

IMPLEME�TATIO� OF A COMPUTATIO�AL MODEL FOR RA�DOM

DIRECTIO�AL SEAS A�D U�DERWATER ACOUSTICS

by

Cihan Bayındır

A thesis submitted to the Faculty of the University of Delaware in partial

fulfillment of the requirements for the degree of Master of Civil
Engineering

Fall 2009

Copyright 2009 Cihan Bayındır

All Rights Reserved

IMPLEME�TATIO� OF A COMPUTATIO�AL MODEL FOR RA�DOM

DIRECTIO�AL SEAS A�D U�DERWATER ACOUSTICS

by

Cihan Bayındır

Approved: __

 James T. Kirby, Ph.D.

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 Mohsen Badiey, Ph.D.

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 Harry W. Shenton, Ph.D.

 Chair of the Department of Civil Engineering

Approved: __

 Michael J. Chajes, Ph.D.

 Dean of the College of Engineering

Approved: __

 Debra Hess Norris, M.S.

 Vice Provost for Graduate and Professional Education

 iii

ACK�OWLEDGME�TS

I would like to thank my advisor, Dr. James T. Kirby, for his support

during last two years I spent at University of Delaware and giving me the opportunity.

Without his guidance this thesis would have never been possible. It was an excellent

opportunity for me to work under his supervision.

I also thank our colleagues in the College of Earth, Ocean and

Environment, especially to Dr. Entin Karjadi, Dr. Aijun Song and to Dr. Mohsen

Badiey for technical discussions about the high frequency acoustics and Bellhop

program.

I will always gratefully remember efforts of two professors from

University of Delaware mathematics department, Dr. David Bellamy and Dr. George

Hsiao. I thank them for letting me attend their classes and their guidance.

I also thank my former advisor, Dr. Emre Otay for introducing me the field

of coastal engineering and his support during bad times I had.

Structural engineer and my future collaborator Gökcan Karakuş and

economist Hakan Bingöl were my best friends during the first two years I lived in US.

I thank them for their regular phone calls and encouragement.

Most of all I want to thank my family, my father Ahmet Bayındır, my

mother Göksel Bayındır and my sister Dilan Bayındır for their endless support. Their

love is the most valuable thing I ever had. I hope this thesis accounts for the missing

two years in our lives which we lived far from each other.

This work has been supported by the Office of Naval Research under grant

N00013-07-1-0739.

 iv

TABLE OF CO�TE�TS

LIST OF FIGURES...v

ABSTRACT..vii

Chapter

1 INTRODUCTION ..1

2 WAVE MODEL ...4

2.1 Jonswap Spectrum and Construction of Initial Wave Field..........................4

Construction of Initial Wave Field in 2D ..5

Construction of Initial Wave Field in 3D ..8

2.2 Governing Equations for the Wave Model ...11

2.3 Calculation of Surface-Normal Velocity ..14

2.4 Numerical Method ..16

Aliasing Errors...17

Amplification of Round-Off Errors ...18

2.5 2D Linear Wave Model ..19

2.6 3D Linear Wave Model ..22

2.7 2D Nonlinear Wave Model...25

3 ACOUSTIC SCATTERING PROBLEM...31

3.1 Gaussian Beam Tracing and Bellhop Model ..31

3.2 Doppler Shift Calculations..35

4 DISCUSSION OF RESULTS OF COUPLED MODEL..................................37

4.1 Experimental Data ..37

4.2 Model Results ...38

5 CONCLUSION...45

Appendix

A MATLAB AND FORTRAN PROGRAMS ...47

REFERENCES ...111

 v

LIST OF FIGURES

Figure 2.1 A snapshot of spectrum of propagating linear waves in 2D with

1024 components ..20

Figure 2.2 Comparisons of input and output spectrums ..21

Figure 2.3 A snapshot of propagating linear waves with a principal

propagation direction of 0° ..22

Figure 2.4 A snapshot of propagating linear waves with a principal

propagation direction of 30° ..23

Figure 2.5 A snapshot of propagating linear waves with a principal

propagation direction of 90° ..24

Figure 2.6 A comparison of input and output spectrums in 3D linear model

for principal propagation direction of 45° ..25

Figure 2.7 Comparison of linear and nonlinear waves ...26

Figure 2.8 Comparison of initial spectrum and final spectrums obtained after

time evolution of the linear and nonlinear models27

Figure 2.9 Comparison of probability distribution functions for linear and

nonlinear waves ...27

Figure 2.10 Wave with two sideband modes example ..28

 vi

Figure 2.11 Time histories of normalized Fourier amplitudes of first , second

and third harmonics ...29

Figure 2.12 Time history of change in the energy level ...30

Figure 3.1 Doppler effect of an moving object ...35

Figure 3.2 Multiple bounce of an acoustic ray ..36

Figure 4.1 Eigenrays with different arrival times ...38

Figure 4.2 Time histories of arrival times and Doppler shifts for September

24th, 1997, 03.02 am. ...39

Figure 4.3 Time histories of arrival times and Doppler shifts for September

24th, 1997, 00.00 am. ...40

Figure 4.4 Time histories of arrival times and Doppler shifts obtained from

linear and nonlinear simulations for September 24th, 1997, 00.00

am. ...41

Figure 4.5 Effect of surface partitioning dx on standard deviation

calculations ..42

Figure 4.6 Effect of surface partitioning dx on Doppler shift calculations43

 vii

ABSTRACT

Acoustic wave propagation in the ocean is an old and interesting problem.

In the literature the problem of interaction of acoustic waves with the ocean surface

has drawn the attention of many researchers. This interaction problem is a very

complicated problem due to many physical processes involved. Some of the important

factors on the ocean surface which affects underwater communications are presence of

waves, turbulence generated by wind input, wave breaking, white capping, bubbles

and density, salinity and temperature effects.

In this thesis, the effect of linear and nonlinear surface gravity waves on

high frequency acoustic propagation is discussed. Realistic models of linear and

nonlinear surface gravity waves, which solve the exact governing equations, are

created, and these models are coupled with an acoustic Gaussian beam tracing

program called Bellhop. Since Bellhop is not capable of accounting for out of plane

scattering of acoustic rays, coupling is done only for two spatial dimensions, one

horizontal and one vertical.

The wave model provides velocity components in the normal direction to

the surface. These velocity components are used in the Doppler frequency shift

calculations of acoustic rays generated by Bellhop.

Data from an acoustic experiment are taken as experimental results and

coupled wave-acoustic model has been run with the same conditions and same

geometric layout of experiments.

Comparisons between experimental results and coupled wave-acoustic

model results are presented and the limits of model validity are discussed.

 1

Chapter 1

I�TRODUCTIO�

In the literature, the problem of modeling acoustic sound waves inside a

water column has been studied by many researchers. Two widely accepted methods are

present in the literature for calculation of intensity of acoustic scattering which applies

to acoustic scattering from rough surfaces of different scale. These methods are the

Rayleigh-Rice method (Rice, 1951) and Kirchhoff method (Eckart, 1953). The

Rayleigh-Rice method is based on the small roughness perturbation approximation and

the Kirchhoff method is based on the physical optics approximation (Thorsos, 1987).

Since these methods are applicable to rough surfaces with different scales, various

attempts have been made to combine these methods and apply combined models to

multi-scaled ocean surfaces (Kuryanov, 1963).

A modified high-frequency Kirchhoff approximation was given by

McDaniel, who combined Rayleigh-Rice and Kirchhoff methods and produced results

which are independent of surface partitioning (McDaniel et al., 1983; McDaniel,

1986). A significant advance is again given by McDaniel who integrated an empirical

sea surface model with her high-frequency Kirchhoff model (McDaniel, 1987). In her

model surface wave heights and slopes are predicted by an empirical sea surface model

as parameters for calculating the intensity of acoustic forward scatter.

Thorsos tested the accuracy and validity of the Rayleigh-Rice and

Kirchhoff methods by combining an empirical surface wave model and an acoustic

model based on Kirchhoff approximation (Thorsos, 1990). Instead of using surface

 2

statistics such as wave heights and slopes, the Thorsos’s model requires actual 1D-

horizontal rough surface realizations as inputs.

Dahl conducted two experiments during which acoustic measurements as

well as environmental measurements are recorded (Dahl, 2001). His experiments were

designed to observe the time and angle spreading characteristics of high frequency

sound which is forward scattered from the rough ocean surface. His experimental

setup was able to examine high frequency sound waves with one surface interaction

only. He also used a Kirchhoff method to interpret his results and obtained simple

relations between geometry of acoustical scattering, surface wave conditions and time-

angle spreading of the received signals (Dahl, 2001).

Recently, Heitsenrether (2004) coupled an empirical surface wave model

with an acoustic Gaussian beam tracing model called Bellhop and compared his results

with an experimental data set obtained in Delaware Bay in 1997. His surface

realizations were uncorrelated since for each run of Bellhop he was generating

different random realizations of the surface. As an extension to Heitsenrether’s work,

in this thesis we are using a realistic wave model following Dommermuth and Yue

(1987) and integrate it with the same acoustic model Bellhop. This work is unique in

the sense that there is no previous work present in the literature which couples a

realistic wave model and a Gaussian beam tracer.

In Chapter 2 of this thesis construction of initial wave field by Jonswap

spectrum and inverse Fourier transform method, governing equations of the wave

model and their numerical solution technique will be explained. In two dimensions

both linear and nonlinear simulations are presented whereas in three dimensions only

linear simulations are presented.

 3

In Chapter 3, acoustic scattering of sound waves from the ocean surface

are discussed. The Gaussian beam approach, which is an extension to standard ray

tracing theory, is explained. Also, the acoustic Gaussian beam tracing program

Bellhop, which is used for modeling sound waves inside the water column, is

described. Doppler shift calculations, which are not standard calculations in Bellhop,

are explained as well.

In Chapter 4, details of the comparisons of the coupled linear wave-

acoustic and coupled nonlinear wave-acoustic models with the available experimental

data set are presented. Effect of spatial resolution in the wave model on results is

discussed.

 4

Chapter 2

WAVE MODEL

In this thesis, we follow the approach given by Dommermuth and Yue

(1987) for modeling nonlinear surface gravity waves. The approach given by

Dommermuth and Yue (1987) is a combination of canonical evolution equations and

mode coupling idea and it is a direct numerical approach. Nonlinear interactions up to

a specified order M in wave steepness can be successfully accounted for by the model

provided that a Taylor series expansion of the velocity potential about the mean water

level is valid (Dommermuth and Yue, 1987). (10)M O= is adequate for waves up to

80% of Stokes limiting steepness (0.35)ka ≤ (Dommermuth and Yue, 1987).

In order to simulate the experimental conditions we discuss in Section 4.1,

we use Jonswap spectrum for construction of initial wave field since Jonswap

spectrum provides a relationship between environmental variables, such as wind

speed, fetch length, and frequency spectrum. After the construction of the initial wave

field specified by the Jonswap spectrum, evolution equations are solved numerically in

order to simulate linear and nonlinear waves.

2.1 Jonswap Spectrum and Construction of Initial Wave Field

A frequency spectrum represents the distribution of wave energy across a

range of frequencies. In the literature there are numerous different frequency spectrum

models. Jonswap is one of these frequency spectrum models and is empirically derived

after a wave measurement program (Joint North Sea Wave Project) in the North Sea in

1968 and 1969 (Hasselman et al., 1973). Since experimental data that we use in

 5

evaluating model performance which we will discuss in Chapter 4 is measured in a

fetch limited area and we want to compare our results with Heitsenrether (2004), in

our model Jonswap spectrum is the most appropriate one to be used when compared to

other frequency spectrum models. This model provides frequency spectrum as a

function of wind speed under fetch limited conditions (Hasselman et al., 1973) and is

in the following form

4

2 5
() exp

4 p

S g

−

−5 δ
  ω ω = α ω − γ  ω   

 (2. 1)

where ω is the angular frequency, g is the gravitational acceleration, δ is a peak

enhancement factor given by

()2

2 2
exp

2

p

pο

 ω−ω
 δ = −
 σ ω
 

 (2. 2)

and parameters γ and οσ are given as γ = 3.3 , 0.07οσ = for pω ≤ ω and 0.09οσ =

for pω > ω . Parameter α is a function of fetch length, X and wind speed, U ,

0.22

0.076
gX

U

−
 α =  
 

 (2. 3)

and peak frequency is given by

0.33

2
7p

g gX

U U
π

−
  ω =   
  

 (2. 4)

Construction of Initial Wave Field in 2D

Once the frequency spectrum is obtained by Equations (2.1)-(2.4), a

wavenumber spectrum can be obtained from the frequency spectrum considering the

energy equality under both curves which leads to

 6

 () ()k

d
S S k

dk

ω
ω = (2. 5)

where kS is the wavenumber spectrum. The relationship between ω and k is given by

dispersion relationship

 2 tanh()gk khω = (2. 6)

from which the expression for group velocity can be derived

1 2
1

2 sinh(2)
g

d kh
C

dk kh k

 ω ω
= = + 

 
 (2. 7)

Therefore, using Equations (2.5) and (2.7), wavenumber spectrum can be obtained.

Once the wavenumber spectrum is obtained, nodal amplitudes for each dk

interval can be obtained by energy equality

 21
()

2
r k ra S k dk= (2. 8)

where 0,1,...,
2

�
r = , rk rdk= ,

2
dk

L

π
= and L is the periodic domain length. � is

the total number of wave components and chosen to be a power of 2 in order to make

use of Fast Fourier Transforms. Then two sided amplitude spectrum is constructed

using one sided amplitude spectrum by the symmetry relation

 s � sa a −= (2. 9)

where 1, 2,..., 1
2 2

� �
s �= + + − .

For 0,1,...,
2

�
r = we generate uniformly distributed random phases rΘ

with values in the interval of []0,2π . By using the symmetry relation given by

 7

Equation (2.9) not for amplitudes but for random phases this time we obtain the

symmetric random phases jΘ for 1, 2,...,
2 2 2

� � �
j = − + − + .

Complex amplitudes, A , are obtained by using real amplitudes obtained

by Equations (2.8) and (2.9) according to

exp()

2

j j

j

a i
A

Θ
= (2. 10)

where 1, 2,...,
2 2 2

� � �
j = − + − + , 1i = − and jΘ denotes the symmetric uniformly

distributed random phase shifts in the interval of []0,2π . Then, based on these

complex amplitudes, initial water surface elevation can be obtained by

 ()
/ 2

/ 2 1

exp
�

p j j p

j �

A ik x
=− +

η = ∑ (2. 11)

where 0,1,..., 1p �= − , px pdx= ,
L

dx
�

= and L is the periodic domain length.

Similarly, for the complex amplitudes which we use in the construction of

surface velocity potential, sφ , we have

 exp()
2

j

j j

j

aig
B i= − Θ

ω
 (2. 12)

where jω are the angular frequencies obtained from Equation (2.6) for discrete

wavenumbers, jk , and g is the gravitational acceleration. Then initial surface velocity

potential can be obtained by

 ()
/ 2

/ 2 1

exp
�

s

p j j p

j �

B ik x
=− +

φ = ∑ (2. 13)

 8

for 0,1,..., 1p �= − . Note that in order to get real values for η and sφ complex

amplitudes, ()A k and ()B k have to be complex conjugates of ()A k− and ()B k− .

Computations of Equations (2.11) and (2.13) are done by making use of Inverse Fast

Fourier Transforms in order to get η and sφ .

Construction of Initial Wave Field in 3D

In 3D, since we are dealing with two horizontal dimensions, the wave field

can not be described by frequency spectrum solely. We also need to consider

directional spreading of waves and work in terms directional wave spectra. Directional

wave spectra (,)S k θ can be described by

 (,) () ()kS k S k Gθ θ= (2. 14)

where kS is the wavenumber spectrum described by Equation (2.5) and ()G θ is the

directional spreading function. Following Donelan et. al. (1985), we use the following

form for the directional spreading function

 ()()2()G sechθ θ θ
β

= β −
2

 (2. 15)

where θ is the mean wave direction and

1.3

1.3

2.61 ; 0.56 0.95,

2.28 ; 0.95 1.6,

1.24; .

p p

p p

otherwise

−

  ω ω < <  ω ω  

  ω ω

β = < <   ω ω  





 (2. 16)

 9

The directional wave spectra (,)S k θ can be obtained using Equations (2.14), (2.15)

and (2.16). We will discuss derivation of component amplitudes shortly. In order to

apply inverse Fourier transform method to these amplitudes to construct an initial

water surface, we need to transform the directional wave spectrum, which is a function

of wavenumber, k , and direction, θ , to a wavenumber spectrum as a function of xk

and yk , (,)
x yk k x yS k k , where xk and yk are wavenumber components along x and y

axes, respectively. Considering energy equality under surfaces of (,)S k θ and

(,)
x yk k x yS k k , the transformation is done according to

(,)

(,)
x yk k x y

S k
S k k

J

θ
= (2. 17)

where J is the Jacobian of the transformation and is given by

cos sin

sin cos
J k

k k

θ θ
θ θ

= =
−

 (2. 18)

Once the wavenumber spectrum (,)
x yk k x yS k k is obtained, component amplitudes for

each x ydk dk interval can be obtained by energy equality

 2

,

1
(,)

2 x yp r k k p x r y x ya S k k dk dk= (2. 19)

where 0,1,...,
2
x�

p = , 0,1,...,
2

y�
r = , p x xk pdk= r y yk rdk= ,

2
x

x

dk
L

π
= and

2
y

y

dk
L

π
= . x� is the total number of wave components in x direction, y� is the total

number of wave components in y direction and xL , yL are lengths of periodic

domain in x and y directions, respectively. Both x� and y� are chosen to be a

power of 2 in order to make use of 2D Fast Fourier Transforms. Then two sided

 10

amplitude spectrum is constructed using one sided amplitude spectrum by the

symmetry relation

 , ,x ys u � s � ua a − −= (2. 20)

where 1, 2,..., 1
2 2
x x

x

� �
s �= + + − and 1, 2,..., 1

2 2

y y

y

� �
u �= + + − .

For 0,1,...,
2
x�

p = and 0,1,...,
2

y�
r = we generate uniformly distributed

random phases ,p rΘ with values in the interval of []0,2π . By using the symmetry

relation given by Equation (2.20) not for amplitudes but for random phases this time

we obtain the symmetric random phases ,j nΘ for 1, 1,...,
2 2 2
x x x� � �

j = − + − + and

1, 1,...,
2 2 2

y y y� � �
n = − + − + .

Complex amplitudes, A , are obtained by using real amplitudes obtained

by Equations (2.19) and (2.20) and making use of a uniformly distributed random

number generator with numbers generated in the interval of []0,2π in order to get a

random representation of the surface by using

,

, ,exp()
2

j n

j n j n

a
A i= Θ (2. 21)

for 1, 1,...,
2 2 2
x x x� � �

j = − + − + , 1, 1,...,
2 2 2

y y y� � �
n = − + − + . Then, based on these

complex amplitudes, initial water surface elevation can be obtained by

 ()
/ 2/ 2

, ,

/ 2 1 / 2 1

exp
yx

x y

��

v q j n j v n q

j � n �

A ik x ik y
=− + =− +

η = +∑ ∑ (2. 22)

where 0,1,..., 1xv �= − , 0,1,..., 1yq �= − , vx vdx= , qy qdy= , x

x

L
dx

�
= ,

y

y

L
dy

�
= .

 11

Similarly for the complex amplitudes which we use in the construction of

surface velocity potential, sφ , we have

,

, ,

,

exp()
2

j n

j n j n

j n

aig
B i= − Θ

ω
 (2. 23)

Then initial surface velocity potential can be obtained by

 ()
/ 2/ 2

, ,

/ 2 1 / 2 1

exp
yx

x y

��
s

v q j n j v n q

j � n �

B ik x ik y
=− + =− +

φ = +∑ ∑ (2. 24)

where 0,1,..., 1xv �= − and 0,1,..., 1yq �= − . Note that in order to get real values for

η and sφ complex amplitudes, (,)x yA k k and (,)x yB k k , have to be complex conjugates

of (,)x yA k k− − and (,)x yB k k− − . Computations of Equations (2.22) and (2.24) are done

by making use of 2D Inverse Fast Fourier Transforms in order to get η and sφ .

2.2 Governing Equations for the Wave Model

We begin the derivation of the evolution equations with the classical

boundary value problem given for water waves in constant depth h . We assume that

flow is inviscid, incompressible and irrotational. Therefore a velocity potential

(, ,)x z tφ
�

 exists such that φ satisfies the governing equation for flow which is

Laplace’s equation. (,)x x y=
�

 denotes the horizontal position vector. Following

Zakharov (1968), we use the surface velocity potential

 (,) (, ,),)S x t x x t tφ = φ η(
� � �

 (2. 25)

at ,)z x t= η(
�

. η denotes the water surface fluctuation from the still water level. After

chain rule differentiation, classical kinematic and dynamic boundary conditions can be

expressed in terms of Sφ by

 12

 . (, ,) 0S

t h h h h z x tη +∇ φ ∇ η− (1+∇ η.∇ η)φ η =
�

 (2. 26)

 2. (, ,)S S S a
t h h h h z

P
g x t

1 1
φ + η+ ∇ φ ∇ φ − (1+∇ η.∇ η)φ η = −

2 2 ρ

�
 (2. 27)

where ()/ , /h x y∇ = ∂ ∂ ∂ ∂ is the horizontal gradient, aP is the atmospheric pressure

and ρ is the density of the fluid.

