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Abstract
Quick Response (QR) codes usage in e-commerce is on the rise due to their 
versatility and ability to connect offline and online content, taking over almost 
every aspect of a business from posters to payments. Thus, many efforts 
have aimed at improving the visual quality of QR codes to be easily included 
in publicity designs in billboards and magazines. The most successful 
approaches, however, are slow since optimization algorithms are required for 
the generation of each beautified QR code, hindering its online customization. 
The aim of this paper is the fast generation of visually pleasant and robust QR 
codes. The proposed framework leverages state-of-the-art deep-learning 
algorithms to embed a color image into a baseline QR code in seconds while 
keeping a maximum probability of error during the decoding procedure. 
Halftoning techniques that exploit the human visual system (HVS) are used 
to smooth the embedding of the QR code structure in the final QR code 
image while reinforcing the decoding robustness. Compared to optimization-
based methods, our framework provides similar qualitative results but is 3 
orders of magnitude faster.

Keywords QR codes · Machine learning · Optimization-free

1 Introduction

Quick Response (QR) codes are extensively used in e-commerce and publicity campaigns, 
engaging new customers by offering discounts, and measuring the impact of the campaign
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[1]. QR codes are decodable by any smartphone, and thus, constitute a powerful tool for
mobile commerce applications, providing a link between offline and online marketing [25].
The black and white structure of standard QR codes, however, hinders their insertion into
artistic designs. Furthermore, traditional QR codes do not provide any visual information
about the encoded message. Currently, due to the pandemic crisis, the use of QR codes is
on the rise since businesses are looking for ways to offer customers a touch-free experience
[18, 25]. For all these reasons, a fast method for the generation of visually enhanced QR
codes has emerged as an attractive tool for both big and small businesses.

There are several works related to improving the visual appearance of QR codes without
losing decoding robustness. Initial approaches rely on the error correction capacity of QR
codes, replacing some modules of the QR code with the desired image [22]; however, to
retain the decodability of the code, the ratio between image and code area should be approx-
imately proportional to the error correction capacity of the QR code [22]. Cox et al. [7]
proposed a method that exploits the characteristics of the encoding procedure of QR codes
to modify the padding modules within the QR code without affecting their decoding robust-
ness by utilizing a Gauss-Jordan elimination procedure. Their approach takes advantage of
the padding bits within the QR code bit-stream to include an image or logo, which restricts
the area available for the image.

Other approaches take advantage of the decoding process of standard QR codes and mod-
ify the QR codes based on the desired luminance or color matching [3, 8, 26]. In [26], the
image luminance corresponding to the central pixels of each QR code module is modified,
preserving the contrast between the encoding image and the blended image but creating
undesirable artifacts. In [3], the authors rely on image blending to alter the appearance of the
code, modifying the luminance of the pixels based on the average luminance, blended QR
code, and two threshold parameters that control the robustness and visual quality trade-off.
Chu et al. [6], inspired by halftoning techniques, proposed a method that generates halftone
QR code images. This is achieved by subdividing each QR code module in 3 × 3 pixels
and keeping the center pixel to be equal to the QR code module while the rest of the pixels
are chosen to minimize not only the visual quality but also the probability of error that is
estimated experimentally using synthetic data. The computational complexity of this data-
driven approach grows with changes in the resolution of the image. Garateguy et al. [8], on
the other hand, modified the luminance of central and non-central pixels to embed a color
image into the whole area of the QR code. In this method, a halftone mask [15, 16, 20]
is used to distribute the modified non-central pixels, and a probabilistic model is proposed
to predict the distortion generated by the embedding image. The concentration of modified
pixels and their luminance were optimized to minimize a visual distortion metric subject to
a constraint in the maximum probability of error.

Most recent approaches, not only take advantage of the decoding process but also the
encoding process of the QR codes to further improve their visual quality [17, 31, 32]. In
[17], a two-stage QR code generation method is proposed. In the first stage based on the
work proposed by Cox et al. [7], a binary baseline QR code that is more similar to the
color image but robust under traditional binarization methods is generated. In the second
stage, the brightness of the image is modified based on the binary baseline QR code and
the pixel-based thresholded color image. Even though significant improvement is achieved
on the visual quality, the robustness of these codes is inferior compared to other approaches
[30]. Using a very similar framework, Zang et al. [32] proposed the combination of a
module-based blending that generates the binary baseline QR code followed by a pixel-
based blending that generates the color QR code. Even though this method is fast, it lacks an
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error correction mechanism to ensure decodability. Xu et al. [31] introduced a style-transfer-
based method to generate Stylized Aesthetic QR codes. Although this is a learning-based
method, a feed-forward network needs to be trained for each specific target style [12] and
the final Stylized Aesthetic QR code is the output of a robustness-optimization algorithm
that iteratively checks and repairs each module’s robustness.

