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Abstract—Many mobile device applications require low end-to-end latency to edge computing infrastructure when offloading their
computation tasks in order to achieve real-time perception and cognition for users. User mobility brings significant challenges in
providing low-latency offloading due to the limited coverage area of cloudlets. Virtual machine (VM)/container handoff is a promising
solution to seamlessly transfer services from one cloudlet to another to maintain low latency as users move. However, an inefficient
path planning for the handoff can result in system congestion and consequently poor quality of service (QoS). The situation can even
worsen by selfish users who intentionally lie about their true parameters to achieve better service at the cost of degrading the whole
system’s performance. To fill this research gap, we propose an Online Service Handoff Mechanism (OSHM) to provide an efficient path
dynamically for transferring VM/container from the current serving cloudlet to a nearby cloudlet at the destination of a mobile user. Our
proposed path planning algorithm is based on a label correction methodology, leading to polynomial time complexity. OSHM is
accompanied by our proposed payment determination function to discourage misreporting of unknown parameters. We discuss the
theoretical properties of our proposed mechanism in implementing a system equilibrium and ensuring truthfulness. We also perform a
comprehensive assessment through extensive experiments which show the efficiency of OSHM in terms of workload, handoff time,
consumed energy, and other metrics compared to several benchmarks. Experimental results show that OSHM outperforms other
algorithms, reducing at least 61% in average workload, 33% in average handoff time, and 29% in average energy consumption.

Index Terms—mobile edge computing; service handoff; mechanism design; path planning; pricing; quality of service.
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1 INTRODUCTION

THE explosive growth of time-sensitive mobile applica-
tions has ignited a surging demand for low latency, fast

response time computing services. As a result, Mobile Edge
Computing (MEC) and the fifth-generation (5G) cellular
networks, 5G MEC, have started to gain prominence to
provide such services in recent years. One of the primary
goals of 5G is to provide significantly high data rates (e.g., 10
Gbps) anytime and anywhere by combining a variety of
new technologies, such as Small Cell Networks (SCN) [1]. In
SCNs, multiple classes of Base Stations (BSs) such as Macro
BSs (MBSs) and Small BSs (SBSs) are incorporated into the
network to provide better coverage for users. SBSs are low-
power BSs that provide ultra-dense network coverage. They
further alleviate the load on MBSs by enhancing the network
capacity. However, users may frequently switch from one BS
to another due to their mobility and limited coverage area
of each BS.

MEC is a new computing paradigm that aims at pro-
viding computing services in the proximity of users. In
MEC, cloudlets (small-sized clouds or mini data centers)
are integrated with wireless BSs at the edge of the network
to offer edge services in the form of Virtual Machines
(VMs) or containers to users [2], [3]. In the ideal case, the
cloudlet is only one hop away from the user, and thus,
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the logical network distance and subsequently the end-
to-end latency is minimal. However, once a mobile user
moves, the intermediate hops to that cloudlet may grow
substantially despite physical proximity [4], [5]. This in turn
may cause significant Quality-of-Service (QoS) degradation
because now the user’s data must travel a longer distance to
reach that cloudlet. The imposed delay is also accompanied
with migration overhead and massive data movement over
the network.

An initial idea to solve this problem is to switch to a
closer cloudlet via live VM/container migration. However,
live migration is not applicable in MEC due to requiring
long migration time, which leads to significant latency.
Inspired by VM synthesis [6], Ha et al. [7] proposed VM
handoff, which is based on the fact that most VM images
are derived from a small set of widely-used VMs that can
be pre-populated in the cloudlets. Therefore, instead of
transferring the whole VM or container, the binary differ-
ence between the launched one and its base is adaptively
computed, compressed, and seamlessly transferred. Clearly,
when the service is already replicated at the destination,
only the user-specific data is transferred via handoff.

Dynamic path planning is a critical component of a
service handoff. Path planning should be performed online
(as soon as a new service handoff is required) and with
low computational overhead to be applicable in real-time.
However, a successful path planning depends on several
parameters from both user and system perspectives. While
each user expects the service handoff to be completed as
soon as possible, accommodating all requests on a common
path will lead to severe congestion and consequently poor
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QoS. Furthermore, as users interact with the system, they
may intentionally misreport their parameters that are un-
known to the system with a desire to receive better service.
Such an action could inversely decrease the overall MEC
system efficiency.

We propose a novel Online Service Handoff Mechanism
in 5G MEC, namely OSHM, to address these challenges.
Our approach relies on efficient path planning and mech-
anism design concepts. The path planning algorithm con-
siders specific time bounds from user side and resource
limitations of the system to guarantee QoS for a dynamic
service handoff. Mechanism design is a subfield of game
theory concerned with how to implement system-wide op-
timal solutions considering preferences and incentives of
rational agents. By designing a suitable payment function,
OSHM guarantees truthfulness, where revealing the true
preferences is always in the users’ best interests preventing
the users from manipulating the system that may lead to
congestion and poor overall service. Note that designing a
payment function may not be necessary when the users’
preferences are publicly known and cannot be misreported.

To the best of our knowledge, this is the first study that
designs a system equilibrium for the service handoff path
planning and pricing in 5G MEC by utilizing mechanism
design.

1.1 Our Contribution
In this paper, we assume a two-tier SCN in 5G MEC, where
mobile users offload their computational tasks through
SBSs to cloudlets at MBSs. Once a mobile user starts to
move, his1 assigned VM/container is seamlessly trans-
ferred through intra-edge-computing-infrastructure paths to
a nearby cloudlet at his destination by our novel mecha-
nism. Therefore, low end-to-end latency is preserved be-
tween the user application and its serving cloudlet at any
time. Our key contributions are summarized as follows:

• We formulate the Service-Handoff Intra-edge Path
Planning Problem (SHIP3) optimally as a Con-
strained Shortest Path (CSP) problem, considering
the time requirements of users and the energy con-
straints of BSs for transferring VMs/containers.

• We propose an Online Service Handoff Mechanism
(OSHM) using mechanism design to solve SHIP3

efficiently in an online setting. OSHM consists of a
path planning algorithm and a payment determina-
tion function. OSHM performs service handoffs in
real-time.

• Our proposed path planning solution is based on
label correction. It improves the satisfaction ratio of
mobile users by meeting their time requirements for
the service handoff, and it increases the energy effi-
ciency of BSs by considering their energy limitations
for the service handoffs.

• A novel payment function using a marginal cost
principle is proposed to charge users based on their
assigned paths for the service handoffs.

• We provide a theoretical analysis of the properties
of our proposed mechanism including: truthfulness
and weakly budget balance.

