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ABSTRACT 

Acoustic wave propagation in the ocean is an old and interesting problem. 

In the literature the problem of interaction of acoustic waves with the ocean surface 

has drawn the attention of many researchers. This interaction problem is a very 

complicated problem due to many physical processes involved. Some of the important 

factors on the ocean surface which affects underwater communications are presence of 

waves, turbulence generated by wind input, wave breaking, white capping, bubbles 

and density, salinity and temperature effects.  

In this thesis, the effect of linear and nonlinear surface gravity waves on 

high frequency acoustic propagation is discussed. Realistic models of linear and 

nonlinear surface gravity waves, which solve the exact governing equations, are 

created, and these models are coupled with an acoustic Gaussian beam tracing 

program called Bellhop. Since Bellhop is not capable of accounting for out of plane 

scattering of acoustic rays, coupling is done only for two spatial dimensions, one 

horizontal and one vertical.  

The wave model provides velocity components in the normal direction to 

the surface. These velocity components are used in the Doppler frequency shift 

calculations of acoustic rays generated by Bellhop. 

Data from an acoustic experiment are taken as experimental results and 

coupled wave-acoustic model has been run with the same conditions and same 

geometric layout of experiments. 

Comparisons between experimental results and coupled wave-acoustic 

model results are presented and the limits of model validity are discussed.
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Chapter 1 

I�TRODUCTIO� 

In the literature, the problem of modeling acoustic sound waves inside a 

water column has been studied by many researchers. Two widely accepted methods are 

present in the literature for calculation of intensity of acoustic scattering which applies 

to acoustic scattering from rough surfaces of different scale. These methods are the 

Rayleigh-Rice method (Rice, 1951) and Kirchhoff method (Eckart, 1953). The 

Rayleigh-Rice method is based on the small roughness perturbation approximation and 

the Kirchhoff method is based on the physical optics approximation (Thorsos, 1987). 

Since these methods are applicable to rough surfaces with different scales, various 

attempts have been made to combine these methods and apply combined models to 

multi-scaled ocean surfaces (Kuryanov, 1963).  

A modified high-frequency Kirchhoff approximation was given by 

McDaniel, who combined Rayleigh-Rice and Kirchhoff methods and produced results 

which are independent of surface partitioning (McDaniel et al., 1983; McDaniel, 

1986). A significant advance is again given by McDaniel who integrated an empirical 

sea surface model with her high-frequency Kirchhoff model (McDaniel, 1987). In her 

model surface wave heights and slopes are predicted by an empirical sea surface model 

as parameters for calculating the intensity of acoustic forward scatter. 

Thorsos tested the accuracy and validity of the Rayleigh-Rice and 

Kirchhoff methods by combining an empirical surface wave model and an acoustic 

model based on Kirchhoff approximation (Thorsos, 1990).  Instead of using surface 
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statistics such as wave heights and slopes, the Thorsos’s model requires actual 1D-

horizontal rough surface realizations as inputs.  

Dahl conducted two experiments during which acoustic measurements as 

well as environmental measurements are recorded (Dahl, 2001). His experiments were 

designed to observe the time and angle spreading characteristics of high frequency 

sound which is forward scattered from the rough ocean surface. His experimental 

setup was able to examine high frequency sound waves with one surface interaction 

only. He also used a Kirchhoff method to interpret his results and obtained simple 

relations between geometry of acoustical scattering, surface wave conditions and time-

angle spreading of the received signals (Dahl, 2001). 

Recently, Heitsenrether (2004) coupled an empirical surface wave model 

with an acoustic Gaussian beam tracing model called Bellhop and compared his results 

with an experimental data set obtained in Delaware Bay in 1997. His surface 

realizations were uncorrelated since for each run of Bellhop he was generating 

different random realizations of the surface. As an extension to Heitsenrether’s work, 

in this thesis we are using a realistic wave model following Dommermuth and Yue 

(1987) and integrate it with the same acoustic model Bellhop. This work is unique in 

the sense that there is no previous work present in the literature which couples a 

realistic wave model and a Gaussian beam tracer.  

In Chapter 2 of this thesis construction of initial wave field by Jonswap 

spectrum and inverse Fourier transform method, governing equations of the wave 

model and their numerical solution technique will be explained. In two dimensions 

both linear and nonlinear simulations are presented whereas in three dimensions only 

linear simulations are presented. 
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In Chapter 3, acoustic scattering of sound waves from the ocean surface 

are discussed. The Gaussian beam approach, which is an extension to standard ray 

tracing theory, is explained. Also, the acoustic Gaussian beam tracing program 

Bellhop, which is used for modeling sound waves inside the water column, is 

described. Doppler shift calculations, which are not standard calculations in Bellhop, 

are explained as well. 

In Chapter 4, details of the comparisons of the coupled linear wave-

acoustic and coupled nonlinear wave-acoustic models with the available experimental 

data set are presented. Effect of spatial resolution in the wave model on results is 

discussed. 
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Chapter 2 

WAVE MODEL 

In this thesis, we follow the approach given by Dommermuth and Yue 

(1987) for modeling nonlinear surface gravity waves. The approach given by 

Dommermuth and Yue (1987) is a combination of canonical evolution equations and 

mode coupling idea and it is a direct numerical approach. Nonlinear interactions up to 

a specified order M  in wave steepness can be successfully accounted for by the model 

provided that a Taylor series expansion of the velocity potential about the mean water 

level is valid (Dommermuth and Yue, 1987).  (10)M O=  is adequate for waves up to 

80% of Stokes limiting steepness ( 0.35)ka ≤ (Dommermuth and Yue, 1987).   

In order to simulate the experimental conditions we discuss in Section 4.1, 

we use Jonswap spectrum for construction of initial wave field since Jonswap 

spectrum provides a relationship between environmental variables, such as wind 

speed, fetch length, and frequency spectrum. After the construction of the initial wave 

field specified by the Jonswap spectrum, evolution equations are solved numerically in 

order to simulate linear and nonlinear waves. 

2.1 Jonswap Spectrum and Construction of Initial Wave Field 

A frequency spectrum represents the distribution of wave energy across a 

range of frequencies. In the literature there are numerous different frequency spectrum 

models. Jonswap is one of these frequency spectrum models and is empirically derived 

after a wave measurement program (Joint North Sea Wave Project) in the North Sea in 

1968 and 1969 (Hasselman et al., 1973). Since experimental data that we use in 
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evaluating model performance which we will discuss in Chapter 4 is measured in a 

fetch limited area and we want to compare our results with Heitsenrether (2004), in 

our model Jonswap spectrum is the most appropriate one to be used when compared to 

other frequency spectrum models. This model provides frequency spectrum as a 

function of wind speed under fetch limited conditions (Hasselman et al., 1973) and is 

in the following form 

 

4

2 5
( ) exp

4 p

S g

−

−5 δ
  ω ω = α ω − γ  ω   

 (2. 1) 

where ω  is the angular frequency, g  is the gravitational acceleration, δ  is a peak 

enhancement factor given by 

 
( )2

2 2
exp

2

p

pο

 ω−ω
 δ = −
 σ ω
 

 (2. 2) 

and parameters γ  and οσ  are given as γ = 3.3 , 0.07οσ =  for pω ≤ ω  and 0.09οσ =  

for pω > ω . Parameter α  is a function of fetch length, X and wind speed, U , 

 

0.22

0.076
gX

U

−
 α =  
 

 (2. 3) 

and peak frequency is given by 

 

0.33

2
7p

g gX

U U
π

−
  ω =   
  

 (2. 4) 

Construction of Initial Wave Field in 2D 

Once the frequency spectrum is obtained by Equations (2.1)-(2.4), a 

wavenumber spectrum can be obtained from the frequency spectrum considering the 

energy equality under both curves which leads to 
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 ( ) ( )k

d
S S k

dk

ω
ω =  (2. 5) 

where kS  is the wavenumber spectrum. The relationship between ω  and k  is given by 

dispersion relationship 

 2 tanh( )gk khω =  (2. 6) 

from which the expression for group velocity can be derived 

 
1 2
1

2 sinh(2 )
g

d kh
C

dk kh k

 ω ω
= = + 

 
 (2. 7) 

Therefore, using Equations (2.5) and (2.7), wavenumber spectrum can be obtained.  

Once the wavenumber spectrum is obtained, nodal amplitudes for each dk  

interval can be obtained by energy equality 

 21
( )

2
r k ra S k dk=  (2. 8) 

where 0,1,...,
2

�
r = , rk rdk= , 

2
dk

L

π
=  and L  is the periodic domain length. �  is 

the total number of wave components and chosen to be a power of 2 in order to make 

use of Fast Fourier Transforms. Then two sided amplitude spectrum is constructed 

using one sided amplitude spectrum by the symmetry relation 

 s � sa a −=  (2. 9) 

where 1, 2,..., 1
2 2

� �
s �= + + − . 

For 0,1,...,
2

�
r =  we generate uniformly distributed random phases rΘ  

with values in the interval of [ ]0,2π . By using the symmetry relation given by 
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Equation (2.9) not for amplitudes but for random phases this time we obtain the 

symmetric random phases jΘ  for 1, 2,...,
2 2 2

� � �
j = − + − + . 

Complex amplitudes, A , are obtained by using real amplitudes obtained 

by Equations (2.8) and (2.9) according to 

 
exp( )

2

j j

j

a i
A

Θ
=  (2. 10) 

where 1, 2,...,
2 2 2

� � �
j = − + − + , 1i = −  and jΘ  denotes the symmetric uniformly 

distributed random phase shifts in the interval of [ ]0,2π . Then, based on these 

complex amplitudes, initial water surface elevation can be obtained by 

 ( )
/ 2

/ 2 1

exp
�

p j j p

j �

A ik x
=− +

η = ∑  (2. 11) 

where 0,1,..., 1p �= − , px pdx= , 
L

dx
�

=  and L  is the periodic domain length.  

Similarly, for the complex amplitudes which we use in the construction of 

surface velocity potential, sφ , we have 

 exp( )
2

j

j j

j

aig
B i= − Θ

ω
 (2. 12) 

where jω  are the angular frequencies obtained from Equation (2.6) for  discrete 

wavenumbers, jk , and g  is the gravitational acceleration. Then initial surface velocity 

potential can be obtained by 

 ( )
/ 2

/ 2 1

exp
�

s

p j j p

j �

B ik x
=− +

φ = ∑  (2. 13) 
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for 0,1,..., 1p �= − . Note that in order to get real values for η  and sφ  complex 

amplitudes, ( )A k and ( )B k  have to be complex conjugates of ( )A k− and ( )B k− . 

Computations of Equations (2.11) and (2.13) are done by making use of Inverse Fast 

Fourier Transforms in order to get η  and sφ . 

Construction of Initial Wave Field in 3D 

In 3D, since we are dealing with two horizontal dimensions, the wave field 

can not be described by frequency spectrum solely. We also need to consider 

directional spreading of waves and work in terms directional wave spectra. Directional 

wave spectra ( , )S k θ  can be described by 

 ( , ) ( ) ( )kS k S k Gθ θ=  (2. 14) 

where kS  is the wavenumber spectrum described by Equation (2.5) and ( )G θ  is the 

directional spreading function. Following Donelan et. al. (1985), we use the following 

form for the directional spreading function 

 ( )( )2( )G sechθ θ θ
β

= β −
2

 (2. 15) 

where θ  is the mean wave direction and  

 

 

1.3

1.3

2.61 ; 0.56 0.95,

2.28 ; 0.95 1.6,

1.24; .

p p

p p

otherwise

−

  ω ω < <  ω ω  

  ω ω

β = < <   ω ω  





 (2. 16) 
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The directional wave spectra ( , )S k θ  can be obtained using Equations (2.14), (2.15) 

and (2.16). We will discuss derivation of component amplitudes shortly. In order to 

apply inverse Fourier transform method to these amplitudes to construct an initial 

water surface, we need to transform the directional wave spectrum, which is a function 

of wavenumber, k , and direction, θ , to a wavenumber spectrum as a function of xk  

and yk , ( , )
x yk k x yS k k , where xk  and yk are wavenumber components along x  and y  

axes, respectively. Considering energy equality under surfaces of ( , )S k θ  and 

( , )
x yk k x yS k k , the transformation is done according to 

 
( , )

( , )
x yk k x y

S k
S k k

J

θ
=  (2. 17) 

where J  is the Jacobian of the transformation and is given by 

 
cos sin

sin cos
J k

k k

θ θ
θ θ

= =
−

 (2. 18) 

Once the wavenumber spectrum ( , )
x yk k x yS k k  is obtained, component amplitudes for 

each x ydk dk   interval can be obtained by energy equality 

 2

,

1
( , )

2 x yp r k k p x r y x ya S k k dk dk=  (2. 19) 

where 0,1,...,
2
x�

p = , 0,1,...,
2

y�
r = , p x xk pdk=  r y yk rdk= , 

2
x

x

dk
L

π
=  and 

2
y

y

dk
L

π
= . x�  is the total number of wave components in x  direction, y�  is the total 

number of wave components in y  direction and xL , yL  are  lengths of periodic 

domain in x  and y  directions, respectively. Both x�  and y�  are chosen to be a 

power of 2 in order to make use of 2D Fast Fourier Transforms. Then two sided 
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amplitude spectrum is constructed using one sided amplitude spectrum by the 

symmetry relation 

 , ,x ys u � s � ua a − −=  (2. 20) 

where 1, 2,..., 1
2 2
x x

x

� �
s �= + + −  and 1, 2,..., 1

2 2

y y

y

� �
u �= + + − . 

For 0,1,...,
2
x�

p =  and 0,1,...,
2

y�
r =  we generate uniformly distributed 

random phases ,p rΘ  with values in the interval of [ ]0,2π . By using the symmetry 

relation given by Equation (2.20) not for amplitudes but for random phases this time 

we obtain the symmetric random phases ,j nΘ  for 1, 1,...,
2 2 2
x x x� � �

j = − + − +  and 

1, 1,...,
2 2 2

y y y� � �
n = − + − + . 

Complex amplitudes, A , are obtained by using real amplitudes obtained 

by Equations (2.19) and (2.20) and making use of a uniformly distributed random 

number generator with numbers generated in the interval of [ ]0,2π  in order to get a 

random representation of the surface by using 

 
,

, ,exp( )
2

j n

j n j n

a
A i= Θ  (2. 21) 

for 1, 1,...,
2 2 2
x x x� � �

j = − + − + , 1, 1,...,
2 2 2

y y y� � �
n = − + − + . Then, based on these 

complex amplitudes, initial water surface elevation can be obtained by 

 ( )
/ 2/ 2

, ,

/ 2 1 / 2 1

exp
yx

x y

��

v q j n j v n q

j � n �

A ik x ik y
=− + =− +

η = +∑ ∑  (2. 22) 

where 0,1,..., 1xv �= − , 0,1,..., 1yq �= − , vx vdx= , qy qdy= , x

x

L
dx

�
= , 

y

y

L
dy

�
= .  
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Similarly for the complex amplitudes which we use in the construction of 

surface velocity potential, sφ , we have 

 
,

, ,

,

exp( )
2

j n

j n j n

j n

aig
B i= − Θ

ω
 (2. 23) 

Then initial surface velocity potential can be obtained by 

 ( )
/ 2/ 2

, ,

/ 2 1 / 2 1

exp
yx

x y

��
s

v q j n j v n q

j � n �

B ik x ik y
=− + =− +

φ = +∑ ∑  (2. 24) 

where 0,1,..., 1xv �= −  and 0,1,..., 1yq �= − . Note that in order to get real values for 

η  and sφ  complex amplitudes, ( , )x yA k k and ( , )x yB k k , have to be complex conjugates 

of ( , )x yA k k− − and ( , )x yB k k− − . Computations of Equations (2.22) and (2.24) are done 

by making use of 2D Inverse Fast Fourier Transforms in order to get η  and sφ . 

2.2 Governing Equations for the Wave Model  

We begin the derivation of the evolution equations with the classical 

boundary value problem given for water waves in constant depth h . We assume that 

flow is inviscid, incompressible and irrotational. Therefore a velocity potential 

( , , )x z tφ
�

 exists such that φ  satisfies the governing equation for flow which is 

Laplace’s equation. ( , )x x y=
�

 denotes the horizontal position vector. Following 

Zakharov (1968), we use the surface velocity potential 

 ( , ) ( , , ), )S x t x x t tφ = φ η(
� � �

 (2. 25) 

at , )z x t= η(
�

. η  denotes the water surface fluctuation from the still water level. After 

chain rule differentiation, classical kinematic and dynamic boundary conditions can be 

expressed in terms of Sφ  by 



 12 

 . ( , , ) 0S

t h h h h z x tη +∇ φ ∇ η− (1+∇ η.∇ η)φ η =
�

 (2. 26) 

 2. ( , , )S S S a
t h h h h z

P
g x t

1 1
φ + η+ ∇ φ ∇ φ − (1+∇ η.∇ η)φ η = −

2 2 ρ

�
 (2. 27) 

where ( )/ , /h x y∇ = ∂ ∂ ∂ ∂  is the horizontal gradient, aP  is the atmospheric pressure 

and ρ  is the density of the fluid.  

Expressing φ  in terms of perturbation series, we get 

 ( )

1

( , , ) ( , , )
M

m

m

x z t x z t
=

φ = φ∑
� �

 (2. 28) 

where ( )mφ  is a quantity in the order of mε  and perturbation parameter, ε , is presumed 

to be small in wave steepness. Using Equation (2.25) and Equation (2.28) and carrying 

all ( )mφ s to a known point ( 0)z =  by Taylor series expansion we get 

 
1 0

( , ) ( , , ) ( ,0, )
!

k kM M m
S m

k
m k

x t x t x t
k z

−
( )

= =

η ∂
φ = φ η = φ

∂∑ ∑
� � �

 (2. 29)  

Expanding Equation (2.29) and collecting terms at each order, we obtain 

 ) ( )( ,0, )m mx t T(φ =
�

 (2. 30) 

 (1) ST = φ  (2. 31) 

 
1

( )

1

( ,0, )
!

k km
m m k

k
k

T x t
k z

−
( − )

=

η ∂
= − φ

∂∑
�

 (2. 32) 

where 2,...,m M= . M  is the arbitrary order in wave steepness at which the expansion 

terminated and, following Dommemuth and Yue (1987), is specified to be 10. When 

the Laplace’s equation as well as other boundary conditions, such as bottom boundary 

condition, is considered with Equations (2.30), (2.31) and (2.32) give a sequence of 
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boundary value problems. These boundary value problems, like any other perturbation 

expansion, can be solved successively with increasingm . 

Additionally ( )mφ can be represented with eigenfunction expansion with 

coefficients which can vary with time. Thus we write;  

 
1

( , , ) ( ) ( ,m m

n n

n

x z t t x z
∞

( ) ( )

=

φ = φ Ψ )∑
� �

 (2. 33) 

where nΨ  s are the eigenfunctions which have different forms in deep and shallow 

water and are given by Equations (2.40) and (2.41). If we substitute Equation (2.33) 

into Equation (2.29) we get 

 
1

1
1 0 1

( , , ) ( ) ( ,0
!

k kM M m �
m

z n nk
m k n

x t t x
k z

+−
( )

+
= = =

η ∂
φ η = φ Ψ )

∂∑ ∑ ∑
� �

 (2. 34) 

 

And finally if we substitute Equation (2.34) into Equations (2.26) and (2.27) we get 

 
1

1
1 0 1

. ( ) ( ,0 0
!

k kM M m �
S m

t h h h h n nk
m k n

t x
k z

+−
( )

+
= = =

 η ∂
η +∇ φ ∇ η− (1+∇ η.∇ η) φ Ψ ) = ∂ 

∑ ∑ ∑
�

 (2. 35) 

2
1

1
1 0 1

. ( ) ( ,0
!

k kM M m �
S S S m a
t h h h h n nk

m k n

P
g t x

k z

+−
( )

+
= = =

 1 1 η ∂
φ + η+ ∇ φ ∇ φ − (1+∇ η.∇ η) φ Ψ ) = − 2 2 ∂ ρ 

∑ ∑ ∑
�

 

  (2. 36) 

    

Equations (2.35) and (2.36) are the evolution equations which are solved 

numerically. Gage pressure, aP , in Equation (2.36) is taken to be zero. 

As an alternative, if we do not perform the Stoke’s expansion and avoid 

Taylor series expansion, nΨ ’s are expressed at free surface and eigenfunction 

expansion of Sφ  becomes 
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1

( , , ) ( ) ( , ( , )
�

S

n n

n

x t t x x t
=

φ η = φ Ψ η) = φ∑
� � �

 (2. 37)  

If we plug Equation (2.37) into Equations (2.26) and (2.27) we get 

  
1

. ( ) ( , 0
�

S

t h h h h n n

n

t x
z=

∂
η +∇ φ ∇ η− (1+∇ η.∇ η) φ Ψ η) =

∂∑
�

 (2. 38) 

 

2

1

. ( ) ( ,
�

S S S a
t h h h h n n

n

P
g t x

z=

1 1 ∂ 
φ + η+ ∇ φ ∇ φ − (1+∇ η.∇ η) φ Ψ η) = − 2 2 ∂ ρ 

∑
�

 (2. 39) 

Equations (2.38) and (2.39) are alternative evolution equations for the 

problem. But it is useful to note that, since eigenfunctions are evaluated at free surface, 

ordinary fast and inverse fast Fourier-transform technique can not be applied to 

Equations (2.38) and (2.39). Rienecker and Fenton (1981) and Bryant (1983) studied 

these equations in their papers.  

