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ABSTRACT

Two main topics are studied in this research. First, the importance of com-

pressibility effects of large horizontal-axis wind turbines are systematically assessed

using the Blade Element Moment (BEM) method and unsteady Reynolds-Averaged

Navier-Stokes (RANS) simulations. Second, a deep neural network (NN) with transfer

learning ability are proposed for efficient wind farm power estimation.

The tips of large horizontal-axis wind turbines can easily reach high speeds,

thus raising the concern that compressibility effects may influence turbine wakes and

ultimately power production. All past studies have assumed that these effects are negli-

gible. In Chapter 1.2, compressibility effects are assessed in terms of blade aerodynamic

properties and variable density separately. Using the BEM method, we find that under

normal operating conditions (i.e., wind speed <∼15 m s−1 and tip speed ratio TSR

<∼ 12) aerodynamic corrections to the lift and drag coefficients of the blades have

a minimal impact, thus the incompressible coefficients are adequate. In Chapter 1.3,

compressibility effects are assessed in terms of variable-density, numerical simulations

of a single turbine and two aligned turbines, modeled via the actuator line model with

the default aerodynamic coefficients, are conducted using both the traditional incom-

pressible and a compressible framework. The flow field around the single turbine and

its power performance are affected by compressibility and both show a strong depen-

dency on TSR. Wind speed and turbulent kinetic energy (TKE) differences between

compressible and incompressible results origin from the rotor tip region but then im-

pact the entire wind turbine wake. Power production is lower by 8% under normal

operating conditions (TSR∼8) and 20% lower for TSR∼12 due to compressibility ef-

fects. When a second turbine is added, the front turbine experiences similar effects as

the single-turbine case, but TKE differences are enhanced while wind speed differences

xiii



are reduced after the second turbine in the overlapping wakes. These findings sug-

gest that compressibility effects play a more important role than previously thought

on power production and, due to the acceptable additional computational cost of the

compressible simulations, should be taken into account in future wind farm studies.

In Chapter 2, a deep neural network is trained and validated using three years of

one-minute observations of wind speed, direction, and power generated at the offshore

Lillgrund wind farm (Sweden). In its traditional form, the NN is used to generate

a new two-dimensional power curve, which predicts with high accuracy (error ∼ 2%)

the power of the entire Lillgrund wind farm based on wind speed and direction. By

contrast, manufacturers only provide one-dimensional power curves (i.e., power as a

function of wind speed) for a single turbine. The second innovative application is the

use of a geometric model (GM) to calculate two simple geometric properties to replace

wind direction in the NN. The resulting GM-trained NN has the powerful feature of

being applicable to any wind farm, not just Lillgrund. A validation at the onshore

Nørrekær wind farm in Denmark demonstrates the high accuracy (error ∼ 6%) and

transfer-learning ability of the GM-trained NN.

xiv



Chapter 1

NUMERICAL MODELING OF COMPRESSIBILITY EFFECTS
AROUND LARGE WIND TURBINES

1.1 Introduction

Modern wind turbines are being built with longer blades, taller towers, and

higher capacities than ever before, to deliver more energy in a more efficient way. Tur-

bine manufacturers all over the world are building wind turbine blades that exceed

70 m in length, e.g., the MHI Vestas V164-8.0MW (rotor diameter D=164 m) (MHI

Vestas Offshore Wind, 2016), the Siemens SWT-8.0MW (D=154 m) (Siemens AG,

2016), the special two-blade wind turbine Ming Yang SCD-6.0MW (D=140 m) (Off-

shore Wind, 2014), and the prototype Adwen AD-8.0MW (D=180 m) (Adwen, 2016).

The tip speed of these powerful wind turbines can easily reach Mach numbers in the

range of 0.2-0.3 under normal operating conditions (and even higher under high-wind

conditions). At these Mach numbers, treating the flow near the wind turbine as incom-

pressible is questionable, as compressibility effects are expected to arise and can affect

the flow field as well as the performance of the wind turbines. The incompressibility

assumption has been the gold standard in past studies of flow around turbines but it

has never been evaluated before at such high tip speeds as we see today. This study is

the first to systematically evaluate the limitations of incompressibility with respect to

both aerodynamic coefficients of the blades and variable density.

The extraction of energy from the wind by a large wind turbine leaves a wake

behind it, which propagates downstream and is characterized by lower wind speeds

and higher turbulence than the ambient air. The behavior of the wind turbine wake

and the possible interactions between different wakes in a large wind farm have been
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extensively studied for more than three decades (Vermeer et al., 2003) via wind tunnel

studies and computational simulations.

Experiments have been successfully conducted in wind tunnels to study wind

turbine aerodynamics using scaled-down versions of small-size (Ainslie et al., 1990;

Chamorro and Porté-Agel, 2010; Chen and Liou, 2011) and medium-size (Haans et al.,

2005; Krogstad and Eriksen, 2013; Cho and Kim, 2012) rotors. Only two wind tun-

nel experiments were performed for full-size rotors, the National Renewable Energy

Laboratory (NREL) Phase VI rotor (Simms et al., 2001) and the Model Experiments

In Controlled Conditions (MEXICO) rotor (Snel et al., 2007). The main limitation

of wind tunnel studies lies in the scale of the wind turbine models. Even the full-size

rotors are much smaller than the turbine rotors used in the industry, which usually

are O(100) m. When extending the wind tunnel measurements to real applications,

scaling effects occur (McTavish et al., 2013).

Studying individual and clustered real-size wind turbines has been made possible

by computational fluid dynamics (CFD). With CFD, representing large wind turbine

rotors with high fidelity, i.e., fully resolving the geometry, rotation, and effects of

the turbine blades, is possible in principle, but remains nearly impossible in practice

because it is too computationally intensive, as reviewed in (Sanderse et al., 2011)

and (Vermeer et al., 2003). For high Reynolds number flows, the length scale of the

boundary layer that forms around the turbine blades is O(10−3) m, while the length

scale of the atmospheric boundary layer (ABL) domain is O(103) m. The number of

grid points required to properly simulate such a range of scales is enormous, although

some parts of the domain can be resolved at coarser resolution. To overcome this

computational impediment, parameterizations of the aerodynamic forces on the turbine

have been therefore developed to reduce grid requirements. In general, the turbine rotor

or blades can be represented by the Actuator Disk Model (ADM) or the Actuator Line

Model (ALM). For both, the aerodynamic forces are obtained with the Blade Element

Momentum (BEM) theory (Glauert, 1935). The original ADM uses a circular disk

to simulate the rotor and the thrust force induced by the wind turbine is imposed to
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the flow (Gómez-Elvira et al., 2005; Jimenez et al., 2008; Calaf et al., 2010); however,

the rotational effects of the rotor are not taken into account. This limitation was

overcome by another version of the ADM, in which both thrust and tangential forces

are imposed to the flow (Sørensen and Kock, 1995; Masson et al., 2001; Alinot and

Masson, 2002). The disadvantage of the ADM is that the aerodynamic forces imposed

on the fluid are averaged over the rotor area whereas the actual location of the blades

changes with time. With the ALM, drag and lift forces are calculated along actuator

lines that represent the rotating blades, therefore the rotational effects and movements

of the blades are taken into account (Sørensen and Shen, 2002; Troldborg et al., 2010;

Lu and Porté-Agel, 2011). The ADM and ALM can be integrated with either the

unsteady Reynolds Averaged Navier-Stokes (RANS) framework (Masson et al., 2001;

Schluntz and Willden, 2015) or the Large Eddy Simulation (LES) framework (Calaf

et al., 2010; Xie and Archer, 2015). Finite Element Method (FEM) (Hsu et al., 2014),

Finite Difference Method (FDM) (Xie and Archer, 2015) and Finite Volume Method

(FVM) (Churchfield et al., 2012a,b) have been used to solve the URANS and LES

systems of equations, using the incompressible assumption.

Some efforts have been made to account for compressibility effects when mod-

eling wind turbines and the flow around them, but either for small regions confined

near the turbine blades or using certain simplifications or corrections. Wood (1997)

assumed that compressibility effects, being due primarily to the rotation of the blades,

would be confined to the region near the blades and performed calculations of aerody-

namic properties at various wind speeds using BEM theory. He found that, when the

wind speeds were of the order of 30 m s−1, significant reductions in the wind turbine

performance occurred due to compressibility. Leishman and Beddoes (1989) proposed

a semi-empirical stall model in which compressibility effects were simply represented

with a constant correction coefficient. Duque et al. (1999) performed successful sim-

ulations of compressible flow around a wind turbine blade (the NREL phase II rotor)

but using the so-called “thin-layer” Navier-Stokes equations. Later Duque et al. (2003)

simulated the flow around blade of the NREL phase VI rotor using both CAMRAD
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II (a lifting-line code with a free wake model) and OVERFLOW-D (a compressible

solver with low Mach-number preconditioning capability); the power prediction with

OVERFLOW-D showed good agreement with measurements while CAMRAD II did

not and modifications were needed. Xu and Sankar (2000) solved the viscous com-

pressible flow equations over a small region around the rotor and the other part of

the domain was modeled using an inviscid free-wake method. Pape and Lecanu (2004)

performed 2D and 3D simulations of a two-bladed wind turbine with a compressible

solver, developed by ONERA (Cambier and Gazaix, 2002), over a domain restricted

to one 180◦ azimuthal sector by using periodic boundary conditions. Their 2D simula-

tions showed good agreement with experiments whereas the 3D computations did not,

especially in the high speed region. In summary, no information can be found in the

literature about assessments of the compressibility effects around large wind turbines

in a realistically-sized domain.

The most widely used, averaged or filtered, governing momentum equation for

wind turbine and wind farm simulations is the incompressible, Boussinesq form of the

Navier-Stokes equation as follows:

∂

∂t
(ρ0ui) +

∂

∂xj

(
ρ0ujui

)
= − ∂p

∂xi
+

∂

∂xj

(
τij + τtij

)
+ ρgi + ρ0fi, (1.1)

where ui is the averaged or filtered velocity, τij is the mean or resolved laminar stress

tensor, τtij is the turbulent stress tensor, gi is the gravitational acceleration, fi is the

body force from the turbine blade model (ADM/ALM), and, from the Boussinesq

approximation, air density is assumed constant everywhere (ρ0) except in the gravity

term (ρ). Next, the buoyancy term can be linked to temperature to give the final form

of the three governing equations (continuity, momentum, and temperature equations):

∂ui
∂xi

= 0, (1.2)

∂ui
∂t

+
∂

∂xj
(ujui) = − 1

ρ0

∂p

∂xi
+

1

ρ0

∂

∂xj

(
τij + τtij

)
+
[
1− β

(
θ − θ0

)]
gi + fi, (1.3)
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∂θ

∂t
+

∂

∂xj

(
ujθ
)

= − ∂qj
∂xj
−
∂qtj
∂xj

, (1.4)

where θ is the averaged or filtered potential temperature, θ0 is the reference, constant,

and uniform potential temperature, qj is the mean or resolved heat flux, qtj is the

turbulent heat flux, β is the coefficient of volume expansion.