Expressing φ in terms of perturbation series, we get

 ()

1

(, ,) (, ,)
M

m

m

x z t x z t
=

φ = φ∑
� �

 (2. 28)

where ()mφ is a quantity in the order of mε and perturbation parameter, ε , is presumed

to be small in wave steepness. Using Equation (2.25) and Equation (2.28) and carrying

all ()mφ s to a known point (0)z = by Taylor series expansion we get

1 0

(,) (, ,) (,0,)
!

k kM M m
S m

k
m k

x t x t x t
k z

−
()

= =

η ∂
φ = φ η = φ

∂∑ ∑
� � �

 (2. 29)

Expanding Equation (2.29) and collecting terms at each order, we obtain

) ()(,0,)m mx t T(φ =
�

 (2. 30)

 (1) ST = φ (2. 31)

1

()

1

(,0,)
!

k km
m m k

k
k

T x t
k z

−
(−)

=

η ∂
= − φ

∂∑
�

 (2. 32)

where 2,...,m M= . M is the arbitrary order in wave steepness at which the expansion

terminated and, following Dommemuth and Yue (1987), is specified to be 10. When

the Laplace’s equation as well as other boundary conditions, such as bottom boundary

condition, is considered with Equations (2.30), (2.31) and (2.32) give a sequence of

 13

boundary value problems. These boundary value problems, like any other perturbation

expansion, can be solved successively with increasingm .

Additionally ()mφ can be represented with eigenfunction expansion with

coefficients which can vary with time. Thus we write;

1

(, ,) () (,m m

n n

n

x z t t x z
∞

() ()

=

φ = φ Ψ)∑
� �

 (2. 33)

where nΨ s are the eigenfunctions which have different forms in deep and shallow

water and are given by Equations (2.40) and (2.41). If we substitute Equation (2.33)

into Equation (2.29) we get

1

1
1 0 1

(, ,) () (,0
!

k kM M m �
m

z n nk
m k n

x t t x
k z

+−
()

+
= = =

η ∂
φ η = φ Ψ)

∂∑ ∑ ∑
� �

 (2. 34)

And finally if we substitute Equation (2.34) into Equations (2.26) and (2.27) we get

1

1
1 0 1

. () (,0 0
!

k kM M m �
S m

t h h h h n nk
m k n

t x
k z

+−
()

+
= = =

 η ∂
η +∇ φ ∇ η− (1+∇ η.∇ η) φ Ψ) = ∂ 

∑ ∑ ∑
�

 (2. 35)

2
1

1
1 0 1

. () (,0
!

k kM M m �
S S S m a
t h h h h n nk

m k n

P
g t x

k z

+−
()

+
= = =

 1 1 η ∂
φ + η+ ∇ φ ∇ φ − (1+∇ η.∇ η) φ Ψ) = − 2 2 ∂ ρ 

∑ ∑ ∑
�

 (2. 36)

Equations (2.35) and (2.36) are the evolution equations which are solved

numerically. Gage pressure, aP , in Equation (2.36) is taken to be zero.

As an alternative, if we do not perform the Stoke’s expansion and avoid

Taylor series expansion, nΨ ’s are expressed at free surface and eigenfunction

expansion of Sφ becomes

 14

1

(, ,) () (, (,)
�

S

n n

n

x t t x x t
=

φ η = φ Ψ η) = φ∑
� � �

 (2. 37)

If we plug Equation (2.37) into Equations (2.26) and (2.27) we get

1

. () (, 0
�

S

t h h h h n n

n

t x
z=

∂
η +∇ φ ∇ η− (1+∇ η.∇ η) φ Ψ η) =

∂∑
�

 (2. 38)

2

1

. () (,
�

S S S a
t h h h h n n

n

P
g t x

z=

1 1 ∂ 
φ + η+ ∇ φ ∇ φ − (1+∇ η.∇ η) φ Ψ η) = − 2 2 ∂ ρ 

∑
�

 (2. 39)

Equations (2.38) and (2.39) are alternative evolution equations for the

problem. But it is useful to note that, since eigenfunctions are evaluated at free surface,

ordinary fast and inverse fast Fourier-transform technique can not be applied to

Equations (2.38) and (2.39). Rienecker and Fenton (1981) and Bryant (1983) studied

these equations in their papers.

For deep water, Equation (2.33) can be readily written as

0

(, ,) () exp(m m

n n n

n

x z t t K z iK x
∞

() ()
•

=

φ = φ +)∑
� ��� ������

 (2. 40)

and for arbitrary depth, Equation (2.33) becomes

0

cosh ()
(, ,) () exp(

cosh ()

n
m m

n n

n
n

K z h
x z t t iK x

K h

∞
() ()

•

=

 + φ = φ)
 
 

∑
���

� ������

��� (2. 41)

where (,)n x yK k k=
���

 denotes the wavenumber vector. All calculations in the following

sections are based on the evolution Equations (2.35) and (2.36).

2.3 Calculation of Surface-�ormal Velocity

In Doppler shift calculations, which we discuss in Chapter 3, the velocity

component in the direction normal to the surface turned out to be an important factor.

 15

Using the wave model which we have already discussed we can obtain surface-normal

velocity.

Knowing surface velocity potential sφ as a function of spatial variables x

and y at an instant of time, the velocity field at the surface in 3D is given by

 (, ,)s s

x y z z
u
→

=η
= φ φ φ (2. 42)

Path of a particle at the water surface can be described with the function

 F z= −η (2. 43)

Therefore outward normal to the water surface is given by

2 2 2 2 2

, , , ,1

1

x y z x y

x y z x y

F F F
n

F F F

   −η −η   = =
   + + η + η +   

�
 (2. 44)

Then surface-normal velocity, v , can be specified as

2 2 2 2

, ,, ,1
. (, ,).

1 1

s s

x x y y zx y zs s

x y z z

x y x y

v u n
=η

=η

   −η φ −η φ φ−η −η   = = φ φ φ =
   η + η + η +η +   

� �

 (2. 45)

where z z=η
φ is calculated by using Equation (2.34), s

xφ and s

yφ are calculated by a

pseudospectral approach by utilizing fast-Fourier and inverse fast-Fourier transforms

between physical space and wavenumber space. In 2D Equation (2.45) reduces to

2

,
.

1

s

x x z z

x

v u n
=η

 −η φ φ
 = =
 η + 

� �
 (2. 46)

 16

Equation (2.46) is used in wave model in order to get the surface-normal

velocity which is an important factor in the Doppler shift calculations of the acoustic

rays.

2.4 �umerical Method

Following Dommermuth and Yue (1987) we use a two-step procedure for

solving evolution Equations (2.35) and (2.36).

First, all spatial derivatives in the evolution Equations (2.35), (2.36) and

Equation (2.46) are evaluated by a pseudospectral approach by utilizing fast-Fourier

and inverse fast-Fourier transforms between physical space and wavenumber space.

All nonlinear products in the evolution Equations (2.35), (2.36) and Equation (2.46)

are calculated in physical space.

Secondly, starting with given initial conditions for water surface

fluctuation,η , and surface velocity potential, Sφ , time integration is done with a fourth

order Runge-Kutta time integrator. Starting from initial conditions, this two-step

procedure is repeated for every time step. For nonlinear simulations we give the flow

field enough time to not to suffer from development of high-frequency standing waves

due to linear initial conditions (Dommermuth, 1999).

Our numerical scheme has errors due to numerical time integration,

truncation in the number of free wave modes,� , and truncation in the arbitrary order

of wave steepness, .M Also, aliasing errors and amplification of the round-off errors

are present in our numerical scheme which we discuss in detail in the following

sections.

 17

Aliasing Errors

In order to get alias free products we are using the technique of aliasing

removal by padding (Canuto et al., 2006). Key of padding technique is to use T points

for discrete transform rather than � points where
3

2

�
T ≥ .

Consider the product ()s x of two functions ()u x and ()v x which have

Fourier series representations:

/ 2

/ 2 1

() exp()
T

n

n T

s x s inx
=− +

= ∑ (2. 47)

/ 2

/ 2 1

() exp()
T

j

j T

u x u ijx
=− +

= ∑ (2. 48)

/ 2

/ 2 1

() exp()
T

r

r T

v x v irx
=− +

= ∑ (2. 49)

Performing multiplication of ()u x and ()v x in physical space for ()s x gives

 n j k j k

j k n j k n T

s u v u v
+ = + = ±

= +∑ ∑ (2. 50)

The second sum represents aliasing error terms. For 0,1,..., 1j T= − we define new

coefficients

, 1

2 2

0,
j

j

� �
u j

u

otherwise

 − + ≤ ≤
= 



 (2. 51)

and

, 1

2 2

0,
j

j

� �
v j

v

otherwise

 − + ≤ ≤
= 



 (2. 52)

 18

Multiplication of these new functions in physical space give new product , ()s x ,

 () () ()s x u x v x= (2. 53)

So we obtain de-aliased coefficients by

 n ns s= for 1,...,
2 2

� �
n = − + (2. 54)

from which the dealiased product, ()s x , can be constructed by Equation (2.47).

 For products involving more than two terms, such as () () ps x u x= , where

p is an arbitrary power, the approach followed by Dommermuth and Yue (1987) is

successive multiplication where each factor is made alias-free before multiplying by

the next term. The anti-aliasing algorithm we use in evaluation of these terms is using

T points for discrete transform rather than � points where
3

4

p�
T ≥ points.

 Performing multiplication () pu x in physical space for ()s x gives

... ...

... ...n j k l j k l

j k l n j k l n T

s u u u u u u
+ + + = + + + = ±

= +∑ ∑ (2. 55)

For 0,1,..., 1j T= − we define new coefficients by Equations (2.51) and we obtain de-

aliased products by Equations (2.53), (2.54) and (2.47).

Amplification of Round-Off Errors

Consider a small random error mnδ in the amplitude ()m

nφ which leads to

�
()

() (1)
m

m

nn mnφ = φ + δ where �
()m

nφ denotes the exact values (Dommermuth and Yue,

1987). Using Equations (2.32) and (2.33), we get

 � �
1() ()()

(),

1 1!

k km �m m km

n m k n nk
k n

T T
k z

− −

−
= =

η ∂
− = − φ δ ψ

∂∑ ∑ (2. 56)

 19

In general
k

k

n nk
K

z

∂
ψ ≈

∂
 where nK n≈ so for any m , error in the highest

wavenumber modes is the most amplified. One way of eliminating such kind of

instability is applying a smoothing function. Following Longuet-Higgins and Cokelet

(1976) we apply a smoothing function to η and Sφ in wavenumber space in the form

21

() 5 4cos cos
8

n n

n

� �

K K
K

K K

π π    
Λ = + −            

 (2. 57)

where �K is the wavenumber at the Nyquist frequency.

2.5 2D Linear Wave Model

If we linearize evolution Equations (2.35) and (2.36), we end up with

linear evolution equations at 0z = in the following form

 0S

t zη −φ = (2. 58)

 0S

t gφ + η = (2. 59)

Starting with initial wave field in 2D, η and Sφ , linear Equations (2.58) and (2.59) are

solved by the Runge-Kutta method discussed above.

An snapshot of propagating linear waves can be seen in Figure 2.1 where

we plot water surface fluctuation,η , as a function of x .

 20

0 50 100 150 200 250 300 350 400 450 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Airy Waves t=3.8s

x(m)

η(
m

)

Figure 2. 1: A snapshot of propagating linear waves in 2D with 1024 components

In order to test the accuracy of the model we apply two accuracy checks.

As a first check we compare the initial spectrum, which is used for construction of the

initial wave field, with the spectrum we obtain by Fourier analysis after the model is

marched in time. This comparison can be seen in Figure 2.2. Perfect agreement in

Figure 2.2 indicates that linear model conserves the input energy. This is expected

because linear evolution equations, Equations (2.58) and (2.59) do not suffer from

amplification of round-off errors or aliasing errors. As a second check we compare the

input and output variances. Initial variance is given by

2

0

()initial S d

∞

σ = ω ω∫ (2. 60)

 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k(1/m)

S
k

Comparison of Input and Output Spectrums

Input Spectrum

Spectrum after time evolution

Figure 2. 2: A comparison of input and output spectrums

We calculate final variance of water surface fluctuation by

2 2

1

1
()

�

final j

j� =

σ = η −η∑ (2. 61)

where

1

1
0

�

j

j� =

η = η ≈∑ (2. 62)

For example for the frequency spectrum presented in the Figure 2.2, Equations (2.60)

and (2.61) both lead to a variance value of 20.0624m which is another indicator of

energy conservation in the model. This test is repeated for different frequency

spectrums and same excellent agreement is obtained for every spectrum within an

error in the order of 4 210 m− . As � gets bigger, the wave field is represented better;

therefore we get closer agreement in the variances.

 22

2.6 3D Linear Wave Model

In 3D linear wave model again linearized evolution equations, Equations

(2.58) and (2.59), are solved starting with the initial water surface fluctuation and

surface velocity potential, η and Sφ , described in Section 2.1. In the calculation of z

derivatives of Sφ in Equation (2.58) 2D Fast Fourier Transforms are used.

Three snapshots of the 3D wave model are presented in Figures 2.3, 2.4

and 2.5 with mean wave directions of 0°, 45° and 90° defined from x axis in counter

clockwise sense, respectively.

In our 3D wave model, the mean wave direction can be specified as

arbitrarily.

Figure 2. 3: A snapshot of propagating linear waves with a principal propagation

direction of 0°

In the 3D model we are doing two accuracy checks. One of the accuracy

checks is again comparison of input and output directional wavenumber spectrums.

Input spectrum (,)
x yk k x yS k k is specified by the Equation (2.17) whereas output

 23

spectrum is obtained by 2D Fast Fourier Transforms after model has been run in time.

Comparison of results is presented in Figure 2.6 and they agree well.

Second accuracy check is the comparison of initial and final variances.

Initial variance under spectrum is given by

2

0 0

() () ()initial S d d G d S d

π π

π π

θ θ θ θ
∞ ∞

− −

σ = ω, ω = ω ω∫ ∫ ∫ ∫ (2. 63)

Figure 2. 4: A snapshot of propagating linear waves with a principal propagation

direction of 30°

Since () 1G d

π

π

θ θ
−

=∫ , Equation (2.63) reduces to

2

0

()initial S d

∞

σ = ω ω∫ (2. 64)

And we are calculating variances of time series of η at different points on the

rectangular grid by expression

 24

2 2

1

1
()

T

final j

jT =

σ = η −η∑ (2. 65)

where T denotes the length of time series data and

Figure 2. 5: A snapshot of propagating linear waves with a principal propagation

direction of 90°

1

1
0

T

j

jT =

η = η ≈∑ (2. 66)

For the spectrum given in Figure 2.6, Equation (2.64) leads to an initial

variance of 20.0453m . We calculate the final variances at four different points of the

grid by Equation (2.65) and averaging those variances lead to 20.0434m , 20.0445m ,

20.0447m and 20.0450m for simulation times 50 pT , 100 pT , 150 pT and 200 pT , where

pT denotes the peak wave period. As simulation time gets bigger and statistics become

more stable, variances converge to the value of initial variance as expected.

 25

Input Wavenumber Spectrum

k
x
(1/m)

k y(1
/m

)

−1.2316 −0.6158 0.6158 1.2316 2.4632

−1.2316

−0.6158

0.6158

1.2316

2.4632

Output Wavenumber Spectrum

k
x
(1/m)

k y(1
/m

)

−1.2316 −0.6158 0.6158 1.2316 2.4632

−1.2316

−0.6158

0.6158

1.2316

2.4632

Figure 2. 6: A comparison of input and output spectrums in 3D linear model for

principal propagation direction of 45°

2.7 2D �onlinear Wave Model

In 2D nonlinear model we are solving evolution Equations (2.35) and

(2.36). In this case horizontal gradient refers to gradient in the x direction only since it

is the only horizontal dimension.

A comparison of linear and nonlinear waves with 1024 components is

given in Figure 2.7. In Figure 2.7 nonlinear waves exhibits a peaked behavior in the

crests and a flatter behavior in the troughs when compared to linear waves. This is a

classical property of nonlinear systems.

 26

0 50 100 150 200 250 300 350 400 450 500

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Comparison of Linear & Nonlinear Waves

x[m]

η
[m

]

Linear Simulation

Nonlinear Simulation

Figure 2. 7: Comparison of linear and nonlinear waves (continuous line refers to

linear simulation; dash dot refers to nonlinear simulation)

In Figure 2.8 we compare initial spectrum and spectrums obtained after

linear and nonlinear evolution of the simulations. As expectedly, agreement between

the initial spectrum and spectrum obtained after linear evolution of the surface is

excellent which was also shown in Figure 2.2. Spectrum obtained after nonlinear

evolution of the surface differs from the initial spectrum due to nonlinear interaction

and energy transfer between different wavenumber components.

 In Figure 2.9 we compare the probability distributions obtained from

linear and nonlinear water surface elevations with 1024 wave components. Both of

these probability distributions obtained for a bin resolution of 0.05m and they show a

Gaussian distribution behavior whereas probability distribution of nonlinear water

surface elevation is a little shifted towards right indicating occurrence of sharper peaks

and flatter troughs during nonlinear evolution.

In Figure 2.10 we present a sideband example where initial conditions for

η and sφ are specified by

 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

k(1/m)

S
k

Comparison of Input and Output Spectrums

Input Spectrum

Spectrum after linear time evolution

Spectrum after nonlinear time evolution

Figure 2. 8: Comparison of initial spectrum and final spectrums obtained after time

evolution of the linear and nonlinear models

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3

3.5

η(m)

P
ro

ba
bi

lit
y

de
ns

ity

PDFs

pdf of linear simulation
pdf of nonlinear simulation

Figure 2. 9: Comparison of probability distribution functions for linear and

nonlinear waves

 28

0 50 100 150 200 250 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
 Side Bands Example. t=32.2s

x[m]

η[
m

]

Profile at t=32.2s
Initial Profile

Figure 2. 10: Wave with two sideband modes example (continuous line refers to

water surface fluctuation after evolution in time, dashed line refers to

initial water surface fluctuation given by Equation (2.67))

,0) cos(9) 0.1 cos(7) 0.1 cos(11)
4 4

x a kx a kx a kx
π π

η(= + − + − (2. 67)

,0) cos(9)exp(9) 0.1 cos(7)exp(7)
49 tanh(9) 7 tanh(7)

s ag ag
x kx k kx k

kg kh kg kh

π
φ (= η + − η

 0.1 cos(11) exp(11)
411 tanh(11)

ag
kx k

kg kh

π
+ − η (2. 68)

where a is the amplitude, h is the water depth, 2 /k Lπ= and L is the periodic

domain length. Equations (2.67) and (2.68) are the initial conditions for sideband

modes example with fundamental wavenumber, 9k , and sideband wavenumbers 7k

and 11k . Integer numbers are chosen so that sideband modes can be fitted into

computational domain (Dommermuth and Yue, 1987).

We check the accuracy of the nonlinear model by examining Fourier

coefficients. In Figure 2.11 we present the time histories of Fourier coefficients

obtained from monochromatic wave example. As it can be seen in the Figure 2.11,

 29

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time[s]

N
or

m
al

iz
ed

 a
m

pl
itu

de
s

Time histories of normalized amplitudes

k

2k

3k

Figure 2. 11: Time histories of normalized Fourier amplitudes of first (straight line),

second (dash-dotted line) and third (dashed line) harmonics

energy is moving between different wavenumber components and this energy transfer

shows an oscillatory behavior. When the fundamental component loses some amount

of its energy about 75t s= , the energy is transferred to higher harmonics. This is

physically meaningful since conservation of energy law must be satisfied. Also it is

useful to mention that, energy is not conserved perfectly in the system due to finite

truncation in the number of free modes, � , and application of smoothing filter.

 Effect of application of smoothing filter given by Equation (2.57) can be

seen in Figure 2.12. Smoothing filter is applied at every 5 time step of the model and

applied in wavenumber space in order to prevent saw-tooth instability. This filter

results in an energy loss which is less than 10% for a simulation time of 125 500pT s≈

as can be seen in Figure 2.12. This loss is reasonable since the maximum simulation

time for coupled acoustic-wave model is 10 40pT s≈ which is the duration of signal

transmission used in the experiments.

 30

0 100 200 300 400 500

0.8

0.85

0.9

0.95

1

1.05

t(s)

E
(t

)/
E

0

Constant Energy Level

Nonlinear Simulation with smoothing filter

Figure 2. 12: Time history of change in the energy level, (dashed line refers to input

energy level, continuous line refers to energy obtained from nonlinear

surface elevation with smoothing filter applied)

 31

Chapter 3

ACOUSTIC SCATTERI�G PROBLEM

In the literature full-wave acoustic models such as the normal mode and

parabolic equation methods are extensively used. Also, ray tracing is one of the oldest

methods which has been used to model acoustic propagation. The ray tracing method

basically consists of approximating a given source by a fan of beams and tracing the

propagation of these beams through the medium (Porter and Bucker, 1987).

Although ray models are preferred for their computational efficiency, there

are some drawbacks of these methods such as occurrence of shadow zones and

caustics (Porter and Bucker, 1987). There have been numerous efforts to modify the

ray theory in order to get more accurate results while keeping the computations

efficient.

The Gaussian beam approach that we use in our coupled wave-acoustic

model can be viewed as a rigorous alternative to conventional ray tracing. We discuss

the details of the Gaussian beam approach in the next section of this thesis.

