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Artificial selection of modern meat-producing chickens (broilers) for 

production characteristics has led to dramatic changes in phenotype, yet the impact of 

this selection on metabolic and molecular mechanisms is poorly understood. The first 

three weeks post-hatch represent a critical period of adjustment, during which the yolk 

lipid is depleted and the bird transitions to reliance on a carbohydrate-rich diet. As the 

liver is the major organ involved in macronutrient metabolism and nutrient allocation, 

an approach exploiting two types of high-throughput data (transcriptomics and 

metabolomics) has been implemented to characterize its development, and molecular 

fluctuations occurring over this important transition.  

• First, with an emphasis on metabolic reprogramming, we compared 

levels of transcripts and primary metabolites at Day 4 and Day 20 post-

hatch, establishing differences in core metabolism. For example, at Day 

4, metabolic flexibility allows for efficiency to meet the demands of 

rapid liver growth under oxygen-limiting conditions. At Day 20, the 

liver’s metabolism has shifted to process a carbohydrate-rich diet that 

supports the rapid overall growth of the modern broiler.  

• Secondly, we have used an integrated correlation network approach to 

identify clusters of genes, liver metabolites, and plasma metabolites 

showing synchronized patterns of abundance over the complete time 

course, and additionally relating these groups to blood chemistry 

measurements indicative of metabolic changes. This work exposed 
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more nuanced trends occurring over the time course, and also provided 

insight into how changes in the liver translate to the system as a whole.  

• Lastly, we have developed a dynamic workflow to efficiently screen 

the entire dataset of over 30 thousand features for relation to a response 

variable (normalized liver mass), computationally reduce the pool of 

candidates based on significant association, and confirm supportive 

evidence for these relationships, culminating in novel and statistically 

significant predictions. This workflow is simple, scalable, and broadly 

applicable as a means of data exploration, feature prioritization, and 

hypothesis generation.  

Characterizing the changes associated with normal post-hatch hepatic 

development in the broiler chicken has generated testable hypotheses about the 

involvement of specific genes and metabolites, clarified the importance of hypoxia to 

rapid organ growth, and contributed to our understanding of the molecular changes 

affected by decades of artificial selection. 
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INTRODUCTION AND BACKGROUND 

The modern broiler (meat) chicken is the product of more than 60 years of 

artificial selection for commercially desirable traits, resulting in both improved feed 

efficiency and breast muscle yield. The modern broiler reaches market weight in ¾ the 

time it took in the 1950s, yet weighs nearly twice as much as the 1950s breeds, with 

the breast muscle representing a greater component of the overall bird mass (1). 

Several studies have compared modern lines with unselected lines in terms of growth 

rate and feed efficiency (2,3). In one such study comparing growth of a modern broiler 

line (Ross 708) with a legacy line of commercial general-purpose bird unselected 

since the 1950s (UIUC) over the first five weeks post hatch, the breast muscle was 

found to comprise 18% and 9% of total body mass, respectively (4). Relative heart 

weight was markedly decreased in the modern broiler line, suggesting a possible 

difference in regulation of resource distribution between the two muscle types. The 

feed efficiency of the modern broiler was also significantly higher than that of the 

legacy line throughout the study. The legacy line is a commercial meat bird unselected 

since the 1950s and maintained by the University of Illinois, providing a prime 

comparison illustrating the effects of modern breeding efforts.  

One of the physiological systems undergoing selection in the modern broiler 

chicken and allowing for increased feed efficiency and growth is the gastrointestinal 

system. The jejunal and ileal segments of the small intestine are 20% longer in the 

modern line compared to unselected line, presumably allowing for improved nutrient 
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absorption (4). Additional changes in growth pattern manifest in the liver allometry. In 

both lines, the relative liver mass reached a similar maximum of approximately 3.8% 

of body mass and then began declining. However, this peak occurred a week earlier in 

the modern broiler. It was hypothesized that this may signify a critical biological time 

point in the bird’s development, the earlier onset of which gives the modern broiler a 

metabolic advantage. 

The liver plays critical roles in macronutrient metabolism. The essential 

cooperation between the liver and pancreas maintains homeostatic blood glucose 

levels. The liver stores excess glucose as glycogen, and can mobilize these reserves 

when required as well as synthesize glucose from alternate sources through 

gluconeogenesis. In birds, the liver is the main site of lipogenesis. Broilers are fed a 

carbohydrate-rich diet, so they must perform fatty acid synthesis to meet most of their 

requirements (5). Although dietary lipids are absorbed in the small intestine, they are 

not transported through the lymphatic system as with mammals and instead travel via 

the portal blood system through the liver before circulating through the body. 

Hepatocytes also produce and secrete bile salts, necessary for facilitation of fat 

digestion, into separate bile ducts, although in birds this capability may not be fully 

developed until after the first week of life (6). The liver also participates in protein 

metabolism, catabolizing excess amino acids and performing 11% of the body’s 

protein synthesis (7). The liver is also responsible for regulating blood volume and 

homeostasis, synthesizing blood plasma and immunity-related proteins. As a direct 

recipient of blood from the digestive tract, it is one of the first lines of defense against 

pathogens absorbed through the intestine. Liver-specific macrophages known as 
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Kupffer cells, present in the sinusoids, phagocytize foreign microorganisms and 

senescent blood cells. 

Liver receives oxygenated blood through the hepatic artery, which accounts for 

only 25% of blood flow in the liver. The remaining 75% consists of deoxygenated 

blood delivered through the hepatic portal vein directly from the digestive tract. 

Mitochondria-rich hepatocytes are the main cell type in the liver, comprising 80% of 

the organ's volume. They are arranged in a lobular structure, surrounding sinusoids 

through which blood flows into the central vein, then out of the liver through the 

hepatic vein and to the inferior vena cava for dissemination throughout the body (8–

10). In this way liver metabolites, hormones, immune factors, and blood proteins are 

directly secreted back into the bloodstream. Possessing both endocrine and exocrine 

functionality, the liver is a critical hormonal regulator of digestion, feed intake, and 

body growth as part of the somatotropic axis (9). Voluntary feed intake is an important 

factor in body growth, and modern broilers are voracious eaters compared to 

unselected or low-weight-selected breeds, such as egg layers. This has inspired studies 

directly stimulating the liver with compounds known to increase or decrease appetite. 

Differences have been noted when comparing response to appetite-stimulating and 

appetite-decreasing hormones and compounds between high-weight-selected and low-

weight-selected birds, indicating there are likely perturbations in the physiology of the 

modern broiler’s endocrine system (7). Consequently, studying the development of the 

liver in the modern broiler can improve our understanding of the metabolic pathways 

and regulatory mechanisms contributing to early post-hatch growth.  

High-throughput transcriptome analyses (RNA-seq) provide snapshots of 

transcribed RNAs at any given time and are useful to identify differentially regulated 
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genes between conditions or time points. Additionally, untargeted metabolomics can 

identify hundreds of compounds present, indicating precise metabolic differences. 

Combining these two data types is a powerful means to infer hypotheses about the 

interactions between the transcriptome and metabolome. For example, integrating 

these two high throughput methods identified metabolic and signaling pathways 

responding to heat stress in the liver of modern broilers (11).  

Previous studies have described the hepatic transcriptome of the modern 

broiler, either in response to different treatments, or in comparison with other bird 

lines. The majority of differential expression studies of broiler chickens involves the 

effect of treatments such as dietary supplementation (12,13) or temperature conditions 

(11,14,15). A recent study compared the hepatic transcriptome over six time points 

during the embryo to hatchling transition, from 16-day embryos to 9 day old chicks. 

They identified many metabolic pathways consistent with the nutrient source 

transition the chicks undergo in the first week post hatch, especially some affecting 

lipid metabolism (16). Another study examined changes in the hepatic transcriptome 

resulting from immediate post-hatch fasting and re-feeding, identifying genes 

regulated by lipogenic transcription factor THRSPA and switching between lipolytic 

and lipogenic states (17). One work also compared liver transcriptome in three chicken 

lines with differing growth potential at day 14 post hatch. They chose a high-weight-

selected (broiler), low-weight-selected (layer), and a mid-weight cross, focusing on 

genes differentially expressed between all three lines, and identifying significantly 

enriched pathways. They found that genes in the FoxO signaling pathway were highly 

correlated with body weight, likely owing to their effects on cell cycle and metabolism 

(18). 
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Decades of genetic selection for different purposes also make the chicken an 

excellent model for exploring the molecular foundations of metabolic efficiency and 

energy partitioning. Although mechanisms conferring a metabolic advantage are well-

studied in abnormal systems such as cancer, studies investigating rapid growth in 

functional, non-malignant tissues are lacking. Because of its central role in 

metabolism, its ability to regulate a number of systemic factors influencing body and 

organ growth, and notable differences in allometry and physiological responses 

previously observed between modern broilers and other lines of chicken, the liver is a 

prime tissue to study when investigating how the modern broiler achieves its great 

growth potential. Due to the allometric relationships observed by our group (4), along 

with what is known about concurrent physiological changes, the first 20 days post-

hatch was chosen for this study as representing a crucial biological time period in the 

growth of the modern broiler chicken. Nine time points, from Day 4 through 20 post-

hatch, are represented, with liver transcriptome, liver metabolome, and primary 

metabolome data for each bird, along with morphometric measurements and i-STAT 

blood chemistry values. 

There have been no integrated high-throughput studies of the modern broiler 

liver under normal conditions in the critical first three weeks post-hatch. Thus, the 

molecular changes that are occurring during this time period – the metabolic drivers of 

rapid muscle growth and feed efficiency – are poorly understood. Exploring these in a 

data-driven fashion can elucidate new knowledge about the liver’s most important 

functions during early post-hatch growth of the chick, and also how the liver itself is 

developing. The overall goal of this study is to characterize the liver transcriptome and 
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metabolome as it develops over the first 20 days post hatch in a modern broiler 

chicken.  
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TRANSCRIPTOMIC AND METABOLOMIC CHARACTERIZATION OF 
POST-HATCH METABOLIC REPROGRAMMING DURING HEPATIC 

DEVELOPMENT IN THE CHICKEN 

2.1 Background 

The entire longitudinal dataset explored in this work is comprised of nine time 

points, bracketing the time period where relative liver mass peaks in the modern 

broiler, and also capturing a critical metabolic transition. Chicks undergo drastic 

physiological changes as a consequence of hatching. The developing embryo relies 

entirely on nutrients from the yolk (19–21). During late embryonic development, 

much of the yolk lipid is absorbed and stored in the liver, predominately as cholesteryl 

esters (22). At day 18 of incubation, three days prior to hatch, lipids make up 10% of 

the liver’s mass due to absorption and storage of yolk nutrients (23). This stored lipid, 

along with the yolk remnant, provides the chick with a nutrients following hatch, but 

by day 5 post-hatch 90% of the yolk lipid has been absorbed (24). Chicks are provided 

with a carbohydrate-rich diet at hatch because fasting during this period stunts the 

early muscle growth potential of chicks (25). These early changes in nutrient source, 

coupled with rapid growth, mean maintaining metabolic homeorhesis is a major 

challenge facing the liver in the early weeks following hatch. 