Although some of the previous methods successfully embed a color image into a QR code
while keeping a low probability of error, these methods are either slow due to their reliance
on optimization procedures or fast but without decoding robustness guarantees. In [8] for
instance, the embedding of QR code images is formulated as an optimization problem that
minimizes the visual distortion of the color image subject to a constraint in the probabil-
ity of error. Even though QR code images generated by this method are visually pleasant
and robust during decoding, its computational complexity prohibits its commercial appli-
cations. In this work, this problem is addressed by leveraging the power of deep learning,
designing, and training a convolutional neural network (CNN) that embeds the color image
into a black-and-white QR code. While the training of the CNN architecture is resource and
time demanding, the training only happens once. After training, the embedding is simple
and fast.

As shown in Fig. 1, the proposed framework consists of two stages. In the first stage,
a binary baseline QR code Qb that is more similar to the embedding image is generated,
taking advantage of the method proposed by Cox et al. [7]. Different from other approaches,
the local binarization process performed by popular decoders is taken into consideration,
further improving on the decoding robustness as it is shown in our experiments. The second
stage corresponding to the image embedding, traditionally based on optimization algorithms
[8], is substituted by a CNN architecture, dubbed as QRnet, as depicted in Fig. 1. After
experimenting with many network architectures, QRnet resulted in being the best suited for

Fig. 1 Two-stage framework for fast QR code image generation (blocks in blue-dashed lines). The 1st stage
aims at generating the binary adapted QR code Qb . The 2nd stage embeds the color image I into Qb . Tradi-
tionally, the 2nd stage is performed by optimization-based methods (top red-dashed block), which are slow.
Instead, we use the proposed QRnet (bottom blue-dashed block), significantly speeding up the process
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this application. This architecture is composed of two identical branches, each inspired by
U-net with dense layers for feature reuse, blending the image at multiple scales and still
preserving the resolution of the embedded image [10, 14, 21]. To the best of our knowledge,
it is the first time that a CNN architecture is used for end-to-end embedding of an image
into a QR code, significantly speeding up the process.

The contribution of this manuscript is thus three-fold. First, a CNN architecture is pro-
posed and successfully used to perform the embedding of an image into a QR code. Second,
the selection of the QR code modules to be modified considers not only the contrast but
also the saliency map and the edges; simultaneously reducing the visual contrast and giv-
ing priority to the region of interest in the image. Third, each element within the framework
is carefully designed to consider the local binarization process performed by the decoder,
generating codes that are more robust when compared to the prior art.

The remainder of this paper is organized as follows. Section 2 presents the multi-scale
optimization-based QR code embedding procedure, adapted from [8], and used for the gen-
eration of the training data; together with the description of the proposed CNN architecture
corresponding to the second stage of the framework. Section 3 introduces the first stage
of the proposed framework, devoted to generating a binary adapted QR code. Section 4
presents the evaluation and comparison of the results. Section 5 introduce the conclusions.

2 QR code image embedding

In this section, we first introduce the optimization-based method for QR code image embed-
ding used for the generation of a baseline dataset, followed by the description of the
proposed network architecture for the fast learning-based and optimization-free QR code
image embedding.

2.1 Multi-scale optimized QR code image embedding (MS-Opt)

For the generation of the dataset, we used a modified version of the method proposed by
Garateguy et al. [8] in which the luminance of the input color image I is modified to embed
the QR code information, taking advantage of the decoding procedure of standard QR codes
(see Appendix B) to achieve a trade-off between the visual quality and the decoding robust-
ness of the QR code. This section focuses on the proposed modifications to the embedding
algorithm, a more detailed explanation can be found in [8].

For the embedding, given the fact that during decoding only the central pixel of each
module within the QR code is sampled, central pixels in each module are selected for lumi-
nance modification by the maskM, and their luminance parameters αc, βc are optimized to
encode the QR code information. Non-central pixels could be sampled due to errors during
the sampling grid estimation; hence, a halftone mask H with concentration parameter pc is
used to select non-central pixels for modification with luminance parameters α,β. The use
of the halftone mask to select non-central pixels improves the decoding robustness as well
as reduces the coarse square structure of the QR code. Pixels that are not selected for mod-
ification preserve the luminance of the input image I [8]. As shown in Fig. 2, the inputs to
the multi-scale optimization are the original color image I, the QR code Qb, the mask for
the maximum probability of error Pmax, and the masksM and H for the selection of central
and non-central pixels, respectively. As in [8], the concentration of modified pixels pc and
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Fig. 2 Optimization-based QR code embedding procedure. The inputs are the original color image I, the
standard QR code Q, the maximum probability of error Pmax, and the masks M and H for the selection of
central and non-central pixels, respectively. All the input images are subdivided in local windows of size
5w × 5w centered at each QR code module of size w × w to be optimized independently. The concentration
of modified pixels and their luminance are finally combined to generate the final embedding Iout

the luminance parameters α, β,αc,βc are locally optimized to achieve a trade-off between
visual quality and decoding robustness.