For deep water, Equation (2.33) can be readily written as 

 
0

( , , ) ( ) exp(m m

n n n

n

x z t t K z iK x
∞

( ) ( )
•

=

φ = φ + )∑
� ��� ������

 (2. 40) 

and for arbitrary depth, Equation (2.33) becomes 

 
0

cosh ( )
( , , ) ( ) exp(

cosh ( )

n
m m

n n

n
n

K z h
x z t t iK x

K h

∞
( ) ( )

•

=

 + φ = φ )
 
 

∑
���

� ������

���  (2. 41) 

where ( , )n x yK k k=
���

 denotes the wavenumber vector. All calculations in the following 

sections are based on the evolution Equations (2.35) and (2.36). 

2.3 Calculation of Surface-�ormal Velocity 

In Doppler shift calculations, which we discuss in Chapter 3, the velocity 

component in the direction normal to the surface turned out to be an important factor. 
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Using the wave model which we have already discussed we can obtain surface-normal 

velocity. 

Knowing surface velocity potential sφ  as a function of spatial variables x  

and y at an instant of time, the velocity field at the surface in 3D is given by   

 ( , , )s s

x y z z
u
→

=η
= φ φ φ  (2. 42) 

Path of a particle at the water surface can be described with the function 

 F z= −η  (2. 43)

  

Therefore outward normal to the water surface is given by 

 
2 2 2 2 2

, , , ,1

1

x y z x y

x y z x y

F F F
n

F F F

   −η −η   = =
   + + η + η +   

�
 (2. 44) 

Then surface-normal velocity, v , can be specified as 

 
2 2 2 2

, ,, ,1
. ( , , ).

1 1

s s

x x y y zx y zs s

x y z z

x y x y

v u n
=η

=η

   −η φ −η φ φ−η −η   = = φ φ φ =
   η + η + η +η +   

� �
 

  (2. 45)

  

where z z=η
φ  is calculated by using Equation (2.34), s

xφ  and s

yφ  are calculated by a 

pseudospectral approach by utilizing fast-Fourier and inverse fast-Fourier transforms 

between physical space and wavenumber space. In 2D Equation (2.45) reduces to 

 
2

,
.

1

s

x x z z

x

v u n
=η

 −η φ φ
 = =
 η + 

� �
 (2. 46) 
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Equation (2.46) is used in wave model in order to get the surface-normal 

velocity which is an important factor in the Doppler shift calculations of the acoustic 

rays.  

2.4 �umerical Method 

Following Dommermuth and Yue (1987) we use a two-step procedure for 

solving evolution Equations (2.35) and (2.36).  

First, all spatial derivatives in the evolution Equations (2.35), (2.36) and 

Equation (2.46) are evaluated by a pseudospectral approach by utilizing fast-Fourier 

and inverse fast-Fourier transforms between physical space and wavenumber space. 

All nonlinear products in the evolution Equations (2.35), (2.36) and Equation (2.46) 

are calculated in physical space.  

Secondly, starting with given initial conditions for water surface 

fluctuation,η , and surface velocity potential, Sφ , time integration is done with a fourth 

order Runge-Kutta time integrator. Starting from initial conditions, this two-step 

procedure is repeated for every time step. For nonlinear simulations we give the flow 

field enough time to not to suffer from development of high-frequency standing waves 

due to linear initial conditions (Dommermuth, 1999).  

Our numerical scheme has errors due to numerical time integration, 

truncation in the number of free wave modes,� , and truncation in the arbitrary order 

of wave steepness, .M  Also, aliasing errors and amplification of the round-off errors 

are present in our numerical scheme which we discuss in detail in the following 

sections.  
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Aliasing Errors 

In order to get alias free products we are using the technique of aliasing 

removal by padding (Canuto et al., 2006). Key of padding technique is to use T  points 

for discrete transform rather than �  points where 
3

2

�
T ≥ . 

Consider the product ( )s x  of two functions ( )u x  and ( )v x  which have 

Fourier series representations: 

 
/ 2

/ 2 1

( ) exp( )
T

n

n T

s x s inx
=− +

= ∑  (2. 47) 

 
/ 2

/ 2 1

( ) exp( )
T

j

j T

u x u ijx
=− +

= ∑  (2. 48) 

 
/ 2

/ 2 1

( ) exp( )
T

r

r T

v x v irx
=− +

= ∑  (2. 49) 

Performing multiplication of ( )u x  and ( )v x  in physical space for ( )s x  gives 

 n j k j k

j k n j k n T

s u v u v
+ = + = ±

= +∑ ∑  (2. 50) 

The second sum represents aliasing error terms. For 0,1,..., 1j T= −  we define new 

coefficients  

 
, 1

2 2

0,
j

j

� �
u j

u

otherwise

 − + ≤ ≤
= 



 (2. 51) 

and  

 
, 1

2 2

0,
j

j

� �
v j

v

otherwise

 − + ≤ ≤
= 



 (2. 52) 
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Multiplication of these new functions in physical space give new product , ( )s x , 

  ( ) ( ) ( )s x u x v x=  (2. 53) 

So we obtain de-aliased coefficients by 

 n ns s=  for 1,...,
2 2

� �
n = − +  (2. 54) 

from which the dealiased product, ( )s x , can be constructed by Equation (2.47).  

 For products involving more than two terms, such as ( ) ( ) ps x u x= , where 

p  is an arbitrary power, the approach followed by Dommermuth and Yue (1987) is 

successive multiplication where each factor is made alias-free before multiplying by 

the next term. The anti-aliasing algorithm we use in evaluation of these terms is using 

T  points for discrete transform rather than �  points where 
3

4

p�
T ≥  points. 

 Performing multiplication  ( ) pu x  in physical space for ( )s x  gives 

 
... ...

... ...n j k l j k l

j k l n j k l n T

s u u u u u u
+ + + = + + + = ±

= +∑ ∑  (2. 55) 

For 0,1,..., 1j T= −  we define new coefficients by Equations (2.51) and we obtain de-

aliased products by Equations (2.53), (2.54) and (2.47). 

Amplification of Round-Off Errors 

Consider a small random error mnδ  in the amplitude ( )m

nφ  which leads to 

�
( )

( ) (1 )
m

m

nn mnφ = φ + δ  where �
( )m

nφ  denotes the exact values (Dommermuth and Yue, 

1987). Using Equations (2.32) and (2.33), we get 

 � �
1( ) ( )( )

( ),

1 1!

k km �m m km

n m k n nk
k n

T T
k z

− −

−
= =

η ∂
− = − φ δ ψ

∂∑ ∑  (2. 56) 
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In general 
k

k

n nk
K

z

∂
ψ ≈

∂
 where nK n≈  so for any m , error in the highest 

wavenumber modes is the most amplified. One way of eliminating such kind of 

instability is applying a smoothing function. Following Longuet-Higgins and Cokelet 

(1976) we apply a smoothing function to η  and Sφ  in wavenumber space in the form 

 
21

( ) 5 4cos cos
8

n n

n

� �

K K
K

K K

π π    
Λ = + −            

 (2. 57)       

where �K  is the wavenumber at the Nyquist frequency.                                        

2.5 2D Linear Wave Model 

If we linearize evolution Equations (2.35) and (2.36), we end up with 

linear evolution equations at 0z =  in the following form 

 0S

t zη −φ =   (2. 58) 

 0S

t gφ + η =  (2. 59) 

Starting with initial wave field in 2D, η  and Sφ , linear Equations (2.58) and (2.59) are 

solved by the Runge-Kutta method discussed above. 

An snapshot of propagating linear waves can be seen in Figure 2.1 where 

we plot water surface fluctuation,η , as a function of x . 
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Figure 2. 1:  A snapshot of propagating linear waves in 2D with 1024 components 

 

In order to test the accuracy of the model we apply two accuracy checks. 

As a first check we compare the initial spectrum, which is used for construction of  the 

initial wave field, with the spectrum we obtain by Fourier analysis after the model is 

marched in time. This comparison can be seen in Figure 2.2.  Perfect agreement in 

Figure 2.2 indicates that linear model conserves the input energy. This is expected 

because linear evolution equations, Equations (2.58) and (2.59) do not suffer from 

amplification of round-off errors or aliasing errors. As a second check we compare the 

input and output variances. Initial variance is given by 

 
2

0

( )initial S d

∞

σ = ω ω∫  (2. 60) 
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Figure 2. 2:  A comparison of input and output spectrums 

We calculate final variance of water surface fluctuation by 

 
2 2

1

1
( )

�

final j

j� =

σ = η −η∑  (2. 61) 

where 

 
1

1
0

�

j

j� =

η = η ≈∑  (2. 62) 

For example for the frequency spectrum presented in the Figure 2.2, Equations (2.60) 

and (2.61) both lead to a variance value of 20.0624m  which is another indicator of 

energy conservation in the model. This test is repeated for different frequency 

spectrums and same excellent agreement is obtained for every spectrum within an 

error in the order of 4 210 m− . As �  gets bigger, the wave field is represented better; 

therefore we get closer agreement in the variances.  
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2.6 3D Linear Wave Model 

In 3D linear wave model again linearized evolution equations, Equations 

(2.58) and (2.59), are solved starting with the initial water surface fluctuation and 

surface velocity potential, η  and Sφ , described in Section 2.1. In the calculation of z  

derivatives of Sφ  in Equation (2.58) 2D Fast Fourier Transforms are used.  

Three snapshots of the 3D wave model are presented in Figures 2.3, 2.4 

and 2.5 with mean wave directions of 0°, 45° and 90° defined from x  axis in counter 

clockwise sense, respectively. 

In our 3D wave model, the mean wave direction can be specified as 

arbitrarily. 

 

Figure 2. 3: A snapshot of propagating linear waves with a principal propagation 

direction of 0°  

 

In the 3D model we are doing two accuracy checks. One of the accuracy 

checks is again comparison of input and output directional wavenumber spectrums. 

Input spectrum ( , )
x yk k x yS k k  is specified by the Equation (2.17) whereas output 
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spectrum is obtained by 2D Fast Fourier Transforms after model has been run in time. 

Comparison of results is presented in Figure 2.6 and they agree well. 

Second accuracy check is the comparison of initial and final variances. 

Initial variance under spectrum is given by 

 
2

0 0

( ) ( ) ( )initial S d d G d S d

π π

π π

θ θ θ θ
∞ ∞

− −

σ = ω, ω = ω ω∫ ∫ ∫ ∫   (2. 63) 

 

 

Figure 2. 4: A snapshot of propagating linear waves with a principal propagation   

direction of 30° 

 

Since ( ) 1G d

π

π

θ θ
−

=∫ , Equation (2.63) reduces to 

 
2

0

( )initial S d

∞

σ = ω ω∫  (2. 64) 

And we are calculating variances of time series of η  at different points on the 

rectangular grid by expression 
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2 2

1

1
( )

T

final j

jT =

σ = η −η∑  (2. 65) 

where T  denotes the length of time series data and 

 

 
Figure 2. 5: A snapshot of propagating linear waves with a principal propagation 

direction of 90°  

 

 
1

1
0

T

j

jT =

η = η ≈∑  (2. 66) 

For the spectrum given in Figure 2.6, Equation (2.64) leads to an initial 

variance of 20.0453m . We calculate the final variances at four different points of the 

grid by Equation (2.65) and averaging those variances lead to 20.0434m , 20.0445m , 

20.0447m  and 20.0450m  for simulation times 50 pT , 100 pT , 150 pT  and 200 pT , where 

pT  denotes the peak wave period. As simulation time gets bigger and statistics become 

more stable, variances converge to the value of initial variance as expected. 
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Figure 2. 6: A comparison of input and output spectrums in 3D linear model for 

principal propagation direction of 45° 

 

2.7 2D �onlinear Wave Model 

In 2D nonlinear model we are solving evolution Equations (2.35) and 

(2.36). In this case horizontal gradient refers to gradient in the x  direction only since it 

is the only horizontal dimension.  

A comparison of linear and nonlinear waves with 1024 components is 

given in Figure 2.7. In Figure 2.7 nonlinear waves exhibits a peaked behavior in the 

crests and a flatter behavior in the troughs when compared to linear waves. This is a 

classical property of nonlinear systems. 
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Figure 2. 7: Comparison of linear and nonlinear waves (continuous line refers to 

linear simulation; dash dot refers to nonlinear simulation) 

 

 

In Figure 2.8 we compare initial spectrum and spectrums obtained after 

linear and nonlinear evolution of the simulations. As expectedly, agreement between 

the initial spectrum and spectrum obtained after linear evolution of the surface is 

excellent which was also shown in Figure 2.2. Spectrum obtained after nonlinear 

evolution of the surface differs from the initial spectrum due to nonlinear interaction 

and energy transfer between different wavenumber components. 

 In Figure 2.9 we compare the probability distributions obtained from 

linear and nonlinear water surface elevations with 1024 wave components. Both of 

these probability distributions obtained for a bin resolution of 0.05m  and they show a 

Gaussian distribution behavior whereas probability distribution of nonlinear water 

surface elevation is a little shifted towards right indicating occurrence of sharper peaks 

and flatter troughs during nonlinear evolution. 

In Figure 2.10 we present a sideband example where initial conditions for 

η  and sφ  are specified by 



 27 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

k(1/m)

S
k

Comparison of Input and Output Spectrums

Input Spectrum

Spectrum after linear time evolution

Spectrum after nonlinear time evolution

 

Figure 2. 8: Comparison of initial spectrum and final spectrums obtained after time 

evolution of the linear and nonlinear models  
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Figure 2. 9: Comparison of probability distribution functions for linear and 

nonlinear waves 
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Figure 2. 10: Wave with two sideband modes example (continuous line refers to 

water surface fluctuation after evolution in time, dashed line refers to 

initial water surface fluctuation given by Equation (2.67))  

,0) cos(9 ) 0.1 cos(7 ) 0.1 cos(11 )
4 4

x a kx a kx a kx
π π

η( = + − + −  (2. 67) 

,0) cos(9 )exp(9 ) 0.1 cos(7 )exp(7 )
49 tanh(9 ) 7 tanh(7 )

s ag ag
x kx k kx k

kg kh kg kh

π
φ ( = η + − η

                           

                 0.1 cos(11 ) exp(11 )
411 tanh(11 )

ag
kx k

kg kh

π
+ − η  (2. 68) 

where a  is the amplitude, h  is the water depth, 2 /k Lπ=  and L  is the periodic 

domain length. Equations (2.67) and (2.68) are the initial conditions for sideband 

modes example with fundamental wavenumber, 9k , and sideband wavenumbers 7k  

and 11k . Integer numbers are chosen so that sideband modes can be fitted into 

computational domain (Dommermuth and Yue, 1987). 

We check the accuracy of the nonlinear model by examining Fourier 

coefficients. In Figure 2.11 we present the time histories of Fourier coefficients 

obtained from monochromatic wave example. As it can be seen in the Figure 2.11,  
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Figure 2. 11: Time histories of normalized Fourier amplitudes of first (straight line), 

second (dash-dotted line) and third (dashed line) harmonics 

 

energy is moving between different wavenumber components and this energy transfer 

shows an oscillatory behavior. When the fundamental component loses some amount 

of its energy about 75t s= , the energy is transferred to higher harmonics. This is 

physically meaningful since conservation of energy law must be satisfied. Also it is 

useful to mention that, energy is not conserved perfectly in the system due to finite 

truncation in the number of free modes, � , and application of smoothing filter. 

 Effect of application of smoothing filter given by Equation (2.57) can be 

seen in Figure 2.12. Smoothing filter is applied at every 5 time step of the model and 

applied in wavenumber space in order to prevent saw-tooth instability. This filter 

results in an energy loss which is less than 10%  for a simulation time of 125 500pT s≈  

as can be seen in Figure 2.12. This loss is reasonable since the maximum simulation 

time for coupled acoustic-wave model is 10 40pT s≈  which is the duration of signal 

transmission used in the experiments. 
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Figure 2. 12: Time history of change in the energy level, (dashed line refers to input 

energy level, continuous line refers to energy obtained from nonlinear 

surface elevation with smoothing filter applied) 
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Chapter 3 

ACOUSTIC SCATTERI�G PROBLEM 

In the literature full-wave acoustic models such as the normal mode and 

parabolic equation methods are extensively used. Also, ray tracing is one of the oldest 

methods which has been used to model acoustic propagation. The ray tracing method 

basically consists of approximating a given source by a fan of beams and tracing the 

propagation of these beams through the medium (Porter and Bucker, 1987).  

Although ray models are preferred for their computational efficiency, there 

are some drawbacks of these methods such as occurrence of shadow zones and 

caustics (Porter and Bucker, 1987). There have been numerous efforts to modify the 

ray theory in order to get more accurate results while keeping the computations 

efficient. 

The Gaussian beam approach that we use in our coupled wave-acoustic 

model can be viewed as a rigorous alternative to conventional ray tracing. We discuss 

the details of the Gaussian beam approach in the next section of this thesis. 

3.1 Gaussian Beam Tracing and Bellhop Model 

Consider a cylindrical coordinate system with r  is the horizontal range 

and z  is the vertical coordinate. Ray equations as a first-order system can be written 

as 

 ( )
dr

c s
ds

= ρ  (3. 1) 
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2

1d c

ds c r

ρ ∂
= −

∂
 (3. 2) 

 ( )
dz

c s
ds

= ξ  (3. 3) 

 
2

1d c

ds c z

ξ ∂
= −

∂
 (3. 4) 

where [ ]( ), ( )r s z s  are ray coordinates as a function of the arc length s , and ( , )c r z  is 

the sound speed. Auxiliary angular variables [ ]( ), ( )s sρ ξ  are quantities which are 

proportional to the local tangent vector (Porter and Bucker, 1987). Initial conditions 

are given as  

 [ ](0), (0) ( , )s sr z r z=  (3. 5) 

 [ ] ( )(0), (0) cos ,sin / (0)cρ ξ = α α  (3. 6) 

where ( , )s sr z  denotes the source coordinates and α  is takeoff angle. 

The beam curvature and width are calculated using two quantities ( )p s  

and ( )q s , which are obtained by integrating two ordinary differential equations of the 

following form 

 ( ) ( )
dq

c s p s
ds

=  (3. 7) 

 
2

( )
( )
nncdp

q s
ds c s

= −  (3. 8) 

where nnc  denotes the second normal derivative of the sound speed ( , )c r z  which can 

be computed by 

 

2 2

2nn rr rz zz

dr dr dz dz
c c c c

dn dn dn dn

      = + +      
      

 (3. 9) 
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Simply presenting the result, beam field can be defined by 

 2( ) ( )
( , ) exp ( ) 0.5

( ) ( )

c s p s
u s n A i s n

rq s q s

  
= − ω τ +  

  
 (3. 10) 

where A  is an arbitrary constant, ω  is the angular frequency of the source, n  is the 

normal distance from central ray. The term ( )sτ in Equation (3.10) is the travel time of 

the ray which satisfies 

 
1

( )

d

ds c s

τ
=  (3. 11) 

Matching the exact solution for a point source in three dimensions A  can be expressed 

as 

 
1 (0) cos

( exp
4 2o

i q
A

c

π
δ

π
  ω α α) = α   

  
∑  (3. 12) 

whereδα is the angle between adjacent rays, oc  is the constant sound speed in a 

homogeneous medium used for derivations. Combining Equations (3.10) and 

Equations (3.12), one can get the final result 

 21 (0) cos ( ) ( )
( , ) exp exp ( ) 0.5

4 2 ( ) ( )o

i q c s p s
u s n i s n

c rq s q s

π
δ

π

    ω α = α − ω τ +     
      

∑  

  (3. 13) 

For a detailed discussion of Gaussian beam technique, the reader may refer 

to Porter and Bucker (1987). 

Bellhop is a tool which uses the Gaussian beam tracing method. Bellhop 

numerically integrates the ray equations to keep track of acoustic rays inside the water 

column. This program has been tested with full wave acoustic models which are 

computationally intensive and shows excellent agreement with those methods (Porter 
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and Bucker, 1987). The method does not experience numerical artifacts which are 

present in standard ray models and is still computationally efficient like other ray 

based approaches (Porter and Bucker, 1987). 

In order to run Bellhop, an input file containing environmental parameters 

such as water depth, source and receiver locations, top and bottom boundary 

conditions and sound speed profile should be created. This file is also known as the 

environmental file. Also, properties of beams such as number of beams to be used, 

their launching angles and type of beams should be specified. Following Heitsenrether 

(2004), we are using an initial fan of 1000 beams lying in an angular interval of 0° to 

14°. All our calculations are based on eigenrays generated by Bellhop, which are the 

rays that are generated at the source and reach the receiver, which are reflected from 

surface only and do not experience any other scatter from bottom or surface. However 

during this surface reflection ray can be bounced from surface more than once. 

After execution of Bellhop an output file is generated. This file contains 

information about arrival time, arrival angle, pressure amplitude, number of surface 

and number of bottom interactions. This output file is used to get the results of the 

model. 

It is well known that when a sound wave is scattered from a moving object 

the frequency of the sound wave changes. This phenomenon is called Doppler shift. In 

this thesis we are calculating Doppler shifts experienced by acoustic rays at the 

moving surface. For this purpose we need to know the geometry of the eigenrays. 

Therefore at each time step of the wave model we are running Bellhop two times. One 

run is with the arrival file option in order to get arrival times of rays. The second run is 

with the eigenray option in order to plot the rays using a Matlab program called 

plotray. The Matlab program plotray which is standard in Bellhop package is modified 

in order to account for Doppler effect. 
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3.2 Doppler Shift Calculations 

In the literature it is well known that motion of source, receiver or a 

scattering object causes a change in the frequency of the scattered signal. This is 

known as the Doppler effect. Depending on the geometry and direction of the motion 

the Doppler shift can be positive or negative. 