3.1 Gaussian Beam Tracing and Bellhop Model

Consider a cylindrical coordinate system with r is the horizontal range

and z is the vertical coordinate. Ray equations as a first-order system can be written

as

 ()
dr

c s
ds

= ρ (3. 1)

 32

2

1d c

ds c r

ρ ∂
= −

∂
 (3. 2)

 ()
dz

c s
ds

= ξ (3. 3)

2

1d c

ds c z

ξ ∂
= −

∂
 (3. 4)

where [](), ()r s z s are ray coordinates as a function of the arc length s , and (,)c r z is

the sound speed. Auxiliary angular variables [](), ()s sρ ξ are quantities which are

proportional to the local tangent vector (Porter and Bucker, 1987). Initial conditions

are given as

 [](0), (0) (,)s sr z r z= (3. 5)

 [] ()(0), (0) cos ,sin / (0)cρ ξ = α α (3. 6)

where (,)s sr z denotes the source coordinates and α is takeoff angle.

The beam curvature and width are calculated using two quantities ()p s

and ()q s , which are obtained by integrating two ordinary differential equations of the

following form

 () ()
dq

c s p s
ds

= (3. 7)

2

()
()
nncdp

q s
ds c s

= − (3. 8)

where nnc denotes the second normal derivative of the sound speed (,)c r z which can

be computed by

2 2

2nn rr rz zz

dr dr dz dz
c c c c

dn dn dn dn

      = + +      
      

 (3. 9)

 33

Simply presenting the result, beam field can be defined by

 2() ()
(,) exp () 0.5

() ()

c s p s
u s n A i s n

rq s q s

  
= − ω τ +  

  
 (3. 10)

where A is an arbitrary constant, ω is the angular frequency of the source, n is the

normal distance from central ray. The term ()sτ in Equation (3.10) is the travel time of

the ray which satisfies

1

()

d

ds c s

τ
= (3. 11)

Matching the exact solution for a point source in three dimensions A can be expressed

as

1 (0) cos

(exp
4 2o

i q
A

c

π
δ

π
  ω α α) = α   

  
∑ (3. 12)

whereδα is the angle between adjacent rays, oc is the constant sound speed in a

homogeneous medium used for derivations. Combining Equations (3.10) and

Equations (3.12), one can get the final result

 21 (0) cos () ()
(,) exp exp () 0.5

4 2 () ()o

i q c s p s
u s n i s n

c rq s q s

π
δ

π

    ω α = α − ω τ +     
      

∑

 (3. 13)

For a detailed discussion of Gaussian beam technique, the reader may refer

to Porter and Bucker (1987).

Bellhop is a tool which uses the Gaussian beam tracing method. Bellhop

numerically integrates the ray equations to keep track of acoustic rays inside the water

column. This program has been tested with full wave acoustic models which are

computationally intensive and shows excellent agreement with those methods (Porter

 34

and Bucker, 1987). The method does not experience numerical artifacts which are

present in standard ray models and is still computationally efficient like other ray

based approaches (Porter and Bucker, 1987).

In order to run Bellhop, an input file containing environmental parameters

such as water depth, source and receiver locations, top and bottom boundary

conditions and sound speed profile should be created. This file is also known as the

environmental file. Also, properties of beams such as number of beams to be used,

their launching angles and type of beams should be specified. Following Heitsenrether

(2004), we are using an initial fan of 1000 beams lying in an angular interval of 0° to

14°. All our calculations are based on eigenrays generated by Bellhop, which are the

rays that are generated at the source and reach the receiver, which are reflected from

surface only and do not experience any other scatter from bottom or surface. However

during this surface reflection ray can be bounced from surface more than once.

After execution of Bellhop an output file is generated. This file contains

information about arrival time, arrival angle, pressure amplitude, number of surface

and number of bottom interactions. This output file is used to get the results of the

model.

It is well known that when a sound wave is scattered from a moving object

the frequency of the sound wave changes. This phenomenon is called Doppler shift. In

this thesis we are calculating Doppler shifts experienced by acoustic rays at the

moving surface. For this purpose we need to know the geometry of the eigenrays.

Therefore at each time step of the wave model we are running Bellhop two times. One

run is with the arrival file option in order to get arrival times of rays. The second run is

with the eigenray option in order to plot the rays using a Matlab program called

plotray. The Matlab program plotray which is standard in Bellhop package is modified

in order to account for Doppler effect.

 35

3.2 Doppler Shift Calculations

In the literature it is well known that motion of source, receiver or a

scattering object causes a change in the frequency of the scattered signal. This is

known as the Doppler effect. Depending on the geometry and direction of the motion

the Doppler shift can be positive or negative.

Figure 3. 1: Doppler effect of an moving object

Based on the geometry given in Figure 3.1, Doppler effect can be

calculated using

(cos)

(cos)
s s

r

r

f c v
f

c v

θ
θ

+
=

−
 (3. 14)

where sf is the source radiating frequency, rf is the frequency at the receiver and c is

the sound speed. v is the surface-normal velocity which we discussed in Section 2.3.

 36

In Doppler shift calculations a source radiating frequency of 12 kHz is used which is

the same value used in experiments we describe in Section 4.1.

In the surface scattering problem, the water surface serves as the scatterer

at the point where the acoustic ray hits the surface. Once rays are generated by Bellhop

and these intersection points are specified, Doppler shifts are calculated at these

intersection points with the velocity of the surface specified by wave model.

When a ray experiences more then one surface bounce, Doppler shift

calculations are applied successively at each bounce point. An example of multiple

surface bounce is given in Figure 3.2. Application of Doppler shift calculations at each

bounce point may not be the most reasonable approach since continous refraction of

sound waves affects the geometry of bouncing of the acoustic ray and thus Doppler

shifts calculations. Detailed study of Doppler shift calculations on the surface is

recommended as a future work.

67 68 69 70 71 72 73 74 75 76

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Range (m)

D
ep

th
 (

m
)

BELLHOP− Scattering From Realistic Surface

Surface

Acoustic Ray

Figure 3.2: Multiple bounce of an acoustic ray

 37

Chapter 4

DISCUSSIO� OF RESULTS OF COUPLED MODEL

4.1 Experimental Data

The experimental data used in this thesis is obtained from an experiment

conducted in shallow water region of the Delaware Bay during September 22 through

29, 1997 (HFA 97). Main scope of this experiment was to measure the effect of the

ocean environment on acoustic propagation.

During the experiment two stationary tripods were deployed on the sea

floor, in 15m depth of water and separated horizontally by 387 m. For every 10

minutes during the whole experiment broad-band (0.6-18.0 kHz) chirp signals were

transmitted every 0.345 s (pings) for 5 s and for 40 s intervals.

Among several different types of received signals observed in HFA 97,

data is obtained for the acoustic rays traveling from source of one receiver to

hydrophone receivers of the other tripod which is located 387 meters away. Time

evolution of the individual ray paths which examines only one surface bounce are

considered here. Statistics of these single bounce rays provides the data set to which

model comparison are performed in Chapter 4 of this thesis.

During HFA 97 not only acoustic but also environmental measurements

were performed. Tide height, current profiles, sound speed profiles were

simultaneously measured. Air temperature, wind speed and wind direction

measurements were collected at a lighthouse in the vicinity of the experimental field.

Environmental variability was significant during the five day period of HFA 97

experiment. Wind speed ranged from 1 m/s to 15 m/s during the experiment. For a

 38

much more detailed discussion of HFA 97, the reader may refer to Heitsenrether

(2004).

4.2 Model Results

The main parameter we use in studying the model performance is the

arrival time of the eigenrays. Arrival time is the time elapsed between the transmission

of the eigenray at the source and its detection at the receiver. In Figure 4.1 we present

0 50 100 150 200 250 300 350

0

5

10

15

Range (m)

D
ep

th
 (

m
)

BELLHOP− Scattering From Realistic Surface

Eigenray with smaller arrival time

Eigenrays with bigger arrival times

Figure 4. 1: Eigenrays with different arrival times

three eigenrays with different paths and thus different arrival times. Eigenray reflected

from the middle region of the surface has the shortest path and thus smallest arrival

time. Rays which are reflected from outer regions of the water surface have longer

paths and thus bigger arrival times.

In the Figure 4.2 we present the time histories of arrival time of eigenrays

and Doppler shifts associated with those eigenrays obtained from linear model for

 39

September 24th, 1997, 03.02 am. Wind speed is 13.9 /m s for this simulation which is

obtained from experimental data set. The most important factor affecting the results

5 10 15 20 25 30 35 40

0.256

0.2565

0.257

0.2575

Geotime(s)

A
rr

iv
al

 T
im

e
O

f E
ig

en
ra

y(
s)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

Geotime(s)

D
op

pl
er

 S
hi

ft(
H

z)

Figure 4. 2: Time histories of arrival times and Doppler shifts for September 24th,

1997, 03.02 am.

turned out to be the horizontal location of the bounce point of the acoustic ray. Rays

which are reflected from the middle region of the surface have smaller arrival times.

Arrival times of these rays lead to a smaller standard deviation of arrival times and

agree well with the experimental results. Arrival times of rays which are reflected from

outer regions of the surface lead to peaks in Figure 4.2, to a bigger standard deviation

of arrival times and do not agree well with the experimental results. Using an acoustic

model different than the ray based models can lead to better results since fineness of

the initial ray fan will not be an important factor for those models.

 In Figure 4.2, arrival times of eigenrays and associated Doppler shifts

appear to be in phase. This is also expected because when an acoustic ray trapped

inside a crest on the water surface its travel path is longer which makes arrival time

 40

bigger as well as bigger surface-normal velocity on the crest leads to bigger Doppler

shift of the signal. Also when the ray is trapped inside a crest it possibly experiences

0 5 10 15 20 25 30 35 40
0.2555

0.256

0.2565

0.257

0.2575

0.258

Geotime(s)

A
rr

iv
al

 T
im

e
O

f E
ig

en
ra

y(
s)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Geotime(s)

D
op

pl
er

 S
hi

ft(
H

z)

Figure 4. 3: Time histories of arrival times and Doppler shifts for September 24th,

1997, 00.00 am.

several surface bounces which may lead to successive Doppler shifts therefore to a

bigger total Doppler shift.

In Figure 4.3, time histories of arrival times and Doppler shifts for

September 24th, 1997, 00.00 am, obtained from a linear simulation are presented. In

this simulation, wind speed is 1 /m s , and therefore surface roughness and surface-

normal velocities are small. Therefore, arrival times of eigenrays and magnitude of

Doppler shifts are smaller when compared to Figure 4.2. Also time series of arrival

time and Doppler shifts in Figure 4.3 do not clearly appear to be in phase since surface

elevation is very small and there are no well developed crests present for the wind

speed of 1 /m s .

 41

0 5 10 15 20 25 30 35 40

0.2555

0.256

0.2565

0.257

0.2575

Geotime(s)

A
rr

iv
al

 T
im

e
O

f E
ig

en
ra

y(
s)

5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

Geotime(s)

D
op

pl
er

 S
hi

ft(
H

z)

Linear Model
Nonlinear Model

Figure 4. 4: Time histories of arrival times and Doppler shifts obtained from linear

and nonlinear simulations for September 24th, 1997, 00.00 am.

(continuous line refers to linear simulation, dashed line refers to

nonlinear simulation)

 In Figure 4.4, time histories of arrival times and Doppler shifts for

September 24th, 1997, 00.00 am, obtained from linear and nonlinear simulations, are

presented. Since the horizontal location of bounce point has a significant effect on

results it is hard to observe the effect of nonlinearity. When eigenrays have same

horizontal location of bouncing points both for linear and nonlinear simulations,

nonlinearity leads to a bigger arrival time and a bigger Doppler shift since nonlinear

surface profile is more peaked than linear surface profile and surface-normal velocities

are bigger for nonlinear surface profile. This can rarely be observed by the coincident

peaks of linear and nonlinear simulations such as on the second plot of Figure 4.3 for

11t s= and 34t s= where result of nonlinear simulation is at the top of result of linear

simulation.

 42

0 5 10 15
0

1

2

3

4

5

6
x 10

−4

Wind Speed(m/s)

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 A

rr
iv

al
 T

im
e(

s)

N=1024, dx=0.378m

N=512, dx=0.756m

N=256, dx=1.511m

N=128, dx=3.023m

N=64, dx=6.047m

Experiments

Figure 4. 5: Effect of surface partitioning dx on standard deviation calculations

In Figures 4.5 and 4.6 we present standard deviation of arrival times and

average Doppler shifts in the frequency as functions of wind speed. These statistics are

obtained using 200 successive runs for each 1 /m s increment of wind speed. General

tendency of the curves presented in Figures 4.5 and 4.6 show an expected behavior.

When wind speed and therefore surface roughness is small, standard deviation of

arrival times and Doppler shifts in the frequency of the acoustic rays converge to zero

since surface becomes flat and surface-normal velocities become zero.

One of the major critics that Heitsenrether (2004) was subjected to is the

selection of surface partitioning length, dx . Figures 4.5 and 4.6 show that this

parameter of the wave model has a significant effect on the results. The number of

 43

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wind Speed(m/s)

A
ve

ra
ge

 D
op

pl
er

 S
hi

ft(
H

z)

N=1024, dx=0.378m

N=512, dx=0.756m

N=256, dx=1.511m

N=128, dx=3.023m

N=64, dx=6.047m

Figure 4. 6: Effect of surface partitioning dx on Doppler shift calculations

wave components used by Heitsenrether (2004) was 64� = which agree well with

experimental results since acoustic rays are mainly reflected from the points in the

neighborhood of the flat surface specular point. The larger dx leads to smaller scatter

since the surface is less faceted. From a convergence point of view, this is wrong, as a

more resolved answer is by definition better. We have since shown that the problem

lies in having a good estimate of the minimum travel time ray, which implies reliably

finding the eigenray reflecting closest to the flat surface specular point. The problem

becomes less severe at large dx because the surface is flatter in the neighborhood of

the original specular point, and the ray there is usually found.

 Using a bigger number of wave components and keeping the dx small

enough is the correct approach of creating a spatially well represented surface profile.

Based on this surface profile a ray based acoustic model has to be initiated using a very

fine fan of beams to ensure that rays are mainly reflected from the points in the

 44

neighborhood of the flat surface specular point. Another possible solution is to use a

different acoustic model such as parabolic equation model.

 45

Chapter 5

CO�CLUSIO�

In this thesis, the effect of linear and nonlinear surface gravity waves on

high frequency acoustic propagation has been discussed. Spectral linear and nonlinear

wave models which solve governing equations are created, and these wave models are

coupled with an acoustic Gaussian beam model called Bellhop. Coupled wave-

acoustic models have been run with the same conditions of an experiment which was

conducted in Delaware Bay in 1997. Results obtained by coupled wave-acoustic model

are presented as functions of environmental parameters and are compared to

experimental results. Limits of model applicability and validity are discussed.

As an extension to the wave model adopted from literature, the velocity

component in the normal direction to the surface is calculated. The surface-normal

velocity is used in the Doppler shift calculations.

 For future work, the primary question to be addressed is the

understanding of the effect of spatial resolution of surface waves on the acoustic ray

method. Simulations with different types of acoustic models such parabolic equation

model are needed in order to discuss the validity of the ray based Gaussian beam

approach.

A 3D nonlinear wave model should be created. A 3D acoustic program

which is capable of accounting for out of plane scattering should be used with 3D

linear and 3D nonlinear wave models. 3D coupling will provide more realistic

simulation of the underwater acoustic communication.

Moving source and receiver have effects on the geometry of the acoustic

ray tracing model as well as Doppler shift calculations. These effects should be

included in the calculations.

 46

Since the presence of bubbles is another important factor which affects

underwater acoustics, a much more complete hydrodynamic model should be created

which can account for bubbles in the water column. Also, refractive and dissipative

effect of bubbles should be included in the acoustic model as well.

We also know that as sound waves approach surface they are subjected to

continuous refraction process. Therefore the approach we adopt may not be the most

realistic approach for Doppler shift calculations. Literature about the whispering

gallery concept should be reviewed and the effect of continuous interaction between

rays and a curved surface at glancing incidence should be implemented in the model.

 47

Appendix A

MATLAB A�D FORTRA� PROGRAMS

1. Matlab-2D Linear Wave Model

% Article: Douglas G.DOMMERMUTH and Dick K.P.YUE

% A High-Order Spectral Method for the study of nonlinear gravity waves

% Cambridge, MA, USA 1986

% Two step procedure; pseudospectral method for determining nodal amplitudes

% and fourth order Runge-Kutta time integrator

% James KIRBY, Cihan BAYINDIR, University of Delaware, 02/04/2008

% Linear Version-Spectrum of Waves; Working in metric units

clear all

close all

h=15; % Water Depth, Bob Heitsenrether used h=15 meters

g=9.81; % Gravitational acceleration

dt=0.1; % Time step

tmax=25; % Maximum Time Of Scheme Evaluation

t=0:dt:tmax; % Time array

Time=length(t); % Length of Time Array

N=2^10; % Number of Fourier points;

 % a power of 2 for fast computation

xmin=0; % Minimum x value

xmax=500; % Pick a domain length; with Hs=1.0 and Ts=10

 % energy spectrum drops to zero at L~500

 % choose domain length accordingly

dx=(xmax-xmin)/N; % Step size in x

j=0:1:N-1;

x=dx*j; % Space array, Periodic domain

Lmax=xmax-xmin; % Length of periodic domain=max wave length

k1=2*pi/Lmax*(0:1:N/2); % First portion of Wavenumber array

k2=2*pi/Lmax*(-N/2+1:1:-1); % Second portion of Wavenumber array

k=[k1,k2]; % Combine first and second Portions of

 % Wave Number Array

 48

W=sqrt(g*k1.*tanh(k1*h)); % wave angular frequency;

 % using linear dispersion relationship

Cg=0.5.*(1+2.*k1*h./sinh(2.*k1*h)).*W./k1; %Group velocity

Cg(1)=0;

%--

% 1st Formulation of Frequency Spectrum

% Frequency spectrum as a function of frequency

% Formulation for spectrum is taken from 'Random Seas and

% Design of Maritime Structures', Goda et.al. , second edition page 28

% equation 2.10

% To activate uncomment following seven lines

%--

Hs=1; % Significant wave height

Ts=10; % Significant wave period

fr=W/(2*pi);

Sf=0.257*Hs^2*Ts^-4.*(fr.^-5).*exp(-1.03.*(Ts.*fr).^-4);

Sf(1)=0;

Sk=Cg.*Sf./(2*pi); % Frequency Spectrum ==> Wavenumber Spectrum

Sk(1)=0;

%--

% 2nd Formulation of Frequency Spectrum

% Frequency spectrum as a function of frequency

% Taken from master's thesis, Bob Heitsenrether, UD marine studies

% uses the Jonswap Spectrum given by Shore Protection Manual

%--

% X=18520; % Equals 10 nautical miles, 1nmi=1852 meters

% U=13; % Wind Speed in meters per second; Bob used values between 5-13

% gam=3.3; % Parameter for Jonswap Spectrum

% Wp=7*pi*g/U*(g*X/U^2)^-0.33; % Peak angular frequency

% alpha=0.076*(g*X/U)^-0.22; % constant of equation for S(W)

% [dum,in]=find(W<=Wp);

% mm=max(in);

% SW1=alpha*g^2.*W(in).^-5.*exp(-5/4*(W(in)/Wp).^-4).*gam.^exp(-(W(in)-

Wp).^2/(2*0.07^2*Wp^2));

% SW2=alpha*g^2.*W(mm+1:N/2+1).^-5.*exp(-5/4*(W(mm+1:N/2+1)/Wp).^-

4).*gam.^exp(-(W(mm+1:N/2+1)-Wp).^2/(2*0.09^2*Wp^2));

% Sw=[SW1,SW2];

% Sw(1)=0;

% Sk=Cg.*Sw; % Frequency Spectrum ==> Wavenumber Spectrum

% Sk(1)=0;

 49

% Following line is not necessary but it gives an idea about selection of

% xmax, Horizontal length scale

%fp=Wp/(2*pi); Tp=1/fp;

% According to deep water formula L~1.56 T^2

% Make sure that xmax you choose is about at least 25 times of this value

% since it represents the spectrum without much error

a2=sqrt(2*pi*Sk*2/Lmax); % Nodal amplitudes obtained from spectrum

F2(1:N/2+1)=2*pi*rand(1,N/2+1); % Uniformly Distributed Random Number

 % generator for phase angles on the interval [0,2*pi]

kTANHkh=abs(k).*tanh(abs(k).*h); % In order to avoid calculation at every time

 % step product assigned to a variable

W(1)=1; % Since a(1)=0 W(1) will drop out. No problem to change it.

% Initial values for progressive wave; (Initial values for standing wave

% are; n is the same and Qs=0 BRUTE FORCE METHOD

% for j=1:1:N;

% n(j)=sum(a(1:N/2+1).*cos(k(1:N/2+1).*x(j)+F(1:N/2+1))); % Initial

Values for Wat. Sur. Fluc.

% Qs(j)=sum(a(1:N/2+1).*g./W(1:N/2+1).*sin(k(1:N/2+1).*x(j)+F(1:N/2+1))); %

Initial Values for Sur. Vel. Pot.