Two problems arise when compressibility effects are taken into account. First,

the body force fi on the flow is equal and opposite to the force exerted by the

ADM/ALM, which is calculated using tabulated airfoil lift and drag coefficients based

on the incompressible assumption. Thus, these tabulated aerodynamic properties of

each blade section can be safely used when the Mach number is small because the

incompressible assumption is valid. However, the Mach number at blade sections near

the tip of large wind turbines can easily reach up to ∼0.2-0.3. Based on linearized,

compressible, subsonic flow analysis, as the Mach number increases, both lift and drag

coefficients of the airfoil will increase (Leishman, 2006), thus compressibility correc-

tions need to be applied to these coefficients when modeling large wind turbines. This

will be explained in more detail in Section 1.2.

Second, the body force fi in the incompressible framework is a density-normalized

force. However, to calculate torque, thrust, or power output of the turbine, the body

force needs to be multiplied by air density, which in principle is different at each point

and at each time. Because of the incompressible and Boussinesq assumptions, air den-

sity is treated as a constant and therefore the body force is simply multiplied by a

constant reference density ρ0 (Fig. 1.1a). Choosing the value of this reference density

is arbitrary and different reference air densities will cause a direct change in power

prediction. For example, using 1.23 Kg m−3 instead of 1.18 Kg m−3, a 4.2% change,

will cause a direct increase in power of 4.2%, which is non-negligible in terms of power

output. The compressibility effects due to variable density can only be accounted for

by using a compressible framework where variable density is resolved in space and time

and the turbine force is calculated directly as ρfi instead of ρ0fi (Fig. 1.1b), as will be
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Figure 1.1: Workflow for a) incompressible, Boussinesq and b) compressible wind
turbine modeling. Note that, in the Actuator Line Model calculation of
blade-induced forces and in the turbine power calculation, density is a
constant ρ0 in a), but it is a three-dimensional, time-dependent, fully-
resolved variable in b).
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done in Section 1.3.
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1.2 Compressibility effects on blade aerodynamic properties

Today, bigger and bigger wind turbines are being built in order to deliver more

energy in a more efficient way. At the same time, new challenges come along for

numerical modeling of the bigger wind turbines. In general, wind turbines can be

modeled using the Blade Element Moment (BEM) method, the Actuator Disk Model

(ADM), and the Actuator Line Model (ALM). All these methods share one common

assumption, i.e., air is incompressible. However, for a large modern wind turbine with

blade length easily exceeding 50 m, the Mach number M (ratio of the fluid speed

over the speed of sound) at the blade tips can be in the range of 0.2∼0.4, where the

incompressible assumption starts to fail and the compressibility effects may start to

play a role. In this section, compressibility effects on blade aerodynamic properties are

investigated.

1.2.1 The incompressible blade element moment (BEM) method

The BEM method is used to calculate the wind turbine performance with and

without the compressibility correction. A blade element with radius r (Fig. 1.2)

experiences a local relative velocity Urel, which can be calculated as:

Urel
2 = ((1− a)U0)

2 + ((1 + a′) Ωr)
2
, (1.5)

where Ω is the rotational speed of the turbine, a is the axial induction factor, and a′

is the rotational induction factor. Two corrections are necessary in order to obtain

satisfactory values for a and a′. The first is Prandtl’s tip loss factor, F , to account

for the finite number of blades of a wind turbine, defined as F = a/ab, where a is the

average induction factor and ab is the value at the blades. The second correction is

called the Glauert correction, which is an empirical correction to the thrust coefficient

for high axial induction factor values. Different forms of these corrections have been

developed (Wilson and Lissaman, 1974; de Vries, 1979). Here we used the work of

(Shen et al., 2005) and (Wang et al., 2009) to obtain the tip loss factor:

F =
2

π
cos−1

[
exp

(
N (r −R)

2r sinφ

)]
, (1.6)

8



where N is the number of blades. The induction factors are calculated as:

a =
2 + Y1 −

√
4Y1 (1− F ) + Y1

2

2 (1 + FY1)
, (1.7)

a′ =
1

(1− aF )Y2/ (1− a)− 1
, (1.8)

where Y1 and Y2 are defined as:

Y1 = 4F sin2 φ/σCa, (1.9)

Y2 = 4F sinφ cosφ/σCa′ , (1.10)

with Ca = Cl cosφ+ Cd sinφ and Ca′ = Cl sinφ− Cd cosφ.

The power coefficient and thrust coefficient are calculated as:

Cp =
ΩQ

1
2
ρAU3

0

, (1.11)

Ct =
T

1
2
ρAU2

0

, (1.12)

where Q and T are the total torque and thrust from the blade elements, given by:

dT = N (L cosφ+D sinφ) dr, (1.13)

dQ = N (L sinφ−D cosφ) rdr, (1.14)

where L and D are the lift and drag forces on the blade element dr (Fig. 1.2b). Note

that an increase in both L and D would always cause an increase in the thrust but not

necessarily an increase in the torque, due to the minus sign in Eq. 1.14. An iterative

procedure is needed to solve these equations, as explained in Manwell et al. (2010).

The default, tabulated airfoil data used for incompressible calculations contain

three important modifications that account for three-dimensional behaviors: the correc-

tion for rotational stall delay (Du and Selig, 1998; Eggers et al., 2003), the extrapolation

of the force coefficients using the Viterna’s method (Viterna and Janetzke, 1982), and

the incorporation of Beddoes-Leishman dynamic-stall model (Jonkman et al., 2009).
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Figure 1.2: Velocities and forces on a blade element. The angle between the local
relative velocity and the rotor plane is φ, the local twist angle of the
blade element is γ, and the angle of attack is given by α = φ− γ.
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1.2.2 The BEM method with the Prandtl-Glauert compressibility correc-

tion

Although three types of corrections were already included in the tabulated

aerodynamic properties described above, previous compressible subsonic flow research

(Leishman, 2006) showed that, as the Mach number increases, both the lift and drag

coefficients of an airfoil increase. This effect can be incorporated via the Prandtl-

Glauert correction, in which both aerodynamic coefficients are functions of the local

Mach number of the blade element MB as follows:

Cl =
Cl,0√

1−MB
2
, (1.15)

Cd =
Cd,0√

1−MB
2
, (1.16)

where Cl,0 and Cd,0 are the lift and drag coefficients for incompressible flow. The local

Mach number is:

MB =
Urel
c
, (1.17)

where a constant speed of sound c=340 m s−1 is generally used for atmospheric ap-

plications. More sophisticated corrections exist, such as the Karman-Tsien correction

(Tsien, 1939; von Karman, 1941) and the Laitone correction (Laitone, 1951), but the

Prandtl-Glauert is used here because of its simplicity and numerous applications.

1.2.3 The three wind turbines

Three wind turbines are studied here: the first one is the NREL-5MW research

wind turbine, the second one is the Vestas V112-3.0 wind turbine, the third one is

the Siemens SWT-2.3-93 wind turbine. A sketch of the blades of these three wind

turbines is shown in Fig. 1.3. Since the turbine blade data are highly proprietary,

for the Siemens SWT-2.3-93, Churchfield et al. (2012b) designed a 2.3-MW turbine to

mimic the real Siemens turbine, which has a rotor diameter of D = 93 m. The chord

length distribution, pitch angle distribution, and airfoil types were well tested to get

the turbine power curve very close to the real Siemens turbine. For the V112-3.0, Lu
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and Porté-Agel (2011) also designed a 3.0-MW turbine with a diameter of D =112

m of similar characteristics to the real V112-3.0; however, for simplicity, this 3.0-MW

turbine used a linear chord distribution (4 m to 0.5 m) and a linear twist distribution

(17.5◦ to 0◦). The NREL-5MW turbine blades were developed based on the DOWEC

6MW wind turbine blades (Kooijman et al., 2003; Lindenburg, 2002), with a diameter

of D =112 m. Details of the blade section data are listed in Table 1.1 and Table 1.2.

1.2.4 Results

Following the BEM algorithm in Fig. 1.4, the performances of the three wind

turbines calculated with the Prandtl-Glauert compressibility corrections are compared

with the performances using the standard incompressible assumption for uniform and

constant flows with incoming wind speed U0 = 5, 10, 15, and 20 m s−1 and for Tip

Speed Ratio (TSR) ranging from 0.25 to 16 with a 0.25 interval.

The well-designed NREL-5MW wind turbine shows a very good efficiency when

the incoming wind speed is low (e.g., 5 m s−1); compressibility losses, manifested as

a decrease in the power coefficient Cp, are barely noticeable even at the highest TSR

of 16, as indicated by the almost perfect overlap of the blue and black-dashed lines in

Fig. 1.5a. As the wind speed increases, the power losses remain negligible at low TSR

(< 8), but become more and more significant starting around a TSR of 8, as shown

by the larger separation between the purple and the black-dashed lines in Fig. 1.5a.