 

Figure 3. 1: Doppler effect of an moving object 

 

Based on the geometry given in Figure 3.1, Doppler effect can be 

calculated using 

 
( cos )

( cos )
s s

r

r

f c v
f

c v

θ
θ

+
=

−
 (3. 14) 

where sf  is the source radiating frequency, rf  is the frequency at the receiver and c  is 

the sound speed. v  is the surface-normal velocity which we discussed in Section 2.3. 
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In Doppler shift calculations a source radiating frequency of 12 kHz  is used which is 

the same value used in experiments we describe in Section 4.1. 

In the surface scattering problem, the water surface serves as the scatterer 

at the point where the acoustic ray hits the surface. Once rays are generated by Bellhop 

and these intersection points are specified, Doppler shifts are calculated at these 

intersection points with the velocity of the surface specified by wave model. 

When a ray experiences more then one surface bounce, Doppler shift 

calculations are applied successively at each bounce point. An example of multiple 

surface bounce is given in Figure 3.2. Application of Doppler shift calculations at each 

bounce point may not be the most reasonable approach since continous refraction of 

sound waves affects the geometry of bouncing of the acoustic ray and thus Doppler 

shifts calculations. Detailed study of Doppler shift calculations on the surface is 

recommended as a future work. 
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Figure 3.2: Multiple bounce of an acoustic ray 
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Chapter 4 

DISCUSSIO� OF RESULTS OF COUPLED MODEL  

4.1 Experimental Data 

The experimental data used in this thesis is obtained from an experiment 

conducted in shallow water region of the Delaware Bay during September 22 through 

29, 1997 (HFA 97).  Main scope of this experiment was to measure the effect of the 

ocean environment on acoustic propagation. 

During the experiment two stationary tripods were deployed on the sea 

floor, in 15m depth of water and separated horizontally by 387 m. For every 10 

minutes during the whole experiment broad-band (0.6-18.0 kHz) chirp signals were 

transmitted every 0.345 s (pings) for 5 s and for 40 s intervals. 

Among several different types of received signals observed in HFA 97, 

data is obtained for the acoustic rays traveling from source of one receiver to 

hydrophone receivers of the other tripod which is located 387 meters away. Time 

evolution of the individual ray paths which examines only one surface bounce are 

considered here. Statistics of these single bounce rays provides the data set to which 

model comparison are performed in Chapter 4 of this thesis. 

During HFA 97 not only acoustic but also environmental measurements 

were performed. Tide height, current profiles, sound speed profiles were 

simultaneously measured. Air temperature, wind speed and wind direction 

measurements were collected at a lighthouse in the vicinity of the experimental field. 

Environmental variability was significant during the five day period of HFA 97 

experiment. Wind speed ranged from 1 m/s to 15 m/s during the experiment. For a 
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much more detailed discussion of HFA 97, the reader may refer to Heitsenrether 

(2004). 

4.2 Model Results 

The main parameter we use in studying the model performance is the 

arrival time of the eigenrays. Arrival time is the time elapsed between the transmission 

of the eigenray at the source and its detection at the receiver. In Figure 4.1 we present  
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Figure 4. 1: Eigenrays with different arrival times   

 

three eigenrays with different paths and thus different arrival times. Eigenray reflected 

from the middle region of the surface has the shortest path and thus smallest arrival 

time. Rays which are reflected from outer regions of the water surface have longer 

paths and thus bigger arrival times. 

In the Figure 4.2 we present the time histories of arrival time of eigenrays 

and Doppler shifts associated with those eigenrays obtained from linear model for 
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September 24th, 1997, 03.02 am. Wind speed is 13.9 /m s  for this simulation which is 

obtained from experimental data set. The most important factor affecting the results 
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Figure 4. 2: Time histories of arrival times and Doppler shifts for September 24th, 

1997, 03.02 am.   

    

turned out to be the horizontal location of the bounce point of the acoustic ray. Rays 

which are reflected from the middle region of the surface have smaller arrival times. 

Arrival times of these rays lead to a smaller standard deviation of arrival times and 

agree well with the experimental results. Arrival times of rays which are reflected from 

outer regions of the surface lead to peaks in Figure 4.2, to a bigger standard deviation 

of arrival times and do not agree well with the experimental results. Using an acoustic 

model different than the ray based models can lead to better results since fineness of 

the initial ray fan will not be an important factor for those models. 

 In Figure 4.2, arrival times of eigenrays and associated Doppler shifts 

appear to be in phase. This is also expected because when an acoustic ray trapped 

inside a crest on the water surface its travel path is longer which makes arrival time 
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bigger as well as bigger surface-normal velocity on the crest leads to bigger Doppler 

shift of the signal. Also when the ray is trapped inside a crest it possibly experiences  
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Figure 4. 3: Time histories of arrival times and Doppler shifts for September 24th, 

1997, 00.00 am.   

 

several surface bounces which may lead to successive Doppler shifts therefore to a 

bigger total Doppler shift. 

In Figure 4.3, time histories of arrival times and Doppler shifts for 

September 24th, 1997, 00.00 am, obtained from a linear simulation are presented. In 

this simulation, wind speed is 1 /m s , and therefore surface roughness and surface-

normal velocities are small. Therefore, arrival times of eigenrays and magnitude of 

Doppler shifts are smaller when compared to Figure 4.2. Also time series of arrival 

time and Doppler shifts in Figure 4.3 do not clearly appear to be in phase since surface 

elevation is very small and there are no well developed crests present for the wind 

speed of 1 /m s . 
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Figure 4. 4: Time histories of arrival times and Doppler shifts obtained from linear 

and nonlinear simulations for September 24th, 1997, 00.00 am.  

(continuous line refers to linear simulation, dashed line refers to 

nonlinear simulation) 

 

 In Figure 4.4, time histories of arrival times and Doppler shifts for 

September 24th, 1997, 00.00 am, obtained from linear and nonlinear simulations, are 

presented.  Since the horizontal location of bounce point has a significant effect on 

results it is hard to observe the effect of nonlinearity. When eigenrays have same 

horizontal location of bouncing points both for linear and nonlinear simulations, 

nonlinearity leads to a bigger arrival time and a bigger Doppler shift since nonlinear 

surface profile is more peaked than linear surface profile and surface-normal velocities 

are bigger for nonlinear surface profile.  This can rarely be observed by the coincident 

peaks of linear and nonlinear simulations such as on the second plot of Figure 4.3 for 

11t s=  and 34t s=  where result of nonlinear simulation is at the top of result of linear 

simulation.  
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Figure 4. 5: Effect of surface partitioning dx  on standard deviation calculations 

 

 

In Figures 4.5 and 4.6 we present standard deviation of arrival times and 

average Doppler shifts in the frequency as functions of wind speed. These statistics are 

obtained using 200 successive runs for each 1 /m s  increment of wind speed. General 

tendency of the curves presented in Figures 4.5 and 4.6 show an expected behavior. 

When wind speed and therefore surface roughness is small, standard deviation of 

arrival times and Doppler shifts in the frequency of the acoustic rays converge to zero 

since surface becomes flat and surface-normal velocities become zero. 

One of the major critics that Heitsenrether (2004) was subjected to is the 

selection of surface partitioning length, dx . Figures 4.5 and 4.6 show that this 

parameter of the wave model has a significant effect on the results. The number of  
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Figure 4. 6: Effect of surface partitioning dx  on Doppler shift calculations 

 

 

wave components used by Heitsenrether (2004) was 64� =  which agree well with 

experimental results since acoustic rays are mainly reflected from the points in the 

neighborhood of the flat surface specular point. The larger dx  leads to smaller scatter 

since the surface is less faceted.  From a convergence point of view, this is wrong, as a 

more resolved answer is by definition better.  We have since shown that the problem 

lies in having a good estimate of the minimum travel time ray, which implies reliably 

finding the eigenray reflecting closest to the flat surface specular point.  The problem 

becomes less severe at large dx  because the surface is flatter in the neighborhood of 

the original specular point, and the ray there is usually found. 

 Using a bigger number of wave components and keeping the dx  small 

enough is the correct approach of creating a spatially well represented surface profile. 

Based on this surface profile a ray based acoustic model has to be initiated using a very 

fine fan of beams to ensure that rays are mainly reflected from the points in the 
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neighborhood of the flat surface specular point. Another possible solution is to use a 

different acoustic model such as parabolic equation model.  
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Chapter 5 

CO�CLUSIO� 

In this thesis, the effect of linear and nonlinear surface gravity waves on 

high frequency acoustic propagation has been discussed. Spectral linear and nonlinear 

wave models which solve governing equations are created, and these wave models are 

coupled with an acoustic Gaussian beam model called Bellhop. Coupled wave-

acoustic models have been run with the same conditions of an experiment which was 

conducted in Delaware Bay in 1997. Results obtained by coupled wave-acoustic model 

are presented as functions of environmental parameters and are compared to 

experimental results. Limits of model applicability and validity are discussed. 

As an extension to the wave model adopted from literature, the velocity 

component in the normal direction to the surface is calculated. The surface-normal 

velocity is used in the Doppler shift calculations. 

 For future work, the primary question to be addressed is the 

understanding of the effect of spatial resolution of surface waves on the acoustic ray 

method. Simulations with different types of acoustic models such parabolic equation 

model are needed in order to discuss the validity of the ray based Gaussian beam 

approach. 

A 3D nonlinear wave model should be created. A 3D acoustic program 

which is capable of accounting for out of plane scattering should be used with 3D 

linear and 3D nonlinear wave models. 3D coupling will provide more realistic 

simulation of the underwater acoustic communication. 

Moving source and receiver have effects on the geometry of the acoustic 

ray tracing model as well as Doppler shift calculations. These effects should be 

included in the calculations. 
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Since the presence of bubbles is another important factor which affects 

underwater acoustics, a much more complete hydrodynamic model should be created 

which can account for bubbles in the water column. Also, refractive and dissipative 

effect of bubbles should be included in the acoustic model as well. 

We also know that as sound waves approach surface they are subjected to 

continuous refraction process. Therefore the approach we adopt may not be the most 

realistic approach for Doppler shift calculations. Literature about the whispering 

gallery concept should be reviewed and the effect of continuous interaction between 

rays and a curved surface at glancing incidence should be implemented in the model. 
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Appendix A 

MATLAB A�D FORTRA� PROGRAMS 

1. Matlab-2D Linear Wave Model 

 

%  Article: Douglas G.DOMMERMUTH and Dick K.P.YUE 

%   A High-Order Spectral Method for the study of   nonlinear gravity waves   

%  Cambridge, MA, USA 1986 

% Two step procedure; pseudospectral method for determining nodal amplitudes 

% and fourth order Runge-Kutta time integrator 

% James KIRBY, Cihan BAYINDIR, University of Delaware, 02/04/2008 

% Linear Version-Spectrum of Waves; Working in metric units  

clear all 

close all 

h=15;           % Water Depth, Bob Heitsenrether used h=15 meters 

g=9.81;         % Gravitational acceleration 

dt=0.1;         % Time step 

tmax=25;       % Maximum Time Of Scheme Evaluation 

t=0:dt:tmax;    % Time array 

Time=length(t);  % Length of Time Array 

N=2^10;          % Number of Fourier points;  

                        % a power of 2 for fast computation       

xmin=0;          % Minimum x value 

xmax=500;       % Pick a domain length; with Hs=1.0 and Ts=10 

                 % energy spectrum drops to zero at L~500 

                 % choose domain length accordingly 

dx=(xmax-xmin)/N;   % Step size in x 

j=0:1:N-1; 

x=dx*j;              % Space array, Periodic domain  

Lmax=xmax-xmin;      % Length of periodic domain=max wave length 

 

k1=2*pi/Lmax*(0:1:N/2);      % First portion of Wavenumber array 

k2=2*pi/Lmax*(-N/2+1:1:-1);  % Second portion of Wavenumber array 

k=[k1,k2];                   % Combine first and second Portions of  

                                   % Wave Number Array 
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W=sqrt(g*k1.*tanh(k1*h));  % wave angular frequency;  

                           % using linear dispersion relationship  

Cg=0.5.*(1+2.*k1*h./sinh(2.*k1*h)).*W./k1; %Group velocity 

Cg(1)=0; 

%---------------------------------------------------------- 

% 1st Formulation of Frequency Spectrum 

% Frequency spectrum as a function of frequency 

% Formulation for spectrum is taken from 'Random Seas and  

% Design of Maritime Structures', Goda et.al. , second edition page 28 

% equation 2.10 

% To activate uncomment following seven lines 

%------------------------------------------------------------ 

Hs=1;          % Significant wave height 

Ts=10;         % Significant wave period 

fr=W/(2*pi); 

Sf=0.257*Hs^2*Ts^-4.*(fr.^-5).*exp(-1.03.*(Ts.*fr).^-4); 

Sf(1)=0; 

Sk=Cg.*Sf./(2*pi);     % Frequency Spectrum ==> Wavenumber Spectrum 

Sk(1)=0; 

 

%---------------------------------------------------------- 

% 2nd Formulation of Frequency Spectrum 

% Frequency spectrum as a function of frequency 

% Taken from master's thesis, Bob Heitsenrether, UD marine studies 

% uses the Jonswap Spectrum given by Shore Protection Manual 

%------------------------------------------------------------ 

% X=18520;   % Equals 10 nautical miles, 1nmi=1852 meters  

% U=13;      % Wind Speed in meters per second; Bob used values between 5-13 

% gam=3.3; % Parameter for Jonswap Spectrum 

% Wp=7*pi*g/U*(g*X/U^2)^-0.33; % Peak angular frequency 

% alpha=0.076*(g*X/U)^-0.22;   % constant of equation for S(W) 

% [dum,in]=find(W<=Wp); 

% mm=max(in); 

% SW1=alpha*g^2.*W(in).^-5.*exp(-5/4*(W(in)/Wp).^-4).*gam.^exp(-(W(in)-

Wp).^2/(2*0.07^2*Wp^2)); 

% SW2=alpha*g^2.*W(mm+1:N/2+1).^-5.*exp(-5/4*(W(mm+1:N/2+1)/Wp).^-

4).*gam.^exp(-(W(mm+1:N/2+1)-Wp).^2/(2*0.09^2*Wp^2)); 

% Sw=[SW1,SW2]; 

% Sw(1)=0; 

% Sk=Cg.*Sw;     % Frequency Spectrum ==> Wavenumber Spectrum 

% Sk(1)=0; 
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% Following line is not necessary but it gives an idea about selection of  

% xmax, Horizontal length scale 

%fp=Wp/(2*pi);   Tp=1/fp; 

% According to deep water formula L~1.56 T^2 

% Make sure that xmax you choose is about at least 25 times of this value 

% since it represents the spectrum without much error 

 

a2=sqrt(2*pi*Sk*2/Lmax);   % Nodal amplitudes obtained from spectrum 

 

F2(1:N/2+1)=2*pi*rand(1,N/2+1);   % Uniformly Distributed Random Number  

 % generator for phase angles on the interval [0,2*pi]  

                              

kTANHkh=abs(k).*tanh(abs(k).*h);    % In order to avoid calculation at every time  

                                    % step product assigned to a variable   

         

W(1)=1; % Since a(1)=0 W(1) will drop out. No problem to change it. 

 

% Initial values for progressive wave; (Initial values for standing wave 

% are; n is the same and Qs=0 BRUTE FORCE METHOD 

% for j=1:1:N; 

% n(j)=sum(a(1:N/2+1).*cos(k(1:N/2+1).*x(j)+F(1:N/2+1)));         % Initial 

Values for Wat. Sur. Fluc. 

% Qs(j)=sum(a(1:N/2+1).*g./W(1:N/2+1).*sin(k(1:N/2+1).*x(j)+F(1:N/2+1)));  % 

Initial Values for Sur. Vel. Pot. 

% %Qs(1:N)=0; % Initial Value for Sur. Vel. Pot. is 0 [for standing waves] 

% end 

 

 

%INVERSE FOURIER TRANSFORM METHOD 

A2=a2(1:N/2+1).*exp(i*F2(1:N/2+1))/2; 

A(1:N/2+1)=A2;  A(N/2+2:1:N)=conj(A2(N/2:-1:2)); 

A(N/2+1)=abs(A(N/2+1)); 

B(1:N/2+1)=-i*g./W.*A2;  B(N/2+2:1:N)=conj(-i*g./W(N/2:-1:2).*A2(N/2:-1:2)); 

B(N/2+1)=abs(B(N/2+1)); 

n=N*ifft(A); 

Qs=N*ifft(B); 

 

ni=n; 

Qsi=Qs; 

% Check the spectrum if initial wsf is given correctly 

% figure(1) 
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% B=fft(ni)/N 

% b=2*B(1:N/2+1)./exp(i*F(1:N/2+1));     S_k_2=b.^2*Lmax/(4*pi) 

% plot(k(1:N/2+1),Sk,k(1:N/2+1),S_k_2(1:N/2+1),'o') 

 

 

for j=1:1:Time;    %Time Indice 

     

 %% Runge-Kutta Time Integration with Pseudospectral Method %% 

     

     % First Slope for Qs(surface vel.pot) 

    d1=-g.*n;  

    % First Slope for n(water surface fluct.) 

    m1=ifft(fft(Qs).*kTANHkh); 

    

    % Second Slope for Qs(surface vel.pot) 

    d2=-g.*(n+0.5*dt.*m1);  

    % Second Slope for n(water surface fluct.) 

    m2=ifft(fft(Qs+0.5*dt.*d1).*kTANHkh); 

     

     

    % Third Slope for Qs(surface vel.pot) 

    d3=-g.*(n+0.5*dt.*m2); 

    % Third Slope for n(water surface fluct.) 

    m3=ifft(fft(Qs+0.5*dt.*d2).*kTANHkh); 

     

     

    % Fourth Slope for Qs(surface vel.pot) 

    d4=-g.*(n+dt*m3); 

    % Fourth Slope for n(water surface fluct.) 

    m4=ifft(fft(Qs+dt*d3).*kTANHkh); 

 

     

    %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next 

    %time step 

    n=n+dt/6.*(m1+2.*m2+2.*m3+m4); 

    Qs=Qs+dt/6.*(d1+2.*d2+2.*d3+d4); 

       

%     nA(j)=n(3); 

%     nB(j)=n(45); 

%     nC(j)=n(76); 

%     nD(j)=n(108); 

%     nE(j)=n(157); 
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%     nF(j)=n(200); 

%     nG(j)=n(244); 

%     nH(j)=n(510); 

     

 % Following lines are for calculating velocity component in the normal 

 % direction which is going to be important in the Doppler shift 

 % calculations of the Acoustic rays reflected from ocean surface 

     

    Qsz=ifft(fft(Qs).*kTANHkh);  % Vertical velocity 

    FTQs=i*k.*fft(Qs); FTQs(N/2+1)=abs(FTQs(N/2+1)); % At Nyquist freq. 

    Qsx=ifft(FTQs);  % Horizontal velocity 

     

    FTn=i*k.*fft(n); FTn(N/2+1)=abs(FTn(N/2+1)); 

    nx=ifft(FTn);    % Slope of water surface fluctuation 

    udotn=(-Qsx.*nx+Qsz)./sqrt(nx.^2+1); % Velocity in the normal direction 

     

    plot(x,n),title(['Airy Waves   t=',num2str((j-1)*dt),'s']) 

    xlim([xmin xmax]) 

    ylim([-2 2]) 

   % subplot(2,1,2), plot(x,udotn); title('Velocity In Outward Normal Direction') 

    pause(0.1)  

    % j 

end 

 

 ax=0:dt:dt*(Time-1); 

 

Varianceof_initial_spectrum= 0.0624*Hs^2  % take the integral under spectrum 

(analytically) 

Varianceof_initial_wsf=var(ni) 

Varianceof_final_wsf=var(n) 

 

Hs_result_from_initialWsf=4.004*sqrt(mean((ni.^2))) 

Hs_result_from_finalWsf=4.004*sqrt(mean((n.^2)))  

 

2. Fortran-2D Linear Wave Model 

 

! Article: Douglas G.Dommermuth and Dick K.P.Yue 

!          A High-Order Spectral Method for the study of 

!          Nonlinear gravity waves     Cambridge, MA, USA 1986 

!         Two Step Procedure; pseudospectral method for determining nodal 
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!         amplitudes and fourth order Runge-Kutta time integrator 

!         Cihan BAYINDIR, James T. Kirby  University of Delaware 01/18/2009 

!         