To estimate the probability of decoding error, we use a normalized version of the proba-
bility of error model proposed in [8] (explained in Appendix C) in which two independent
probability models are developed and combined based on the sampling accuracy of the cen-
tral pixels of the QR code modules. In this paper, for the local optimization, we propose the
use of a module-based overlapping window, motivated by the thresholding method utilized
by the popular ZXing library [19] (explained in Appendix B). In this way, the result is more
robust against the difference between the size of the image at the generation stage and the
size of the image at the scanning stage of the QR code. To this end, given a QR code with
q × q modules, the (m, n)−th module of size w × w is optimized independently using an
overlapping window of 5× 5 modules centered at the (m, n)−th module in the QR code. A
total of q2 independent local optimizations are then required. The formulation of the local
optimization problem for each overlapping window consists of minimizing a visual quality
metric subject to a constraint over the corresponding probability of error as

argmin
α,β,αc,βc,pc

Jm,n(α, β, αc, βc, pc)

subject to Perrm,n < Pmaxm,n , (1)

where Perrm,n is the probability of error of the (m, n)-th module; Pmaxm,n is a parameter
selected by the user, which determines the maximum probability of error of each module;
and Jm,n(α, β, αc, βc, pc) is the distortion quality metric defined in [8] computed on the
(m, n)−th overlapping window. Since the optimization process is performed independently
for each window, it can be parallelized and a different bound in the probability of error
Pmaxm,n can be given to each module. For instance, a higher bound in the probability of error
can be given to those modules that are modified during the first stage.

Finally, since color differences are measured in the HSL color space which is a per-
ceptually uniform color space [8], to obtain the optimal RGB values of a modified pixel
given the target luminance Y , the input image I is first transformed to the HSL color
space (H, S, L) = T (R,G,B). Then, the H and S components are kept fixed and the L

component is changed depending on the luminance Y . An optimization problem is formu-
lated in [8] to find the value of L, which is computationally expensive due to the required
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number of evaluations of the objective function. We, on the other hand, determine L from
the piecewise, linear, and monotone function Y = f (L) as follows

L∗ =

⎧
⎪⎨

⎪⎩

Y
2 Y0.5

if L ≤ 0.5,

Y − 2 Y0.5 + 1
2−2 Y0.5

if L > 0.5,
(2)

where Y0.5 is the luminance value when L = 0.5, i.e. for (R,G,B) = T −1(H, S, 0.5), and
Y = 0.2989R + 0.5870G + 0.114B.

2.2 Fast deep learning-based QR code image embedding

Even though the optimization-based method presented in Section 2.1 successfully embeds
the QR code into the color image with a constraint in the maximum probability of error,
this is slow and computationally expensive. Inspired by the developments in learning-based
image operators [4], we propose a learning-based QR code image embedding operation by
means of a convolutional neural network architecture (CNN). Different architectures have
been explored to learn an image operator f that takes a color image I as input and transforms
its content without changing its dimensions [4] e.g. image processing operators like multiple
variational models, non-local dehazing, photographic style transfer, and non-photo-realistic
stylization. In our case, we aim at learning an operator that transforms multiple input images
to the desired output image Iout ; all with the same size. Additionally, the network should
adjust to different image resolutions, generating as output an RGB image of the same size
as the inputs.

A naive approach would be to concatenate all input images and use a fully-convolutional
network proposed either for fast image processing [4] or for pixel-wise classification [21]
with regression loss to produce continuous colors. After experimenting with many already
proposed network architectures, we designed the proposed architecture QRnet, shown in
Fig. 3, achieving the best performance at embedding an image into a QR code. In the
optimization-based QR code embedding approach (Section 2.1), color differences are mea-
sured in the HSL color space which is a perceptually uniform color space [8]. Thus, the QR
code is embedded directly into the lightness (L) of the image, while the hue (H ) and the
saturation (S) are kept the same. Taking this into account, QRnet has a siamese architecture
in which the baseline QR code Qb and the lightness of the color image L, each concate-
nated with the masks Pmax, M, and H, are fed to identical branches, as depicted in Fig. 3,
blending the features from the different images at different scales to generate the lightness
of the embedded image Lout . Siamese architectures have been previously used in stenogra-
phy and image recognition settings [14, 29]. Each network branch is inspired on U-net for
multi-scale analysis [21]. Even though U-net was initially proposed for segmentation, it has
been used successfully in other applications [11, 23]. In this case, the U-net shape loosens
the image structure by extracting its main features yet reconstructing the embedded image
by using not only these features but reusing each multilevel feature mapping such that the
embedding is achieved but the quality and main structure of the image is preserved. Addi-
tionally, dense blocks for feature reuse [10] are included at each level. Each dense block
is composed of dense layers in which new extracted features are not combined but stacked
onto the next layers instead. The image information from all different scales is then car-
ried out through the whole network, exploiting the high correlation between the inputs and
the output. The output is finally obtained by the blending of the multi-scale reconstructed
outputs of each branch.