1. For readability, we will refer to a user as “he”.

• We provide a comprehensive assessment through
extensive performance analysis experiments.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2,
we review previous studies in this domain. In Section 3, we
describe the system model. In Section 4, we formally present
the path planning problem for the service handoff problem,
SHIP3. In Section 5, we propose our OSHM mechanism
to solve the SHIP3 problem. In Section 6, we evaluate
our proposed mechanism through extensive experiments.
Finally, in Section 7, we summarize our results and present
possible directions for future research.

2 RELATED WORK

We review existing studies in the literature that are related
to our work from different perspectives.

VM/Container Handoff in MEC. The conventional live
VM/Container migration approach, widely used in central-
ized cloud data centers, is not applicable in MEC due to
requiring long completion time [7]. Therefore, researchers
have tried to address this problem by proposing suitable
approaches. In [7], the limitations of conventional live VM
migration in MEC have been highlighted, and the idea of
VM handoff among cloudlets has been proposed. Ma et
al. [8] presented service handoff across edge servers in MEC
via a Docker container. Chen and Liao [9] proposed Service
Function Chaining (SFC) handover in 5G wireless networks
with MEC. Particle swarm optimization (PSO) is employed
in [10] to minimize the number of wireless handoffs and the
energy consumption of a MEC server. In their approach, the
coverage area of each MEC server is adjusted by controlling
the transmission power to achieve the optimization objec-
tive. Puliafito et al. [11] proposed an OpenStack-based plat-
form for container migration in fog computing to support
device mobility. In [12], a genetic algorithm-based method
is employed to solve service consumption plan optimization
problem for an efficient service migration in MEC.

Providing an efficient path planning approach is essen-
tial for a seamless service handoff. However, none of the
above studies consider path planning. To address this issue,
Anwar et al. [13] proposed a distributed traffic steering
model in MEC based on Branch-and-Bound algorithms for
live service migration. Xu et al. [14] aimed to provide the
best set of available paths that can minimize the total
transferring time with limited bandwidth of each network
connection; in a software defined network (SDN) manner.
However, these studies do not consider user-specific time
constraints nor energy budgets of the edge infrastructure.

Energy Efficiency and Latency in MEC. Rausch et al. [19]
designed an end-to-end system for operating energy-
aware cloudlets. Sharghivand et al. [15] proposed effi-
cient two-sided matching solutions to assign user appli-
cations to cloudlets ensuring required QoS. Bhatta and
Mashayekhy [20] proposed a cloudlet placement approach
to guarantee a bounded latency and placement cost. Yang
et al. [21] proposed a heuristic approach for service de-
ployment of latency-sensitive applications in MEC. Ma and
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Ma et al. [8] X X X
Cao et al. [10] X X X
Anwar et al. [13] X X X X X
Xu et al. [14] X X X X X
Nafiseh et al. [15] X X
Ma et al. [16] X X X
Yadav et al. [17] X X
Ma et al. [18] X X X X
Our Study X X X X X X X X

Mashayekhy [16] proposed a truthful mechanism to jointly
optimize the access point allocation and service placement
problems in MEC to reduce latency. Chen et al. [22] con-
sidered the specific case of augmented reality applications
and proposed an energy-efficient task offloading and re-
source allocation scheme in both a single-MEC and a multi-
MEC system. Yadav et al. [17] proposed an energy-efficient
dynamic computation offloading and resource allocation
scheme to reduce energy consumption and service latency in
vehicular fog computing. An energy-efficient computation
offloading approach is proposed in [23] for edge-enabled
sensor networks in healthcare systems using reinforcement
learning.

Moreover, several other studies have considered the fea-
tures of 5G communication systems in their scheme design
for energy-efficient task offloading in MEC. In [24], [25], the
problem of energy-efficient task offloading in 5G MEC has
been modeled as an NP-hard optimization problem. The
former uses a heuristic algorithm, and the latter designs
type classification and priority assignment for mobile de-
vices to solve the problem in tractable time. Chen et al. [26]
proposed an energy-efficient task offloading and channel
resource allocation approach based on the differential evo-
lution algorithm in 5G MEC.

All the above studies have assumed users as stationary
entities and thus do not address user mobility in the envi-
ronment or switching of the services to nearby cloudlets.

Mobility in MEC. User mobility brings significant challenges
in MEC. Zhang et al. [27] proposed a deep reinforcement
learning approach for a single user to migrate his task based
on user mobility. Farhangi Maleki and Mashayekhy [28]
proposed two offloading approaches utilizing predicted
dynamics of mobile applications including user mobility
to reduce the turnaround time of the applications. Ma et
al. [18] formulated the video offloading problem as a two-
stage stochastic program to model the uncertainties caused
by user mobility, and they devised a novel clustering-based
sample average approximation approach. Ouyang et al. [29]
studied the requirement of migrating services dynamically
among multiple cloudlets due to user mobility to maintain
satisfactory user experience. Wang et al. [30] proposed a
Markov decision process (MDP) to formulate live migration
of an edge application (service) of a single user considering

Fig. 1: System Model.

the distances between the user and the cloudlets before
possible migration. However, the above studies either do
not consider the necessity of service handoff in MEC or do
not perform path planning.

To the best of our knowledge, this is the first study that
proposes a mechanism for the path planning and pricing
of the service handoff considering user mobility, while
addressing application time constraints and MEC energy
limitations. Table 1 shows a comparison of our study with
the related research in the field.

3 SYSTEM MODEL

In this paper, we assume a heterogeneous 5G network
integrated with MEC, where mobile users offload their
computational tasks to cloudlets over 5G. In 5G deploy-
ment, a two-tier Small-Cell Network (SCN) is considered
consisting of Small Base Stations (SBSs) and Macro Base
Stations (MBSs). Many SBSs are dispersed at the edge of the
network acting as a relay for MBSs that are co-located with
cloudlets. Cloudlets offer various computing services in the
form of VMs/containers to users. Within their range, SBSs
are connected to adjacent SBSs via fronthaul links and to
MBSs via backhaul links [31]. Fig. 1 shows different mobile
devices offloading their computational tasks through SBSs
to cloudlets.

Each cloudlet has a limited coverage area, and thus,
mobile users may experience significant QoS degradation
as they exit this area. Hence, to avoid QoS dropping, it
is necessary to transfer the associated services to a closer
cloudlet via VM/container handoff.

