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ABSTRACT

Wireless sensor networks (WSNs) are widely expected to play an important role

in future IoT-power smart cities, which are expected to have all kinds of embedded

sensors continuously sensing the city space and generating an unprecedented volume of

heterogeneous data. Since blindly collecting all raw sensed data from sensor nodes will

incur significant communication and computation overhead and quickly drain sensor

nodes’ batteries, data aggregation is widely regarded as a key enabling functionality for

WSNs but nevertheless faces various security and privacy challenges. Despite the large

body of literature on secure and privacy-preserving data aggregation, this dissertation

aims to identify new security attacks on data aggregation and develop novel secure

and privacy-preserving data schemes to support complex aggregation functions. First,

we introduce a novel enumeration attack against existing secure additive aggregation

schemes. While secure additive aggregation such as Sum and Average has been studied

extensively in the past, none of the existing solutions were designed to detect or defend

against compromised sensor nodes forging their own readings, as it is widely assumed

that a small number of compromised sensor nodes forging their own reading has very

limited impact on the final aggregation result. We take VMAT, a representative secure

additive aggregation scheme, as an example to show that this long-held assumption does

not hold. Specifically, the enumeration attack allows a small number of compromised

sensor nodes to significantly inflate the final aggregation result by selectively forging

their own readings. We also introduce an effective defense against the enumeration

attack and confirm its effectiveness by simulation studies.

Second, we study the problem of secure quantile summary aggregation. A quan-

tile summary allows a base station to extract the ϕ-quantile for any 0 < ϕ < 1 of all

the sensor readings in the network and can provide a more accurate characterization

xii



of the data distribution than simple statistics such as sum and average. While effi-

cient quantile summary aggregation has been studied in the past, there has been no

solution for secure quantile summary aggregation. To tackle this open challenge, we

first experimentally study the impact of several malicious attacks on quantile summary

aggregation and then introduce a novel secure quantile summary aggregation protocol

built upon efficient cryptographic primitives.

Finally, we study the problem of privacy-preserving quantile summary aggrega-

tion. Privacy-preserving data aggregation is needed when the data generated by sensor

nodes, which allows the base station to learn useful aggregates of sensed data while

ensuring data privacy for individual sensors. Similar to the lack of a secure quantile

summary aggregation solution, how to realize privacy-preserving quantile summary

aggregation remains unknown. To fill this void, we design a novel scheme to enable

efficient quantile summary aggregation while guaranteeing local differential privacy for

individual sensors and use simulation studies to confirm its effectiveness.
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Chapter 1

INTRODUCTION

The emerging IoT paradigm is expected to be powered by millions of sensors

deployed throughout our physical space that continuously sense the surrounding en-

vironment and generate valuable data to optimize and improve our decision making.

Wireless sensor networks (WSNs) is widely regarded as a key component of many IoT

applications. A typical WSN is a multi-hop wireless network consisting of a base station

and many sensor nodes, in which sensor nodes continuously generate sensed data and

forward them to the base station. WSNs are ideal for applications that require mon-

itoring and controlling assets from a distance in real-time, and with minimal human

intervention. Applications of WSNs include industrial automation, wildlife monitoring,

smart agriculture, environmental monitoring, and so on.

In-network aggregation mechanism is one of the methods used to reduce the

overall amount of power and bandwidth required to process a query in data gathering.

It allows sensor values to be gradually processed by intermediate nodes along the route

to the base station. Many effective types of data aggregation functions were explored

by researchers to improve the way to compute statistic aggregates in wireless sensor

networks using in-network aggregation. These functions are closely related to sensor

network applications; such as MAX/MIN, COUNT, SUM, AVERAGE, QUANTILE,

MEDIAN.

However, due to the constrains on resources of a sensor node, an attacker may

compromise a sensor node to falsify sensor readings, improperly apply an aggregation

function and drop legitimate messages from the aggregate result and further get the

base station to accept the incorrect result. Also, an attacker may get access to sensi-

tive data of other sensor nodes. Therefore, security and privacy are among the most
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challenging obstacles to the wide spread of WSNs deployment especially for critical

applications. Secure data aggregation in wireless sensor networks has been studied ex-

tensively in the past [2, 3, 4, 5, 6, 7, 8, 9, 10]. Also, privacy-preserving data aggregation

in sensor networks has received a lot of attention [11, 12, 13, 14, 15, 16, 17]. Despite the

extension of research in the security and privacy of wireless sensor networks, in-network

data aggregation in WSNs still faces several critical security and privacy challenges.

This dissertation addresses three security and privacy related problems in WSNs as

explained below.

1.1 Secure SUM aggregation against Enumeration attack

SUM aggregation is a key function for data aggregation in many applications

of WSNs. Secure data aggregation in WSNs including SUM aggregation has been

studied extensively in the past. Most of the research efforts [18, 2, 3, 4, 5, 6, 19, 8,

9, 10] have focused on detecting intermediate nodes manipulating partial aggregation

results. There is a general consensus [2, 3, 20, 10] that a compromised node forging

its own reading is fundamentally difficult to detect but has limited impact on robust

aggregation functions such as SUM and COUNT [21]. In this dissertation, we introduce

a novel enumeration attack against approximate SUM aggregation to show that this

long-held assumption does not hold. Specifically, the enumeration attack allows a

small number of compromised sensor nodes to significantly inflate the final aggregation

result by selectively forging their own readings. We theoretically analyze the impact

of enumeration attack and validate our analysis using simulation studies. Also, we

introduce an effective countermeasure against enumeration attack by requiring every

sensor node to commit to its reading prior to knowing the random seed for generating

random synopsis.

1.2 Secure Quantile aggregation Summaries

While many secure data aggregation schemes have been proposed in the lit-

erature, most of them target simple statistics such as Sum, Count, Min/Max, and

2



Medium. In contrast, a quantile summary allows a base station to learn the ϕ-quantile

for any 0 < ϕ < 1 of all the sensor readings in the network and can provide a more

accurate characterization of the data distribution. Quantile summary aggregation in

wireless sensor networks has been studied by the distributed computing community

[22, 23, 24, 1, 25]. Unfortunately, none of the mentioned quantile aggregation schemes

have any security provisions. In this dissertation, we fill this void by first evaluating

the impact of a range of attacks on quantile summary aggregation using simulation

and then introduce a novel secure quantile summary aggregation protocol for wireless

sensor networks. Our proposed protocol is based on the quantile summary aggregation

protocol proposed by Huang et. al.[1]. Detailed simulation studies confirm the efficacy

and efficiency of the proposed protocol.

1.3 Local differential private Quantile aggregation Summaries

Privacy preserving data aggregation is another major challenge facing WSNs

especially with the use of in-network aggregation mechanism where data is collected

and processed by intermediate nodes. In many scenarios, such data may include sen-

sitive or critical information. Therefore, privacy preserving data aggregation has been

extensively studied in the past covering several kinds of aggregation queries in WSNs

[11, 12, 13, 14, 15, 16, 17]. However, none of the published work so far have tackled the

privacy issue in quantile summary aggregation. In this dissertation, we study the prob-

lem of privacy-preserving quantile summary aggregation and design a novel scheme to

enable efficient quantile summary aggregation while guaranteeing local differential pri-

vacy for individual sensors. We further show the effectiveness of the proposed scheme

through simulation studies.

1.4 Organization

The remainder of this dissertation is structured as follows. In chapter 2, we

introduce enumeration attack against SUM aggregation, and accordingly propose a

defense and confirm its effectiveness through experiments. chapter 3 introduces a novel

3



secure quantile summary aggregation protocol for wireless sensor networks followed

by detailed simulation studies to confirm the efficacy and efficiency of the proposed

protocol. In chapter 4, we describe and show the general steps to develop a novel

solution that enables efficient quantile summary aggregation while guaranteeing local

differential privacy for individual sensors and follow that with simulation studies to

evaluate the scheme performance. We finally conclude our work in chapter 5.
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Chapter 2

SECURE SUM AGGREGATION AGAINST ENUMERATION ATTACK

2.1 Introduction

Wireless sensor networks play a key role in the emerging IoT paradigm where

millions of sensors are expected to be deployed throughout the physical space, which

continuously sense the surrounding environment and generate an unprecedented amount

of data. A typical wireless sensor network is a multi-hop wireless network formed by

many resource-constrained sensor nodes and a base station, where sensed data are for-

warded to the base station with Internet connectivity via intermediate sensor nodes.

Exemplary applications of wireless sensor networks include manufacture plant moni-

toring, asset tracking, traffic monitoring, environmental monitoring, public safety, and

so on [26].

In-network data aggregation [27, 28] is a key functionality in wireless sensor net-

works and refers to the process in which the sensed data are processed and aggregated

en-route by intermediate sensor nodes. Since sensor nodes are commonly battery pow-

ered with limited communication and computation resources, forwarding every sensor

reading to the base station would quickly deplete the energy of intermediate nodes.

In-network data aggregation allows the base station to learn statistic aggregates of the

sensed data while greatly reducing the energy consumption and prolonging the net-

work’s lifetime. Consider the SUM aggregation as an example. Sensor nodes first form

an aggregation tree rooted at the base station. During the aggregation process, every

node sums up the readings from its children and its own and forwards the partial sum

to its parent. The base station is able to obtain the sum of all readings at the end

of the process. Other common aggregate functions such as MAX/MIN, COUNT, and

AVERAGE can be realized in a similar fashion.
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As an important network primitive, in-network data aggregation faces several

critical security challenges. Since sensor nodes are resource-constrained, they may

be physically captured or compromised by attackers and instructed to launch various

attacks. For example, a compromised sensor node may modify its partial aggregation

result to significantly inflate or deflate the final aggregation result at the base station.

Second, even if the base station is able to detect and reject the false aggregation result,

a compromised sensor node can launch persistent attack to prevent the base station

from receiving correct aggregation result, leading to a special form of Denial-of-service

attack. Last but not the least, a compromised sensor node may report arbitrary reading

of its own while following the aggregation protocol.

Secure data aggregation in wireless sensor networks has been studied extensively

in the past. A common assumption held in the literature is that a single compromised

sensor node forging its own reading is fundamentally difficult to detect but has limited

impact on the final aggregation result for robust aggregation functions like SUM and

COUNT [21]. Most of the research efforts have focused on detecting intermediate node

manipulating partial aggregation result. Existing solutions can be broadly classified

into two categories. The first category such as [2, 3, 4, 5] can provide accurate aggrega-

tion results and detect malicious sensor nodes manipulating partial aggregation results

via commitment verification. The second category such as [6, 19, 29, 8, 9, 10] offers

statistical estimation of the aggregate result via probabilistic sampling. As mentioned

above, a single malicious sensor node can keep attacking the aggregation process to

prevent the base station from obtaining the correct aggregate. There are a very few at-

tempts addressing the identification and revocation of compromised nodes with VMAT

[9] being a representative. VMAT relies on verifiable MIN aggregation and converts

other additive aggregation functions such as SUM and COUNT into MIN aggregation

via verifiable sampling.

In this chapter, we introduce a novel enumeration attack against VMAT [9] to

highlight the vulnerability of converting additive aggregation functions to MIN aggre-

gation via probabilistic sampling. We observe that a compromised sensor node can

6



exploit the vulnerability probabilistic sampling by enumerating all possible readings to

find the one that leads to significantly inflated aggregation result. In other words, the

long-held view that a single compromised node falsifying its local value has limited im-

pact on final aggregation results does not always hold. While VMAT has incorporated a

verifiable random number generation mechanism to prevent compromised sensor nodes

from generating arbitrary random samples, we show that such mechanism is necessary

but inadequate. As a countermeasure, we also introduce an effective defense against the

enumeration attack. Our contributions in this chapter can be summarized as follows.

• We introduce a novel enumeration attack against VMAT to highlight the danger

of converting additive aggregation into MIN aggregation, whereby a small number

of compromised sensors could severely manipulate the final aggregation result.

• We theoretically analyze the impact of enumeration attacks and validate our

analysis using simulation studies.

• We also introduce an effective countermeasure against enumeration attacks by

requiring every sensor node to commit to its reading prior to knowing the random

seed for generating random synopsis. We confirm the efficacy and efficiency of

the countermeasure via simulation studies.

The rest of this chapter is structured as follows. Section 2.2 discusses the re-

lated work. Section 2.3 presents the network and adversary models. Section 2.4 reviews

the VMAT scheme. Section 2.5 presents the enumeration attack and its evaluation.

Section 2.6 presents a defense against the enumeration attack and evaluates its perfor-

mance. Section 2.7 finally concludes this work.

2.2 Related Work

Secure data aggregation in wireless sensor networks and related systems has

been studied extensively in the past.

Existing solutions can be generally classified into two categories. The first cate-

gory such as [2, 3, 4, 5] provides accurate aggregation result at the base station. Most

7



of these schemes [2, 3, 4] ensure aggregation-result integrity by requiring intermedi-

ate nodes to commit to partial aggregation-results through cryptographic means. For

example, the scheme introduced in [2] requires each intermediate node to generate a

commitment using a Merkle hash tree, which is then forwarded along with the aggre-

gated data to its parent node. Each node adds its reading to the aggregated data

will later on send an authentication code to the base station which increases transmis-

sion and communication overhead. Accordingly, authors in [4] modifies this scheme

to reduce the communication per node by designing a new commitment structure for

authentication. SDAP [3] is a secure hop-by-hop data aggregation protocol that can

tolerate more than one compromised node through divide-and-conquer in addition to

a commitment-and-attest principle to help the base station to verify the correctness

of the aggregated data. SIES [5] on the other hand explores homomorphic encryption

to detect intermediate nodes modifying partial aggregation result. However, it cannot

isolate these nodes which make it vulnerable to denial-of-service attack. The second

category such as [6, 19, 8, 9, 10] aims to provide statistical estimation of the aggregate

result with probabilistic guarantee. SIA [6] considers a single-aggregator model and

statistically detects false aggregation result via random sampling and interactive proof,

which is subsequently improved in [19] to realize secure approximate-median aggrega-

tion. This scheme addresses integrity but lacks confidentiality. A secure aggregation

scheme based on verifiable set sampling was introduced in [8] to compute Count and

Sum. This scheme does not only detect malicious nodes but also tolerate them which

make it resilient to certain kinds of (Dos) attacks. Synopsis diffusion [29] is a robust

aggregation framework against packet loss which also computes Count and Sum. It

explores multi-path routing and duplicate-insensitive aggregation, and it is improved

in [20] to enable detection of false subaggregate and [10] to tolerate false subaggregate.