Accepted Manuscript 
Version of record at: https://doi.org/10.1007/s11042-022-12357-6



Fig. 3 Siamese CNN Architecture for QR code image embedding conformed of two identical branches (top).
The architecture of each branch (bottom) is based on U-Net [21] and dense blocks for feature reuse [10]
(bottom left). The inputs for the first branch are the QR code Q and the masks Pmax , M, and H, and for the
second branch are the lightness of the color image L and the masks Pmax, M, and H. nl

f is the number of
features maps in layer l

To introduce the network, let the QRnet be denoted by E() and K be the set of param-
eters across the whole network. Then EK() is trained on a set of inputs-output pairs D =
{Ii , f (Ii )} where (Lout )i = f (Ii ) and Ii = {Li ,Mi ,Hi ,Qi ,Pmaxi} correspond to the
i-th element in the dataset. To map the inputs I to the desired output Lout , the network
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parameters K are optimized, by minimizing the following regression loss across all the
images in the dataset:

E∗
K = argmin

EK

1

N
‖Lout − EK(L,Q,M,H,Pmax)‖22 (3)

where N is the number of pixels in each of the input images. In the RGB color space,
the MSE is known to have a limited correlation with perceptual image fidelity. The HSL
color space, on the other hand, is a more perceptually uniform color space i.e. euclidean
metrics represent perceptual differences. In our experiments, other loss functions such as
the generative loss led to poor performance.

The optimization-based method for image embedding introduced in Section 2.1 was used
for the generation of the inputs-output dataset D. The color images were selected at ran-
dom from the DIV2K dataset [2] that contains 2K resolution high-quality images. These
images were randomly resized to train the network at different resolutions; hence the reso-
lution of the images in our data set range from 256 × 256 to 2000 × 2000 pixels. For the
standard QR codes Q, versions 3, 4, and 5 with random alphanumeric messages were con-
sidered. The maximum probability of error mask Pmax was designed to be constant with
value Pmax within the QR code and zero on the finder patterns. The constant value Pmax was
randomly varied from 0.01 to 1. With respect to the maskM selecting the central pixels, the
ratio R = da/w was randomly varied from 0 to 1. The final data set contains |D| = 830
samples for training and 300 for validation. Additionally, data augmentation was applied to
the dataset, further increasing the diversity of the samples. To this end, each image in the
dataset was randomly cropped to 256 × 256 and randomly flipped horizontally [11]. The
proposed architecture EK() was then trained by minimizing (3) with the Adam optimizer
[13]. A learning rate of 0.001 and betas equal to (0,0.999) were used. The stopping criterion
was based on the stabilization of the value of the loss function on the training set and the
validation set. The total training time was 2 days. The batch size was set to 4. The network
was trained using TensorFlow 2.1 and an NVIDIA GeForce GTX 1080 Ti graphic card.

3 Binary QR code adaptation

In this section, a detailed explanation of the first stage of the proposed framework is
included. The first stage exploits the QR code’s encoding characteristics (explained in
Appendix A) to improve the visual quality of the final QR image. To this end, Cox et al. in
[7] showed that a standard QR code Q can be modified without affecting its decoding rate
by utilizing a Gauss-Jordan elimination procedure. Given that the padding bits of the origi-
nal bitstream, so, in the standard QR code,Q, do not carry relevant information, they can be
modified without altering the message; however, if any padding bit is modified then the error
correction bits should be updated accordingly. Otherwise, the error correction algorithm
would fail and, consequently, the decoding would be unsuccessful. The padding bits can be
modified and the error correction bits updated through the exclusive-or operation (XOR).
Recently, Xu et al. [31] proposed a method to schedule the changeable modules based on the
minimization of the contrast between the blended image I and the QR code black-and-white
modules. Although this strategy improves the visual performance, it can generate noise pat-
terns on important parts of the image as shown in Fig. 4. For this reason in this paper,
changeable modules are scheduled by considering not only the minimization of the contrast
but also prioritizing the edges and the saliency region within the image. Hence, modules in
the QR codeQ that correspond to pixels in I with highest contrast (darkest/lightest) and that
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Fig. 4 Binary standard aesthetic QR code generated to reduced only contrast as proposed in [31] (left) and
binary baseline QR code Qb generated using the proposed binary QR code adaptation method (right). QRnet
with equal parameters (Pmax = 0.3 and R = 0.5) was used in both cases for QR code image embedding

belong to either an edge or the saliency region are schedule for modification. The image
priority mask,MI, is then computed asMI = λSS+λEE+λCC where S is a saliency map
computed using a pyramid feature attention network [33], E identifies with ‘1’ the edges of
I using a Canny edge detector, and C is the contrast attention mask [31]. The values of λS ,
λE , and λC are equal in our experiments. A general scheme of this process is depicted in
Fig. 5. The per-module weight M̄I is computed from the priority maskMI as

(M̄I)m,n = 1
w×w

∑
i,j∈Bm,n

(MI)i,j where Bm,n represents the (m, n)-th QR code module
of size w × w. Modules with higher weight, which are considered to be more important
within the image, are then schedule for modification.