An Edge Manager (EM) is a system entity that decides
when and where a service handoff should be performed for
a user (each EM can manage a part of the network). To do
so, the user needs to specify the physical route to his desired
destination as well as his travel time. Each user can simply
obtain a suitable route2 and estimated travel time to his
destination using common Mapping/Navigation Services
(MS), such as Google Maps [32] or Waze [33]. However,
if exact traveling route cannot be provided by MSs for any
reason, travel route prediction methods can be used instead.
In this study, we assume the user travel information is
available by any form (exact or predicted).

2. Route refers to a physical route on the road network, and path
refers to a virtual path in MEC.
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t1 t2

Fig. 2: Time constraint computation for service handoff.

According to the declared information by the user, the
EM must perform service handoff between the source and
destination cloudlets within specific time bounds to pre-
serve transparency [34]. Each service handoff can start as
soon as the user enters the coverage area of the new cloudlet
and should be completed by the time it exits the coverage
area of the current cloudlet. For example, according to
Fig. 2, the service handoff from the source cloudlet A to
the destination cloudlet B must begin at t1 and end by t2.
Thus, the required time constraint to complete the service
handoff is defined by t2 − t1.

The EM performs path planning to find a suitable path
for the service handoff from the currently assigned cloudlet
to the destination cloudlet, satisfying the required time
constraint. Path planning is important in service handoff
because different paths can result in various QoS for users.
Existing congestion over a selected path directly affects the
time duration of service handoff. Moreover, the EM should
consider the energy budget of each BS during path planning
to ensure the feasibility of service handoff over the assigned
path due to the limited energy resources for BSs.

Furthermore, a pricing function is required to charge
users to enforce truthfulness in the system. The pricing
function preserves rational selfish users from misreporting
their parameters to receive a better QoS. Note that the
pricing function becomes unnecessary whenever the users’
preferences are publicly known and cannot be misreported.

To sum up, the problem of online service handoff is to
find a time-efficient path and payment for service handoff
with the major goal of preserving QoS for mobile users,
while achieving the secondary goals of minimum conges-
tion, energy consumption reduction, and discouragement
of misreporting by penalizing users for the cost of the
distortion.

Fig. 3 illustrates an example of a smart car traveling
from a specific starting point to a specific destination point
requiring edge services. The user obtains a suitable route
and an estimated travel time to his destination from an
MS. The user then passes the obtained information as his
preferences to the EM. The EM then performs path planning
to find a suitable path to the destination cloudlet for the
service handoff, considering the required time constraint.
Finally, the service handoff is carried out from the source
cloudlet A to the destination cloudlet B, and the user is
charged for the service handoff.

Starting point

Destination

Modified VM

Edge Manager 
(EM)

Mapping 
Services (MS)

The user declares 
his route and travel 
time to EM

The EM notifies the 
cloudlet to create the 
modified VM and 
transfer it through the 
assigned path to the 
destination cloudlet

A

B

The MS provides the 
route and travel time 
information for the user

Fig. 3: Service handoff scenario.

In the next section, we formulate the path planning as an
optimization problem.

4 SERVICE HANDOFF PROBLEM FORMULATION

In this section, we describe our optimal mathematical for-
mulation for the Service Handoff Intra-edge Path Planning
Problem (SHIP3).

A set of mobile users I = {1, 2, . . . , I} offload their
computational tasks through SBSs J = {1, 2, . . . , J} to
MBSs K = {1, 2, . . . ,K} integrated with cloudlets. We use
the terms MBS and cloudlet interchangeably. We represent
the edge infrastructure (i.e., SBSs and MBSs) and 5G intra-
communication links as a directed graph G = (N ,L),
where N = J ∪ K denotes the BSs and L denotes the
communication links. SBSs communicate with each other
through fronthaul links Lf , while they are connected to
MBSs using backhaul links Lb. Therefore, we have L =
Lf ∪ Lb. Each link l can also be denoted by the nodes it
is connecting.

Energy consumption is a critical factor in determining
the operating costs of BSs [35], while reducing carbon emis-
sions is one of the most effective and necessary climate
actions. Therefore, we consider energy consumption as a
resource limitation for BSs. Each BS n ∈ N has an energy
budget of εn, which defines the maximum energy that
it can spend for transferring VMs/containers. The energy
constraint εn is continuously updated by BS n based on its
current status.

Each mobile user i ∈ I has a required time constraint
for his service handoff, denoted by θi, which is computed
by the EM based on the user’s route and travel time as
explained in Section 3 (i.e., θi = ti2 − ti1). Each user i also
has a specific time valuation, which depends on the type of
service that he uses. We assume that MEC offers S types of
services denoted by S = {1, 2, . . . , S}. Hence, when user i
uses service s ∈ S , the user declares λsi (simply denoted
by λi) indicating the monetary value of service s per unit of
time.
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Once mobile userm starts to move and requires a service
handoff, a service-handoff path needs to be assigned by the
EM. We defineP as the set of all feasible paths for the service
handoff between the source and destination cloudlets. A
path p can be represented as sequences of adjacent BS
nodes such as p = {n1, n2, . . .} or of adjacent links such
as p = {n1n2, n2n3, . . .}. If the starting and ending nodes of
a path coincide, the path is called a cycle. We assume that
each path does not have any cycles. The valuation of user m
for service-handoff path p is defined as follows:

vm = λm(θm − τm), (1)

where τm denotes the service handoff duration over path p,
and θm is the required time constraint for the service hand-
off. We will describe how to obtain the duration of time for
the service handoff, i.e., τm, in Section 4.1. Respectively, we
define the utility of user m as the difference between his
valuation and his payment as follows:

um = vm − πm, (2)

where πm shows the payment of user m to the EM to
perform the service handoff.

The main objective of the EM is then to find a path such
that it minimizes the total duration of time for all current
service handoffs as well as the duration of time for the latest
service handoff, i.e., for user m, considering their priorities.
The service handoff duration may change for the existing
users if their assigned paths overlap (fully or partially) with
path p that is now serving the service handoff of user m.
Therefore, the valuation of the EM for assigning path p to
user m is defined as follows:

ve = −
∑
i∈I

λei τ
′
i − λemτm, (3)

where τ ′i is the new service handoff duration for user i ∈ I
when path p is used to perform the service handoff for
new user m, and λei is the unit-time valuation of the EM.
We consider the EM classifies user applications into H het-
erogeneous priority classes, defined based on their urgency
or time sensitivity. For example, online medical operations
may own the highest priority to receive real-time computing
services, whereas applications such as augmented reality
are classified as a lower priority, even though all appli-
cations require acceptable response time. We define H =
{1, 2, . . . ,H} to denote the set of all heterogeneous applica-
tions, where each class h ∈ H defines a set of applications
with similar priorities. We define λeh to show the unit-
time valuation of the EM for each class h. Therefore, λeh is
identical for all users whose applications belong to class h,
i.e., they have the same priority (if i ∈ h, then λei = λeh).