The first objective of this work was to provide a starting point, and focus the 

direction of subsequent analyses, with an emphasis on metabolism. We executed a 

comparison between Day 4 and Day 20 post-hatch – the two time points expected to 
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show the greatest phenotypic and metabolic differences. We expected to see the 

largest differences in carbohydrate and lipid metabolism reflecting the yolk to diet 

transition. Through differential expression of the liver transcriptome, and a t-test and 

log fold change comparison of the liver primary metabolome, we identified genes and 

metabolites that differed in abundance between time points. Transcriptome and 

metabolome were analyzed separately, then integrated at the pathway level with a 

focus on core metabolic pathways including carbohydrate, lipid, and amino acid 

metabolism. These were selected to capture the metabolic reprogramming required to 

support the transition from relying on stored yolk to orally consumed feed that 

underlies the growth rate and phenotype of the modern broiler.   

2.2 Results 

2.2.1 Phenotypic measurements and i-STAT blood chemistry 

At D4 post-hatch, the liver was noticeably yellow in color, gradually changing 

to deep red by D20 (Figure 1). Mean phenotypic measurements of bird growth, liver 

allometry, and i-STAT blood chemistry values are shown in Table 1; Figure 2 shows 

hierarchical clustering of this data, which separates the two groups by age. Body mass 

and liver mass showed the largest difference between days and were positively 

correlated with bird age (Pearson Correlation Coefficient (PCC) 0.98 and 0.97, 

respectively). Relative liver mass was negatively correlated with bird age (PCC -0.51). 

The top blood chemistry values positively correlated with bird age were sodium (Na, 

PCC 0.89), bicarbonate (HCO3, PCC 0.79), total carbon dioxide (TCO2, PCC 0.77), 

and pH (PCC 0.75). Partial oxygen (PO2, PCC -0.70) and oxygen saturation (sO2, -

0.56) were negatively correlated with bird age. 
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Figure 1: Contrast in liver color at D4 and D20 post-hatch. The yellow color at hatch 
is indicative of the absorption and storage of yolk lipid and nutrients that 
occurs during late embryonic development. The liver gradually changes 
to deep red as the chick grows, concurrent with the depletion of the 
liver’s stores. Tissue was routinely sampled from the lower left lobe, as 
indicated by the red boxes. Note: Liver sizes are not on the same scale. 

Figure 2: Hierarchical clustering of morphometric and blood chemistry measurements 
from all birds. There were no i-STAT readings from three D4 birds, and 
all D20 birds are included regardless of quality elimination from 
transcriptome analysis. 
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Table 1: Summary of phenotypic trait and blood gas values by day, along with 
published references for comparison. * Denotes Wilcoxon test was used 
instead of t-test. 

 Median 
Mean ± 

Standard 
Deviation p value 

Trend 
with 
age 

Adult Breeder 
Values (26) 

 D4 D20 D4 D20 Range Mean 

Body 
Mass (g) 112.25 987.50 110.75 

± 5.54 

912.6
4 ± 

134.3
7 

<0.0001 + NA NA 

Liver 
Mass (g) 3.77 23.35 4.29 ± 

1.43 
25.01 
± 4.28 <0.0001 + NA NA 

Normaliz
-ed Liver 
Mass (%) 

0.034 0.027 0.039 ± 
0.012 

0.028 
± 

0.004 
0.0214 - NA NA 

pH 6.88 7.08 6.83 ± 
0.13 

7.05 ± 
0.06 0.0034 + 7.28 - 

7.57 7.42 

PCO2 
(mm Hg) 87.70 84.40 87.47 ± 

23.51 

91.03 
± 

16.91 
0.7513 NA 25.9 - 

49.5 37.7 

PO2 (mm 
Hg)* 82.00 61.00 88.29 ± 

23.45 
55.71 
± 9.16 0.0021 - 32.0 - 

60.5 46.2 

HCO3 
(mmol/L) 17.90 24.80 15.39 ± 

5.49 
24.77 
± 1.05 0.0037 + 18.9 - 

30.3 24.6 

Base 
Excess 
(BE)* 

-14.50 -6.00 -16.17 
± 3.82 

-5.86 
± 0.9 0.0031 + -6.8 - 

7.2 0.2 

sO2 (%) 78.00 70.00 81.14 ± 
7.73 

70.29 
± 9.67 0.0398 - 70.6 - 

93.3 82 

Glu 
(mg/dL) 206.00 230.00 208.57 

± 18.79 

238.8
6 ± 

19.04 
0.0112 + 207.2 - 

260.7 234 

TCO2 20.00 28.00 17.71 ± 
6.02 

27.57 
± 1.51 0.0044 + 19.9 - 

31.5 25.7 

Na 
(mmol/L)

* 
130.00 140.00 130.14 

± 2.54 

139.1
4 ± 
2.41 

0.0025 + 141.6 - 
152.6 147.1 
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TCO2, PCO2, HCO3, and pH are used to assess blood acid-base balance, which 

is maintained by the kidneys and lungs and affected by both metabolism and 

respiration. TCO2 is a measure of total blood carbon dioxide while PCO2 measures the 

difference between CO2 produced by the cells and removed through respiration. HCO3 

is a blood buffer produced by the kidneys, representing the metabolic component of 

acid-base balance. Given a change in blood pH due to any of these values, BE can 

help to differentiate between respiratory or metabolic causes. It is calculated as the 

difference between titratable base and titratable acid, and not susceptible to respiratory 

factors such as changes in PCO2. An increase in pH was observed from D4 to D20, 

indicating a shift in acid-base balance as the birds age. The metabolic measures of 

acid-base balance (buffer HCO3 and BE) were increased from D4 to D20, while the 

respiratory component was unchanged (PCO2), indicating the shift in acid-base 

balance is most likely due to metabolic factors. 

2.2.2 Transcriptome analysis: Top 100 abundant transcripts from each day 

Examination of the 100 most abundant transcripts expressed in either the D4 or 

D20 liver (total of 200) identify important similarities in metabolic functions at these 

two time points. Of these genes, 89 were common between both D4 and D20. 

Enriched Gene Ontology (GO) terms among these common genes included 

Translation, encompassing 14 ribosomal proteins and Secretory Vesicle, which 

included albumin along with proteins involved in lipid transport, complement and 

coagulation. Two other enriched GO terms shared by both days were Mitochondria 

and Oxidative Phosphorylation. These terms were enriched by genes encoding 

mitochondrial rRNAs and tRNAs along with NADH dehydrogenases, cytochrome 

oxidases and ATP synthase subunits.  One gene product unique to D20 encodes 
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glucose 6-phosphatase (G6PC) an enzyme critical to gluconeogenesis. Several 

transcripts encoding genes affecting additional processes were found in the D4 top 100 

list that were not in that D20 list. These include proteins involved in lipid metabolism 

and transport, amino acid catabolism, peptidase inhibitors, a sulfotransferase and 

hemoglobin A. These results indicate that, despite the changes undergone by the liver 

from D4 to D20, the major hepatic functions are preserved between time points. 

Figure 3: Gene Ontology Biological Process Terms enriched at either Day 4 (blue) or 
Day 20 (gold). 

Ontology enrichment analysis using DAVID (27,28) showed distinct 

differences between time points (Figure 3). At D4, top Functional Annotation Clusters 

were related to a variety of cell cycle elements including mitosis, cell division, 
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centromeric chromosome condensation & segregation, DNA replication, and 

transitions between cell cycle phases. Other clusters contained terms involved in 

ribonucleotide binding, kinase activity, amino-acid modification, vasculature 

development, and migration and motility of epithelial cells. At D4, the top enriched 

KEGG pathway from STRING (21,22) was “Cell Cycle,” with 36 out of 123 proteins 

represented. DNA replication and cellular senescence were also among the top ten. 

Purine and Pyrimidine metabolism was the only metabolic pathway enriched by the 

transcriptome at D4. At D20, top Functional Annotation Clusters were related to 

immune response, including T cell and B cell receptor signaling pathways, toll-like 

receptor signaling pathway, immune cell aggregation, activation, proliferation, and 

differentiation. One cluster contained terms related to oxidoreductase activity 

including heme binding and cytochrome P450. The top enriched KEGG pathway from 

STRING was “Metabolic Pathways,” with 162 out of 1250 proteins represented. Other 

enriched pathways were related to carbohydrate metabolism, including fructose and 

mannose, and galactose, and immune-related pathway Th17 cell differentiation. 

Ontology and pathway analysis of the transcriptome gave the first glimpse of the 

major processes important to the liver at each time point: rapid organ growth and 

vasculature development at D4; carbohydrate metabolism and immune cell population 

expansion at D20. 

 

2.2.3 Hypoxic environment at D4 

Early in the process of investigating the data, it was noticed that HIF1A 

transcripts were elevated in the D4 liver (log2 fold change 0.56, adjusted p-value 

0.03), suggesting the tissue is under hypoxic conditions. To further evaluate this 
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possibility, a list of human genes induced under hypoxic conditions was downloaded 

from the Gene Set Enrichment Analysis resource (29,30) and used to extract the 

orthologs from the D4 and D20 expression data. Principal component analysis 

revealed that 43% of the variance was associated with the day post-hatch; with the D4 

samples showing elevated levels of many of the transcripts associated with hypoxia 

(Figure 4).  

Figure 4: PCA of hypoxia genes showing clear separation by day along Dimension 1. 

2.2.4 Metabolome analysis: PCA, random forest, and top significant metabolites 

Principal component analysis of metabolites separated D4 birds from D20 

birds (Figure 5A), and random forest also correctly classified birds by age group. The 

top compounds contributing to random forest classification are shown in Figure 5B. 

The top identified compounds contributing to random forest classification included 
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two more abundant at D4 (lysine, glutaric acid) and seven more abundant at D20 

(CMP, fumaric acid, fructose-6-phosphate, fucose, malic acid, glucose-6-phosphate, 

succinic acid). Lysine is an essential amino acid important for growth, and glutaric 

acid is a byproduct of amino acid metabolism. Fumaric acid, malic acid, and succinic 

acid are TCA cycle intermediates, while fructose-6-phosphate, glucose-6-phosphate, 

and fucose are sugars involved in glycolysis and other carbohydrate metabolic 

pathways. CMP (Cytidine monophosphate), is a pyrimidine-derived nucleotide. 

