochastic model and so is the 

service level and supply chain efficiency. The costs incurred are a consequence of two major 

factors: the integer decisions for the selections within the available nodes (manufacturing sites 

and warehouses) and arcs (transportation modes); and the decisions on the degree to which the 

selected nodes and arcs are used.  Figure 4 and Figure 5 show the disrupted and non-disrupted 

facilities as well as the selected ones for the manufacturing sites and the warehouses, 

respectively. Table 2 shows the breakdown of the implemented cost as well as the difference in 

the results obtained.  

The facility selections shown in Figure 4 and Figure 5, indicate that the stochastic solution 

selects higher capacity utilization for facilities both for manufacturing sites and warehouses. The 

decision for this selection is to minimize both costs of operating the nodes at the certain time 

period as well as minimizing the recourse cost for the unrealized demand scenarios. For the 
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deterministic model, the results only select facilities to hedge against the certain demands and the 

average of all the possible scenarios. The consequence of this selection is increased fixed cost of 

each node as well as operating cost at the nodes while the advantage is reflected in the higher 

values for the service level and the supply chain efficiency. Table 2 shows that the stochastic 

solution suggests higher costs for all other cost components except the backorder cost and the 

outsourcing costs. It is worth noting that the higher level of inventory suggested by the stochastic 

model is a way to hedge against future demands based on the forecast. The two-stage stochastic 

model selects more warehouses when compared with the deterministic solution, consequently, 

incurs higher cost for inventory. Each model selects inventory policy so as to hedge against the 

variability in the future demands. In the stochastic model, there are twenty possible demand 

scenarios while the deterministic model has just one scenario which is the average of all the 

twenty scenarios available to the stochastic model. Thus, the higher inventory selected is a more 

robust approach because for all possible future scenarios and would play a bigger part in 

implemented cost in the future.    

The inventory level plays a major role in meeting the product demands for future time periods by 

reducing production level for future time periods, augmenting the amount of products that is 

manufactured and/or reducing the quantity of products that is outsourced. Ultimately, this 

ensures a total cost reduction  and delivery time in future time periods when the uncertain 

demands are realized. In the two-stage model the inventory is a key variable in balancing the 

recourse cost and the first stage cost.  To show the advantage of the inventory policy adopted by 

the stochastic model, the rolling horizon procedure is used to show the dynamics of how both 

models makes spatial-temporal decisions. Figure 6 shows the metrics used to compare the 

deterministic and stochastic solution across all time periods, while Figure 7 shows the 
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contributions of the implemented cost. As seen in the Figure 6 the stochastic model obtains a 

higher service level, supply chain efficiency and a lower unit cost of production for most of the 

time periods. However, the total cost for all time period is always greater than that of the 

deterministic model. These results are similar to that of Figure 4. In Figure 7,  the variation 

across the time periods reflects the variability in the demands, while the stack areas in the single 

periods shows the response to demands and disruption for that time period. Thus, high disruption 

level will cause demands to explore other alternatives thus increasing the overall supply chain 

cost.  

According to Figure 7, within each time period, comparing individual cost components with the 

deterministic model shows that the cost incurred to achieve high production level is greater for 

the stochastic model, and the backorder cost is greater for the deterministic model. The results 

obtained for the stochastic model balances the total cost with the recourse cost for all scenarios 

considered. Thus, solution takes into consideration the demand volatility of the uncertain time 

periods, which in turn increases the activity levels at the nodes for the certain time periods. The 

advantage of this increased activity level is reflected in the service levels and the supply chain 

efficiency. It is also worth mentioning that the inventory amount in each period is greater for the 

stochastic models. These helps to hedge against the uncertainty in the demands for the future 

time periods.  

5. Conclusions

In this article, a model for resilient supply chain network is formulated to deal with disruptions 

and operational uncertainty. Disruptions are taken as breakdown of supply chain network entities 

(nodes or arcs) and demand uncertainty is considered at the operational level. The main objective 

is to minimize the total cost of operating the supply chain and the decisions made are the flows 
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between the nodes through arcs such that the demands are met. Further metrics used to 

characterize the quality of solution obtained are the service level, supply chain efficiency and the 

cost per unit product.   

A deterministic multi-period model and a two-stage stochastic model compared in terms of the 

decisions made by each of them. The stochastic model outperforms the deterministic model on 

the basis of the service level achieved in the certain time period and the decisions to hedge 

against future uncertainty. We further used the rolling horizon framework to study the spatial 

temporal decisions made by these models and the results indicates that the stochastic model is 

better.  

Although the stochastic model shows a better performance in future, we propose to incorporate 

risks measures into the stochastic model to ensure risk averse decisions. Multiple risk measures 

such as upside potential, downside-risks or managing variability will be explored to see what 

gives the best solutions62–64. The proposed model can be characterized as a mixed integer 

recourse model because it has both continuous and integer variables in the first and second stage. 

The time complexity of large-scale problems can be reduced by using decomposition strategies 

that exploit the structure of the model. Algorithms such as logic-based Benders decomposition65, 

specialized branch and bound techniques66, and the dual decomposition strategy67 are applicable 

in this case.  We direct interested readers to Torres et al.68 and Kücükyavuz and Sen26, for further 

information on these algorithms. Furthermore, we have assumed once an entity is disrupted, the 

full capacity is lost, this assumption can also be relaxed in future and the degree of disruption can 

be determined. Also, although the proposed model shows a superior performance in the 

operational phase, at the strategic level, the initial investment cost for the proposed structure is 

greater than the traditional supply chain networks because of the extra investment cost required 
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for the expansion’s spaces. For this, we argue that the potential benefit of such investment 

outweighs the high cost. Further work can be done for supply chain design will substantiate 

using the economic model (ROI model) of breakthrough period.  
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Table 1: Metrics to compare the deterministic and stochastic solution 

Metrics Deterministic Stochastic 
Total Cost 200498 235659 

Implemented Cost 34696.1 31215.4 
Service Level 0.800844 0.987366 

Cost Per Period 65.5602 47.8408 
SC Efficiency 0.710049 0.896572 

Time (sec) 25 260 

Table 2: Breakdown of Implemented cost for the deterministic and two-stage stochastic model 

Implemented Cost 
Deterministic Stochastic Difference 

Supplier Cost 1763.49 2664.03 900.54 
Facility 10989.7 16287.3 5297.6 

Outsourcing 3222.08 3222.08 0 
Inventory 228.437 1044.47 816.033 

Transportation 4612.3 7079.21 2466.91 
Backorder cost 13880.1 918.37 -12961.73
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Figure 1: Four Echelon Supply Chain Network with Demands Fluctuations 
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Figure 2: Rolling Horizon Strategy 
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Figure 3: Supply Chain Topology for Case study 
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Figure 4:  Manufacturing Site Selections for (a) Deterministic model; and (b) Stochastic two-stage model 

Figure 5: Warehouse Selections for (a) Deterministic model; and (b) Stochastic two-stage model 
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Figure 6:Solution for rolling horizon (a) Total Cost; (b) Unit Cost; (c) Service level; (d) Supply Chain 
efficiency 
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Figure 7:Implemented cost for the rolling horizon.  The text on each bar (det = deterministic mode, and 
sto = stochastic model) 
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