!         Work In Metric Units 

!         Linear, 1-D, Spectrum of  Waves  

  

      program RandomSea 

      real h,g, dt,tmax,xmin,xmax,L,pi,Hs,Ts 

      integer sizet,j 

!   p is the power of 2, has to be equal to power of 2 in the 

!   coming line 

      parameter (p=11) 

!   INPUT N, has to be a power of 2 for fast computation 

!   power of 2 has to be equal to p   

      parameter (N=2**p)  

      real x(N), F2(N/2+1), k(N), W(N/2+1), fr(N/2+1) 

      real  kTANHkh(N), Cg(N/2+1) 

      real Sf(N/2+1),Sk(N/2+1),a2(N/2+1) 

      complex i, A_com_2(N/2+1), B_com_2(N/2+1) 

      complex A_com(N),B_com(N)  

      complex  Wsf(N),Qs(N) 

      complex m1(N),m2(N),m3(N),m4(N),k1(N),k2(N),k3(N),k4(N) 

      complex Qrhs1(N),Qrhs2(N),Qrhs3(N),Qrhs4(N)  

      complex Qsz(N), Qsx(N),Wsfx(N),udotn(N) 

      real I_var,sum,F_var 

      real aux 

CCCCCCCCCCCCCCC  INPUTS   CCCCCCCCCCCCCCCCCCCCCC 

!  Imaginary Number 

      i=(0.0,1.0) 

!   h is the water depth 

      h=50 

!   g is the gravitational acceleration  

      g=9.81 

!  dt is the time step 

      dt=0.1 

!  tmax is the maximum time of scheme evaluation 

      tmax=10 

! xmax is the maximum  value 

      xmax=3000 ! Enter approximately 10 times of biggest wavelength 

!  xmin is the minimum x value 

      xmin=0 

! Hs is the significant wave height 
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      Hs=1 

! Ts is the significant wave period 

      Ts=15 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

! Calculate size of t array 

      sizet=tmax/dt       

! Calculate pi 

      pi=3.141592653589793 

! pi=4*atan(1.0) ! Alternative expression for pi    

!  Calculate step size in x  

      dx=(xmax-xmin)/N 

!  Calculate wave length 

      L=xmax-xmin 

! Create Space Array 

      x(1)=xmin 

      do 10 j=1,N-1 

      x(j+1)=x(j)+dx 

 10   continue 

 

 

! Calculate Wave Number Vector For Spectral Code 

      do 11 j=1,N/2+1 

            k(j)=2*pi/L*(j-1) 

 11   continue 

      do 12 j=N/2+2,N 

             k(j)=2*pi/L*(j-N-1) 

  12  continue 

 

! kTANHkh is needed in the time stepping in order to calculate at every time step 

! calculate it here. 

       do 13 j=1,N 

          kTANHkh(j)=abs(k(j))*tanh(abs(k(j))*h) 

 13    continue 

 

 

! Calculate Angular Wave Frequency, Frequency, kTANHkh 

! Remember these are half of the spectrum up to 

! and including Nyquist frequency 

      do 14 j=1,N/2+1 

         W(j)=sqrt(g*k(j)*tanh(k(j)*h))  

         fr(j)=W(j)/(2*pi) 

         Cg(j)=0.5*(1+2*k(j)*h/sinh(2*k(j)*h))*W(j)/k(j) 
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 14   continue 

        W(1)=1   ! W(1) will be denominator in coming lines 

                 ! avoid dividing by zero. This terms drops out since 

                 ! a(1)=0 

        Cg(1)=0  ! k(1)=0 so dividing by zero creates NaN, avoid it 

                 ! this term will drop out since a(1)=0  

 

 

! In order to calculate the nodal amplitudes we need frequency spectrum 

! Formulation of the spectrum is taken from Random Seas and Design of Maritime  

! Structures, Goda et. al. second edition page 28 equation 2.10 

 

!  S(f)= Sf=frequency spectrum 

!  S(k)=Sk= wavenumber spectrum calculated from frequency spectrum 

!  a2 is the half of the real amplitude array 

!  a  is the real amplitude array which is calculated by using symmetricity  

!  of a, from a2 

 

      Sf(1)=0 

      Sk(1)=0 

      a2(1)=0    ! k(1)=0 so dividing by zero creates NaN, avoid it 

                 ! these terms will drop out since a(1)=0        

      do 15 j=2,N/2+1 

      Sf(j)=0.257*(Hs**2)*(Ts**-4)*(fr(j)**-5)*exp(-1.03*(Ts*fr(j))**-4) 

      Sk(j)=Cg(j)*Sf(j)/(2*pi) 

      a2(j)=sqrt(2*pi*Sk(j)*2/L)   

 15   continue 

 

 

 !      open (unit=10,file="Sf.txt",ACCESS='APPEND') 

 !      write(10,2) Sf 

 !2     format (f8.5) 

 !      close(10) 

            

      call urand(F2,N/2+1)  ! Call Random Number Generator 

                            ! for N/2+1 uniformly dist. 

                            ! random number 

 

 

! Initial Water Surface fluctuation and Surface Velocity Profile 

! is being constructed using inverse Fourier Transform Method 
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! A2 half of the complex amplitude matrix 

! B2 half of the complex water surface fluctuation matrix 

      do 16 j=1,N/2+1 

      A_com_2(j)=a2(j)*exp(i*F2(j))/2 

      B_com_2(j)=-i*g/W(j)*A_com_2(j) 

 16   continue 

  

      do 17 j=1,N/2+1 

        A_com(j)=A_com_2(j) 

        B_com(j)=B_com_2(j) 

 17   continue 

      do 18 j=N/2+2,N 

        A_com(j)=conjg(A_com_2(N-j+2)) 

        B_com(j)=conjg(B_com_2(N-j+2)) 

 18   continue 

        A_com(N/2+1)=abs(A_com(N/2+1)) 

        B_com(N/2+1)=abs(B_com(N/2+1)) 

 

! Initial Values for water surface fluctuation Wsf 

! and surface velocity potential Qs 

       call ifft(A_com,p,N) 

       Wsf=A_com 

       call ifft(B_com,p,N) 

       Qs=B_com 

       

      open (unit=10,file="N_and_dt_dx.txt",ACCESS='APPEND') 

      write(10,*) N , dt, dx 

      close(10) 

            

! Here Begins The Time Stepping. Time Integrator Is Fourth Order Runge-Kutta 

      do 24  j=1,sizet 

 

             !  First Slopes For Qs(surface velocity potential) and n 

             !  water surface fluctuation are denoted as k1 and m1 

             Qrhs1=Qs     

             ! Calculate RHS of evaluation equation for 1st equation 

             ! After operations Qrhs1 is changing!! 

              call fft(Qrhs1,p,N) 

              do 25 v=1,N 

              Qrhs1(v)=Qrhs1(v)*kTANHkh(z)   

 25           continue 

              call ifft(Qrhs1,p,N) 
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              do 26 v=1,N 

               k1(v)=-g*Wsf(v) 

               m1(v)=Qrhs1(v) 

               Qrhs2(v)=Qs(v)+0.5*dt*k1(v) 

  26         continue 

 

              ! Second Slopes For Qs(surface velocity potential) and n 

              ! water surface fluctuation are denotes as k2 and m2 

              ! Calculate RHS of evaluation equation for 2nd equation 

              ! After operations Qrhs2 is changing!! 

             call fft(Qrhs2,p,N) 

             do 27 v=1,N 

             Qrhs2(v)=Qrhs2(v)*kTANHkh(v)  

 27          continue 

             call ifft(Qrhs2,p,N) 

             do 28 v=1,N 

                k2(v)=-g*(Wsf(v)+0.5*dt*m1(v)) 

                m2(v)=Qrhs2(v) 

                Qrhs3(v)=Qs(v)+0.5*dt*k2(v) 

 28          continue           

 

              ! Third Slopes For Qs(surface velocity potential) and n 

              ! water surface fluctuation are denotes as k3 and m3                      

              ! Calculate RHS of evaluation equation for 2nd equation 

              ! After operations Qrhs2 is changing!! 

             call fft(Qrhs3,p,N) 

             do 29 v=1,N 

               Qrhs3(v)=Qrhs3(v)*kTANHkh(v)   

 29         continue 

             call ifft(Qrhs3,p,N) 

             do 30 v=1,N 

                k3(v)=-g*(Wsf(v)+0.5*dt*m2(v)) 

                m3(v)=Qrhs3(v) 

                Qrhs4(v)=Qs(v)+dt*k3(v) 

 30          continue    

 

 

              ! Fourth  Slopes For Qs(surface velocity potential) and n 

              ! water surface fluctuation are denotes as k4 and m4 

              ! Calculate RHS of evaluation equation for 2nd equation 

              ! After operations Qrhs2 is changing!! 

             call fft(Qrhs4,p,N) 
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             do 31 v=1,N 

              Qrhs4(v)=Qrhs4(v)*kTANHkh(v)  

 31          continue 

             call ifft(Qrhs4,p,N) 

             do 32 v=1,N 

                k4(v)=-g*(Wsf(v)+dt*m3(v)) 

                m4(v)=Qrhs4(v) 

                Wsf(v)=Wsf(v)+dt/6*(m1(v)+2*m2(v)+2*m3(v)+m4(v)) 

                Qs(v)=Qs(v)+dt/6*(k1(v)+2*k2(v)+2*k3(v)+k4(v)) 

 32          continue 

 

            

!         Write Water Surface Fluctuation To File       

      open (unit=9,file="Water Surface Fluctuation.txt",ACCESS='APPEND') 

      do 33 z=1,N 

       write(9,1) Wsf(z) 

 1     format (f8.5,f8.5) 

 33   continue 

       close(9) 

 

!----------------------------------------------------------------------------------       

           ! Following lines are for calculating velocity component in the normal  

           ! direction which is going to be important in the Doppler shift  

           ! calculations of the acoustic rays reflected from the ocean surface 

            

           ! Qsz is the z derivative of Qs; vertical velocity calculate from spectral  

           ! formulation 

           Qsz=Qs 

           call fft(Qsz,p,N) 

           do 34 v=1,N 

           Qsz(v)=Qsz(v)*kTANHkh(v) 

 34       continue 

           call ifft(Qsz,p,N) 

           Qsz=real(Qsz) ! Avoid roundoff  errors in the imaginary part            

 

 

           ! Qsx is the x derivative of Qs, horizontal velocity 

           Qsx=Qs 

           call fft(Qsx,p,N) 

           do 35 v=1,N 

           Qsx(v)=Qsx(v)*k(v)*i 

 35        continue 
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           Qsx(N/2+1)=abs(Qsx(N/2+1)) 

           call ifft(Qsx,p,N) 

           Qsx=real(Qsx)  ! Avoid roundoff errors in the imaginary part        

  

           ! Wsfx is the x derivative of water surface fluc. Wsf 

           Wsfx=Wsf  

           call fft(Wsfx,p,N) 

           do 36 v=1,N 

           Wsfx(v)=Wsfx(v)*k(v)*i 

 36        continue 

           Wsfx(N/2+1)=abs(Wsfx(N/2+1)) 

           call ifft(Wsfx,p,N) 

           Wsfx= real(Wsfx) ! Avoid roundoff errors in the imaginary part 

 

 

          ! udotn is the dot product of velocity u with normal gives the velocity 

!component 

          ! in the normal direction 

          do 37 v=1,N 

          udotn(v)=(-Qsx(v)*Wsfx(v)+Qsz(v))/sqrt(Wsfx(v)**2+1) 

 37       continue 

!--------------------------------------------------------------------------- 

       

 24      continue 

       

 

      ! Check if the energy is conserved 

      ! I_var is the initial variance take the integral of Sf from 0 to inf 

      ! Gives you initial variance 

      I_var=0.0624*(Hs**2) 

      

       

      ! F-var is the Final variance of water surface fluctuation   

      sum=0 

       do 40 j=1,N 

        sum=sum+(Wsf(j))**2 

 40    continue 

      F_var=sum/N 

 

 

      print *, 'Initial Var=', I_var,'Final Var=',F_var 

      print *, ' udotn', udotn 
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      stop 

      end 

 

!!!!!!!!!!!  SUBROUTINES !!!!!!!!!!!!!! 

 

!    Simple random number generator 

      subroutine urand(F,N) 

      integer  N,j, seed 

      real pi,old,c,d 

      real F(N) 

      PI=3.141592653589793 

!     pi=4*atan(1.0) ! Alternative expression for pi    

      seed=11    

      old=seed 

      j=1 

      do 1 j=1,N-1,2 

        c=mod ((57*old+1),2*pi) 

        d=mod ((57*c+1),2*pi) 

        old=d 

        F(j)=c 

        F(j+1)=d 

 1    continue 

      return 

      end 

! End of simple random number generator 

 

 

 

! 1-D Fast Fourier Transfrom 

! N=2^p, A is the complex array to be fourier transformed 

      subroutine fft(A,p,N) 

      complex A(N),U,W,T 

!  Divide all elements by N 

      do 1 J=1,N 

 1    A(J)=A(J)/N 

!  Reorder Sequence According to fig 12.8 of Newland 

      NBD2=N/2 

      NBM1=N-1 

      J=1 

      do 4 L=1,NBM1 

      if(L.ge.J) go to 2 

      T=A(J) 
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      A(J)=A(L)  

      A(L)=T 

 2    K=NBD2 

 3    if(K.ge.J) go to 4 

      J=J-K 

      K=K/2 

      go to 3 

 4    J=J+K 

!   Calculate FFT acoording to fig 12.5 

      PI=3.141592653589793 

      do 6 M=1,p 

      U=(1.0,0.0) 

      ME=2**M 

      K=ME/2 

      W=CMPLX(COS(PI/K),-SIN(PI/K)) 

      do 6 J=1,K 

      do 5 L=J,N,ME 

      LPK=L+K 

      T=A(LPK)*U 

      A(LPK)=A(L)-T 

 5    A(L)=A(L)+T 

 6    U=U*W 

      return 

      end 

! End of 1-D Fast Fourier Transform 

 

 

      

! 1-D Inverse Fast Fourier Transform 

! Taken from www.algarcia.org/nummeth/Fortran/ifft.f 

! And normalization has been changed by multiplying with N rather than dividing by N 

! Due to definition of Fourier Pair 

      subroutine ifft(A,p,N) 

      integer N 

      complex A(N) 

!    Routine to compute inverse Fourier transform using FFT algorithm 

      integer j 

      do j=1,N 

         A(j)=conjg(A(j)) 

      enddo 

       

      call fft(A,p,N) 



 61 

  

      do j=1,N 

         A(j)=conjg(A(j))*N ! Compute conjugates and Normalize 

      enddo 

      return  

      end 

! End of 1-D Inverse Fourier Transform 

 

3. Matlab-3D Linear Wave Model 

 

%   Article: Douglas G.DOMMERMUTH and Dick K.P.YUE 

%   A High-Order Spectral Method for the study of  

%    nonlinear gravity waves  Cambridge, MA, USA 1986 

%   Two step procedure; pseudospectral method for determining nodal amplitudes 

%    and fourth order Runge-Kutta time integrator 

% James KIRBY, Cihan BAYINDIR, University of Delaware, 1/20/2009 

 

% 2-D, Linear Version-Spectrum of Waves; Working in metric units  

clear all 

close all 

h=15;           % Water Depth 

g=9.81;         % Gravitational acceleration 

dt=0.25;         % Time step 

tmax=50;       % Maximum Time Of Scheme Evaluation 

t=0:dt:tmax;    % Time array 

Time=length(t); % Length of Time Array 

 

N=2^9;            % Number of Fourier points in x direction;  

                  % a power of 2 for fast computation 

                   

M=2^9;            % Number of Fourier points in y direction 

 

xmin=0;           % Minimum x value 

ymin=0;           % Minimum y value 

xmax=780;        % Pick a domain length in x direction; 

     

ymax=500;        % Pick a domain length in y direction; with Hs=1.0  

                   % and Ts=15  L~350 So choose a length which is on the order 

                  % of 10 times this value 
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dx=(xmax-xmin)/N;   % Step size in x 

j=0:1:N-1; 

x=dx*j;             % x array, Periodic domain  

Lx=xmax-xmin;    % Length of periodic domain 

 

dy=(ymax-ymin)/M; 

j=0:1:M-1; 

y=dy*j;           % y array, Periodic domain  

Ly=ymax-ymin;  % Length of periodic in y dir  

 

dkx=2*pi/Lx; 

kx1=dkx*(0:1:N/2);      % First portion of kx array 

kx2=dkx*(-N/2+1:1:-1);  % Second portion of kx array 

kx=[kx1,kx2];           % Combine first and second Portions of  

                                  % kx Array 

                                

dky=2*pi/Ly; 

ky1=dky*(0:1:M/2);      % First portion of ky array 

ky2=dky*(-M/2+1:1:-1);  % Second portion of ky array 

ky=[ky1,ky2];           % Combine first and second Portions of  

                                  % ky Array 

                         

%Create wavenumber matrix 

[KX,KY]=meshgrid(kx,ky); 

k=sqrt(KX.*KX+KY.*KY); 

k=k'; 

 

W=sqrt(g*k.*tanh(k*h));  % Angular frequency by linear dispersion relationship 

 

 

W(1,1)=0.01;  % To avoid dividing by zeros need these modifications, these drop out 

k(1,1)=0.01;  % To avoid dividing by zeros need these modifications, these drop out 

 

Cg=0.5.*(1+2.*k*h./sinh(2.*k*h)).*W./k;    %Group velocity 

Cg(1,1)=0; 

 

 

 

kTANHkh=abs(k).*tanh(abs(k).*h);    % In order to avoid calculation at every time  

                                    % step product assigned to a variable 

                                    % Will be needed inside the time stepping 

kTANHkh=kTANHkh'; 
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% ------------------------------------------------------------ 

% ------------------Direction Matrix-------------------------- 

TetaPr=0;  % Principal direction of wave propogation 

                  % Pick one of the following values 

                   % 0, 45, 90 degrees or arbitrarily 

% TetaRelative=0;  % Relative direction of acoustic communication path 

%                  % with respect to principal direction of wave propogation 

%                  % Pick one of the following values 

%                  % For TetaPr=0;  Select 0 or 45 or 90 

%                  % For TetaPr=45; Select 0, 45 

%                  % For TetaPr=90; Select 0, -45 

 

%Create Theta(direction) matrix 

Teta(1,1)=0;        % kx=0 so avoid dividing by zero, theta is not defined at this point, 

%set any number 

Teta(2:N/2+1,1)=0;  % kx=0 so avoid dividing by zero 

Teta(N/2+2:N,1)=180; 

for j=2:1:M/2+1;                                                       

Teta(1:N,j)=180/pi*(atan(ky(j)./kx(1:N))); 

end 

Teta(N/2+2:N,2:M/2+1)=180+Teta(N/2+2:N,2:M/2+1); 

Teta(1,2:M/2+1)=90; 

Teta(1,M/2+2:M)=-90; 

 for p=2:1:N/2+1; 

     Teta(p,M/2+2:M)=180/pi*(atan(ky(M/2+2:M)./kx(p))); 

 end 

for p=N/2+2:1:N; 

    Teta(p,M/2+2:M)=-180+180/pi*(atan(ky(M/2+2:M)./kx(p))); 

end                                     

%-------------------------------------------------------------- 

 

 

                                     

%---------------------------------------------------------- 

% 1st Formulation of Frequency Spectrum 

% Frequency spectrum as a function of frequency 

% Formulation for spectrum is taken from 'Random Seas and  

% Design of Maritime Structures', Goda et.al. , second edition page 28 

% equation 2.10 

% To activate uncomment following seven lines 
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%------------------------------------------------------------ 

%  Hs=1;          % Significant wave height 

%  Ts=15;         % Significant wave period 

%  fr=W/(2*pi); 

%  Sf=0.257*Hs^2*Ts^-4.*(fr.^-5).*exp(-1.03.*(Ts.*fr).^-4); 

%  Sf(1,1)=0; 

%  Sk=Cg.*Sf./(2*pi);     % Frequency Spectrum ==> Wavenumber Spectrum 

%  Sk(1,1)=0; 

 

%---------------------------------------------------------- 

% 2nd Formulation of Frequency Spectrum 

% Frequency spectrum as a function of frequency 

% Taken from master's thesis, Bob Heitsenrether, UD marine studies 

% uses the Jonswap Spectrum given by Shore Protection Manual 

%------------------------------------------------------------ 

 X=18520;    % Equals 10 nautical miles, 1nmi=1852 meters  

 U=15;       % Wind Speed in meters per second; Bob used values between 5-13 

 gam=3.3;    % Parameter for Jonswap Spectrum 

 Wp=7*pi*g/U*(g*X/U^2)^-0.33;  % Peak angular frequency 

 alpha=0.076*(g*X/U)^-0.22;    % constant of equation for S(W) 

cons=alpha*g^2; 

                           

 for p=1:1:N; 

    for j=1:1:M; 

      if W(p,j)<=Wp; 

      Sw(p,j)=cons.*(W(p,j).^-5).*(exp(-5/4*(W(p,j)/Wp).^-4)).*(gam.^exp(-(W(p,j)-

Wp).^2/(2*0.07^2*Wp^2))); 

      elseif  W(p,j)>Wp; 

      Sw(p,j)=cons.*(W(p,j).^-5).*(exp(-5/4*(W(p,j)/Wp).^-4)).*(gam.^exp(-(W(p,j)-

Wp).^2/(2*0.09^2*Wp^2)));  

      end 

    end 

 end 

 Sw(1,1)=0; 

 Sk=Cg.*Sw;     % Frequency Spectrum ==> Wavenumber Spectrum 

 Sk(1,1)=0;                         

                                                        

%% Numerical Integral Under Jonswap Spectrum=Initial Variance 

%  Need to evaluate to understand if the scheme is conserving energy 

 

F1 = @(W)alpha*g^2.*W.^-5.*exp(-5/4*(W/Wp).^-4).*gam.^exp(-(W-

Wp).^2/(2*0.07^2*Wp^2)); 
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Initial_variance1 = quad(F1,0,Wp);  

 

F2 =  @(W)alpha*g^2.*W.^-5.*exp(-5/4*(W/Wp).^-4).*gam.^exp(-(W-

Wp).^2/(2*0.09^2*Wp^2)); 

 

Initial_variance2 = quad(F2,Wp,10);  

Initial_variance =Initial_variance1 +Initial_variance2  

  

 

%Sech^2 type directional spreading function. Reference: "Directional 

%Spectra of wind generated waves", Donelan M.A., Hamilton J., and Hui, W.H. 