 

Figure 5: A: PCA showing clear separation of individuals by top metabolites. D4 = 
green, D20 = red. B: Top metabolites contributing to random forest 
classification that correctly separated D4 and D20. Compound 84922 was 
identified by PubChem ID as cytidylic acid (CMP). 
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Table 2: Top significant identified metabolites with pathway membership or role in 
metabolism. Lipid and amino acid metabolism-related compounds 
predominated in D4, while many of those present in D20 were involved 
in carbohydrate metabolism. 

Compound 
Fold-

change 
(Log2) 

Adjusted 
p-value Day Pathway 

Retinal 4.42 2.22E-10 D4 Vitamin A 
2-Hydroxybutanoic 

Acid 3.34 4.25E-03 D4 Amino Acid-Glutathione 
Metabolism 

Oleic acid 3.12 2.41E-3 D4 Lipid metabolism 
Palmitoleic acid 2.87 5.98E-9 D4 Lipid metabolism 

Lactobiose (lactose) 2.60 3.11E-5 D4 Carbohydrate metabolism 
Phosphoserine 1.99 6.92E-5 D4 Serine metabolism 

Uric Acid 1.79 1.03E-6 D4 Nitrogen metabolism 

Phosphoenolpyruvate 1.77 1.11E-4 D4 Glycolysis (ATP synthesis 
phase) 

Gamma-Tocopherol 1.73 2.73E-4 D4 Vitamin E metabolism 
Uracil 1.66 1.59E-6 D4 Pyrimidine metabolism 

3-Phosphoglycerate 1.63 3.67E-3 D4 Glycolysis (ATP synthesis 
phase) 

Aspartate -1.57 1.6E-4 D20 Amino acid metabolism 
Adenosine -1.64 5.7E-3 D20 Purine metabolism 
Guanosine -1.65 4.3E-3 D20 Purine metabolism 

Hypoxanthine -1.74 3.13E-4 D20 Purine metabolism 
Creatinine -1.82 7.65E-3 D20 Creatine metabolism 

Citrate -2.00 3.41E-5 D20 TCA cycle 

Fructose-6-Phosphate -2.15 4.86E-7 D20 Gluconeogenesis or Glycolysis 
(ATP-incorporating phase) 

CMP -2.42 2.53E-7 D20 Pyrimidine metabolism, TAG, 
lipid & sialic acid synthesis 

Inosine -2.66 1.21E-5 D20 Nucleoside metabolism 
5-Methoxytryptamine -2.81 9.43E-7 D20 Tryptophan metabolism 
Hexose-6-Phosphate -3.25 5.51E-8 D20 Carbohydrate metabolism 

Succinate -3.35 2.64E-9 D20 TCA cycle 

Glucose-6-Phosphate -3.48 1.44E-6 D20 Gluconeogenesis or Glycolysis 
(ATP-incorporating phase) 

Fumarate -4.87 1.9E-9 D20 TCA cycle 
Malate -5.32 9.28E-12 D20 TCA cycle 
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By t-test, 90 compounds were more abundant at D4 and 112 at D20. A volcano 

plot was used to visualize top metabolites by log2 fold change and adjusted p-value 

(Figure 6); some of these are detailed in Table 2. At D4, several of the top significant 

metabolites were yolk-derived nutrients and fatty acids including retinal, oleic acid, 

palmitoleic acid, and gamma-tocopherol (Vitamin E). Retinal, a retinoid derived from 

known egg yolk nutrient Vitamin A, is critical in numerous processes including 

growth regulation and lipid metabolism (31). The second most significant compound, 

2-hydroxybutanoic acid, can be produced as a byproduct of threonine catabolism and 

glutathione synthesis, and is also part of propanoate metabolism (32). Lactobiose 

(lactose), a common chicken feed additive, is a disaccharide of glucose and galactose. 

Phosphoserine is an intermediate of amino acid metabolism, and uric acid is the major 

waste product of protein catabolism in birds. Phosphoenolpyruvate and 3-

phosphoglycerate are intermediates of glycolysis that are also involved in several other 

metabolic pathways including the TCA cycle and lipid metabolism. 

Phosphoenolpyruvate can be generated from TCA cycle intermediate oxaloacetate and 

may reflect utilization of alternative carbon sources. Uracil is an RNA pyrimidine 

nucleobase. In the liver, as UDP-glucose, it has roles in carbohydrate metabolism 

where it regulates the conversion of glucose to galactose (33). 

In D20, several of the most significant identified metabolites were 

intermediates of the TCA cycle (malic acid, fumaric acid, succinic acid, citric acid), or 

sugars involved in carbohydrate metabolism (glucose-6-phosphate, hexose-6-

phosphate, fructose-6-phosphate). Adenosine, guanosine, and inosine are nucleosides. 

CMP and hypoxanthine are also part of purine and pyrimidine metabolism. 5-

methoxytryptamine is derived from serotonin, a neurotransmitter derived from 
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tryptophan. Creatinine is a waste product of amino acid catabolism in muscle. 

Aspartate is a non-essential amino acid.  

Metabolome results implicate lipids, vitamin A, vitamin E, carbohydrate, 

serine, cysteine, uric acid and uracil metabolism as metabolic characteristics of day 4 

post-hatch liver. In contrast D20 metabolome data implicate the TCA, 

gluconeogenesis (or glycolysis) pathways along with aspartate, tryptophan, creatine, 

purine, pyrimidine, and inosine metabolism. 
 

2.2.5 Metabolic Pathway-Level Integration of Transcriptome and Metabolome:  

2.2.5.1 Carbohydrate metabolism 
Central carbohydrate metabolism consists of glycolysis, gluconeogenesis, the 

tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway (PPP) (Figure 7). 

Glycolysis consists of two stages: 1) Conversion of free glucose to two triose 

phosphates, 2) energy generation through production of pyruvate.  The integrated data 

suggests that, at D4, the glycolysis pathway is enriched at the second, ATP-generating 

stage. The transcript encoding the platelet isoform of PFK, the rate limiting enzyme 

responsible for conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, was 

more abundant at D4. This may reflect isozyme selection by HIF1A to increase 

efficiency of this pathway under hypoxic conditions. Furthermore, two intermediate 

metabolites (3-PG, PEP), and transcripts encoding two enzymes from the third stage 

of glycolysis (BPGM, PDHA1) were also enriched in the D4 samples. The enzyme 

BPGM and metabolite 3-PG represents a branching point in glycolysis. In the 

glycolysis pathway BPGM acts as a mutase, and regulates the entry of 3-PG into either 

glycolysis or serine biosynthesis through its effects on PGAM1. The product of 

BPGM enzymatic activity, 2,3 bisphosphoglycerate (2,3 BPG) serves as a phosphate 

donor to activate PGAM and promote glycolysis.  LDHA, an enzyme involved in 
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anaerobic ATP production, was upregulated at D4, in addition to transporters 

responsible for both import and export of lactate (SLC16A3, SLC5A12). LDHA 

favors the conversion of pyruvate to lactate and regenerates the NAD+ required by the 

glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH). All of these D4 

enriched molecules may be critical to supporting production of liver ATP via 

glycolysis under hypoxic conditions during this early stage post-hatch. 
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Figure 6: Core carbohydrate metabolism including glycolysis & gluconeogenesis, the 
TCA cycle, and the pentose phosphate pathway. Genes and metabolites 
that differed in abundance between days are highlighted, with 
abbreviations as follows: 1,3-BPG – 1,3-bisphosphoglycerate; 2-PG – 2-
phosphoglycerate; 3-PG – 3-phosphoglycerate; 6-PhGluLac – 6-
phosphogluconolactone; 6-PhGlu – 6-phosphogluconate; α-KG – α-
ketoglutarate;  BPGM – bisphosphoglycerate mutase; Cit – citrate; CS – 
citrate synthase; DHAP –dihydroxyacetone phosphate; DLD - 
dihydrolipoamide dehydrogenase; Eryth-4P – erythrose-4-phosphate; F-
6P – fructose-6-phosphate; F 1,6-BP – fructose-1,6-bisphosphate; Fum – 
fumarate; G-1P – glucose-1-phosphate; GA3P – glyceraldehyde-3-
phosphate; GCK – glucokinase; G6PC – glucose-6-phosphatase catalytic; 
G6PC3 – glucose-6-phosphatase catalytic subunit 3; G-6P – glucose-6-
phosphate; HK3 – hexokinase 3; IDH3A – isocitrate dehydrogenase 3 
alpha; Isocit – isocitrate; LDHA – lactate dehydrogenase A; Mal – 
malate; OAA – oxaloacetate; PDHA1 – pyruvate dehydrogenase E1 
subunit alpha 1; PEP – phosphoenolpyruvate; PFKM – 
phosphofructokinase, muscle; PFKL – phosphofructokinase, liver; PFKP 
– phosphofructokinase, platelet; PGLS – 6-phosphogluconolactonase; 
PRPP – phosphoribosyl pyrophosphate; PRPS2 – phosphoribosyl 
pyrophosphate synthetase 2; Pyr – pyruvate; Ribl-5P – ribulose-5-
phosphate; RPEL1 – ribulose-5-phosphate-3-epimerase like 1; Sedohep-
7P – sedoheptulose-7-phosphate; SDHC – succinate dehydrogenase 
complex subunit C; Succ – succinate; Succ-CoA – succinyl-coA; TKTL1 
- transketolase like 1; Xyl-5P – xylulose-5-phosphate. 

The pyruvate dehydrogenase complex controls the link between glycolysis and 

the TCA cycle. Transcripts encoding two of the three components of pyruvate 

dehydrogenase, the E1 subunit (PDHA1) and Dihydrolipoyl dehydrogenase (DLD) 

were enriched in the D4 liver.  In addition, the regulatory kinase PDK1, which 

inactivates pyruvate dehydrogenase, was also elevated in the D4 samples. The 

increased abundance of the pyruvate dehydrogenase subunit along with the negative 

regulatory PDK1 suggests that metabolism at D4 may be primed to respond rapidly to 

changes in ATP levels and oxygen availability.   
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Several transcripts encoding rate-limiting sugar kinases involved in the early 

steps of glycolysis were more abundant at D20 compared with D4 (HK3, GCK, 

PFKM, PFKL). Corresponding glycolytic metabolites were also more abundant in 

D20 (glucose, G-6P, F-6P), with G-6P having one of the highest fold changes when 

compared with D4 (logFC 3.48). HK3 and GCK have key differences in their 

regulation. GCK specifically acts on glucose, while HK will phosphorylate multiple 

types of hexoses. GCK also has much lower affinity for glucose than HK, and, unlike 

HK, GCK is not inhibited by its product, G-6P. Thus, while HK maintains basal 

glucose metabolism, GCK is responsible for phosphorylating excess glucose for other 

fates, such as glycogen synthesis or diversion to the pentose phosphate pathway. 