% %Qs(1:N)=0; % Initial Value for Sur. Vel. Pot. is 0 [for standing waves]

% end

%INVERSE FOURIER TRANSFORM METHOD

A2=a2(1:N/2+1).*exp(i*F2(1:N/2+1))/2;

A(1:N/2+1)=A2; A(N/2+2:1:N)=conj(A2(N/2:-1:2));

A(N/2+1)=abs(A(N/2+1));

B(1:N/2+1)=-i*g./W.*A2; B(N/2+2:1:N)=conj(-i*g./W(N/2:-1:2).*A2(N/2:-1:2));

B(N/2+1)=abs(B(N/2+1));

n=N*ifft(A);

Qs=N*ifft(B);

ni=n;

Qsi=Qs;

% Check the spectrum if initial wsf is given correctly

% figure(1)

 50

% B=fft(ni)/N

% b=2*B(1:N/2+1)./exp(i*F(1:N/2+1)); S_k_2=b.^2*Lmax/(4*pi)

% plot(k(1:N/2+1),Sk,k(1:N/2+1),S_k_2(1:N/2+1),'o')

for j=1:1:Time; %Time Indice

 %% Runge-Kutta Time Integration with Pseudospectral Method %%

 % First Slope for Qs(surface vel.pot)

 d1=-g.*n;

 % First Slope for n(water surface fluct.)

 m1=ifft(fft(Qs).*kTANHkh);

 % Second Slope for Qs(surface vel.pot)

 d2=-g.*(n+0.5*dt.*m1);

 % Second Slope for n(water surface fluct.)

 m2=ifft(fft(Qs+0.5*dt.*d1).*kTANHkh);

 % Third Slope for Qs(surface vel.pot)

 d3=-g.*(n+0.5*dt.*m2);

 % Third Slope for n(water surface fluct.)

 m3=ifft(fft(Qs+0.5*dt.*d2).*kTANHkh);

 % Fourth Slope for Qs(surface vel.pot)

 d4=-g.*(n+dt*m3);

 % Fourth Slope for n(water surface fluct.)

 m4=ifft(fft(Qs+dt*d3).*kTANHkh);

 %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next

 %time step

 n=n+dt/6.*(m1+2.*m2+2.*m3+m4);

 Qs=Qs+dt/6.*(d1+2.*d2+2.*d3+d4);

% nA(j)=n(3);

% nB(j)=n(45);

% nC(j)=n(76);

% nD(j)=n(108);

% nE(j)=n(157);

 51

% nF(j)=n(200);

% nG(j)=n(244);

% nH(j)=n(510);

 % Following lines are for calculating velocity component in the normal

 % direction which is going to be important in the Doppler shift

 % calculations of the Acoustic rays reflected from ocean surface

 Qsz=ifft(fft(Qs).*kTANHkh); % Vertical velocity

 FTQs=i*k.*fft(Qs); FTQs(N/2+1)=abs(FTQs(N/2+1)); % At Nyquist freq.

 Qsx=ifft(FTQs); % Horizontal velocity

 FTn=i*k.*fft(n); FTn(N/2+1)=abs(FTn(N/2+1));

 nx=ifft(FTn); % Slope of water surface fluctuation

 udotn=(-Qsx.*nx+Qsz)./sqrt(nx.^2+1); % Velocity in the normal direction

 plot(x,n),title(['Airy Waves t=',num2str((j-1)*dt),'s'])

 xlim([xmin xmax])

 ylim([-2 2])

 % subplot(2,1,2), plot(x,udotn); title('Velocity In Outward Normal Direction')

 pause(0.1)

 % j

end

 ax=0:dt:dt*(Time-1);

Varianceof_initial_spectrum= 0.0624*Hs^2 % take the integral under spectrum

(analytically)

Varianceof_initial_wsf=var(ni)

Varianceof_final_wsf=var(n)

Hs_result_from_initialWsf=4.004*sqrt(mean((ni.^2)))

Hs_result_from_finalWsf=4.004*sqrt(mean((n.^2)))

2. Fortran-2D Linear Wave Model

! Article: Douglas G.Dommermuth and Dick K.P.Yue

! A High-Order Spectral Method for the study of

! Nonlinear gravity waves Cambridge, MA, USA 1986

! Two Step Procedure; pseudospectral method for determining nodal

 52

! amplitudes and fourth order Runge-Kutta time integrator

! Cihan BAYINDIR, James T. Kirby University of Delaware 01/18/2009

!

! Work In Metric Units

! Linear, 1-D, Spectrum of Waves

 program RandomSea

 real h,g, dt,tmax,xmin,xmax,L,pi,Hs,Ts

 integer sizet,j

! p is the power of 2, has to be equal to power of 2 in the

! coming line

 parameter (p=11)

! INPUT N, has to be a power of 2 for fast computation

! power of 2 has to be equal to p

 parameter (N=2**p)

 real x(N), F2(N/2+1), k(N), W(N/2+1), fr(N/2+1)

 real kTANHkh(N), Cg(N/2+1)

 real Sf(N/2+1),Sk(N/2+1),a2(N/2+1)

 complex i, A_com_2(N/2+1), B_com_2(N/2+1)

 complex A_com(N),B_com(N)

 complex Wsf(N),Qs(N)

 complex m1(N),m2(N),m3(N),m4(N),k1(N),k2(N),k3(N),k4(N)

 complex Qrhs1(N),Qrhs2(N),Qrhs3(N),Qrhs4(N)

 complex Qsz(N), Qsx(N),Wsfx(N),udotn(N)

 real I_var,sum,F_var

 real aux

CCCCCCCCCCCCCCC INPUTS CCCCCCCCCCCCCCCCCCCCCC

! Imaginary Number

 i=(0.0,1.0)

! h is the water depth

 h=50

! g is the gravitational acceleration

 g=9.81

! dt is the time step

 dt=0.1

! tmax is the maximum time of scheme evaluation

 tmax=10

! xmax is the maximum value

 xmax=3000 ! Enter approximately 10 times of biggest wavelength

! xmin is the minimum x value

 xmin=0

! Hs is the significant wave height

 53

 Hs=1

! Ts is the significant wave period

 Ts=15

CCC

! Calculate size of t array

 sizet=tmax/dt

! Calculate pi

 pi=3.141592653589793

! pi=4*atan(1.0) ! Alternative expression for pi

! Calculate step size in x

 dx=(xmax-xmin)/N

! Calculate wave length

 L=xmax-xmin

! Create Space Array

 x(1)=xmin

 do 10 j=1,N-1

 x(j+1)=x(j)+dx

 10 continue

! Calculate Wave Number Vector For Spectral Code

 do 11 j=1,N/2+1

 k(j)=2*pi/L*(j-1)

 11 continue

 do 12 j=N/2+2,N

 k(j)=2*pi/L*(j-N-1)

 12 continue

! kTANHkh is needed in the time stepping in order to calculate at every time step

! calculate it here.

 do 13 j=1,N

 kTANHkh(j)=abs(k(j))*tanh(abs(k(j))*h)

 13 continue

! Calculate Angular Wave Frequency, Frequency, kTANHkh

! Remember these are half of the spectrum up to

! and including Nyquist frequency

 do 14 j=1,N/2+1

 W(j)=sqrt(g*k(j)*tanh(k(j)*h))

 fr(j)=W(j)/(2*pi)

 Cg(j)=0.5*(1+2*k(j)*h/sinh(2*k(j)*h))*W(j)/k(j)

 54

 14 continue

 W(1)=1 ! W(1) will be denominator in coming lines

 ! avoid dividing by zero. This terms drops out since

 ! a(1)=0

 Cg(1)=0 ! k(1)=0 so dividing by zero creates NaN, avoid it

 ! this term will drop out since a(1)=0

! In order to calculate the nodal amplitudes we need frequency spectrum

! Formulation of the spectrum is taken from Random Seas and Design of Maritime

! Structures, Goda et. al. second edition page 28 equation 2.10

! S(f)= Sf=frequency spectrum

! S(k)=Sk= wavenumber spectrum calculated from frequency spectrum

! a2 is the half of the real amplitude array

! a is the real amplitude array which is calculated by using symmetricity

! of a, from a2

 Sf(1)=0

 Sk(1)=0

 a2(1)=0 ! k(1)=0 so dividing by zero creates NaN, avoid it

 ! these terms will drop out since a(1)=0

 do 15 j=2,N/2+1

 Sf(j)=0.257*(Hs**2)*(Ts**-4)*(fr(j)**-5)*exp(-1.03*(Ts*fr(j))**-4)

 Sk(j)=Cg(j)*Sf(j)/(2*pi)

 a2(j)=sqrt(2*pi*Sk(j)*2/L)

 15 continue

 ! open (unit=10,file="Sf.txt",ACCESS='APPEND')

 ! write(10,2) Sf

 !2 format (f8.5)

 ! close(10)

 call urand(F2,N/2+1) ! Call Random Number Generator

 ! for N/2+1 uniformly dist.

 ! random number

! Initial Water Surface fluctuation and Surface Velocity Profile

! is being constructed using inverse Fourier Transform Method

 55

! A2 half of the complex amplitude matrix

! B2 half of the complex water surface fluctuation matrix

 do 16 j=1,N/2+1

 A_com_2(j)=a2(j)*exp(i*F2(j))/2

 B_com_2(j)=-i*g/W(j)*A_com_2(j)

 16 continue

 do 17 j=1,N/2+1

 A_com(j)=A_com_2(j)

 B_com(j)=B_com_2(j)

 17 continue

 do 18 j=N/2+2,N

 A_com(j)=conjg(A_com_2(N-j+2))

 B_com(j)=conjg(B_com_2(N-j+2))

 18 continue

 A_com(N/2+1)=abs(A_com(N/2+1))

 B_com(N/2+1)=abs(B_com(N/2+1))

! Initial Values for water surface fluctuation Wsf

! and surface velocity potential Qs

 call ifft(A_com,p,N)

 Wsf=A_com

 call ifft(B_com,p,N)

 Qs=B_com

 open (unit=10,file="N_and_dt_dx.txt",ACCESS='APPEND')

 write(10,*) N , dt, dx

 close(10)

! Here Begins The Time Stepping. Time Integrator Is Fourth Order Runge-Kutta

 do 24 j=1,sizet

 ! First Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denoted as k1 and m1

 Qrhs1=Qs

 ! Calculate RHS of evaluation equation for 1st equation

 ! After operations Qrhs1 is changing!!

 call fft(Qrhs1,p,N)

 do 25 v=1,N

 Qrhs1(v)=Qrhs1(v)*kTANHkh(z)

 25 continue

 call ifft(Qrhs1,p,N)

 56

 do 26 v=1,N

 k1(v)=-g*Wsf(v)

 m1(v)=Qrhs1(v)

 Qrhs2(v)=Qs(v)+0.5*dt*k1(v)

 26 continue

 ! Second Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denotes as k2 and m2

 ! Calculate RHS of evaluation equation for 2nd equation

 ! After operations Qrhs2 is changing!!

 call fft(Qrhs2,p,N)

 do 27 v=1,N

 Qrhs2(v)=Qrhs2(v)*kTANHkh(v)

 27 continue

 call ifft(Qrhs2,p,N)

 do 28 v=1,N

 k2(v)=-g*(Wsf(v)+0.5*dt*m1(v))

 m2(v)=Qrhs2(v)

 Qrhs3(v)=Qs(v)+0.5*dt*k2(v)

 28 continue

 ! Third Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denotes as k3 and m3

 ! Calculate RHS of evaluation equation for 2nd equation

 ! After operations Qrhs2 is changing!!

 call fft(Qrhs3,p,N)

 do 29 v=1,N

 Qrhs3(v)=Qrhs3(v)*kTANHkh(v)

 29 continue

 call ifft(Qrhs3,p,N)

 do 30 v=1,N

 k3(v)=-g*(Wsf(v)+0.5*dt*m2(v))

 m3(v)=Qrhs3(v)

 Qrhs4(v)=Qs(v)+dt*k3(v)

 30 continue

 ! Fourth Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denotes as k4 and m4

 ! Calculate RHS of evaluation equation for 2nd equation

 ! After operations Qrhs2 is changing!!

 call fft(Qrhs4,p,N)

 57

 do 31 v=1,N

 Qrhs4(v)=Qrhs4(v)*kTANHkh(v)

 31 continue

 call ifft(Qrhs4,p,N)

 do 32 v=1,N

 k4(v)=-g*(Wsf(v)+dt*m3(v))

 m4(v)=Qrhs4(v)

 Wsf(v)=Wsf(v)+dt/6*(m1(v)+2*m2(v)+2*m3(v)+m4(v))

 Qs(v)=Qs(v)+dt/6*(k1(v)+2*k2(v)+2*k3(v)+k4(v))

 32 continue

! Write Water Surface Fluctuation To File

 open (unit=9,file="Water Surface Fluctuation.txt",ACCESS='APPEND')

 do 33 z=1,N

 write(9,1) Wsf(z)

 1 format (f8.5,f8.5)

 33 continue

 close(9)

!--

 ! Following lines are for calculating velocity component in the normal

 ! direction which is going to be important in the Doppler shift

 ! calculations of the acoustic rays reflected from the ocean surface

 ! Qsz is the z derivative of Qs; vertical velocity calculate from spectral

 ! formulation

 Qsz=Qs

 call fft(Qsz,p,N)

 do 34 v=1,N

 Qsz(v)=Qsz(v)*kTANHkh(v)

 34 continue

 call ifft(Qsz,p,N)

 Qsz=real(Qsz) ! Avoid roundoff errors in the imaginary part

 ! Qsx is the x derivative of Qs, horizontal velocity

 Qsx=Qs

 call fft(Qsx,p,N)

 do 35 v=1,N

 Qsx(v)=Qsx(v)*k(v)*i

 35 continue

 58

 Qsx(N/2+1)=abs(Qsx(N/2+1))

 call ifft(Qsx,p,N)

 Qsx=real(Qsx) ! Avoid roundoff errors in the imaginary part

 ! Wsfx is the x derivative of water surface fluc. Wsf

 Wsfx=Wsf

 call fft(Wsfx,p,N)

 do 36 v=1,N

 Wsfx(v)=Wsfx(v)*k(v)*i

 36 continue

 Wsfx(N/2+1)=abs(Wsfx(N/2+1))

 call ifft(Wsfx,p,N)

 Wsfx= real(Wsfx) ! Avoid roundoff errors in the imaginary part

 ! udotn is the dot product of velocity u with normal gives the velocity

!component

 ! in the normal direction

 do 37 v=1,N

 udotn(v)=(-Qsx(v)*Wsfx(v)+Qsz(v))/sqrt(Wsfx(v)**2+1)

 37 continue

!---

 24 continue

 ! Check if the energy is conserved

 ! I_var is the initial variance take the integral of Sf from 0 to inf

 ! Gives you initial variance

 I_var=0.0624*(Hs**2)

 ! F-var is the Final variance of water surface fluctuation

 sum=0

 do 40 j=1,N

 sum=sum+(Wsf(j))**2

 40 continue

 F_var=sum/N

 print *, 'Initial Var=', I_var,'Final Var=',F_var

 print *, ' udotn', udotn

 59

 stop

 end

!!!!!!!!!!! SUBROUTINES !!!!!!!!!!!!!!

! Simple random number generator

 subroutine urand(F,N)

 integer N,j, seed

 real pi,old,c,d

 real F(N)

 PI=3.141592653589793

! pi=4*atan(1.0) ! Alternative expression for pi

 seed=11

 old=seed

 j=1

 do 1 j=1,N-1,2

 c=mod ((57*old+1),2*pi)

 d=mod ((57*c+1),2*pi)

 old=d

 F(j)=c

 F(j+1)=d

 1 continue

 return

 end

! End of simple random number generator

! 1-D Fast Fourier Transfrom

! N=2^p, A is the complex array to be fourier transformed

 subroutine fft(A,p,N)

 complex A(N),U,W,T

! Divide all elements by N

 do 1 J=1,N

 1 A(J)=A(J)/N

! Reorder Sequence According to fig 12.8 of Newland

 NBD2=N/2

 NBM1=N-1

 J=1

 do 4 L=1,NBM1

 if(L.ge.J) go to 2

 T=A(J)

 60

 A(J)=A(L)

 A(L)=T

 2 K=NBD2

 3 if(K.ge.J) go to 4

 J=J-K

 K=K/2

 go to 3

 4 J=J+K

! Calculate FFT acoording to fig 12.5

 PI=3.141592653589793

 do 6 M=1,p

 U=(1.0,0.0)

 ME=2**M

 K=ME/2

 W=CMPLX(COS(PI/K),-SIN(PI/K))

 do 6 J=1,K

 do 5 L=J,N,ME

 LPK=L+K

 T=A(LPK)*U

 A(LPK)=A(L)-T

 5 A(L)=A(L)+T

 6 U=U*W

 return

 end

! End of 1-D Fast Fourier Transform

! 1-D Inverse Fast Fourier Transform

! Taken from www.algarcia.org/nummeth/Fortran/ifft.f

! And normalization has been changed by multiplying with N rather than dividing by N

! Due to definition of Fourier Pair

 subroutine ifft(A,p,N)

 integer N

 complex A(N)

! Routine to compute inverse Fourier transform using FFT algorithm

 integer j

 do j=1,N

 A(j)=conjg(A(j))

 enddo

 call fft(A,p,N)

 61

 do j=1,N

 A(j)=conjg(A(j))*N ! Compute conjugates and Normalize

 enddo

 return

 end

! End of 1-D Inverse Fourier Transform

3. Matlab-3D Linear Wave Model

% Article: Douglas G.DOMMERMUTH and Dick K.P.YUE

% A High-Order Spectral Method for the study of

% nonlinear gravity waves Cambridge, MA, USA 1986

% Two step procedure; pseudospectral method for determining nodal amplitudes

% and fourth order Runge-Kutta time integrator

% James KIRBY, Cihan BAYINDIR, University of Delaware, 1/20/2009

% 2-D, Linear Version-Spectrum of Waves; Working in metric units

clear all

close all

h=15; % Water Depth

g=9.81; % Gravitational acceleration

dt=0.25; % Time step

tmax=50; % Maximum Time Of Scheme Evaluation

t=0:dt:tmax; % Time array

Time=length(t); % Length of Time Array

N=2^9; % Number of Fourier points in x direction;

 % a power of 2 for fast computation

M=2^9; % Number of Fourier points in y direction

xmin=0; % Minimum x value

ymin=0; % Minimum y value

xmax=780; % Pick a domain length in x direction;

ymax=500; % Pick a domain length in y direction; with Hs=1.0

 % and Ts=15 L~350 So choose a length which is on the order

 % of 10 times this value

 62

dx=(xmax-xmin)/N; % Step size in x

j=0:1:N-1;

x=dx*j; % x array, Periodic domain

Lx=xmax-xmin; % Length of periodic domain

dy=(ymax-ymin)/M;

j=0:1:M-1;

y=dy*j; % y array, Periodic domain

Ly=ymax-ymin; % Length of periodic in y dir

dkx=2*pi/Lx;

kx1=dkx*(0:1:N/2); % First portion of kx array

kx2=dkx*(-N/2+1:1:-1); % Second portion of kx array

kx=[kx1,kx2]; % Combine first and second Portions of

 % kx Array

dky=2*pi/Ly;

ky1=dky*(0:1:M/2); % First portion of ky array

ky2=dky*(-M/2+1:1:-1); % Second portion of ky array

ky=[ky1,ky2]; % Combine first and second Portions of

 % ky Array

%Create wavenumber matrix

[KX,KY]=meshgrid(kx,ky);

k=sqrt(KX.*KX+KY.*KY);

k=k';

W=sqrt(g*k.*tanh(k*h)); % Angular frequency by linear dispersion relationship

W(1,1)=0.01; % To avoid dividing by zeros need these modifications, these drop out

k(1,1)=0.01; % To avoid dividing by zeros need these modifications, these drop out

Cg=0.5.*(1+2.*k*h./sinh(2.*k*h)).*W./k; %Group velocity

Cg(1,1)=0;

kTANHkh=abs(k).*tanh(abs(k).*h); % In order to avoid calculation at every time

 % step product assigned to a variable

 % Will be needed inside the time stepping

kTANHkh=kTANHkh';

 63

% --

% ------------------Direction Matrix--------------------------

TetaPr=0; % Principal direction of wave propogation

 % Pick one of the following values

 % 0, 45, 90 degrees or arbitrarily

% TetaRelative=0; % Relative direction of acoustic communication path

% % with respect to principal direction of wave propogation

% % Pick one of the following values

% % For TetaPr=0; Select 0 or 45 or 90

% % For TetaPr=45; Select 0, 45

% % For TetaPr=90; Select 0, -45

%Create Theta(direction) matrix

Teta(1,1)=0; % kx=0 so avoid dividing by zero, theta is not defined at this point,

%set any number

Teta(2:N/2+1,1)=0; % kx=0 so avoid dividing by zero

Teta(N/2+2:N,1)=180;

for j=2:1:M/2+1;

Teta(1:N,j)=180/pi*(atan(ky(j)./kx(1:N)));

end

Teta(N/2+2:N,2:M/2+1)=180+Teta(N/2+2:N,2:M/2+1);

Teta(1,2:M/2+1)=90;

Teta(1,M/2+2:M)=-90;

 for p=2:1:N/2+1;

 Teta(p,M/2+2:M)=180/pi*(atan(ky(M/2+2:M)./kx(p)));

 end

for p=N/2+2:1:N;

 Teta(p,M/2+2:M)=-180+180/pi*(atan(ky(M/2+2:M)./kx(p)));

end

%--

%--

% 1st Formulation of Frequency Spectrum

% Frequency spectrum as a function of frequency

% Formulation for spectrum is taken from 'Random Seas and

% Design of Maritime Structures', Goda et.al. , second edition page 28

% equation 2.10

% To activate uncomment following seven lines

 64

%--

% Hs=1; % Significant wave height

% Ts=15; % Significant wave period

% fr=W/(2*pi);

% Sf=0.257*Hs^2*Ts^-4.*(fr.^-5).*exp(-1.03.*(Ts.*fr).^-4);

% Sf(1,1)=0;

% Sk=Cg.*Sf./(2*pi); % Frequency Spectrum ==> Wavenumber Spectrum

% Sk(1,1)=0;

%--

% 2nd Formulation of Frequency Spectrum

% Frequency spectrum as a function of frequency

% Taken from master's thesis, Bob Heitsenrether, UD marine studies

% uses the Jonswap Spectrum given by Shore Protection Manual

%--

 X=18520; % Equals 10 nautical miles, 1nmi=1852 meters

 U=15; % Wind Speed in meters per second; Bob used values between 5-13

 gam=3.3; % Parameter for Jonswap Spectrum

 Wp=7*pi*g/U*(g*X/U^2)^-0.33; % Peak angular frequency

 alpha=0.076*(g*X/U)^-0.22; % constant of equation for S(W)

cons=alpha*g^2;

 for p=1:1:N;

 for j=1:1:M;

 if W(p,j)<=Wp;

 Sw(p,j)=cons.*(W(p,j).^-5).*(exp(-5/4*(W(p,j)/Wp).^-4)).*(gam.^exp(-(W(p,j)-

Wp).^2/(2*0.07^2*Wp^2)));

 elseif W(p,j)>Wp;

 Sw(p,j)=cons.*(W(p,j).^-5).*(exp(-5/4*(W(p,j)/Wp).^-4)).*(gam.^exp(-(W(p,j)-

Wp).^2/(2*0.09^2*Wp^2)));

 end

 end

 end

 Sw(1,1)=0;

 Sk=Cg.*Sw; % Frequency Spectrum ==> Wavenumber Spectrum

 Sk(1,1)=0;

%% Numerical Integral Under Jonswap Spectrum=Initial Variance

% Need to evaluate to understand if the scheme is conserving energy

F1 = @(W)alpha*g^2.*W.^-5.*exp(-5/4*(W/Wp).^-4).*gam.^exp(-(W-

Wp).^2/(2*0.07^2*Wp^2));

 65

Initial_variance1 = quad(F1,0,Wp);

F2 = @(W)alpha*g^2.*W.^-5.*exp(-5/4*(W/Wp).^-4).*gam.^exp(-(W-

Wp).^2/(2*0.09^2*Wp^2));

Initial_variance2 = quad(F2,Wp,10);

Initial_variance =Initial_variance1 +Initial_variance2

%Sech^2 type directional spreading function. Reference: "Directional

%Spectra of wind generated waves", Donelan M.A., Hamilton J., and Hui, W.H.