Using a threshold of 5% power losses (indicated by the green-dashed line in Fig. 1.5c),

defined as the percent difference between compressible and incompressible power, we

conclude that, for wind speed lower than approximately 15 m s−1 and TSR smaller

than approximately 12, no correction is needed for the default incompressible tabulated

data in terms of power production. On the other hand, at high wind speeds (>∼15

m s−1) with a large TSR (>∼12), compressibility effects are not negligible and power

losses exceed 20% and can be as high as 50%. This is due to the increase in both lift

and drag coefficients associated with the increased tip Mach number (Eq. 1.15 and

Fig. 1.5d), which causes: an increase in the thrust coefficient (Fig. 1.5b) and in the

12



Figure 1.3: Schematic of the blades of three wind turbines: Siemens SWT-2.3-93,
Vestas V112-3.0, and NREL-5MW.
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Blade Element Radius Twist Length Chord Airfoil
(m) (◦) (m) (m)

1 2.8667 13.308 2.7333 3.542 Cylinder1
2 5.6000 13.308 2.7333 3.854 Cylinder1
3 8.3333 13.308 2.7333 4.167 Cylinder2
4 11.7500 13.308 4.1000 4.557 DU40 A17
5 15.8500 11.480 4.1000 4.652 DU35 A17
6 19.9500 10.162 4.1000 4.458 DU35 A17
7 24.0500 9.011 4.1000 4.249 DU30 A17
8 28.1500 7.795 4.1000 4.007 DU25 A17
9 32.2500 6.544 4.1000 3.748 DU25 A17
10 36.3500 5.361 4.1000 3.502 DU21 A17
11 40.4500 4.188 4.1000 3.256 DU21 A17
12 44.5500 3.125 4.1000 3.010 NACA64 A17
13 48.6500 2.319 4.1000 2.764 NACA64 A17
14 52.7500 1.562 4.1000 2.518 NACA64 A17
15 56.1667 0.863 2.7333 2.313 NACA64 A17
16 58.9000 0.370 2.7333 2.086 NACA64 A17
17 61.6333 0.106 2.7333 1.419 NACA64 A17

Table 1.1: Aerodynamic properties of the NREL-5MW wind turbine based on incom-
pressible blade element theory.
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Blade Element Radius Twist Length Chord Airfoil
(m) (◦) (m) (m)

1 2.5714 9.000 2.1430 2.036 Cylinder1
2 4.7143 9.000 2.1430 2.065 Cylinder2
3 6.8571 9.000 2.1430 2.334 Cylinder2
4 9.0000 9.000 2.1430 2.736 FFA W3-301
5 11.1429 9.000 2.1430 3.137 FFA W3-301
6 13.2857 9.000 2.1430 3.485 FFA W3-301
7 15.4286 9.000 2.1430 3.372 FFA W3-301
8 17.5714 9.000 2.1430 3.183 FFA W3-301
9 19.7143 8.079 2.1430 2.995 FFA W3-241
10 21.8571 6.014 2.1430 2.807 FFA W3-241
11 24.0000 4.231 2.1430 2.618 FFA W3-241
12 26.1429 2.589 2.1430 2.430 FFA W3-211
13 28.2857 1.303 2.1430 2.242 FFA W3-211
14 30.4286 0.281 2.1430 2.054 NACA 63-221
15 32.5714 -0.594 2.1430 1.865 NACA 63-221
16 34.7143 -1.303 2.1430 1.677 NACA 63-218
17 36.8571 -1.840 2.1430 1.489 NACA 63-218
18 39.0000 -2.274 2.1430 1.300 NACA 63-218
19 41.1429 -2.627 2.1430 1.112 NACA 63-218
20 43.2857 -2.842 2.1430 0.924 NACA 63-218
21 45.4286 -2.973 2.1430 0.735 NACA 63-218

Table 1.2: Aerodynamic properties of the Siemens SWT-2.3-93 wind turbine based
on incompressible blade element theory.
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Figure 1.4: Algorithm for incompressible BEM (without the red block) and com-
pressible corrected BEM (with the red block).
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total thrust (Eq. 1.13); a decrease in the power coefficient (Fig. 1.5a) and in the total

torque (Eq. 1.14); and ultimately a decrease in the power generated (Fig. 1.5c).

The well-designed Siemens SWT-2.3-93 shows a very similar behavior as the

NREL-5MW, with the optimum operating TSR around 8 (Fig. 1.6(a)). Compress-

ibility effects are barely noticeable for all different incoming wind speeds when TSR

is smaller than 10. As TSR increases, for incoming wind speeds of 5 and 10 m s−1,

the compressibility effects still remain small even for the largest TSR. However, for

wind speeds above 15 m s−1, compressibility effects can be important and the turbine

performance is degraded for TSR larger than 12. An increase in the thrust coefficient

(Fig. 1.6b) and in the total thrust is also observed, due to the way they are calculated.

The efficiency of the linearly designed Vestas V112-3.0, on the other hand, is

not as good as the previous two wind turbines. The optimal operating TSR is around

11 with a lower maximum Cp (Fig. 1.7a). The turbine performance is only degraded

for the highest incoming wind speed (20 m s−1) and the largest TSR (>14). Contrarily

to the other two turbines, compressibility effects slightly boost the performance of the

wind turbine for TSR around the optimal value of 11. This is because the forces along

the rotor plane are calculated as L sinφ−D cosφ (Fig. 1.2b) and the Prandtl-Glauert

compressibility corrections increase both lift and drag as Mach number increases, thus

for the simply designed Vestas V112-3.0, the boost of performance is more obvious

than for the Siemens SWT-2.3-93.

1.2.5 Conclusions

In this study, compressibility effects on the blade aerodynamic coefficients are

assessed for three large horizontal-axis wind turbines. Different turbine blade designs

respond differently to the compressibility effects. Under normal operating conditions,

the compressibility effects either will not affect the power production or slightly alter

it in a positive way; only for extreme operating conditions, compressibility effects will

significantly degrade the performance of the wind turbines.
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Figure 1.5: Effects of compressibility correction: a) power coefficient Cp, b) thrust
coefficient Ct, c) power loss (%) and d) tip Mach number as a function
of the tip speed ratio for the NREL-5MW wind turbine.
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Figure 1.6: Effects of compressibility correction: a) power coefficient Cp, b) thrust
coefficient Ct, c) power loss (%) and d) tip Mach number as a function
of the tip speed ratio for the Siemens SWT-2.3-93 wind turbine.

19



Figure 1.7: Effects of compressibility correction: a) power coefficient Cp, b) thrust
coefficient Ct, c) power loss (%) and d) tip Mach number as a function
of the tip speed ratio for the Vestas V112-3.0 wind turbine.
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In real-world wind farms, the operating TSRs are always kept around the opti-

mum value, which is around 8 in general and rarely greater than 12 for large horizontal-

axis wind turbines. In addition, the incoming wind speeds, even for the front-row tur-

bines, are rarely above 15 m s−1. When encountering severe operating conditions, such

as hurricanes or tornadoes, the wind turbines will simply be shut down. Thus we con-

clude that it is acceptable to use the provided incompressible aerodynamic coefficients

to model the power production of large wind turbines and that compressibility effects

on aerodynamic properties are negligible under normal operating conditions.
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1.3 Compressibility effects on air density

Other than the aerodynamic coefficients of the turbine blades, the incompress-

ible assumption is also questionable on air density. A typical averaged or filtered ( ¯

or ˜ sign is omitted) governing momentum equation for wind turbine modeling is:

∂ui
∂t

+ uj
∂ui
∂uj

= − ∂p

∂xi
−
∂τtij
∂xj

+B + C + fi (1.18)

where p is the modified pressure, τtij is the turbulent shear stress, B is the buoyancy

term, C is the Coriolis force, fi is the turbine induced force and all other terms have

their traditional forms. In the real atmosphere, air density slowly decreases with height.

This buoyancy effect is accounted for by using the Boussinesq approximation. However,

the turbine induced force fi is a density-normalized force. When using the BEM

method, ADM, or ALM to model the turbine performance, the real forces (torque,

thrust) are calculated as the density-normalized force multiplied by a constant reference

density, thus the choosing of this constant density needs special attention. Sometimes,

the density near the ground level is used; sometimes, the hub height density is used; a

more accurate choice would be using the rotor-disk averaged density. Using different

air densities will cause a direct change in the power prediction, for example, using 1.25

Kg m−3 instead of 1.2 Kg m−3 will cause a direct increase in power of 4.2%, which is

not a small difference in terms of power prediction.

Except for the vertical variance, air density will also be altered by compress-

ibility effects near the turbine tip region because air flow near that region can become

subsonic, thus air density will change due to high pressure. The incompressible BEM

method, ADM, ALM cannot deal with this problem, unless a compressible framework

is used.

Variable density effects can cause a direct change on turbine power production as

well as on the flow field. In this section, we conduct assessments of the variable-density

effects by performing all simulations using both the incompressible and the compress-

ible framework. Differences between the simulation results using both frameworks are

presented in order to highlight the effects clearly.
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1.3.1 Numerical methods

For the incompressible Boussinesq framework (“Incomp” hereafter), we adopt

the open-source package SOWFA (Simulator for On/Offshore Wind Farm Applications)

(Churchfield et al., 2012a,b), which was developed at the U.S. Department of Energy’s

NREL based on OpenFOAM (Open source Field Operation And Manipulation), a set

of open-source C++ libraries for the development of customized numerical solvers.

SOWFA is well established and validated for wind farm applications (Archer et al.,

2013; Ghaisas et al., 2017; Bhaganagar and Debnath, 2015). Turbines in SOWFA are

modeled using ALM, but the nacelle and tower of the turbines are not modeled. The

governing equations used in SOWFA were discussed in Section 1.

For the compressible framework (“Comp” hereafter), in order to maintain high

consistency with the incompressible framework and make the results between the two

frameworks comparable, we follow the procedure of SOWFA and develop our solver

based on OpenFOAM, thus turbines are modeled using ALM (Fig. 1.1b). While

assessing the variable-density effects, we want to exclude the aerodynamic effects, thus

the tabulated lift and drag coefficients of the blade airfoils are kept identical in both

solvers. This is consistent with the findings in Section 1.2.1 that compressibility effects

are negligible on aerodynamic properties of wind turbines operating under normal flow

and TSR conditions. The governing equations in the compressible framework are the

Favre-averaged continuity, momentum, and enthalpy equations:

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0, (1.19)

∂

∂t
(ρũi) +

∂

∂xj
(ρũjũi) = − ∂p

∂xi
+

∂

∂xj

(
τij + τtij

)
+ ρgi + ρfi, (1.20)

∂

∂t

(
ρh̃
)

+
∂

∂xj

(
ρũjh̃

)
=
∂p

∂t
− ∂Q̃j

∂xj
−
∂Q̃tj

∂xj
, (1.21)

p = ρRT̃ , (1.22)
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where ũi = ρui/ρ and h̃ = ρh/ρ are the Favre-averaged velocity and enthalpy, the

laminar stress tensor τij = µ
[(

∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3

(
∂ũk
∂xk

)
δij

]
and heat flux Qj = − µ

Pr
∂h̃
∂xj

.