Wnormal=W/Wp; 

for p=1:1:N; 

    for j=1:1:M; 

      if (Wnormal(p,j)<=0.56 | Wnormal(p,j)>=1.6); 

           Beta(p,j)=1.24; 

            

      elseif (0.56< Wnormal(p,j)< 0.95); 

        Beta(p,j)=2.61*(Wnormal(p,j))^1.3; 

         

      elseif  (0.95 < Wnormal(p,j)< 1.6); 

        Beta(p,j)=2.28*(Wnormal(p,j))^-1.3;            

       end 

    end 

end 

 Gt=Beta/2.*(sech(Beta.*(pi/180*(Teta-TetaPr)))).^2; 

   SkGt=Sk.*Gt; 

                                                                                                        

% Nodal amplitudes obtained from directional spectrum 

 

a=sqrt(SkGt*dkx*dky*2./k); %Use Jacobian of Transformation to convert S(k,teta) to 

%S(kx,ky) % {J}=k  

a(1,1)=0; 

%a2=a(1:N,1:M/2+1); % Half of the nodal amplitude matrix 

 

%% Use uniformly distributed random number generator for phase angles 

 F=2*pi*rand(N,M); % Uniformly Distributed Random Number generator 

                       % for phase angles on the 

                       % interval [0,2*pi]                                      

                                     

% Initial Conditions For Water Surface Fluctuation and Velocity Potential 
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% First define complex amplitudes and then by inverse Fourier Transform 

% construct the water surface 

 

Aorg=a.*exp(i*F)/2;   Borg=-i*g./W.*Aorg; 

A=Aorg;               B=Borg; 

 

A(2:N,2:M/2)=Aorg(2:N,2:M/2)+ conj(Aorg(N:-1:2,M:-1:M/2+2)); 

A(2:N,M/2+2:M)=Aorg(2:N,M/2+2:M)+conj(Aorg(N:-1:2,M/2:-1:2)); 

 

A(1,M/2+2:M)=conj(A(1,M/2:-1:2)); 

A(N/2+2:N,1)=conj(A(N/2:-1:2,1)); 

 

 

B(2:N,2:M/2)=Borg(2:N,2:M/2)+ conj(Borg(N:-1:2,M:-1:M/2+2)); 

B(2:N,M/2+2:M)=Borg(2:N,M/2+2:M)+conj(Borg(N:-1:2,M/2:-1:2)); 

 

B(1,M/2+2:M)=conj(B(1,M/2:-1:2)); 

B(N/2+2:N,1)=conj(B(N/2:-1:2,1)); 

 

A(N/2+1,:)=abs(A(N/2+1,:)); % At Nyquist frequency need real numbers 

A(:,M/2+1)=abs(A(:,M/2+1)); % At Nyquist frequency need real numbers 

A(N/2+2:N,M/2+1)=A(N/2:-1:2,M/2+1); % At Nyquist frequency real numbers has to 

% be symmetric 

 

B(N/2+1,:)=abs(B(N/2+1,:)); % At Nyquist frequency need real numbers 

B(:,M/2+1)=abs(B(:,M/2+1)); % At Nyquist frequency need real numbers 

B(N/2+2:N,M/2+1)=B(N/2:-1:2,M/2+1); % At Nyquist frequency real numbers has to 

%be symmetric 

 

n=N*M*ifft2(A); 

Qs=N*M*ifft2(B); 

 

n=n'; 

Qs=Qs'; 

 

 

figure 

for j=1:1:Time;    %Time Indice 

    % Runge-Kutta Time Integration with Pseudospectral Method %% 

    

    % First Slope for Qs(surface vel.pot) 

    d1=-g.*n;  
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    % First Slope for n(water surface fluct.) 

    m1=ifft2(fft2(Qs).*kTANHkh); 

    

    % Second Slope for Qs(surface vel.pot) 

    d2=-g.*(n+0.5*dt.*m1);  

     

    % Second Slope for n(water surface fluct.) 

    m2=ifft2(fft2(Qs+0.5*dt.*d1).*kTANHkh); 

     

    % Third Slope for Qs(surface vel.pot) 

    d3=-g.*(n+0.5*dt.*m2); 

  

    % Third Slope for n(water surface fluct.) 

    m3=ifft2(fft2(Qs+0.5*dt.*d2).*kTANHkh); 

     

    % Fourth Slope for Qs(surface vel.pot) 

    d4=-g.*(n+dt*m3); 

     

    % Fourth Slope for n(water surface fluct.) 

    m4=ifft2(fft2(Qs+dt*d3).*kTANHkh); 

  

    %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next 

    %time step using fourth order Runge Kutta time integrator 

    n=n+dt/6.*(m1+2.*m2+2.*m3+m4); 

    Qs=Qs+dt/6.*(d1+2.*d2+2.*d3+d4); 

 

% Store time series at some points 

%     nA(j)=n(3,8); 

%     nB(j)=n(60,60); 

%     nC(j)=n(90,3); 

%     nD(j)=n(110,235); 

%     nE(j)=n(145,82); 

%     nF(j)=n(21,4); 

%     nG(j)=n(12,250); 

%     nH(j)=n(200,14); 

     

        

     

% Following lines are added in order to calculate velocity components in 

% the normal direction 

%    FT2Qsx=i*KX.*fft2(Qs); FT2nx=i*KX.*fft2(n); 
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%    FT2Qsy=i*KY.*fft2(Qs); FT2ny=i*KY.*fft2(n); 

%     

%    FT2Qsx(N/2+1,:)=abs(FT2Qsx(N/2+1,:)); 

%    FT2Qsx(:,M/2+1)=abs(FT2Qsx(:,M/2+1)); 

%    FT2nx(N/2+1,:)=abs(FT2nx(N/2+1,:)); 

%    FT2nx(:,M/2+1)=abs(FT2nx(:,M/2+1)); 

%     

%    FT2Qsy(N/2+1,:)=abs(FT2Qsy(N/2+1,:)); 

%    FT2Qsy(:,M/2+1)=abs(FT2Qsy(:,M/2+1)); 

%    FT2ny(N/2+1,:)=abs(FT2ny(N/2+1,:)); 

%    FT2ny(:,M/2+1)=abs(FT2ny(:,M/2+1)); 

%     

%    Qsz=ifft2(kTANHkh.*fft2(Qs));  % Vertical Velocity at the surface 

%    Qsx=ifft2(FT2Qsx);   % Horizontal Velocity in the x dir at the surface 

%    Qsy=ifft2(FT2Qsy);   % Horizontal Velocity in the y dir at the surface 

%    nx=ifft2(FT2nx);     % x derivative of water surface fluc. 

%    ny=ifft2(FT2ny);     % y derivative of the water surface fluc. 

%    udotn=(-Qsx.*nx-Qsy.*ny+Qsz)./sqrt(nx.^2+ny.^2+1); % Velocity in the normal 

%direction 

     

 nalongpath=n(1,:); 

 

 subplot(2,1,1), 

 pcolor(real(n)), shading interp, axis('equal') 

 % hold on 

 caxis([-0.25 0.25])    % Set limits for color map to prevent sudden darkening and     

                                    %lightening 

%view([0,-2,10]) 

title(['Airy Waves   t=',num2str(j*dt),'s']) 

%subplot(2,1,2),quiver(1:N,1:M,Qsx,Qsy), axis equal 

subplot(2,1,2),plot(x,nalongpath),ylim([-1  1]) 

pause(0.05)   

%    j 

end 

4. Fortran-3D Linear Wave Model 

 

!          Article: Douglas G.Dommermuth and Dick K.P.Yue 

!          A High-Order Spectral Method for the study of 

!          Nonlinear gravity waves     Cambridge, MA, USA 1986 

!   
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!         Two Step Procedure; pseudospectral method for determining nodal 

!         amplitudes and fourth order Runge-Kutta time integrator 

!         Cihan BAYINDIR, James T. Kirby  University of Delaware 01/22/2009 

!         

!         Work In Metric Units 

!         Linear, 2-D, Spectrum of  Waves  

  

      program RandomSea 

      real h,g, dt,tmax,xmin,xmax,L,pi,Hs,Ts 

      integer sizet,j 

!     Enter p1, an integer , is going to be the power of  2 

      parameter (p1=8) 

!     Enter p2, an integer , is going to be the power of  2 

      parameter (p2=8) 

!     N has to be a  power of 2 for Fast Fourier Trans. 

      parameter (N=2**p1) 

!     M has to be a power of 2 for Fast Fourier Trans. 

      parameter (M=2**p2) 

      real dkx, dky 

      real x(N),y(N), F(N,M),  fr(N,M) 

      real kx(N), ky(N), k(N,M), W(N,M) 

      real KXa(N,1), KYa(M,1) 

      real Cg(N,M),  kTANHkh(N,M), Beta(N,M) 

      real Sf(N,M),Sw(N,M),Sk(N,M), Wnormal(N,M) 

      real wa,wb,step1, waxis1(40001),func1(40001), Sumodd1, Sumeven1 

      real step2, func2(40001), waxis2(40001), Sumodd2, Sumeven2 

      real Fetch, U, gam, Wp, alpha, cons 

      real TetaPr, Go , Teta(N,M) 

      real Gt(N,M), SkGt(N,M), a(N,M) 

      double precision s, arg1, arg2 

      complex i 

      complex A_com_org(N,M),B_com_org(N,M) 

      complex A_com(N,M), B_com(N,M)  

      complex Wsf(N,M),Qs(N,M) 

      complex Wsf_tr(N,M), Qs_tr(N,M) 

      complex m1(N,M),m2(N,M),m3(N,M),m4(N,M),k1(N,M),k2(N,M) 

      complex k3(N,M),k4(N,M) 

      complex Qrhs1(N,M),Qrhs2(N,M),Qrhs3(N,M),Qrhs4(N,M) 

      complex Qsz(N,M),Qsx(N,M),Qsy(N,M),Wsfx(N,M),Wsfy(N,M)  

      complex udotn(N,M) 

      real I_var,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8 

      real  var1,var2,var3,var4,var5,var6,var7,var8 



 70 

!----------------------------------------------------------- 

! ----------------------  INPUTS  -------------------------- 

! ________________________________________ 

!  Imaginary Number 

      i=(0.0,1.0) 

!   h is the water depth 

      h=15 

!   g is he gravitational acceleration  

      g=9.81 

!  dt is the time step 

      dt=0.1 

!  tmax is the maximum time of scheme evaluation 

      tmax=1500 

!  xmax is the maximum x  value 

      xmax=500 ! Enter approximately 10 times of biggest wavelength 

!  xmin is the minimum x value 

      xmin=0 

!  ymax is the maximum y value 

      ymax=500 ! Enter approximately 10 times of biggest wavelength 

!  ymin is the minimum y value 

      ymin=0 

 

! Principal Direction Of Wave Propogation in Degrees 

      TetaPr=45 

! There are some other inputs to this code. For example fetch length and wind speed 

! in specified for Jonswap spectrum as inputs at further lines. 

! ----------------------------------------------------------------- 

! ----------------------------------------------------------------- 

! Calculate size of t array 

      sizet=tmax/dt       

! Calculate pi 

      pi=3.141592653589793 

 

! pi=4*atan(1.0) ! Alternative expression for pi    

!  Calculate step size in x  

      dx=(xmax-xmin)/N 

!  Calculate wave length 

      Lx=xmax-xmin 

! Create Space Array 

      x(1)=xmin 

      do 10 j=1,N-1 

      x(j+1)=x(j)+dx 
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 10   continue 

 

!  Calculate step size in y 

      dy=(ymax-ymin)/M 

      Ly=ymax-ymin 

! Create Space Array 

      y(1)=ymin 

      do 11 j=1,N-1 

      y(j+1)=y(j)+dx 

 11   continue 

 

! Calculate fundamental wave number component in x and y directions 

      dkx=2*pi/Lx 

      dky=2*pi/Ly 

 

! Calculate Wave Number Vector in x Direction 

! Calculate Wave Number Vector in y Direction 

      do 12 j=1,N/2+1 

            kx(j)=dkx*(j-1) 

            ky(j)=dky*(j-1) 

            KXa(j,1)=kx(j) 

            KYa(j,1)=ky(j) 

 12    continue 

      do 13 j=N/2+2,N 

             kx(j)=dkx*(j-N-1) 

             ky(j)=dky*(j-N-1) 

             KXa(j,1)=kx(j) 

             KYa(j,1)=ky(j) 

 13    continue 

 

 

! -------------------------------------------------- 

! -------------- Create Theta Matrix --------------- 

! -------------------------------------------------- 

! -------------------------------------------------- 

       Teta(1,1)=0 

       do 14 j=2,N/2+1 

             Teta(j,1)=0 

 14    continue 

       do 15 j=N/2+2,N 

             Teta(j,1)=180 

 15    continue 
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       do 16 z=2,M/2+1 

          do 17 j=1,N 

             Teta(j,z)=180/pi*atan(ky(z)/kx(j)) 

 17       continue 

 16    continue 

 

 

      do 18 j=N/2+2,N 

           do 19 z=2,M/2+1 

              Teta(j,z)=180+Teta(j,z) 

              Teta(1,z)=90 

 19        continue 

 18   continue 

      

      do 20 j=2,N/2+1 

          do 21 z=M/2+2,M 

             Teta(j,z)=180/pi*atan(ky(z)/kx(j)) 

             Teta(1,z)=-90 

 21       continue 

 20    continue 

 

      do 22 j=N/2+2,N 

         do 23 z=M/2+2,M 

             Teta(j,z)=-180+180/pi*atan(ky(z)/kx(j)) 

 23       continue 

 22   continue 

!---------------------------------------------------------------- 

 

 

 

        

!!!! In order to activate Goda type spreading function uncomment the following 3 

blocks. 

!!!! and comment out the next three blocks. 

!!!! In this type of formulation directional spreading only depends on angle not 

frequency. 

 

c$$$!----------------------------------------------------------------------- 

c$$$! Calculate Wave Number Matrix k  using k^2=kx^2+ky^2 

c$$$! Calculate Angular Frequency Matrix W using Linear dispersion relationship 

c$$$! Calculate Group Velocity Cg 
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c$$$! Calculate Frequency Matrix 

c$$$! Calculate kTANHkh here  in order to prevent calculation every time step 

c$$$! Calculate Sf, frequency Spectrum, Goda et.al. 'Random Seas and Design of 

c$$$! Maritime Structures' Second edition page 28 

c$$$! Calculate wavenumber spectrum from frequency  Spectrum 

c$$$! Hs is the significant wave height 

c$$$      Hs=1 

c$$$! Ts is the significant wave period 

c$$$      Ts=15 

c$$$       do 24 j=1,N 

c$$$          do 25 z=1,M 

c$$$             k(j,z)=sqrt(kx(j)**2+ky(z)**2) 

c$$$             W(j,z)=sqrt(g*k(j,z)*tanh(k(j,z)*h)) 

c$$$             Cg(j,z)=0.5*(1+2*k(j,z)*h/sinh(2*k(j,z)*h))*W(j,z)/k(j,z) 

c$$$             fr(j,z)=W(j,z)/(2*pi) 

c$$$             kTANHkh(j,z)=abs(k(j,z))*tanh(abs(k(j,z))*h) 

c$$$             Sf(j,z)=0.257*(Hs**2)*(Ts**-4) 

c$$$     &            *(fr(j,z)**-5)*exp(-1.03*(Ts*fr(j,z))**-4) 

c$$$             Sk(j,z)=Cg(j,z)*Sf(j,z)/(2*pi) 

c$$$ 25       continue 

c$$$ 24    continue 

c$$$ 

c$$$! ------------------------------------------------------ 

c$$$ 

c$$$! In order to avoid dividing by zeros and getting NaN s set arbitrary numbers for 

elements 

c$$$! (1,1). These will all drop out since corresponding amplitude a(1,1)=0  

c$$$       k(1,1)=1 

c$$$       W(1,1)=1 

c$$$       Cg(1,1)=0 

c$$$       kTANHkh(1,1)=1 

c$$$       Sw(1,1)=0 

c$$$       Sk(1,1)=0 

c$$$!------------------------------------------------------------------------ 

c$$$! Mitsuyau Type Directional Spectrum as a function of azimuth(teta) 

c$$$! Formulation for the spectrum is taken From Random Seas and Design of 

c$$$! Maritime Structures, Goda et.al. second edition page 32 eq. 2.21 and 

c$$$! eq. 2.23 

c$$$      s=10 

c$$$      call gamma(s+1,arg1) 

c$$$      call gamma(2*s+1,arg2) 

c$$$      Go=1/pi*(2**(2*s-1))*(arg1)**2/arg2 
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c$$$      call urand2D(F,N,M) 

c$$$! Gt is the directional Spreading Function 

c$$$! S(k,Teta)=S(k)G(Teta)=SkGt is the directional frequency spectrum 

c$$$! a is the real amplitude matrix. Jacobian of transformation(k) is used  

c$$$! to convert S(k,Teta) to S(dkx,dky) 

c$$$! A_com is the complex amplitude matrix 

c$$$! B_com is the complex water surface fluctuation coeff. matrix 

c$$$! A_com_org is the complex amplitude matrix derived directly from a 

c$$$! and A_com will be created by taking the tranpose of the A_com_org and 

c$$$! adding it to A_com_org.  Same thing for B_com. 

c$$$! Also at Nyquist Limit components of the complex amplitude matrix has to be   

!! real  

c$$$! and symmetric 

c$$$      do 26 j=1,N 

c$$$        do 27 z=1,M 

c$$$          Gt(j,z)=Go*(cos((pi/180*(Teta(j,z)-TetaPr))/2))**(2*s) 

c$$$          SkGt(j,z)=Sk(j,z)*Gt(j,z) 

c$$$          a(j,z)=sqrt(SkGt(j,z)*dkx*dky*2/k(j,z)) 

c$$$          A_com_org(j,z)=a(j,z)*exp(i*F(j,z))/2 

c$$$          B_com_org(j,z)=-i*g/W(j,z)*A_com_org(j,z) 

c$$$ 27    continue 

c$$$ 26   continue 

c$$$ 

c$$$! ---------------------------------------------------------------------- 

 

!!! Use Jonswap Spectrum and sech^2 type spreading function given by Donelan, 

Hamilton and Hui 

 

!----------------------------------------------------------------- 

 

! Calculate Wave Number Matrix k  using k^2=kx^2+ky^2 

! Calculate Angular Frequency Matrix W using Linear dispersion relationship 

! Calculate Group Velocity Cg 

! Calculate Frequency Matrix 

! Calculate kTANHkh here  in order to prevent calculation every time step 

! Calculate Sw, angular frequency spectrum, using Jonswap spectra. Taken from 

! Bob Heitsenrether's thesis. 

! Calculate wavenumber spectrum from angular frequency Spectrum 

 

       Fetch=18520     ! Fetch Length taken= 10 nautical miles 

       U=15            ! Wind speed in meters/ second 

       gam=3.3         ! constant for jonswap spectrum 
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       Wp=7*pi*g/U*((g*Fetch/(U**2))**-0.33)  ! Peak angular frequency 

       alpha=0.076*((g*Fetch/U)**-0.22) 

       cons=alpha*(g**2) 

 

       do 24 j=1,N 

          do 25 z=1,M 

             k(j,z)=sqrt(kx(j)**2+ky(z)**2) 

             W(j,z)=sqrt(g*k(j,z)*tanh(k(j,z)*h)) 

             Cg(j,z)=0.5*(1+2*k(j,z)*h/sinh(2*k(j,z)*h))*W(j,z)/k(j,z) 

             fr(j,z)=W(j,z)/(2*pi) 

             kTANHkh(j,z)=abs(k(j,z))*tanh(abs(k(j,z))*h) 

             if (W(j,z).le.Wp) then 

             Sw(j,z)=cons*(W(j,z)**-5)*exp(-1.25*(W(j,z)/Wp)**-4)* 

     &            (gam**exp(-((W(j,z)-Wp)**2)/(2*(0.07*Wp)**2))) 

             elseif (W(j,z).gt.Wp) then  

              Sw(j,z)=cons*(W(j,z)**-5)*exp(-1.25*(W(j,z)/Wp)**-4)* 

     &            (gam**exp(-((W(j,z)-Wp)**2)/(2*(0.09*Wp)**2))) 

             endif  

             Sk(j,z)=Cg(j,z)*Sw(j,z) 

 25       continue 

 24    continue 

!---------------------------------------------------------------------------------- 

 

! In order to avoid dividing by zeros and getting NaN s set arbitrary numbers for 

elements 

! (1,1). These will all drop out since corresponding amplitude a(1,1)=0  

       k(1,1)=1 

       W(1,1)=1 

       Cg(1,1)=0 

       kTANHkh(1,1)=1 

       Sw(1,1)=0 

       Sk(1,1)=0 

! ------------------------------------------------------------------------------- 

 

! sech^2 type directional spreading function. Reference " Directional Spectra of wind  

 ! generated waves", Donelan M.A., Hamilton J., and Hui, W.H. 

      Wnormal=W/Wp 

      do 26 j=1,N 

        do 27 z=1,M 

         if ((Wnormal(j,z).le.0.56).or.(Wnormal(j,z).ge.1.6)) then 

             Beta(j,z)=1.24 

          elseif ((Wnormal(j,z).gt.0.56).or.(Wnormal(j,z).lt.0.95)) then 
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             Beta(j,z)=2.61*(Wnormal(j,z)**1.3) 

          elseif ((Wnormal(j,z).gt.0.95).or.(Wnormal(j,z).lt.1.6)) then 

             Beta(j,z)=2.28*(Wnormal(j,z)**-1.3) 

         endif 

 27      continue 

 26   continue 

 

      call urand2D(F,N,M) 

! Gt is the directional Spreading Function 

! S(k,Teta)=S(k)G(Teta)=SkGt is the directional frequency spectrum 

! a is the real amplitude matrix. Jacobian of transformation(k) is used  

! to convert S(k,Teta) to S(dkx,dky) 

! A_com is the complex amplitude matrix 

! B_com is the complex water surface fluctuation coeff. matrix 

! A_com_org is the complex amplitude matrix derived directly from a 

! and A_com will be created by taking the tranpose of the A_com_org and 

! adding it to A_com_org.  Same thing for B_com. 