Traditionally, the target QR code, Qt , is obtained from the color image I through a
module-based binarization method as proposed in [30, 31]. This binarization method, how-
ever, does not account for the local thresholding procedure performed by popularly used
standard QR code decoders as it is in the case of the ZXing [19] library, causing the decoding
to fail under unexpected circumstances. As it can be observed in Fig. 6(a), the module-
based binarization (top) and the local binarization (bottom) outcome can be quite different

Fig. 5 First stage corresponding to binary QR code adaptation. The inputs are the original color image I and
the traditional black and white QR code Q and the output is the binary adapted QR code Qb
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Fig. 6 Comparison with the binary QR code adaptation proposed in [30] (top) and the proposed method
(bottom). Each column represents a step in the QR code generation and detection process: (a) Īg obtained
after binarization. (b) Binary baseline QR code Qb . (c) Iout obtained as output of QRnet. (d) Iout captured
and rectified using a ZXing-library-based decoder [19]. (e) Miss-classified modules in captured Iout colored
in yellow. QRnet with equal parameters (Pmax = 0.3 and R = 0.5) was used in both cases for the QR code
image embedding

on even regions of the image. While the decoding robustness is not notoriously affected
on black and white QR codes (Fig. 6(b)), this effect can detriment the decoding robustness
when an image is embedded into a QR code (Fig. 6(c)). In this paper, a per-module local
binarization method that is more robust against this problem is proposed. To this end, we
first compute a local threshold for each module Bm,n as the mean value of the image inten-
sity Ig in an overlapping window Wm,n of 5 × 5 modules centered at the (m, n)-th module
in the QR code: tm,n = 1

5w×5w

∑
(i,j)∈Wm,n

(Ig)i,j , where (Ig)i,j is the luminance value of
the (i, j)-th pixel. Each pixel in the image Ig is then binarized based on the correspond-
ing local threshold tm,n to generate Ib. Next, a per-module grayscale value is obtained as:
(Īg)m,n = ∑

i,j∈Bm,n
(Ib)i,j (GW)i,j , whereGW is a scaled Gaussian distribution. The target

QR code image Qt is determined from the per-module grayscale image Īg as:

(Īb)m,n =
{
1 if (Īg)m,n ≥ 0.5,
0 if (Īg)m,n < 0.5.

(4)

It can be clearly observed in Fig. 6(e)(bottom) that the proposed binarization method
decreases the errors when compared to traditional binarization in Fig. 6(e)(top).

4 Experiments and results

In this section, we present a set of experiments that not only compares the speed, visual
quality, and decoding robustness of the proposed framework with the baseline method but
also with the state-of-the-art.

4.1 Comparison of QRnet with respect the baseline

A series of experiments to compare the proposed QRnet architecture to the baseline method
that is the optimization-based method introduced in Section 2.1 are described next.
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4.1.1 Using different CNN architectures

As mentioned before, a naive approach to embedding an image into a QR code would be
to concatenate all input images and use a fully-convolutional network proposed either for
fast image processing [4] or for pixel-wise classification as in [21] with regression loss
to produce continuous colors. In Fig. 7, we visually compared the QR image generated
by the optimization-based method introduced in Section 2.1 with the embedding gener-
ated by QRnet-Pix2pix, QRnet-CAN24, and QRnet-Siamese. For QRnet-Pix2pix, we used
the publicly available TensorFlow implementation of Pix2Pix which encoder architecture is
based on U-net [11, 21]. The second architecture is based on a multi-scale context aggre-
gation network (CAN) proposed for fast image processing [4] with parameters d = 9 and
w = 24. More details about this method can be found in [4]. For these two architectures,
all input images (I, Q, Pmax, M, and H) were concatenated and fed to the network to gen-
erate the color QR embedding Iout . QRnet-Siamese is described in detail in Section 2.2 of
this manuscript. A regression loss was used in all the cases since it always provided better
performance in our experiments. The same data and training criteria were used for the three
architectures. As it can be observed in Fig. 7, QRnet-Siamese better preserves the colors
and details of the original image as well as the halftone mask. Further experiments were
only considered for QRnet-Siamese since it provided the best image fidelity.

4.1.2 Speed

In Table 1, the run-time of the proposed method is compared with the run-time of the
optimization-based method introduced in Section 2.1. The first stage, which can be incorpo-
rated into both methods, takes less than 2 seconds in our experiments. Regarding the second
stage, the optimization-based method was implemented in MATLAB taking advantage of
MATLAB’s parallel processing. As observed in Table 1, even though the time increases with
the image resolution, the proposed learning-based framework running either on the CPU
or the GPU is still much faster. The experiment was conducted on an i7-8700 CPU with 6
Core(s) and an NVIDIA GTX 1080 Ti GPU.

4.1.3 Parameter variation

Two parameters, Pmax and R, are left to be controlled by the user. As it can be seen in Fig. 8,
a small value of Pmax chooses more robustness over visual quality and vice-versa. Bigger
values of R lead to a larger center region in each module, improving on robustness but

Fig. 7 QRnet using different CNN architectures. The baseline QR code Qb is generated using the binary QR
code adaptation method proposed in Section 3 of the manuscript. Parameters Pmax = 0.25 and R = 0.25
were used for all the cases
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Table 1 Image embedding speed for the proposed fast deep learning-based QR codes vs the optimization-
based QR codes for varying image resolutions

Image size Optimization-based QRnet

MATLAB - CPU CPU GPU

256 × 256 1.69 × 103 s 0.41 s 0.14 s

512 × 512 5.29 × 103 s 0.95 s 0.16 s

1024 × 1024 1.70 × 104 s 3.6 s 0.21 s

Our method provides results with similar robustness and visual quality but it is orders of magnitude faster

increasing the presence of the structure of traditional QR codes. A good trade-off between
these two parameter allows users to adapt the QR Image to more or less challenging scan-
ning circumstances. The fast generation of QR Images allows users to tune these parameters
in almost real-time.