Phosphofructokinase (PFK) controls glycolytic rate and is under tight control, 

although there is evidence that isozymes differ in their regulation. Two isoforms of 

PFK were more abundant at D20 than D4, one of which (liver isoform PFKL) was 

upregulated in broiler chickens with high growth potential when compared to crosses 

and layer birds, suggesting that this isoform may contribute to rapid growth rate of 

maturing birds (28). The increased abundance of these enzymes and metabolites at 

D20 suggests surplus of free glucose that can be diverted to other metabolic fates or 

exported from the liver for use by other tissues.  

Glycogen metabolism and gluconeogenesis are two pathways the liver uses to 

provide glucose to other organs during fasting. Typically, the first resource exploited 

is glycogen.  Glycogen can be synthesized by the enzyme glycogen synthase from 

glucose-1-phosphate (G-1P) and broken down by glycogen phosphorylase to yield G-

1P. Glycogen synthase transcripts along with two isoforms of glycogen phosphorylase 

(PYGL, PYGB), are enriched in the D20 liver. This, combined with the observation 
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that G-1P is also elevated in the D20 liver, suggests that the D20 liver is capable of 

rapid response to demands for either glycogen synthesis or phosphorolysis. In 

addition, the D20 liver is enriched for two glucose-6-phosphatase mRNAs (G6PC, 

G6PC3), which catalyze the last step of gluconeogenesis.  As with glycogen 

metabolism, it appears that glucose metabolism in the D20 liver is capable of rapid 

responses to the demands of the body for glucose.    

The TCA cycle is an aerobic pathway that continues the oxidation of pyruvate, 

producing electron donors NADH and FADH2 which will go on to oxidative 

phosphorylation. Multiple components of the TCA cycle are upregulated at D20, 

indicating greater oxygen availability and abundance of nutrients. At D20, several 

intermediate metabolites in the TCA cycle were more abundant (citrate, α-

ketoglutarate (α-KG), succinate, fumarate, malate), along with mRNAs encoding three 

enzymes (CS, ODGH, SDHC). All metabolites but α-KG were also among the top 

most significant compounds at D20, in terms of both fold change and significance (see 

Table 2, Figure 6. α-KG, fumarate, and succinate all serve as entry points for 

catabolized glucogenic amino acids. CS is the rate-limiting enzyme of the TCA cycle. 

Elevated citrate is an important regulator of metabolism, with high levels signaling 

abundant energy. Citrate inhibits glycolysis through its action on phosphofructokinase 

and stimulates fatty acid synthesis. 

Components of the TCA cycle are reduced at D4 compared with D20 livers, 

consistent with response to hypoxic conditions. Regulation of the pyruvate 

dehydrogenase complex also suggests metabolic flexibility allowing for rapid response 

to energy and oxygen levels and utilization of alternative carbon sources for critical 

metabolites. At D4, four TCA-related transcripts were more abundant (PDHA1, DLD, 
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IDH3A, FH). The rate-limiting pyruvate dehydrogenase complex controls entry of 

pyruvate into the TCA cycle, and is regulated by several enzymes whose transcripts 

were also more abundant at D4 (PDP1, PDP2, PDK1). This could represent increased 

responsiveness of the pyruvate dehydrogenase complex to changes in ATP and oxygen 

levels. One isozyme of isocitrate dehydrogenase, which interconverts isocitrate and α-

KG, was upregulated at D4 (IDH3A). IDH1 and IDH2 can catalyze in both oxidative 

and reductive directions and are involved in hypoxia response when downregulation of 

the TCA cycle requires alternate means to synthesize acetyl-CoA and citrate. IDH3A, 

however, is irreversible and only converts isocitrate to α-KG. IDH3A is also localized 

to the mitochondria, relies on NAD+ as a cofactor instead of NADP+, and is 

allosterically regulated by a number of factors. Although hypoxic conditions typically 

favor conversion of α-KG to isocitrate as an alternative way to generate acetyl-CoA 

and citrate (29), IDH3A still appears to have a critical role in response to hypoxia. In 

cancer cells, elevated levels of IDH3A ultimately lead to decreased levels of α-KG. In 

turn, reduced α-KG levels stabilize the HIF1A protein thereby promoting angiogenesis 

(30). Conceivably, the IDH3A mechanism documented in cancer cells may play an 

important role in the normal development of the early post-hatch liver. 

The pentose phosphate pathway utilizes glycolytic intermediates to produce 

NADPH for reducing power and supplies pentoses for nucleotide synthesis. The non-

oxidative branch of the PPP is upregulated at D4, consistent with rapid cell 

proliferation, while the oxidative branch is upregulated at D20, perhaps to meet 

increased demand for reducing power. At D4, two transcripts encoding two enzymes 

in the non-oxidative branch of the PPP were upregulated (TKTL1, PRPS2). TKT is the 

rate-limiting enzyme reversibly linking the PPP with glycolysis. Elevated levels of 
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TKT could indicate intermediates are being exchanged between pathways. The 

upregulation of PRPS2 suggests that ribose-5-phosphate generated through the non-

oxidative branch is going on to purine and pyrimidine metabolism at D4. In contrast at 

D20, enzymes (PGLS, RPEL1) and metabolites (ribulose-5P, xylulose-5P) involved in 

the oxidative phase of the PPP were more abundant. Increased levels of RPEL1 

suggests that ribulose-5-phosphate is also being recycled back into glycolysis, 

prioritizing energy production through complete oxidation of G-6P while concurrently 

producing NADPH to provide the reducing agent needed for lipid synthesis at D20.  

2.2.5.2 Amino acid metabolism 

Amino acids are the building blocks of proteins and also serve many important 

metabolic functions. Several amino acids, their derivatives, and waste products 

differed in their abundance between days, including nine more abundant at D4 

(arginine, lysine, threonine, cysteine, proline, ornithine, phosphoserine, urea, uric acid) 

and three more abundant at D20 (aspartate, glutamine, creatinine). Of the amino acids 

more abundant at D4, three were essential (arginine, lysine, threonine) and three non-

essential (cysteine, proline, ornithine). Metabolite data was not able to differentiate 

ornithine from arginine, so we assume that one or both of them were more abundant at 

D4. Arginine, ornithine, and proline are glucogenic, typically being converted to 

glutamate that is readily converted to TCA cycle intermediate α-KG. However, an 

alternative pathway allows glutamate to be converted to succinate. Cysteine is 

glucogenic and can be converted to pyruvate. Lysine was one of the top most 

significant metabolites more abundant at D4 and is ketogenic through acetyl-CoA. 

Threonine is both glucogenic, through succinyl-CoA, and ketogenic, through acetyl-

CoA. Phosphoserine is an intermediate between glycolysis and serine production. 
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Urea and uric acid are both nitrogenous waste products. At D20, both amino acids that 

were more abundant were non-essential and glucogenic (glutamine, aspartate). 

Glutamine is converted to glutamate, while aspartate is converted to oxaloacetate. 

These differences in abundance may reflect increased catabolism of amino acids at 

D20, or differences in utilization of amino acids between days (Fig 8). 
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Figure 7: Amino acids as they relate to core metabolic pathways, especially the TCA 
cycle. Compounds that differed in abundance between days are 
highlighted, along with colored arrows representing upregulation. 
Abbreviations are as follows: 2-PG – 2-phosphoglycerate; 3-PG – 3-
phosphoglycerate; α-KB – α-ketobutyrate; α-KG – α-ketoglutarate; 
AcAc-CoA – acetoacetyl-coA; Ala – alanine; Arg – arginine; Asp – 
aspartate; Cit – citrate; Cys – cysteine; Fum - fumarate; Gln – glutamine; 
Glu – glutamate; Glut γ-SA – glutamate γ-semialdehyde; Gly – glycine; 
His – histidine; Ile – isoleucine; Isocit – isocitrate; Leu – leucine; Lys – 
lysine; Mal – malate; Met – methionine; OAA – oxaloacetate; Orn – 
ornithine; PEP – phosphoenolpyruvate; Pro – proline; Prop-CoA – 
propionyl-CoA; Pyr – pyruvate; Ser – serine; Succ – succinate; Succ-
CoA – succinyl-coA; Thr – threonine; Trp – tryptophan; Tyr – tyrosine; 
Val – valine. 

As discussed above, at D4, the transcriptome data indicates that BPGM is 

shunting the intermediate 3-PG is towards glycolysis. In contrast at D20, the 

downregulation of BPGM suggests glycolytic intermediates are being directed towards 

serine biosynthesis. Two other transcripts encoding enzymes related to serine 

biosynthesis from glycolytic intermediates were upregulated at D20 (PHGDH, 

GLYCTK). PHGDH directs 3-PG towards serine biosynthesis, while GLYCTK 

converts glycerate to glycolytic intermediate 2-PG, a precursor of 3-PG. Several 

transcripts encoding enzymes involved in serine and glycine metabolism were also 

upregulated at D20 (SDSL, AGXT, PIPOX, SARDH, GNMT, ALAS2, GCAT, 

AOC3). AGXT catalyzes a number of reactions, including the interconversion of 

serine and glycine, interconversion of serine and hydroxypyruvate, and 

interconversion of glycine and glyoxylate. Both hydroxypyruvate and glyoxylate can 

go into glyoxylate metabolism. Although the main enzymes of the glyoxylate cycle 

have not been found in chickens, the liver has been observed to have glyoxylate 

activity (31). SARDH and PIPOX generate glycine from sarcosine, while GNMT 



 29 

interconverts sarcosine and glycine. Sarcosine is an intermediate between glycine, 

creatine, and choline metabolism. SDSL catabolizes serine to pyruvate and also 

converts threonine to 2-oxobutanoate, an alpha-ketoacid intermediate of threonine 

catabolism to succinyl-CoA. ALAS2, GCAT, and AOC3 are all involved in generating 

different metabolites from glycine. 

Proline and lysine metabolism may indicate increased collagen production and 

remodeling at D20. Although both metabolites were more abundant at D4, several 

enzymes facilitating their incorporation into collagen were upregulated at D20, 

(PYCR1, PYCRL, P4HA2, LOC425607, L3HYPDH, HYKK). PYCR1 and PYCRL 

are involved in the interconversion of proline, hydroxyproline, and pyrroline-5-

carboxylate. P4HA2 and LOC425607 are involved in formation of collagen structural 

components from 4-hydroxyproline and hydroxylysine, respectively. HYKK is a 

kinase that phosphorylates hydroxylysine residues. One enzyme involved in collagen 

synthesis was upregulated at D4 (PLOD2), which is responsible for hydroxylation of 

lysine residues, allowing for cross-linking and stabilization of collagen. 