! Also at Nyquist Limit components of the complex amplitude matrix has to be real  

! and symmetric 

      do 28 j=1,N 

        do 29 z=1,M 

          Gt(j,z)=Beta(j,z)/2* 

     &            (cosh(Beta(j,z)*(pi/180*(Teta(j,z)-TetaPr))))**-2 

          SkGt(j,z)=Sk(j,z)*Gt(j,z) 

          a(j,z)=sqrt(SkGt(j,z)*dkx*dky*2/k(j,z)) 

          A_com_org(j,z)=a(j,z)*exp(i*F(j,z))/2 

          B_com_org(j,z)=-i*g/W(j,z)*A_com_org(j,z) 

 29    continue 

 28   continue 

 

! ---------------------------------------------------------------------- 

 

 

! Calculate real and then complex amplitudes from spectrum, force Nyquist limits 

! to be real numbers 

!-------------------------------------------------------------------------- 

      a(1,1)=0 

      A_com_org(1,1)=0 

      B_com_org(1,1)=0 

 

      A_com=A_com_org 

      B_com=B_com_org 
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      do 30 j=2,N 

         do 31 z=2,M/2 

           A_com(j,z)=A_com_org(j,z)+conjg(A_com_org(N-j+2,M-z+2)) 

           B_com(j,z)=B_com_org(j,z)+conjg(B_com_org(N-j+2,M-z+2)) 

 31      continue  

        do 32 z=M/2+2,M 

           A_com(j,z)=A_com_org(j,z)+conjg(A_com_org(N-j+2,M-z+2)) 

           B_com(j,z)=B_com_org(j,z)+conjg(B_com_org(N-j+2,M-z+2)) 

 32     continue 

 30   continue 

 

      do 33  z=M/2+2,M 

          A_com(1,z)=conjg(A_com(1,M-z+2)) 

          B_com(1,z)=conjg(B_com(1,M-z+2)) 

 33    continue 

 

      do 34 j=N/2+2,N 

          A_com(j,1)=conjg(A_com(N-j+2,1)) 

          B_com(j,1)=conjg(B_com(N-j+2,1)) 

 34   continue 

 

      

      do 35 z=1,M 

         A_com(N/2+1,z)=abs(A_com(N/2+1,z)) 

         B_com(N/2+1,z)=abs(B_com(N/2+1,z)) 

 35   continue 

 

      do 36 j=1,N 

         A_com(j,M/2+1)=abs(A_com(j,M/2+1)) 

         B_com(j,M/2+1)=abs(B_com(j,M/2+1)) 

 36   continue 

 

      do 37 j=N/2+2,N 

        A_com(j,M/2+1)=conjg(A_com(N-j+2,M/2+1)) 

        B_com(j,M/2+1)=conjg(B_com(N-j+2,M/2+1)) 

 37   continue 

!---------------------------------------------------------------------- 
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!   Construct Initial Water Surface Fluctuation and  

!   Initial Surface Velocity Potential 

!-------------------------------------        

       call ifft2(A_com,p1,p2,N,M) 

       Wsf_tr=A_com 

       call ifft2(B_com,p1,p2,N,M) 

       Qs_tr=B_com 

!--------------------------------------- 

 

 

!   Take transpozes of the Water Surface Fluctuation and the Surface Velocity Potential 

!-------------------------------------------------------------------------------------  

       do 90 j=1,N 

         do 91 z=1,M 

         Wsf(j,z)=Wsf_tr(z,j) 

         Qs(j,z)=Qs_tr(z,j) 

 91      continue 

 90    continue 

!----------------------------------------------------    

       

!    Need initial variance to examine if the code is working properly 

!    Area under the spectrum is total variance. Use Simpsons Rule. 

! ------------------------------------------- 

      wa=0    ! Lower boundary for integration 

      wb=10   ! Upper boundary for integration 

      step1=(Wp-wa)/40000 

      step2=(wb-Wp)/40000 

      Sumodd1=0 

      Sumeven1=0 

      Sumodd2=0 

      Sumeven2=0 

      do 92 j=1,40001 

       waxis1(j)=step1*(j-1) 

       waxis2(j)=Wp+step2*(j-1) 

       func1(j)=cons*(waxis1(j)**-5)*exp(-1.25*(waxis1(j)/Wp)**-4)* 

     &            (gam**exp(-((waxis1(j)-Wp)**2)/(2*(0.07*Wp)**2))) 

       func2(j)=cons*(waxis2(j)**-5)*exp(-1.25*(waxis2(j)/Wp)**-4)* 

     &            (gam**exp(-((waxis2(j)-Wp)**2)/(2*(0.09*Wp)**2))) 

 

 92   continue 

       func1(1)=0 

       do 93 j=1,39999 
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       Sumeven1=(1-mod(j,2))*2*step1/3*func1(j)+Sumeven1 

       Sumodd1=mod(j,2)*4*step1/3*func1(j)+Sumodd1 

       Sumeven2=(1-mod(j,2))*2*step2/3*func2(j)+Sumeven2 

       Sumodd2=mod(j,2)*4*step2/3*func2(j)+Sumodd2 

        

 93   continue 

       I_var=step1/3*(func1(40001)+func1(1))+Sumodd1+Sumeven1+ 

     &       step2/3*(func2(40001)+func2(1))+Sumodd2+Sumeven2 

!------------------------------------------------------- 

 

!    These sums are going to be used in calculation of the variances 

       sum1=0 

       sum2=0 

       sum3=0 

       sum4=0 

       sum5=0 

       sum6=0 

       sum7=0 

       sum8=0 

           

! Here Begins The Time Stepping. Time Integrator Is Fourth Order Runge-Kutta 

      do 38  e=1,sizet 

 

             !  First Slopes For Qs(surface velocity potential) and n 

             !  water surface fluctuation are denoted as k1 and m1 

             Qrhs1=Qs     

             ! Calculate RHS of evaluation equation for 1st equation 

             ! After operations Qrhs1 is changing!! 

              call fft2(Qrhs1,p1,p2,N,M) 

              do 39 j=1,N 

                do 40 z=1,M 

                   Qrhs1(j,z)=Qrhs1(j,z)*kTANHkh(j,z)  

 40             continue 

 39           continue 

              call ifft2(Qrhs1,p1,p2,N,M) 

              m1=Qrhs1 

              do 41 j=1,N 

                 do 42 z=1,M 

                   k1(j,z)=-g*Wsf(j,z) 

                   Qrhs2(j,z)=Qs(j,z)+0.5*dt*k1(j,z) 

 42              continue 

 41         continue 
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              ! Second Slopes For Qs(surface velocity potential) and n 

              ! water surface fluctuation are denoted as k2 and m2 

              ! Calculate RHS of evaluation equation for 2nd equation 

              ! After operations Qrhs2 is changing!! 

             call fft2(Qrhs2,p1,p2,N,M) 

             do 45 j=1,N 

                do 46 z=1,M 

                 Qrhs2(j,z)=Qrhs2(j,z)*kTANHkh(j,z) 

 46             continue 

 45          continue 

             call ifft2(Qrhs2,p1,p2,N,M) 

             m2=Qrhs2 

             do 47 j=1,N 

                do 48 z=1,M 

                k2(j,z)=-g*(Wsf(j,z)+0.5*dt*m1(j,z)) 

                Qrhs3(j,z)=Qs(j,z)+0.5*dt*k2(j,z) 

 48             continue 

 47          continue           

 

              ! Third Slopes For Qs(surface velocity potential) and n 

              ! water surface fluctuation are denotes as k3 and m3                     

              ! Calculate RHS of evaluation equation for 2nd equation 

              ! After operations Qrhs2 is changing!! 

             call fft2(Qrhs3,p1,p2,N,M) 

             do 51 j=1,N 

               do 52 z=1,M 

               Qrhs3(j,z)=Qrhs3(j,z)*kTANHkh(j,z) 

 52            continue 

 51          continue 

             call ifft2(Qrhs3,p1,p2,N,M) 

             m3=Qrhs3 

             do 53  j=1,N 

                do 54 z=1,M 

                k3(j,z)=-g*(Wsf(j,z)+0.5*dt*m2(j,z)) 

                Qrhs4(j,z)=Qs(j,z)+dt*k3(j,z) 

 54             continue 

 53         continue    

 

              ! Fourth  Slopes For Qs(surface velocity potential) and n 

              ! water surface fluctuation are denoted as k4 and m4 

              ! Calculate RHS of evaluation equation for 2nd equation 
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              ! After operations Qrhs2 is changing!! 

             call fft2(Qrhs4,p1,p2,N,M) 

             do 57 j=1,N 

               do 58 z=1,M 

               Qrhs4(j,z)=Qrhs4(j,z)*kTANHkh(j,z) 

 58           continue 

 57          continue 

             call ifft2(Qrhs4,p1,p2,N,M) 

!    Calculate last slopes and water surface fluctuation and  

!    surface velocity potential for next time step inside same loop 

!    Also store water surface fluctuation into a file named WSf2D 

              m4=Qrhs4 

 !     open (unit=9,file="WSF2D.txt",ACCESS='APPEND') 

 

             do 59 j=1,N 

                do 60 z=1,M 

                 k4(j,z)=-g*(Wsf(j,z)+dt*m3(j,z)) 

           Wsf(j,z)=Wsf(j,z)+dt/6*(m1(j,z)+2*m2(j,z)+2*m3(j,z)+m4(j,z)) 

           Qs(j,z)=Qs(j,z)+dt/6*(k1(j,z)+2*k2(j,z)+2*k3(j,z)+k4(j,z)) 

!           write(9,1) Wsf(j,z) 

!  1         format (f8.5,f8.5) 

 60              continue 

 59          continue 

 

 !      close(9) 

 

 

c$$$!----------------------------------------------------------------------------------       

c$$$           ! Following lines are for calculating velocity component in the normal  

c$$$           ! direction which is going to be important in the Doppler shift  

c$$$           ! calculations of the acoustic rays reflected from the ocean surface 

c$$$            

c$$$           ! Qsz is the z derivative of Qs; vertical velocity calculate from spectral  

c$$$           ! formulation 

c$$$           ! Qsx is the x derivative of Qs, horizontal velocity 

c$$$           ! Qsy is the y derivative of Qs, horizontal velocity 

c$$$           ! Wsfx is the x derivative of water surface fluc. Wsf 

c$$$           ! Wsfy is the y derivative of water surface fluc. Wsf 

c$$$           Qsz=Qs 

c$$$           Qsx=Qs 

c$$$           Qsy=Qs 

c$$$           Wsfx=Wsf 
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c$$$           Wsfy=Wsf 

c$$$           call fft2(Qsz,p1,p2,N,M) 

c$$$           call fft2(Qsx,p1,p2,N,M) 

c$$$           call fft2(Qsy,p1,p2,N,M) 

c$$$           call fft2(Wsfx,p1,p2,N,M) 

c$$$           call fft2(Wsfy,p1,p2,N,M) 

c$$$           do 61 j=1,N 

c$$$             do 62 z=1,M 

c$$$             Qsz(j,z)=Qsz(j,z)*kTANHkh(j,z) 

c$$$             Qsx(j,z)=Qsx(j,1)*KXa(j,1)*i 

c$$$             Qsy(j,z)=Qsy(j,z)*KYa(j,1)*i 

c$$$             Wsfx(j,z)=Wsfx(j,z)*KXa(j,1)*i 

c$$$             Wsfy(j,z)=Wsfy(j,z)*KYa(j,1)*i 

c$$$ 62          continue 

c$$$ 61       continue 

c$$$          

c$$$         do 63 z=1,M 

c$$$         Qsx(N/2+1,z)=abs(Qsx(N/2+1,z)) 

c$$$         Qsy(N/2+1,z)=abs(Qsy(N/2+1,z)) 

c$$$         Wsfx(N/2+1,z)=abs(Wsfx(N/2+1,z)) 

c$$$         Wsfy(N/2+1,z)=abs(Wsfy(N/2+1,z)) 

c$$$ 63     continue 

c$$$        do 64 j=1,N 

c$$$         Qsx(j,M/2+1)=abs(Qsx(j,M/2+1)) 

c$$$         Qsy(j,M/2+1)=abs(Qsy(j,M/2+1)) 

c$$$         Wsfx(j,M/2+1)=abs(Wsfx(j,M/2+1)) 

c$$$         Wsfy(j,M/2+1)=abs(Wsfy(j,M/2+1)) 

c$$$ 64     continue 

c$$$         

c$$$          call ifft2(Qsz,p1,p2,N,M) 

c$$$          call ifft2(Qsx,p1,p2,N,M) 

c$$$          call ifft2(Qsy,p1,p2,N,M) 

c$$$          call ifft2(Wsfx,p1,p2,N,M) 

c$$$          call ifft2(Wsfy,p1,p2,N,M) 

c$$$           Qsz=real(Qsz)  ! Avoid roundoff  errors in the imaginary part            

c$$$           Qsx=real(Qsx)  ! Avoid roundoff errors in the imaginary part 

c$$$           Qsy=real(Qsy)  ! Avoid roundoff errors in the imaginary part           

c$$$           Wsfx= real(Wsfx) ! Avoid roundoff errors in the imaginary part           

c$$$           Wsfy= real(Wsfy) ! Avoid roundoff errors in the imaginary part 

c$$$ 

c$$$ ! udotn is the dot product of velocity u and outward normal gives the velocity 

component 
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c$$$ ! in the normal direction 

c$$$          do 65 j=1,N 

c$$$            do 66 z=1,M 

c$$$          udotn(j,z)=(-Qsx(j,z)*Wsfx(j,z)-Qsy(j,z)*Wsfy(j,z)+Qsz(j,z)) 

c$$$     &               /sqrt(Wsfx(j,z)**2+Wsfy(j,z)**2+1) 

c$$$ 66         continue 

c$$$ 65       continue 

c$$$!--------------------------------------------------------------------------- 

        

! Calculate Variances at few different points 

!---------------------------------------- 

       sum1=sum1+Wsf(3,8)**2 

       sum2=sum2+Wsf(60,60)**2 

       sum3=sum3+Wsf(90,3)**2 

       sum4=sum4+Wsf(110,235)**2 

       sum5=sum5+Wsf(145,82)**2 

       sum6=sum6+Wsf(21,4)**2 

       sum7=sum7+Wsf(12,250)**2 

       sum8=sum8+Wsf(200,14)**2 

!---------------------------------------   

       print *,'it.=',e 

 38   continue 

 

       

      open (unit=10,file="N_M_dt_dx_dy.txt",ACCESS='APPEND') 

      write(10,*) N ,M, dt, dx,dy 

      close(10) 

 

 

      ! Var1 is the Final variance of water surface fluctuation   

      var1=sum1/sizet 

      var2=sum2/sizet 

      var3=sum3/sizet 

      var4=sum4/sizet 

      var5=sum5/sizet 

      var6=sum6/sizet 

      var7=sum7/sizet 

      var8=sum8/sizet 

 

      print *, 'Initial Var=', I_var 

      print *, 'Var 1=',var1 

      print *, 'Var 2=',var2 
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      print *, 'Var 3=',var3 

      print *, 'Var 4=',var4 

      print *, 'Var 5=',var5 

      print *, 'Var 6=',var6 

      print *, 'Var 7=',Var7 

      print *, 'Var 8=',Var8 

      stop 

      end 

 

! ----------------------------------------- 

! -------------  SUBROUTINES -------------- 

!------------------------------------------ 

 

!----- Simple random number generator------ 

      subroutine urand2D(F,N,M) 

      integer  N,j, seed 

      real pi,old,c,d 

      real F(N,M) 

      PI=3.141592653589793 

!     pi=4*atan(1.0) ! Alternative expression for pi    

      seed=11    

      old=seed 

      j=1 

      do 1 j=1,N 

         do 2 z=1,M-1,2 

          c=mod ((57*old+1),2*pi) 

          d=mod ((57*c+1),2*pi) 

          old=d 

          F(j,z)=c 

          F(j,z+1)=d 

 2      continue 

 1    continue 

      return 

      end 

!--- End of simple random number generator ----- 

  

!-------- 1-D Fast Fourier Transfrom------------- 

! N=2^p, A is the complex array to be fourier transformed 

      subroutine fft(A,p,N) 

      complex A(N),U,W,T 

!  Divide all elements by N 

      do 1 J=1,N 
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 1    A(J)=A(J)/N 

!  Reorder Sequence According to fig 12.8 of Newland 

      NBD2=N/2 

      NBM1=N-1 

      J=1 

      do 4 L=1,NBM1 

      if(L.ge.J) go to 2 

      T=A(J) 

      A(J)=A(L)  

      A(L)=T 

 2    K=NBD2 

 3    if(K.ge.J) go to 4 

      J=J-K 

      K=K/2 

      go to 3 

 4    J=J+K 

!   Calculate FFT acoording to fig 12.5 

      PI=3.141592653589793 

      do 6 M=1,p 

      U=(1.0,0.0) 

      ME=2**M 

      K=ME/2 

      W=CMPLX(COS(PI/K),-SIN(PI/K)) 

      do 6 J=1,K 

      do 5 L=J,N,ME 

      LPK=L+K 

      T=A(LPK)*U 

      A(LPK)=A(L)-T 

 5    A(L)=A(L)+T 

 6    U=U*W 

      return 

      end 

! ----- End of 1-D Fast Fourier Transform--------- 

 

      

!-------- 1-D Inverse Fast Fourier Transform -------- 

! Taken from www.algarcia.org/nummeth/Fortran/ifft.f 

! And normalization has been changed by multiplying with N rather than dividing by N 

! Due to definition of Fourier Pair 

      subroutine ifft(A,p,N) 

      complex A(N) 

!    Routine to compute inverse Fourier transform using FFT algorithm 
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      integer j 

      do j=1,N 

         A(j)=conjg(A(j)) 

      enddo 

       

      call fft(A,p,N) 

  

      do j=1,N 

         A(j)=conjg(A(j))*N ! Compute conjugates and Normalize 

      enddo 

      return  

      end 

!-------- End of 1-D Inverse Fourier Transform -------- 

 

!-------- 2-D Fast Fourier Transfrom------------- 

! N=2^p, C is the complex matrix to be fourier transformed 

      subroutine fft2(C,p1,p2,N,M) 

      complex A(N), B(M),C(N,M) 

      do 2 K=1,N 

      do 1 J=1,M 

 1    B(J)=C(K,J) 

      call fft(B,p2,M) 

      do 2 J=1,M 

 2    C(K,J)=B(J) 

      do 4 K=1,M 

      do 3 J=1,N 

 3    A(J)=C(J,K) 

      call fft(A,p1,N) 

      do 4 J=1,N 

 4    C(J,K)=A(J) 

      return  

      end 

!---------- End of 2-D Fast Fourier Transform---------- 

 

 

!-------- 2-D Inverse Fast Fourier Transform ---------- 

! And normalization has been changed by multiplying with N rather than dividing by N 

! Due to definition of Fourier Pair 

      subroutine ifft2(C,p1,p2,N,M) 

      integer N,M 

      complex C(N,M) 

!    Routine to compute inverse Fourier transform using FFT algorithm 
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      integer j 

      do j=1,N 

         do z=1,M 

         C(j,z)=conjg(C(j,z)) 

         enddo 

      enddo 

       

      call fft2(C,p1,p2,N,M) 

  

      do j=1,N 

         do z=1,M 

         C(j,z)=conjg(C(j,z))*N*M ! Compute conjugates and Normalize 

         enddo 

      enddo 

      return  

      end 

!-------- End of 2-D Inverse Fourier Transform -------- 

 

!------------------ Gamma function ------------------      

!       Taken from http://jin.ece.uiuc.edu/routines/routines.html 

!       This program computes the gamma function 

        subroutine gamma(s,GA) 

        implicit double precision (A-H,O-Z) 

        dimension G(26) 

        PI=3.141592653589793D0 

        if (s.EQ.INT(s)) then 

           if (s.GT.0.0D0) then 

              GA=1.0D0 

              M1=s-1 

              do 10 K=2,M1 

10               GA=GA*K 

           else 

              GA=1.0D+300 

           endif 

        else 

           if (DABS(s).GT.1.0D0) then 

              Z=DABS(s) 

              M=INT(Z) 

              R=1.0D0 

              do 15 K=1,M 

15               R=R*(Z-K) 

              Z=Z-M 
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           else 

              Z=s 

           endif 

           DATA G/1.0D0,0.5772156649015329D0, 

     &          -0.6558780715202538D0, -0.420026350340952D-1, 

     &          0.1665386113822915D0,-.421977345555443D-1, 

     &          -.96219715278770D-2, .72189432466630D-2, 

     &          -.11651675918591D-2, -.2152416741149D-3, 

     &          .1280502823882D-3, -.201348547807D-4, 

     &          -.12504934821D-5, .11330272320D-5, 

     &          -.2056338417D-6, .61160950D-8, 

     &          .50020075D-8, -.11812746D-8, 

     &          .1043427D-9, .77823D-11, 

     &          -.36968D-11, .51D-12, 

     &          -.206D-13, -.54D-14, .14D-14, .1D-15/ 

           GR=G(26) 

           do 20 K=25,1,-1 

20            GR=GR*Z+G(K) 

           GA=1.0D0/(GR*Z) 

           if (DABS(s).GT.1.0D0) then 

              GA=GA*R 

              if (s.LT.0.0D0) GA=-PI/(s*GA*DSIN(PI*s)) 

           endif 

        endif 

        return 

        end 

!------------- End of Gamma Function ---------------- 

 