To optimally formulate the problem, we need to provide
more details on how to compute the duration of time
and energy consumption for the service handoff over each
feasible path. In sections 4.1 and 4.2, we explain them,
respectively.

4.1 Duration of Time for Service Handoff

Once a modified VM/container image is created to be
transferred via a service handoff to the destination cloudlet,
it may traverse a set of different fronthaul and backhaul

links, which is time-consuming. Moreover, at each BS (ei-
ther SBS or MBS), the VM/container may remain in the
queuing buffer until a link channel is assigned for trans-
mission. Hence, both VM/container transmission duration
and buffering duration should be computed based on the
properties of the network.

We consider a multi-user OFDMA (Orthogonal
Frequency-Division Multiple Access) system [1], [31], [36],
which is a common type of digital transmission in 5G. In
OFDMA, each BS j ∈ N has Cj orthogonal Resource Blocks
(RB) each with bandwidth ofBc

j . For fronthaul link jj′ ∈ Lf

connecting SBS j and j′, the data transmission rate is given
by:

Rjj′ =

Cj∑
c=1

Bc
j log2(1 +

ρcj g
c
jj′

σ2
jc +

∑
a∈J

∑
b∈J\j ρ

c
a g

c
bj′

), (4)

where ρcj is the transmission power of SBS j over RB c, gcjj′
is the channel gain between these two SBSs on RB c, and σ2

jc

is the variance of the zero mean additive white Gaussian
noise [31], [36].

Similarly, for backhaul link jk ∈ Lb connecting SBS j to
MBS k, the data transmission rate is computed as follows:

Rjk =

Cj∑
c=1

Bc
j log2(1 +

ρcj g
c
jk

σ2
jc +

∑
a∈K

∑
b∈J\j ρ

c
a g

c
bk

). (5)

Note that Rjj′ and Rjk formulations may change using
different technologies. Our approach can be extended to
support other data transmission technologies.

In service handoff, the binary difference of the launched
VM/container and its base is adaptively computed, com-
pressed, and then transferred. Assuming di denotes the size
of the VM/container being transferred for user i, then the
service handoff duration through link l is computed as:

τ li =
di
Rl
, (6)

where l can be either fronthaul link jj′ ∈ Lf between SBSs j
and j′ or backhaul link jk ∈ Lb connecting SBS j to MBS k.

Furthermore, each BS has a queuing buffer to support
the cases when no empty RB is left for the VM/container
transmission to the next BS. Hence, we compute the waiting
time (or queuing time) at each BS for the service handoff.
Inspired by [37], we model the queuing buffer at each BS
as an M/M/C queue, where the RBs act as servers. Let Nj

denote the set of Nj BSs that are currently communicating
with (sending data to) SBS j. If Nj ≤ Cj , the waiting time
at SBS j is zero. When Nj > Cj , then the expected waiting
time incurred by packets generated at each n ∈ Nj to reach
SBS j is given by:

τ qn = E[n]/ω, (7)

where E[n] denotes the expected number of packets in the
queue at BS n and ω is the packet arrival rate. The waiting
time for each MBS to assign an RB for transmission is
computed similarly.

Therefore, the required duration of time to perform ser-
vice handoff for user i over path p is computed as follows:

τi =
∑
l∈p

τ li +
∑
j∈pN

τ qj , (8)
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where τ li denotes the duration of time for the service handoff
over link l ∈ p according to Eq. (6). Moreover, τ qj denotes
the waiting time that any user experiences at node j of the
path, calculated based on Eq. (7). For simplicity of notation,
we use pN to denote the set of nodes along path p.

4.2 Energy Computation

Computing infrastructure plays an important role in global
greenhouse gas emissions. Furthermore, energy consump-
tion accounts for a substantial part of the operating cost of
a BS [35]. Therefore, we consider energy budget as a main
resource constraint of the system. In 5G, each BS consumes
energy [38] to transfer data to the next BS. The consumed
energy by SBS j for transferring a VM/container of size di
for user i over fronthaul or backhaul link l, connecting SBS j
with another SBS or an MBS, is computed as follows:

eilj =

Cj∑
c=1

δj ρ
c
j τ

l
i , (9)

where δj determines the energy coefficient for transferring
data through the network [38].

4.3 Optimization Model

We formulate the Service Handoff Intra-edge Path Plan-
ning Problem (SHIP3) as a Constrained Shortest Path (CSP)
problem to find optimal service-handoff paths maximizing
sequential social surplus, the sum of the valuations of the
participants, subject to the energy constraints of BSs and the
users’ required time constraints. Assuming cloudlets o ∈ N
and d ∈ N as the source and destination cloudlets, respec-
tively, the SHIP3 problem is defined as follows:

max
p∈P

ve + vm (10)

Subject to:
τm ≤ θm, (10a)

eml
j ≤ ε̄j , ∀j ∈ pN , ∀l ∈ p. (10b)

This optimization model aims to find a suitable path p for
the service handoff, maximizing the sequential social sur-
plus, which includes the valuation of the EM for all existing
users (ve) and the valuation of user m (vm). Constraint (10a)
ensures that the service handoff for user m is performed
within his time constraint θm to satisfy the QoS. Constraint
(10b) guarantees that the energy consumption for the service
handoff at each BS j does not exceed its energy budget ε̄j for
transferring VMs/containers. Note that ε̄j is the remaining
energy budget based on already allocated transmission links
(formally defined in Eq. (13e)).