The turbulent stress tensor, split into a deviatoric and an isotropic part, by adopting

the eddy-viscosity hypothesis for the deviatoric part, can be calculated as:

τtij = µt

[(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3

(
∂ũk
∂xk

)
δij

]
− 1

3
τkkδij, (1.23)

where µt is the turbulent viscosity, calculated with the k − ε equations (Launder and

Spalding, 1974). The turbulent heat flux, with the eddy-viscosity hypothesis, is calcu-

lated as:

Qtj = − µt
Prt

∂h̃

∂xj
, (1.24)

where Prt is the turbulent Prandtl number. Again, the purpose of this section is

to discover the variable-density compressibility effects alone, thus high consistency is

required between the two frameworks. Because the standard k − ε model (Launder

and Spalding, 1974) is highly consistent between the two, it was chosen in this study

as the turbulence closure for the governing equations. The compressible form has been

used with success in variable-density thermal stratified flow (Khalil et al., 1975) and

free shear flows with Mach number effects (Launder et al., 1973).

Both the incompressible and compressible governing equations are discretized

using the finite volume method on unstructured meshes. All variables are cell-centered

and collocated on the grid. Linear interpolation (equal to second-order central dif-

ferencing) is used to interpolate cell-centered variables to cell faces. The system of

equations is solved using the predictorcorrector Pressure Implicit Splitting Operation

(PISO) method (Issa, 1986) and the implicit terms are integrated in time using Crank-

Nicolson discretization; one predictor with two correctors are used in this study. The

discretized momentum and enthalpy/temperature equations are solved using an iter-

ative diagonal incomplete-LU preconditioned bi-conjugate gradient matrix solver; the

discretized pressure equations are solved using an iterative preconditioned conjugate

gradient solver with a diagonal incomplete Cholesky smoother. Both the incompress-

ible and compressible codes are parallelized using the message-passing interface (MPI).
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All simulations of this study are conducted on a high-performance computing cluster

with 192 processors.

The differences between the two frameworks will be always discussed as “Comp

minus Incomp”, where Incomp is taken as the reference.

1.3.2 Single wind turbine cases

This section explores the compressibility effects associated with variable density

in the flow field around a single NREL-5MW wind turbine operating in the ABL. The

simulations were carried out in a Cartesian computational domain with streamwise,

spanwise, and vertical lengths of 3024, 756, and 756 m, respectively. Using the diameter

of the NREL 5MW wind turbine as reference (D=126 m), the domain size can be

expressed in non-dimensional form as 24D x 6D x 6D (Fig. 1.8a). The computational

domain is evenly divided in each direction into Nx ×Ny ×Nz = 312× 144× 144 grid

points of sizes ∆x×∆y ×∆z = 9.7 m × 5.25 m × 5.25 m.

A constant geostrophic wind speed Ug is imposed at the domain top and periodic

boundary conditions are used at the spanwise and streamwise boundaries, so that the

two frameworks simulate an infinitely-large atmospheric boundary layer. The Reynolds

number is sufficiently high to neglect molecular viscosity, except at the first grid point

off the ground, where the Schumann’s wall model is imposed (Schumann, 1975) and the

roughness length is set to be z0=0.016 m. The simulations are carried out first for the

ABL without wind turbines for 14400 seconds (physical time), which is long enough

for turbulence to become fully developed to capture the log-law of the ABL (precursor

run). Then we collect the flow information at the inflow boundaries from 7200 to 14400

s and start the new simulations with the addition of the wind turbine and the inflow

boundary conditions from the precursor run. The turbine is located 3D downstream

from the inlet section and at the center in the spanwise direction. The height of the

turbine hub is 87.6 m (or 0.7D). The actuator lines rotate counter-clockwise in the

x-plane. For the simulations with wind turbine, periodic conditions are used at the

spanwise boundaries and the free-slip condition is used at the top. Since at the inlet
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Figure 1.8: Schematic of the computational domain (not to scale) for the single-
turbine and two-turbine cases. Domain sizes are expressed as multiples
of the diameter of the reference NREL 5-MW wind turbine (D=126 m).
The circles represent the turbine rotors.
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section in the streamwise direction of the domain the inflow information comes from

the “precursor” simulation, the inflow is effectively non-periodic and unaffected by the

wake of the wind turbine. At the outlet, a zero-gradient condition is imposed. Details

of the simulations are provided in Table 1.3.

Case N. turbines Ug Uhub Ω1 Ω2 TSR
m s−1 m s−1 rpm rpm

1 1 15 11.83 10 5.58
2 (Control) 1 15 11.83 15 8.37
3 1 10 7.88 10 8.37
4 1 10 7.88 15 12.56
5 2 15 11.83 15 10 8.37

Table 1.3: Setup of the five cases considered, with different geostrophic and hub-
height wind speeds (Ug and Uhub), rotational speed Ω, and tip speed ratio
(TSR). The TSR value for Case 5 is for the front-row turbine only.

The first variable of interest is wind speed, shown in Fig. 1.9 for the control

case (Case 2 in Table 1.3). In both compressible and incompressible simulations, the

flow decelerates in front of the turbine while accelerating in the region enveloping the

wake. The acceleration in the outer wake, also found in previous studies (Ghaisas and

Archer, 2016; Ghaisas et al., 2017), vanishes quickly around 2D downstream of the

wind turbine. This acceleration is slightly lower in Comp than in Incomp, thus Fig.

1.9c shows wings of negative wind speed differences outside of the rotor circle (light

blue in 1.9c). Similarly, the deceleration of the flow right in front of the turbine is

stronger in Comp and therefore the wind speed right in front of the rotor is slightly

weaker with Comp than with Incomp (∼0.2 m s−1 in Fig. 1.9c).

In the wake, the wind speed simulated by Comp is slightly higher than that

in Incomp, or the wind speed deficit is slightly weaker in the Comp than Incomp

results, thus the positive wind speed difference in Fig. 1.9c. The difference caused

by compressibility effects has a typical “bowl” shape, reaches its maximum in the

near-wake region (∼0.3 m s−1) by 3D, and becomes negligible in the far-wake region.
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Figure 1.9: Case 2: Horizontal cross-sections at hub height of: a) Comp wind speed,
b) Incomp wind speed, and c) Comp - Incomp wind speed difference, all
in m s−1. The 12 m s−1 contour line is shown in black in a) and b).
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The differences can be explained by comparing the two frameworks phenomeno-

logically. In incompressible flow, when a volume of air hits the blades, no energy is

used to compress the air volume and all of it is used to push the blades and deflect

the air. In compressible flow, a small fraction of the kinetic energy is used to slightly

compress the air, thus the wind speed is lower in front of the rotor, the power extracted

is less, and the speed in the wake is higher.

Vertical and horizontal profiles of wind speed (Fig. 1.10) for both frameworks

confirm the previous findings. In general, the wind speed deficit is slightly weaker

in the Comp wake starting at 1D, but it is almost recovered to the Incomp value by

5D (Fig. 1.10b). The shape of the horizontal TKE distribution is similar in the two

frameworks, with two peaks at the left and right tips of the rotor, which merge into

one at 3D (Fig. 1.11b). The Comp wake has always smaller values of TKE than

the Incomp wake, by up to ∼15%, which is counter-intuitive in a wake with higher

wind speed (Archer et al., 2016). In incompressible flow, fluctuations in velocity that

contribute to TKE are stronger because no energy is used to compress the air, whereas

in compressible flow the perturbations are slightly damped because some energy is

used towards density changes. In the vertical, again, the wakes simulated by the two

frameworks have similar TKE shapes with a strong peak at the top tip of the rotor

and a weaker peak at the bottom tip (Fig. 1.11a), as found also in previous studies

(Xie and Archer, 2015), but the Comp TKE is lower than the Incomp TKE by up to

10%.

Going back to the rule-of-thumb for incompressible flow, any increase in the flow

velocity would increase the Mach number and therefore increase the compressibility

effects. Two properties that would increase the flow velocity are the hub-height wind

speed (Uhub) and the rate of rotation of the turbine Ω, both of which have been found

to influence the wind speed deficit and the turbulence properties of wind turbine wakes

(Vermeer et al., 2003; Hansen et al., 2006; Sanderse et al., 2011; Sørensen, 2011). The
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Figure 1.10: Case 2: Vertical (a) and lateral (b) profiles of wind speed (m s−1)
along the wake centerline at various distances downstream of the turbine
(expressed as multiples of the turbine diameter D). The black dashed
lines represent positions of the turbine hub and tips.
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Figure 1.11: Case 2: a) vertical and b) lateral profiles of TKE (m2 s−2) along the wake
centerline at various distances downstream of the turbine (expressed as
multiples of the turbine diameter D). The black dashed lines represent
positions of the turbine hub and tips.
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two properties are combined in the TSR:

TSR =
ΩR

Uhub
. (1.25)

The sensitivity of Comp and Incomp results to both is analyzed here, for increasing

values of the TSR (corresponding to Cases 1, 2, 3 and 4 in Table 1.3).

Compressibility effects begin near the tip region, but are not confined there, as

wind speed differences are found in the wake with the “bowl” shape in all cases (Fig.

1.12, left). An increase of the magnitude of the wind speed differences is observed as

TSR increases. For Case 1 with the lowest TSR, the largest difference is around 1%;

for Case 2 and 3 with the same TSR, the largest difference is around 2%; for Case 4

with the highest TSR, the difference is up to 3%. Another finding is that the shape of

the affected region is also related to TSR. For low TSR, which means relatively high

free-stream wind speed, the affected region extends all the way to the far wake without

a significant decay in the magnitude of the wind speed difference (Fig. 1.12, top); for

intermediate TSR, the affected region still extends to the far-wake region, but with a

decay in the magnitude (Fig. 1.12, middle); for high TSR, which means relatively low

free-stream wind speed, the affected region is confined to the near-wake and becomes

negligible in the far wake (Fig. 1.12, bottom).

Compressibility also changes the turbulence properties of the wake (Fig. 1.12,

right). Bowl-shaped TKE differences are again observed in the near-wake region, since

the TKE differences also origin from the high Mach number zone, i.e., the turbine tip

circle region, and then the region further downstream is affected. The Comp wake

always exhibits less TKE than the Incomp, thus the negative value of TKE differences.

Both the magnitude and the extent of the TKE differences increase with TSR; however,

for all TSRs, the TKE differences disappear past 10D.

