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1 Introduction

Many biological phenomena are characterized by extensive fluid mechanical and chemical reac-
tionary systems. As such, it is necessary to understand the manner in which these processes
develop and the role that they play in a given system. Vascular blood flow is characterized by
convective, diffusive, and reactive processes. Specifically, blood clot formation involves platelet
convection within the blood stream, diffusion through the Lévêque boundary layer of the blood
vessel, and binding to vascular breaches. Accordingly, in order to understand blood clotting, the
fluid mechanics of blood flow as well as the reaction mechanism of platelet adhesion are relevant.
In this study, we formulate a mathematical model for blood clotting and associated processes.

2 Governing Equations

2.1 Conservation of Mass

We start by considering blood flow in a uniform tube; that is to say there is no variation in the
θ-direction, and there is no narrowing from blood clotting in the z̃-direction.
Conservation of mass in a cylindrical tube is modelled as follows:

1
r̃

∂(r̃ũr̃)
∂r̃

+
1
r̃

∂ũθ

∂θ
+

∂ũz̃

∂z̃
= 0. (1)

where (ũr̃, ũθ, ũz̃) is the velocity in the radial, angular, and downstream directions.
Examining (1), the following can be noted.

(a) If we remove the radial and angular velocity terms, we are left with ∂ũz̃/∂z̃ = 0. This means
that uz̃ is not a function of z̃. We can remove the radial and angular velocity terms from this
equation because we are assuming that the blood vessel is significantly small enough so that
the flow of blood proceeds in a straight line and does not move in the radial direction. Also,
we assume no rotation of the blood against the walls of the vessel, so there is no movement
in any direction except the z -direction.

(b) We have also assumed that there is no turbulence or churning in the tube, so uz̃ is functionally
independent of θ. Consequently, uz̃ is solely a function of r̃.
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2.2 Conservation of Linear Momentum/Steady Flow Case

We now wish to model conservation of linear momentum in the tube for our system. This is derived
from the Navier-Stokes equations presented in cylindrical coordinates as follows:

ρ

(
∂ũr̃

∂t̃
+ ũr̃

∂ũr̃

∂r̃
+

ũθ

r̃

∂ũr̃

∂θ
− ũ2

θ

r̃
+ ũz̃

∂ũr̃

∂z̃

)
= (2)

−∂p̃

∂r̃
+ µ

{
∂

∂r̃

[
1
r̃

∂(r̃ũr̃)
∂r̃

]
+

1
r̃2

∂2ũr̃

∂θ2
− 2

r̃2

∂ũθ

∂θ
+

∂2ũr̃

∂z̃2

}
,

ρ

(
∂ũθ

∂t̃
+ ũr̃

∂ũθ

∂r̃
+

ũθ

r̃

∂ũθ

∂θ
+

ũθũr̃

r̃
+ ũz̃

∂ũθ

∂z̃

)
= (3)

−1
r̃

∂p̃

∂θ
+ µ

{
∂

∂r̃

[
1
r̃

∂(r̃ũθ)
∂r̃

]
+

1
r̃2

∂2ũθ

∂θ2
+

2
r̃2

∂ũr̃

∂θ
+

∂2ũθ

∂z̃2

}
,

ρ

(
∂ũz̃

∂t̃
+ ũr̃

∂ũz̃

∂r̃
+

ũθ

r̃

∂ũz̃

∂θ
+ ũz̃

∂ũz̃

∂z̃

)
= (4)

−∂p̃

∂z̃
+ µ

[
1
r̃

∂

∂r̃

(
r̃
∂ũz̃

∂r̃

)
+

1
r̃2

∂2ũz̃

∂θ2
+

∂2ũz̃

∂z̃2

]
,

where ρ represents the pressure, µ the viscosity, and P̃ the pressure.
Since we know that there is no radial or angular velocity and that ∂ũz̃/∂z̃ = 0 and ∂ũz̃/∂θ=0,

equation (5) can be reduced to the following:

ρ

(
∂ũz̃

∂t̃

)
= −∂p̃

∂z̃
+ µ

[
1
r̃

∂

∂r̃

(
r̃
∂ũz̃

∂r̃

)]
.