While most of the these solutions [18, 2, 3, 4, 5, 6, 19, 8, 9, 10] focus on detecting

intermediate node manipulating partial aggregation result, there are a few attempts

aiming at identifying compromised nodes during data aggregation in addition to VMAT
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[9], which make them resilient to (Dos) attacks. Early proposals [30, 31] rely on expen-

sive public-key cryptography operations and group testing to identify malicious nodes.

Xu et al. [32] proposed an improvement for SDAP [3] to identify malicious nodes via

statistical abnormality detection and random node grouping. Their scheme is ineffec-

tive if the attacker adopts its behavior according to the statistical detection rules. In

[33], a secure aggregation scheme was introduced to pinpoint intermediate nodes that

drop partial aggregation results. The approach, unfortunately, incurs a communication

overhead linear to the total number of sensor nodes, which largely nullifies the benefit of

in-network aggregation. In [34], Li et al. introduced a secure SUM aggregation protocol

to misbehaving intermediate aggregators by having every intermediate node’s partial

aggregation result checked by its children and parent, which is ineffective against two

colluding parent and child nodes. In addition, there is a general consensus [2, 3, 20, 10]

that a compromised node forging its own reading is fundamentally difficult to detect

but has limited impact on robust aggregation functions such as SUM and COUNT [21].

2.3 Network and Adversary Models

In this section, we introduce our system and adversary models.

2.3.1 Network Model

We consider a multi-hop wireless sensor network comprising a base station and

n sensor nodes. Each sensor node i has a sensed reading di in the range {1, . . . , k}.

The base station intends to learn f(d1, . . . , dn), where f(·, . . . , ·) is some aggregation

function such as MAX/MIN, SUM, AVERAGE, and COUNT. The aggregation is per-

formed over an aggregation tree, which is the directed tree rooted at the base station

formed by the unique path from every sensor node to the base station.

2.3.2 Adversary Model

We assume that the base station has adequate computation and energy resources

and is safeguarded from possible attacks. In contrast, sensor nodes are constrained in

computation and communication resources and may be compromised by the attacker,
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e.g., through physical capture. Once compromised, all the information stored at the

sensor node such as cryptographic keys is revealed to the attacker. The attacker aims

to have the base station accept a significantly inflated aggregation result without being

detected. We consider the following two attacks in this chapter.

• A compromised node may falsify its own sensed reading, which may or may not

be in the valid reading range.

• A compromised node may modify or drop a partial aggregation result.

We further assume that the attacker can compromise up to c sensor nodes and

that all the compromised nodes can collude in an arbitrary fashion under the instruction

of the attacker. We focus on the attacks targeting data aggregation in this chapter and

refer to the rich literature (e.g., [35, 36, 37, 38, 39, 40]) for other possible attacks on

wireless sensor networks.

2.4 Review of VMAT

In this section, we briefly review the VMAT scheme and how to convert additive

aggregation functions into MAX aggregation.

VMAT [9] is a representative secure aggregation scheme built upon efficient

symmetric-key operations with the capabilities of pinpointing and revoking malicious

nodes. These two features added to the support of multi-path aggregation distinguish

this scheme from other proposed schemes for reducing communication overhead and

preventing different attacks including denial of service attacks. Under VMAT, each

node shares one or multiple secret keys, called edge keys, with each of its neighbor,

and a distinct secret key with the base station. The key component of VMAT is

a secure MIN aggregation scheme. During the aggregation phase, each sensor node

creates a message consisting of its node ID, sensor reading, and a MAC encrypted

with an edge key shared with its parent. Each intermediate node receives the messages

from its children and forwards the message with the smallest reading among its children

and itself. At the end of the aggregation phase, the base station obtains the minimal

10



reading among all sensor nodes and verifies whether this minimal reading has a valid

MAC. During the confirmation phase, the base station uses authenticated broadcast

to announce the minimum value it received. If the minimum value is higher than the

true minimal value, then the sensor node with the true minimal value can detect it

and issue a veto message to be flooded back to the base station. The base station can

then revoke one of the edge keys used by the reporting sensor node. A sensor will be

revoked from the network after excluding certain number of its edge keys. We refer

readers to [9] for more details of the secure MIN aggregation protocol.

VMAT explores the distributed randomized algorithm proposed in [41] to con-

vert additive aggregation such as SUM and COUNT into MIN aggregation. Consider

SUM aggregation as an example. To compute S =
∑n

i=1 di, each node i with read-

ing di generates m mutually independent random synopses si,1, si,2, . . . , si,m from an

exponential distribution Exp(di) with mean 1/di. All n sensor nodes then participate

in m parallel instances of secure MIN aggregation to allow the base station to obtain

smin
1 , smin

2 , . . . , smin
m , where smin

j = min(s1,j, s2,j, . . . , sn,j) for all 1 ≤ j ≤ m. The sum of

all di can then be estimated as

Ŝ =
m∑m

j=1 s
min
j

,

which has been shown [41] to be an unbiased estimator of S. In addition, when m =

Θ( 1
ϵ2
log 1

δ
), Ŝ is within ((1− ϵ)S, (1 + ϵ)S) with probability at least 1− δ. AVERAGE

and COUNT aggregates can be realized in a similar fashion.

To prevent a compromised node from generating arbitrarily small synopsis,

VMAT uses a deterministic pseudorandom number generator to ensure that any syn-

opsis must correspond to a valid reading in range. In particular, the deterministic

pseudorandom number generator takes the sensor reading di, node ID i, and a nonce

r as input and outputs m synopsis si,1, . . . , si,m. On receiving smin
1 , smin

2 , . . . , smin
m , the

base station can verify that every minimal synopsis is indeed generated from a valid

reading. Unfortunately, we will show in the next section that this mechanism alone is

necessary but inadequate.
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2.5 Enumeration Attack

In this section, we use SUM aggregation as an example to introduce a novel

data enumeration attack.

2.5.1 Attack

In enumeration attack, a compromised sensor node aims to inflate the final ag-

gregate at the base station. In comparison to the naive attack in which a compromised

node simply reports the maximum reading in range, enumeration attack is more effec-

tive by causing the aggregation result significantly deviating from the true aggregation

result.

Enumeration attack exploits the vulnerability that a compromised sensor node

can report arbitrary reading of its own. Recall that in VMAT, every node i with reading

di generates m independent synopsis from an exponential distribution with mean 1/di,

and the aggregation result is computed from the m minimal synopsis across all the

sensor nodes. Recall that a valid sensed reading is in the range {1, . . . , k}. If the sensor

node simply reports the maximum reading k, each of its m synopsis is an exponential

random variable with mean 1/k. In enumeration attack, a compromised sensor node

attacks one synopsis of its choice. Consider as an example that a compromised sensor

node i attacks synopsis si,1. Node i can compute one synopsis for each possible reading

1, . . . , k using the verifiable random number generator DRNG(s, d, ID, k) to find the

reading d∗ that leads to the smallest synopsis sd as

d∗ = argminDRNG(s, d, ID, k).

It then faithfully participates in the secure MIN aggregation with sd.

We say the enumeration attack succeeds if sd happens to be smaller than all

the synopsis sj1 generated by non-compromised sensor nodes. It is easy to see that

under enumeration attack, the synopsis si,1 is the minimal of k independent exponential

random variables with means 1, 1/2, . . . , 1/k, respectively, which is smaller than the one
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generated from maximum reading k with high probability. In other words, enumeration

attack allows a sensor node to generate a much smaller synopsis with high probability.

Multiple compromised sensor nodes can collude to maximize the impact of the

enumeration attack. In particular, if the attacker has c > 1 sensor nodes, the attacker

can instruct each compromised sensor node to attack one distinct synopsis or evenly

allocate the compromised sensor nodes across m synopsis if c > m. In the worst case,

if enumeration attack succeeds for every synopsis, then the final aggregation result

computed by the base station is independent from any of the non-compromised sensor

nodes’ reading.

2.5.2 Theoretical Analysis

We first analyze the probability that a single compromised sensor node can

succeed in launching enumeration attack. Without loss of generality, we consider one

compromised sensor node i and g non-compromised sensor nodes and assume that node

i intends to attack synopsis smin
1 . We have the following theorem regarding the success

probability of a single node attacking one synopsis.

Theorem 1. Assume that there are g non-compromised sensor nodes. Further assume

that the readings of non-compromised sensor nodes are i.i.d. random variables with

probability distribution Pr(dj = x) = px where 1 ≤ x ≤ k. The probability that a single

compromised node can successfully launch enumeration attack against a single synopsis

is given by

Psucc =

∫ ∞

0

λe−λt · (
k∑

y=1

pye
−yt)gdt. (2.1)

Proof. Without loss of generality, assume that a compromised sensor node i aims to

attack synopsis smin
1 . The enumeration attack succeeds if node i can find a reading di ∈

{1, . . . , k} that results in its synopsis si,1, being the minimum among all s1,j, . . . , sn,j.

Let sem be the synopsis generated by node i under enumeration attack. We can see

that

sem = min(s[1], s[2] . . . , s[k]),
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where s[1], s[2] . . . , s[k] are mutually independent exponential distributed random vari-

ables with means 1, 1/2, . . . , 1/k, respectively. It follows that sem is an exponential

random variable with p.d.f.

f(sem = t) = λe−λt

for t ≥ 0, where λ = k(k + 1)/2.

Assume that there are g non-compromised sensor nodes. Let sj,1 be the synopsis

generated by a non-compromised sensor node j. It follows that

Pr(sj,1 ≤ t) =
k∑

x=1

Pr(sj,1 ≤ t|dj = x) · Pr(dj = x)

=
k∑

x=1

(1− e−xt)px

= 1−
k∑

x=1

pxe
−xt.

Let smin
g be the minimal synopsis among g non-compromised sensor nodes. We have

Pr(smin
g ≤ t) = 1− Pr(smin

g > t)

= 1−
g∏

j=1

Pr(sj,1 > t)

= 1− (
k∑

y=1

pye
−xy)g.

We finally have

Psucc = Pr(sem < smin
g )

=

∫ ∞

0

λe−λt · Pr(smin
g > t)dt

=

∫ ∞

0

λe−λt · (
k∑

y=1

pye
−yt)gdt

We also have the following two theorems regarding the expected number of syn-

opsis successfully attacked and the optimal strategy of allocating compromised nodes

to synopsis.
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Theorem 2. Assume that there are c compromised sensor nodes. Suppose that the

attacker allocates cj nodes to attack the jth synopsis for all 1 ≤ j ≤ m, where
∑m

j=1 cj =

c. The expected number of synopsis successfully attacked is given by

E(m̂) = m−
m∑
j=1

(1− Psucc)
cj , (2.2)

where Psucc is given in Eq. (2.1).

Proof. For every j, 1 ≤ j ≤ m, define Xj as the indicator random variable such that

Xj = 1 if synopsis Sj is successfully attacked and 0 otherwise. Since the attacker

allocates cj nodes to attack synopsis Sj, the probability that Sj is successfully attacked

can be computed as

Pr(Xj = 1) = 1− Pr(Xj = 0)

= 1− (1− Psucc)
cj .

Let m̂ be the number of number of synopsis successfully attacked. We have m̂ =∑m
j=1Xj. It follows that

E(m̂) =
m∑
j=1

E(Xj)

=
m∑
j=1

Pr(Xj = 1)

=
m∑
j=1

(1− (1− Psucc)
cj)

= m−
m∑
j=1

(1− Psucc)
cj ,

(2.3)

where Psucc is given in Eq. (2.1).

Theorem 3. Assume that there are c compromised sensor nodes. An optimal attack

strategy is to assign the compromised nodes to synopsis in a round robin fashion, i.e.,

assign the ith compromised node to attack the jth synopsis, where

j = i mod m.
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Table 2.1: Default Simulation Settings

Para. Val. Description.
m 50 The number of synopsis
k 100 The readings range
n 100 The number of sensor nodes
c 1 The number of compromised nodes

Proof. Assume that there are c compromised sensor nodes. For every j, 1 ≤ j ≤ m,

defineXj as the indicator random variable such thatXj = 1 if synopsis Sj is successfully

attacked and 0 otherwise. Given total c compromised sensor nodes, the attacker seeks

to maximize E(m̂), or equivalently
∑m

j=1 Pr(Xj = 1). Consider synopsis Sj as an

example. The probability that Sj is successfully attacked is given by

Pr(Xj = 1) = 1− (1− Psucc)
cj . (2.4)

Now suppose that the attacker allocate one extra compromised sensor node to attack

Sj. The probability that Sj is successfully attacked is given by

Pr(Xj = 1) = 1− (1− Psucc)
cj+1. (2.5)

Subtracting Eq. (2.4) from Eq. (2.5), we can obtain the change in the probability caused

by the additional one compromised node as

△P = 1− (1− Psucc)
cj+1 − (1− (1− Psucc)

cj)

= Psucc(1− Psucc)
cj .

We can see that △P monotonically decreases as cj increases. This shows that the

attacker should always allocate compromised sensor node to attack the synopsis that

has been assigned fewest nodes in order to maximize E(m̂). In other words, an optimal

attack strategy is to assign the compromised nodes to synopsis in a round robin fashion.
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Figure 2.1: Success probability of enumeration attack, where k = 100, n = 100 and
m = 50

2.5.3 Simulation Results

We conduct simulation studies to validate our theoretical analysis. Specifically,

we consider n = 1000 sensor nodes and m = 50 synopsis as the default setting and

evaluate the impact of several parameters. Table 2.1 summarizes our default settings

unless mentioned otherwise. We also consider four probability distributions of non-

compromised nodes’ readings. Every point is the average of 500 runs, each with a

distinct random seed.