We can further rewrite the objective function as follows:

ve + vm = −
∑
i∈I

λei τ
′
i − λemτm + λm(θm − τm)

=
∑
i∈I

∑
l∈L\p

∑
j∈N\pN

−λei (τ li + τ qj ) + λmθm

−
∑
i∈I

∑
l∈p

∑
j∈pN

(
λei (τ

l
i + τ ′

q
j) + λem(τ lm + τ qj )

+ λm(τ lm + τ qj )
)

Note that τ li does not change due to the new service handoff.
This is due to the fact that each new service handoff may
only increase the queuing times in the BSs and not the
transfer times over the links. Then, by moving the previous
duration of time of existing users that are using path p from
the second part of the formula to the first part, we have:

ve + vm =
∑
i∈I

∑
l∈L

∑
j∈N
−λei (τ li + τ qj ) + λmθm

−
∑
i∈I

∑
l∈p

∑
j∈pN

(
λei

(
(τ li + τ ′

q
j)− (τ li + τ qj )

)
+ λem(τ lm + τ qj ) + λm(τ lm + τ qj )

)
(11)

Clearly, the terms −
∑

i∈I
∑

l∈L
∑

j∈N λ
e
i (τ

l
i + τ qj )

and λmθm in the above equation are constant. This is
due to the fact that the duration of time for all current
service handoffs using other links and BSs (not overlapping
with path p) does not change. Furthermore, user m’s
valuation of time (λm) and time constraint (θm) are already
known. Therefore, these two terms can be excluded from
the objective function. Therefore, our modified SHIP3

optimization model, called SHIP3-M, can be rewritten as:

min
p∈P

∑
i∈I

∑
l∈p

∑
j∈pN

(
λei (τ

′q
j − τ

q
j )

+ λem(τ lm + τ qj ) + λm(τ lm + τ qj )
)

(12)

Subject to:
τm ≤ θm,
eml
j ≤ ε̄j , ∀j ∈ pN , ∀l ∈ p.

To extract a feasible path, we provide the link-based
formulation of our optimization model as well. We first
define a set of binary decision variables: xl = 1 if link l ∈ L
is on the assigned path p for the service handoff; and xl = 0
otherwise. We also need to define the following notations
used in this formulation: n+ refers to a set of outgoing links
from node n (e.g., nj ∈ L); similarly, n− refers to the set of
incoming links to node n (such as jn ∈ L).

Our link-based optimization model of SHIP3, called
SHIP3-L, is presented as follows:

min
∑
i∈I

∑
l∈L

xl
(
λei (τ

′q
j+ − τ

q
j+)

+ λem(τ lm + τ qj+) + λm(τ lm + τ qj+)
)

(13)

Subject to:∑
l∈o+

xl = 1, (13a)∑
l∈d−
−xl = −1, (13b)∑

l∈j+
xl −

∑
l∈j−

xl = 0, ∀j ∈ N \ {o, d}, (13c)

∑
l∈j+,j∈N

xl(τ
l
m + τ qj+) ≤ θm, (13d)

xl e
ml
j ≤ εj −

∑
l′∈j+,i∈I

eil
′

j , ∀l ∈ j+, (13e)

xl ∈ {0, 1}, ∀l ∈ L. (13f)
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The first three constraints (13a)-(13c) are necessary to
achieve a path from cloudlet o to cloudlet d for the service
handoff. In this respect, constraint (13a) ensures that only
one outgoing link is selected from origin cloudlet o, and
similarly constraint (13b) guarantees only one incoming
link is selected towards destination cloudlet d. In addition,
constraint (13c) is a flow constraint, which guarantees that
the sum of incoming and outgoing links at each node j ∈ N ,
except o and d, is equal to zero. Constraint (13d) ensures
that the duration of time for the service handoff on the se-
lected path does not exceed the required time constraint θm.
Constraint (13e) restricts the energy consumption at each
node along the assigned path to the energy limitation of
that node, which is denoted by ε̄j = εj −

∑
l′∈j+,i∈I e

il′

j .
The coefficient of xl in the objective function denotes the

cost of link l, and we use notation cl to represent this cost.
The coefficients of xl in constraints (13d) and (13e) are called
link weights, denoted by tl and el, respectively. We will use
these values in our algorithm in the next section.

It is worth noting that the objective function also demon-
strates how the valuation of user m for time, i.e., λm, and
the valuation of time of EM for users, i.e., λei can affect the
selection of the path for the service handoff. As the ratio
of λm to λei increases, it means the service handoff is urgent
for user m, and the EM can deliberately neglect some low-
priority service handoffs to minimize the duration of time
for the service handoffm. In contrast, as the ratio of λei to λm
grows, the EM minimizes the duration of time for users with
the highest priority. Therefore, it provides services to users
with highly time-sensitive applications by choosing faster
paths to transfer their VMs/containers to their destination
cloudlets, or to users who pay more to receive better quality
of experience. The latter is in alignment with the new
development of ultra-low-latency-as-a-service such as AWS
Wavelength [39] for user applications including connected
autonomous cars, augmented and virtual reality, interactive
virtual learning, and online games.

The formulated SHIP3-L problem can be reduced to a
general constrained shortest path problem with possible
negative edge costs, which is an NP-hard problem [40].
Moreover, SHIP3-L is an offline problem, assuming that the
users’ preferences are available simultaneously (i.e., they do
not arrive over time). Therefore, we propose an Online time-
constrained Service Handoff Mechanism (OSHM) to find the
optimal path for each service handoff in an online setting,
where users can join and leave over time. The description of
OSHM is provided in the next section.

5 ONLINE SERVICE HANDOFF MECHANISM
(OSHM)

While path planning is an essential part of our proposed
mechanism, OSHM, there is a concern that each mobile user
could increase his utility by lying about his true preferences.
Such manipulation would result in an incorrect required
time constraint for the service handoff, and thus, it would
negatively affect the overall system efficiency. To avoid this
issue, our proposed OSHM mechanism includes a payment
determination function that ensures truthfulness, i.e., mo-
bile users have no incentive to lie about their preferences.

In this section, we describe how path planning and pay-
ment determination are designed. Both functions are online,
meaning that they invoke as soon as a new service handoff
is required. Our proposed path planning algorithm employs
a label-correcting algorithm [41], [42] to solve the SHIP3-L
problem in tractable time. Our novel payment function uses
the marginal cost principle to charge the users based on their
assigned paths.

5.1 Path Planning

The goal of the path planning function is to find the optimal
path for the service handoff. In our design, we aim to
explore different feasible paths from origin cloudlet o to
destination cloudlet d in order to find the optimal path.
Therefore, our algorithm keeps a history of explored paths
at each step. This can be done by maintaining a set of Pareto-
optimal labels at each BS n ∈ N , where each label shows the
information of one single explored path from o to n.

Each label z at node n is denoted by (Czn, T z
n ,P

z
n),

where Czn refers to the cost component, T z
n refers to the

duration of the time component, and P is the pointer
component of the service handoff from o to n by following
the induced path from label z. In particular, components Czn
and T z

n are respectively equal to the sum of the costs and
time weights of all existing links along the path induced
by label z, where the cost of each link l (denoted by cl)
is equal to the coefficient of xl in the objective of the
SHIP3-L problem in Eq. (13), and the coefficient of xl in
constraint (13d) shows the time weight of link l, denoted
by tl. For instance: Czn =

∑
l∈p̄ cl, where p̄ is a subpath of p

from o to n. The pointer P is denoted by (j, y), where j
refers to the previous BS in the induced path by label z,
and y refers to the label index at node j.