Several transcripts upregulated at D4 encode enzymes that yield alternative 

TCA cycle intermediates, while several transcripts upregulated at D20 encode 

enzymes generating pyruvate from amino acids. In lysine degradation, two metabolites 

(lysine, glutarate) and two enzymes (DLD, DHTKD1) were more abundant at D4. 

DLD and DHTKD1 convert 2-oxoadipate to glutaryl-CoA, which can then be 

converted to glutarate and enter the TCA cycle through succinate. In contrast, 

EHHADH was upregulated at D20, supporting the canonical pathway of lysine 

degradation to acetyl-CoA. At D4, mRNAs encoding enzymes affecting aspartate and 

glutamate (ADSSL1, ALDH5A1) were enriched.  ADSSL1 converts aspartate to 
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fumarate while ALDH5A1 metabolizes glutamate to succinate. Under normoxic 

conditions, aspartate is converted to oxaloacetate and glutamate is converted to α-KG. 

Given the TCA cycle is downregulated at D4 due to hypoxia, diverting these amino 

acids to different fates may allow them to be utilized more efficiently. Furthermore, 

this may serve a regulatory role in controlling levels of α-KG. Hence, the D4 liver 

may be relying on amino acids that are metabolized to intermediates suitable for 

anaerobic energy. This is further supported by the only TCA-specific mRNA 

upregulated at D4 encodes FH. Enrichment for FH would allow regeneration of 

oxaloacetate, which could then be converted to PEP, feeding directly into pyruvate for 

lactate production. At D20, mRNAs encoding enzymes producing pyruvate from 

various amino acids were upregulated (SDSL, CCBL1, AGXT). SDSL can convert 

serine to pyruvate while CCBL1 can interconvert cysteine and pyruvate. AGXT can 

convert alanine to pyruvate as part of the Cahill cycle, either replenishing levels of 

blood glucose through gluconeogenesis or oxidizing pyruvate for energy production in 

the TCA cycle and oxidative phosphorylation. Consequently, the liver at D20 appears 

to be utilizing amino acids for energy through canonical degradation pathways. 

Homocysteine metabolism shows different directionality between days, 

possibly favoring the synthesis of cysteine at D4 and the synthesis of methionine at 

D20. Cysteine is synthesized from cystathionine, made from conjugating serine with 

methionine-derived homocysteine. The mRNA encoding the enzyme producing 

cystathionine was upregulated at D4 (LOC418544), along with metabolites cysteine 

and 2-hydroxybutanoic acid. 2-Hydroxybutanoic acid was one of the top most 

significant metabolites at D4 (Figure 6, Table 2), and is a byproduct of cysteine 

production. It is elevated when cysteine is limiting, such as when oxidative stress or 
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detoxification needs are high. At D4, higher levels of cysteine may be required to 

combat oxidative stress. In contrast at D20, two enzymes contributing to homocysteine 

production are upregulated (CCBL1, AHCYL1), suggesting that homocysteine is 

shunted to methionine salvage. Methionine is essential and one of the key amino acids 

important for growth in chickens (34,35). 

Degradation of the branched chain amino acids valine, leucine, and isoleucine 

may serve different purposes between time points: generation of branched chain fatty 

acid precursors at D4, and complete catalysis for energy production at D20. Valine is 

glucogenic, entering the TCA cycle through degradation to succinyl-CoA. Leucine is 

ketogenic, as its metabolism results in acetyl-CoA. Isoleucine can follow either 

glucogenic or ketogenic routes. Seven enzymes involved in branched chain amino acid 

metabolism were more abundant at D4 (BCAT1, DLD, BCKDHB, ALDH6A1, AUH, 

AACS, HIBADH) than D20. BCAT1, DLD, and BCKDHB are involved in the early 

steps of degrading these branched chain amino acids. HIBADH and ALDH6A1 are 

involved in valine catabolism. These enzymes are responsible for the catabolism of 

valine to propanoyl-CoA. AUH and AACS are involved in leucine metabolism 

yielding acetoacetyl-CoA. As liver cannot efficiently metabolize acetoacetyl-CoA 

(34), it is exported for use by other organs. Four mRNAs encoding enzymes impacting 

branched-chain amino acids were enriched at D20 (EHHADH, HSD17B10, ACSS2, 

ACSS1L). HSD17B10 and EHHADH are dehydrogenases involved in beta-oxidation 

of a variety of compounds. HSD17B10 is mitochondrial and oxidizes steroids, while 

EHHADH is a bifunctional enzyme localized to the peroxisome and participates in 

multiple steps of branched-chain amino acid degradation as well as fatty acid 

oxidation. ACSS2 and ACSS1L activate short-chain fatty acids for further 
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metabolism, preferring acetate but also acting on propionate ultimately giving rise to 

citrate. 

Arginine appears to contribute to polyamine synthesis at D4, consistent with 

increased cell proliferation. Four metabolites (urea, putrescine, ornithine, arginine) and 

transcripts encoding enzymes (ARG2, ODC1, GATM, AMD1, CHDH, DMGDH) 

involved in this were more abundant at D4. ARG2 converts arginine to ornithine, 

releasing urea as a byproduct. ODC1 converts ornithine to putrescine, a polyamine 

critical for cell proliferation (35). GATM supports the conversion of glycine to 

arginine through guanidinoacetate. CHDH and DMGDH support the catabolism of 

choline to sarcosine, a glycine precursor, which could provide additional substrates for 

polyamine synthesis. AMD1 is involved in methionine salvage, where is generates S-

adenosyl-methionine (SAM), an important methyl group donor and component of 

polyamine synthesis. In addition to contributing to cell proliferation, this pathway may 

also divert excess arginine away from α-KG. The increased breakdown of arginine for 

polyamine synthesis could also explain the increased abundance of urea at D4. In 

contrast, one enzyme converting arginine to agmatine (AZIN2) was upregulated at 

D20, signifying a possible alternate route to polyamine synthesis.   

Transcriptome data suggests that glutamate and glutamine metabolism is 

reversed between D4 and D20. Metabolism favoring glutamine production appears 

favored at D20, while at D4, glutamine conversion to glutamate is likely enhanced. 

Glutamate-ammonia ligase (GLUL, elevated at D20) synthesizes glutamine from 

glutamate and ammonia, while glutaminase (GLS, elevated at D4) converts glutamine 

to glutamate and ammonia. In adult birds, the synthesis of uric acid, the predominate 

nitrogen waste product, requires glutamine. In contrast, enrichment for glutamate at 
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D4 can support production of succinate, which has important roles in stabilizing the 

hypoxia response (36).  
 

2.2.5.3 Lipid metabolism 

At hatch, chicks are supplied with lipids absorbed from the yolk sac while in 

mature birds the liver receives dietary lipids directly from the small intestine via the 

hepatic portal vein. Yolk nutrients serve as the main source of lipids for D4 birds, as 

bile acid capabilities to facilitate dietary lipid absorption are not fully developed until 

after the first week post-hatch (6,36). Post-hatch, the yolk sac membrane is able to 

continue absorbing lipids directly into the bloodstream through endocytosis, bypassing 

the small intestine and the need for liver-produced bile acids; this lipid reservoir 

provides fuel for early post-hatch growth (36). Compared with D20 liver, the D4 liver 

metabolome evidences enrichment of multiple yolk-derived fatty acid metabolites 

including: palmitoleic, myristic, linoleic, and oleic acid. Two acyl synthetases 

involved in the activation of fatty acids were upregulated at D4 (ACSL3, ACSL4), 

Acyl synthetases activate free fatty acids in the cytoplasm via conjugation with an acyl 

group. ACSL3 preferentially acts on myristic acid, arachidonic acid, lauric acid, and 

eicosapentaenoic acid, and is involved in mediating hepatic lipogenesis. ACSL4 

prefers arachidonic acid and is often expressed in steroid-producing organs. Two 

enzymes (CPT2 and ACAD9) involved in fatty acid beta-oxidation were upregulated 

at D4, and appear representative of the available substrates in yolk-derived lipids at 

D4. CPT2 prepares activated fatty acyl-CoAs for oxidation by removing the acyl 

group once they have entered the mitochondria. ACAD9 is a mitochondrial acyl-CoA 

dehydrogenase catalyzing the rate-limiting step of beta-oxidation, with a preference 
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for palmitoyl-CoA and long-chain unsaturated fatty acids. The substrate preferences of 

ACAD9, ACSL3 and ACSL4 are consistent with an abundance of yolk-derived fatty 

acids consisting of mainly palmitate and myristate.  

Several enzymes involved in lipid elongation in the endoplasmic reticulum 

(ELOVL7, HACD2, HACD3) were upregulated at D4, suggesting the synthesis of 

lipids meeting different requirements such as cell membrane components. Elongation 

in the ER gives rise to long-chain and very-long-chain fatty acids (>C16). ELOVL7 

catalyzes the rate-limiting first step, preferring long-chain and very-long-chain fatty 

acids (C18, C16, C20), and is involved in synthesizing membrane lipid precursors and 

lipid mediators. HACD2 and HACD3 are dehydratases involved in the dehydration 

step of lipid elongation. These long chain fatty acid products could be used within the 

liver or exported to other tissues to support the rapid growth seen in chicks at D4. Two 

enzymes associated with mitochondrial fatty acid biosynthesis were upregulated at 

D20 (MCAT, MECR). Enzymes acting as part of the fatty acid synthase type II 

(FAS2) complex catalyze mitochondrial fatty acid synthesis. Malonyl transacylase 

(MCAT), catalyzes the transfer of malonyl from malonyl-CoA to a scaffold protein, 

beginning the elongation phase. Enoyl ACP reductase (MECR) catalyzes the final step 

with palmitate as the main product of fatty acid synthesis in the mitochondria.  

Transcripts encoding enzymes involved in beta-oxidation in the mitochondria 

and peroxisome were more abundant at D20 including: EHHADH, ECI1, DECR2, and 

ACAD11. While mitochondrial beta-oxidation generates acetyl-CoA for energy 

production, peroxisomal beta-oxidation breaks down very long chain fatty acids 

(>22C), branched fatty acids and leukotrienes to acetyl-CoA and medium chain fatty 

acids for biosynthesis of specific fatty acids. EHHADH is a multi-functional, 
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peroxisomal enzyme that acts as both an enoyl-CoA hydratase and a 3-hydroxyacyl-

CoA dehydrogenase, catalyzing multiple steps in beta-oxidation. Along with 

EHHADH, ECI1 rearranges double bonds in unsaturated fatty acids to facilitate their 

oxidation. DECR2 is a peroxisomal enzyme degrading varying lengths of unsaturated 

fatty acids. ACAD11 encodes mitochondrial acyl-CoA dehydrogenase catalyzing beta-

oxidation of fatty acids with chain lengths of 20 to 26 carbons. 