Figs. 2.1a to 2.1c illustrate the impact of valid reading range and the number

of non-compromised nodes on Psucc, where we assume that the readings from non-

compromised sensor nodes following four uniform distributions U(5, 15),U(25, 35),U(45, 55)
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Figure 2.2: Comparison of enumeration attack and naive attack in estimation error,
where k = 200, n = 500, c = 25, and m = 50

and U(65, 75) with mean 10, 30, 50 and 70, respectively. First of all, we can see that

the theoretical results match the simulation results very well, which validate our theo-

retical analysis. We can see from Fig. 2.1a that the success probability increases as the

reading range increases. This is expected, as the larger the reading range, the more

readings the compromised sensor node can try to find the minimal possible synopsis,

the higher the probability that its synopsis is smaller than all the synopsis generated by

the non-compromised sensor nodes, and vice versa. In addition, the larger the expec-

tation of the non-compromised node’s reading, the lower the success probability. This
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is because it is more likely for non-compromised nodes to generate smaller synopsis

with larger readings. We can see from Fig. 2.1b that the success probability decreases

as the number of non-compromised nodes increases. This is also anticipated, as the

more non-compromised nodes, the smaller the minimal synopsis among all the synop-

sis generated by the non-compromised nodes. Finally, we can see from Fig. 2.1c that

the number of synopsis successfully attacked increases as the number of compromised

sensor nodes increases. We can also observe that the pace of increasing slows down

after the number of compromised nodes exceeds the number of synopsis.

Figs. 2.2a to 2.2c compares the relative estimation errors under enumeration

attack and naive attack where every compromised sensor node simply reports the

maximum reading in range. The relative estimation error is defined as |Ŝatt − Ŝ|/Ŝ,

where Ŝatt and Ŝ are the sums estimated by the base station under attack and under no

attack, respectively. We assume that the average readings of non-compromised sensor

nodes are 50, 100, and 150, respectively. We can see from Fig. 2.2a that the relative

estimation error increases as the number of compromised nodes increases under both

naive and enumeration attacks, which is anticipated. In addition, the relative estima-

tion error under the naive attack is very limited, which is in line with the long-held

view and conclusions in [21]. However, the relative estimation error under enumeration

attack is always significantly higher than that under the naive attack. For example,

enumeration attack can inflate the sum aggregation result by 40% and 100% with 25

and 50 compromised sensor nodes, respectively. Such large aggregation errors high-

light the severe impact of the enumeration attack. Moreover, the larger the average

reading of non-compromised nodes, the smaller the impact of both naive attack and

enumeration attack. We can also see from Fig. 2.2b that the relative estimation error

decreases as the number of synopsis increases. This is expected, as if the number of

compromised nodes remains the same, the proportion of the synopsis successfully at-

tacked decreases as the number of synopsis increases. When the number of synopsis

exceeds 115, the relative estimation error under enumeration attack is about the same
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as that under the naive attack. Finally, Fig. 2.2c shows that the aggregation error de-

creases as the number of non-compromised nodes increases. This is because the more

non-compromised nodes results, the lower the success probability, the fewer synopsis

successfully attacked, and vice versa.

2.6 Countermeasure

In this section, we introduce an effective countermeasure against the enumera-

tion attack.

2.6.1 Countermeasure

We observe that the enumeration attack is possible because compromised nodes

know the nonce used for generating synopsis before choosing its reading. An effective

way to defend against enumeration attack is to require every sensor node to commit to

its reading before knowing the nonce, so that there is no opportunity for compromised

sensor nodes to enumerate all possible readings. Our countermeasure requires each

node to commit to its reading and forward the commitment to selected witnesses

in its neighborhood, which allows the base station to verify whether the synopsis is

generated before the sensor node knowing the random seed. In what follows, we detail

the operations.

During network initialization, every node i learns the IDs of all the nodes in

its h-hop neighborhood, denoted by N h(i), and the base station learns the complete

topology of the network. To initiate a data aggregation process, the base station

broadcasts a command with a random nonce s1. On receiving the command, each

sensor node i with reading di computes a commitment as

Commiti = ⟨IDi, di,MAC(IDi||s1||di)⟩,

where MAC(·) denotes message authentication code computed using the secret key

shared between node i and the base station and || denotes concatenation. It selects

λ nodes from N h(i) to serve as its witnesses using a deterministic random number
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generator seeded by the nonce s1 and its node ID, where λ ≥ 1 is a system parameter.

Node i then forwards Commiti to each of the λ witnesses.

Every node then follows VMAT to generate m synopsis and participates in

m instances of secure MIN aggregation. In particular, the base station broadcasts

another nonce s2. At the end of the aggregation phase, the base station obtains

smin
1 , smin

2 , . . . , smin
m , i.e., m minimal synopsis across all n sensor nodes. For every

smin
j (1 ≤ j ≤ m), the base station determines the ID of the node that generated this

synopsis and verifies that smin
j is indeed generated from a valid reading as in VMAT.

Consider smin
j as an example. Assume that node i with reading di generated smin

j . Dur-

ing the confirmation phase, the base station uses authenticated broadcast to announce

⟨IDi, di, s
min
j ⟩ to all the nodes. Every witness of node i, say node w, then sends a

message ⟨IDw,Commiti,MAC(IDw||Commiti)⟩ to the base station. On receiving the

message, the base station first verifies whether node w is a valid witness for node i.

If so, the base station verifies the MACs in the message and Commiti. If the verifica-

tion succeeds, the base station knows that node i’s reading di was committed before

knowing the nonce s2.

2.6.2 Simulation Results

We also use simulation studies to evaluate the performance of our countermea-

sure. We consider a 35×35 grid sensor network with n = 1225 sensor nodes, where the

base station is located at one of the corner. Every sensor node (except the ones near

the boundary) has 4 one-hop neighbors, 12 two-hop neighbors, 24 three-hop neighbors,

and 40 four-hop neighbors. We measure the communication overhead incurred by our

countermeasure as the average number of extra message transmissions per node and

per synopsis.

Fig. 2.3a shows the impact of the number of compromised nodes on Pwitness, the

probability of all witnesses being compromised under the assumption that compromised

nodes are distributed uniformly at random. As we can see, the larger the λ, the

smaller Pwitness, and vice versa. This is expected, as Pwitness is approximately ( c
n
)λ. For
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Figure 2.3: Performance of the countermeasure, where n = 1225.

example, when 10% of the nodes are compromised, the probability that all witnesses

are compromised is 0.01 if λ = 2. A compromised sensor node can successfully launch

enumeration attack on one selected synopsis if it can find a reading that leads to the

minimal synopsis and all λ witnesses are also compromised.

The attacker may choose to compromise one selected sensor node and then the

nodes within its h-hop neighborhood. Fig. 2.3b shows Pwitness varying with the number

of compromised nodes under different h. As we can see, the more compromised nodes,

the smaller h, the higher Pwitness, and vice versa. This is expected, as the λ witnesses are

chosen uniform at random from all the nodes within h-hop neighborhood. When the

number of compromised nodes exceeds the number of nodes in the h hop neighborhood,
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Pwitness becomes one. In this case, the success probability is reduced to the probability

that the compromised node can successfully find a reading that leads to the minimal

synopsis among all sensor nodes.

Fig. 2.3c shows the impact of λ, the number of witnesses that store the commit-

ment, on the extra communication overhead incurred by the proposed countermeasure.

It is not surprising to see that the larger the λ, the more message transmissions incurred

by the proposed countermeasure. In addition, the number of message transmissions

also increases as h increases for the same λ. The reason is that the larger h, the

larger the average distance between a node and its witnesses. Overall, our counter-

measure incurs a small number of extra message transmissions. For example, when

h = 3 and λ = 3, the proposed countermeasure incurs approximately 8 extra message

transmissions over VMAT.

2.7 Summary

In this chapter, we have introduced a novel enumeration attack against VMAT

to highlight the security vulnerability of sensor node reporting arbitrary readings. In

comparison with the naive attack, the enumeration attack allows a single compromised

sensor node to cause significantly higher estimation error at the base station without

being detected. We also introduce an effective countermeasure against the enumeration

attack. Theoretical analysis and simulation studies have confirmed the severe impact

of the enumeration attack and the effectiveness of the proposed countermeasure.
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Chapter 3

SECURE QUANTILE AGGREGATION SUMMARIES

3.1 Introduction

Wireless sensor networks are widely expected to play a key role in emerging

Internet of Things (IoT)-based smart cities in which a large number of sensor nodes

continuously sense the physical environment and generate data to assist intelligent deci-

sion making [42, 43]. Since sensor nodes are typically resource-constrained with limited

computation capability, memory, and energy, blindly forwarding all the sensed data to

a base station may quickly deplete sensor nodes’ limited energy. Data aggregation

has been widely considered as a key functionality [44] for reducing data redundancy,

improving energy efficiency, and prolonging the lifetime of wireless sensor networks, in

which sensed data are aggregated enroute by intermediate sensor nodes, which allow a

base station to acquire important statistics about the sensed data.

Secure data aggregation is necessary to safeguard the aggregation process. Re-

source constrained sensor nodes are subject to a wide range of attacks. Once com-

promised, a sensor node may carry out a wide range of attacks under the attacker’s

instruction. For example, it may change the subaggregate that can significantly deviate

the final aggregation result at the base station. As a result, secure data aggregation

has been investigated extensively over the past to allow the base station to acquire

important statistics about the sensed data [2, 7, 6, 45, 21, 3, 4, 5, 8, 10, 46]. Unfor-

tunately, all existing solutions target simple statistics such as Sum, Count, Min/Max,

and Median.

Quantile summary aggregation allows a base station to learn a more accurate

distribution of the sensed data. Specifically, a quantile summary allows the base station
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to extract the ϕ-quantile for any 0 < ϕ < 1 of all the sensor readings in the network

and thus can provide a more accurate characterization of the data distribution. Given

a set of n distinct data values with a total order, the ϕ-quantile is the value x with

rank r(x) = ⌊ϕn⌋ in the set, where r(x) is the number of values in the set smaller

than x. Since a quantile summary that can provide the exact quantiles must contain

the all n values in the worst case, an ϵ-approximate ϕ-quantile is a value with rank

between (ϕ− ϵ)n and (ϕ+ ϵ)n. While several quantile summary aggregation protocols

[23, 24, 1, 25] have been proposed in the past, none of them were designed to withstand

potential attacks. How to realize secure quantile summary aggregation in wireless

sensor networks thus remains an open challenge.

In this chapter, we fill this void by introducing SecQSA, a novel secure quantile

summary aggregation protocol for wireless sensor networks. Our proposed protocol

is based on the quantile summary aggregation protocol proposed by Huang et al. [1],

because it can guarantee a constant individual node communication cost independent of

network size even for those close to the base station with many decedents. We observe

that the key for securing quantile summary aggregation is to ensure the integrity of

the merging operation that merges multiple local quantile summaries into one. Based

on this observation, we design a secure merging procedure using efficient cryptographic

primitives. Our contributions in this chapter can be summarized as follows:

• To the best of our knowledge, we are the first to study secure quantile summary

aggregation in wireless sensor networks.

• We identify a range of possible attacks on quantile summary aggregation.

• We introduce a novel secure quantile summary aggregation protocol based on

efficient cryptographic primitives to ensure the integrity of the final quantile

summary received by the base station.

• We confirm the efficacy and efficiency of the proposed protocol via simulation

studies.
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The rest of this chapter is structured as follows. Section 3.2 discusses the related

work. Section 3.3 introduces the network and adversary models. Section 3.4 evaluates

the impact of different attacks on quantile summary aggregation. Section 3.5 introduces

the design of SecQSA. Section 3.6 reports the simulation results. Section 3.7 finally

concludes this chapter.

3.2 Related Work

Secure data aggregation in wireless sensor networks have been studied exten-

sively in the past. Most of the existing solutions target simple aggregation functions

such as Sum, Count, Average, and Min/Max. The resilience of different aggregation

functions under a single aggregator model was analyzed in [21]. Przydatek et al. [6]

introduced a secure aggregation scheme that can support Median, Min/Max, and Aver-

age aggregation. In [2], Chan et al. presented a secure hierarchical additive aggregation

scheme, which was subsequently improved by Frikken et al. with reduced communica-

tion cost [4]. A commitment-based hop-by-hop aggregation scheme was introduced in

[3] which allows the base station to verify abnormal aggregate via hypothesis testing.

A secure hierarchical data aggregation scheme based on synopsis diffusion was pro-

posed in [45, 10], which can support additive aggregation functions such as Count and

Sum against falsified sub-aggregate attacks. In [5], Papadopoulos et al. introduced a

secure aggregation scheme for exact Sum aggregation. Chen presented a scheme [9]

that realizes secure approximate Sum aggregation via secure Min aggregation, which

was later shown to be vulnerable to a special enumeration attack [46].

There are very limited efforts in developing secure aggregation schemes to sup-

port Median and Percentile aggregation. The techniques presented in [6, 2] can be used

for verifying the correctness of an alleged ϕ-percentile via secure Count aggregation by

counting the number of readings that are smaller than the alleged ϕ-percentile. Roy

et al. [7] extended the secure Count aggregation scheme [2] to realize secure Median

aggregation by recursively constructing an increasingly accurate histogram. However,

these solutions require the base station to know the percentile of interest, i.e., ϕ, in
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advance and incurs a communication cost proportional to the number of percentile

queries.

Quantile summary [22] aggregation in wireless sensor networks has been stud-

ied. In [23], a quantile digest summary structure was introduced to realize quantile

aggregation. Greenwald et al. [24] introduced a distributed algorithm to compute an

ϵ-approximate quantile summary of sensor data, which was later improved by Huang

et al. [1] to reduce the maximum per node communication cost. More recently, several

efficient gossip algorithms were introduced in [25] to compute exact and approximate

quantiles in a fully distributed fashion. Unfortunately, none of the above quantile ag-

gregation schemes have any security provisions. None of these works consider possible

attacks, and they cannot be applied to our problem.

3.3 Network and Adversary Models

In this section, we introduce our system and adversary models.