Each label owns a priority value, which is equal to the
cost component of the label. All labels are stored in min-
heap Q based on their priority values. At each iteration,
the label with the highest priority (i.e., minimum cost) is
extracted from Q and processed to explore new paths until
destination cloudlet d is reached.

The detailed description of our proposed path planning
algorithm, PPA, is given in Algorithm 1. PPA takes network
graph G, origin o and destination d cloudlets for the service
handoff m, the associated time constraint for the service
handoff (θm), the time valuation of user m (λm), and the
time valuation of the EM for all users as its inputs. PPA
includes these steps:

Step 1 (Initialization). A new label is created for origin
cloudlet o and inserted into the min-heap (lines 2-4). The
cost and time components of the label are set to zero, and
the pointer does not refer to any previous node. We use bn to
denote the number of labels at BS n that have been created
and stored. These values are initialized in lines 5-8.

Step 2 (Label selection). If the min-heap is empty, PPA
terminates. Otherwise, a label (Cyj , T

y
j ,P

y
j ) (e.g., z) with the

minimum cost is extracted from Q and passed to the next
step in order to be processed (lines 10-11).

Step 3 (Label processing). For each neighboring BS n of
current extracted BS j from label y, the added duration of
time for the service handoff using link l that connects BS j
to n is computed. In addition, the energy consumed by BS j
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Algorithm 1 PPA: Path Planning Algorithm for the handoff

1: Input: G = (N ,L), o, d, θm, λm, λei , ∀i ∈ I
2: /*Initialization*/

3: (C1
o , T 1

o ,P
1
o)← (0, 0, 0, ∅)

4: Q.INSERT(C1
o , T 1

o ,P
1
o) /*Q: min heap based on cost*/

5: for all j ∈ N \ o do

6: bj ← 0; /*bj : number of existing labels at node j*/

7: end for

8: bo ← 1;

9: /*Path Planning*/

10: while Q 6= ∅ do

11: (Cyj , T
y
j ,P

y
j )← Q.EXTRACT() /*Label Selection*/

12: for all n ∈ N , jn ∈ L do

13: if T y
j + tl ≤ θm ∧ el ≤ ε̄j then

14: /*l is the direct link connecting node j to n*/

15: flag ← 1

16: for z = 1 to bn do

17: if Cyj + cl ≥ Czn ∧ T
y
j + tl ≥ T z

n then

18: flag ← 0

19: end if

20: end for

21: if flag = 1 then

22: bn ← bn + 1

23: (Cbnn , T bn
n ,Pbn

n ) ← (Cyj + cl, T y
j +

tl, (j, y))

24: if n 6= d then

25: Q.INSERT(Cbnn , T bn
n ,Pbn

n )

26: end if

27: for all (Czn, T z
n ,P

z
n) ∈ Q do

28: if Czn ≥ Cbnn ∧ T z
n ≥ T bn

n

then

29: Q← Q \ (Czn, T z
n ,P

z
n);

30: end if

31: end for

32: end if

33: end if

34: end for

35: end while

36: p∗ ← BESTPATH(Cd, Td,Pd);

37: Output: p∗

for the service handoff through link l to BS n is computed.
This investigates whether the newly explored path does
not violate the time and energy constraints (lines 12-13).
If the duration of time for the service handoff using the
new path including link l exceeds the time preference of the
user, or the energy consumption goes beyond the specified
energy budget by BS j, then BS n is disregarded, and the
next neighboring BS will be examined. Otherwise, the new

obtained path is compared with the existing paths suggested
by other labels in BS n.

If there is an existing path with a lower cost and duration
of time, then the newly found path is discarded and the
next neighboring BS is explored (lines 16-20). Otherwise, a
new label is created at BS n, which includes the cost and
duration of time for the service handoff using the newly
explored path (lines 21-23). Hence, at each time a Pareto-
optimal set of paths are maintained in min-heap Q. If the
destination cloudlet at BS n has not reached yet (i.e., n 6= d),
the new label is added to Q to be later processed (lines 24-
26). Next, all other labels at BS n that are dominated by
the new label (with higher costs and duration of times) are
excluded from Q to expedite PPA’s running time (lines 27-
31). PPA then returns to Step 2.

Step 4 (Finding the best path). When PPA finishes
processing the entire labels inQ, the set of all Pareto-optimal
paths from o to d, satisfying the time and energy constraints,
are obtained at cloudlet (BS) d. Therefore, BESTPATH() pro-
cedure returns the best path p∗ among all existing labels at
BS d, which is the path with the lowest cost from o to d
(line 36). Path p∗ can be obtained by tracing the previous
pointers backward from d to o. PPA returns the optimal
path p∗ as its output.

PPA runs in polynomial time as it finds the shortest
paths, similar to other label correction approaches [43].

5.2 Payment Function
One of the challenges in using any path planning solution is
when users act strategically to receive better paths for their
service handoffs (to increase their utility through obtaining
better QoS). Therefore, they may decide to withhold some
information or send false information. Such actions nega-
tively impact the outcome of the system by changing other
users’ paths and eventually leading to congestion. Our goal
is to eliminate the need for users to consider either strategic
behavior or lying. Mechanism design allows implementing
a system equilibrium, such that reporting private informa-
tion truthfully is a (weakly) dominant strategy for users. The
design of a payment function as a part of OSHM incentivizes
the users to report their preferences truthfully out of their
own self-interest.

Given the optimized solution from Eq. (12), we now
propose a novel payment determination function using the
marginal cost principle. Assuming p∗ is the optimal path ob-
tained from PPA to perform the service handoff for user m,
this user’s payment is determined as follows:

πm = v−me − ve = −
∑
i∈I

λei τi +
∑
i∈I

λei τ
′
i + λemτm

=
∑
i∈I

λei (τ
′
i − τi) + λemτm, (14)

where v−me denotes the valuation of the EM when user m is
excluded, and ve denotes the valuation of the EM when the
service handoff for user m is performed through path p∗.
The payments of different classes of users are distinct based
on the EM’s priority preferences for a particular class. Also,
it is worth noting that the payment computations can be
performed anytime before, during, or even after the service
handoff. Hence, the payment calculations do not affect the
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required time for path planning. The payment function has
a polynomial time complexity of O(I) in the worst case,
where I is the number of users.