Four thioesterase transcripts were enriched at D20 (ACOT4, ACOT8, 

ACOT11, THEM4) while only one (ACOT12) was enriched at D4. Thioesterases 

hydrolyze acyl-CoA to coenzyme A and free fatty acids. ACOT4 is peroxisomal and 

acts on succinyl-CoA, glutaryl-CoA, and long chain saturated acyl-CoAs. ACOT8 is 

peroxisomal and has the least specific substrate preferences, acting on medium chain 

(C2 to C20) saturated or unsaturated fatty acyl-CoAs and also bile acids. ACOT11 

prefers long chain substrates including palmitoyl-CoA and myristoyl-CoA, which can 

go on to mitochondrial beta-oxidation. THEM4 is mitochondrial and prefers medium 

to long chain substrates (C14 to C18). ACOT12, the only thioesterase upregulated at 

D4, prefers acetyl-CoA as a substrate. 

In glycerolipid metabolism, metabolites and gene expression patterns indicated 

triacylglycerol (TAG) breakdown was favored at D4 while TAG synthesis was 

favored at D20. Two metabolites (3-PG, 1-monopalmitin) and several enzymes (LIPC, 

LIPG, AKR1B10L2, PLPP1, LPIN1, GPAM) were more abundant at D4.  LIPG 

(endothelial) and LIPC (hepatic) are lipases that hydrolyze the ester bond of TAGs to 

form monoacylglycerol and free fatty acids. 1-Monopalmitin was one of the top 

metabolites contributing to random forest classification at D4. At D20, one metabolite 

(glycerol-3-phosphate) and several enzymes (DGKA, DGKZ, DGAT2, AWAT1, 
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TKFC, GLYCTK, GPAT4, GPAT2, AGPAT4, AKR1B10L1) were more abundant. 

Glycerol-3-phosphate provides the glycerol backbone for TAG synthesis. Three 

acyltransferases (AGPAT4, GPAT2, GPAT4) are involved in different steps 

generating phosphatidate from glycerol and acyl-coA, and two acyltransferases 

(DGAT2, AWAT1) are responsible for the final step of TAG synthesis.  At D4, a 

different acyltransferase involved in generating phosphatidate from glycerol and acyl-

CoA was upregulated (GPAM). GPAM is a mitochondrial acyltransferase that prefers 

saturated fatty acids. In the preparation or recycling of the glycerol backbone, one 

aldo-keto reductase catalyzing the interconversion of glyceraldehyde and glycerol was 

upregulated at D4 (AKR1B10L2) while one was upregulated at D20 (AKR1B10L1), 

and one kinase converting glycerate to glycolytic intermediate 2-PG was upregulated 

at D20. The interconversion of phosphatidate and diacylglycerol shows contrasting 

directionality between days; two phosphatases that catalyze the conversion of 

phosphatidate to a diacylglycerol were upregulated at D4 (PLPP1, LPIN1), while two 

kinases phosphorylating diacylglycerols to phosphatidate (DGKA, DGKZ) were 

upregulated at D20. Given the importance of phosphatidate as an important precursor 

molecule for both TAG synthesis and membrane lipid synthesis, this may represent an 

important metabolic reprogramming between time periods.  
 

 

2.3 Discussion: 

Modern broilers are the product of intensive selection for rapid growth, 

increased skeletal muscle production, and improved feed efficiency. The liver, as the 

metabolic center of the body, plays an important role in supporting the emergence of 
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these traits. This study indicates that the significant metabolic reprogramming of the 

liver occurs between D4 and D20 post-hatch, summarized in Figures 9 and 10, 

respectively. This reprogramming is choreographed by modulation of gene expression 

patterns responding to changes in the proliferative needs of the liver and other 

tissues.  In addition, the nutritional sources of the birds change during this time, 

shifting from stored yolk to oral nutrition. At D4, liver cells are undergoing rapid 

proliferation as indicated by the positive allometric growth of the organ at this time. 

This is supported by the transcriptome analysis that identified enrichment for multiple 

genes involved in cell proliferation, cell cycle, and DNA replication at D4. In addition, 

the integrated transcriptome and metabolome data indicates metabolic flexibility 

especially in carbohydrate metabolism. In glycolysis, D4 liver is manifesting 

metabolism reminiscent of the Warburg effect, which was first noted in rapidly 

dividing cancer cells (37,38) and has been shown to be common in normal 

proliferating cells (39). In contrast, by D20 the liver’s relative growth has slowed and 

the transcriptome has shifted from supporting cell division to enrichment for immune 

function. Metabolomic data indicates D20 liver no longer displays upregulated 

anaerobic energy production in carbohydrate metabolism and has taken on the role of 

acting to store glucose and synthesize fatty acids, functions associated with the mature 

liver.  
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Figure 8: Summary of metabolic reprogramming at D4, in terms of core metabolic 
pathway regions and biological processes that are upregulated or 
important. Upregulated components are in color, downregulated 
components are greyed out. Note: Some arrows represent pathways 
involving multiple steps. 
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Figure 9: Summary of metabolic reprogramming at D20, in terms of core metabolic 
pathway regions and biological processes that are upregulated or 
important. Upregulated components are in color, downregulated 
components are greyed out. Note: Some arrows represent pathways 
involving multiple steps.  
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An important hypothesis arising from this work is that the D4 liver is hypoxic, 

which may arise from vascularization lagging behind the rapid growth of the liver. 

Enrichment of the hypoxia responsive transcription factor HIF1A transcript seen at D4 

could lead to increased expression of angiogenic growth factor receptors (VEGF 

receptors KDR and FLT1) to improve vascular development. HIF1A also plays a 

central role in increasing glycolytic rate through isozyme selection, and by triggering 

the Warburg effect; with a central impact of increasing expression of the LDHA 

isoform that directs glycolysis towards lactate production (40,41). The NAD+ 

produced from the reduction of pyruvate to lactate can support the GAPDH enzymatic 

activity required to drive the ATP production phase of glycolysis. This is necessary to 

rapidly dividing cells under hypoxia as it maintains ATP production. In addition, 

lactate secreted from the cell could reduce the blood pH at D4 compared with D20 

(Table 1). This reduced pH that results from lactate may further promote matrix 

rearrangement and angiogenesis (42). Isozyme selection by HIF1A at D4 is also 

evident in upregulation of platelet-type phosphofructokinase (PFKP). Metabolic 

reprogramming similar to that observed in cancer, driven by HIF1A, likely allows D4 

liver to continue efficient energy production under hypoxia, while increasing 

angiogenesis to eventually escape these conditions as metabolism matures. 

The data indicates that pyruvate occupies an important metabolic fork in the 

D4 liver.  Along with PDK, transcriptome data indicates that two components of the 

PDH complex, and two pyruvate dehydrogenase phosphatases (PDP) are enriched in 

the D4 liver. This suggests that pyruvate metabolism in the early post-hatch liver 

exhibits greater metabolic flexibility than is seen in a cancer cell exhibiting the 

Warburg effect. The growing liver tissue at D4 retains the option of reverting to 
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aerobic glycolysis and the TCA cycle conferred by tight regulation of this metabolic 

fork. In turn, this allows for a rapid shift between pyruvate being converted to either 

lactate in the cytoplasm or acetyl-CoA and then citrate in the mitochondria as 

metabolic demands change. 

In the hypoxic conditions at D4, where glycolysis is the main ATP-producing 

pathway, metabolic flexibility also allows for differences in nutrient utilization. We 

hypothesize that the liver is conserving glycolytic intermediates for energy production, 

including glucogenic amino acids and recycled glycerol backbones, while sparing free 

glucose for the rest of the body. This is supported by the overall downregulation of the 

early stages of glycolysis and gluconeogenesis at D4, along with multiple examples of 

glucogenic amino acids being directed towards oxaloacetate or pyruvate precursors for 

anaerobic glycolysis. Transcripts encoding enzymes involved in degradation of 

ketogenic amino acids are upregulated at D4, along with those converting acetyl-CoA 

to acetate and acetoacetate to acetoacetyl-CoA. The resulting lactate, ketones, short 

chain fatty acids and other compounds may act as important sources of energy for 

other tissues. For example, free acetate produced in the liver can be exported for use 

by other tissues such as cardiac muscle (43), while skeletal muscle can oxidize lactate 

(44). The dramatically increased expression of two monocarboxylate transporters – 

SLC16A3 (logFC 3.29) and SLC5A12 (logFC 5.22) – at D4 support the increased 

import and export activity of compounds like lactate, pyruvate, and oxo acid products 

of branched chain amino acid catabolism, further suggesting that differences exist in 

the metabolic demand for these compounds between time points, in both the liver and 

rest of the body. 
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Inspection of glycolysis metabolites suggests a second metabolic fork is 

present in this pathway at 3-phosphoglycerate. BPGM, the enzyme controlling this 

fork, is upregulated at D4. Knockout of BPGM in mice increases serine and 

phosphoserine biosynthesis (45). Thus, elevated BPGM levels at D4 suggest that it is 

directing 3-PG towards glycolysis rather than serine biosynthesis. In addition to 

modulating this branching point, BPGM is known for its role in decreasing 

hemoglobin’s affinity for oxygen. The metabolite 2,3-BPG which is the product of 

BPGM enzymatic activity, can escape cells and promote the release of oxygen from 

red blood cell hemoglobin, possibly ameliorating anoxic conditions (46). Both 3-

phosphoglycerate and phosphoserine are enriched in the D4 liver suggesting that some 

of the glycolytic intermediates are exchanged with serine production at this time. 

Serine serves several important functions in the metabolism of rapidly growing cells 

(47), including its roles in the synthesis of proteins, phospholipids, cysteine, glycine 

and single carbon metabolism. Phospholipids are incorporated into the membranes and 

single carbon metabolism is essential to the formation of many different metabolites. 

The origin of the 3-phosphoglycerate fork may be explained by the enrichment 

for phosphoenolpyruvate at D4. Pyruvate kinase (PKLR) in the chicken is orthologous 

to human PKM1/2. In humans, proliferating cells frequently express the embryonic 

form of pyruvate kinase, which is responsible for the formation of pyruvate from 

phosphoenolpyruvate (48). The activity of PKM2 is responsive to allosteric regulators 

and post-translational modifications. In proliferating cells, PKM2 activity is inhibited, 

yielding elevated levels of phosphoenolpyruvate (seen at D4) and other glycolytic 

products (49). Some of these products may be diverted from pyruvate production to 

anabolic processes such as serine production or supporting nucleotide production via 
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the non-oxidative phase of the pentose phosphate pathway (PPP). Elevated levels of 

the TKT1 and PRPS2 transcripts in the D4 liver support enrichment for the non-

oxidative PPP phase. Alternative splicing of the PKM transcript produces PKM2. 