Rearranging this equation, we can represent conservation of linear momentum in our system as

∂p̃

∂z̃
=

µ

r̃

∂

∂r̃

(
r̃
∂ũz̃

∂r̃

)
− ρ

(
∂ũz̃

∂t̃

)
. (5)

We can analyze this result in a couple different ways. We begin by assuming steady flow, which
implies no change in velocity over time. Equation (5) for this case then becomes

∂p̃

∂z̃
=

µ

r̃

∂

∂r̃

(
r̃
∂ũz̃

∂r̃

)
. (6)

Now, since the left side is a function of only z̃, and the right side is a function of only r̃, we can
say that both sides of the equations are constant, and we can now represent ∂p̃/∂z̃ as the average
pressure gradient across the length (L) of the tube. First, we establish boundary conditions on the
pressure:

p̃(r̃, θ, 0, t̃) = P0 + �P , p̃(r̃, θ, L, t̃) = P0.

Given these boundary conditions, the average pressure across the tube is

∂p̃

∂z̃
=

p̃(r̃, θ, L, t̃) − p̃(r̃, θ, 0, t̃)
L

=
P0 − (P0 + �P )

L
= −�P

L
.
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Now equation (6) evolves as follows:

−�P

L
=

µ

r̃

∂

∂r̃

(
r̃
∂ũz̃

∂r̃

)
(7)

∂

∂r̃

(
r̃
∂ũz̃

∂r̃

)
= − r̃�P

µL
.

Because we are modelling a system that has surface reactions as the fluid flows, it is common
to accept a no-slip convention. This means that the fluid sticks to the wall and, there is no flow
there. Consequently, one boundary condition that arises for this system is ũz̃(R) = 0 (R represents
the radius of the tube).

2.3 The Convection-Diffusion System/Boundary Layer

The convection-diffusion equation accounts for the change in the concentration of reactant in fluid
over time due to its convection across the cylinder and its diffusion through the boundary layer. It
is modelled in cylindrical coordinates as follows:

∂C̃

∂t̃
= D̃

[
1
r̃

∂

∂r̃

(
r̃
∂C̃

∂r̃

)
+

1
r̃2

∂2C̃

∂θ2
+

∂2C̃

∂z̃2

]
− (ũr̃, ũθ, ũz̃) · ∇C̃, (8)

where D̃ represents the molecular diffusivity. This equation will be simplified and scaled in later
passages. The boundary conditions on the system are as follows:

(a) The input concentration is set to be the initial concentration of platelets in the blood, so
C̃(r̃, θ, 0, t̃) = CT .

(b) At the reacting surface of the boundary layer (r̃ = R) the flux through the surface is equal to
the rate of change of the bound receptor concentration (denoted by B̃(θ, z̃, t̃)).

2.4 The Surface Reactions

Initially, we consider a two step reaction that produces two complexes. First, the reactant in the
fluid (L) binds to a receptor (R) to form a ligand (platelet) receptor complex (LR). Second, this
complex reacts with more ligand to produce a new complex (L2R). Although it is plausible to
consider more reactions of this type and also consider reversible reactions, for now we consider just
this simple case. Furthermore, we consider only first order kinetics in the reactants. The reactions
are modelled in the following manner:

L + R → LR, (9)

L + LR → L2R. (10)

If we consider the concentration of each species as

(a) [LiR]=B̃(i) (for i > 0),

(b) [R]=RT − B̃(1) − B̃(2)=B̃(0),
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(c) [L]=C̃,

then we can write the rate law for this pair of reactions in differential form assuming first order
kinetics. This takes the following form:

∂B̃(1)

∂t̃
= k̃1

(
RT − B̃(1) − B̃(2)

)
C̃(R, z̃, t̃) − k̃2B̃

(1)C̃(R, z̃, t̃), (11)

∂B̃(2)

∂t̃
= k̃2B̃

(1)C̃(R, z̃, t̃), (12)

where k̃i are the reaction rate constants.
We consider the relationship between the flux through the surface and the rate of change of the

total bound receptor concentration in the following manner:

−D̃
∂C̃

∂r̃
(R, t̃) =

∂B̃(1)

∂t̃
+

∂B̃(2)

∂t̃
. (13)

The motivation of this equation is essentially a mass balance. We account for the accumulation
or depletion of B̃(θ, z̃, t̃) over time with whatever is left over in the tube after particles enter and
exit. In this case, because diffusion is dominating, particles would be diffusing in and out of the
boundary layer.