5. Matlab-2D �onlinear Wave Model 

 

%  Reference Article: Douglas G.DOMMERMUTH and Dick K.P.YUE 

%  A High-Order Spectral Method for the study of  

%   nonlinear gravity waves  Cambridge, MA, USA 1986 

% Two step procedure; pseudospectral method for determining nodal amplitudes 

% and fourth order Runge-Kutta time integrator 

% James KIRBY, Cihan BAYINDIR, University of Delaware, 18/August/2008 

 

% Nonlinear Version-single wave train; Working in metric units  

 

clear all 
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close all 

h=200;            % Water Depth 

g=9.81;           % Gravitational acceleration 

dt=0.1;          % Time step 

tmax=100;         % Maximum Time Of Scheme Evaluation 

t=0:dt:tmax;      % Time array 

Time=length(t);   % Length of Time Array 

 

xmin=0;           % Minimum x value 

N=2^8;            % Number of Fourier points;  

                       % a power of 2 for fast computation              

M=10;             % Arbitrary Order in Wave Steepness 

 

xmax=100;         % Wave length in meters 

dx=xmax/(N-1);    % Step size in x 

x=xmin:dx:xmax;   % Space array 

L=xmax-xmin+dx;   % Length of periodic domain=wave length 

 

k=2*pi/L;               % Wave Number 

W=sqrt(g*k*tanh(k*h));  % Wave Frequency  

                        % using linear dispersion relationship 

 

kTANHkh=k*tanh(k*h);    % In order to avoid calculation at every time step 

                        % product assigned to a variable 

filter1=k*(0:1:N/2); 

filter2=k*(-N/2+1:1:-1); 

filter=[filter1,filter2]; 

                   

a=0.1;    % Amplitude of single wave 

Im=i;   % imaginary number 

 

 

% Initial values for progressive wave; (Initial values for standing wave  are: n is the 

same and Qs=0) 

n(1:N)=a*cos(9*k*x)+0.5*a*cos(7*k*x-pi/4)+0.5*a*cos(11*k*x-pi/4);         % Initial 

%Values for water surface fluctuation [Side bands example] 

Qs(1:N)=a*g/sqrt(g*9*k*tanh(9*k*h)).*exp(9*k*n).*sin(9*k*x)+0.5*a*g/sqrt(g*7*k

*tanh(7*k*h)).*exp(7*k*n).*sin(7*k*x-

pi/4)+0.5*a*g/sqrt(g*11*k*tanh(11*k*h)).*exp(11*k*n).*sin(11*k*x-pi/4);     

 % Initial Values for surface velocity potential 

%Qs(1,1:N)=0; %Initial Values for standing wave  
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for i=1:1:Time; 

     

    %% Runge-Kutta Time Integration with Pseudospectral Method %% 

 

    X=Term(Qs,n,M,filter,h);       % Calculates the double-summed big term in the 

evolution equations 

    Qsx=ifft(fft(Qs).*Im.*filter); % x derivative of Qs 

    nx=ifft(fft(n).*Im.*filter);   % x derivative of n 

     

    % First Slope for Qs(surface vel.pot) 

    k1=-g.*n-0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X);  

    % First Slope for n(water surface fluct.) 

    m1=-dealias(Qsx,nx)+(1+dealias(nx,nx)).*X; 

       

    X=Term(Qs+0.5*dt.*k1,n+0.5*dt.*m1,M,filter,h); % Calculates the double-   

   %summed big term in the evolution equations 

    Qsx=ifft(fft(Qs+0.5*dt.*k1).*Im.*filter);   % x derivative of Qs 

    nx=ifft(fft(n+0.5*dt.*m1).*Im.*filter);     % x derivative of n 

     

    % Second Slope for Qs(surface vel.pot) 

    k2=-g.*(n+0.5*dt.*m1)-  

    0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X);  

    % Second Slope for n(water surface fluct.) 

    m2=-dealias(Qsx,nx)+(1+dealias(nx,nx)).*X; 

    

   

    X=Term(Qs+0.5*dt.*k2,n+0.5*dt.*m2,M,filter,h); % Calculates the double-    

    % summed big term in the evolution equations 

    Qsx=ifft(fft(Qs+0.5*dt.*k2).*Im.*filter);    % x derivative of Qs 

    nx=ifft(fft(n+0.5*dt.*m2).*Im.*filter);      % x derivative of n 

     

    % Third Slope for Qs(surface vel.pot) 

    k3=-g.*(n+0.5*dt.*m2)-   

     0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X);    

    % Third Slope for n(water surface fluct.) 

    m3=-dealias(Qsx,nx)+(1+dealias(nx,nx)).*X; 

         

     

    X=Term(Qs+dt.*k3,n+dt.*m3,M,filter,h);  

    Qsx=ifft(fft(Qs+dt.*k3).*Im.*filter);   % x derivative of Qs 

    nx=ifft(fft(n+dt.*m3).*Im.*filter);     % x derivative of n 
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    % Fourth Slope for Qs(surface vel.pot) 

    k4=-g.*(n+dt*m3)-0.5*dealias(Qsx,Qsx)+0.5*(1+dealias(nx,nx)).*dealias(X,X); 

    % Fourth Slope for n(water surface fluct.) 

    m4= -dealias(Qsx,nx)+(1+dealias(nx,nx)).*X; 

     

     

    % In order to examine energy conservation keep track of the Fourier modes with 

%given side band values 

    FC=fft(n)/N; 

    FourierCoef1(i,1)=2*abs(FC(8))/a; 

    FourierCoef2(i,1)=2*abs(FC(10))/a; 

    FourierCoef3(i,1)=2*abs(FC(12))/a; 

     

%     %Smoothing filter 

%       if mod(i,4)==0; 

%       n=ifft(fft(n).*(5+4.*cos(pi.*abs(filter)./abs(filter(N/2+1)))-

cos(2*pi.*abs(filter)./abs(filter(N/2+1))))/8); 

%       Qs=ifft(fft(Qs).*(5+4.*cos(pi.*abs(filter)./abs(filter(N/2+1)))-  

cos(2*pi.*abs(filter)./abs(filter(N/2+1))))/8); 

%       end 

     

    %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next time step 

    n=n+dt/6.*(m1+2*m2+2*m3+m4); 

    Qs=Qs+dt/6.*(k1+2*k2+2*k3+k4); 

     

    % Plot the water surface fluctuation 

    plot(x,n),title(['t=',num2str((i-1)*dt),'s']); 

    xlim([xmin xmax]) 

    ylim([-3*a 3*a]) 

    xlabel('x[m]'),ylabel('Water Surface Fluctuation[m]') 

    pause(0.05) 

end 

      

  % Plot the time histories of Fourier Coefficients 

  figure(2) 

  

plot(dt:dt:length(FourierCoef1)*dt,FourierCoef1,dt:dt:length(FourierCoef1)*dt,Fourier

Coef2,'red-.',dt:dt:length(FourierCoef1)*dt,FourierCoef3,'black--'),title('Time histories 

of amplitudes'),legend('7k','9k','11k') 

 

Initial_variance=0.0624*Hs^2  



 92 

Final_Variance=var(n) 

 

5.1 Function: Term.m 

 

% This function calculates the Double Sum Term in the evolution equations 

% 2.8 given in the page of 270 in D.G.Dommermuth and D.K.P.Yue's article 

% James Kirby, Cihan Bayindir September 2008 

function [X] = Term(Qs,n,M,filter,h) 

 

% Inputs are Qs: surface velocity potential 

%             n: water surface fluctuation 

%             M: arbitrary order in wave steepness 

%        filter: wavenumber values fitting into domain(filter) 

%             h: water depth 

 

    N=length(Qs); 

    R(1,1:N)=Qs; 

    Qm(1,1:N)=R(1,1:N); 

    for m=2:1:M; 

         R(m,1:N)=0; 

        for j=1:1:(m-1); 

            R(m,1:N)=R(m,1:N)-dealiasP(n,j)/factorial(j).*ifft(fft(Qm(m-j,1:N)).*((1-

mod(j,2)).*(abs(filter)).^j+mod(j,2).*(abs(filter)).^j.*tanh(abs(filter)*h))); 

        end 

        Qm(m,1:N)=R(m,1:N); 

    end 

         

    % Calculate the long term at the most RHS of the evolution equations 

     

    X(1:N)=0; 

    for m=1:1:M; 

        for j=0:1:M-m; 

            X= X+dealiasP(n,j)/factorial(j).*ifft(fft(Qm(m,1:N)).*((1-

mod(j,2)).*(abs(filter)).^(j+1).*tanh(abs(filter)*h)+mod(j,2).*(abs(filter)).

^(j+1))); 

        end 

    end 

 

5.2 Function: dealias.m 

 

function [w] = dealias(u,v) 

% Function dealias.m  
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% This function computes the alias-free product of two series. 

% Input is the two arrays to be multiplied, output is the alias-free 

% product 

% Anti-aliasing is based on the algorithm given by Canuto, Hussaini, 

% Quarteroni, Zang 1988 

 

N=length(u); % Which should be equal to the length of v 

M=3*N/2; 

  

uk=fft(u)/N; % Fourier Coefficients of u 

UK(1:N/2+1)=uk(1:N/2+1);  UK(N/2+2:N+1)=0;  UK(N+2:M)=uk(N/2+2:N); % For 

region between N/2 and M/2 pad with zeros 

U=ifft(UK)*M; %Get new U whose size is twice of initial input 

 

vk=fft(v)/N; %Fourier Coefficients of v 

VK(1:N/2+1)=vk(1:N/2+1);  VK(N/2+2:N+1)=0;  VK(N+2:M)=vk(N/2+2:N);  % For 

region between N/2 and M/2 pad with zeros 

V=ifft(VK)*M; %Get new V whose size is twice of initial input 

W=U.*V;   

 

WK=fft(W)/M; 

wk(1:N/2+1)=WK(1:N/2+1);    wk(N/2+2:N)=WK(N+2:M);  % Truncate back to 

original length 

w=ifft(wk)*N; 

 

5.3 Function: dealiasP.m 

 

function [w] = dealiasP(u,Pow) 

% Function dealiasP.m  

% This function computes the alias-free power of a series. 

% First input is the array to be taken the power and second input is a 

% number which is power 

% Output is the anti-aliased power. 

%  

% Anti-aliasing is based on the algorithm given by Canuto, Hussaini, 

% Quarteroni, Zang 1988 

  

N=length(u);  

M=Pow*3*N/4; 

 

if Pow==0; 

    w(1:N)=1; 
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   elseif Pow==1; 

    w=u; 

   else     

    

uk=fft(u)/N; % Fourier Coefficients of u 

UK(1:N/2+1)=uk(1:N/2+1);  UK(N/2+2:M-N/2+1)=0;  UK(M-

N/2+2:M)=uk(N/2+2:N); % For region between N/2 and M/2 pad with zeros 

   U=ifft(UK)*M; %Get new U whose size is twice of initial input 

 

   W=U.^Pow;   

 

   WK=fft(W)/M; 

   wk(1:N/2+1)=WK(1:N/2+1);    wk(N/2+2:N)=WK(M-N/2+2:M);  % Truncate back   

                                                                                                           % to original length 

   w=ifft(wk)*N; 

 end 

 

6. Linear and �onlinear Coupled Wave-Acoustic Models 

 

% Article: Douglas G.DOMMERMUTH and Dick K.P.YUE 

% A High-Order Spectral Method for the study of  

%  nonlinear gravity waves  Cambridge, MA, USA 1986 

% Two step procedure; pseudospectral method for determining nodal amplitudes 

% and fourth order Runge-Kutta time integrator 

% Cihan BAYINDIR, James Kirby, University of Delaware, 02/04/2008 

 

% Linear Version-Spectrum of Waves; Working in metric units  

clear all 

close all 

 

% Load HFA sound data 

%-------------------- 

 load sound; % location of matrix 'ss'; HFA 97 sound speed data 

 % t is the hours, ss is the sounddata, hy? 

 hours=t; 

 sounddata=ss; 

 hy=hy; 

 clear t;% clear ss; clear hy; % Clear variables coming up from Bobs Thesis 

 %------------------- 
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 %Load HFA weather data 

 load Nweather2.dat 

 weather=Nweather2; 

  

 %-------------------- 

  read_init_conditions1;  

  clear n; % Clear some variables coming up from Bobs codes 

  read_init_conditions2;  

  clear n2; % Clear some variables coming up from Bobs codes 

 %-------------------- 

  

 % Load HFA tide data 

 load tide_vs_geotime; 

 AV_TIDE=(TIDE_A+TIDE_C)/2; 

 [dumind,tidein]=find(24<=TIDE_GEOTIME & TIDE_GEOTIME <=48); % Tide 

%measurements started at 23 september 97 at 00 

                             % We are interested in the 1 day duration 

                             % between 24 September and 25 September 

                             % therefore seek corresponding indices 

 tidehours=TIDE_GEOTIME(tidein)-24; 

 Avtide=AV_TIDE(tidein); 

  

for q=1:1:29;   %1:1:length(hours);   % 24 hour loop for acoustic calculations 

      

    [dummind,matchin]=find(abs(tidehours-hours(q))<0.05); 

    h=Avtide(matchin);   % Water Depth, Bob Heitsenrether used h=15 meters 

    h=15; 

     

    g=9.81;                  % Gravitational acceleration 

    dtExperiments=0.345;     %0.345    %The value of timestepping used in HFA 

%experiments 

    dt=0.1725;               %0.1725;  % Time step. Enter a number which exactly divides 

%dtExperiments 

    multiple=dtExperiments/dt; 

    tmax=3.45;        % Maximum Time Of Scheme Evaluation 

                     % 40s used for experiments 

    t=0:dt:tmax;     % Time array 

    Time=length(t);  % Length of Time Array 

    N=2^10;          % Number of Fourier points;  

                     % a power of 2 for fast computation       

    xmin=0;          % Minimum x value 
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    xmax=1000*receiver_rng; % Pick a domain length; the value used in HFA 

%experiments is 389m 

                 % variable receiver_rng is coming from 

                 % read_init_conditions2 file in kms convert it to meters 

    dx=(xmax-xmin)/N;    % Step size in x 

    j=0:1:N-1; 

    x=dx*j;              % Space array, Periodic domain  

    Lmax=xmax-xmin;      % Length of periodic domain=max wave length 

    k1=2*pi/Lmax*(0:1:N/2);      % First portion of Wavenumber array 

    k2=2*pi/Lmax*(-N/2+1:1:-1);  % Second portion of Wavenumber array 

    k=[k1,k2];                   % Combine first and second Portions of  

                                 % Wave Number Array 

    filter=k; 

    M=10; % Arbitrary order in wave steepness for nonlinear simulations 

 

    W=sqrt(g*k1.*tanh(k1*h));  % wave angular frequency;  

                           % using linear dispersion relationship  

    Cg=0.5.*(1+2.*k1*h./sinh(2.*k1*h)).*W./k1; %Group velocity 

    Cg(1)=0; 

         

      time_in(1)=9;    % month of experiment data 

      time_in(2)=24;   % day of experimental data 

      time_in(3)=fix(hours(q));  % hour of experimental data 

      time_in(4)=fix(60*(hours(q)-time_in(3))); % minute of experimental data 

      time_in(5)=fix(60*(60*(hours(q)-fix(hours(q)))-time_in(4)));  % second of    

   % experimental data 

      if (time_in(3)==24); 

          time_in(2)=time_in(2)+1; 

          time_in(3)=0; 

      end 

      num2str(['Simulation for time : ',num2str(time_in)]) 

      WindSpeed=get_wind(time_in); 

      WindSpeed=1+0.5*(q-1); 

       

      create_env_file1; % Create first env file with eigenray option 

      create_env_file2; % Create second env file with arrival 'A' option 

 

      cs=SoundSpeedatSurface; 

%---------------------------------------------------------- 

% Formulation of Frequency Spectrum 

% Frequency spectrum as a function of frequency 

% Taken from master's thesis, Bob Heitsenrether, UD marine studies 
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% uses the Jonswap Spectrum given by Shore Protection Manual 

%------------------------------------------------------------ 

X=18520;      % Equals 10 nautical miles, 1nmi=1852 meters  

U=WindSpeed;  % Wind Speed in meters per second; Bob used values between 5-13 

gam=3.3;      % Parameter for Jonswap Spectrum 

Wp=7*pi*g/U*(g*X/U^2)^-0.33; % Peak angular frequency 

alpha=0.076*(g*X/U)^-0.22;   % constant of equation for S(W) 

[dum,in]=find(W<=Wp); 

mm=max(in); 

SW1=alpha*g^2.*W(in).^-5.*exp(-5/4*(W(in)/Wp).^-4).*gam.^exp(-(W(in)-

Wp).^2/(2*0.07^2*Wp^2)); 

SW2=alpha*g^2.*W(mm+1:N/2+1).^-5.*exp(-5/4*(W(mm+1:N/2+1)/Wp).^-

4).*gam.^exp(-(W(mm+1:N/2+1)-Wp).^2/(2*0.09^2*Wp^2)); 

Sw=[SW1,SW2]; 

Sw(1)=0; 

Sk=Cg.*Sw;     % Frequency Spectrum ==> Wavenumber Spectrum 

Sk(1)=0; 

 

% Following line is not necessary but it gives an idea about selection of  

% xmax, Horizontal length scale 

  fp=Wp/(2*pi);   Tp=1/fp; 

% According to deep water formula L~1.56 T^2 

% Make sure that xmax you choose is about at least 25 times of this value 

% since it represents the spectrum without much error 

 

a2=sqrt(2*pi*Sk*2/Lmax);   % Nodal amplitudes obtained from spectrum 

 

F2(1:N/2+1)=2*pi*rand(1,N/2+1);   % Uniformly Distributed Random Number 

 % generator for phase angles on the interval [0,2*pi]  

 

kTANHkh=abs(k).*tanh(abs(k).*h);    % In order to avoid calculation at every time  

                                    % step product assigned to a variable   

         

W(1)=1; % Since a(1)=0 W(1) will drop out. No problem to change it. 

 

%INVERSE FOURIER TRANSFORM METHOD 

A2=a2(1:N/2+1).*exp(i*F2(1:N/2+1))/2; 

A(1:N/2+1)=A2;  A(N/2+2:1:N)=conj(A2(N/2:-1:2)); 

A(N/2+1)=abs(A(N/2+1)); 

B(1:N/2+1)=-i*g./W.*A2;  B(N/2+2:1:N)=conj(-i*g./W(N/2:-1:2).*A2(N/2:-1:2)); 

B(N/2+1)=abs(B(N/2+1)); 

n=N*ifft(A); 
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Qs=N*ifft(B); 

 

nNL=n; % Initial Conditions For Nonlinear Surface Fluctuation is Same for Linear 

One 

QsNL=Qs;  % Initial Conditions For Nonlinear Velocity Pot. is Same for Linear One 

 

fortyind=1; 

fortyindNL=1; 

for j=1:1:Time;    %Time Indice 

     

     

 %%%%%%%%%% LINEAR SIMULATION %%%%%%%%%%%%%%%% 

     

    %% Runge-Kutta Time Integration with Pseudospectral Method %% 

     

    % First Slope for Qs(surface vel.pot) 

    d1=-g.*n;  

     

    % First Slope for n(water surface fluct.) 

    m1=ifft(fft(Qs).*kTANHkh); 

        

    % Second Slope for Qs(surface vel.pot) 

    d2=-g.*(n+0.5*dt.*m1);  

     

    % Second Slope for n(water surface fluct.) 

    m2=ifft(fft(Qs+0.5*dt.*d1).*kTANHkh); 

     

     

    % Third Slope for Qs(surface vel.pot) 

    d3=-g.*(n+0.5*dt.*m2); 

     

    % Third Slope for n(water surface fluct.) 

    m3=ifft(fft(Qs+0.5*dt.*d2).*kTANHkh); 

     

     

    % Fourth Slope for Qs(surface vel.pot) 

    d4=-g.*(n+dt*m3); 

     

    % Fourth Slope for n(water surface fluct.) 

    m4=ifft(fft(Qs+dt*d3).*kTANHkh); 

     

    %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next 
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    %time step 

    n=n+dt/6.*(m1+2.*m2+2.*m3+m4); 

    Qs=Qs+dt/6.*(d1+2.*d2+2.*d3+d4); 

              

    % Following lines are for calculating velocity component in the normal 

    % direction which is going to be important in the Doppler shift 

    % calculations of the Acoustic rays reflected from ocean surface 

     

    Qsz=ifft(fft(Qs).*kTANHkh);  % Vertical velocity 

    FTQs=i*k.*fft(Qs);  FTQs(N/2+1)=abs(FTQs(N/2+1)); % At Nyquist freq. 

    Qsx=ifft(FTQs);  % Horizontal velocity 

     

    FTn=i*k.*fft(n);    FTn(N/2+1)=abs(FTn(N/2+1)); 

    nx=ifft(FTn);    % Slope of water surface fluctuation 

    udotn=(-Qsx.*nx+Qsz)./sqrt(nx.^2+1); % Velocity in the normal direction 

     

%%%%%%%%%%%%%%%%%%%    RUN BELLHOP %%%%%% %%%%%% 

     

% Run the Bellhop every 0.345 seconds in order to be compatible  with  

% experiments.  