Figure 1.13 shows the cross-sections in the rotor plane of Comp minus Incomp

wind speed differences for different TSR. The blue rings are caused by the different

accelerations outside of the rotor circle, as observed in Fig. 1.9c. The red rings are

the origin of the bowl-shaped wind speed differences near the tips of the blades and
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Figure 1.12: Horizontal cross-sections of Comp - Incomp wind speed difference (left)
and Comp - Incomp TKE difference (right) at hub height, normalized
by Uhub and U2

hub respectively, for the four single-turbine cases in Table
1.3.
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the change of their magnitude is consistent with previous findings, with higher TSR

corresponding to larger differences between the two frameworks. These figures show

that the compressibility effects originate at the rotor tips.

Last, the effects on wind power production is discussed. Compressibility effects

related to variable density show up as a slightly degraded turbine performance (Fig.

1.14a) and they increase with TSR (Fig. 1.14b, circles). For Case 1, with a TSR of

5.58, the power coefficient decreases by about 3% from Incomp to Comp; for Case 2

and 3 (TSR=8.37) by about 8% (note that the two cases are indistinguishable in the

figure); and for Case 4 (TSR=12.56) by 20%. Although these values from compressible

and incompressible simulations are not directly comparable with the theoretical curves

shown in Fig. 1.5, which were obtained using blade element theory for a uniform

incoming wind speed, we put them together in Fig. 1.14b. The two compressibility

effects: on aerodynamic properties (solid and dashed curves) and on air density (circles

and filled circles), have a similar pattern, meaning that both cause power to be reduced

switching from incompressible to compressible and more so for high TSRs, although

the variable-density effect is larger.

Several conclusions can be drawn already from the single-turbine case. First,

compressibility effects are not negligible and are not limited to the region near the

blade tips, but impact the entire wake. The magnitude and extent of the effects in the

wake depend on the tip speed ratio. A wind turbine wake has a weaker wind speed

deficit, higher wind speed and lower turbulence in the wake, and produces less power

when compressibility effects are taken into account than when they are ignored. Since

most wind farms include more than a single turbine, it is important to verify if and

how these effects come to play when multiple turbine wakes interact with each other,

as they do in a wind farm. This issue will be addressed in the next section.

1.3.3 Two aligned wind turbines

This section explores the compressibility effects in the flow field of two NREL

5-MW wind turbines operating in the same ABL flow discussed in the previous section.
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Figure 1.13: Vertical cross-sections in the rotor plane of Comp - Incomp wind speed
difference, normalized by Uhub, for the four single-turbine cases in Table
1.3.
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Figure 1.14: a) Power production of the four incompressible and four compressible
single-turbine cases described in Table 1.3, normalized by the power
of the incompressible cases. b) Effects of compressibility on the power
coefficient Cp from BEM (lines) and Comp/Incomp simulations (circles).
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The numerical setup for two turbine simulations is kept the same as the single turbine

simulations, the only difference is that now we have two wind turbines aligned, one

located at x=3D and the other one at x=7D, which are 4D apart (Fig. 1.8b). The

rotational speed of the first and second turbine is 15 and 10 rpm, respectively (Table

1.3).

The general behaviour of the wind speed difference for the front-row turbine is

similar to the single-turbine case, i.e., a weaker wind speed deficit (indicated by the

positive wind speed differences within the rotor area in Fig. 1.15a), weaker acceleration

outside of the rotor area, and lower TKE (Fig. 1.15b) with Comp than with Incomp.

In overlapping wakes, some compressibility effects are enhanced and some are damped.

TKE differences are enhanced, meaning that the Comp flow field becomes less and

less turbulent than the Incomp flow field past two or more turbines. On the other

hand, wind speed differences are damped, with a similar bowl-shaped pattern as in

the control case, but generally weaker and less extended downstream past the second

turbine. This suggests that, without considering TKE, wind power production is most

different at the front row, with Incomp predicting higher power than Comp, but the

two converge eventually as the number of turbines downwind increases.

Horizontal profiles of wind speed and TKE for both frameworks (Fig. 1.16)

confirm that wind speed and TKE respond differently in overlapping wakes when com-

pressibility effects are considered. The wind speed deficit difference becomes insignif-

icant at the second turbine and remains as such downstream. TKE is higher in the

second wake with both frameworks, but the TKE difference becomes even larger past

the second turbine than past the first.

1.3.4 Validation

To validate the results, we acquired power production data at an existing wind

farm, the Lillgrund offshore wind farm (Archer et al., 2013), located off the coast of

Sweden in the Baltic Sea, for a period of approximately three years at a temporal

resolution of 1 minute. Lillgrund contains 48 Siemens SWT-2.3MW wind turbines
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(Siemens AG, 2009) with rotor diameter D = 93 m and hub height H = 63.4 m.

The prevailing wind direction at Lillgrund is from the southwest (225 ◦), for which

the turbine spacing is 4.3D along the wind and 3.2D across the wind, similar to the

spacing used in the previous sections.

We conducted a simulation of the entire Lillgrund wind farm using the com-

pressible framework with the aim of comparing the simulated power output against

the observed to validate the results. The computational domain has streamwise, span-

wise, and vertical lengths of 4000, 4000, and 756 m, respectively (Fig. 1.17a). The

computational domain is divided in each direction into Nx×Ny×Nz = 512×512×144 =

37, 748, 736 grid points of sizes ∆x×∆y×∆z = 7.8 m × 7.8 m × 5.25 m. Again, pre-

cursor simulations were performed using periodic lateral conditions (north to south,

west to east) with a constant geostrophic wind speed of 15 m s−1 coming from the

southwest (225◦). The precursor simulations were run for 14400 seconds to develop

a fully turbulent, neutrally stratified boundary layer. The values of wind speed and

temperature at the south and west boundaries were saved from 7200 s to 14400 s and

used as the inlet boundary values to start the wind farm simulations with the 48 wind

turbines; top and bottom boundary conditions remained the same as the precursor.

The numerical discretization method and the algorithms to solve the system of govern-

ing equations are kept the same as in the single- and two-turbine cases (Section 1.3.1).

Time-averaged horizontal velocity normalized by hub height wind speed is shown in

Fig. 1.17b, where the wakes of the 48 turbines are clearly visible. As far as we know,

this is the largest domain and the finest-resolution simulation of a wind farm conducted

to date using a compressible framework.

To validate the compressible simulation results, we extracted a subset of the

observed power data at each turbine for wind directions between 215◦ to 235◦ (using

the yaw angle as a proxy for wind direction, as in (Ghaisas et al., 2017)) and with wind

speeds between 11 m s−1 and 12 m s−1 (corresponding to a geostrophic wind speed

of ∼15 m s−1), for a total of approximately three months of data. Relative power

was computed next as the power of each wind turbine normalized by the power of the
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corresponding front turbine of each column and the average was calculated over the

three months of interest. Quality checks were performed to ensure that cases with

turbine shut-downs for maintenance, or with pitch controls not reproducible in the

simulations, or with excessive yaw biases would not be retained. After cleaning the

data from all such scenarios, observed relative power for selected columns (E-H) was

obtained and compared against the simulated relative power.

In general, the compressible simulation results are in great agreement with the

observations 1.18, as the simulated relative power is always within one standard de-

viation of the observed and often the match is very good. For example, the drop in

relative power between the first and second turbine in each column was correctly re-

produced, especially in Column H, and so was the flattening of the curves after the

second turbine. Note that, in Column E, the third turbine (34) shows a recovery of

the relative power because there is a “hole” in the middle of the farm with no turbines

(Fig. 1.17a), a feature well reproduced by the simulation. The root mean square error

for the four columns is 0.053, 0.038, 0.037 and 0.01, respectively, thus we conclude that

the compressible framework proposed here is successful and should be used for future

simulations of wind turbine/flow interactions.

1.3.5 Conclusions and future work

The booming development of wind energy in the past decade, with turbines

becoming increasingly taller and with longer blades, thus larger diameters and rotor

areas, brings new challenges to numerical modeling of wind turbines/wind farms and

power prediction. For example, the tip Mach number of large wind turbines operating

in normal conditions can easily reach ∼0.2-0.3, which is usually treated as the upper

threshold of incompressible flow. Compressibility effects may arise and alter the flow

field as well as the turbine performance. Here, an assessment of such compressibility

effects is performed for the first time from two points of view, aerodynamic properties

of the turbine blades and variable-density effects.
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The Prandtl-Glauert rules are applied to calculate the compressibility correc-

tions to the lift and drag coefficients of the blade airfoils for various combinations of

incoming wind speeds and wind turbine rotation speeds. The power coefficient in in-

compressible flow (no corrections) only depends on TSR and does not change with

different incoming wind speeds. However, when compressibility effects are taken into

account only to correct the aerodynamic coefficients, the performance of the wind tur-

bine is degraded, but negligibly for low wind speeds and low TSRs. The degradation

starts becoming significant when the incoming wind speeds are larger than ∼15 m s−1

and TSR is larger than ∼12, both of which are high and rarely occur in real wind

farm applications. Therefore, our first conclusion is that compressibility corrections to

the aerodynamic coefficients of wind turbine blades (Cd and Cl) are not necessary for

simulations of wind farms under normal operating conditions.

Variable-density effects are assessed by performing simulations using both the

compressible and the incompressible frameworks and computing their differences. Con-

sistent with our previous conclusion, the aerodynamic coefficients of lift and drag are

kept the same in both Comp and Incomp simulations in order to isolate the variable-

density effects. Differences between the Comp and Incomp frameworks start to show

up when wind turbines are present in the ABL. For a single turbine in the ABL, com-

pressibility effects are not negligible already for Mach number of ∼0.1 and, although

they originate near the tips, they are not limited to the turbine tip region, but are

found also in the wake. As the wake propagates, the wind speed and TKE differences

between Comp and Incomp also propagate, which leads to lower TKE (up to 15%) and

a slightly weaker wind speed deficit in the compressible wake. The exact distribution of

the wind speed and TKE differences between Comp and Incomp simulations, in terms

of magnitude and horizontal extent, depends strongly on the tip Mach number, thus on

TSR. A higher TSR leads to larger compressibility effects and a more confined affected

area, while with a lower TSR, the compressibility effects are smaller in magnitude but

the affected area extends farther.