3 Scalings

All quantities having a physical dimension are scaled against some characteristic quantity. These
quantities often represent maximum values, and on occasion are merely terms that simplify algebra.
Characteristic quantities are denoted as xc, and the dimensionless scaled terms are represented by
the following:

x =
x̃

xc
. (14)

3.1 The velocity

To simplify and solve equation (8), we choose a scaling for the velocity in order to make equation
(8) look like the following:

∂

∂r

(
r
∂u

∂r

)
= −4r. (15)

Choosing the characteristic radius (rc) to be the radius of the blood vessel (R), and scaling equation
(8), we get the following:

∂

∂ (r · rc)

[
(r · rc)

(
∂ (u · uc)
∂ (r · rc)

)]
= −(r · rc)�P

µL
.

uc

[
∂

∂r

(
r
∂u

∂r

)]
= −4r

(
−R2�P

4µL

)

uc =
(

R2�P

4µL

)
. (16)
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Of course, having now chosen the characteristic radius to be the radius of the blood vessel (R), the
boundary condition on the velocity is

uz(1) = 0. (17)

3.2 The Convection-Diffusion System

In the case of the convection-diffusion equation, the scaling for time and the length of the tube are
still not chosen. Time will be scaled later when scaling the boundary layer equation. Of course, an
appropriate scaling for the independent variable z would be the length of the tube as that would
be the maximum distance blood would ever travel. The length scaling will be denoted: (zc = L).
Plugging these scalings into the convection-diffusion equation and simplifying, we get the following:

∂ (Cb · Cc)
∂ (t · tc)

= D̃

[
1

(r · R)
∂

∂ (r · R)

(
(r · R)

∂ (Cb · Cc)
∂ (r · R)

)
+

1
(r2 · R2)

∂2 (Cb · Cc)
∂θ2

(18)

+
∂2 (Cb · Cc)
∂ (z · zc)

2

]
− uz

(
Ccuc

zc

)
∂Cb

∂z

1
uctc

∂Cb

∂t
=

D̃

ucR2

[
1
r

∂

∂r

(
r
∂Cb

∂r

)]
+

(
D̃

L2uc

)
∂2Cb

∂z2
−

(uz

L

) ∂Cb

∂z

L

uctc

∂Cb

∂t
=

D̃L

ucR2

[
1
r
∂

∂

r

(
r
∂Cb

∂r

)]
+

(
D̃

Luc

)
∂2Cb

∂z2
− uz

∂Cb

∂z

L

uctc

∂Cb

∂t
=

D̃L

ucR2

[
1
r

∂

∂r

(
r
∂Cb

∂r

)
+

(
R2

L2

)
∂2Cb

∂z2

]
− uz

∂Cb

∂z

L

uctc

∂Cb

∂t
=

D̃L

ucR2

[
1
r

∂

∂r

(
r
∂Cb

∂r

)
+ ε2

∂2Cb

∂z2

]
− uz

∂Cb

∂z
(19)

where

ε =
R

L
. (20)

In this case, because the diffusivity constant (D̃) is small, the coefficient of the first term on the
right hand side of equation (19) is also small. Thus, we scale the radius again by this coefficient in
such a way as to blow up the region around the walls where the reactions take place. We do this
because we assume that at this point, the effects of convection and diffusion balance and we can
analyze the change in the concentration of reactant due to the reactions with the wall. First, we
let

y = Peα(1 − r),

where

Pe =
ucu

′
z(1)R2

D̃L
.

The definition for the Peclét number closely resembles the inverse of the coefficient of the first term
on the right side of equation (19). Thus, its inverse is also a small number and is an appropriate
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scaling factor for the radius. The use of the extra derivative term is for algebraic simplicity and
becomes more clear in later passages when we discuss the solution to the velocity equation and
how it affects the convection-diffusion system. The absolute value of the derivative term is used
because the velocity profile decreases as it approaches the wall, so the derivative of the velocity at
the wall is negative. This is more mathematically obvious later when we show the solution for the
velocity profile. Next we do a two-term Taylor series expansion of uz about the boundary of the
blood vessel at r = 1. Here uz(1) is zero because of the no-slip condition imposed at the wall.

uz = uz(1) + (r − 1)u′
z(1) = Pe−αu′

z(1)y.

Now we can re-scale equation (19).

L

uctc

∂C

∂t
= Pe−1u′

z(1)
[ −Peα

1 − yPe−α

[
∂

∂y

(
(1 − yPe−α)(−Peα)

(
∂C

∂y

))]
+ ε2

∂2

∂y2

]
(21)

−
(
Pe−αu′

z(1)y
) ∂C

∂z
.