4.1.4 Visual quality

In Table 2, the proposed fast learning-based embedding method is compared to the
optimization-based method explained in Section 2.1. The peak signal to noise ratio (PSNR),
the multiscale structural similarity index (MSSIM) [28], and J (the visual distortion metric
introduced in [8]) are used for image quality assessment on a testing set of 60 QR images
with varying robustness parameter Pmax. It can be observed that the visual quality met-
rics are very similar for both methods, being slightly better for QR images generated by
the proposed QRnet. Figure 9 includes a visual comparison of some of the images used
in this experiment. In Fig. 9, QRnet high-resolution images are also compared to their
low-resolution counterparts, demonstrating the adaptability of the framework to different
image sizes.

4.1.5 Decoding robustness

The robustness of the QR images generated by the proposed framework and the optimization-
based method was evaluated experimentally. The experiment consisted on manually scan-
ning QR Images with varying robustness parameter Pmax. Each printed QR image of size
3.15 in × 3.15 in was scanned 5 times and the scan was considered successful if the

Fig. 8 Visual comparison for the variation of parameters R and Pmax in QRnet. (a) and (b) have a fixed value
of Pmax = 0.10 and Pmax = 0.25, respectively, and a parameter R = 0.25. (c) and (d) have a fixed value of
Pmax = 0.10 and Pmax = 0.25, respectively, and a parameter R = 0.5
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Table 2 Average visual quality
comparison of QR images
generated by QRnet and the
optimization-based algorithm

Method PSNR MSSIM J

QRnet 10.6978 0.5498 0.3434

Optimization-based 10.2839 0.5241 0.3523

decoder returned the message within 5 seconds. A total of 54 QR images from the testing
set were used in this experiment. As depicted in Fig. 10, the decodability rate decreases as
the robustness parameter Pmax decreases. Additionally, the robustness of the QRnet images
are comparable to the QR Images generated by the optimization-based method explained in
Section 2.1.

4.2 Comparison with state-of-the-art

In this section, we compare the visual quality, speed, and robustness of the proposed frame-
work with the recent method proposed in [30]. To this end, from a set of 11 color images,

Fig. 9 The first row represents the ground truth i.e. QR Images generated using the optimization-based
method introduced in Section 2.1 of the manuscript. The second row shows the equivalent QR Image obtained
by QRnet. The third row includes high resolution images (∼1K) obtained by QRnet. The baseline QR code
Qb is generated using the binary QR code adaptation method proposed in Section 3 of the manuscript.
Parameters Pmax = 0.25 and R = 0.25 were used for all the cases
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Fig. 10 Decodability rate vs scanning distance for QR images generated by (a) QRnet and (b) the
optimization-based method explained in Section 2.1, using different robustness parameters Pmax =
{0.05, 0.10, 0.15, 0.20, 0.25, 0.30}

we generated different QR images of size 518× 518 using both methods (QRnet and ART-
UP [30]). We tuned the robustness parameters of each method to have similar visual quality
and robustness performance. In Table 3, the PSNR, MSSIM, J, SSIM [27], and NCC [5]
were used to measure the visual quality of the QR Images generated by each method with
respect to the original color image. Additionally, the images generated by both methods are
visually compared side-by-side in Fig. 11(a)-(b). To measure the decoding robustness, we
printed each QR image with size 3 in × 3 in and manually scanned them 5 times each. Then,
we measure the bit error rate (BER) for each scanned QR Image. The average BER for each
method is reported in Table 3. With respect to the speed, the run-time of the first stage is
very similar for both methods, being less than 2 seconds. For the second stage, as shown
in Table 3, QRnet is significantly faster than ART-UP [30]. All the experiments were con-
ducted on an i7-8700 CPU with 6 Core(s) and an NVIDIA GTX 1080 Ti GPU. Even though
the method proposed by Zang et al. [32] is very fast, it is not included here for compari-
son since it lacks of decodability guarantees. These experiments validate that the proposed
approach is not only faster but slightly more robust than prior art when similar visual quality
metrics are achieved.