 

if (mod((j-1),multiple))==0; 

    num2str(['Running Bellhop : ',num2str((j-1)*dt),' s ']) 

     

 

%%%  WRITE Water Surface Fluctuation to Text File  %%%%% 

  

   % Since we have already created the ocean model based on spectral 

   % formulation given in Goda's book we need only to write the surface 

   % fluctuation into an altimetry file which is going to be read by Bellhop 

    fid=fopen('ATIFIL','w'); 

    % change units of horizontal surface 

    fprintf(fid,'%s\n',('''L'''));  % First line of the Altimetry file 

    fprintf(fid,'%d\n',length(x)); 

    for p=1:length(x); 

        fprintf(fid,'%f %f\n',x(p)/1000,n(p)); 

    end 

    fclose(fid); 

     

  % Run Bellhop in order to generate RAYFIL and plot Eigenrays generated      

     pause(0.01); % Pause 2 seconds in order to make sure that eyta and u dot n is   

  % written into text file 
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     eval( [' ! bellhop.exe < envfile1.env ']); 

     pause(0.01);  % Pause 2 seconds in order to make sure that Bellhop output is 

written 

     figure(1),subplot(2,1,1), 

[TotalDopplerShiftArray]=plotray('RAYFIL',x,n,nx,Qsx,Qsz,freq,cs,receiver_depth),te

xt(5,1,strcat('{Mon., Day , Hour , Min.} :',num2str(time_in(1:4)))) 

     text(5,2,strcat('t = ',num2str((j-1)*dt),'s')) 

     text(5,3,strcat('Wind Speed=',num2str(U),'m/s')) 

     text(5,4,strcat('Tide=',num2str(h),'m')) 

     hold on ,plot(x,n,'o-'),plot(1000*receiver_rng,h-receiver_height,'*') % Plot receiver 

%location 

     hold on, %plot(crossx,crossz,'<r') 

      

     

 %%%%%%%%%% READ THE ARRIVAL INFO %%%%% %%%%%%%%% 

     % Run Bellhop second time in order to generate ARRFIL 

     eval( [' ! bellhop.exe < envfile2.env ']); 

     % Read the arrival time/amplitude data computed by BELLHOP 

     %[ amp, delay, SrcAngle, RcvrAngle, NumTopBnc, NumBotBnc, narrmat, Pos ] = 

read_arrivals_asc( ARRFIL, narrmx ); 

       ARRFIL='ARRFIL'; 

       narrmx=200; % Maximumn number of arrivals, taken from read_arrivals_asc.m 

%written by Mike Porter   

      [amp,delay,SrcAngle, RcvrAngle,NumTopBnc,NumBotBnc,narrmat,Pos]=  

read_arrivals_asc( ARRFIL, narrmx ); 

      [di1,di2all]=find(NumTopBnc>=1 & NumBotBnc==0); 

      [indd1,indd2]=find(delay(di2all)==min(delay(di2all))); % Select the ray with the 

minimum delay time 

      if (isempty(TotalDopplerShiftArray(indd2))==1); 

          ArrivalTime(fortyind)=0; 

          DS(fortyind)=0; 

      else 

         ArrivalTime(fortyind)=delay(di2all(indd2)); 

         DS(fortyind)=TotalDopplerShiftArray(indd2);  

      end 

      fortyind=fortyind+1; 

end 

    text(5,5,strcat('ArrivalTime=',num2str(delay(di2all(indd2))),'s')) 

    text(5,6,strcat('D.S=',num2str(DS(fortyind-1)),'Hz')) 

     

    %xlim([xmin xmax]) 

    %ylim([-2 2]) 
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    % subplot(2,1,2), plot(x,udotn); title('Velocity In Outward Normal Direction') 

    %pause(0.1)  

     % j 

     %hold on 

     

     %%%%%%%%%%%%%% NONLINEAR SIMULATION %%%%%%%%%% 

     

     %% Runge-Kutta Time Integration with Pseudospectral Method %% 

 

    X=Term(QsNL,nNL,M,filter,h);       % Calculates the double-summed big term in      

    % the evolution equations 

    QsxNL=ifft(fft(QsNL).*i.*filter); % x derivative of Qs 

    QsxNL=real(QsxNL); 

    nxNL=ifft(fft(nNL).*i.*filter);   % x derivative of n 

    nxNL=real(nxNL); 

     

    % First Slope for Qs(surface vel.pot) 

    k1=-g.*nNL- 

    0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X);  

    % First Slope for n(water surface fluct.) 

    s1=-dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X; 

      

     

    X=Term(QsNL+0.5*dt.*k1,nNL+0.5*dt.*s1,M,filter,h); % Calculates the double- 

    % summed big term in the evolution equations 

    QsxNL=ifft(fft(QsNL+0.5*dt.*k1).*i.*filter);   % x derivative of Qs 

    QsxNL=real(QsxNL); 

    nx=ifft(fft(nNL+0.5*dt.*s1).*i.*filter);     % x derivative of n 

    nxNL=real(nxNL); 

     

    % Second Slope for Qs(surface vel.pot) 

    k2=-g.*(nNL+0.5*dt.*s1)- 

    0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X);  

    % Second Slope for n(water surface fluct.) 

    s2=-dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X; 

    

   

     

    X=Term(QsNL+0.5*dt.*k2,nNL+0.5*dt.*s2,M,filter,h); % Calculates the double 

 

    % summed big term in the evolution equations 

    QsxNL=ifft(fft(QsNL+0.5*dt.*k2).*i.*filter);    % x derivative of Qs 
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    nxNL=ifft(fft(nNL+0.5*dt.*s2).*i.*filter);      % x derivative of n 

     

    % Third Slope for Qs(surface vel.pot) 

    k3=-g.*(nNL+0.5*dt.*s2)-    

    0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X);    

    % Third Slope for n(water surface fluct.) 

    s3=-dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X; 

         

     

    X=Term(QsNL+dt.*k3,nNL+dt.*s3,M,filter,h);  

    QsxNL=ifft(fft(QsNL+dt.*k3).*i.*filter);   % x derivative of Qs 

    QsxNL=real(QsxNL); 

    nxNL=ifft(fft(nNL+dt.*s3).*i.*filter);     % x derivative of n 

    nxNL=real(nxNL); 

     

    % Fourth Slope for Qs(surface vel.pot) 

    k4=-g.*(nNL+dt*s3)- 

    0.5*dealias(QsxNL,QsxNL)+0.5*(1+dealias(nxNL,nxNL)).*dealias(X,X); 

    % Fourth Slope for n(water surface fluct.) 

    s4= -dealias(QsxNL,nxNL)+(1+dealias(nxNL,nxNL)).*X; 

         

    %Evaluate n(water surface fluc.) and Qs(surface velocity pot.) for next time step 

    nNL=nNL+dt/6.*(s1+2*s2+2*s3+s4); 

    QsNL=QsNL+dt/6.*(k1+2*k2+2*k3+k4); 

          

     

    % Following lines are for calculating velocity component in the normal 

    % direction which is going to be important in the Doppler shift 

    % calculations of the Acoustic rays reflected from ocean surface 

     

    X=Term(QsNL,nNL,M,filter,h);  % Vertical velocity 

    FTQsNL=i*k.*fft(QsNL);  FTQsNL(N/2+1)=abs(FTQsNL(N/2+1)); % At Nyquist  

    % freq. 

    QsxNL=ifft(FTQsNL);  % Horizontal velocity 

     

    FTnNL=i*k.*fft(nNL);    FTnNL(N/2+1)=abs(FTnNL(N/2+1)); 

    nxNL=ifft(FTnNL);    % Slope of water surface fluctuation 

    udotnNL=(-QsxNL.*nxNL+X)./sqrt(nxNL.^2+1); % Velocity in the normal  

    direction 

     

        

%%%%%%%%%%%%%%%%%%%%   RUN BELLHOP %%%%%%%%%%%%  
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% Run the Bellhop every 0.345 seconds in order to be compatible  with  

% experiments.  

 

if (mod((j-1),multiple))==0; 

    num2str(['Running Bellhop : ',num2str((j-1)*dt),' s ']) 

     

%%%  WRITE Water Surface Fluctuation to Text File   %%%                                                     

   % Since we have already created the ocean model based on spectral 

   % formulation given in Goda's book we need only to write the surface 

   % fluctuation into an altimetry file which is going to be read by Bellhop 

    fid=fopen('ATIFIL','w'); 

    % change units of horizontal surface 

    fprintf(fid,'%s\n',('''L'''));  % First line of the Altimetry file 

    fprintf(fid,'%d\n',length(x)); 

    for p=1:length(x); 

        fprintf(fid,'%f %f\n',x(p)/1000,nNL(p)); 

    end 

    fclose(fid); 

     

  % Run Bellhop in order to generate RAYFIL and plot Eigenrays generated      

     pause(0.01); % Pause 2 seconds in order to make sure that eyta and u dot n is   

   written into text file 

     eval( [' ! bellhop.exe < envfile1.env ']); 

     pause(0.01);  % Pause 2 seconds in order to make sure that Bellhop output is  

  written 

     figure(1),subplot(2,1,2), 

[TotalDopplerShiftNLArray]=plotray('RAYFIL',x,nNL,nxNL,QsxNL,X,freq,cs,receive

r_depth),text(5,1,strcat('{Mon., Day , Hour , Min.} :',num2str(time_in(1:4)))) 

     text(5,2,strcat('t = ',num2str((j-1)*dt),'s')) 

     text(5,3,strcat('Wind Speed=',num2str(U),'m/s')) 

     text(5,4,strcat('Tide=',num2str(h),'m')) 

     hold on ,plot(x,n,'o-'),plot(1000*receiver_rng,h-receiver_height,'*') % Plot receiver 

location 

     hold on, %plot(crossx,crossz,'<r') 

      

     

 %%%%%%%%%%%%%%%% READ THE ARRIVAL INFO %%%%%%%%%%  

     % Run Bellhop second time in order to generate ARRFIL 

     eval( [' ! bellhop.exe < envfile2.env ']); 

     % Read the arrival time/amplitude data computed by BELLHOP 
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     %[ amp, delay, SrcAngle, RcvrAngle, NumTopBnc, NumBotBnc, narrmat, Pos ] = 

read_arrivals_asc( ARRFIL, narrmx ); 

       ARRFIL='ARRFIL'; 

       narrmx=200; % Maximumn number of arrivals, taken from read_arrivals_asc.m 

%written by Mike Porter   

      [ampNL,delayNL,SrcAngleNL, 

RcvrAngleNL,NumTopBncNL,NumBotBncNL,narrmatNL,PosNL]=  

read_arrivals_asc( ARRFIL, narrmx ); 

      [di1NL,di2allNL]=find(NumTopBncNL>=1 & NumBotBncNL==0); 

      [indd1NL,indd2NL]=find(delayNL(di2allNL)==min(delayNL(di2allNL)));   

% Select the ray with the minimum delay time 

      if (isempty(TotalDopplerShiftNLArray(indd2NL))==1); 

          ArrivalTimeNL(fortyindNL)=0; 

          DSNL(fortyindNL)=0; 

      else 

         ArrivalTimeNL(fortyindNL)=delayNL(di2allNL(indd2NL)); 

         DSNL(fortyindNL)=real(TotalDopplerShiftNLArray(indd2NL));  

      end 

      fortyindNL=fortyindNL+1; 

end 

      text(5,5,strcat('ArrivalTime=',num2str(delayNL(di2allNL(indd2NL))),'s')) 

      text(5,6,strcat('D.S=',num2str(DSNL(fortyindNL-1)),'Hz')) 

%     % Plot the water surface fluctuation 

%     plot(x,nNL),%title(['t=',num2str((j-1)*dt),'s']); 

%     xlim([xmin xmax]) 

%     ylim([-0.5 0.5]) 

%     xlabel('x[m]'),ylabel('Water Surface Fluctuation[m]') 

%     pause(0.05) 

%      hold off 

end 

     

 

    figure(2), 

    [nzi1,nzi2]=find(DS>0); 

    tt=0:dtExperiments:tmax;  

    subplot(2,1,1),plot(tt(nzi2),ArrivalTime(nzi2)),xlabel('Geotime(s)'),ylabel('Arrival 

Time Of Eigenray(s)') 

    text(1,0.2592,strcat('Start Time {Mon., Day , Hour , Min.} 

:',num2str(time_in(1:4)))) 

    text(1,0.2590,strcat('Wind Speed=',num2str(U),'m/s')) 

    text(7,0.2590,strcat('Tide=',num2str(h),'m')) 
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    subplot(2,1,2),plot(tt(nzi2),DS(nzi2)),xlabel('Geotime(s)'),ylabel('Doppler 

Shift(Hz)') 

     

    stdArrivaltime(q)=std(ArrivalTime(nzi2)); 

    WindSpeedseries(q)=WindSpeed; 

    meanDS(q)=mean(DS(nzi2)); 

     

     

    figure(3) 

    [nzi1NL,nzi2NL]=find(DSNL>0); 

    tt=0:dtExperiments:tmax;  

    subplot(2,1,1), 

plot(tt(nzi2NL),ArrivalTimeNL(nzi2NL)),xlabel('Geotime(s)'),ylabel('Arrival Time Of 

Eigenray(s)') 

    text(1,0.2592,strcat('Start Time {Mon., Day , Hour , Min.} 

:',num2str(time_in(1:4)))) 

    text(1,0.2590,strcat('Wind Speed=',num2str(U),'m/s')) 

    text(7,0.2590,strcat('Tide=',num2str(h),'m')) 

    subplot(2,1,2),plot(tt(nzi2NL),DS(nzi2NL)),xlabel('Geotime(s)'),ylabel('Doppler 

Shift(Hz)') 

     

    stdArrivaltimeNL(q)=std(ArrivalTimeNL(nzi2NL)); 

    meanDSNL(q)=mean(DSNL(nzi2NL)); 

     

end 

    load all_HFA97_std; 

    Windspeedex=all_std(:,3); 

    STDarrivalex=all_std(:,2); 

    figure(4) 

    

plot(WindSpeedseries,stdArrivaltime,'black',WindSpeedseries,stdArrivaltimeNL,'blac

k--',Windspeedex,STDarrivalex,'x black'),xlabel('WindSpeed(m/s)'),ylabel('Standard 

Dev. of Arrival Time (s)'); 

    legend('Linear Simulations','Nonlinear Simulations','Experiments') 

    figure(5) 

    plot(WindSpeedseries,meanDS,'black',WindSpeedseries,meanDSNL,'black--

'),xlabel('WindSpeed(m/s)'),ylabel('Average Doppler Shift (Hz)') 

    legend('Linear Simulations','Nonlinear Simulations') 
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6.1 Function: plotray.m 

 

function [TotalDopplerShiftArray]=plotray( 

rayfil,x,n,nx,Qsx,Qsz,freq,cs,receiver_depth) 

 

% plot the RAYfil produced by Bellhop 

% useage: plotray( rayfil ) 

% where rayfil is the ray file (without the extension) 

% e.g. plotray( 'foofoo' ) 

% 

% MBP July 1999 

 

if ( strcmp( rayfil, 'RAYFIL' ) == 0 ) 

  rayfil = [ rayfil '.ray' ]; % append extension 

end 

 

% plots a BELLHOP ray file 

 

zr = 90.0; % use this to just plot eigenrays 

 

% open the file 

 

fid = fopen( rayfil, 'r' ); 

if ( fid == -1 ) 

    warndlg( 'No ray file exists; you must run BELLHOP first (with ray ouput selected)', 

'Warning' ); 

end 

 

% read header stuff 

 

TITLE  = fgetl(  fid ); 

FREQ   = fscanf( fid, '%f', 1 ); 

NBEAMS = fscanf( fid, '%i', 1 ); 

DEPTHT = fscanf( fid, '%f', 1 ); 

DEPTHB = fscanf( fid, '%f', 1 ); 

 

ii = findstr( TITLE(3:end), '''');   % find last quote 

TITLE = deblank( TITLE(3:1:ii-1) );  % remove whitespace 

 

% read rays 

 

set( gca, 'YDir', 'Reverse' )   % plot with depth-axis positive down 
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xlabel( 'Range (km)' ) 

xlabel( 'Range (m)' ) 

ylabel( 'Depth (m)' ) 

title( TITLE ) 

hold on 

 

% axis limits 

rmin = +1e9; 

rmax = -1e9; 

zmin = +1e9; 

zmax = -1e9; 

 

count=1; % Added by Cihan Bayindir 

TotalDopplerShift=0;  

TotalDopplerShiftArray(1)=0; % Added by Cihan Bayindir for Doppler Shift 

Calculations 

 raycount=1; 

  

for ibeam = 1:NBEAMS 

  alpha0    = fscanf( fid, '%f', 1 ); 

  nsteps    = fscanf( fid, '%i', 1 ); 

  NumTopBnc = fscanf( fid, '%i', 1 ); 

  NumBotBnc = fscanf( fid, '%i', 1 ); 

   if isempty( nsteps ); break; end 

   ray = fscanf( fid, '%f', [2 nsteps] ); 

   r = ray( 1, : ); 

   z = ray( 2, : ); 

    

   %r = r / 1000;   % convert to km 

    

   lincol = 'kbgrcmy'; 

   ii = NumBotBnc; 

   ii = mod( ii, 3 ) + 1; 

    

   % plot( r, z, lincol(ii) ); 

   if NumTopBnc > 1 && NumBotBnc > 1 

     % plot( r, z, 'k' )    % hits both boundaries 

   elseif NumBotBnc >= 1 

     % plot( r, z, 'b'  ) % hits bottom only 

   elseif NumTopBnc >= 1 

      plot( r, z, 'k-x'  ) % hits surface only 
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      cou=1; 

      

      %TotalDopplerShift=0; % Added by Cihan Bayindir for Doppler Shift 

Calculations 

      

      if abs(mean(z(length(z)-5:length(z)))-receiver_depth)<1.5; % There is a bug in 

Bellhop 

                                   % If the ray does not hit the receiver 

                                   % it is not an eigenray 

      for q=15:length(z)-25; % Added by Cihan BAYINDIR to find the points of ray 

hitting in the surface 

                             % in order to examine Doppler Shift 

                              

          [a,b]=find(x<r(q)); 

          indice=max(b); 

          % Linearly interpolated elevation 

          El=(n(indice+1)-n(indice))*(r(q)-x(indice))/(x(indice+1)-x(indice))+n(indice);  

          if (abs(El-z(q))<0.000055);  % If elevation of ray exceeds water surface, that is 

% an reflection point 

                                      % this is the criteria implemented in Bellhop. 

                                      % See fortran source code 

              nxinter=(nx(indice+1)-nx(indice))*(r(q)-x(indice))/(x(indice+1)-

x(indice))+nx(indice); 

              Qsxinter=(Qsx(indice+1)-Qsx(indice))*(r(q)-x(indice))/(x(indice+1)-

x(indice))+Qsx(indice); 

              Qszinter=(Qsz(indice+1)-Qsz(indice))*(r(q)-x(indice))/(x(indice+1)-

x(indice))+Qsz(indice); 

              udotn=(-Qsxinter*nxinter+Qszinter)/sqrt(nxinter^2+1);    % Velocity in the  

% normal direction 

               

              [repind1,repind2]=find(r(q)==r); % Bellhop writes the same points more than 

once 

                                               % Detect if they are same points.  

              cou=length(repind2); 

              lind=max(repind2); 

               

              if (cou>1); % In some of the runs Bellhop generates two points above 

%elevation. 

                          % Take the upper one as a reflection point 

                                                

                  % Clay and Medwin, Acoustical Oceanography page 335 for 

                  % Doppler Shift Calculations 
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                  % Use dot product for calculation of doppler shift     

                cosTetas=((r(lind)-r(lind-cou))*nxinter+(z(lind)-z(lind-

cou)))/(sqrt(nxinter^2+1)*sqrt((r(lind)-r(lind-cou))^2+(z(lind)-z(lind-cou))^2)); 

                cosTetar=((r(lind)-r(lind+1))*nxinter+(z(lind+1)-

z(lind)))/(sqrt(nxinter^2+1)*sqrt((r(lind)-r(lind+1))^2+(z(lind)-z(lind+1))^2)); 

               

                origfreq=freq; 

                Onehitfreq=freq*(cs+udotn*cosTetas)/(cs-udotn*cosTetar); 

                  if (r(q)==r(q-1));   % Do not account for Doppler Shift for few times at the 

%same point 

                  else 

                    freq=Onehitfreq; 

                  end     

                DopplerShift=origfreq-freq; 

                TotalDopplerShift=TotalDopplerShift+DopplerShift;  

                 

                plot( r(q), z(q), 'magenta-<'  )  

              else 

              end 

          end          

      end  

          TotalDopplerShiftArray(raycount)=TotalDopplerShift; 

          raycount=raycount+1; 

      else 

          TotalDopplerShiftArray(raycount)=0; % This ray is not an eigenray. Do not 

count as a valid result 

          raycount=raycount+1;  

      end 

      cou 

            

   else 

   %  plot( r, z, 'r' )      % !!!! 3 commented out by Entin's suggestion in 

                             % order to plot only the rays hitting the 

                             % surface             

   end 

   % update axis limits 

   rmin = min( [ r rmin ] ); 

   rmax = max( [ r rmax ] ); 

   zmin = min( [ z zmin ] ); 

   zmax = max( [ z zmax ] ); 

   if ( zmin == zmax ) % horizontal ray causes axis scaling problem 

      zmax = zmin + 1; 
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   end 

   axis( [ rmin, rmax, zmin, zmax ] ) 

    

   if rem( ibeam, fix( NBEAMS / 10 ) ) == 0,    % flush graphics buffer every 10th ray 

       drawnow 

   end; 

   %end 

end % next beam 

fclose( fid ); 

hold off 

zoom on 
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