3.3.1 Network Model

We consider a multi-hop wireless sensor network consisting of a base station and

s sensor nodes. Every sensor node senses the environment and periodically generates

readings at fixed frequency. We assume that every sensor node i has a set of n readings

denoted by Di and every reading is in the range R = {1, . . . , vmax} it should be float

numbers. It follows that the total number of readings in the network is sn. As in [1], we

assume that all the readings in the sensor network are distinct. While this assumption

may seem restrictive, it can be easily accommodated by imposing a total order among

the readings by taking node ID and the time at which a reading is generated to break

the tie.

The base station aims to obtain a quantile summary of all the readings generated

in the network over a certain period. A quantitle summary is a subset of readings

along with their (estimated) global ranks which can support value-to-rank queries.

Specifically, for any value v ∈ R, the value-to-rank query returns an estimated global
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rank r̂(v). The ϕ-quantile of all the readings
⋃s

i=1 Di is then the value x with rank

r(x) = ⌊ϕsn⌋ for any 0 < ϕ < 1.

We assume that the aggregation is performed over an aggregation tree, which

is the directed tree rooted at the base station formed by the unique path from every

sensor node to the base station. During network initialization, the base station learns

the topologies of the network as well as the aggregation tree. We also assume that

each sensor node i shares a secret key Ki with the base station. We also assume that

any two nodes i and j can establish a shared key Ki,j using existing techniques such

as [47, 48].

3.3.2 Adversary Model

The attacker aims to mislead the base station into accepting a modified dis-

tribution of an aggregated summary without being detected in order to significantly

shift any quantile query result from its original position. We assume that the base sta-

tion is equipped with adequate computation and energy resources and is safeguarded

from any malicious attacks. In contrast, sensor nodes are constrained in computation

and communication resources which make them susceptible to compromising. Once a

sensor node is compromised, all the information stored at the sensor node such as cryp-

tographic keys is revealed to the attacker. The attacker can then instruct compromised

sensor nodes to carry out a wide range of attacks.

Since the aggregated summary consists of a subset sampled readings and their

ranks, we consider the following two attacks in this chapter.

• A compromised node may forge its own readings, their ranks, or both.

• A compromised node may deviate from protocol operations, which includes drop-

ping other nodes’ readings, replacing other nodes’ readings with its own, modi-

fying other nodes’ readings or their ranks.

In addition, we do not consider denial-of-service attacks, in which a compromised sensor

node persistently disrupts the aggregation process.
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3.4 Attacks on Quantile Summary Aggregation

In this section, we first briefly review the sampling based quantile summary

protocol proposed by Huang et. al. [1], which serves as the basis for SecQSA. We

then evaluate the impact of a range of attacks on the Huang’s protocol via simulation

studies.

3.4.1 Review of Huang’s Protocol [1]

Huang’s protocol [1] is designed based on random sampling. Let G1, . . . , Gk

be a family of sets of data values, where Gi

⋂
Gj = ∅ for all 1 ≤ i < j ≤ k. If we

independently sample each value in Gi with probability q to obtain a subset Si ⊆ Gi

for all i = 1, . . . , k. Denote by r(v,Gi) its local rank within the set Gi for each sampled

value v ∈ Si. Given any value x, we can estimate its local rank r̂(x,Gi) within Gi for

all 1 ≤ i ≤ k. Let p(x|Si) be the predecessor of value x in Si. It has been shown that

r̂(x,Gi) =

r(p(x|Si), Gi) + 1/p, if p(x|Si) exists;

0 otherwise,

(3.1)

is an unbiased estimator of r(x,Gi). The global rank of value x within G =
⋃k

i=1 Gi

can then be estimated as

r̂(x) =
k∑

i=1

r̂(x,Gi) .

Under Huang’s protocol [1], every node i first samples each reading of its own

independently to generate a local quantile summary. All the nodes then participate in

quantile summary aggregations in which local quantile summaries are forwarded and

merged with others into one along the way before reaching the base station. A key

advantage of Huang’s scheme [1] over prior solutions [24, 23] is that it can guarantee an

individual node communication cost of O(1/ϵ) even for those nodes close to the base

station and have many decedents by carefully designed merging conditions. We refer

readers to [1] for details of Huang’s scheme.
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3.4.2 Impact of Attacks

We now evaluate the impact of several attacks on Huang’s protocol [1], which

will guide the design of SecQSA.

Several possible attacks can be launched by a compromised sensor node. First,

a compromised sensor node can arbitrarily forge its own readings and their local ranks,

which is fundamentally difficult to detect without any special assumption. Moreover,

since a quantile summary consists of a subset of sample values with their local ranks,

a compromised sensor node can also modify the readings of its decedent nodes and

corresponding ranks. In addition, Huang’s protocol [1] requires that every reading is

sampled independently during merging operations, but a compromised node may not

follow by discarding all the readings from one or more of its decedent nodes. Due

to symmetry, we only consider the case in which the attacker intends to inflate the

estimated rank of any value and consider the following three attacks.

• Attack 1 : Modify its own sampled values to the minimum and their ranks to the

maximum.

• Attack 2 : Modify children nodes’ sampled values to the minimum and their ranks

to the maximum.

• Attack 3 : Modify its own sampled values to the minimum and their ranks to the

maximum and drop all the children nodes’ value from the quantile summary.

We use the following two metrics to evaluate the impact of the above three

attacks on the accuracy of the final quantile summary at the base station. Let r(v)

and r̂(v) be the true rank and estimated rank of a value v, respectively, for all v ∈

{1, . . . , vmax}. The normalized average rank error (ARE) and maximum rank error

(MRE) are defined as

ARE =

∑vmax

v=1 |r̂(v)− r(v)|
v2max

, (3.2)

and

MRE =
maxv={1,...,vmax}(|r̂(v)− r(v)|)

vmax

. (3.3)
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Figure 3.1: Comparison of ARE and MRE under different attacks where K = 62,
c = 2, l = 6 and n = 1000

We simulate a wireless sensor network consisting of s = 62 sensor nodes which

form an aggregation tree of height 6 where each sensor node has two children nodes.

We assume that each node has n = 1000 readings. Every point in the following figures

is the average of 100 runs each with a distinct random seed for the sampling process.

Figs. 3.1a and 3.1b compare the ARE and MRE under the three types of attack

as well as in the absence of attack with the sampling probability varying from 0.01 to

0.l. As we can see, both ARE and MRE decreases as the sampling probability increases

in the absence of attack. This is expected as the higher the sampling probability, the

more readings are included in the final quantile summary received by the base station,

the more accurate the value-to-rank query results, the lower ARE and MRE, and vice

versa. In addition, the ARE and MRE under Attack 1 are very close to those under no

attack. The reason is that a single compromised node forging its own readings and local

ranks has very limited impact on the accuracy of final quantile summary. In contrast,

the ARE and MRE under Attack 2 and Attack 3 are significantly higher than those

under Attack 1. In particular, we can see from Fig. 3.1a that the AREs under Attack 2

and Attack 3 are 0.24 and 0.42, respectively. Similarly, the MREs under Attack 2 and

Attack 3 are both around 0.5. These results clearly demonstrate the severe impact of

Attacks 2 and 3 on the final quantile summary.
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3.5 SecQSA: Secure Quantile Summary Aggregation

In this section, we first give an overview of SecQSA and then detail its design.

3.5.1 Overview

We find that the key to secure quantile summary aggregation is to ensure the in-

tegrity of the readings and their ranks during merging operations. Specifically, SecQSA

is designed to achieve the following goals.

1. Integrity of sample readings : every reading in the final quantile summary must

be generated by a sensor node and has not been altered during the aggregation

process.

2. Integrity of local ranks : as readings being aggregated into different quantile sum-

maries through the process, their local ranks within quantile summaries must be

correctly computed according to [1].

3. Compliance of uniform sampling : when multiple quantile summaries are merged,

every reading should be sampled independently according to [1].

We do not intend to defend against a compromised node forging its own readings and

their local ranks, which has very limited impact on the aggregation results as shown

in Section 3.4.2.

SecQSA is designed to meet the above goals using efficient cryptographic prim-

itives. Under SecQSA, sensor nodes send, receive, and merge local quantile summaries

in a secure fashion. Specifically, a quantile summary Q is associated with a ground set

G and represented by

Q = ⟨ID,O, q⟩,

where ID is the node that generates the quantile summary, O is a set of sample

objects, and q is the sampling probability. Every sample object o ∈ O corresponds to

one reading drawn from the ground set G and has the form

o = ⟨v, σinit, σcurrent⟩.
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where v is the reading, and σinit and σcurrent carry the necessary verification information

about v in the quantile summary. More specifically, the first component σinit carries

the initial rank of v and has the form

σinit = ⟨IDi, r(v,Di), HKi
(v||r(v,Di))⟩,

where IDi is the ID of the node that generates reading v, r(v,Di) is the initial local

rank of v in node i’s set Di, Ki is the secret key node i shared with the base station,

and H∗(·) denotes a message authentication code keyed with the subscript. The second

component σcurrent has the form

σcurrent = ⟨IDj, r(v,G)⟩,

where IDj is the ID of the node which merges value v into the current quantile summary

Q, and r(v,G) is the local rank of v in the current ground set G.

As a reading v moves through the aggregation process, the first component σinit

remains unchanged and will allow the base station to verify the integrity of the reading

and compliance of random sampling of any intermediate node. In contrast, the second

component σcurrent will be updated whenever reading v is merged into a new quantile

summary.

In what follows, we detail how quantitle summaries are generated by individual

sensor nodes and merged through the aggregation process.

3.5.2 Initialization

To initiate a quantile summary aggregation process, the base station broadcasts

a command with a random seed d using a proper broadcast authentication protocol

such as µ-Telsa [49].

On receiving the command, each sensor node i first generates a local quantile

summary Qi with respect to its set of readings Di. Let H(·) be a cryptographic

hash function that maps any input to an integer in the range {0, . . . , λ − 1}. Node i

samples every reading v ∈ Di with probability qinit, where qinit is a system parameter
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that determines the accuracy of the quantile summary and communication overhead.

Specifically, every reading v is selected to be included in the local quantile summary

Qi if

H(IDi||r(v,Di)||d) ≤ qinitλ . (3.4)

It is easy to see that each reading is sampled independently with probability

qinit. We subsequently denote by Si ⊆ Di the subset of readings included in Qi.

For each selected sample reading v ∈ Si, node i constructs a sample object as

o = ⟨v, σinit, σcurrent⟩, where

σinit = σcurrent = ⟨IDi, r(v,Di), HKi
(v||r(v,Di))⟩ .

3.5.3 Secure Quantile Summary Aggregation

All the nodes then participate in the quantile summary aggregation based on

the aggregation tree. Specifically, every leaf node i of the aggregation tree sends its

local quantitle summary Qi to its parent node, say j, as

Qi = ⟨IDi, Oi, qinit, HKi,j
(info)⟩ ,

where Oi = {o|v ∈ Si} is the set of sample objects and info = IDi||Oi||qinit is the

concatenation of all the prior information.

On receiving a local quantile summary Qi from one of its children nodes, node j

first verifies its integrity by checking HKi,j
(info) using the shared key Ki,j. If succeed,

node j checks if local quantile summary Qi exhibits any inconsistency. Specifically,

node j checks if the reading in every sample object is in the range R. Without loss

of generality, suppose that Oi = ⟨o1, . . . , ox⟩, where ox = ⟨vi, σinit, σcurrent⟩ and v1 <

· · · < vx. Node j checks if r(v1, Di) < · · · < r(vx, Di). If so, node j considers quantile

summary Qi valid.

Node j then processes Qi in one of the two possible ways. In the first case, node

j directly forwards Qi to its parent node, say k, by sending

j → k : ⟨IDi, Oi, q,HKj,k
(info)⟩ ,
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which allows node k to verify its integrity. In the second case, node j merges Qi with

one or more other local quantile summaries to produce a single quantile summary if

the conditions specified in [1] are met. In what follows, we use an example to illustrate

how multiple local quantile summaries are merged at an intermediate node.

Suppose that node j intends to merge l local quantitle summaries Q1, . . . , Ql

into one local quantile summary Q. Each local quantitle summary

Qx = ⟨IDx, Ox, qx⟩ ,

is sampled from a ground set Gx with sampling probability qx independently for all

x = 1, . . . , l. The resulting quantile summary Qj = ⟨IDj, Oj, q⟩ corresponds to the

ground set G =
⋃l

x=1Gx where every reading in G is sampled independently with

probability q.

The merging operation involves four steps. First, node j resamples every read-

ing in Q1, . . . , Ql to obtain the set of readings to be included in Q. Specifically, for

each quantile summary Qx, 1 ≤ x ≤ l, node j samples every sample unit o ∈ Ox inde-

pendently with probability q/qx. In particular, each sample object o ∈ Ox is selected

if

H(IDj||r(v,Gx)||d) ≤
qλ

qx
. (3.5)

It follows that each reading v in the ground setGx is selected to be inQ with probability

Pr(v ∈ Q) = Pr(o ∈ Q|v ∈ Qx)Pr(v ∈ Qx)

=
q

qx
· qx

= q .

Second, node j computes the local rank of every reading in the quantile summary

Q. Let O′
x ⊆ Ox be the subset of sample objects in Qx selected to be included in Q for

all 1 ≤ x ≤ l. Consider a sample unit o ∈ O′
j as an example where o = ⟨v, σinit, σcurrent⟩

and σcurrent = ⟨IDz, r(v,Gx), HKz(v||r(v,Gx))⟩. It follows that v is ranked r(v,Gx)
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within the ground set Gx. Its local rank within the new ground set G =
⋃l

y=1 Gx can

then be estimated as

r(v,G) = r(v,Gx) +
l∑

y=1,y ̸=x

r(v,Gy) ,

where

r(v,Gy) =

r(p(v|Oy), Gy) + 1/qy, if p(v|Oy) exists;

0 otherwise,

and p(v|Oy) is the predecessor of value v in Oy. It has been shown that r(v,G) is an

unbiased estimator of v’s local rank within G [1].

Third, node j updates each sample object in Q. Specifically, for each o =

⟨v, σinit, σcurrent⟩ selected, node j updates σcurrent to

σcurrent = ⟨IDj, r(v,G)⟩ .