Moreover, to show the versatility of our method at generating stylized QR codes as in
[31], we used the online tool GoArt [9] to stylize the input image and fed this image into
our framework. The output is shown in Fig. 11(c). In order to compare our result with pre-
viously proposed stylized aesthetic QR code, we implemented a slightly modified version
of the method proposed in [31]. The only difference introduced in our implementation is in
the style transfer technique used for stylizing the baseline aesthetic QR code in which we
used the online tool GoArt [9] instead of the neural network architecture used in [31]. Addi-
tionally for the sake of comparison, we used here the same image used in the experiments
in [31]. It can be observed in Fig. 11(d) as well as in the results in [31], that some stroke
artifacts can be produced in the style transfer output when the baseline aesthetic QR code

Table 3 Average visual quality, run-time, and bit error rate (BER) comparison of QR images generated by
QRnet and ART-UP [30]

Method PSNR MSSIM J SSIM NCC Time(s) BER(%)

QRnet 12.4161 0.6309 0.2623 0.5565 0.9006 0.2113 1.0282

ART-UP [30] 11.3732 0.5536 0.2662 0.5491 0.9446 372.9558 1.1674
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Fig. 11 Comparison of different methods for QR code visual quality enhancement. QR image generated by
(a) QRnet, (b) ART-UP [30], (c) GoArt+QRnet, and (d) modified implementation of Stylized Aesthetic QR
code [31]

is used as input. These strokes are not generated when the image is first stylized and then
feed to the QR code embedding framework as shown in Fig. 11(c). On the other hand, it is
worth mentioning that both methods [30, 31] rely on iterative algorithms.

5 Conclusion

In this paper, novel deep learning techniques are leveraged to significantly reduce the time
in the generation of visually pleasant QR codes with robustness guarantees. The proposed
method is four orders of magnitude faster than the optimization-based method introduced in
Section 2.1. The first stage in the proposed framework modifies the binary QR code without
affecting the decoding rate and the second stage instantly embeds a QR code into a color
image, being decodable by QR code standard applications. The proposed local binarization
for the generation of the adapted binary QR code further improves the robustness of the
QR images. The method proposed was tested and compared with the baseline method intro-
duced in Section 2.1 and with the state of the art. The decoding robustness and the visual
quality of the generated embedded images were verified. The proposed adaptive window
for per-module QR code optimization reinforces the decoding robustness of the QR code,
taking into account more real scanning conditions. Furthermore, using the analytical rela-
tionship between the luminance Y and the component L from the HSL color space in the
color optimization considerably reduces the computational cost for the generation of the
data. As part of our future work, we will evaluate the robustness of the proposed QR code
images under different types of attacks such as the compressive sensing attack.

Appendix A: Encoding procedure

QR codes have a well-defined structure for correcting geometric transformations and
achieving quick machine detection and decoding. Some encoders analyze the input message
to find the most suitable encoding mode (numeric, alphanumeric, byte or Kanji), version
and, error correction capability, while in others, these are chosen by the user. Although the
method used to convert the input text into bits varies according to the encoding mode, a
general procedure is followed to complete the bit stream so. That is, the encoded message
is always located in the first m-bits of the bit stream which is padded with zeros to be later
broken up into 8-bit codewords.
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Due to QR codes structure, the QR code standard requires to add specific padding bits
p after the message to completely fill the total capacity of the QR code. Finally, u error
correction bits are generated for the message m and padding bits p, generating an n-bits
Reed Solomon (RS) code. This bit stream is distributed through the QR code, starting from
the bottom right as it is shown in Fig. 12.

Appendix B: Decoding procedure

As illustrated in Fig. 13, after an image of a QR code is captured by the decoder, it is
binarized to a black and white image. The QR code standard [24] does not define a specific
binarization method, thus, there is not an unique manner to perform this step. However,
many widely used QR code decoders apply local thresholding strategies to overcome the
effects of uneven lighting conditions. For instance, the widely used open source ZXing [19]
library for QR code generation and reading computes local thresholds for non-overlapping
blocks Bm,n as the mean value of the image intensity in a local windowW as

tm,n = 1

N

∑

(i,j)∈W
Yi,j , (5)

where Yi,j is the image luminance value at a pixel location (i, j), tm,n is the local threshold
for the block Bm,n, and N is the number of pixels in the local window W with size of
Wa × Wa pixels. This binarization method has been used before to design a probability of
error model on beautified QR codes [8, 30] and to evaluate their robustness [31].

The decoder then searches for the finder patterns and the alignment pattern regions,
which possess a black-white-black-white-black pattern with a ratio of 1:1:3:1:1, and black-
white-black pattern with ratio 1:1:1, respectively. Based on the three finder patterns and the
closest-to-corner alignment pattern, a perspective transform is performed to compensate for
geometric distortions from the scanning process. Once the detected barcode region is con-
verted into a square region, a sampling grid is estimated, using as reference the detected
coordinates of the finder and alignment pattern, as well as, the timing patterns. As shown
in Fig. 13, the grid samples the central pixel from each binarized module and demodulate
these data as ‘1’ or ‘0’ for white and black, respectively. After the error correction algorithm
is applied, the message is extracted from the QR code.

Appendix C: Probability of error models

The luminance modification in the original binary structure of the QR code distorts the
binarization threshold, increasing the probability of error during the decoding process. To

Fig. 12 QR Code Encoding. Each part of the bit stream is shown and highlighted into the QR code

Accepted Manuscript 
Version of record at: https://doi.org/10.1007/s11042-022-12357-6



Fig. 13 QR Code Decoding Process. Luminance Y from the scanned image is first determined and then
binarize for the detection of the QR code using the finder patterns. Next, only the center of each module is
sample to decode the message

consider this error, a normalized version of the probability of error model proposed in [8]
is used. In this model, two independent probability models are developed based on the
sampling accuracy of the central pixels of the QR code modules. Then, these two models
are combined through a probability of sampling error model.