Our proposed payment function differs significantly
from the celebrated Vickrey-Clarke-Groves (VCG) pric-
ing [44]. In particular, the conventional VCG mechanism is
offline, whereas our proposed OSHM mechanism is online
and runs as soon as a new service handoff is required. We
further prove in Theorem 1 that our proposed mechanism
maintains the truthfulness property, despite the modifica-
tions.

5.3 Theoretical Properties
A main property of OSHM is that it implements truthful-
ness.
Theorem 1. The truthful declaration of route and travel time

is a weakly dominant strategy for users in OSHM.

Proof: The proof is by contradiction. We assume that
truth-telling is not a weakly dominant strategy for user m,
and therefore he can increase his utility by misreporting his
route and travel time information resulting in a different
time constraint θ′m. Clearly, no rational user is interested
in misreport his true information such that his true time
requirements are violated. Therefore, we have θ′m < θm. We
assume u′m denotes the achieved higher utility of the user
with time constraint θ′m, while um denotes the utility of user
with time constraint θm. Hence, we have:

u′m > um, (15)

while θ′m still satisfies the true time preference of the user,
i.e., τ ′m ≤ θm, where τ ′m is the duration of time for ser-
vice handoff experience by user m reporting θ′m. In other
words, the user can still experience a transparent service
handoff, while achieving a higher utility. However, accord-
ing to Eq. (10) as long as there is a feasible path for the
service handoff satisfying the true time constraint θm, we
have τm = τ ′m. This is because the objective aims to find
the shortest feasible path, and if it can satisfy θ′m, clearly
it will be able to satisfy θm as well. Hence , the obtained
optimal path p∗ does not change, no matter the user declares
the smaller value θ′m instead of θm. Therefore, the utility
of the user does not change as well. This is however in
contradiction with Eq. (15). Hence, reporting information
truthfully is always the optimal (weakly dominant) strategy
for users.

Another important property of OSHM is that it does not
suffer any loss or deficit. This property is called weakly
Budget Balance.
Theorem 2. User m’s payment πm is always non-negative,

and thus, the mechanism never pays a positive payment
to users.

Proof: In the payment determination Eq. (14), it is
clear that τm is always non-negative. Moreover, adding a
new service handoff transfer to the system may increase
the duration of time for previous service handoffs if their
assigned paths overlap with the one assigned to the new
service handoff. Therefore, we always have τ ′i ≥ τi,∀i ∈ I .
Note that τ ′i is the new experienced delay for existing user i.
Since λem and λei are also non-negative, we will have πm ≥ 0.

6 EVALUATION

We perform extensive experiments to evaluate the perfor-
mance of OSHM (both PPA and payment components). In
this section, we describe the experimental setup and analyze
the experimental results.

6.1 Experimental Setup

To ensure reproducibility of the results, we provide the
necessary information on the setup of the experiments.
The simulation area is a 1000 × 1000 m2 square covered
by 10 MBSs and 50 SBSs, deployed evenly in this area.
Each MBS covers a circular area with a radius of 450m [31].
Each SBS is positioned at the center of a circle area with a
radius of 75m [31]. The number of RBs is equal to 50 [36],
while each of them has a bandwidth of 180 kHz, leading
to the total bandwidth of 9 MHz for each link [36], [38].
Moreover, the transmission power of each MBS and SBS
is 1 Watt and 0.25 Watt, respectively. The noise power den-
sity is 10−13 Watt/Hz [36]. The energy coefficient for data
transfer is 3 [38]. As representative cloudlet workloads, we
use MAR, the augmented reality application, and OBJECT,
an object recognition application [4]. The transfer size for
VM handoff for the MAR and OBJECT applications are set
to 0.27 GB and 0.06 GB, respectively, according to [4]. We
consider four priority classes for the applications. The unit-
time valuation of the EM for the priority classes of 1 to 4 is
$2, $4, $8, and $16, respectively. Also, each user has a time
valuation of $1 to $4, depending on the type of service that
he uses.

To ensure our generated networks can reach congestion,
we consider the service handoff arrival events as a Pois-
son process with an arrival rate 7500/3600=2.08, meaning
that 7500 service handoffs (on 180 links) will happen per
hour in the system. We simulate a real-time environment for
a duration of one hour when users can join at any location.

6.2 Performance Benchmark

The classic mechanism design computes the allocation func-
tion and the payment function for all agents simultaneously,
which can become computationally intractable as the prob-
lem size becomes larger. Instead, our proposed mechanism
is online, and it computes these functions for each joining
user sequentially. In this sequential decision making, OSHM
computes the best path with a corresponding payment for
each service handoff in much lower time complexity.

Due to the dynamic system changes in which users with
service handoffs join and leave the system over time, we
cannot compare our solution with other similar works as
they do not consider dynamic changes when studying the
service handoff problem. Therefore, to evaluate the perfor-
mance of our proposed mechanism, we compare it with the
following online algorithms:

• Energy Path Selection (ES): The ES strategy finds a
path with the minimum consumed energy for each
service handoff.

• User Equilibrium (UE): To investigate the impact of
users’ selfish behavior on the system performance,
we devise the UE strategy that computes a path with
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Fig. 4: Performance evaluation on workload, service duration, and energy consumption under real-time monitoring.

the minimum service handoff time for each service
handoff.

• No Queuing Time (NQT): The impact of the new
handoff on existing service handoffs using the same
link can be reflected by the queuing time. For com-
parison, we develop the NQT strategy that computes
a path without considering the queuing time in the
objective function (13).

All the algorithms are implemented using Python 3.6,
and the experiments are conducted on 2.3GHz Intel Core i5
with 16GB of RAM.

6.3 Experimental Results
6.3.1 Performance evaluation on workload, service dura-
tion, and energy consumption.
Average workload per link. Fig. 4a illustrates the average num-
ber of service handoffs per link to evaluate the workload
distribution using different algorithms. The results show
that ES and UE obtain similar numbers of service handoffs
on average per link as time passes. This is because the
required energy of a service handoff over a link is directly
related to the service handoff duration. Moreover, they
cause congestion very quickly after 0.2 hour. The average
number of service handoffs per link increases over time in
NQT. Since the queuing time is not considered, the impact
of a new service handoff on other existing handoffs is not
considered, leading to an accumulated workload, negatively
impacting the system. On the other hand, our proposed PPA
maintains a stably lower number of handoffs per link over
time. It can efficiently allocate paths for service handoffs
to balance the workload over time, which is an important
property of PPA.