Next, node j, its children nodes, and its parent node k execute a protocol

whereby node j’s children nodes verify and endorse the new local rank of each sample

object in G. Among the l local quantile summaries Q1, . . . , Ql, there is at most one

local quantile summary generated by node j itself. Without loss of generality, suppose

that local quantile summary Qj is generated by node j itself and that each quantile

summary Qy is received from children node y for all y = 1, . . . , l and y ̸= j.

Node j first broadcasts the quantitle summary as

j → ∗ : ⟨Q,HKj,k
(Q)⟩ ,

where Q = ⟨IDj, O, q⟩ and O is the set of sample objects. This message will be received

by both node j’s parent node k and all the children nodes as they are all in node j’s

transmission range. On receiving the message, node k verifies its integrity using the

shared key Kj,k.

Node j then seeks its children nodes’ endorsement for the new quantile summary

Q. Since every children node y knows Qy it sent earlier and also overheard the quantile

summary Q, it knows the subset of sample object O′
y ⊆ Oy being included in Q. Each
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node y first verifies whether node j faithfully perform random sampling forOy according

to Eq. (3.5). Moreover, node y also checks whether node j correctly computes the new

local rank r(v,G) of each sample object o ∈ O. Specifically, for each sample object

o ∈ O where o = ⟨v, σinit, σcurrent⟩, node j broadcasts the following message

j → ∗ : v, r(v,G1), q1, r(v,G2), q2, . . . , r(v,Gl), ql ,

Without loss of generality, consider sample object o ∈ O′
y ⊆ Oy and Qy was sent

by child node y. Node y first verifies whether

r(v,G) = r(v,Gy) +
l∑

z=1,z ̸=y

r(v,Gz) .

If so, node y sends its endorsement to node j as

x→ j : HKy,k
(Q) ,

where Ky,k is the shared key between node y and j’s parent node k. Similarly, every

other children node z (z = 1, . . . , l, z ̸= y, and z ̸= j) which sent Qz finds p(v|Oz), i.e.,

the predecessor of v in Oz, and verifies whether

r(v,Gz) = r(p(v|Oz), Gz) + 1/qz .

If so, node z sends its endorsement to node j as

y → j : HKz,k
(Q) ,

On receiving the endorsement from each of its children, node j sends an aggre-

gated endorsement of Q to its parent node k

j → k :
l⊕

y=1,y ̸=j

HKy,k
(Q) .

Since the parent node j has previously verified the integrity of Q using HKj,k
(Q),

it further verifies the aggregated endorsement
⊕l

y=1,y ̸=j HKy,k
(Q) using the keys shared

with each children node y (y = 1, . . . , l). If all the verifications succeed, node k accepts

Q as a valid quantile summary.
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3.5.4 Final Verification at the Base Station

At the end of the aggregation process, the base station receives one or multiple

quantile summaries from its children nodes. For every quantile summary it receives,

the base station verifies the quantitile summary in the following steps.

First, for each sample object o = ⟨v, σinit, σcurrent⟩ where σinit = ⟨IDi, r(v,Di),

HKi
(v||r(v,Di))⟩, the base station first verifies v’s integrity by recomputing HKi

(v||

r(v,Di)) using the shared key Ki.

Second, the base station verifies if every node that performed merging operations

have faithfully followed random sampling. Since the base station knows the number of

readings each node has and the aggregation tree structure and the random sampling

performed at each node is based on each reading’s initial rank, the ID of the node that

performs sampling, and the seed d, the base station can emulate the entire aggregation

process to predict (1) the subset of readings sampled in each initial local quantile

summary, (2) the number of quantile summaries received at each intermediate node and

their corresponding sizes, (3) which nodes should have performed merging operations,

and (4) the subset of readings that should have been selected in each merged quantile

summary. Specifically, for each node i and every possible local rank 1, . . . , n, the

base station verifies if (1) for every initial rank that is supposed to survive the entire

aggregation process, the corresponding reading is indeed included in the final quantile

summary, and (2) if there is any reading in the final quantile summary received should

have been dropped by any intermediate node.

3.6 Simulation Results

In this section, we evaluate the performance of SecQSA via simulation.

3.6.1 Simulation Setting

We again consider a wireless sensor network consisting of s = 62 sensor nodes

which form an aggregation tree of height 6 where each sensor node has two children
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Figure 3.2: Comparison of SecQSA and the baselines with sampling probability varying
from 0.01 to 0.1.

nodes. Table 3.1 summarizes our default settings unless mentioned otherwise. Every

point in the following graphs is the average of 100 runs, each with a distinct random

seed for the sampling process. We adopt the SHA-256 for the message authentication

code which results in a 32 bytes code. Also, we assume that each reading is of 16 bits,

and each local rank is of 32 bits.

Since there is no prior solution for secure quantile summary aggregation, we

compare the proposed protocol with two baseline schemes.

• Baseline 1 : every node independently samples its readings with probability q

and then submits the sampled readings along with their associated ranks and a
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Figure 3.3: Comparison of SecQSA and the baselines with the number of values per
node varying from 400 to 2000.

MAC to the base station. The base station verifies the integrity of each reading

and answers value-to-rank queries according to Eq. (3.1).

• Baseline 2 : every node independently samples its readings with probability q

and then submits the sampled readings along with a MAC to the base station

with no ranking information. On receiving all the sample readings, the base

station broadcasts all the readings to all the sensor nodes. Finally, all the nodes

participate in multiple parallel secure SUM aggregations according to [5] to allow

the base station to obtain the global rank of each reading, whereby to answer

value-to-rank queries according to Eq. (3.1).

Besides the ARE and MRE, we also use total communication overhead and maximum
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Table 3.1: Default Simulation Settings

Para. Val. Description.
p 0.02 The sampling probability
n 1000 The number of values per sensor
l 6 The maximum number of network tree levels
c 2 The maximum number of children per sensor node

per node communication overhead to evaluate the performance of proposed scheme and

the two baseline schemes.

3.6.2 Simulation Results

Figs. 3.2a to 3.2d compare the ARE, MRE, total communication overhead, and

maximum per node communication overhead of SecQSA and the two baseline solutions,

respectively, with sampling probability varying from 0.01 to 0.1. We can see from

Fig. 3.2a and 3.2b that both ARE and MRE decrease as the sampling probability q

increases under all three schemes. This is expected as the more readings we sample, the

more accurate the rank estimation, and vice versa. Also, we can see from Fig.3.2a that

the AREs of all three schemes are almost the same for SecQSA and the two baselines

where all of them are too close to the zero. This is because all of the methods are

sampling the same number of values and only differ in the way of estimating global

ranks which will not produce a big difference in accuracy especially with large number of

values. The same is for the MRE shown in Fig. 3.2b, where it also shows a big similarity

in the MRE produced by each of the three schemes for the same reason. Accordingly,

the accuracy of SecQSA is quite the same as the two baselines. On the other hand,

Fig.3.2c shows the total communication overhead under SecQSA and the other two

Baselines. In general, it shows that the total communication overhead increases as

the sampling probability increases. The reason is that, the more values are sampled,

the more information need to be sent and accordingly the more total communication

overhead. Moreover, we can see that Baseline 2 has the largest communication overhead

among the three because each sensor node needs to send the information of the total

number of sampled values in the network compared to Baseline 1 and SecQSA where
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each node needs only to send the sampled values of its subtree. On the other hand,

SecQSA produces almost the same total communication overhead as Baseline 1 with

only a slight decrease due to the merging process in SecQSA which is anticipated to

decrease more as we have more merging operations in the aggregation process. Fig. 3.2d

plots the maximum per node communication overhead for each of the three schemes.

It shows that the maximum per node overhead increases in the three schemes with the

increase of the sampling probability, which is anticipated. Also, it shows that Baseline 2

has the largest overhead amongst the two others for the same reason mentioned above

and then Baseline 1 comes after it in order while SecQSA beats both Baseline 1 and

Baseline 2 with significant margins.

Figs. 3.3a to 3.3d compare the ARE, MRE, total communication overhead, and

maximum per node communication overhead under SecQSA, Baseline 1 and Baseline 2

with the number of readings per node varying from 400 to 2000. Again we can see

from Figs. 3.3a and 3.3b that both ARE and MRE decrease as the number of values

per node increases under all three schemes. This is because, the more values per node,

the more sampled values, the more accurate the rank estimation. Also, we can see in

Fig. 3.3a that the average rank error is almost the same for SecQSA and each of the

baselines for the same reason mentioned in previous paragraph. Fig. 3.3b shows the

MREs for the three schemes with the same observation, where the MREs are quite the

same and close to zero due to the same reason as in Fig. 3.2b. For the communication

overhead in Figs. 3.3c and 3.3d, both the total communication overhead and maximum

per node overhead produced by the three schemes show an increase as the number of

values per node increases. The reason is that, the more number of values per node, the

more sampled values, the more information need to be communicated and accordingly

the more communication overhead we get either in total or per node. Also, Fig. 3.3c

shows that Baseline 2 has the largest overhead amongst the two others as expected

in the previous paragraph. On the other hand, SecQSA shows a slight decline in the

total communication overhead compared to Baseline 1 due to the merging process. In

contrast, Fig. 3.3d shows the maximum per node communication overhead for each of

42



6 7 8 9 10
Nmuber of Levels

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Ra
nk

 E
rro

r

SecQSA
Baseline1
Baseline2

(a) Average rank error

6 7 8 9 10
Nmuber of Levels

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 R
an

k 
Er

ro
r

SecQSA
Baseline1
Baseline2

(b) Max. rank error

6 7 8 9 10
Nmuber of Levels

0

108

2×108

3×108

4×108

5×108

6×108

7×108

To
ta

l C
om

m
. O

ve
rh

ea
d 

(b
yt

es
) SecQSA

Baseline1
Baseline2

(c) Total Comm. Overhead

6 7 8 9 10
Nmuber of Levels

0

2×105

4×105

6×105

8×105

106

M
ax

im
um

 N
od

e 
Ov

er
he

ad
 (b

yt
es

)

SecQSA
Baseline1
Baseline2

(d) Max. per node overhead

Figure 3.4: Comparison of SecQSA and the baselines with the height of the aggregation
tree varying from 6 to 10.

the schemes where again as expected before that Baseline 2 comes in the beginning as

the largest maximum per node overhead. Second, comes Baseline 1 and then SecQSA

as the least per node overhead with a big gap due to the merging operations.

Figs. 3.4a to 3.4d compare the error and communication overhead produced by

SecQSA, Baseline 1 and Baseline 2 considering different number of levels in the network

tree. As we can see in Figs. 3.4a and 3.4b that both ARE and MRE decrease as the

number of levels increases in the network tree for the three schemes. This is expected

as the more number of levels, the larger is the total number of values in the network,

the more the sampled values which leads to a more accurate result. Also, we can see

in Fig. 3.4a that the average rank error for SecQSA and each of the baselines are quite
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Figure 3.5: Comparison of SecQSA and the baselines with the number of children per
node varying from 2 to 4.

the same and close to zero as explained before. Moreover, the MREs produced by the

three schemes in Fig. 3.4b are pretty close and similar as expected before. Figs. 3.4c

and 3.4d plot the total communication overhead and maximum per node overhead

produced by the three schemes where both types of overhead increase as the number of

levels increases. The reason is that, the more levels, the more sampled values, the more

information to be communicated. Moreover, Figs. 3.4c and 3.4d show that Baseline 2

has the largest total communication overhead and maximum per node communication

overhead among the three because it needs to communicate more information. On the

other hand, Baseline 1 comes as the second largest communication overhead either in
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total with a slight increase over SecQSA or per node. Finally, SecQSA comes at last as

the least for either types of communication overhead due to the merging process which

shows a clear difference in Fig. 3.4d.

Figs. 3.5a to 3.5d show the ARE, MRE, total communication overhead, and

maximum per node communication overhead produced by SecQSA, Baseline 1 and

Baseline 2 with different number of children per node in the network tree. As we can see,

Figs. 3.5a and 3.5b show that both ARE and MRE decrease as the number of children

increases in the network tree for the three schemes. This is anticipated as the more

children, the larger the total number of values in the network, the more sampled values,

the more accurate the rank estimation, and vice versa. Also, we can see in Fig. 3.5a that

the ARE for SecQSA and each of the baselines are almost matching and close to zero

as we discussed before. Fig. 3.5b plots the maximum rank errors produced by the three

schemes which appears to be also quite matching as expected. Figs. 3.5c and 3.5d show

that the total communication overhead and maximum per node overhead under the

three schemes increase as the number of children in the network increases. As expected,

the more children, the more sampled values, the more information to be communicated.

Also, Figs. 3.5c and 3.5d show that amongst Baseline 1 and SecQSA, Baseline 2 comes

at first in regard to the size of total communication overhead and maximum per node

overhead because it communicates more information. Then, Baseline 1 comes in the

second order and then comes SecQSA because SecQSA communicates the least amount

of overhead for either types of communication due to the merging process.

In summary, overall results show that SecQSA performance is better than the

two baselines as it has the same accuracy as Baseline 1 and Baseline 2 while at the

same time incurs much lower total and maximum per node communication overhead.

3.7 Summary

In this chapter, we have initiated the study of secure quantile summary aggre-

gation in wireless sensor networks. After examining the impact of different attacks on
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quantile summary aggregation via simulation, we introduced the design and evalua-

tion of SecQSA, the first secure quantile summary aggregation protocol for wireless

sensor networks. Built upon efficient cryptographic primitives, SecQSA can ensure the

integrity of sampled readings and their ranks in the final quantile summary. Detailed

simulation results have confirmed significant advantages of SecQSA over alternative

solutions.
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Chapter 4

LOCAL DIFFERENTIAL PRIVATE QUANTILE SUMMARY
AGGREGATION

4.1 Introduction

Wireless sensor networks are prospected to overrun a major role in the emerging

IoT paradigm where a large number of sensor nodes are expected to continuously sense

the environment and produce large amounts of sensed data. Without a doubt, these

collected data can provide us with a wealth of information about our physical world and

immense benefits and enable a wide range of exciting applications. In-network data

aggregation [44] has been widely recognized as a key technique for reducing energy

consumption and prolonging network lifetime by allowing sensed data to be aggre-

gated by intermediate nodes along the route to the base station to eliminate possible

redundancy.