Wnormal=W/Wp;

for p=1:1:N;

 for j=1:1:M;

 if (Wnormal(p,j)<=0.56 | Wnormal(p,j)>=1.6);

 Beta(p,j)=1.24;

 elseif (0.56< Wnormal(p,j)< 0.95);

 Beta(p,j)=2.61*(Wnormal(p,j))^1.3;

 elseif (0.95 < Wnormal(p,j)< 1.6);

 Beta(p,j)=2.28*(Wnormal(p,j))^-1.3;

 end

 end

end

 Gt=Beta/2.*(sech(Beta.*(pi/180*(Teta-TetaPr)))).^2;

 SkGt=Sk.*Gt;

% Nodal amplitudes obtained from directional spectrum

a=sqrt(SkGt*dkx*dky*2./k); %Use Jacobian of Transformation to convert S(k,teta) to

%S(kx,ky) % {J}=k

a(1,1)=0;

%a2=a(1:N,1:M/2+1); % Half of the nodal amplitude matrix

%% Use uniformly distributed random number generator for phase angles

 F=2*pi*rand(N,M); % Uniformly Distributed Random Number generator

 % for phase angles on the

 % interval [0,2*pi]

% Initial Conditions For Water Surface Fluctuation and Velocity Potential

 66

% First define complex amplitudes and then by inverse Fourier Transform

% construct the water surface

Aorg=a.*exp(i*F)/2; Borg=-i*g./W.*Aorg;

A=Aorg; B=Borg;

A(2:N,2:M/2)=Aorg(2:N,2:M/2)+ conj(Aorg(N:-1:2,M:-1:M/2+2));

A(2:N,M/2+2:M)=Aorg(2:N,M/2+2:M)+conj(Aorg(N:-1:2,M/2:-1:2));

A(1,M/2+2:M)=conj(A(1,M/2:-1:2));

A(N/2+2:N,1)=conj(A(N/2:-1:2,1));

B(2:N,2:M/2)=Borg(2:N,2:M/2)+ conj(Borg(N:-1:2,M:-1:M/2+2));

B(2:N,M/2+2:M)=Borg(2:N,M/2+2:M)+conj(Borg(N:-1:2,M/2:-1:2));

B(1,M/2+2:M)=conj(B(1,M/2:-1:2));

B(N/2+2:N,1)=conj(B(N/2:-1:2,1));

A(N/2+1,:)=abs(A(N/2+1,:)); % At Nyquist frequency need real numbers

A(:,M/2+1)=abs(A(:,M/2+1)); % At Nyquist frequency need real numbers

A(N/2+2:N,M/2+1)=A(N/2:-1:2,M/2+1); % At Nyquist frequency real numbers has to

% be symmetric

B(N/2+1,:)=abs(B(N/2+1,:)); % At Nyquist frequency need real numbers

B(:,M/2+1)=abs(B(:,M/2+1)); % At Nyquist frequency need real numbers

B(N/2+2:N,M/2+1)=B(N/2:-1:2,M/2+1); % At Nyquist frequency real numbers has to

%be symmetric

n=N*M*ifft2(A);

Qs=N*M*ifft2(B);

n=n';

Qs=Qs';

figure

for j=1:1:Time; %Time Indice

 % Runge-Kutta Time Integration with Pseudospectral Method %%

 % First Slope for Qs(surface vel.pot)

 d1=-g.*n;

 67

 % First Slope for n(water surface fluct.)

 m1=ifft2(fft2(Qs).*kTANHkh);

 % Second Slope for Qs(surface vel.pot)

 d2=-g.*(n+0.5*dt.*m1);

 % Second Slope for n(water surface fluct.)

 m2=ifft2(fft2(Qs+0.5*dt.*d1).*kTANHkh);

 % Third Slope for Qs(surface vel.pot)

 d3=-g.*(n+0.5*dt.*m2);

 % Third Slope for n(water surface fluct.)

 m3=ifft2(fft2(Qs+0.5*dt.*d2).*kTANHkh);

 % Fourth Slope for Qs(surface vel.pot)

 d4=-g.*(n+dt*m3);

 % Fourth Slope for n(water surface fluct.)

 m4=ifft2(fft2(Qs+dt*d3).*kTANHkh);

 %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next

 %time step using fourth order Runge Kutta time integrator

 n=n+dt/6.*(m1+2.*m2+2.*m3+m4);

 Qs=Qs+dt/6.*(d1+2.*d2+2.*d3+d4);

% Store time series at some points

% nA(j)=n(3,8);

% nB(j)=n(60,60);

% nC(j)=n(90,3);

% nD(j)=n(110,235);

% nE(j)=n(145,82);

% nF(j)=n(21,4);

% nG(j)=n(12,250);

% nH(j)=n(200,14);

% Following lines are added in order to calculate velocity components in

% the normal direction

% FT2Qsx=i*KX.*fft2(Qs); FT2nx=i*KX.*fft2(n);

 68

% FT2Qsy=i*KY.*fft2(Qs); FT2ny=i*KY.*fft2(n);

%

% FT2Qsx(N/2+1,:)=abs(FT2Qsx(N/2+1,:));

% FT2Qsx(:,M/2+1)=abs(FT2Qsx(:,M/2+1));

% FT2nx(N/2+1,:)=abs(FT2nx(N/2+1,:));

% FT2nx(:,M/2+1)=abs(FT2nx(:,M/2+1));

%

% FT2Qsy(N/2+1,:)=abs(FT2Qsy(N/2+1,:));

% FT2Qsy(:,M/2+1)=abs(FT2Qsy(:,M/2+1));

% FT2ny(N/2+1,:)=abs(FT2ny(N/2+1,:));

% FT2ny(:,M/2+1)=abs(FT2ny(:,M/2+1));

%

% Qsz=ifft2(kTANHkh.*fft2(Qs)); % Vertical Velocity at the surface

% Qsx=ifft2(FT2Qsx); % Horizontal Velocity in the x dir at the surface

% Qsy=ifft2(FT2Qsy); % Horizontal Velocity in the y dir at the surface

% nx=ifft2(FT2nx); % x derivative of water surface fluc.

% ny=ifft2(FT2ny); % y derivative of the water surface fluc.

% udotn=(-Qsx.*nx-Qsy.*ny+Qsz)./sqrt(nx.^2+ny.^2+1); % Velocity in the normal

%direction

 nalongpath=n(1,:);

 subplot(2,1,1),

 pcolor(real(n)), shading interp, axis('equal')

 % hold on

 caxis([-0.25 0.25]) % Set limits for color map to prevent sudden darkening and

 %lightening

%view([0,-2,10])

title(['Airy Waves t=',num2str(j*dt),'s'])

%subplot(2,1,2),quiver(1:N,1:M,Qsx,Qsy), axis equal

subplot(2,1,2),plot(x,nalongpath),ylim([-1 1])

pause(0.05)

% j

end

4. Fortran-3D Linear Wave Model

! Article: Douglas G.Dommermuth and Dick K.P.Yue

! A High-Order Spectral Method for the study of

! Nonlinear gravity waves Cambridge, MA, USA 1986

!

 69

! Two Step Procedure; pseudospectral method for determining nodal

! amplitudes and fourth order Runge-Kutta time integrator

! Cihan BAYINDIR, James T. Kirby University of Delaware 01/22/2009

!

! Work In Metric Units

! Linear, 2-D, Spectrum of Waves

 program RandomSea

 real h,g, dt,tmax,xmin,xmax,L,pi,Hs,Ts

 integer sizet,j

! Enter p1, an integer , is going to be the power of 2

 parameter (p1=8)

! Enter p2, an integer , is going to be the power of 2

 parameter (p2=8)

! N has to be a power of 2 for Fast Fourier Trans.

 parameter (N=2**p1)

! M has to be a power of 2 for Fast Fourier Trans.

 parameter (M=2**p2)

 real dkx, dky

 real x(N),y(N), F(N,M), fr(N,M)

 real kx(N), ky(N), k(N,M), W(N,M)

 real KXa(N,1), KYa(M,1)

 real Cg(N,M), kTANHkh(N,M), Beta(N,M)

 real Sf(N,M),Sw(N,M),Sk(N,M), Wnormal(N,M)

 real wa,wb,step1, waxis1(40001),func1(40001), Sumodd1, Sumeven1

 real step2, func2(40001), waxis2(40001), Sumodd2, Sumeven2

 real Fetch, U, gam, Wp, alpha, cons

 real TetaPr, Go , Teta(N,M)

 real Gt(N,M), SkGt(N,M), a(N,M)

 double precision s, arg1, arg2

 complex i

 complex A_com_org(N,M),B_com_org(N,M)

 complex A_com(N,M), B_com(N,M)

 complex Wsf(N,M),Qs(N,M)

 complex Wsf_tr(N,M), Qs_tr(N,M)

 complex m1(N,M),m2(N,M),m3(N,M),m4(N,M),k1(N,M),k2(N,M)

 complex k3(N,M),k4(N,M)

 complex Qrhs1(N,M),Qrhs2(N,M),Qrhs3(N,M),Qrhs4(N,M)

 complex Qsz(N,M),Qsx(N,M),Qsy(N,M),Wsfx(N,M),Wsfy(N,M)

 complex udotn(N,M)

 real I_var,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8

 real var1,var2,var3,var4,var5,var6,var7,var8

 70

!---

! ---------------------- INPUTS --------------------------

! __

! Imaginary Number

 i=(0.0,1.0)

! h is the water depth

 h=15

! g is he gravitational acceleration

 g=9.81

! dt is the time step

 dt=0.1

! tmax is the maximum time of scheme evaluation

 tmax=1500

! xmax is the maximum x value

 xmax=500 ! Enter approximately 10 times of biggest wavelength

! xmin is the minimum x value

 xmin=0

! ymax is the maximum y value

 ymax=500 ! Enter approximately 10 times of biggest wavelength

! ymin is the minimum y value

 ymin=0

! Principal Direction Of Wave Propogation in Degrees

 TetaPr=45

! There are some other inputs to this code. For example fetch length and wind speed

! in specified for Jonswap spectrum as inputs at further lines.

! ---

! ---

! Calculate size of t array

 sizet=tmax/dt

! Calculate pi

 pi=3.141592653589793

! pi=4*atan(1.0) ! Alternative expression for pi

! Calculate step size in x

 dx=(xmax-xmin)/N

! Calculate wave length

 Lx=xmax-xmin

! Create Space Array

 x(1)=xmin

 do 10 j=1,N-1

 x(j+1)=x(j)+dx

 71

 10 continue

! Calculate step size in y

 dy=(ymax-ymin)/M

 Ly=ymax-ymin

! Create Space Array

 y(1)=ymin

 do 11 j=1,N-1

 y(j+1)=y(j)+dx

 11 continue

! Calculate fundamental wave number component in x and y directions

 dkx=2*pi/Lx

 dky=2*pi/Ly

! Calculate Wave Number Vector in x Direction

! Calculate Wave Number Vector in y Direction

 do 12 j=1,N/2+1

 kx(j)=dkx*(j-1)

 ky(j)=dky*(j-1)

 KXa(j,1)=kx(j)

 KYa(j,1)=ky(j)

 12 continue

 do 13 j=N/2+2,N

 kx(j)=dkx*(j-N-1)

 ky(j)=dky*(j-N-1)

 KXa(j,1)=kx(j)

 KYa(j,1)=ky(j)

 13 continue

! --

! -------------- Create Theta Matrix ---------------

! --

! --

 Teta(1,1)=0

 do 14 j=2,N/2+1

 Teta(j,1)=0

 14 continue

 do 15 j=N/2+2,N

 Teta(j,1)=180

 15 continue

 72

 do 16 z=2,M/2+1

 do 17 j=1,N

 Teta(j,z)=180/pi*atan(ky(z)/kx(j))

 17 continue

 16 continue

 do 18 j=N/2+2,N

 do 19 z=2,M/2+1

 Teta(j,z)=180+Teta(j,z)

 Teta(1,z)=90

 19 continue

 18 continue

 do 20 j=2,N/2+1

 do 21 z=M/2+2,M

 Teta(j,z)=180/pi*atan(ky(z)/kx(j))

 Teta(1,z)=-90

 21 continue

 20 continue

 do 22 j=N/2+2,N

 do 23 z=M/2+2,M

 Teta(j,z)=-180+180/pi*atan(ky(z)/kx(j))

 23 continue

 22 continue

!--

!!!! In order to activate Goda type spreading function uncomment the following 3

blocks.

!!!! and comment out the next three blocks.

!!!! In this type of formulation directional spreading only depends on angle not

frequency.

c$$$!---

c$$$! Calculate Wave Number Matrix k using k^2=kx^2+ky^2

c$$$! Calculate Angular Frequency Matrix W using Linear dispersion relationship

c$$$! Calculate Group Velocity Cg

 73

c$$$! Calculate Frequency Matrix

c$$$! Calculate kTANHkh here in order to prevent calculation every time step

c$$$! Calculate Sf, frequency Spectrum, Goda et.al. 'Random Seas and Design of

c$$$! Maritime Structures' Second edition page 28

c$$$! Calculate wavenumber spectrum from frequency Spectrum

c$$$! Hs is the significant wave height

c$$$ Hs=1

c$$$! Ts is the significant wave period

c$$$ Ts=15

c$$$ do 24 j=1,N

c$$$ do 25 z=1,M

c$$$ k(j,z)=sqrt(kx(j)**2+ky(z)**2)

c$$$ W(j,z)=sqrt(g*k(j,z)*tanh(k(j,z)*h))

c$$$ Cg(j,z)=0.5*(1+2*k(j,z)*h/sinh(2*k(j,z)*h))*W(j,z)/k(j,z)

c$$$ fr(j,z)=W(j,z)/(2*pi)

c$$$ kTANHkh(j,z)=abs(k(j,z))*tanh(abs(k(j,z))*h)

c$$$ Sf(j,z)=0.257*(Hs**2)*(Ts**-4)

c$$$ & *(fr(j,z)**-5)*exp(-1.03*(Ts*fr(j,z))**-4)

c$$$ Sk(j,z)=Cg(j,z)*Sf(j,z)/(2*pi)

c$$$ 25 continue

c$$$ 24 continue

c$$$

c$$$! --

c$$$

c$$$! In order to avoid dividing by zeros and getting NaN s set arbitrary numbers for

elements

c$$$! (1,1). These will all drop out since corresponding amplitude a(1,1)=0

c$$$ k(1,1)=1

c$$$ W(1,1)=1

c$$$ Cg(1,1)=0

c$$$ kTANHkh(1,1)=1

c$$$ Sw(1,1)=0

c$$$ Sk(1,1)=0

c$$$!--

c$$$! Mitsuyau Type Directional Spectrum as a function of azimuth(teta)

c$$$! Formulation for the spectrum is taken From Random Seas and Design of

c$$$! Maritime Structures, Goda et.al. second edition page 32 eq. 2.21 and

c$$$! eq. 2.23

c$$$ s=10

c$$$ call gamma(s+1,arg1)

c$$$ call gamma(2*s+1,arg2)

c$$$ Go=1/pi*(2**(2*s-1))*(arg1)**2/arg2

 74

c$$$ call urand2D(F,N,M)

c$$$! Gt is the directional Spreading Function

c$$$! S(k,Teta)=S(k)G(Teta)=SkGt is the directional frequency spectrum

c$$$! a is the real amplitude matrix. Jacobian of transformation(k) is used

c$$$! to convert S(k,Teta) to S(dkx,dky)

c$$$! A_com is the complex amplitude matrix

c$$$! B_com is the complex water surface fluctuation coeff. matrix

c$$$! A_com_org is the complex amplitude matrix derived directly from a

c$$$! and A_com will be created by taking the tranpose of the A_com_org and

c$$$! adding it to A_com_org. Same thing for B_com.

c$$$! Also at Nyquist Limit components of the complex amplitude matrix has to be

!! real

c$$$! and symmetric

c$$$ do 26 j=1,N

c$$$ do 27 z=1,M

c$$$ Gt(j,z)=Go*(cos((pi/180*(Teta(j,z)-TetaPr))/2))**(2*s)

c$$$ SkGt(j,z)=Sk(j,z)*Gt(j,z)

c$$$ a(j,z)=sqrt(SkGt(j,z)*dkx*dky*2/k(j,z))

c$$$ A_com_org(j,z)=a(j,z)*exp(i*F(j,z))/2

c$$$ B_com_org(j,z)=-i*g/W(j,z)*A_com_org(j,z)

c$$$ 27 continue

c$$$ 26 continue

c$$$

c$$$! --

!!! Use Jonswap Spectrum and sech^2 type spreading function given by Donelan,

Hamilton and Hui

!---

! Calculate Wave Number Matrix k using k^2=kx^2+ky^2

! Calculate Angular Frequency Matrix W using Linear dispersion relationship

! Calculate Group Velocity Cg

! Calculate Frequency Matrix

! Calculate kTANHkh here in order to prevent calculation every time step

! Calculate Sw, angular frequency spectrum, using Jonswap spectra. Taken from

! Bob Heitsenrether's thesis.

! Calculate wavenumber spectrum from angular frequency Spectrum

 Fetch=18520 ! Fetch Length taken= 10 nautical miles

 U=15 ! Wind speed in meters/ second

 gam=3.3 ! constant for jonswap spectrum

 75

 Wp=7*pi*g/U*((g*Fetch/(U**2))**-0.33) ! Peak angular frequency

 alpha=0.076*((g*Fetch/U)**-0.22)

 cons=alpha*(g**2)

 do 24 j=1,N

 do 25 z=1,M

 k(j,z)=sqrt(kx(j)**2+ky(z)**2)

 W(j,z)=sqrt(g*k(j,z)*tanh(k(j,z)*h))

 Cg(j,z)=0.5*(1+2*k(j,z)*h/sinh(2*k(j,z)*h))*W(j,z)/k(j,z)

 fr(j,z)=W(j,z)/(2*pi)

 kTANHkh(j,z)=abs(k(j,z))*tanh(abs(k(j,z))*h)

 if (W(j,z).le.Wp) then

 Sw(j,z)=cons*(W(j,z)**-5)*exp(-1.25*(W(j,z)/Wp)**-4)*

 & (gam**exp(-((W(j,z)-Wp)**2)/(2*(0.07*Wp)**2)))

 elseif (W(j,z).gt.Wp) then

 Sw(j,z)=cons*(W(j,z)**-5)*exp(-1.25*(W(j,z)/Wp)**-4)*

 & (gam**exp(-((W(j,z)-Wp)**2)/(2*(0.09*Wp)**2)))

 endif

 Sk(j,z)=Cg(j,z)*Sw(j,z)

 25 continue

 24 continue

!--

! In order to avoid dividing by zeros and getting NaN s set arbitrary numbers for

elements

! (1,1). These will all drop out since corresponding amplitude a(1,1)=0

 k(1,1)=1

 W(1,1)=1

 Cg(1,1)=0

 kTANHkh(1,1)=1

 Sw(1,1)=0

 Sk(1,1)=0

! ---

! sech^2 type directional spreading function. Reference " Directional Spectra of wind

 ! generated waves", Donelan M.A., Hamilton J., and Hui, W.H.