Based on what is known about PKM1/2 in humans, we hypothesize that in the 

chicken, PKLR is similar in both role and splicing. Our current analysis does not 

distinguish splice products, so investigation of the hypothesis of the potential role of 

PKLR in D4 glycolytic regulation awaits future work. 

Consistent with a hypoxic environment, metabolomic data indicates that the 

TCA cycle is suppressed in the D4 liver compared with D20. However, transcripts 

encoding enzymes functioning in the TCA cycle including Isocitrate Dehydrogenase 

3A (IDH3A), Dihydrolipoamide Dehydrogenase (DLD), and Fumarate Hydrolase 

(FH) are enriched at D4. Elevated IDH3A and DLD protein expression would reduce 

levels of α-ketoglutarate, a potent inhibitor of HIF1A activity (50). FH could function 

in the anaplerotic roles of glutamate, lysine, threonine and proline at D4. These amino 

acids would replenish the levels of oxaloacetate that is needed to react with acetyl-

CoA to yield mitochondrial citrate.  This mechanism is apparently seen when citrate is 

being actively transported from the mitochondria to support lipid synthesis (51). In 

addition, glutamate and threonine can be metabolized to Succinyl-CoA, an important 

precursor along with glycine to the synthesis of porphyrins.  

Another metabolic pathway enriched at D4 is the synthesis of polyamines, 

which are important to sustaining proliferation. This pathway can also explain the 

elevated levels of urea seen in the D4 chick.  While urea is the typical excretory 

product of nitrogen metabolism in mammals, very little is produced in the liver of 

chickens with most nitrogen waste disposed of as uric acid. However, urea is produced 
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as a byproduct of an early step in the synthesis of polyamines, the enzymatic 

conversion of arginine to ornithine by arginase (ARG2). Hence, we hypothesize that 

this is the origin of the elevated urea in the D4 compared with the D20 liver. 

By D20, the liver is apparently under normoxic conditions with the expression 

of HIF1A reduced compared to D4. TCA enzymes, mitochondrial processes including 

oxidative phosphorylation, and other oxygen-dependent metabolic pathways are also 

more active at D20. Comparison between the D20 and D4 transcriptome and 

metabolome provide evidence for significant metabolic reprogramming between the 

two days. By D20, glucose metabolism is enriched for transcripts and metabolites 

associated with phase 1 of the glycolysis pathway, with glucose-6-phosphate residing 

at a metabolic fork. Transcripts encoding enzymes associated with both glycolysis 

(HK3, GCK, PFKL, PFKM) and gluconeogenesis (G6PC and G6PC3) are enriched at 

D20. This is consistent with the need of the mature liver to capture glucose by 

phosphorylation, or export glucose during fasting for use by other tissues. The G6P 

can be converted to glucose 1-phosphate (enriched at D20) and stored as glycogen. 

Alternatively, G6P can be converted to 6-phosphogluconolactone, which is the first 

step of the pentose phosphate pathway. In fact, by D20 the pentose phosphate pathway 

has become enriched for components of the oxidative phase, likely increasing the 

production of NADPH to support the need for fatty acid synthesis and detoxification 

of compounds. Upregulation of glycolytic enzyme PFKL has also been linked to 

growth potential in broilers, with one study suggesting that this isoform may 

contribute to the rapid growth rate of maturing birds (18). 

In contrast to D4, TCA cycle metabolites are elevated at D20, possibly by 

translation of the enriched citrate synthase transcript. We hypothesize that the elevated 
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levels of citrate play a fundamental role in the metabolic reprogramming seen between 

D4 and D20. Citrate plays multiple roles as a metabolite and as a regulator of 

enzymatic activities. As a metabolite, it is the first component of the mitochondrial 

TCA cycle and can be exported to the cytoplasm and metabolized to support both 

nucleotide and fatty acid synthesis. As an enzyme regulator it serves as an indication 

of the energy state of the cell, becoming abundant at high ATP levels. Citrate inhibits 

the activity of phosphofructokinase (PFK) preventing the ATP synthesis phase of 

glycolysis, as is suggested in the D20 data. Citrate also serves as an activator of acetyl-

CoA-carboxylase (ACACA) (52), the first enzyme in the cytoplasmic synthesis of 

fatty acids. Although there was no measurable difference between D4 and D20 

ACACA levels, high levels of citrate would likely drive fatty acid synthesis in the D20 

liver. Another impact of a high citrate level that results in elevated malonyl-CoA is 

inhibition of CPT2 that is part of the lipid transport system that brings fats into the 

mitochondria for beta-oxidation. 

D20 transcriptome and metabolome data provide additional information 

relevant to fatty acid metabolism. Transcripts encoding enzymes driving 

mitochondrial fatty acid synthesis and those involved in beta-oxidation in both the 

mitochondria and peroxisome were elevated compared with D4. Peroxisomal beta-

oxidation is a major source of acetate that can be released from the liver for use by 

other tissues following conversion to acetyl-CoA (53,54). The D20 liver is enriched in 

glycerol-3-phosphate, an important metabolite in triacylglycerol synthesis.  The 

potential importance of triacylglycerol synthesis in the D20 liver is also supported by 

enrichment for transcripts encoding enzymes responsible for phosphatidate synthesis, 

which is essential for TAG production. Also enriched were transcripts encoding 
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phosphatidylcholine synthetic enzymes. In addition to its role in lipid membranes, 

phosphatidylcholine is a major component of very low-density lipoproteins, which are 

secreted from the liver to transport TAGs. 

2.4 Conclusions 

The liver of the modern broiler must meet the needs of rapid growth that has 

resulted from intensive genetic selection. Allometric comparisons indicate that the 

modern broiler liver reaches its maximum normalized size several days earlier than 

slower growing chickens. As slow growing and modern broilers are of similar size at 

hatch, this suggests that selection has compressed the positive allometric growth phase 

of the liver into the first week post-hatch.  The transcriptome and metabolome of the 

D4 liver indicate the tissue is undergoing rapid proliferation under hypoxic conditions 

with carbohydrate, lipid and amino acid metabolism primed to support this growth.  At 

D4, ATP is likely to be largely derived from glycolysis, the PPP is favoring 

production of nucleotide precursors and returning carbon backbones to glycolysis, and 

lipid biosynthesis appears to support fatty acid elongation, perhaps for membrane 

production in the proliferating cells. By D20, the liver is undergoing negative 

allometric growth and has transitioned from predominantly supporting its own 

proliferation, to supporting the metabolic needs of other tissues. Metabolic 

reprogramming has shifted the glycolytic pathway to the ATP investment phase 

allowing for rapid responses to either store or release glucose, the PPP now appears to 

be shifted towards producing NADPH to support anabolic reactions such as lipid 

production and lipid metabolism appears to have shifted to triacylglycerol production 

for lipid export. 
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Understanding the molecular and physiological changes occurring in post-

hatch broiler liver by exploiting high-throughput methods has broad utility.  A major 

research goal at the intersection of computation and biology involves understanding 

the strengths and limitations of different types of data, as well as the relationship 

between them. In any system, comparing knowledge gained from different types of 

high-throughput technologies can corroborate existing biology and generate new, 

testable hypotheses. Lastly, the chicken is a valuable, accessible, and well-supported 

model both in terms of research and infrastructure for studying the effects of genetic 

selection especially as it relates to metabolic efficiency. In this work we have 

developed a preliminary contrast of the liver at two time points representing critical 

biological differences in the modern broiler. Some of our observations recapitulate 

known biology and provides possible explanations for phenotypic characteristics and 

allometric relationships observed in the modern broiler. While hypoxia has a 

documented role in controlling embryonic development (55), the role of hypoxia in 

normal post-hatch or post-natal tissue development is not well characterized. A major 

future goal will be to build networks of interactions to better understand the regulation 

of this metabolic reprogramming as the growing chicken transitions from hypoxic to 

normoxic conditions. 

2.5 Methods 

2.5.1 Bird Husbandry, Necropsy, and Tissue Collection  

Day-old male Ross 708 chicks were obtained from a commercial hatchery 

(Mountaire Farms, Millsboro, DE) and grown on the University of Delaware Farm 

(Newark, DE). Standard management and husbandry procedures were followed, as 
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approved by the Animal Care and Use Committee of the University of Delaware 

(IACUC 72R-2017-0). On each even-numbered day post-hatch from Day 4 (D4) 

through Day 20 (D20), 12 birds were randomly chosen and humanely euthanized by 

cervical dislocation. Prior to euthanasia, birds were weighed and blood was drawn 

from the brachial wing vein for immediate i-STAT blood chemistry analysis using 

CG8+ cartridges. 200uL of blood was also collected in EDTA tubes on ice and then 

centrifuged to separate plasma for metabolome analysis. During necropsy, multiple 

tissues were systematically collected and snap frozen in liquid nitrogen. Select organ 

masses (heart, liver, breast muscle) and intestine segment lengths were also recorded. 

Liver was collected from the caudal portion of the left lobe, with an additional tube of 

tissue saved for metabolome analysis. Frozen tissues and plasma were subsequently 

stored at -80oF until further use.  

2.5.2 Analysis of phenotypic and i-STAT measurements 

Phenotypic measurements and i-STAT blood values were analyzed using JMP 

Statistical Software (JMP®, Version 14.0.0). Pearson correlations were calculated 

between all measurements. Hierarchical clustering was performed and a heatmap 

generated for visualization. Given the small sample sizes of each day (7 and 10), a 

Shapiro-Wilk test was used to test each variable distribution for normality. To assess 

statistical significance of the differences between the two bird age groups, tests were 

done to compare measures of center. A 2-sample t-test was conducted on each variable 

meeting normality criteria, while a non-parametric 2-sample Wilcoxon test was 

performed for each variable that did not (PO2, BE, Na). 
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2.5.3 Metabolome 

Frozen liver and plasma were shipped on dry ice to the UC Davis West Coast 

Metabolomics Center (Davis, CA) for untargeted metabolomics analysis. Primary 

metabolism analysis was done with gas chromatography-time of flight/mass spectrum 

(GC-TOF MS) and reported as peak heights normalized to mean total ion current 

(mTIC), or average total metabolome levels for each tissue. A total of 657 compounds 

were reported. 205 were identified by name, while 452 were assigned BinBase 

database identifiers. Analysis of metabolome data was done using Metaboanalyst (56–

58). Statistical analysis was performed on all samples (11 D4, 12 D20). Variables with 

very small values were considered to be non-informative and were detected and 

filtered using median intensity value. Remaining data was log transformed and Pareto 

scaled. Principal component analysis (PCA) and random forest were performed. 