Data privacy is a key issue in many IoT applications. For example, data gen-

erated by sensor nodes in an IoT-based smart-home system may contain a variety of

sensitive information about users such as appliance usage and home occupancy. Di-

rectly submitting such information to a base station would not only reveal sensitive

information but also subject users to profiling. As another example, sensor nodes de-

ployed in remote areas for wildlife monitoring may generate data that could reveal

the locations of endangered species. These situations call for privacy-preserving data

aggregation that can allow the base station to learn valuable statistic of the data gener-

ated in the wireless sensor network while ensuring the data privacy of individual sensor

nodes.
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Privacy-preserving data aggregation has received significant attentions over the

past decade due to its importance. Similar to secure data aggregation, existing privacy-

preserving data aggregation schemes [11, 12, 13, 14, 15, 16, 17] all target simple statis-

tic functions such as SUM, COUNT, and MAX/MIN. In contrast, a quantile summary

allows a base station to learn a more accurate distribution of the sensed data than

simple statistics functions. More specifically, a quantile summary allows the base sta-

tion to retrieve the ϕ-quantile for any 0 ≤ ϕ ≤ 1, which can provide a much better

characterization of the distribution of data generated by a wireless sensor network. Un-

fortunately, how to realize privacy-preserving quantile summary aggregation remains

an open challenge.

In this chapter, we introduce the design and evaluation of PrivQSA, a novel

privacy-preserving quantile summary aggregation scheme for wireless sensor networks.

Specifically, we design PrivQSA to satisfy ϵ-Local Differential Privacy (LDP), which is

a model widely considered as the gold standard for data privacy and has been explored

for various data analytic tasks such as frequency estimation [50, 51, 52, 53], heavy hitter

discovery [54, 55, 56, 57], mean estimation [58, 59, 60, 61], and probability distribution

estimation [62, 63, 64, 65]. Similar to SecQSA introduced in Chapter 3, PrivQSA is

also based on the quantile summary aggregation protocol proposed by Huang et al. [1]

due to its guarantee of low per node communication overhead. Under PrivQSA, every

sensor node randomly perturbs its set of readings to ensure ϵ-LDP. All the nodes then

participate in the quantile summary aggregation according to [1] which allows the base

station to obtain a quantile summary of the perturbed readings. The base station then

estimates a quantile summary of the original sensed data based on the perturbation

mechanism followed by individual sensor nodes. Our contributions in this chapter can

be summarized as follows.

• We are the first to study privacy-preserving quantile summary aggregation in

wireless sensor networks.

• We introduce PrivQSA, a novel privacy-preserving quantile summary aggregation

scheme that can allow the base station to learn a quantile summary of the sensed
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data while ensuring local differential privacy for individual sensor nodes.

• We confirm the efficacy and efficiency of PrivQSA via both theoretical analysis

and detailed simulation studies, which demonstrate significant advantages over

other baseline solutions.

The rest of this chapter is structured as follows. Section 4.2 discusses the related

work. Section 4.3 introduces the network model and some preliminaries. Section 4.4 in-

troduces the design of PrivQSA. Section 4.5 provides a theoretical analysis of PrivQSA.

Section 4.6 reports the simulation results. Section 4.7 finally concludes this chapter.

4.2 Related Work

We have discussed existing solutions for quantile summary aggregation in Chap-

ter 3, and none of them were designed to provide data privacy for individual sensor

nodes. In this section, we review some additional related works in privacy preserving

data aggregation in WSNs and local differential privacy.

4.2.1 Privacy-Preserving Data Aggregation in WSNs

Privacy-preserving data aggregation in sensor networks has received a lot of

attention over the past two decades [11, 13, 15, 66, 67, 68, 69, 70, 71]. Generally

speaking, existing solutions for privacy preserving data aggregation can be classified

into two categories.

The first category uses encryption techniques such as homomorphic encryption

[66, 67, 68, 13, 15, 72], secure multiparty computation [69], and modulo addition-based

encryption [73]. Castelluccia et al. [66] proposed to use homomorphic encryption ci-

phers to allow efficient aggregation of encrypted data without requiring decryption

at intermediate nodes. This scheme was later extended by the same authors to im-

prove computational and communication efficiency by requiring only a small number

of single-precision additions [67]. Shi et al. [13] also adopted the similar technique in

[66] as a tool while applying data slicing to preserve user privacy. Inspired by [66],

Westhoff et al. [68] showed how to construct relevant aggregation functions based on
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an additively homomorphic structure of a private homomorphism. Li et al. [15] in-

troduced an efficient secure aggregation protocol for mobile sensing systems in which

each mobile user encrypts its data using an additively homomorphic cipher to keep

the data private from the aggregator and other users. Zhang et al. [72] proposed a

ring-based privacy preserving aggregation scheme that uses homomorphic encryption

techniques to encrypt the data while allowing enroute aggregation. Lindell et al. [69]

reviewed a number of techniques that use secure multi-party computation (SMC) that

can ensure no party can learn anything beyond the output at the end of the compu-

tation. A modulo addition-based encryption scheme was introduced in [73] to realize

differential privacy-preserving aggregation for smart metering systems. All these solu-

tions require secure communication channels, pre-established shared secret/keys, and

a trusted authority and usually incur high computation and communication overhead,

which is undesirable for large-scale wireless sensor networks.

The second category uses random perturbation [70, 11, 71], in which each sen-

sor node randomly perturbs its data according to a suitable probability distribution

before participating in data aggregation, and the base station can still infer valuable

statistics from the perturbed data. The seminar work [70] introduced the concept of

Differential Privacy which ensure the computation results over two adjacent databases

are indistinguishable. He et al. [11] proposed (CPDA), a cluster-based private data

aggregation (CPDA) which adds random seeds into the original data. Yang et al.[71]

proposed a machine learning based privacy protection mechanism using differential pri-

vacy in a fog computing architecture. To the best of our knowledge, there is no prior

work tackling privacy-preserving quantile summary aggregation.

4.2.2 Local Differential Privacy

LDP has been studied extensively for various data analysis problems, including

frequency estimation [74, 50, 75, 76, 77, 53], heavy hitter identification [78, 56, 79, 57],

regular itemset mining [80, 81], marginal release [51], spatiotemporal data aggrega-

tion [82], and range queries [83]. In Ref. [74], a locally differentially private frequency
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estimation scheme was introduced based on data encoding using Hadamard matrix.

Another frequency estimation oracle was proposed by Bassily and Smith [50], which

uses Random Matrix Projection. Google and Microsoft have deployed LDP in their ap-

plications such as RAPPOR [76] for website browsing history aggregation and privately

collecting telemetry data [75]. Qin et al. [77] proposed MEFA, a scheme under LDP

that calculates the input frequency through maximum likelihood estimation. Wang

et al. [53] introduced an abstract framework for frequency estimation oracles which

makes it possible to compare different protocols and analyze their privacy guarantee.

Heavy hitters is closely related to frequency estimation where the goal is to find the

most frequent items in a set and compute their frequencies. Wang et al. [78] presented

a trie-based solution for new word discovery under LDP, which can efficiently find new

words with high frequency by spanning the nodes with large supports. LDPMiner [56]

and TreeHist [79] are two algorithms for heavy hitters identification under LDP, both

of which adopt a two-stage approach. In the first stage, a portion of the privacy budget

is used to learn a candidate set, and the remaining privacy budget is used in the second

stage to refine the estimates of the candidates. LDPMiner focuses on set-values data

while TreeHist considers a single value element for each user. In [57], an LDP scheme

was presented to identify heavy hitters in a large domain where users are divided into

groups and each group reports a prefix of its value. Wang et al. [80] proposed a proto-

col to identify the frequent itemsets which provides a better accuracy than LDPMiner

through privacy amplification under sampling. A recent work [81] introduced an itera-

tive approach to estimate the frequent itemsets under LDP with high accuracy using a

two-level randomization technique by exploiting the correlation of the presence of items

in a user’s itemset. In [51], the authors provided a set of algorithms for materializing

marginal statistics under LDP. For private spatial data aggregation problem, Chen et

al. [82] used frequency estimation as a primitive to learn user distribution guaranteeing

personalized LDP. Kulkarni et al. [83] designed a method to realize range queries with

LDP and ensures good accuracy using Haar wavelet transform. There are a number

of studies that target LDP over set-value data including [76, 84, 60, 56, 85]. Most of
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these solutions [76, 84, 60, 56] divide the privacy budget into multiple portions used in

different steps, which result in the reduction in data utility. In contrast, a scheme was

introduced in [85] which sanitizes set-valued data as a whole by randomly outputting a

subset of items without the need to split the privacy budget. All these solutions assume

that data contributors directly submit their data to a data collector after perturbation

without involving any en-route aggregation. As a result, none of existing solutions can

be applied to privacy-preserving quantile summary aggregation.

4.3 Problem Formulation

In this section, we first introduce the network model and a background on

quantile summary. We then provide the definition of Local Differential Privacy.

4.3.1 Network Model

We consider a wireless sensor network model consisting of a base station and n

sensor nodes. Let R = {1, . . . , d} be the range of possible readings. We assume that

every sensor node i has a set of m readings Vi = {vi,1, . . . , vi,m}, where every reading

vi,j ∈ R for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. The set of all the sensed data generated

in the sensor network is then V =
⋃n

i=1 Vi. The base station aims to obtain a quantile

summary of V .

4.3.2 Quantile Summary

As we discussed in Chapter 3, a quantitle summary is a subset of readings along

with their (estimated) global ranks which can support value-to-rank query over any

v ∈ R as well as ϕ-quantile queries for any 0 < ϕ < 1. Specifically, given a set of

N distinct data values with a total order, the ϕ-quantile is the value v with rank

r(v) = ⌊ϕN⌋ in the set, where r(v) is the number of values in the set smaller than v.

Since a quantile summary that can provide the exact quantiles must contain the all

N values in the worst case, an ϵ′-approximate ϕ-quantile is a value with rank between

(ϕ− ϵ′)N and (ϕ+ ϵ′)N .
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4.3.3 Local Differential Privacy (LDP)

Local Differential Privacy is a strong privacy notion widely considered as the

gold standard for data privacy, which ensures that an adversary cannot differentiate

two inputs based on the output he observe beyond certain predefined threshold. We

give the definition of ϵ-Local Differential Privacy below.

Definition 1. (ϵ-Local Differential Privacy). A randomized mechanism M satisfies

ϵ-local differential privacy if and only if

Pr[M(x) = y]

Pr[M(x′) = y]
≤ eϵ

for any two inputs x, x′ ∈ X and any output y ⊆ Range(M), where X is the domain

of the input, Range(M) is the domain of the output, and ϵ is commonly referred to as

the privacy budget.

We can see that the smaller the privacy budget ϵ, the more indistinguishable

of the two probability distributionsM(x) andM(x′) induced by the mechanismM,

and the more difficult for anyone to infer the input from the output y. The model of

LDP differs from the centralized DP [70] where the data collector (i.e., base station) is

considered trusted.

4.3.4 Design Goals

We seek to design a privacy-preserving quantile summary aggregation scheme

with the following goals in mind.

• Local Differential Privacy. The scheme should satisfy ϵ-LDP for individual sensor

nodes.

• High accuracy. The quantile summary obtained by the base station should be

able to answer value-to-rank queries with high accuracy.

• Communication efficiency. The scheme should incur low communication over-

head.
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Figure 4.1: A high level idea of the key steps of PrivQSA.

4.4 PrivQSA: Quantile Summary Aggregation with LDP

In this section, we first give an overview of PrivQSA and then detail its design.

4.4.1 Overview

We design PrivQSA by exploring the inherent connection between a quantile

summary and a histogram. Specifically, a quantile summary can be viewed as an equi-

depth histogram in which every bucket has the same number of values, and all the

buckets in a standard histogram have the same width but different number of values.

In addition, a quantile summary can be converted into a standard histogram under

moderate assumption, and vice versa. Based on this idea, we first let every sensor

node randomly perturb its set of readings to generate a set of perturbed readings to

ensure ϵ-LDP. All the sensor nodes then participate in a quantile summary aggregation

to allow the base station to receive a quantile summary, i.e., an equi-depth histogram, of

the perturbed readings, The base station can then convert the quantile summary of the

perturbed readings into a an equi-width histogram whereby to estimate an equi-width

histogram of the original readings based on the randomized perturbation mechanism

used at individual sensor nodes. Finally, the base station can convert the estimated

equi-width histogram of the original readings into a quantile summary of the original
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readings whereby to answer any value-to-rank and percentile queries. The high level

idea of PrivQSA kety steps is illustrated in Fig. 4.1. In what follows, we detail the

design of PrivQSA.

4.4.2 Detailed Design

PrivQSA consists of the following six steps.

4.4.2.1 Perturbation at Individual Sensor Nodes

Each sensor node i randomly perturbs its set of readings Vi = {vi,1, . . . , vi,m}

into a set of n perturbed readings S ′
i via the Exponential Mechanism to ensure ϵ-LDP.

The exponential mechanism is a classical technique to provide differential pri-

vacy via outcome randomization. The key idea is to associate every pair of input x

and candidate outcome o with a real-value quality score q(x, o), where a higher quality

score indicates higher utility of the outcome. Given the output space O, a score func-

tion q(·, ·), and the privacy budget ϵ, the exponential mechanism randomly selects an

outcome o ∈ O with probability proportional to exp(ϵq(x, o)).

In our context, the input is a set Vi ⊆ R of m readings, and the outcome Ṽi of

the exponential mechanism is also a subset of R with m elements. For every possible

input set Vi and output set Ṽi, we define the quality score function as

q(Vi, Ṽi) =
|Vi

⋂
Ṽi|

m
, (4.1)

which is the ratio of their common elements. For example, if Vi = Ṽi, then the quanlity

score is one. As another example, if Vi

⋂
Ṽi = ∅, then the quality score is zero. Under

the quality score function q(·, ·), each node i then randomly chooses an m-element set

Vi ⊂ R with probability proportional to exp( ϵ|Vi
⋂

Ṽi|
m

).