 Wnormal=W/Wp

 do 26 j=1,N

 do 27 z=1,M

 if ((Wnormal(j,z).le.0.56).or.(Wnormal(j,z).ge.1.6)) then

 Beta(j,z)=1.24

 elseif ((Wnormal(j,z).gt.0.56).or.(Wnormal(j,z).lt.0.95)) then

 76

 Beta(j,z)=2.61*(Wnormal(j,z)**1.3)

 elseif ((Wnormal(j,z).gt.0.95).or.(Wnormal(j,z).lt.1.6)) then

 Beta(j,z)=2.28*(Wnormal(j,z)**-1.3)

 endif

 27 continue

 26 continue

 call urand2D(F,N,M)

! Gt is the directional Spreading Function

! S(k,Teta)=S(k)G(Teta)=SkGt is the directional frequency spectrum

! a is the real amplitude matrix. Jacobian of transformation(k) is used

! to convert S(k,Teta) to S(dkx,dky)

! A_com is the complex amplitude matrix

! B_com is the complex water surface fluctuation coeff. matrix

! A_com_org is the complex amplitude matrix derived directly from a

! and A_com will be created by taking the tranpose of the A_com_org and

! adding it to A_com_org. Same thing for B_com.

! Also at Nyquist Limit components of the complex amplitude matrix has to be real

! and symmetric

 do 28 j=1,N

 do 29 z=1,M

 Gt(j,z)=Beta(j,z)/2*

 & (cosh(Beta(j,z)*(pi/180*(Teta(j,z)-TetaPr))))**-2

 SkGt(j,z)=Sk(j,z)*Gt(j,z)

 a(j,z)=sqrt(SkGt(j,z)*dkx*dky*2/k(j,z))

 A_com_org(j,z)=a(j,z)*exp(i*F(j,z))/2

 B_com_org(j,z)=-i*g/W(j,z)*A_com_org(j,z)

 29 continue

 28 continue

! --

! Calculate real and then complex amplitudes from spectrum, force Nyquist limits

! to be real numbers

!--

 a(1,1)=0

 A_com_org(1,1)=0

 B_com_org(1,1)=0

 A_com=A_com_org

 B_com=B_com_org

 77

 do 30 j=2,N

 do 31 z=2,M/2

 A_com(j,z)=A_com_org(j,z)+conjg(A_com_org(N-j+2,M-z+2))

 B_com(j,z)=B_com_org(j,z)+conjg(B_com_org(N-j+2,M-z+2))

 31 continue

 do 32 z=M/2+2,M

 A_com(j,z)=A_com_org(j,z)+conjg(A_com_org(N-j+2,M-z+2))

 B_com(j,z)=B_com_org(j,z)+conjg(B_com_org(N-j+2,M-z+2))

 32 continue

 30 continue

 do 33 z=M/2+2,M

 A_com(1,z)=conjg(A_com(1,M-z+2))

 B_com(1,z)=conjg(B_com(1,M-z+2))

 33 continue

 do 34 j=N/2+2,N

 A_com(j,1)=conjg(A_com(N-j+2,1))

 B_com(j,1)=conjg(B_com(N-j+2,1))

 34 continue

 do 35 z=1,M

 A_com(N/2+1,z)=abs(A_com(N/2+1,z))

 B_com(N/2+1,z)=abs(B_com(N/2+1,z))

 35 continue

 do 36 j=1,N

 A_com(j,M/2+1)=abs(A_com(j,M/2+1))

 B_com(j,M/2+1)=abs(B_com(j,M/2+1))

 36 continue

 do 37 j=N/2+2,N

 A_com(j,M/2+1)=conjg(A_com(N-j+2,M/2+1))

 B_com(j,M/2+1)=conjg(B_com(N-j+2,M/2+1))

 37 continue

!--

 78

! Construct Initial Water Surface Fluctuation and

! Initial Surface Velocity Potential

!-------------------------------------

 call ifft2(A_com,p1,p2,N,M)

 Wsf_tr=A_com

 call ifft2(B_com,p1,p2,N,M)

 Qs_tr=B_com

!---------------------------------------

! Take transpozes of the Water Surface Fluctuation and the Surface Velocity Potential

!---

 do 90 j=1,N

 do 91 z=1,M

 Wsf(j,z)=Wsf_tr(z,j)

 Qs(j,z)=Qs_tr(z,j)

 91 continue

 90 continue

!--

! Need initial variance to examine if the code is working properly

! Area under the spectrum is total variance. Use Simpsons Rule.

! ---

 wa=0 ! Lower boundary for integration

 wb=10 ! Upper boundary for integration

 step1=(Wp-wa)/40000

 step2=(wb-Wp)/40000

 Sumodd1=0

 Sumeven1=0

 Sumodd2=0

 Sumeven2=0

 do 92 j=1,40001

 waxis1(j)=step1*(j-1)

 waxis2(j)=Wp+step2*(j-1)

 func1(j)=cons*(waxis1(j)**-5)*exp(-1.25*(waxis1(j)/Wp)**-4)*

 & (gam**exp(-((waxis1(j)-Wp)**2)/(2*(0.07*Wp)**2)))

 func2(j)=cons*(waxis2(j)**-5)*exp(-1.25*(waxis2(j)/Wp)**-4)*

 & (gam**exp(-((waxis2(j)-Wp)**2)/(2*(0.09*Wp)**2)))

 92 continue

 func1(1)=0

 do 93 j=1,39999

 79

 Sumeven1=(1-mod(j,2))*2*step1/3*func1(j)+Sumeven1

 Sumodd1=mod(j,2)*4*step1/3*func1(j)+Sumodd1

 Sumeven2=(1-mod(j,2))*2*step2/3*func2(j)+Sumeven2

 Sumodd2=mod(j,2)*4*step2/3*func2(j)+Sumodd2

 93 continue

 I_var=step1/3*(func1(40001)+func1(1))+Sumodd1+Sumeven1+

 & step2/3*(func2(40001)+func2(1))+Sumodd2+Sumeven2

!---

! These sums are going to be used in calculation of the variances

 sum1=0

 sum2=0

 sum3=0

 sum4=0

 sum5=0

 sum6=0

 sum7=0

 sum8=0

! Here Begins The Time Stepping. Time Integrator Is Fourth Order Runge-Kutta

 do 38 e=1,sizet

 ! First Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denoted as k1 and m1

 Qrhs1=Qs

 ! Calculate RHS of evaluation equation for 1st equation

 ! After operations Qrhs1 is changing!!

 call fft2(Qrhs1,p1,p2,N,M)

 do 39 j=1,N

 do 40 z=1,M

 Qrhs1(j,z)=Qrhs1(j,z)*kTANHkh(j,z)

 40 continue

 39 continue

 call ifft2(Qrhs1,p1,p2,N,M)

 m1=Qrhs1

 do 41 j=1,N

 do 42 z=1,M

 k1(j,z)=-g*Wsf(j,z)

 Qrhs2(j,z)=Qs(j,z)+0.5*dt*k1(j,z)

 42 continue

 41 continue

 80

 ! Second Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denoted as k2 and m2

 ! Calculate RHS of evaluation equation for 2nd equation

 ! After operations Qrhs2 is changing!!

 call fft2(Qrhs2,p1,p2,N,M)

 do 45 j=1,N

 do 46 z=1,M

 Qrhs2(j,z)=Qrhs2(j,z)*kTANHkh(j,z)

 46 continue

 45 continue

 call ifft2(Qrhs2,p1,p2,N,M)

 m2=Qrhs2

 do 47 j=1,N

 do 48 z=1,M

 k2(j,z)=-g*(Wsf(j,z)+0.5*dt*m1(j,z))

 Qrhs3(j,z)=Qs(j,z)+0.5*dt*k2(j,z)

 48 continue

 47 continue

 ! Third Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denotes as k3 and m3

 ! Calculate RHS of evaluation equation for 2nd equation

 ! After operations Qrhs2 is changing!!

 call fft2(Qrhs3,p1,p2,N,M)

 do 51 j=1,N

 do 52 z=1,M

 Qrhs3(j,z)=Qrhs3(j,z)*kTANHkh(j,z)

 52 continue

 51 continue

 call ifft2(Qrhs3,p1,p2,N,M)

 m3=Qrhs3

 do 53 j=1,N

 do 54 z=1,M

 k3(j,z)=-g*(Wsf(j,z)+0.5*dt*m2(j,z))

 Qrhs4(j,z)=Qs(j,z)+dt*k3(j,z)

 54 continue

 53 continue

 ! Fourth Slopes For Qs(surface velocity potential) and n

 ! water surface fluctuation are denoted as k4 and m4

 ! Calculate RHS of evaluation equation for 2nd equation

 81

 ! After operations Qrhs2 is changing!!

 call fft2(Qrhs4,p1,p2,N,M)

 do 57 j=1,N

 do 58 z=1,M

 Qrhs4(j,z)=Qrhs4(j,z)*kTANHkh(j,z)

 58 continue

 57 continue

 call ifft2(Qrhs4,p1,p2,N,M)

! Calculate last slopes and water surface fluctuation and

! surface velocity potential for next time step inside same loop

! Also store water surface fluctuation into a file named WSf2D

 m4=Qrhs4

 ! open (unit=9,file="WSF2D.txt",ACCESS='APPEND')

 do 59 j=1,N

 do 60 z=1,M

 k4(j,z)=-g*(Wsf(j,z)+dt*m3(j,z))

 Wsf(j,z)=Wsf(j,z)+dt/6*(m1(j,z)+2*m2(j,z)+2*m3(j,z)+m4(j,z))

 Qs(j,z)=Qs(j,z)+dt/6*(k1(j,z)+2*k2(j,z)+2*k3(j,z)+k4(j,z))

! write(9,1) Wsf(j,z)

! 1 format (f8.5,f8.5)

 60 continue

 59 continue

 ! close(9)

c$$$!--

c$$$! Following lines are for calculating velocity component in the normal

c$$$! direction which is going to be important in the Doppler shift

c$$$! calculations of the acoustic rays reflected from the ocean surface

c$$$

c$$$! Qsz is the z derivative of Qs; vertical velocity calculate from spectral

c$$$! formulation

c$$$! Qsx is the x derivative of Qs, horizontal velocity

c$$$! Qsy is the y derivative of Qs, horizontal velocity

c$$$! Wsfx is the x derivative of water surface fluc. Wsf

c$$$! Wsfy is the y derivative of water surface fluc. Wsf

c$$$ Qsz=Qs

c$$$ Qsx=Qs

c$$$ Qsy=Qs

c$$$ Wsfx=Wsf

 82

c$$$ Wsfy=Wsf

c$$$ call fft2(Qsz,p1,p2,N,M)

c$$$ call fft2(Qsx,p1,p2,N,M)

c$$$ call fft2(Qsy,p1,p2,N,M)

c$$$ call fft2(Wsfx,p1,p2,N,M)

c$$$ call fft2(Wsfy,p1,p2,N,M)

c$$$ do 61 j=1,N

c$$$ do 62 z=1,M

c$$$ Qsz(j,z)=Qsz(j,z)*kTANHkh(j,z)

c$$$ Qsx(j,z)=Qsx(j,1)*KXa(j,1)*i

c$$$ Qsy(j,z)=Qsy(j,z)*KYa(j,1)*i

c$$$ Wsfx(j,z)=Wsfx(j,z)*KXa(j,1)*i

c$$$ Wsfy(j,z)=Wsfy(j,z)*KYa(j,1)*i

c$$$ 62 continue

c$$$ 61 continue

c$$$

c$$$ do 63 z=1,M

c$$$ Qsx(N/2+1,z)=abs(Qsx(N/2+1,z))

c$$$ Qsy(N/2+1,z)=abs(Qsy(N/2+1,z))

c$$$ Wsfx(N/2+1,z)=abs(Wsfx(N/2+1,z))

c$$$ Wsfy(N/2+1,z)=abs(Wsfy(N/2+1,z))

c$$$ 63 continue

c$$$ do 64 j=1,N

c$$$ Qsx(j,M/2+1)=abs(Qsx(j,M/2+1))

c$$$ Qsy(j,M/2+1)=abs(Qsy(j,M/2+1))

c$$$ Wsfx(j,M/2+1)=abs(Wsfx(j,M/2+1))

c$$$ Wsfy(j,M/2+1)=abs(Wsfy(j,M/2+1))

c$$$ 64 continue

c$$$

c$$$ call ifft2(Qsz,p1,p2,N,M)

c$$$ call ifft2(Qsx,p1,p2,N,M)

c$$$ call ifft2(Qsy,p1,p2,N,M)

c$$$ call ifft2(Wsfx,p1,p2,N,M)

c$$$ call ifft2(Wsfy,p1,p2,N,M)

c$$$ Qsz=real(Qsz) ! Avoid roundoff errors in the imaginary part

c$$$ Qsx=real(Qsx) ! Avoid roundoff errors in the imaginary part

c$$$ Qsy=real(Qsy) ! Avoid roundoff errors in the imaginary part

c$$$ Wsfx= real(Wsfx) ! Avoid roundoff errors in the imaginary part

c$$$ Wsfy= real(Wsfy) ! Avoid roundoff errors in the imaginary part

c$$$

c$$$! udotn is the dot product of velocity u and outward normal gives the velocity

component

 83

c$$$! in the normal direction

c$$$ do 65 j=1,N

c$$$ do 66 z=1,M

c$$$ udotn(j,z)=(-Qsx(j,z)*Wsfx(j,z)-Qsy(j,z)*Wsfy(j,z)+Qsz(j,z))

c$$$ & /sqrt(Wsfx(j,z)**2+Wsfy(j,z)**2+1)

c$$$ 66 continue

c$$$ 65 continue

c$$$!---

! Calculate Variances at few different points

!--

 sum1=sum1+Wsf(3,8)**2

 sum2=sum2+Wsf(60,60)**2

 sum3=sum3+Wsf(90,3)**2

 sum4=sum4+Wsf(110,235)**2

 sum5=sum5+Wsf(145,82)**2

 sum6=sum6+Wsf(21,4)**2

 sum7=sum7+Wsf(12,250)**2

 sum8=sum8+Wsf(200,14)**2

!---------------------------------------

 print *,'it.=',e

 38 continue

 open (unit=10,file="N_M_dt_dx_dy.txt",ACCESS='APPEND')

 write(10,*) N ,M, dt, dx,dy

 close(10)

 ! Var1 is the Final variance of water surface fluctuation

 var1=sum1/sizet

 var2=sum2/sizet

 var3=sum3/sizet

 var4=sum4/sizet

 var5=sum5/sizet

 var6=sum6/sizet

 var7=sum7/sizet

 var8=sum8/sizet

 print *, 'Initial Var=', I_var

 print *, 'Var 1=',var1

 print *, 'Var 2=',var2

 84

 print *, 'Var 3=',var3

 print *, 'Var 4=',var4

 print *, 'Var 5=',var5

 print *, 'Var 6=',var6

 print *, 'Var 7=',Var7

 print *, 'Var 8=',Var8

 stop

 end

! ---

! ------------- SUBROUTINES --------------

!--

!----- Simple random number generator------

 subroutine urand2D(F,N,M)

 integer N,j, seed

 real pi,old,c,d

 real F(N,M)

 PI=3.141592653589793

! pi=4*atan(1.0) ! Alternative expression for pi

 seed=11

 old=seed

 j=1

 do 1 j=1,N

 do 2 z=1,M-1,2

 c=mod ((57*old+1),2*pi)

 d=mod ((57*c+1),2*pi)

 old=d

 F(j,z)=c

 F(j,z+1)=d

 2 continue

 1 continue

 return

 end

!--- End of simple random number generator -----

!-------- 1-D Fast Fourier Transfrom-------------

! N=2^p, A is the complex array to be fourier transformed

 subroutine fft(A,p,N)

 complex A(N),U,W,T

! Divide all elements by N

 do 1 J=1,N

 85

 1 A(J)=A(J)/N

! Reorder Sequence According to fig 12.8 of Newland

 NBD2=N/2

 NBM1=N-1

 J=1

 do 4 L=1,NBM1

 if(L.ge.J) go to 2

 T=A(J)

 A(J)=A(L)

 A(L)=T

 2 K=NBD2

 3 if(K.ge.J) go to 4

 J=J-K

 K=K/2

 go to 3

 4 J=J+K

! Calculate FFT acoording to fig 12.5

 PI=3.141592653589793

 do 6 M=1,p

 U=(1.0,0.0)

 ME=2**M

 K=ME/2

 W=CMPLX(COS(PI/K),-SIN(PI/K))

 do 6 J=1,K

 do 5 L=J,N,ME

 LPK=L+K

 T=A(LPK)*U

 A(LPK)=A(L)-T

 5 A(L)=A(L)+T

 6 U=U*W

 return

 end

! ----- End of 1-D Fast Fourier Transform---------

!-------- 1-D Inverse Fast Fourier Transform --------

! Taken from www.algarcia.org/nummeth/Fortran/ifft.f

! And normalization has been changed by multiplying with N rather than dividing by N

! Due to definition of Fourier Pair

 subroutine ifft(A,p,N)

 complex A(N)

! Routine to compute inverse Fourier transform using FFT algorithm

 86

 integer j

 do j=1,N

 A(j)=conjg(A(j))

 enddo

 call fft(A,p,N)

 do j=1,N

 A(j)=conjg(A(j))*N ! Compute conjugates and Normalize

 enddo

 return

 end

!-------- End of 1-D Inverse Fourier Transform --------

!-------- 2-D Fast Fourier Transfrom-------------

! N=2^p, C is the complex matrix to be fourier transformed

 subroutine fft2(C,p1,p2,N,M)

 complex A(N), B(M),C(N,M)

 do 2 K=1,N

 do 1 J=1,M

 1 B(J)=C(K,J)

 call fft(B,p2,M)

 do 2 J=1,M

 2 C(K,J)=B(J)

 do 4 K=1,M

 do 3 J=1,N

 3 A(J)=C(J,K)

 call fft(A,p1,N)

 do 4 J=1,N

 4 C(J,K)=A(J)

 return

 end

!---------- End of 2-D Fast Fourier Transform----------

!-------- 2-D Inverse Fast Fourier Transform ----------

! And normalization has been changed by multiplying with N rather than dividing by N

! Due to definition of Fourier Pair

 subroutine ifft2(C,p1,p2,N,M)

 integer N,M

 complex C(N,M)

! Routine to compute inverse Fourier transform using FFT algorithm

 87

 integer j

 do j=1,N

 do z=1,M

 C(j,z)=conjg(C(j,z))

 enddo

 enddo

 call fft2(C,p1,p2,N,M)

 do j=1,N

 do z=1,M

 C(j,z)=conjg(C(j,z))*N*M ! Compute conjugates and Normalize

 enddo

 enddo

 return

 end

!-------- End of 2-D Inverse Fourier Transform --------

!------------------ Gamma function ------------------

! Taken from http://jin.ece.uiuc.edu/routines/routines.html

! This program computes the gamma function

 subroutine gamma(s,GA)

 implicit double precision (A-H,O-Z)

 dimension G(26)

 PI=3.141592653589793D0

 if (s.EQ.INT(s)) then

 if (s.GT.0.0D0) then

 GA=1.0D0

 M1=s-1

 do 10 K=2,M1

10 GA=GA*K

 else

 GA=1.0D+300

 endif

 else

 if (DABS(s).GT.1.0D0) then

 Z=DABS(s)

 M=INT(Z)

 R=1.0D0

 do 15 K=1,M

15 R=R*(Z-K)

 Z=Z-M

 88

 else

 Z=s

 endif

 DATA G/1.0D0,0.5772156649015329D0,

 & -0.6558780715202538D0, -0.420026350340952D-1,

 & 0.1665386113822915D0,-.421977345555443D-1,

 & -.96219715278770D-2, .72189432466630D-2,

 & -.11651675918591D-2, -.2152416741149D-3,

 & .1280502823882D-3, -.201348547807D-4,

 & -.12504934821D-5, .11330272320D-5,

 & -.2056338417D-6, .61160950D-8,

 & .50020075D-8, -.11812746D-8,

 & .1043427D-9, .77823D-11,

 & -.36968D-11, .51D-12,

 & -.206D-13, -.54D-14, .14D-14, .1D-15/

 GR=G(26)

 do 20 K=25,1,-1

20 GR=GR*Z+G(K)

 GA=1.0D0/(GR*Z)

 if (DABS(s).GT.1.0D0) then

 GA=GA*R

 if (s.LT.0.0D0) GA=-PI/(s*GA*DSIN(PI*s))

 endif

 endif

 return

 end

!------------- End of Gamma Function ----------------

5. Matlab-2D �onlinear Wave Model

% Reference Article: Douglas G.DOMMERMUTH and Dick K.P.YUE

% A High-Order Spectral Method for the study of

% nonlinear gravity waves Cambridge, MA, USA 1986

% Two step procedure; pseudospectral method for determining nodal amplitudes

% and fourth order Runge-Kutta time integrator

% James KIRBY, Cihan BAYINDIR, University of Delaware, 18/August/2008

% Nonlinear Version-single wave train; Working in metric units

clear all

 89

close all

h=200; % Water Depth

g=9.81; % Gravitational acceleration

dt=0.1; % Time step

tmax=100; % Maximum Time Of Scheme Evaluation

t=0:dt:tmax; % Time array

Time=length(t); % Length of Time Array

xmin=0; % Minimum x value

N=2^8; % Number of Fourier points;