We eliminate the ε2 term because it is small, so the equation becomes

L

uctc

∂C

∂t
= Pe−1u′

z(1)
[

Pe2α

1 − yPe−α

[
∂

∂y

(
(1 − yPe−α)

(
∂C

∂y

))]]
− Pe−α

(
u′

z(1)y
) ∂C

∂z

L

uctc

∂C

∂t
= Pe−1u′

z(1)
[

Pe2α

1 − yPe−α

(
−Pe−α ∂C

∂y
+ (1 − yPe−α)

∂2C

∂y2

)]
− Pe−α

(
u′

z(1)y
) ∂C

∂z

L

uctc

∂C

∂t
= Pe−1u′

z(1)
[ −Peα

1 − yPe−α

∂C

∂y
+ Pe2α ∂2C

∂y2

]
− Pe−α

(
u′

z(1)y
) ∂C

∂z

L

ucu′
z(1)tc

∂C

∂t
= Pe(2α−1) ∂

2C

∂y2
− Pe−αy

∂C

∂z
. (22)

Here, we recognize that both terms on the right side of equation (22) should be important. To
ensure this, we equate the powers of the Peclét number in both terms and determine that α = 1/3.
Equation (22) then reduces to

LPe−
1
3

uc|u′
z(1)|tc

∂C

∂t
=

∂2C

∂y2
− y

∂C

∂z
. (23)

3.3 The Surface Reactions

The rate laws associated with the reactions at the boundary layer introduce several new variables
that all need to be scaled. Ideally, after scaling, the equations should look nearly the same and all
of the dimensional quantities unique to this problem would be eliminated. Thus, if we choose the
following scalings:

tc =
1

k̃1Cc

, Bc
(1) = Bc

(2) = RT , k2 =
k̃2

k̃1

,
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then equations (11) and (12) transform as follows:

∂B̃(1)

∂t̃
= k̃1

(
RT − B̃(1) − B̃(2)

)
C̃(R, z̃, t̃) − k̃2B̃

(1)C̃(R, z̃, t̃)

∂
(
B(1) · RT

)
∂ (t · tc)

= k̃1

(
RT − B(1) · RT − B(2) · RT

)
C(0, z, t) · Cc (24)

−k̃2

(
B(1) · RT

)
C(0, z, t) · Cc

∂B(1)

∂t
= k̃1tcCc

(
1 − B(1) − B(2)

)
C(0, z, t) − k̃2CctcB

(1)C(0, z, t)

∂B(1)

∂t
=

(
1 − B(1) − B(2)

)
C(0, z, t) − k2B

(1)C(0, z, t), (25)

∂
(
B(2) · RT

)
∂ (t · tc)

= k̃2CcRT B(1)C(0, z, t)

∂B(2)

∂t
= k2B

(1)C(0, z, t). (26)

We further scale equation (13) using all of our previously chosen scalings to get the following:

−D̃
∂C̃

∂r̃
(R, t̃) =

∂B̃(1)

∂t̃
+

∂B̃(2)

∂t̃

−D̃Cc

R

∂C

∂r
=

RT

tc

[
∂B(1)

∂t
+

∂B(2)

∂t

]

D̃Cc

R

(
−Pe

1
3

) ∂C

∂y
=

RT

tc

[
∂B(1)

∂t
+

∂B(2)

∂t

]

∂C

∂y
(0, z, t) =

RRT Pe−
1
3

D̃Cctc

[
∂B(1)

∂t
+

∂B(2)

∂t

]

∂C

∂y
(0, z, t) = Da

[
∂B(1)

∂t
+

∂B(2)

∂t

]
, (27)

where

Da =
Rk̃1RT Pe−

1
3

D̃
. (28)

Da is referred to as the Damköhler number. The important terms in the definition are the reaction
rate constant (k̃1) and the diffusion coefficient (D̃). The ratio here gives a comparison between the
rate of reaction and the rate of diffusion. For high Da, the reaction rate dominates whereas for low
Da, diffusion dominates.
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Summary of Scalings
Scalings:

rc = R, zc = L, y = Pe
1
3 (1 − r), Cc = CT , (29)

tc =
1

k̃1Cc

, Bc
(1) = Bc

(2) = RT , k2 =
k̃2

k̃1

.