It is necessary to detail the procedures for the above random perturbation be-

cause the number of m-element subsets is
(
d
m

)
and naive sampling the output space

would incur a computation complexity of O(dm).
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We first compute the probability that each m-element set Vi ⊂ R is selected

by the exponential mechanism. We notice that the number of m-element subsets of R

that shared k common elements with Vi is

ck =

(
m

k

)
·
(
d−m

m− k

)
, (4.2)

for all 0 ≤ k ≤ m. Assume that each set Ṽi is selected by the exponential mechanism

with probability exp( ϵ|Vi
⋂

Ṽi|
m

) · ρ, where ρ is some constant. We then have

m∑
k=0

ck · exp(
ϵk

m
) · ρ = 1 . (4.3)

Solving the above equation, we have

ρ =
1∑m

k=0 ck · exp(
ϵk
m
)
, (4.4)

where ck is given in Eq. (4.2). Therefore, each m-element set Ṽi ⊂ R is selected with

probability exp( ϵ|Vi
⋂

Ṽi|
n

) ·ρ, where ρ is given by Eq. (4.4). We give the formal definition

of the perturbation mechanism below.

Definition 2. (Set Perturbation (d,m, ϵ)). Given an original m-element set Vi, select

the output m-element set Ṽi ⊂ R with probability

Pr[M(Vi) = Ṽi] =
exp( ϵ|Vi

⋂
Ṽi|

m
)∑m

k=0 ck · exp(
ϵk
m
)
, (4.5)

where ck =
(
m
k

)
·
(
d−m
m−k

)
for all k = 0, 1, . . . ,m.

We further introduce an efficient algorithm for each node i to generate a per-

turbed set Ṽi from its original set of readings Vi. Instead of sampling over all m-element

subsets of R, we first determine the number of common elements between Vi and the

output set Ṽi. Since there are ck m-elements subsets that share k common elements

with Ṽi, and each of these ck sets is chosen with probability
exp( ϵk

m
)∑m

i=0 ci·exp(
ϵi
m
)
, it follows

that the probability of selecting a subset that shares k common elements with Vi is

given by

pk =
ck exp(

ϵk
m
)∑m

i=0 ci · exp(
ϵi
m
)
. (4.6)

56



Once we choose the number of common elements shared between Vi and the output set

Ṽi, say k, we then randomly select k elements from Vi and m− k elements from R \ Vi

to form the output set Ṽi. We summarize the procedure in Algorithm 1, in which the

procedure random(0, 1) returns a real number between 0 and 1 uniform at random, and

the procedure RandomSample(X, k) returns k elements of set X uniform at random.

Algorithm 1: Set Perturbation

Input: Original set Vi = {vi,1, . . . , vi,n}, domain R = {1, . . . , d}, and
privacy budget ϵ

Output: Perturbed set Ti

1 Ṽi ← ∅;
2 forall k=0,1,. . . ,m do

3 pk ←
ck exp( ϵk

m
)∑m

i=0 ci·exp(
ϵi
m
)
;

4 r ← random(0, 1);
5 q ← 0;
6 p← 0;
7 while p < r do
8 p← p+ pq;
9 q ← q + 1;

10 Ṽi ← RandomSample(Vi, q);

11 Ṽi ← Ṽi

⋃
RandomSample(R \ Vi,m− q);

12 return Ṽi;

4.4.2.2 Data Augmentation

Since existing quantile summary aggregation schemes including Huang et al.’s

protocol [1] requires every data value is distinct, every sensor node augments its per-

turbed readings by its node ID. Let Ṽi = {ṽi,1, . . . , ṽi,m} be node i’s set of perturbed

readings. Each node i augments each perturbed reading ṽi,j as

v̂i,j = ṽi,j||i , (4.7)

for all 1 ≤ j ≤ m, where node ID i is encoded by γ = ⌈log2 n⌉ bits. Doing so can

ensure that every reading generated in the network is unique.
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4.4.2.3 Quantile Summary Aggregation

All the sensor nodes then participate in quantile summary aggregation according

to Huang et al.’s protocol [1]. Denote by V̂i the set of perturbed and augmented

readings of node i. Every node i randomly samples each perturbed reading v̂i,j ∈ V̂i

independently with probability h to obtain a subset of perturbed readings Si ⊆ V̂i and

sends a local quantile summary to its parent node as

Qi = {(v̂i,j, j)|v̂i,j ∈ Si} , (4.8)

where h is a system parameter, and j is the perturbed reading v̂i,j’s local rank within

V̂i. As discussed in Chapter 3, intermediate nodes may merge multiple local quantile

summaries into one to reduce the maximum per node communication cost. To sim-

plify our discussion, we ignore any merging operation here as it does not affect any

subsequent steps.

On receiving local quantile summaries Q1, . . . , Qn from all the sensor nodes, the

base station performs value-to-rank query on every possible perturbed value to learn

the distribution of the perturbed readings. Specifically, for every possible perturbed

value v̂ = v||i where v ∈ R and i ∈ {1, . . . , n}, the base station estimates its global

rank among
⋃n

i=1 V̂i as

r̂(v̂) =
n∑

i=1

r̂(v̂, V̂i) , (4.9)

where

r̂(v̂, V̂i) =

r(p(v̂|Qi), V̂i) + 1/h, if p(v̂|Qi) exists;

0 otherwise,

(4.10)

As discussed in Chapter 3, r̂(v̂) is an unbiased estimator of r(v̂,
⋃n

i=1 V̂i).

Next, the base station computes the global rank of each possible value v ∈ R

by removing the augmented node ID from the perturbed readings. In particular, for

each pair of perturbed value and estimated rank (v̂, r̂(v̂)), the base station updates its

value as

ṽ = v̂ mod 2γ (4.11)
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and records (ṽ, r̂(v̂)).

After removing the augmented IDs from all perturbed readings, the base station

obtains one or more estimated global ranks for each possible value v ∈ R. Without

loss of generality, let r−(v) and r+(v) be the lowest and highest estimated global ranks,

respectively, of value v for all v ∈ R. If value v has only a unique estimated global

rank, then r−(v) = r+(v).

4.4.2.4 Histogram Construction

The base station then constructs a histogram of the perturbed readings from

the received quantile summaries by estimating the frequency of each value v ∈ R.

We formulate the histogram construction as an optimization problem. In par-

ticular, let fv be the frequency of value v for all v ∈ R. It follows that value 1 is ranked

from the 1st to the f1th, and value v is ranked from (
∑v−1

i=1 fi +1)th to (
∑v

i=1 fi)th for

all 1 ≤ v ≤ d.

We formulate the estimation of f1, . . . , fd as the following optimization problem

min
(f1,...,fd)∈Nd

F(f) =
∑
v∈R

(
v−1∑
i=1

fi + 1− r−(v))2 + (
v∑

i=1

fi − r+(v))2,

such that
d∑

v=1

fv = nm,

v−1∑
i=1

fi + 1 ≤ r−(v), ∀v ∈ R,

v∑
i=1

fi ≥ r+(v), ∀v ∈ R,

(4.12)

where we seek to minimize the total square errors between the two boundaries and the

corresponding lowest and and highest estimated global ranks. In the above optimiza-

tion problem, the first constraint indicates that the sum of all the values’ frequencies

should be nm, the second and third constraints guarantee that the lowest and highest

estimated global ranks of a value v, i.e., r−(v) and r+(v), should fall in the range

[
∑v−1

i=1 fi + 1,
∑v

i=1 fi].
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The partial derivatives of F(f) with respect to fj can be computed as

∂F
∂fj

= 2(

j∑
i=1

fi − r+(j)) +
d−1∑

v=j+1

(2(
v−1∑
i=1

fi + 1− r−(v))

+ 2(
v∑

i=1

fi − r+(v))) + 2(
d−1∑
i=1

fi + 1− r−(d))) ,

(4.13)

for all j ∈ R.

Let ∂F
∂fj

= 0 for all j ∈ R. We can solve the system of linear equations by obtain
f1 =

r+(1)+r−(2)−1
2

,

fi =
r+(i)+r−(i+1)−r+(i−1)−r−(i)

2
, ∀2 ≤ i ≤ d− 1,

fd = nm− r+(d−1)+r−(d)−1
2

.

We summarize the construction of the histogram in Algorithm 2.

Algorithm 2: Histogram Construction

Input: {(v, r−(v), r+(v))|v ∈ R} (Estimated value ranks), d (Size of
original domain)

Output: {(v, f)|v ∈ R} (Histogram of perturbed values)
1 for v ∈ R do
2 if v = 1 then

3 fv =
r+(v)+r−(v+1)−1

2
;

4 if 1 < v < d then

5 fv =
r+(v)+r−(v+1)−r+(v−1)−r−(v)

2
;

6 if v = d then

7 fv = nm− r+(v−1)+r−(v)−1
2

;

8 return {(v, fv)|v ∈ R}

4.4.2.5 Estimating Histogram of Original Readings

Given the estimated histogram of perturbed readings f1, . . . , fd obtained above,

the base station proceed to estimate the histogram of original readings.

The key idea is to ignore the quantile summary aggregation process and any loss

of accuracy caused by the random sampling. Instead, we view the estimated histogram
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of perturbed readings f1, . . . , fd as if they are obtained by having every sensor nod i

submit all of its perturbed readings Ṽi and counting the number of each value.

We can then estimate the histogram of original readings based on the set per-

turbation mechanism at individual sensor nodes. Let gv be the frequency of value v

among the original readings
⋃n

i=1 Vi for all v ∈ R.

Consider an item v ∈ R and sensor node i’s original reading set Vi. Given the

perturbation mechanism in Definition 2, if v ∈ Vi, the probability that v shows up in

the perturbed set Ṽi can be computed as

Pr[v ∈ Ṽi|v ∈ Vi] = Pr[v ∈ Vi

⋂
Ṽi|v ∈ Vi]

=
m∑
k=1

Pr[v ∈ Vi

⋂
Ṽi|v ∈ Vi, |Vi

⋂
Ṽi| = k] · Pr[|Vi

⋂
Ṽi| = k] .

(4.14)

We further have

Pr[v ∈ Vi

⋂
Ṽi|v ∈ Vi, |Vi

⋂
Ṽi| = k] =

k

m
, (4.15)

Substituting Eqs. (4.15) and (4.6) into Eq. (4.14), we have

Pr[v ∈ Ṽi|v ∈ Vi] =
m∑
k=1

k

m
·

ck exp(
ϵk
m
)∑m

j=0 cj · exp(
ϵj
m
)
. (4.16)

Now let us analyze the probability that v shows up in the perturbed set Ṽi given

that v /∈ Vi. We have

Pr[v ∈ Ṽi|v /∈ Vi] = Pr[v ∈ Ṽi \ Vi|v /∈ Vi]

=
m−1∑
k=0

Pr[v ∈ Ṽi \ Vi|v /∈ Vi, |Vi

⋂
Ṽi| = k] · Pr[|Vi

⋂
Ṽi| = k] .

(4.17)

Since

Pr[v ∈ Ṽi \ Vi|v /∈ Vi, |Vi

⋂
Ṽi| = k] =

m− k

d−m
, (4.18)

Substituting Eqs. (4.18) and (4.6) into Eq. (4.17), we have

Pr[v ∈ Ṽi|v /∈ Vi] =
m−1∑
k=0

m− k

d−m
·

ck exp(
ϵk
m
)∑m

j=0 cj · exp(
ϵj
m
)
. (4.19)
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Assume that value v appears in gv sensor nodes’ original reading sets. It follows

that n − gv sets do not contain value v. The expected number of perturbed sets that

include value v can be estimated as

E[fv] = gv · Pr[v ∈ Ṽi|v ∈ Vi] + (n− gv) · Pr[v ∈ Ṽi|v /∈ Vi] (4.20)

Solving the above equation, we have

gv =
E[fv]− n · Pr[v ∈ Ṽi|v /∈ Vi]

Pr[v ∈ Ṽi|v ∈ Vi]− Pr[v ∈ Ṽi|v /∈ Vi]
, (4.21)

where Pr[v ∈ Ṽi|v ∈ Vi] and Pr[v ∈ Ṽi|v /∈ Vi] are given in Eq. (4.16) and (4.19),

respectively. We therefore estimate the number of copies of v in
⋃n

i=1 Vi as

ĝv =
fv − n · Pr[v ∈ Ṽi|v /∈ Vi]

Pr[v ∈ Ṽi|v ∈ Vi]− Pr[v ∈ Ṽi|v /∈ Vi]
, (4.22)

where Pr[v ∈ Ṽi|v ∈ Vi] and Pr[v ∈ Ṽi|v /∈ Vi] are given in Eqs. (4.16) and (4.19),

respectively.

Algorithm 3: Estimating Original Histogram

Input: {(v, fv)|v ∈ R} (Histogram of perturbed values), R (original
domain), n (the number of nodes)

Output: {(v, gv)|v ∈ R} (Histogram of original values)
1 for v ∈ R do

2 xv ←
∑m−1

k=0
m−k
d−m
· ck exp( ϵk

m
)∑m

j=0 cj ·exp(
ϵj
m
)
;

3 yv ←
∑m

k=1
k
m
· ck exp( ϵk

m
)∑m

j=0 cj ·exp(
ϵj
m
)
;

4 gv ← fv−xv

yv−xv
;

5 return {(v, gv)|v ∈ R}

4.4.2.6 Final Quantile Summary Construction

Given the estimated histogram of the original readings obtained in the previous

step, the base station then constructs a final quantile summary of the original readings,

which is equivalent to estimating the rank for every value v ∈ R and answering ϕ-

quantile query for all 0 < ϕ < 1.
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To answer a value-to-rank query over value v ∈ R, the base station can simply

return the median rank of value v as

r(v) = ⌊r
−(v) + r+(v)

2
⌋ , (4.23)

where r−(v) =
∑v−1

i=0 pi + 1 and r+(v) =
∑v

i=0 pi.

Moreover, to answer a ϕ-quantile query where 0 < ϕ < 1, the base station

returns value v such that

r−(v) ≤ nmϕ ≤ r+(v) . (4.24)

4.5 Theoretical Analysis

Theorem 4. The set perturbation mechanism (d,m, ϵ) of the PrivQSA mechanism

satisfies ϵ-LDP.