 % a power of 2 for fast computation

M=10; % Arbitrary Order in Wave Steepness

xmax=100; % Wave length in meters

dx=xmax/(N-1); % Step size in x

x=xmin:dx:xmax; % Space array

L=xmax-xmin+dx; % Length of periodic domain=wave length

k=2*pi/L; % Wave Number

W=sqrt(g*k*tanh(k*h)); % Wave Frequency

 % using linear dispersion relationship

kTANHkh=k*tanh(k*h); % In order to avoid calculation at every time step

 % product assigned to a variable

filter1=k*(0:1:N/2);

filter2=k*(-N/2+1:1:-1);

filter=[filter1,filter2];

a=0.1; % Amplitude of single wave

Im=i; % imaginary number

% Initial values for progressive wave; (Initial values for standing wave are: n is the

same and Qs=0)

n(1:N)=a*cos(9*k*x)+0.5*a*cos(7*k*x-pi/4)+0.5*a*cos(11*k*x-pi/4); % Initial

%Values for water surface fluctuation [Side bands example]

Qs(1:N)=a*g/sqrt(g*9*k*tanh(9*k*h)).*exp(9*k*n).*sin(9*k*x)+0.5*a*g/sqrt(g*7*k

*tanh(7*k*h)).*exp(7*k*n).*sin(7*k*x-

pi/4)+0.5*a*g/sqrt(g*11*k*tanh(11*k*h)).*exp(11*k*n).*sin(11*k*x-pi/4);

 % Initial Values for surface velocity potential

%Qs(1,1:N)=0; %Initial Values for standing wave

 90

for i=1:1:Time;

 %% Runge-Kutta Time Integration with Pseudospectral Method %%

 X=Term(Qs,n,M,filter,h); % Calculates the double-summed big term in the

evolution equations

 Qsx=ifft(fft(Qs).*Im.*filter); % x derivative of Qs

 nx=ifft(fft(n).*Im.*filter); % x derivative of n

 % First Slope for Qs(surface vel.pot)

 k1=-g.*n-0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X);

 % First Slope for n(water surface fluct.)

 m1=-dealias(Qsx,nx)+(1+dealias(nx,nx)).*X;

 X=Term(Qs+0.5*dt.*k1,n+0.5*dt.*m1,M,filter,h); % Calculates the double-

 %summed big term in the evolution equations

 Qsx=ifft(fft(Qs+0.5*dt.*k1).*Im.*filter); % x derivative of Qs

 nx=ifft(fft(n+0.5*dt.*m1).*Im.*filter); % x derivative of n

 % Second Slope for Qs(surface vel.pot)

 k2=-g.*(n+0.5*dt.*m1)-

 0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X);

 % Second Slope for n(water surface fluct.)

 m2=-dealias(Qsx,nx)+(1+dealias(nx,nx)).*X;

 X=Term(Qs+0.5*dt.*k2,n+0.5*dt.*m2,M,filter,h); % Calculates the double-

 % summed big term in the evolution equations

 Qsx=ifft(fft(Qs+0.5*dt.*k2).*Im.*filter); % x derivative of Qs

 nx=ifft(fft(n+0.5*dt.*m2).*Im.*filter); % x derivative of n

 % Third Slope for Qs(surface vel.pot)

 k3=-g.*(n+0.5*dt.*m2)-

 0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X);

 % Third Slope for n(water surface fluct.)

 m3=-dealias(Qsx,nx)+(1+dealias(nx,nx)).*X;

 X=Term(Qs+dt.*k3,n+dt.*m3,M,filter,h);

 Qsx=ifft(fft(Qs+dt.*k3).*Im.*filter); % x derivative of Qs

 nx=ifft(fft(n+dt.*m3).*Im.*filter); % x derivative of n

 91

 % Fourth Slope for Qs(surface vel.pot)

 k4=-g.*(n+dt*m3)-0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X);

 % Fourth Slope for n(water surface fluct.)

 m4= -dealias(Qsx,nx)+(1+dealias(nx,nx)).*X;

 % In order to examine energy conservation keep track of the Fourier modes with

%given side band values

 FC=fft(n)/N;

 FourierCoef1(i,1)=2*abs(FC(8))/a;

 FourierCoef2(i,1)=2*abs(FC(10))/a;

 FourierCoef3(i,1)=2*abs(FC(12))/a;

% %Smoothing filter

% if mod(i,4)==0;

% n=ifft(fft(n).*(5+4.*cos(pi.*abs(filter)./abs(filter(N/2+1)))-

cos(2*pi.*abs(filter)./abs(filter(N/2+1))))/8);

% Qs=ifft(fft(Qs).*(5+4.*cos(pi.*abs(filter)./abs(filter(N/2+1)))-

cos(2*pi.*abs(filter)./abs(filter(N/2+1))))/8);

% end

 %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next time step

 n=n+dt/6.*(m1+2*m2+2*m3+m4);

 Qs=Qs+dt/6.*(k1+2*k2+2*k3+k4);

 % Plot the water surface fluctuation

 plot(x,n),title(['t=',num2str((i-1)*dt),'s']);

 xlim([xmin xmax])

 ylim([-3*a 3*a])

 xlabel('x[m]'),ylabel('Water Surface Fluctuation[m]')

 pause(0.05)

end

 % Plot the time histories of Fourier Coefficients

 figure(2)

plot(dt:dt:length(FourierCoef1)*dt,FourierCoef1,dt:dt:length(FourierCoef1)*dt,Fourier

Coef2,'red-.',dt:dt:length(FourierCoef1)*dt,FourierCoef3,'black--'),title('Time histories

of amplitudes'),legend('7k','9k','11k')

Initial_variance=0.0624*Hs^2

 92

Final_Variance=var(n)

5.1 Function: Term.m

% This function calculates the Double Sum Term in the evolution equations

% 2.8 given in the page of 270 in D.G.Dommermuth and D.K.P.Yue's article

% James Kirby, Cihan Bayindir September 2008

function [X] = Term(Qs,n,M,filter,h)

% Inputs are Qs: surface velocity potential

% n: water surface fluctuation

% M: arbitrary order in wave steepness

% filter: wavenumber values fitting into domain(filter)

% h: water depth

 N=length(Qs);

 R(1,1:N)=Qs;

 Qm(1,1:N)=R(1,1:N);

 for m=2:1:M;

 R(m,1:N)=0;

 for j=1:1:(m-1);

 R(m,1:N)=R(m,1:N)-dealiasP(n,j)/factorial(j).*ifft(fft(Qm(m-j,1:N)).*((1-

mod(j,2)).*(abs(filter)).^j+mod(j,2).*(abs(filter)).^j.*tanh(abs(filter)*h)));

 end

 Qm(m,1:N)=R(m,1:N);

 end

 % Calculate the long term at the most RHS of the evolution equations

 X(1:N)=0;

 for m=1:1:M;

 for j=0:1:M-m;

 X= X+dealiasP(n,j)/factorial(j).*ifft(fft(Qm(m,1:N)).*((1-

mod(j,2)).*(abs(filter)).^(j+1).*tanh(abs(filter)*h)+mod(j,2).*(abs(filter)).

^(j+1)));

 end

 end

5.2 Function: dealias.m

function [w] = dealias(u,v)

% Function dealias.m

 93

% This function computes the alias-free product of two series.

% Input is the two arrays to be multiplied, output is the alias-free

% product

% Anti-aliasing is based on the algorithm given by Canuto, Hussaini,

% Quarteroni, Zang 1988

N=length(u); % Which should be equal to the length of v

M=3*N/2;

uk=fft(u)/N; % Fourier Coefficients of u

UK(1:N/2+1)=uk(1:N/2+1); UK(N/2+2:N+1)=0; UK(N+2:M)=uk(N/2+2:N); % For

region between N/2 and M/2 pad with zeros

U=ifft(UK)*M; %Get new U whose size is twice of initial input

vk=fft(v)/N; %Fourier Coefficients of v

VK(1:N/2+1)=vk(1:N/2+1); VK(N/2+2:N+1)=0; VK(N+2:M)=vk(N/2+2:N); % For

region between N/2 and M/2 pad with zeros

V=ifft(VK)*M; %Get new V whose size is twice of initial input

W=U.*V;

WK=fft(W)/M;

wk(1:N/2+1)=WK(1:N/2+1); wk(N/2+2:N)=WK(N+2:M); % Truncate back to

original length

w=ifft(wk)*N;

5.3 Function: dealiasP.m

function [w] = dealiasP(u,Pow)

% Function dealiasP.m

% This function computes the alias-free power of a series.

% First input is the array to be taken the power and second input is a

% number which is power

% Output is the anti-aliased power.

%

% Anti-aliasing is based on the algorithm given by Canuto, Hussaini,

% Quarteroni, Zang 1988

N=length(u);

M=Pow*3*N/4;

if Pow==0;

 w(1:N)=1;

 94

 elseif Pow==1;

 w=u;

 else

uk=fft(u)/N; % Fourier Coefficients of u

UK(1:N/2+1)=uk(1:N/2+1); UK(N/2+2:M-N/2+1)=0; UK(M-

N/2+2:M)=uk(N/2+2:N); % For region between N/2 and M/2 pad with zeros

 U=ifft(UK)*M; %Get new U whose size is twice of initial input

 W=U.^Pow;

 WK=fft(W)/M;

 wk(1:N/2+1)=WK(1:N/2+1); wk(N/2+2:N)=WK(M-N/2+2:M); % Truncate back

 % to original length

 w=ifft(wk)*N;

 end

6. Linear and �onlinear Coupled Wave-Acoustic Models

% Article: Douglas G.DOMMERMUTH and Dick K.P.YUE

% A High-Order Spectral Method for the study of

% nonlinear gravity waves Cambridge, MA, USA 1986

% Two step procedure; pseudospectral method for determining nodal amplitudes

% and fourth order Runge-Kutta time integrator

% Cihan BAYINDIR, James Kirby, University of Delaware, 02/04/2008

% Linear Version-Spectrum of Waves; Working in metric units

clear all

close all

% Load HFA sound data

%--------------------

 load sound; % location of matrix 'ss'; HFA 97 sound speed data

 % t is the hours, ss is the sounddata, hy?

 hours=t;

 sounddata=ss;

 hy=hy;

 clear t;% clear ss; clear hy; % Clear variables coming up from Bobs Thesis

 %-------------------

 95

 %Load HFA weather data

 load Nweather2.dat

 weather=Nweather2;

 %--------------------

 read_init_conditions1;

 clear n; % Clear some variables coming up from Bobs codes

 read_init_conditions2;

 clear n2; % Clear some variables coming up from Bobs codes

 %--------------------

 % Load HFA tide data

 load tide_vs_geotime;

 AV_TIDE=(TIDE_A+TIDE_C)/2;

 [dumind,tidein]=find(24<=TIDE_GEOTIME & TIDE_GEOTIME <=48); % Tide

%measurements started at 23 september 97 at 00

 % We are interested in the 1 day duration

 % between 24 September and 25 September

 % therefore seek corresponding indices

 tidehours=TIDE_GEOTIME(tidein)-24;

 Avtide=AV_TIDE(tidein);

for q=1:1:29; %1:1:length(hours); % 24 hour loop for acoustic calculations

 [dummind,matchin]=find(abs(tidehours-hours(q))<0.05);

 h=Avtide(matchin); % Water Depth, Bob Heitsenrether used h=15 meters

 h=15;

 g=9.81; % Gravitational acceleration

 dtExperiments=0.345; %0.345 %The value of timestepping used in HFA

%experiments

 dt=0.1725; %0.1725; % Time step. Enter a number which exactly divides

%dtExperiments

 multiple=dtExperiments/dt;

 tmax=3.45; % Maximum Time Of Scheme Evaluation

 % 40s used for experiments

 t=0:dt:tmax; % Time array

 Time=length(t); % Length of Time Array

 N=2^10; % Number of Fourier points;

 % a power of 2 for fast computation

 xmin=0; % Minimum x value

 96

 xmax=1000*receiver_rng; % Pick a domain length; the value used in HFA

%experiments is 389m

 % variable receiver_rng is coming from

 % read_init_conditions2 file in kms convert it to meters

 dx=(xmax-xmin)/N; % Step size in x

 j=0:1:N-1;

 x=dx*j; % Space array, Periodic domain

 Lmax=xmax-xmin; % Length of periodic domain=max wave length

 k1=2*pi/Lmax*(0:1:N/2); % First portion of Wavenumber array

 k2=2*pi/Lmax*(-N/2+1:1:-1); % Second portion of Wavenumber array

 k=[k1,k2]; % Combine first and second Portions of

 % Wave Number Array

 filter=k;

 M=10; % Arbitrary order in wave steepness for nonlinear simulations

 W=sqrt(g*k1.*tanh(k1*h)); % wave angular frequency;

 % using linear dispersion relationship

 Cg=0.5.*(1+2.*k1*h./sinh(2.*k1*h)).*W./k1; %Group velocity

 Cg(1)=0;

 time_in(1)=9; % month of experiment data

 time_in(2)=24; % day of experimental data

 time_in(3)=fix(hours(q)); % hour of experimental data

 time_in(4)=fix(60*(hours(q)-time_in(3))); % minute of experimental data

 time_in(5)=fix(60*(60*(hours(q)-fix(hours(q)))-time_in(4))); % second of

 % experimental data

 if (time_in(3)==24);

 time_in(2)=time_in(2)+1;

 time_in(3)=0;

 end

 num2str(['Simulation for time : ',num2str(time_in)])

 WindSpeed=get_wind(time_in);

 WindSpeed=1+0.5*(q-1);

 create_env_file1; % Create first env file with eigenray option

 create_env_file2; % Create second env file with arrival 'A' option

 cs=SoundSpeedatSurface;

%--

% Formulation of Frequency Spectrum

% Frequency spectrum as a function of frequency

% Taken from master's thesis, Bob Heitsenrether, UD marine studies

 97

% uses the Jonswap Spectrum given by Shore Protection Manual

%--

X=18520; % Equals 10 nautical miles, 1nmi=1852 meters

U=WindSpeed; % Wind Speed in meters per second; Bob used values between 5-13

gam=3.3; % Parameter for Jonswap Spectrum

Wp=7*pi*g/U*(g*X/U^2)^-0.33; % Peak angular frequency

alpha=0.076*(g*X/U)^-0.22; % constant of equation for S(W)

[dum,in]=find(W<=Wp);

mm=max(in);

SW1=alpha*g^2.*W(in).^-5.*exp(-5/4*(W(in)/Wp).^-4).*gam.^exp(-(W(in)-

Wp).^2/(2*0.07^2*Wp^2));

SW2=alpha*g^2.*W(mm+1:N/2+1).^-5.*exp(-5/4*(W(mm+1:N/2+1)/Wp).^-

4).*gam.^exp(-(W(mm+1:N/2+1)-Wp).^2/(2*0.09^2*Wp^2));

Sw=[SW1,SW2];

Sw(1)=0;

Sk=Cg.*Sw; % Frequency Spectrum ==> Wavenumber Spectrum

Sk(1)=0;

% Following line is not necessary but it gives an idea about selection of

% xmax, Horizontal length scale

 fp=Wp/(2*pi); Tp=1/fp;

% According to deep water formula L~1.56 T^2

% Make sure that xmax you choose is about at least 25 times of this value

% since it represents the spectrum without much error

a2=sqrt(2*pi*Sk*2/Lmax); % Nodal amplitudes obtained from spectrum

F2(1:N/2+1)=2*pi*rand(1,N/2+1); % Uniformly Distributed Random Number

 % generator for phase angles on the interval [0,2*pi]

kTANHkh=abs(k).*tanh(abs(k).*h); % In order to avoid calculation at every time

 % step product assigned to a variable

W(1)=1; % Since a(1)=0 W(1) will drop out. No problem to change it.

%INVERSE FOURIER TRANSFORM METHOD

A2=a2(1:N/2+1).*exp(i*F2(1:N/2+1))/2;

A(1:N/2+1)=A2; A(N/2+2:1:N)=conj(A2(N/2:-1:2));

A(N/2+1)=abs(A(N/2+1));

B(1:N/2+1)=-i*g./W.*A2; B(N/2+2:1:N)=conj(-i*g./W(N/2:-1:2).*A2(N/2:-1:2));

B(N/2+1)=abs(B(N/2+1));

n=N*ifft(A);

 98

Qs=N*ifft(B);

nNL=n; % Initial Conditions For Nonlinear Surface Fluctuation is Same for Linear

One

QsNL=Qs; % Initial Conditions For Nonlinear Velocity Pot. is Same for Linear One

fortyind=1;

fortyindNL=1;

for j=1:1:Time; %Time Indice

 %%%%%%%%%% LINEAR SIMULATION %%%%%%%%%%%%%%%%

 %% Runge-Kutta Time Integration with Pseudospectral Method %%

 % First Slope for Qs(surface vel.pot)

 d1=-g.*n;

 % First Slope for n(water surface fluct.)

 m1=ifft(fft(Qs).*kTANHkh);

 % Second Slope for Qs(surface vel.pot)

 d2=-g.*(n+0.5*dt.*m1);

 % Second Slope for n(water surface fluct.)

 m2=ifft(fft(Qs+0.5*dt.*d1).*kTANHkh);

 % Third Slope for Qs(surface vel.pot)

 d3=-g.*(n+0.5*dt.*m2);

 % Third Slope for n(water surface fluct.)

 m3=ifft(fft(Qs+0.5*dt.*d2).*kTANHkh);

 % Fourth Slope for Qs(surface vel.pot)

 d4=-g.*(n+dt*m3);

 % Fourth Slope for n(water surface fluct.)

 m4=ifft(fft(Qs+dt*d3).*kTANHkh);

 %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next

 99

 %time step

 n=n+dt/6.*(m1+2.*m2+2.*m3+m4);

 Qs=Qs+dt/6.*(d1+2.*d2+2.*d3+d4);

 % Following lines are for calculating velocity component in the normal

 % direction which is going to be important in the Doppler shift

 % calculations of the Acoustic rays reflected from ocean surface

 Qsz=ifft(fft(Qs).*kTANHkh); % Vertical velocity

 FTQs=i*k.*fft(Qs); FTQs(N/2+1)=abs(FTQs(N/2+1)); % At Nyquist freq.

 Qsx=ifft(FTQs); % Horizontal velocity

 FTn=i*k.*fft(n); FTn(N/2+1)=abs(FTn(N/2+1));

 nx=ifft(FTn); % Slope of water surface fluctuation

 udotn=(-Qsx.*nx+Qsz)./sqrt(nx.^2+1); % Velocity in the normal direction

%%%%%%%%%%%%%%%%%%% RUN BELLHOP %%%%%% %%%%%%

% Run the Bellhop every 0.345 seconds in order to be compatible with

% experiments.

if (mod((j-1),multiple))==0;

 num2str(['Running Bellhop : ',num2str((j-1)*dt),' s '])

%%% WRITE Water Surface Fluctuation to Text File %%%%%

 % Since we have already created the ocean model based on spectral

 % formulation given in Goda's book we need only to write the surface

 % fluctuation into an altimetry file which is going to be read by Bellhop

 fid=fopen('ATIFIL','w');

 % change units of horizontal surface

 fprintf(fid,'%s\n',('''L''')); % First line of the Altimetry file

 fprintf(fid,'%d\n',length(x));

 for p=1:length(x);

 fprintf(fid,'%f %f\n',x(p)/1000,n(p));

 end

 fclose(fid);

 % Run Bellhop in order to generate RAYFIL and plot Eigenrays generated

 pause(0.01); % Pause 2 seconds in order to make sure that eyta and u dot n is

 % written into text file

 100

 eval([' ! bellhop.exe < envfile1.env ']);

 pause(0.01); % Pause 2 seconds in order to make sure that Bellhop output is

written

 figure(1),subplot(2,1,1),

[TotalDopplerShiftArray]=plotray('RAYFIL',x,n,nx,Qsx,Qsz,freq,cs,receiver_depth),te

xt(5,1,strcat('{Mon., Day , Hour , Min.} :',num2str(time_in(1:4))))

 text(5,2,strcat('t = ',num2str((j-1)*dt),'s'))

 text(5,3,strcat('Wind Speed=',num2str(U),'m/s'))

 text(5,4,strcat('Tide=',num2str(h),'m'))

 hold on ,plot(x,n,'o-'),plot(1000*receiver_rng,h-receiver_height,'*') % Plot receiver

%location

 hold on, %plot(crossx,crossz,'<r')

 %%%%%%%%%% READ THE ARRIVAL INFO %%%%% %%%%%%%%%

 % Run Bellhop second time in order to generate ARRFIL

 eval([' ! bellhop.exe < envfile2.env ']);

 % Read the arrival time/amplitude data computed by BELLHOP

 %[amp, delay, SrcAngle, RcvrAngle, NumTopBnc, NumBotBnc, narrmat, Pos] =

read_arrivals_asc(ARRFIL, narrmx);

 ARRFIL='ARRFIL';

 narrmx=200; % Maximumn number of arrivals, taken from read_arrivals_asc.m

%written by Mike Porter

 [amp,delay,SrcAngle, RcvrAngle,NumTopBnc,NumBotBnc,narrmat,Pos]=

read_arrivals_asc(ARRFIL, narrmx);

 [di1,di2all]=find(NumTopBnc>=1 & NumBotBnc==0);

 [indd1,indd2]=find(delay(di2all)==min(delay(di2all))); % Select the ray with the

minimum delay time

 if (isempty(TotalDopplerShiftArray(indd2))==1);

 ArrivalTime(fortyind)=0;

 DS(fortyind)=0;

 else

 ArrivalTime(fortyind)=delay(di2all(indd2));

 DS(fortyind)=TotalDopplerShiftArray(indd2);

 end

 fortyind=fortyind+1;

end

 text(5,5,strcat('ArrivalTime=',num2str(delay(di2all(indd2))),'s'))

 text(5,6,strcat('D.S=',num2str(DS(fortyind-1)),'Hz'))