Scaled Equations:

∂

∂r

(
r
∂u

∂r

)
= −4r,

LPe
1
3

uc|u′
z(1)|tc

∂C

∂t
=

∂2C

∂y2
− y

∂C

∂z
,

∂B(1)

∂t
= k1

(
1 − B(1) − B(2)

)
C(1, z, t) − k2B

(1)C(1, z, t),

∂B(2)

∂t
= k2B

(1)C(1, z, t),

∂C

∂y
(0, z, t) = Da

[
∂B(1)

∂t
+

∂B(2)

∂t

]
.

4 Solutions/Results

4.1 The velocity

As previously stated, the no-slip condition sets up the following boundary condition on the velocity:

uz(1) = 0.

With this boundary condition, we solve equation (15) for the velocity as follows:

∂

∂r

(
r
∂u

∂r

)
= −4r

r
duz

dr
= −2r2 + γ1

duz =
(
−2r +

γ1

r

)
dr

uz = −r2 + γ1 ln(r) + γ2.

The natural log function is not continuous at the origin, so we let γ1 = 0. Using the boundary
condition, we find that γ2 = 1. Thus,

uz(r) = 1 − r2. (30)
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Now, equation (23) and the value of the Peclét number are fully discernible because

u′
z(1) = 2.

Thus,

Pe =
2ucR

2

D̃L
,

LPe−
1
3

2uctc

∂C

∂t
=

∂2C

∂y2
− y

∂C

∂z
. (31)

Note that the left side of equation (31) is very small due to the size of the inverse Peclét number.
This allows us to simplify (31) to:

y
∂C

∂z
=

∂2C

∂y2
. (32)

4.2 The Convection-Diffusion System

We know that convection happens far quicker than diffusion. Thus, we can represent the concen-
tration of the unbound platelets and that of the bound receptor sites in a couple ways. One way is
to assume the concentration of the unbound platelets never changes and say that only the empty
receptors react to create a product. Another way is to account for the small change in platelet
concentration due to diffusion. We accomplish both of these tasks by representing the concentra-
tion of the platelets and the bound receptors as a series expansion in orders of Da (the Damköhler
number):

C(y, z, t; Da) = C0(y, z, t) + DaC1(y, z, t) + o(Da), (33)

B(z, t; Da) = B0
(i)(z, t) + DaB1

(i)(z, t) + o(Da). (34)

First, we look at the concentration of unbound platelets. If we plug (33) into (32) and expand to
leading two orders, we observe the following:

y
∂C0

∂z
=

∂2C0

∂y2
, (35)

y
∂C1

∂z
=

∂2C1

∂y2
. (36)

Now, the solution to the leading order equation is obtained by observing the flux condition specified
by (27). We know that to leading order, (27) specifies that there is no radial gradient in C at the
boundary layer. Thus,

∂C0

∂z
= 0 (37)

C0(z) = constant, (38)

but, by the boundary condition specified at the entrance of the blood vessel (at all radii), we know
that C0(r, 0, t) = 1. Since equation (38) indicates that C0 is constant in z,

C0(r, z, t) = 1. (39)

This then becomes the one unique solution to (35). The solution for the leading second order
equation is, however, more complicated.
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4.3 The Surface Reactions

The reaction equations for the bound state are expanded upon substitution of (34) as follows.

∂B
(1)
0

∂t
+ Da

∂B
(1)
1

∂t
=

[
1 −

(
B

(1)
0 + DaB

(1)
1

)
−

(
B

(2)
0 + DaB

(2)
1

)]
[C0 + DaC1] − (40)

k2

(
B

(1)
0 + DaB

(1)
1

)
(C0 + DaC1)

∂B
(1)
0

∂t
+ Da

∂B
(1)
1

∂t
=

(
C0 − C0B

(1)
0 − DaC0B

(1)
1 − C0B

(2)
0 − DaC0B

(2)
1

)
+ (41)(

DaC1 − DaC1B
(1)
0 − Da2C1B

(1)
1 − DaC1B

(2)
0 − Da2C1B

(2)
1

)
−

k2

(
B

(1)
0 C0 + DaC1B

(1)
0 + DaC0B

(1)
1 + Da2C1B

(1)
1

)
If we include only the leading order terms, we get the following:

∂B
(1)
0

∂t
= k1

(
1 − B

(1)
0 − B

(2)
0

)
− k2B

(1)
0 , (42)

∂B
(2)
0

∂t
= k2B

(1)
0 , (43)

where we have used (39). If we include only second-order terms, we conclude:

∂B
(1)
1

∂t
= −B

(1)
1 − B

(2)
1 + C1(1, z, t) − C1(1, z, t)B(1)

0 − C1(1, z, t)B(2)
0 − k2C1(1, z, t)B(1)

0 − k2B
(1)
1

∂B
(1)
1

∂t
= −B

(1)
1 (1 + k2) + C1(1, z, t)

(
1 − B

(1)
0 (1 + k2) − B

(2)
0

)
− B

(2)
1 . (44)

Equation (26) simplifies more easily into:

∂B
(2)
1

∂t
= k2

[
B

(1)
0 C1(1, z, t) + B

(1)
1

]
. (45)

If we solve the rate laws to leading order of Da, we ignore the correction and achieve a solution,
but if we wish to account for the correction, we may do so by solving the rate laws to the next order.
The following are the leading order solutions to first, the governing equation for the evolution of
unbound ligand (equation (27)), and second, the reaction rate laws (equations (25) and (26)).

In order to solve the reaction rate laws for the bounded complexes, we rely on the following
boundary conditions:

B0
(1)(z, 0) = 0, B0

(2)(z, 0) = 0.

Additionally, we find the differential boundary conditions on B
(i)
0 by plugging the above boundary

conditions into (42) and (43):

∂B0
(1)

∂t
(z, 0) = k1

(
RT − B0

(1)(z, 0) − B0
(2)(z, 0)

)
− k2B

(1)(z, 0),

10



∂B0
(2)

∂t
(z, 0) = k2B0

(1)(z, 0).

Thus,
∂B0

(1)

∂t
(z, 0) = 1,

∂B0
(2)

∂t
(z, 0) = 0.

Note that all four of the above boundary conditions are initially constant for all z. Accordingly,
equations (42) and (43) can be treated as a system of two second order, linear, ordinary differential
equations. We proceed to solve this system by first differentiating (42):

B̈
(1)
0 = −Ḃ

(1)
0 (1 + k2) − Ḃ

(2)
0 .

Plugging this result into (26):

B̈0
(1)

+ Ḃ0
(1)

(1 + k2) + k2B0
(1) = 0, B0

(1)(0) = 0, Ḃ0
(1)

(0) = 1,

we find a characteristic equation: r2 + r (1 + k2) + k2 = 0, the solutions of which are

r =
− (1 + k2) ±

√
(1 + k2)

2 − 4k2

2
=

(−1 − k2) ± (k2 − 1)
2

= −k2,−1.

Thus, our general solution is
B0

(1)(t) = σ1e
−k2t + σ2e

−t.

Plugging in the boundary conditions, we have

B0
(1)(0) = σ1 + σ2 = 0, Ḃ0

(1)
(0) = −k2σ1 − σ2 = 1

σ1 =
1

1 − k2
, σ2 =

1
k2 − 1

.

Hence,

B0
(1)(t) =

e−k2t − e−t

1 − k2
. (46)

Having an expression for B0
(1)(t) simplifies the process of solving for B0

(2)(t). Substituting for
B0

(1)(t) in equation (26), we get:

Ḃ
(2)
0 = k2

[
e−k2t − e−t

1 − k2

]

B0
(2) = k2

[ −e−k2t

k2 (1 − k2)
+

e−t

1 − k2

]
+ ς

B0
(2) =

−e−k2t + k2e
−t

1 − k2
+ ς.

Subsituting the boundary conditions, B0
(2)(0) = 0, we determine ς as

0 =
−1 + k2

1 − k2
+ ς, ς = 1.

11



Hence,

B0
(2)(t) =

k2e
−t − e−k2t

1 − k2
+ 1. (47)

Note: Both solutions satisfy their predicted initial and long term behavior. Both vanish for t = 0,
and for t → ∞, all of the reactants go to producing the complex B0

(2). Thus, from a surface
perspective, the solutions look valid.

5 Special Cases

5.1 Correction for Non-Newtonian Flow

Physically, one characterizes a Newtonian fluid as one in which the stress response invoked upon
the application of some external force is directly proportional to that applied force. Now, in order
to correct for the possibility that a fluid does not behave like a Newtonian fluid, we introduce the
factor β into the equation for the velocity:

uz(r) = 1 − rβ. (48)

This factor then easily filters through the convection-diffusion equations because for this velocity
profile: u′

z(1) = β. This is why the Peclét number was defined the way it was. This way, the
unknown factor β in the velocity profile is accounted for. Now, introducing this variation in the
velocity profile into the convection-diffusion equation, we find that (23) evolves to:

LPe
1
3

uctcβ

∂Cb

∂t
=

∂2Cb

∂y2
− y

∂Cb

∂z
. (49)

Of course, β is merely a constant, so the intention of simplifying the convection-diffusion equations
to the form of (48) would be to obtain an equation that, once scaled completely, would be easy to
solve or has been previously solved.