Proof. Let V1 and V2 be two arbitrary sets of readings such that |V1| = |V2| = m . Let

M denote the randomized mechanism given by Definition 2, and Ṽ be any possible

output of M. Since 0 ≤ |Ṽ ∩ V1| ≤ m and 0 ≤ |Ṽ ∩ V2| ≤ m for any V1 and V2, we

have

Pr[M(V1) = Ṽ ]

Pr[M(V2) = Ṽ ]
=

exp(ϵ · |Ṽ ∩V1|
m

)

exp(ϵ · |Ṽ ∩V2|
m

)

≤
exp(ϵ · m

m
)

exp(ϵ · 0
m
)

≤ exp(ϵ) .

(4.25)

The theorem is thus proved.

4.6 Simulation Results

In this section, we evaluate the performance of PrivQSA via simulation studies.
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Table 4.1: Default Simulation Settings

Para. Val. Description.
ϵ 50 The privacy budget
h 0.5 The sampling probability
n 1022 The number of sensor nodes
m 10 The size of user value set
d 100 The maximum number in the range of user values

4.6.1 Simulation Settings

We simulate a wireless sensor network consisting of n = 1022 sensor nodes.

We assume that each node has m = 10 readings and every reading is in the range

R = 1, . . . , 100. We consider every reading is of one byte, and every rank is of 3 bytes.

Table 4.1 summarizes our default settings unless mentioned otherwise. Every point in

the following graphs is the average of 10 runs, each with a distinct random seed.

Since there is no prior solution for private quantile summary aggregation, we

compare PrivQSA with the following two baseline schemes.

• Baseline 1 : Following the first two steps of PrivQSA, every node randomly per-

turbs its m-element reading set into another m-element reading set using the

perturbation scheme in Definition 2 and Algorithm 1. Each node then indepen-

dently samples its perturbed readings with probability h and submits only the

sampled readings without corresponding ranks to the base station. The base

station constructs a histogram of the perturbed values frequencies and then es-

timates the missing items by multiplying the frequency of each value with 1/h.

Finally, the base station estimates the original distribution and the final quantile

summary using the same method as in Steps 6 and 7 whereby to answer value-

to-rank queries. Baseline 1 satisfies ϵ-LDP without involving quantile summary

aggregation.

• Baseline 2 : Every node independently samples its readings according to Huang

et al. [1] scheme with probability h and then submits the sampled readings along

with their associated ranks to the base station. The base station then estimates
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the global rank of each reading to answer any value-to-rank query. Baseline 2 is

a quantile summary aggregation protocol without any privacy guarantee.

To evaluate the performance of PrivQSA, we use two metrics to measure the

accuracy of the final quantile summary at the base station. Let r(v) and r̂(v) be the

true rank and estimated rank of a value v, respectively, for all v ∈ {1, . . . , d}. Also let

rmax = nm be the maximum rank in the network which is the total number of readings

in the network. The normalized average rank error (ARE) is defined as

ARE =

∑d
v=1 |r̂(v)− r(v)|

rmaxd
, (4.26)

and the maximum rank error (MRE) is defined as

MRE =
maxv={1,...,d}(|r̂(v)− r(v)|)

rmax

. (4.27)

In addition, we also use total communication cost and maximum per node communi-

cation cost to compare the performance of PrivQSA and the two baseline solutions.

4.6.2 Simulation Results

We now report our simulation results.

4.6.2.1 Examples of Data Processing under PrivQSA

Figs. 4.2a to 4.2d give examples of the output of PrivQSA in different steps

to provide a high level idea of how PrivQSA works. Specifically, Fig. 4.2a shows

the distribution of the original readings generated by the sensor network. Fig. 4.2b

shows the distribution of all perturbed readings before sampling. We can see that

the difference between Fig. 4.2a and Fig. 4.2b is that the distribution of the perturbed

readings is more flat than that of the original readings, which is due to the application of

the set perturbation mechanism based on the exponential mechanism. Fig. 4.2c shows

the distribution of the perturbed data learned from quantile summary aggregation.

The difference between Fig. 4.2b and Fig. 4.2c is because of the error produced by

the sampling process involved in the quantile summary aggregation. Finally, Fig. 4.2d
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quantile summary aggregation
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(d) Estimated original distribution

Figure 4.2: Examples of data processing by PrivQSA in different steps.

shows the distribution of original readings estimated using Algorithm 3. The difference

between Fig. 4.2a and Fig. 4.2d is due to the perturbation and quantile summary

aggregation involved in PrivQSA.

4.6.2.2 Impact of Sampling Probability

Figs. 4.3a to 4.3d compare the ARE, MRE, total communication cost, and

maximum per node communication cost of PrivQSA and the two baseline solutions,

respectively, with sampling probability varying from 0.1 to 1.0. We can see from

Fig. 4.3a and 4.3b that both the ARE and MRE decrease as the sampling probability

h increases under all three schemes. This is expected as the more readings we sample,
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Figure 4.3: Comparison of PrivQSA and the baselines with sampling probability h
varying from 0.1 to 1.0.

the more accurate the value-to-rank query results, and vice versa. Moreover, we can

see from the same two figures that the ARE and MRE of Baseline 2 is the lowest

in comparison with PrivQSA and Baseline 1 because it does not involve any random

perturbation. PrivQSA comes in the second place with a small difference compared to

Baseline 2 which is the cost of providing local differential privacy. Finally, Baseline 1

comes with the largest rank errors among the three due to the random perturbation

and it does not involve rank information in estimating the original distribution. On

the other hand, Fig.4.3c shows the total communication cost under PrivQSA and the

other two Baselines. Generally speaking, we can see that the total communication cost
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Figure 4.4: Comparison of PrivQSA and the baselines with privacy budget ϵ varying
from 10 to 100.

increases as the sampling probability increases. The reason is that, the more values are

sampled, the more information need to be sent and accordingly the higher the total

communication cost. In addition, we can see that PrivQSA and Baseline 2 have the

same communication cost, which is larger than Baseline 1’s communication cost. This

is because under both PrivQSA and Baseline 2 every sensor node needs to send the

rank information beside the sampled values whereas under Baseline 1 only sampled

readings need to be sent. Fig. 4.3d plots the maximum per node communication costs

of the three schemes, which shows that the maximum per node cost increases under

all three schemes with the increase of the sampling probability, which is anticipated.

Finally, it shows that PrivQSA and Baseline 2 incur similar communication cost which

is also larger than Baseline 1’s communication cost for the same reason mentioned

above.

4.6.2.3 Impact of Privacy Budget

Figs. 4.4a and 4.4b compare the ARE and MRE under PrivQSA and Baseline 2

with the privacy budget ϵ varying from 10 to 100, where those under Baseline 2 are

plotted for reference only as Baseline 2 does not involve any random perturbation and

is not affected by the change in the privacy budget ϵ. We can see from both figures that
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Figure 4.5: Comparison of PrivQSA and the two baseline solutions with set value size
varying from 10 to 100.

both ARE and MRE decrease as the privacy budget ϵ increases both under PrivQSA

and Baseline 1. This is because the larger the ϵ, the larger the size of the intersection

of the original reading set and the perturbed reading set, the smaller the added noise,

the more accurate the estimated original distribution, the more accurate the value-to-

rank query results, and vice versa. In addition, we can see that Baseline 1 always has

the largest ARE and MRE compared to PrivQSA and Baseline 2. PrivQSA comes in

after with a lower ARE and MRE compared to Baseline 1 due to the rank information

included in the quantile summary aggregation but is larger than that of Baseline 2

because of the random perturbation involved in PrivQSA.
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Figure 4.6: Comparison of PrivQSA and the baselines with value domain varying from
100 to 500.

4.6.2.4 Impact of m

Figs. 4.5a to 4.5d compare the ARE, MRE, total communication cost, and

maximum per node communication cost under PrivQSA, Baseline 1, and Baseline 2

with m, i.e., the number of readings per node varying from 10 to 100. As we can see

from Figs. 4.5a and 4.5b, both ARE and MRE decrease as the number of reading per

node increases under Baseline 2. As we mentioned in Chapter 3, the reason is that

the more readings each node has, the more sampled readings, the more accurate the

value-to-rank query results, and vice versa. In contrast, we can see from the same two

figures that both ARE and MRE increase as the number of values per node increases

under PrivQSA and Baseline 1. This is because perturbing a larger set of readings

with the same privacy budget leads to adding larger noises to each reading in the set

and lowering the accuracy of frequency estimation as well as larger rank errors. One

more thing to notice from Figs. 4.5a and 4.5b is that again Baseline 2 has the lowest

ARE and MRE compared to PrivQSA and Baseline 1 while PrivQSA comes in the

second place and Baseline 1 is in the last place for the same reasons mentioned earlier.

For the communication cost in Figs. 4.5c and 4.5d, both the total communication cost

and maximum per node cost produced by the three schemes increase as the number of

readings each node has increases. The reason is that, the more readings that each node
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has, the more sampled readings, the more information need to be communicated and

accordingly the more communication overhead they incur. Moreover, Figs. 4.5c and

4.5d show that Baseline 1 incurs the lowest communication cost among the three as ex-

plained in the previous paragraphs. On the other hand, PrivQSA and Baseline 2 incur

the same communication cost either in total or per node because they communicate

the same amount of information.

4.6.2.5 Impact of d

Figs. 4.6a and 4.6b compare the ARE and MRE produced by PrivQSA, Base-

line 1, and Baseline 2 considering different sizes for the value domain in the network.

As we can see in Figs. 4.6a and 4.6b, Baseline 2 shows a slight increase in both ARE

and MRE as the size of the domain range increases. This is expected as the larger the

domain range, the more values in the domain range that need to have their ranks esti-

mated, the higher the ARE and MRE under a fixed sampling probability. For the same

reason, we can see that PrivQSA and Baseline 1 achieve higher ARE and MRE which

also increase faster in comparison with Basline 2 as the size of domain range increases.

This is because the perturbation mechanism depends on the value range in that the

larger the value domain, the fewer common elements between the original reading set

and the perturbed reading set after perturbation, the larger the noise added, and the

larger the rank estimation errors, and vice versa.

4.6.2.6 Impact of n

Figs. 4.7a to 4.7d show the ARE, MRE, total communication cost, and maxi-

mum per node cost produced by PrivQSA, Baseline 1, and Baseline 2, with n, i.e., the

number of nodes varying from 512 to 2,048. As we can see, Figs. 4.7a and 4.7b show

that the ARE and MRE are relatively insensitive to the increase in the number of nodes

in the network. This is anticipated as the total number of readings produced by the

sensor network is proportional to the number of nodes, and both ARE and MRE are

normalized rank error that are inversely proportional to the total number of readings.
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Figure 4.7: Comparison of PrivQSA and the baselines with number of nodes varying
from 29 to 212.

As a result, while the absolute rank errors increase as the number of nodes and the

total number of readings in the network increase, both ARE and MRE are relatively

insensitive to the change in the number of nodes. Moreover, Figs. 4.7a and 4.7b again

show that Baseline 1 always has the largest ARE and MRE compared to PrivQSA and

Baseline 2, followed by PrivQSA and Baseline 2 for the same reasons discussed above.

Figs. 4.7c and 4.7d show that the total communication cost and maximum per node

cost under all three schemes increase as the number of nodes in the network increases.

This is expected, becauase the more nodes, the more sampled readings, the more in-

formation to be communicated. Also, Figs. 4.7c and 4.7d show that PrivQSA and
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Baseline 1 incur similar communication cost which are higher than that of Baseline 2

because both of them communicate more information than Baseline 1.

In summary, the above simulation results clearly demonstrate the advantages of

PrivQSA over the two baseline solutions. On the one hand, PrivQSA incurs the same

communication cost as Baseline 2 but provides ϵ-LDP with a slight decrease in the

estimation accuracy. On the other hand, PrivQSA achieves a much better estimation

accuracy than Baseline 1 but incurs only a slightly higher communication cost than

Baseline 1 due to the rank information contained in the quantile summaries.

4.7 Summary

In this chapter, we have initiated the study of privacy-preserving quantile sum-

mary aggregation in wireless sensor networks. We introduced the design of PrivQSA,

the first locally differentially private quantile summary aggregation protocol for wire-

less sensor networks, which can guarantee ϵ-LDP for individual sensor node’s readings.

We have confirmed the significant advantages of PrivQSA over alternative solutions

via detailed simulation studies.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this dissertation, we have tackled three key security and privacy challenges

in data aggregation in wireless sensor network. First, we have identified a novel enu-

meration attack against existing secure additive data aggregation schemes based on

randomized sampling. Taking VMAT, a representative secure additive aggregation

scheme, as an example, we show that even a single compromised sensor node can

significantly modify the final aggregation result by forging its own reading. As a coun-

termeasure, we have also introduced an effective defense against the enumeration attack

and confirmed its effectiveness by simulation studies.

Second, we have presented SecQSA, the first secure quantile summary aggrega-

tion scheme for wireless sensor networks. Built upon the state-of-art quantile summary

aggregation protocol and efficient cryptographic primitives, SecQSA can effectively de-

fend against a range of malicious attacks launched by compromised sensor node. We

have also confirmed its efficacy and efficiency via detailed simulation studies.

Finally, we have introduced PrivQSA, the first privacy-preserving quantile sum-

mary aggregation scheme for wireless sensor networks. PrivQSA allows a base station

to obtain the quantile summary of the data generated in a wireless sensor network

while providing ϵ-Local Differential Privacy for individual sensor nodes’ readings. We

have confirmed PrivQSA’s advantages over alternative solutions via a combination of

theoretical analysis and simulation studies.

As our future work, we plan to further investigate a number of issues. First, we

plan to study the impact of enumeration attacks on other secure aggregation protocols

and develop general defense mechanisms against the enumeration attack. Second, we
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plan to extend SecQSA to detect and defend against multiple compromised sensor

nodes by generalizing the local quantile summary merging operation to involve nodes

further down the subtree. Third, we plan to explore other set perturbation mechanisms

in PrivQSA and analyze the impact of random sampling on the level of LDP provision.

Last but not the least, we plan to integrate SecQSA and PrivQSA to realize secure

and privacy preserving quantile summary aggregation.
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