In terms of power output, TSR again was the most important factor. For low
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TSR, smaller than the optimum value of ∼8, power losses due to variable-density ef-

fects are very small and so are the effects on the aerodynamic coefficients; thus, for a

turbine operating at low TSR, compressibility effects can be safely neglected. When

the operating TSR is around the optimum value, the correction in the aerodynamic

coefficients still does not affect the power production significantly while power losses

due to the variable-density effects start to grow and can no longer be neglected; thus,

for a wind turbine operating around the optimum TSR, we expect power losses of

about 5%-8% due to compressibility. When the operating TSR reaches a high value

(>12), the power losses due to variable-density effects and the corrections of the aero-

dynamic coefficients are both large, thus numerical modeling of intensively operating

wind turbines using the incompressible framework might cause large errors; however,

wind turbines rarely keep operating in such severe conditions.

The interactions between turbine wakes are then studied via simulations of two

aligned turbines. The general behaviour of the first turbine in the two-turbine case

is the same as in the single-turbine case. However, after the second turbine, the ef-

fects of compressibility on the overlapping wakes behave differently. Looking at wind

speed first, the difference between Comp and Incomp becomes less noticeable than in

the single-turbine case, thus the power output of the second turbine is approximately

the same with the two frameworks. This suggests that the power losses due to com-

pressibility might be limited to the front row of a wind farm, even with multiple rows.

However, when considering TKE, compressibility effects appear to be enhanced down-

wind of the second turbine, with increasingly lower TKE in Comp than Incomp. This

suggests that the air flow in a large wind farm with multiple rows of turbines may be

significantly less turbulent than previously thought, due to compressibility effects.

The most important implications of these findings are related to wind energy

generation and are relevant in many real-world applications. First, since the front row

of a wind farm always generates the most power, using the Incomp framework, which

is the common practice today, may introduce overestimates of the total wind farm
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power. Second, since the power generated by the front turbines is used to calculate rel-

ative power, which is the power generated by each turbine divided by that of the front

turbine, the relative performance of the inner turbines may be better than previously

estimated with the Incomp approach. Third, understanding turbulent wakes, reducing

wake losses, and optimizing wind turbine layout including optimization of the turbine

hub heights are becoming urgent and important issues in the wind industry (Archer

et al., 2013; Vasel-Be-Hagh and Archer, 2017). This study finds that compressibility

effects should not be neglected for such applications because predicting the wake devel-

opment correctly with the Comp framework could lead to more efficient layout designs,

which could lead to benefits of the order of millions of dollars over the lifetime of a

wind project.

Since this work is the first to assess compressibility effects in wind farm simula-

tions, more research is obviously recommended. An accurate compressible simulation

would require the use of both the corrected aerodynamic coefficients and the variable-

density compressible framework together, as opposed to separately as was done here.

Without the need for consistency between Incomp and Comp that was crucial in this

paper to compute meaningful differences, more advanced numerical methods can be

chosen for the compressible simulations, such as a more sophisticated turbulence closure

or large eddy simulation with a dynamic turbulence model. Third, it is recommended

that the combined effects of buoyancy and compressibility via simulations of the stable

and unstable atmospheric boundary layer in the presence of turbines be assessed us-

ing the compressible framework, since this paper has focused on neutral stability with

effectively no buoyancy. Lastly, aeroelastic coupling between the compressible air flow

and the turbine blade structure, which requires algorithms linking structural dynamics

and aerodynamics (Sørensen, 2011), is needed to assess the effects of compressibility

on the flexibility of the blades.

In conclusion, compressibility effects associated with large horizontal-axis wind

turbines cannot be neglected because ignoring them would cause an overly optimistic

prediction of a wind farm power production. It is therefore recommended that future
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numerical studies of the flow around wind turbines be based on a compressible frame-

work, as opposed to the commonly-used incompressible and Boussinesq framework.
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Figure 1.15: Case 5: horizontal cross-sections of: a) Comp - Incomp wind speed
difference and b) Comp - Incomp TKE difference at hub height, nor-
malized by Uhub and U2

hub respectively, for the two-turbine case in Table
1.3.
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Figure 1.16: Case 5: horizontal profiles of: a) wind speed (m s−1) and b) TKE (m2

s−2) at hub height for the two turbine case, starting at the position of
the second turbine (4D after the first turbine).
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Figure 1.17: a) Computational domain and location of the 48 turbines in the Lill-
grund wind farm; and b) time-averaged horizontal velocity normalized
by hub height wind speed with wind coming from 225◦ using the com-
pressible framework.
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Figure 1.18: Time-averaged relative power simulated with the compressible frame-
work versus observed for columns E-H at the Lillgrund wind farm.
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Chapter 2

A GENERAL METHOD TO ESTIMATE WIND FARM POWER USING
NEURAL NETWORKS

2.1 Introduction

Wind energy has grown to be one of the largest sources of renewable energy,

with an installed capacity expected to exceed 800 GW by the end of 2021 (GWEC,

2016). An increasing fraction of the generating capacity is being switched from fossil

fuels to wind power, which will help reduce the emissions of greenhouse gases. However,

the actual output of a large wind farm is not simply the sum of the power generated by

the individual turbines at the upstream (or undisturbed) wind speed, as interactions

between turbine wakes play an essential role and can significantly reduce the total

power output. As a result, correctly estimating power output and wake losses for both

existing and future large wind farms is critical.

Physics-based (or physical) methods have been widely studied and used for

power estimation of large wind farms, including: mesoscale numerical weather predic-

tion models with wind turbines parameterized as elevated kinetic energy sinks (Jacob-

son and Archer, 2012; Marvel et al., 2012; Fitch et al., 2013; Jacobson et al., 2014);

large-eddy simulations (Wu and Porté-Agel, 2011; Churchfield et al., 2012a; Archer

et al., 2013; Xie and Archer, 2015) and Reynolds-averaged Navier-Stokes simulations

(Schluntz and Willden, 2015; Yan and Archer, 2018) with wind turbines represented

by actuator lines (Sørensen and Shen, 2002; Troldborg et al., 2010; Lu and Porté-Agel,

2011) or actuator disks (Sørensen and Kock, 1995; Masson et al., 2001; Alinot and

Masson, 2002); and kinetic models based on momentum theory (Jensen, 1983; Larsen,

1988; Ainslie, 1988; Frandsen et al., 2006). The main drawback of physical models
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is that they are computationally expensive, thus cannot be applied efficiently to pre-

dict the power output of a large wind farm with different combinations of operational

parameters, such as wind speed, wind direction, and layout.

Instead of complex and computationally-demanding physical models, machine

learning (ML) methods have gained popularity in estimating wind farm power output

and wake losses. By building linear or non-linear relationship between the input and

output data, ML methods can learn the hidden information patterns automatically

with sufficient training (Lei et al., 2009). Among the ML methods, Artificial Neural

Networks (ANN) have been increasingly used due to their robustness, noise insensitiv-

ity, and ability to perform complex regressions for multi-variable applications (Hornik

et al., 1989; Schmidhuber, 2015). In Carolin Mabel and Fernandez (2008), wind speed,

relative humidity, and generation hours were used as inputs to train the ANN; the pre-

dicted wind farm power output compared well with observations. In Blonbou (2011),

wind speed and wind power at the previous time step were used to train the ANN

along with adaptive Bayesian learning and Gaussian process approximation; the re-

sulting wind power prediction performed better than the reference persistence model.

In Kelouwani and Agbossou (2004), average wind speed, wind speed standard devia-

tion, and past power output were used as inputs to train the ANN; the power prediction

outperformed a more complex stochastic model. Long-range time series prediction of

wind speed and power for a wind park using a Recurrent Neural Network (RNN) were

performed in Barbounis et al. (2006). Short- and long-range power predictions using

RNN with a Kalman-filter based back-propagation algorithm were performed in Li

(2003) and better results in long-term prediction were obtained.

Despite its many advantages in estimating wind farm power, the successful

training of a Neural Network (NN) heavily relies on the quantity and quality of the

collected data. Furthermore, all previously-trained NNs are wind-farm specific, which

means that, once a NN is fully trained, it can only be used for the wind farm where

the data were collected.

In this paper, we propose a new way to train a NN and, for the first time, we
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use the NN trained on a wind farm to estimate the power output of another wind farm.

2.2 Data and methods

2.2.1 Pre-processing of the Lillgrund wind farm data

The data used in this study were collected at the Lillgrund offshore wind farm,

located off the coast of Sweden in the Baltic Sea. Lillgrund contains 48 Siemens SWT-

2.3MW wind turbines, with turbine spacing of 4.3D (where D is the rotor diameter,

63 m) along the southwest and 3.2D across it (Figure 2.1). Such a tight spacing

makes Lillgrund an ideal site for the current study because wind turbine wakes play

an essential role in the total wind farm power output. The operation information,

including wind speed, wind direction, and turbine power output, was collected by the

SCADA system installed at every turbine. The data used for the current research cover

a period of approximately three years at a temporal resolution of 1 minute and were

quality-checked and cleaned using the method described in Ghaisas et al. (2017).

The variable that most significantly influences the wind farm power output is

wind speed (Miller et al., 1997). Wind speed from a nearby meteorological tower,

located about 200 m to the southwest of the Lillgrund wind farm, could be treated as

the undisturbed incoming wind speed. However, for a wide range of wind directions,

the meteorological tower is affected by the wake of the entire wind farm, thus the

wind speed readings cannot be used. Wind speeds from the sensors on the individual

turbines cannot be directly used either, as the inner wind turbines are always affected

by wakes. As such, we compute the maximum wind speed from all the turbines at each

time step and treat it as the incoming wind speed for the whole wind farm (U).

The second variable that significantly affects the whole wind farm power is wind

direction θ (Wu and Porté-Agel, 2013). The median of all 48 yaw angles is computed

at each time step and treated as a proxy representative of the incoming wind direction.

Since the incoming wind speed and wind direction will both be used as inputs to the

NN, it is important that they are normalized, otherwise the wind direction, which

scales to a maximum value of 360, will wash out the effects of wind speed, which never
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Figure 2.1: Location and layout of the Lillgrund offshore wind farm located between
Denmark and Sweden, with geometric properties (BR, BD) for northerly
and easterly wind directions.
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exceeds 30 m s−1. Note that, for the actual NN calculations, we convert wind speed

and direction to the west-to-east and south-to-north components of the wind vector

(u, v), after conversion from the meteorological to the Cartesian convention.