5.1.1 Agreement With Grabowski’s Paper

Grabowski [1] uses several parameters and constants in his paper that could be useful for ours. In
order to use his numbers, we must first find the relationship between his scalings and ours. We
start by considering the velocity. We scale our velocity against a constant uc which we would be
considered the maximum velocity in the tube. If we examine his definition of velocity, we can find
a relationship between our uc and his U .

Grabowski’s definition of velocity is as follows (a is the radius of the tube, and r is the inde-
pendent variable representing the radius):

u =
3n + 1
n + 1

U

[
1 −

(r

a

)n+1
n

]
. (50)

The average velocity could then be calculated by integrating over the radius of the tube and then
dividing that value by the cross sectional area. Examine the following:

u =
3n + 1
n + 1

(U)
[∫

0

a (
1 −

(r

a

)n+1
n

)
rdrdθ

]
1

πa2
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u =
3n + 1
n + 1

(U)
[∫

0

a (
r −

(
r

2n+1
n

) (
1

a
n+1

n

))
dr

]
2
a2

u =
3n + 1
n + 1

(U)
[
a2

2
− a

3n+1
n

(
n

3n + 1

) (
1

a
n+1

n

)]
2
a2

ū =
3n + 1
n + 1

(U)
[
1 − a

n+1
n

(
2n

3n + 1

) (
1

a
n+1

n

)]

u =
3n + 1
n + 1

(U)
(

1 − 2n

3n + 1

)

u =
3n + 1
n + 1

(U)
(

n + 1
3n + 1

)
= U.

Thus, Grabowski’s U represents his average velocity. Now, our dimensionless velocity profile is
given by equation (48). Our scaling can be compared to his by examining the definition of each
scaled variable. Our equation looks as follows:

ũz(r) = uc

(
1 −

(
r̃

R

)β
)

. (51)

Comparing (51) to (50), we can show that our variables and Grabowski’s variables have the following
relationships:

uc =
(

3n + 1
n + 1

)
U, β =

n + 1
n

.

This expression for uc is encouraging because just from a surface look at Grabowski’s velocity, we
can tell that the maximum velocity occurs in the middle of the tube at r = 0. Setting r = 0 gives
us exactly the expression shown above for uc.

5.2 Unsteady Flow

Initially, because we assumed steady flow we were able to make extensive simplifications on equation
(5) which we derived from the conservation of linear momentum.

Now, in this case, we can still make some important simplifications. First, because the left
hand side is a function of only z and t, and the right hand side is a function of only r and t, we
can say that the entire equation is a function of only t. This may not seem relevant now, but it is
important when simplifying the equation after we choose a new form for the velocity.

We wish to model the flow of the blood with pulsations instead of steady flow. The most
reasonable way to do this would be to represent the velocity as the steady flow plus some term that
gives periodic deviation from the norm. Thus, we redefine uz as follows:

ũz̃(r̃, t̃) = ũs(r̃) + ũr̃(r̃) cos ωt. (52)

For algebraic simplicity, this can also be written as:

ũcz̃(r̃, t̃) = ũs(r̃) + ũc(r̃)eiωt. (53)

where:
ũr̃(r̃) cos ωt = Re

(
ũc(r̃)eiωt

)
, (54)
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ũz̃(r̃, t̃) = Re
(
ũcz̃(r̃, t̃)

)
. (55)

Equation (5) can be simplified by grouping like powers of t upon substitution of (53). First, we
scale the equation using our previous scalings for uz, r, z, and p.

∂(p · �P )
∂(z · L)

=
( µ

r · R
) ∂

∂ (r · R)

(
(r · R)

∂ (uz · uc)
∂ (r · R)

)
− ρ

(
∂ (uz · uc)

∂t

)
.

Now we substitute (16) for uz and simplify to get

4
(

∂p

∂z

)
=

µ

r

∂

∂r

(
r
∂uz̃

∂r

)
− ρ

(
∂uz̃

∂t

)
.