Service handoff duration. Fig. 4b shows the performance of
PPA compared to other algorithms in terms of the service
handoff duration as users join and leave over time. The
results show that PPA achieves a more efficient path allo-
cation for all service handoffs such that each experienced
service handoff duration is much lower (compared to other
algorithms) and balanced on average as more users join.
This is because PPA computes a service handoff path by
considering its impact on the existing users using (some part
of) the same path. Therefore, PPA mostly obtains similar
service handoff durations and does not lead to congestion.
Other algorithms obtain up to four times worse service
handoff durations for the users.

Energy usage. Energy consumption is another important
factor for the system. Fig. 4c shows the performance of the
algorithms in terms of energy consumption over time. The
results show that PPA achieves lower energy consumption
for transmitting service handoffs over time compared to
those of other benchmarks. This is because the experienced
service handoff durations of users by our proposed PPA
is much lower compared to other benchmarks, shown in
Fig. 4b. Note that even though ES assigns a path with the
minimum energy consumption to each service handoff of
users, it is not guaranteed that the overall energy consump-
tion will be the lowest as users join and leave over time.

In summary, our proposed PPA achieves better perfor-
mance compared to other benchmarks, reducing at least
61% on average workload distribution over the system, 33%
on average service handoff duration, and 29% on average
energy consumption, as the system’s state changes over
time.

6.3.2 Sensitivity analysis of the ratio of unassigned users
(RUU).
The number of users who cannot receive a feasible service
handoff path is an important factor that reflects the system’s
efficiency. We define the ratio of unassigned users (RUU) as
the value of the total number of unassigned users divided
by the total number of users.

The impact of the arrival rate of Poisson process is
analyzed in Fig. 5a. After the arrival rate reaches 1.67 (i.e.,
6000 service handoffs happen per hour), the number of users
who cannot be assigned a feasible path by using ES, UE, and
NQT starts increasing as the arrival rate increases, while
our PPA can always assign a feasible path to each user
in a real-time environment until the arrival rate reaches a
higher value of 2.5 (i.e., up to 9000 service handoffs happen
per hour). Thus, we conclude that PPA avoids congestion
significantly compared to other benchmarks.

The impact of bandwidth is shown in Fig. 5b. As band-
width for each link increases, the RUU can be improved.
Our proposed PPA quickly guarantees 100% assignment
for all users when the bandwidth for each link reaches 6
MHz, while NQT can ensure this metric until the band-
width reaches 11 MHz. Besides, ES and UE require much
more bandwidth. This is because PPA allocates the service
handoffs over all links in a balanced manner.

The impact of the size of VM/container for handoff
is studied in Fig. 5c. As the VM/container handoff size
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Fig. 6: Experimental analysis on valuations and payments.

increases, the duration of handoff grows. Therefore, the
number of handoffs that cannot be assigned a feasible path
increases leading to unsatisfactory system performance. The
results show that our proposed PPA outperforms other
algorithms in terms of the RUU as the handoff size increases.
This again supports the fact that our PPA balances the
workload among links over time.

In summary, our proposed PPA outperforms other al-
gorithms in terms of the ratio of unassigned users. More
specifically, PPA guarantees 100% path assignment for all
users under the regular arrival rate, bandwidth, and handoff
size, while other algorithms quickly cause higher RUU,
leading to poor QoS.

6.3.3 Experimental analysis of the deadline, valuation, and
payments.

We analyze the performance of OSHM mechanism in terms
of user experience based on the acquired service handoff
duration. In doing so, we compare the experienced ser-
vice handoff duration obtained by our mechanism with
the user’s reported deadline. For the ease of analysis, we
divide the reported deadline and the experienced dura-
tion by the minimum duration. Fig. 6a shows that the
experienced handoff duration by our PPA is closer to the
minimum handoff duration. The figure also shows that the
experienced handoff duration of each user never exceeds his
deadline.

Our proposed handoff mechanism, OSHM, uses mone-
tary payment to incentivize users to report their preferences

truthfully. We show the users’ payment (Eq. (14)), valuation
(Eq. (1)), and utility (Eq.( 2)) over time in Fig. 6b. The results
show that both the payments and valuations of users are
non-negative. This supports our Theorem 2.

Next, we analyze the impact of time valuation. Accord-
ing to the objective function (Eq. (13)), increasing the ratio
of time valuation of user m (λm) to the time valuation of the
EM (λei ) implies that the service handoff for user m is urgent
and requires a path with lower handoff duration. To analyze
this property, we show the handoff duration of users from
the same class type with different time valuations. In this
figure, the class of users with the lowest time valuation of $1
is selected. The time ratio is calculated as the ratio of the
experienced handoff duration by our PPA to the minimum
possible handoff duration. We then adjust the time valua-
tions of these users to $50 for the time interval between 0.2
hour and 0.6 hour, while keeping their time valuation $1 for
other times. Fig. 6c shows that increasing time valuations of
users will decrease the handoff duration (λm = 1 has the
highest ratio compared with other values). This is because a
higher user valuation indicates an urgent service handoff for
the user, and the system will compute the path to prioritize
minimizing his service handoff duration. On the other hand,
the users out of (0.2,0.6) time experience similar service
handoff duration as they have the same time valuation.
The minor changes are due to the impact of different path
planning results during (0.2,0.6).

The average runtime of UE and PPA is 0.016 seconds and
0.039 seconds, respectively. This is because our proposed
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PPA takes more time to compute a proper path for each
user to avoid congestion over time, while UE does not have
any strategy for this. However, the running time of our
mechanism is still very low, which shows its applicability
in real-world scenarios.

From all the above results, we conclude that our proposal
mechanism, OSHM, finds efficient paths for service hand-
offs online, while determining reasonable payments for the
services to guarantee the truthfulness and budget-balanced
properties.

7 CONCLUSION

Computation offloading in 5G MEC to achieve the desired
quality of service for mobile users and energy savings for
the edge infrastructures is a challenging problem. When
a user moves, it is critical to ensure service continuity.
In this paper, we proposed a novel online mechanism for
the service handoff in 5G MEC to address this challenge.
Our mechanism consists of a path planning algorithm and
a payment determination function to find a low-latency
and energy-aware path for each service handoff of users
and calculate their payments. We showed theoretically that
our proposed mechanism is truthful and weakly budget
balance. The experimental results show that the proposed
mechanism leads to system equilibrium, avoids congestion,
and balances load, making it suitable for MEC and 5G
technology. Our proposed mechanism is extendable to any
other problems where an efficient path planning within time
constraints is needed. In the future, we aim to perform
multi-service path planning, where each user application
may consist of multiple dependent services. We also aim
to employ machine learning approaches to predict the tra-
jectory of mobile users in the absence of the information
associated with the traveling route of mobile users.
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