C.1 Probability of binarization error model

This first model considers the probability that any given pixel inside a QR code module is
binarized in the wrong direction during the decoding procedure. Then, the probability of
error at the detected binary pixel (i,j) is given by

PBerr = P(Q̂i,j = 1|Qi,j = 0)p0

+P(Q̂i,j = 0|Qi,j = 1)p1, (6)

where p0 = P(Qi,j = 0) and p1 = P(Qi,j = 1) are the probabilities of having a black
or a white pixel in the QR code Q, respectively. As mentioned before, the calculation of the
threshold tm,n depends on the decoder. In this case, a decoder built on ZXing [19] library
open source code is considered. Consequently, the threshold depends on the local distribu-
tion of luminance values in the image, the distribution of pixels in the QR code, and the
values of the parameters for the luminance transformation. Since Q̂i,j represents the binary
decision made by the decoder depending on the threshold, the conditional probabilities
above can be written as

P(Q̂i,j = 1|Qi,j = 0) = P(Y out
i,j > tm,n|Qi,j = 0),

P (Q̂i,j = 0|Qi,j = 1) = P(Y out
i,j < tm,n|Qi,j = 1). (7)

The exact solution to (7) requires the knowledge of the joint distribution of the image
and threshold values. The problem can be simplified assuming that the components of the
embedding luminance are independent and can be represented in function of the luminance
transformation parameters as [8]

Yout
i,j = [βQi,j + α(1 − Qi,j )]Ipc(i,j) + Yi,j (1 − Ipc(i,j)). (8)
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Using (8) and (5) together with certain reasonable assumptions stated in [8], a model for the
probability distribution of the threshold is given by

ft (x) =
n∑

k=0

f (x − tk)

(
n

k

)

pk
1p

n−k
0 , (9)

where n = �pcN	 is the total number of pixels selected for modification in the windowW,
tk = � kβ

N
+ (n−k)

N
α	 are all the possible average contributions of n modified pixels to the

total threshold, and f is the convolution of fY (x) and fη(x). fY (x) represents the proba-
bility distribution of the unmodified pixels in the image, modeled as independent Gaussian
random variables that depend on the window W, and fη(x) accounts for the noise at the
detector, modeled also as a Gaussian distribution. Thus, conditioning on the set of modified
pixels, the conditional probabilities in (7) can be determined as follows

P(Y out
i,j > tm,n|Qi,j = 0) = P(α > tm,n)pc

+P(Yi,j > tm,n)(1 − pc), (10)

P(Y out
i,j < tm,n|Qi,j = 1) = P(β < tm,n)pc

+P(Yi,j < tm,n)(1 − pc), (11)

where

P(x > tm,n) =
∫ x

0 ft (t)dt
∫ 1
0 ft (t)dt

, (12)

P(x < tm,n) =
∫ 1
x

ft (t)dt
∫ 1
0 ft (t)dt

. (13)

Substituting (10) and (11) in (6), we finally estimate the probability of binarization error
PBerr .

C.2 Probability of detection error

As in [8], assuming the central pixels in the QR code modules are precisely sampled, this
model considers the probability of a given central pixel to be detected in the wrong direction
during the decoding procedure. The probability of detection error per each QR code module
is defined as

PDerr = P(αc > t)p0 + P(βc < t)p1. (14)

In this case, the binarization threshold at the decoder can be decomposed as t = μ + b + η,
considering not only the average contribution to the threshold from the modified pixels μ

computed as

μ = αnα + βnβ + αcnαc + βcnβc

N
, (15)

but also from the non-modified pixels b in the window, as well as the noise at the decoder
η. In (15), nα, nβ, nαc y nβc are the number of pixels per each modified luminance level
and N is the total number of pixels in the windowW.

Non-modified pixels are modeled as Gaussian random variables as before, with mean
μb = E[Yi,j ](1 − pc) and variance σ 2

b = V ar[Yi,j ]
N

(1 − pc). As a result, the probability
distribution of the threshold t is Gaussian with mean μt = μ + μb and variance σ 2

t =
σ 2

b + σ 2
η where σ 2

η is the variance of the Gaussian noise at the decoder. Substituting this
probability distribution of the threshold in the normalized probabilities defined in (12), we
can estimate the probability of detection error PDerr in (14).
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C.3 Global probability of error

A probability of error sampling model is considered to combine the two independent stages
in a global probability of error [8]. According to the decoding procedure, ideally, central
pixels are more likely to be sampled. Thus, it is reasonable to model the sampling process by
means of a Gaussian distribution around the center regions with σ = Wa/6. The probability
of sampling out of the center region ps can be determined by integrating outside the central
region da × da . In this paper, this probability is also normalized. Once the probability of
sampling error ps is known, the global probability of error is determined by

Perr = PBerrps + PDerr (1 − ps). (16)
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