In addition to the fact that different wind directions induce different wake losses

for a certain wind farm layout, even for the same wind direction, the wake losses

will differ for two different wind farm layouts. For each wind direction, we therefore

calculate two parameters, to be treated as two additional inputs in our NN described

later: the Blockage Ratio (BR) and the Blockage Distance (BD), introduced by Ghaisas

and Archer (2016). BRi is the fraction of the swept area of turbine i that is blocked by

the swept area of any upstream turbine. BDi represents the weighted-average distance

to the upstream blocking turbines. BRi and BDi, both varying over [0,1], are defined

as follows:

BRi =
1

A

∫
(x,y)∈A

χdxdy, (2.1)

BDi =
1

A

∫
(x,y)∈A

[χL+ (1− χ)L∞] dxdy, (2.2)

where A is the swept area of the rotor disk and (x, y) are grid points on the rotor disk.

The function χ equals 1 if the grid point is blocked by any upwind turbine, otherwise

0. L is the distance between the grid point and any upwind blocking turbine and L∞ is

used for grid points not blocked by any upwind turbines and is set to 20D, since wind

turbine wakes usually recover within 20D (Wu and Porté-Agel, 2011; Xie and Archer,

2015).

For every wind direction in the data set, BRi and BDi are first calculated for

each turbine i and then averaged over the N=48 turbines to get a single BR and BD

for the whole wind farm:

BR =

∑N
i BRi

N
, BD =

∑N
i BDi

N
. (2.3)

52



The last relevant parameter, which will also be the output of the final layer of

the NN, is the relative power for the whole wind farm:

Pr =

∑N
i Pi

NPfront
=

P

NPfront
, (2.4)

where Pi is the observed (or NN-simulated) power of turbine i, P is the total power

output of the entire wind farm, and Pfront is the unblocked front-row turbine power

(assumed to be the highest power generated by any turbine at each time step).

2.2.2 Architecture and training of the neural network

In this work, a deep neural network is used for the power estimation system

(“deep” omitted hereafter). The NN is constructed with one input layer, two hidden

layers with 50 and 40 neurons, and one output layer (Figure 2.2). Inspired by the

biological brain, each layer of the NN consists of many nodes called artificial neurons,

which can communicate with nodes in further layers through connecting synapses. The

synapses between each layer are associated with a weight, which controls the strength

of signals passing through each node.

The algorithm for training the NN contains two main steps: forward and back-

ward propagation.

In the forward propagation, the input signals (e.g., wind speed and wind direc-

tion in the simplest case) are fed to the NN to obtain, by parallel calculations using a

weight matrix w and an activation function σ, the NN output P̂r. The mathematical

expression of the signal flow xlj through a layer l is:

xlj = σ

(∑
i

wljix
l−1
i + blj

)
= σ(z), (2.5)

where x is either U and θ in the traditional NN or U , θ, and (BR,BD) in the GM-

trained NN described later in Sections 2.3.1 and 2.3.2 (Figure 2.3 and 2.4), wji is the

weight matrix connecting the ith node output in the previous layer l−1 to the jth node

in the current layer l and blj is the bias on the jth node in the current layer l. The

expression inside the parenthesis (z) is the input signal for the current layer, then an
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Figure 2.2: Architecture of the neural network, with two hidden layers (in green)
containing 50 and 40 neurons.
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activation function σ (z) is applied to it to get the output signal for the current layer.

We use the hyperbolic tangent function for σ because of its non-linearity:

σ (z) =
ez − e−z

ez + e−z
. (2.6)

In the backward propagation, the error signals are computed for the output

layer:

e = P̂r − Pr (2.7)

and then used to correct and refine the weights in each layer using a loss function L,

in this case the mean square error:

L =
1

n

n∑
e2, (2.8)

where n is the number of sample data sets. The weight and bias of each layer are

traditionally updated using the gradient descent method. The derivatives of the loss

function in terms of weight and bias are calculated recursively back through each layer

using the chain rule, then the weight and bias of each layer are adjusted based on the

derivatives in order to reach the minimum loss by updating the weights matrix w as

follows:

w = w − η∂L (w)

∂w
, (2.9)

where η is the learning rate. The original gradient descent method can be very slow

when the local gradient is small, which is critical for training large amounts of data. It

also cannot deal with the situation when the loss curve is much steeper in one dimension

than in the other dimensions (Sutton, 1986). Inspired by the physical concept of

momentum, Polyak (1964) proposed the momentum optimization method:

m = βm+ η
∂L (w)

∂w
, (2.10)

w = w −m, (2.11)

where m is the momentum matrix and β is a constant ranging from 0 to 1. The mo-

mentum optimization method runs faster than the regular gradient descent. Variants
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of other gradient descent method have been developed, such as AdaGrad (Duchi et al.,

2011), AdaDelta (Zeiler, 2012) and RMSProp (Tieleman and Hinton, 2012). In the

current work, we adopt the Adaptive Moment Estimation (Adam) method (Kingma

and Ba, 2014), which keeps the exponentially decaying average of past gradients m

(first moment), similar to momentum method. It also keeps track of the exponentially

decaying average of past squared gradients v (second moment), similar to RMSProp.

The Adam algorithm consists of five main steps:

m = β1m+ (1− β1)
∂L (w)

∂w
, (2.12)

v = β2v + (1− β2)
∂L (w)

∂w
◦ ∂L (w)

∂w
, (2.13)

m =
m

1− β1t
, (2.14)

v =
v

1− β2t
, (2.15)

w = w − η√
v + ε

m, (2.16)

where β1 and β2 are the exponential decay rates for the first and second moment, t is

the iteration step, “◦” denotes the element-wise multiplication, and ε is the smoothing

constant. Adam is an adaptive learning method, thus require less tuning, it is compu-

tationally efficient, and it outperforms other stochastic optimization methods (Kingma

and Ba, 2014).

In machine learning, the procedure of training through the whole data set is

called an epoch. There are three ways of training through one epoch: batch, stochastic,

and mini-batch. The batch training treats the whole data set as a whole batch and

the weight matrices are updated only once per epoch using a gradient descent-like

optimizer. Batch training usually has computing memory issues for large data sets.

Since only one update is done per epoch, in order to reach the minimum loss, sometimes

hundreds of epochs are required for large data sets. The stochastic training, on the

other hand, performs one update on the weight matrices per data sample in the data

set, thus for an epoch that contains a million data samples, the weight matrices would

need to be updated a million times. Stochastic training is faster than batch training

56



and does not have memory issues. However, since the optimization is performed on

each data sample, stochastic training is very sensitive to outliers and requires high-

quality data, otherwise it will have unstable convergence issues. In this study, we use

the third training procedure: mini-batch training. For one epoch, the whole data set is

divided into many mini-batches. In our Lillgrund wind farm case, a mini-batch consists

of 50 data samples. Mini-batch training combines the advantages of batch training and

stochastic training, because it allows multiple updates in one epoch while it decreases

the sensitivity to outliers, thus can obtain a fast and stable convergence.

We use k-fold cross validation (Bishop, 2006) to train and evaluate our deep NN

for the Lillgrund wind farm. In brief, the whole data set is divided into k randomly-

assigned subsets (k=3 in this study). As one of the k subsets is reserved for testing, the

neural network is effectively trained on k-1 subsets and its accuracy is then measured

against the test set. The whole process is repeated several times using different subsets

as the test set, then the final hyper parameters of the NN are chosen based on the best

average performance.

2.3 Results

In the traditional approach, hereafter referred to as traditional NN (Figure 2.3),

the two inputs are wind speed and direction (U and θ) and the output is either total or

relative power (P or Pr). Once the traditional NN is trained, it can be used to estimate

future power output (total or relative) at Lillgrund with a high degree of accuracy. In

the new approach proposed in Section 2.3.2, hereafter referred to as GM-trained NN

because it is based on the Geometric Model (GM) introduced by Ghaisas and Archer

(2016), an extra step is needed to calculate BR and BD for each wind direction (Figure

2.4). The accuracy of the GM-trained NN is slightly lower than that of the traditional

NN at Lillgrund, but the huge advantage is that the trained GM-trained NN can be

used to predict total or relative power at any wind farm, not just at Lillgrund.
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Figure 2.3: Flowchart of the traditional deep neural network (NN) developed with
the Lillgrund wind farm data. In the traditional NN, the inputs (wind
speed and direction) and output (power) at the Lillgrund wind farm are
used to train the NN, which ultimately can be used to estimate future
power at Lillgrund with high accuracy. The traditional NN cannot be
used at another wind farm.
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Figure 2.4: Flowchart of the GM-trained NN developed with the Lillgrund wind farm
data. In the GM-trained NN (include the red box), an additional step
is needed to calculate BR and BD with the Geometric Model (GM), but
then the trained NN can be used at any wind farm, not just at Lillgrund.
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2.3.1 Traditional NN to estimate power at Lillgrund only

Figure 2.5a shows the observed relative power for all wind speeds and directions

at Lillgrund for all turbines (a total of 83,933 data points). For each wind direction,

there is a large scatter in the observed relative power because all the turbines are in-

cluded, some of which are front-row, thus producing relative power equal to one, while

the others produce less. The four wind directions that are associated with the largest

wake losses (and therefore with the minima in relative power) are 42◦, 120◦, 222◦ and

300◦, which are the four directions of alignment of the turbines in the Lillgrund layout.

The pattern of relative power is not repeated exactly every 180◦ because meteorolog-

ical and geographic factors, such as wind speed frequency distribution, atmospheric

stability, turbulence intensity, or local terrain heterogeneity, may not be the same for

pairs of opposite wind directions.

The observed patterns in relative power are reproduced very well by the tradi-

tional NN (Figure 2.5a). For a wide range of wind speeds (8-11 m s−1), relative power

maintains almost exactly the same patterns, which is consistent with previous findings

(Creech et al., 2015). However, as the wind speed increases and reaches the rated wind

speed (12 m s−1), relative power increases (or wake losses decrease), because at high

wind speeds the blade pitch control system forces the turbines to produce no more

than the rated power, thus more kinetic energy is left in the flow for the blocked inner

wind turbines and therefore the whole wind farm relative power is higher.

The performance of the traditional NN is excellent, as indicated by four commonly-

used error metrics (Foley et al., 2012): the mean error (bias=-0.0052), the mean abso-

lute error (MAE=0.020), the standard deviation of the MAE (σMAE=0.027) and the

root mean squared error (RMSE=0.028).