The scaled equation can now be manipulated in combination with (53) to solve for the pressure
gradient down the length of the blood vessel:

4
(

∂p

∂z

)
=

µ

r

∂

∂r

[
r
(
u′

s(r) + u′
c(r)e

iωt
)]

−
(

ρiωucµ

R2

)
eiωt

4
(

∂p

∂z

)
=

µ

r

[(
u′

s(r) + u′
c(r)e

iωt
)

+ ru′′
s(r) + ru′′

c (r)e
iωt

]
−

(
ρiωucµ

R2

)
eiωt

4
(

∂p

∂z

)
= eiωt

[
(µ)u′′

c (r) +
µ

r
u′

c(r) −
ρiωucµ

R2

]
+

[
(µ)u′′

s(r) +
µ

r
u′

s(r)
]

∂p

∂z
= −

(
1 + peiωt

)
, (56)

where

p =
[
µuc

′′(r) +
µ

r
uc

′(r) − ρiωucµ

R2

]
.

This result is important because when we plug it back into equation (5), we are able to group
powers of eiωt and isolate the steady part (us) and the pulsating part (uc) of the velocity. The
steady part of course matches the previous work, but the pulsating part is more interesting. After
scaling and simplifications, we obtain a second order ODE for uc as follows.
Plugging (56) into (5), we get:

−4
(
1 + peiωt

)
= eiωt

[
1
r

∂

∂r

(
r
∂uc

∂r

)
− ρiωucµ

R2

]
+

1
r

∂

∂r

(
r
∂us

∂r

)

Isolating uc and us, the following can be concluded. In the steady case, we have

∂

∂r

(
r
∂us

∂r

)
= −4r,

while for the unsteady case we have

−4p =
d2uc

dr2
+

1
r

duc

dr
− iα2uc, (57)

where:
α =

√
ρωµ

R
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Of course, the no-slip condition holds for this case as well, so the same boundary condition holds:
uc(1) = 0.

Equation (57) is a Bessel equation, which upon solving, yields Bessel functions of order zero.
The following solution accepts one Bessel function and eliminates another. We eliminate the Y0

because it is not continuous at the origin and therefore, physically unreasonable.

−4p =
d2uc

dr2
+

1
r

duc

dr
− iα2uc

Homogeneous Solution:
d2uc

dr2
+

1
r

duc

dr
− iα2uc = 0

Let: −iα2 = λ2, ξ = λr

d2uc

dr2
+

1
r

duc

dr
+ λ2uc = 0

λ2 d2uc

dξ2
+

λ2

ξ

duc

dξ
+ λ2uc = 0

ξ2 d2uc

dξ2
+ ξ

duc

dξ
+ ξ2uc = 0

uc = τ1J0(ξ) + τ2Y0(ξ)

uc = τ1J0(αr
√
−i)

uc = τ1J0(αre−
πi
4 ).

Particular Solution:
d2uc

dξ2
+

1
ξ

duc

dξ
+ uc = −4p

λ2

ξ
d2uc

dξ2
+

duc

dξ
+ ξuc = −4p

λ2
(ξ)

let: Y (ξ) = A, (A is constant) Then:

Aξ = −4p

λ2
(ξ)

A = −4p

λ2
.

Final Solution:
uc = τ1J0(αre−

πi
4 ) − 4p

λ2
.

Now we substitute our boundary condition (uc(1) = 0):

τ1 =
4p

λ2

[
1

J0(αe
−πi
4 )

]

uc =
4p

iα2

[
J0(αre−

πi
4 )

J0(αe−
πi
4 )

− 1

]

uc(r) =
4pi

α2

[
1 − J0(αre−

πi
4 )

J0(αe−
πi
4 )

]
. (58)

15



6 Conclusions

The leading order perturbation of the reaction system, developed subject to first order, irreversible
kinetics, yields solutions of expected physical behavior. Further work is necessary to develop the
solution profiles subject to first order perturbation. Additional refinement could also be done on
the assumed reaction kinetics. For example, solution profiles could be generated for any number of
reversible reactions. These are yet to be developed.

We further develop velocity profiles for blood flow in both the steady and the unsteady case.
The steady case demonstrates standard Poiseuille flow profiles while the unsteady case, subject
to periodic pulsations, yields Bessel Function profiles. Further studies should be conducted to
show the impact of the unsteady velocity profiles, as compared with the steady profiles, on the
convection-diffustion system. The resulting system, combined with new reaction kinetics, would
likely yield more interesting results.
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