 %xlim([xmin xmax])

 %ylim([-2 2])

 101

 % subplot(2,1,2), plot(x,udotn); title('Velocity In Outward Normal Direction')

 %pause(0.1)

 % j

 %hold on

 %%%%%%%%%%%%%% NONLINEAR SIMULATION %%%%%%%%%%

 %% Runge-Kutta Time Integration with Pseudospectral Method %%

 X=Term(QsNL,nNL,M,filter,h); % Calculates the double-summed big term in

 % the evolution equations

 QsxNL=ifft(fft(QsNL).*i.*filter); % x derivative of Qs

 QsxNL=real(QsxNL);

 nxNL=ifft(fft(nNL).*i.*filter); % x derivative of n

 nxNL=real(nxNL);

 % First Slope for Qs(surface vel.pot)

 k1=-g.*nNL-

 0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X);

 % First Slope for n(water surface fluct.)

 s1=-dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X;

 X=Term(QsNL+0.5*dt.*k1,nNL+0.5*dt.*s1,M,filter,h); % Calculates the double-

 % summed big term in the evolution equations

 QsxNL=ifft(fft(QsNL+0.5*dt.*k1).*i.*filter); % x derivative of Qs

 QsxNL=real(QsxNL);

 nx=ifft(fft(nNL+0.5*dt.*s1).*i.*filter); % x derivative of n

 nxNL=real(nxNL);

 % Second Slope for Qs(surface vel.pot)

 k2=-g.*(nNL+0.5*dt.*s1)-

 0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X);

 % Second Slope for n(water surface fluct.)

 s2=-dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X;

 X=Term(QsNL+0.5*dt.*k2,nNL+0.5*dt.*s2,M,filter,h); % Calculates the double

 % summed big term in the evolution equations

 QsxNL=ifft(fft(QsNL+0.5*dt.*k2).*i.*filter); % x derivative of Qs

 102

 nxNL=ifft(fft(nNL+0.5*dt.*s2).*i.*filter); % x derivative of n

 % Third Slope for Qs(surface vel.pot)

 k3=-g.*(nNL+0.5*dt.*s2)-

 0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X);

 % Third Slope for n(water surface fluct.)

 s3=-dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X;

 X=Term(QsNL+dt.*k3,nNL+dt.*s3,M,filter,h);

 QsxNL=ifft(fft(QsNL+dt.*k3).*i.*filter); % x derivative of Qs

 QsxNL=real(QsxNL);

 nxNL=ifft(fft(nNL+dt.*s3).*i.*filter); % x derivative of n

 nxNL=real(nxNL);

 % Fourth Slope for Qs(surface vel.pot)

 k4=-g.*(nNL+dt*s3)-

 0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X);

 % Fourth Slope for n(water surface fluct.)

 s4= -dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X;

 %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next time step

 nNL=nNL+dt/6.*(s1+2*s2+2*s3+s4);

 QsNL=QsNL+dt/6.*(k1+2*k2+2*k3+k4);

 % Following lines are for calculating velocity component in the normal

 % direction which is going to be important in the Doppler shift

 % calculations of the Acoustic rays reflected from ocean surface

 X=Term(QsNL,nNL,M,filter,h); % Vertical velocity

 FTQsNL=i*k.*fft(QsNL); FTQsNL(N/2+1)=abs(FTQsNL(N/2+1)); % At Nyquist

 % freq.

 QsxNL=ifft(FTQsNL); % Horizontal velocity

 FTnNL=i*k.*fft(nNL); FTnNL(N/2+1)=abs(FTnNL(N/2+1));

 nxNL=ifft(FTnNL); % Slope of water surface fluctuation

 udotnNL=(-QsxNL.*nxNL+X)./sqrt(nxNL.^2+1); % Velocity in the normal

 direction

%%%%%%%%%%%%%%%%%%%% RUN BELLHOP %%%%%%%%%%%%

 103

% Run the Bellhop every 0.345 seconds in order to be compatible with

% experiments.

if (mod((j-1),multiple))==0;

 num2str(['Running Bellhop : ',num2str((j-1)*dt),' s '])

%%% WRITE Water Surface Fluctuation to Text File %%%

 % Since we have already created the ocean model based on spectral

 % formulation given in Goda's book we need only to write the surface

 % fluctuation into an altimetry file which is going to be read by Bellhop

 fid=fopen('ATIFIL','w');

 % change units of horizontal surface

 fprintf(fid,'%s\n',('''L''')); % First line of the Altimetry file

 fprintf(fid,'%d\n',length(x));

 for p=1:length(x);

 fprintf(fid,'%f %f\n',x(p)/1000,nNL(p));

 end

 fclose(fid);

 % Run Bellhop in order to generate RAYFIL and plot Eigenrays generated

 pause(0.01); % Pause 2 seconds in order to make sure that eyta and u dot n is

 written into text file

 eval([' ! bellhop.exe < envfile1.env ']);

 pause(0.01); % Pause 2 seconds in order to make sure that Bellhop output is

 written

 figure(1),subplot(2,1,2),

[TotalDopplerShiftNLArray]=plotray('RAYFIL',x,nNL,nxNL,QsxNL,X,freq,cs,receive

r_depth),text(5,1,strcat('{Mon., Day , Hour , Min.} :',num2str(time_in(1:4))))

 text(5,2,strcat('t = ',num2str((j-1)*dt),'s'))

 text(5,3,strcat('Wind Speed=',num2str(U),'m/s'))

 text(5,4,strcat('Tide=',num2str(h),'m'))

 hold on ,plot(x,n,'o-'),plot(1000*receiver_rng,h-receiver_height,'*') % Plot receiver

location

 hold on, %plot(crossx,crossz,'<r')

 %%%%%%%%%%%%%%%% READ THE ARRIVAL INFO %%%%%%%%%%

 % Run Bellhop second time in order to generate ARRFIL

 eval([' ! bellhop.exe < envfile2.env ']);

 % Read the arrival time/amplitude data computed by BELLHOP

 104

 %[amp, delay, SrcAngle, RcvrAngle, NumTopBnc, NumBotBnc, narrmat, Pos] =

read_arrivals_asc(ARRFIL, narrmx);

 ARRFIL='ARRFIL';

 narrmx=200; % Maximumn number of arrivals, taken from read_arrivals_asc.m

%written by Mike Porter

 [ampNL,delayNL,SrcAngleNL,

RcvrAngleNL,NumTopBncNL,NumBotBncNL,narrmatNL,PosNL]=

read_arrivals_asc(ARRFIL, narrmx);

 [di1NL,di2allNL]=find(NumTopBncNL>=1 & NumBotBncNL==0);

 [indd1NL,indd2NL]=find(delayNL(di2allNL)==min(delayNL(di2allNL)));

% Select the ray with the minimum delay time

 if (isempty(TotalDopplerShiftNLArray(indd2NL))==1);

 ArrivalTimeNL(fortyindNL)=0;

 DSNL(fortyindNL)=0;

 else

 ArrivalTimeNL(fortyindNL)=delayNL(di2allNL(indd2NL));

 DSNL(fortyindNL)=real(TotalDopplerShiftNLArray(indd2NL));

 end

 fortyindNL=fortyindNL+1;

end

 text(5,5,strcat('ArrivalTime=',num2str(delayNL(di2allNL(indd2NL))),'s'))

 text(5,6,strcat('D.S=',num2str(DSNL(fortyindNL-1)),'Hz'))

% % Plot the water surface fluctuation

% plot(x,nNL),%title(['t=',num2str((j-1)*dt),'s']);

% xlim([xmin xmax])

% ylim([-0.5 0.5])

% xlabel('x[m]'),ylabel('Water Surface Fluctuation[m]')

% pause(0.05)

% hold off

end

 figure(2),

 [nzi1,nzi2]=find(DS>0);

 tt=0:dtExperiments:tmax;

 subplot(2,1,1),plot(tt(nzi2),ArrivalTime(nzi2)),xlabel('Geotime(s)'),ylabel('Arrival

Time Of Eigenray(s)')

 text(1,0.2592,strcat('Start Time {Mon., Day , Hour , Min.}

:',num2str(time_in(1:4))))

 text(1,0.2590,strcat('Wind Speed=',num2str(U),'m/s'))

 text(7,0.2590,strcat('Tide=',num2str(h),'m'))

 105

 subplot(2,1,2),plot(tt(nzi2),DS(nzi2)),xlabel('Geotime(s)'),ylabel('Doppler

Shift(Hz)')

 stdArrivaltime(q)=std(ArrivalTime(nzi2));

 WindSpeedseries(q)=WindSpeed;

 meanDS(q)=mean(DS(nzi2));

 figure(3)

 [nzi1NL,nzi2NL]=find(DSNL>0);

 tt=0:dtExperiments:tmax;

 subplot(2,1,1),

plot(tt(nzi2NL),ArrivalTimeNL(nzi2NL)),xlabel('Geotime(s)'),ylabel('Arrival Time Of

Eigenray(s)')

 text(1,0.2592,strcat('Start Time {Mon., Day , Hour , Min.}

:',num2str(time_in(1:4))))

 text(1,0.2590,strcat('Wind Speed=',num2str(U),'m/s'))

 text(7,0.2590,strcat('Tide=',num2str(h),'m'))

 subplot(2,1,2),plot(tt(nzi2NL),DS(nzi2NL)),xlabel('Geotime(s)'),ylabel('Doppler

Shift(Hz)')

 stdArrivaltimeNL(q)=std(ArrivalTimeNL(nzi2NL));

 meanDSNL(q)=mean(DSNL(nzi2NL));

end

 load all_HFA97_std;

 Windspeedex=all_std(:,3);

 STDarrivalex=all_std(:,2);

 figure(4)

plot(WindSpeedseries,stdArrivaltime,'black',WindSpeedseries,stdArrivaltimeNL,'blac

k--',Windspeedex,STDarrivalex,'x black'),xlabel('WindSpeed(m/s)'),ylabel('Standard

Dev. of Arrival Time (s)');

 legend('Linear Simulations','Nonlinear Simulations','Experiments')

 figure(5)

 plot(WindSpeedseries,meanDS,'black',WindSpeedseries,meanDSNL,'black--

'),xlabel('WindSpeed(m/s)'),ylabel('Average Doppler Shift (Hz)')

 legend('Linear Simulations','Nonlinear Simulations')

 106

6.1 Function: plotray.m

function [TotalDopplerShiftArray]=plotray(

rayfil,x,n,nx,Qsx,Qsz,freq,cs,receiver_depth)

% plot the RAYfil produced by Bellhop

% useage: plotray(rayfil)

% where rayfil is the ray file (without the extension)

% e.g. plotray('foofoo')

%

% MBP July 1999

if (strcmp(rayfil, 'RAYFIL') == 0)

 rayfil = [rayfil '.ray']; % append extension

end

% plots a BELLHOP ray file

zr = 90.0; % use this to just plot eigenrays

% open the file

fid = fopen(rayfil, 'r');

if (fid == -1)

 warndlg('No ray file exists; you must run BELLHOP first (with ray ouput selected)',

'Warning');

end

% read header stuff

TITLE = fgetl(fid);

FREQ = fscanf(fid, '%f', 1);

NBEAMS = fscanf(fid, '%i', 1);

DEPTHT = fscanf(fid, '%f', 1);

DEPTHB = fscanf(fid, '%f', 1);

ii = findstr(TITLE(3:end), ''''); % find last quote

TITLE = deblank(TITLE(3:1:ii-1)); % remove whitespace

% read rays

set(gca, 'YDir', 'Reverse') % plot with depth-axis positive down

 107

xlabel('Range (km)')

xlabel('Range (m)')

ylabel('Depth (m)')

title(TITLE)

hold on

% axis limits

rmin = +1e9;

rmax = -1e9;

zmin = +1e9;

zmax = -1e9;

count=1; % Added by Cihan Bayindir

TotalDopplerShift=0;

TotalDopplerShiftArray(1)=0; % Added by Cihan Bayindir for Doppler Shift

Calculations

 raycount=1;

for ibeam = 1:NBEAMS

 alpha0 = fscanf(fid, '%f', 1);

 nsteps = fscanf(fid, '%i', 1);

 NumTopBnc = fscanf(fid, '%i', 1);

 NumBotBnc = fscanf(fid, '%i', 1);

 if isempty(nsteps); break; end

 ray = fscanf(fid, '%f', [2 nsteps]);

 r = ray(1, :);

 z = ray(2, :);

 %r = r / 1000; % convert to km

 lincol = 'kbgrcmy';

 ii = NumBotBnc;

 ii = mod(ii, 3) + 1;

 % plot(r, z, lincol(ii));

 if NumTopBnc > 1 && NumBotBnc > 1

 % plot(r, z, 'k') % hits both boundaries

 elseif NumBotBnc >= 1

 % plot(r, z, 'b') % hits bottom only

 elseif NumTopBnc >= 1

 plot(r, z, 'k-x') % hits surface only

 108

 cou=1;

 %TotalDopplerShift=0; % Added by Cihan Bayindir for Doppler Shift

Calculations

 if abs(mean(z(length(z)-5:length(z)))-receiver_depth)<1.5; % There is a bug in

Bellhop

 % If the ray does not hit the receiver

 % it is not an eigenray

 for q=15:length(z)-25; % Added by Cihan BAYINDIR to find the points of ray

hitting in the surface

 % in order to examine Doppler Shift

 [a,b]=find(x<r(q));

 indice=max(b);

 % Linearly interpolated elevation

 El=(n(indice+1)-n(indice))*(r(q)-x(indice))/(x(indice+1)-x(indice))+n(indice);

 if (abs(El-z(q))<0.000055); % If elevation of ray exceeds water surface, that is

% an reflection point

 % this is the criteria implemented in Bellhop.

 % See fortran source code

 nxinter=(nx(indice+1)-nx(indice))*(r(q)-x(indice))/(x(indice+1)-

x(indice))+nx(indice);

 Qsxinter=(Qsx(indice+1)-Qsx(indice))*(r(q)-x(indice))/(x(indice+1)-

x(indice))+Qsx(indice);

 Qszinter=(Qsz(indice+1)-Qsz(indice))*(r(q)-x(indice))/(x(indice+1)-

x(indice))+Qsz(indice);

 udotn=(-Qsxinter*nxinter+Qszinter)/sqrt(nxinter^2+1); % Velocity in the

% normal direction

 [repind1,repind2]=find(r(q)==r); % Bellhop writes the same points more than

once

 % Detect if they are same points.

 cou=length(repind2);

 lind=max(repind2);

 if (cou>1); % In some of the runs Bellhop generates two points above

%elevation.

 % Take the upper one as a reflection point

 % Clay and Medwin, Acoustical Oceanography page 335 for

 % Doppler Shift Calculations

 109

 % Use dot product for calculation of doppler shift

 cosTetas=((r(lind)-r(lind-cou))*nxinter+(z(lind)-z(lind-

cou)))/(sqrt(nxinter^2+1)*sqrt((r(lind)-r(lind-cou))^2+(z(lind)-z(lind-cou))^2));

 cosTetar=((r(lind)-r(lind+1))*nxinter+(z(lind+1)-

z(lind)))/(sqrt(nxinter^2+1)*sqrt((r(lind)-r(lind+1))^2+(z(lind)-z(lind+1))^2));

 origfreq=freq;

 Onehitfreq=freq*(cs+udotn*cosTetas)/(cs-udotn*cosTetar);

 if (r(q)==r(q-1)); % Do not account for Doppler Shift for few times at the

%same point

 else

 freq=Onehitfreq;

 end

 DopplerShift=origfreq-freq;

 TotalDopplerShift=TotalDopplerShift+DopplerShift;

 plot(r(q), z(q), 'magenta-<')

 else

 end

 end

 end

 TotalDopplerShiftArray(raycount)=TotalDopplerShift;

 raycount=raycount+1;

 else

 TotalDopplerShiftArray(raycount)=0; % This ray is not an eigenray. Do not

count as a valid result

 raycount=raycount+1;

 end

 cou

 else

 % plot(r, z, 'r') % !!!! 3 commented out by Entin's suggestion in

 % order to plot only the rays hitting the

 % surface

 end

 % update axis limits

 rmin = min([r rmin]);

 rmax = max([r rmax]);

 zmin = min([z zmin]);

 zmax = max([z zmax]);

 if (zmin == zmax) % horizontal ray causes axis scaling problem

 zmax = zmin + 1;

 110

 end

 axis([rmin, rmax, zmin, zmax])

 if rem(ibeam, fix(NBEAMS / 10)) == 0, % flush graphics buffer every 10th ray

 drawnow

 end;

 %end

end % next beam

fclose(fid);

hold off

zoom on

 111

REFERE�CES

Badiey, M., Lenain, L., Wong, K.C., Heitsenrether, R., Sundberg, A. (2003). “Long-

term acoustic monitoring of environmental parameters in estuaries”, Proc.

Oceans 2003 Marine Technology and Ocean Science Conference, San Diego,

California, 1234-1237.

Bryant, P.J. (1983). “Cyclic gravity waves in deep water”, J. Austral. Math. Soc. B 25,

2-15.

Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (2006). Spectral Methods:

Fundamentals in Single Domains. Springer, New York.

Clay, C.S. and Medwin, H. (1977). Acoustical Oceanography: Principles and

Applications. John Wiley and Sons, New York.

Dahl, P.H. (1996). “On the spatial coherence and angular spreading of sound forward

scattered from the sea surface: measurements and interpretive model”, J.

Acoust. Soc. Am. 100, 748-758.

Dahl, P.H. (1999). “On bistatic sea surface scattering: field measurements and

modeling”, J. Acoust. Soc. Am. 105 (4), 2155-2169.

Dahl, P.H. (2001). “High-frequency forward scattering from the sea surface: the

characteristic scales of time and angle spreading”, IEEE Ocean Eng. 26, 141-

151.

Dommermuth, D.G. (1999). “The initialization of nonlinear waves using an

adjustment scheme”, Wave Motion 32 (2000), 307-317.

 112

Dommermuth, D.G. and Yue, D.K.P. (1987). “A High-order spectral method for the

study of nonlinear gravity waves”, J. Fluid Mech., Vol. 184, pp.267- 288.

Donelan, M.A., Hamilton, J. and Hui, W.H. (1985). “Directional spectra of wind-

generated waves”, Phil.Trans. R. Soc. Lond. A 315, 509-562.

Eckart, C. (1953). “The scattering of sound from the sea surface”, J. Acoust. Soc. Am.

25, 566-570.

Goda, Y. (1985). Random Seas and Design of Maritime Structures. University of

Tokyo Press, Tokyo, Japan.

Greenberg, M.D. (1998). Advanced Engineering Mathematics. Prentice Hall, Upper

Saddle River, New Jersey.

Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.

E., Enke, K., Ewing, J. A., Gienapp, H., Haselmann, D. E., Kruseman, P.,

Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W. and

Walden, H., (1973). “Measurements of wind-wave growth and swell decay

during the joint North Sea wave project (JONSWAP)”, Deut. Hydrogr.

Inst., Hamburg, 8 (12), 6-95.

Heitsenrether, R.M. (2004). “The influence of fetch limited sea surface roughness on

high frequency acoustic propagation in shallow water”, Master’s Thesis,

University of Delaware.

Kuryanov, B.F. (1963). “The scattering of sound at a rough surface with two types of

irregularity”, Sov. Phys. Acoust. 8, 252-257.

 113

Longuet-Higgins, M.S. and Cokelet, E.D. (1976). “The deformation of steep surface

waves on water. I. A numerical method of computation.”, Proc. R. Soc. Lond.

A 350, 1-26.

McDaniel, S.T. (1986). “Diffractive corrections to the high-frequency Kirchhoff

approximation”, J. Acoust. Soc. Am. 79, 957-952.

McDaniel, S.T. (1987). “Composite-roughness theory applied to scattering from fetch

limited seas”, J. Acoust. Soc. Am. 82, 1712-1719.

McDaniel, S.T. and Gorman, A.D. (1983). “Examination of the composite-roughness

scattering model”, J. Acoust. Soc. Am. 73, 1476-1486.

Mei, C.C., Stiassnie, M. and Yue, D.K.P. (2005). Theory and Applications of Ocean

Surface Waves, Part 2: �onlinear Aspects. World Scientific, New Jersey.

Newland, D.E. (1993). An Introduction to Random Vibrations, Spectral & Wavelet

Analysis. Dover Publications, Mineola, New York.

Porter, M.B. (1995). BELLHOP users manual (available with software downloads).

Porter, M.B. and Bucker, H.P. (1987). “Gaussian beam tracing for computing ocean

acoustic fields”, J. Acoust. Soc. Am. 82 (4), pp. 1349-1359.

Rice, S.O. (1951). “Reflection of electromagnetic waves from slightly rough surfaces”,

Commun. Pure Appl. Math 4, 351-278.

Rienecker, M.M. and Fenton, J.D. (1981). “A Fourier approximation method for

steady water waves”, J. Fluid Mech. 104, 119-137.

 114

Siderius, M. and Porter, B.M. (2008). “Modeling broadband ocean acoustic

transmissions with time-varying sea surfaces”, J. Acoust. Soc. Am. 124 (1), pp.

137-150.

Thorsos, E.I. (1990). “Acoustic scattering from a Pierson-Moskowitz sea surface”, J.

Acoust. Soc. Am 88 (1), 335-349.

Whitham, G.B. (1974). Linear and �onlinear Waves. Wiley.

Zakharov, V.E. (1968). “Stability of periodic waves of finite amplitude on the surface

of a deep fluid”, Soviet Physics JETP, vol. 2, pp. 190-194.