Another useful application of the traditional NN is the calculation of a two-

dimensional power curve for the entire wind farm. The power curve is a manufacturer-

provided, one-dimensional relationship between the hub-height wind speed and the

power output expected from a single turbine. However, in a wind farm with multiple

turbines and wake losses, the power curve cannot be used directly because power
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Figure 2.5: Relative power at Lillgrund from observations (blue dots) and predictions
(colored lines) with: a) traditional NN and b) GM-trained NN.
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generation is no longer just a function of wind speed, but rather a function of wind

speed, direction, and layout. With the estimate of relative power as a function of wind

speed and direction at Lillgrund from the traditional NN, it is possible to construct a

two-dimensional power curve for the entire wind farm (Figure 2.6). This is the first

two-dimensional power curve based on a deep NN published in the literature.

2.3.2 GM-trained NN to estimate power at any wind farm

The GM-trained NN requires an additional step, which is the replacement of

wind direction with combinations of BR and BD obtained through Eqs. 2.1-2.2. As

indicated by the red box in Figure 2.4, each wind direction corresponds to a specific

combination of BR and BD.

The GM-trained NN (Figure 2.5b) exhibits more “wiggles” than the traditional

NN (Figure 2.5a), due to the relatively high sensitivity of the geometric properties

to small changes in wind direction. However, the important patterns of high and

low relative power (i.e., low and high wake losses) are well reproduced, including the

dependency on wind speed.

The GM-trained NN has a similar but slightly lower performance than the tra-

ditional NN (bias=-0.0037, MAE=0.035, σMAE=0.039, and RMSE=0.041), which is

expected, because of two reasons. First, the complex layout of the wind farm is rep-

resented using just two easy-to-calculate geometric properties. Second, the geometric

properties are intrinsically cyclic by 180◦ by design, therefore the observed relative

power differences at Lillgrund for wind directions that are 180◦ apart cannot be re-

produced by the GM-trained NN (or by any other analytical wake loss model, unless

additional inputs are provided to differentiate the pair). However, the small loss in per-

formance at Lillgrund is more than compensated for by the fact that the GM-trained

NN is general and therefore can be used at other wind farms.

All available observed combinations of BR and BD for the Lillgrund wind farm

for all wind directions at a 5-degree resolution, for all wind speeds, are learned by the

GM-trained NN. The actual values for wind speed of 8 m s−1 are shown in Figure
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2.7a. Note that only the upper-right corner includes data in Figure 2.7 because of

the dependency of BD on BR in Eq. 2.2. The wind farm relative power is lowest at

high BRs and low BDs (directions of alignment), indicated by the dark blue points

at the lower right corners. The maximum power is generated at low BRs and high

BDs (directions of non-alignment), indicated by the points at upper left corner. For

the same BR, the wind farm relative power increases as BD increases, as wind turbine

wakes have a longer distance to recover when BD increases.

The powerful feature of the GM-trained NN is that, once we introduce BR and

BD instead of wind direction, we are no longer limited to the current wind farm. The

GM-trained NN can use the information learned at Lillgrund to predict the power

of more combinations of BR and BD, which do not exist at Lillgrund and represent

different wind farm layouts. Figures 2.7b-f show the wind farm relative power for all

combinations of BRs and BDs at different wind speeds. The general pattern of power

is consistent with the previous findings: little to no change for a wide range of speeds,

followed by an obvious increase as the wind speed approaches rated wind speed. As

BR approaches zero, which means that no wind turbines are blocked, the wind farm

has no wake losses and relative power is one. As BD approaches one (corresponding

to a distance of 20D or more), which means that every wind turbine is far away from

any other, there are also no wake losses for the wind farm and relative power is one.

When BR is high but BD is low, which means most turbines are blocked and are very

close to their front-row turbines, minimum power production is expected, indicated by

the dark blue corner.

2.3.3 Transfer learning: Application of the GM-trained NN to the Nørrekær

wind farm

After the GM-trained NN has been trained on available combinations of BR

and BD from existing data (Figure 2.7a), we can predict wind farm relative power

for all other different combinations of BR and BD (Figures 2.7b-f). For the first

time, a transfer learning method for power loss estimation for any wind farm layout is
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proposed. The predictions for combinations of BR and BD unseen at Lillgrund, i.e.,

different layouts, are tested on the Nørrekær Enge wind farm. Nørrekær is located

onshore in northern Denmark. It consists of 13 equally-spaced and perfectly aligned

Siemens 2.3-MW turbines, with two directions of alignment at 75◦ and 225◦ (Figure

2.8).

The observation data at Nørrekær, including wind direction, wind speed, and

wind farm power are first quality-checked using the same procedure described in Sec.

2.2.1, leaving a total of 181,071 valid observations; then, for each wind direction, the

corresponding BR and BD are calculated and used as input for the GM-trained NN.

The general pattern of relative power is captured very well (Figure 2.9), with large wake

losses around the two directions of alignment and a relatively constant relative power

around one for the remaining directions. Similar to previous results, relative power

remains approximately the same for intermediate wind speeds and increases when

wind speed approaches the rated wind speed. The statistical performance at Nørrekær

is comparable to that at Lillgrund, with bias=-0.0069, MAE=0.061, σMAE=0.064, and

RMSE=0.067.

The layout of Nørrekær is a straight line, thus for the directions of non-alignment

BR is zero and BDs is one, thus the relative power prediction from the GM-trained NN

is one (i.e., no wake losses). However, the observed power for the directions of non-

alignment is not exactly one. Several reasons can cause this: atmospheric stability, non-

homogeneous winds, different turbine operation and maintenance, sensor malfunction,

etc. None of these features can be captured by the neural network, or any other wake

loss model.

2.4 Conclusions

We present an innovative technique to predict wind farm power using machine

learning, more specifically, a deep NN. The traditional way of training a deep NN for

wind farm power has the advantage that it generates a two-dimensional power curve

that provides possibly the most accurate prediction of wind farm power given wind
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speed and direction. However, it also has a major limitation, which is that the trained

NN can only be used for the specific wind farm where the data were collected. A new

way to train the deep NN is proposed in this work. By adding a simple geometric

calculation step, the trained NN, which we call GM-trained NN, can now be used to

perform predictions of power production at any wind farm.

K-fold cross validation is used to compare the performance of the two NNs at

the Lillgrund wind farm. Both show very high accuracy, with MAE< 5%, although the

error of the traditional NN is slightly better than that of the GM-trained NN, which

is expected. The ultimate purpose of the new method is to equip the NN with the

ability of predicting other wind farms without compromising the accuracy too much.

Next the GM-trained NN that was trained with data observed at Lillgrund is used to

predict the power of another wind farm, i.e., Nørrekær. The sudden drops near the

two directions of alignment are well captured. The observed relative power for the

directions of non-alignment are not exactly one, possibly due to atmospheric stability,

non-homogeneous wind, etc., which are features not captured by the simple geometric

properties used as inputs. Nonetheless, the statistical performance of the GM-trained

NN at Nørrekær is still very good, with MAE=0.061, σMAE=0.064, and RMSE=0.067.

Future work includes: the tuning of the geometric properties to eliminate some

of the excessive sensitivity to wind direction; the testing of other geometric properties in

addition to blockage ratio and blockage distance, like inverse blockage distance; further

validation at other wind farms, offshore and inland, and with different turbine models;

an assessment of the sensitivity of the wind speed and direction data and predictions

to the bin size; and the use of the GM-trained power curve as a simplified wind farm

parameterization to be used in mesoscale or climate model to model the effects of the

entire wind farm on the wind flow.
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Figure 2.6: Two-dimensional wind farm power curve predicted with the traditional
NN for Lillgrund.
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Figure 2.7: Relative power as a function of BR and BD: a) observed at Lillgrund at a
wind speed of 8 m s−1; b-f) predicted by the GM-trained NN at different
wind speeds (8-12 m s−1).
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Figure 2.8: Location and layout of Nørrekær with geometric properties (BR, BD) at
certain wind directions.
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Figure 2.9: Relative power at the Nørrekær wind farm from observations (blue dots)
and predictions (colored lines) with the GM-trained NN.
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Appendix A

SIMULATIONS OF ATMOSPHERIC BOUNDARY FLOW

A test to validate the compressible framework is a simple atmospheric boundary

layer (ABL) flow with realistic wind speeds. Because the Mach number approaches

zero, the simulation results using the compressible and the conventional incompressible

frameworks should converge.

The two simulations were carried out in a Cartesian computational domain with

streamwise, spanwise, and vertical lengths of 1890, 882, and 441 m, respectively. Using

the diameter of the NREL 5-MW wind turbine as reference (D=126 m), the domain

size can be expressed in non-dimensional form as 15D x 7D x 3.5D (Fig. A.1). The

computational domain is divided in each direction into Nx×Ny×Nz = 240× 192× 96

grid points of sizes ∆x×∆y×∆z = 7.9 m × 4.6 m × 4.6 m. No wind turbine is used

in this simulation.

Figure A.1: Computational domain for atmospheric boundary layer flow. Domain
sizes are expressed as multiples of the diameter of the reference NREL
5-MW wind turbine (D=126 m).

A constant geostrophic wind speed of 15 m s−1 is imposed at the domain top and

periodic boundary conditions are used at the spanwise and streamwise boundaries, so
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that the two frameworks simulate an infinitely-large atmospheric boundary layer. The

Reynolds number is sufficiently high to neglect molecular viscosity, except at the first

grid point off the ground, where the Schumann’s wall model is imposed (Schumann,

1975). The turbulent closure is the k-epsilon model, the simulations are carried out

for 11,000 seconds, which is long enough for turbulence to become fully developed to

capture the log-law of the ABL.

Figure A.2: (a) Horizontally-averaged wind speed of the incompressible and com-
pressible frameworks, compared with the theoretical log-law. (b)
Horizontally-averaged wind speed difference between the two frameworks
(incompressible minus compressible).

Both the conventional incompressible and the compressible framework capture

the log-law of the ABL very well. No significant differences can be found between the

vertical profiles of horizontally-averaged wind speeds from the incompressible, com-

pressible, and theoretical log-law (Fig. A.2). The magnitude of the difference is, at

most, of the order of 10−4 of the geostrophic wind speed near the surface. It can be

concluded that the compressible framework has the ability to capture low Mach number

flows correctly and consistently with the conventional incompressible framework.
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