Compounds that differed in level between bird age groups were identified by fold 

change and t-test, and visualized using a volcano plot. The volcano plot was generated 

using a log fold-change cutoff of 1, equal variances, and an adjusted p-value cutoff of 

0.1. Pathway enrichment analysis was done for each day separately using curated 

compound names. Compounds used were determined by t-test (adjusted p<0.05), 

resulting in 37 at D4 and 41 at D20.  Fisher’s Exact Test was used for 

overrepresentation, out-degree centrality, the Gallus gallus pathway library, and the 

default background. For KEGG Search and Color Pathways search (59), InChiKeys 

provided by UC Davis for each metabolite were matched with compounds with the 

same isotopes but varying stereochemistry using PubChem Identifier Exchange (60) to 

obtain KEGG Compound IDs. Thus, compounds would have the same mass to charge 

ratio but vary in structure, allowing for chemically similar forms of metabolite 

compounds (i.e. different conformations of sugars). 



 50 

2.5.4 Transcriptome 

Total and small RNA was isolated from each frozen liver sample using 

mirVana miRNA Isolation Kit with phenol (Thermo Fisher Scientific, AM1560) and 

DNAse treated using DNA-free DNA Removal Kit (Thermo Fisher Scientific, 

AM1906) according to the manufacturers’ protocols. After each step, RNA 

concentration and purity were tested using a NanoDrop spectrophotometer 

(NanoDropTM 1000, Thermo Scientific). Sample quality was further assessed at the 

University of Delaware Sequencing & Genotyping Center (Delaware Biotechnology 

Institute, Newark, DE) using an AATI Fragment Analyzer. Samples meeting a 

threshold of RNA Integrity Number (RIN) >= 7.0 were retained for library 

preparation. In total, 10 samples from D4 and 7 samples from D20 met the cutoff. 

cDNA libraries were prepared and indexed using Illumina TruSeq Stranded mRNA 

Library Prep Kit (Illumina, RS-122-2101) according to the manufacturer’s protocol. 

Final library concentration was assessed using Qubit dsDNA BR Assay Kit (Thermo 

Fisher Scientific, Q32850) and Qubit fluorometer 2.0 (Thermo Fisher Scientific). 

Libraries were pooled in groups of eight and paired-end sequenced at DBI on an 

Illumina HiSeq 2500 using one lane per pool and generating read lengths of 51 base 

pairs (bp). 

Fastq files were down-sampled to 15000 reads each using seqtk (61) to dilute 

any batch effect. Read quality was analyzed both before and after trimming using 

FastQC v0.11.7 (62). Trimming was done using TrimGalore v0.4.5/CutAdapt v1.16 

(63,64). Paired-end reads were mapped to Ensembl galGal6 (GRCg6a) (65) using 

splice-aware mapping software HiSat2 v2.1.0 (66) and converted to sorted bam files 

with SAMtools (67). Transcripts and gene abundance in both fragments per kilobase 

of transcript million mapped reads (FPKM) and transcripts per million (TPM) were 
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quantified with Stringtie v1.3.4d (68–70) using Ensembl reference annotation version 

95 (65). Raw counts were quantified with featureCounts v1.6.0 (71). 

Differential expression was performed using statistical software R DeSeq2 

package (72). DeSeq2 uses Benjamini-Hochberg (FDR) correction for multiple 

hypothesis testing to adjust p-values (73). Genes meeting significance threshold of 

adjusted p-value <0.05 from each method were compared for agreement, yielding 945 

genes more highly expressed in D4 and 1265 genes more highly expressed in D20.  

2.5.5 Ontology & pathway enrichment 

Differentially expressed genes (DEG) were analyzed for gene ontology and 

pathway enrichment analysis using DAVID 6.8 (27) and PANTHER (74,75). 

Significant DEG (adjusted p<0.05) for each day were converted to NCBI gene IDs 

using bioDBnet (76) and put into DAVID for ontology analysis. 1342 gene IDs were 

recognized for D4, and 1703 for D20. Default parameters were used, except for gene 

ontology categories, “FAT” was chosen rather than “Direct.” Ontology was also 

analyzed using official gene symbols to take advantage of the improved annotation 

quality for human genes. 1288 gene IDs were recognized for D4 by this method, and 

1495 for D20. Differentially enriched pathways were identified using KEGG (59), 

Reactome (77), and STRING (78).  

2.5.6 Principal component analysis 

Stringtie outputs gene abundance in transcripts per million (TPM). Genes were 

filtered, retaining those with values of at least 0.1 in 7 or more samples. Principal 

component analysis (PCA) was done using these 13117 genes and R packages 

FactoMineR (79) and factoextra (80).  
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2.5.7 Metabolic pathway analysis and interpretation 

The list of differentially expressed genes and differentially abundant 

metabolites were input to KEGG Search & Color pathway tool. KEGG Search & 

Color allows the input of lists of genes and/or metabolites, with coloring based on 

groupings specified by the user. NCBI gene IDs from all significant DEG (adjusted p 

<0.05, total 3065 genes) and KEGG compound IDs from metabolite analysis (243 

compounds) were used to search against Gallus gallus-specific pathways, with those 

more abundant at D4 colored yellow, and those more abundant at D20 colored red. 

Core metabolic pathways, including carbohydrate, lipid, and amino acid metabolism, 

were then visualized to identify specific areas of these pathways that were enriched in 

each day. After focusing on pathways and areas of interest, specific functions of 

differentially abundant genes and metabolites, in relation to metabolism and biological 

context, were researched and interpreted. 
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CORRELATION NETWORK ANALYSIS INTEGRATING 
TRANSCRIPTOME AND METABOLOME 

3.1 Background 

The comparison of D4 and D20 hepatic transcriptome and primary 

metabolome described in Chapter 2 generated multiple hypotheses and questions and 

identified important biological events such as metabolic reprogramming and 

expansion of the immune system. However, this perspective was limited due to the 

exclusion of intervening days and most of the metabolomic dataset. Thus, the aim of 

the next analysis was to involve data from the intervening time points, including liver 

transcriptome, and liver and plasma primary metabolome, to decipher more complex 

patterns throughout the time course. In particular, we wanted to identify features that 

differed significantly in abundance over the time course, cluster features into groups 

showing correlated patterns of abundance and association with physiological traits, 

and begin to develop a systems-biology perspective about how changes in the liver’s 

metabolism may be affecting the rest of the body. To accomplish this we chose an all-

inclusive correlation-based approach: Weighted Gene Correlation Network Analysis 

(WGCNA) (81). 

WGCNA is a computational method commonly used with expression data that 

clusters features into modules based on weighted pairwise correlations, and relates 

these modules to traits of interest. WGCNA is a powerful and highly interpretable 

method for dimension reduction, feature prioritization, and pattern identification that 

Chapter 3 
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lends itself to many types of downstream analysis. The clusters contain features with 

similar patterns of abundance, each represented by a module eigengene. Each feature 

is assigned to a module based on strength of module membership, or correlation with 

the module eigengene, and associated p-value. Highly interconnected features, both 

within and between modules, are considered to be important and may drive patterns in 

each individual module. Modules may represent features with closely-linked 

regulation, or in this analysis, those that are critical to liver function despite other 

fluctuations throughout the time course. The novelty of this analysis involved using 

WGCNA to integrate two types of high-throughput data, so special care was taken in 

data preprocessing to ensure features were as comparable as possible (see Methods). 

Additionally, the use of meaningful, computationally-driven clustering methods such 

as WGCNA can place unknown genes and unannotated metabolites in context by 

associating them with groups of genes and metabolites with known function.  

3.2 Results 

3.2.1 ANOVA  

Figure 10 shows principal component analysis (PCA) of primary metabolites 

by each tissue. 264 liver primary metabolites and 118 plasma primary metabolites 

were significantly different between at least two time points. The liver metabolome is 

more variable than the plasma metabolome, suggesting that throughout this time 

course, the liver is doing its job of buffering blood compound levels. Table 3 shows 

the top 25 compounds differing in each tissue along with the top 5 contrasts for each.  
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Figure 10: PCAs of Liver Primary Metabolites (left) and Plasma Primary Metabolites 
(right) showing clustering of birds by Day. The plasma was more tightly 
clustered than the liver, and there were fewer compounds that differed 
significantly between two or more time points, suggesting that the liver is 
buffering plasma compounds over the time course. 

Table 3: Top 25 compounds for each tissue that were significantly different between 
two or more time points. The top 5 contrasts are given, in decreasing 
order of magnitude, with the day exhibiting higher abundance appearing 
first. 

Liver Compound 
Adjusted 
p-value 
(FDR) 

Top Contrasts 

retinal <0.0001 4 - 10; 6 - 10; 4 - 12; 6 - 12; 8 - 12 
palmitoleic_acid <0.0001 10 - 20; 4 - 10; 6 - 10; 8 - 10; 4 - 12 

malic_acid <0.0001 16 - 10; 18 - 10; 20 - 10; 20 - 12 

fucose <0.0001 12 - 10; 14 - 10; 16 - 10; 18 - 10; 20 - 
10 

fumaric_acid <0.0001 16 - 10; 18 - 10; 20 - 10; 20 - 12; 18 - 
14 

adenine <0.0001 12 - 10; 14 - 10; 16 - 10; 18 - 10 
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Table 3 continued 

succinic_acid <0.0001 20 - 10; 20 - 12; 20 - 14; 20 - 16; 20 - 
18 

palmitic_acid <0.0001 4 - 10; 6 - 10; 8 - 10; 4 - 12; 6 - 12 
aspartic_acid <0.0001 20 - 10; 10 - 4; 10 - 6; 12 - 14; 12 - 4 

uracil <0.0001 10 - 16; 10 - 20; 4 - 10; 6 - 10; 12 - 20 
glucose-6-phosphate <0.0001 20 - 10; 20 - 12; 12 - 4; 12 - 6; 20 - 14 

threonic_acid <0.0001 12 - 10; 14 - 10; 16 - 10; 18 - 10; 20 - 
10 

myristic_acid <0.0001 4 - 10; 6 - 10; 8 - 10; 4 - 12; 6 - 12 
isoleucine <0.0001 12 - 10; 18 - 10; 6 - 10; 8 - 10; 12 - 14 

glycerol-alpha-
phosphate <0.0001 20 - 10; 10 - 4; 10 - 6; 14 - 12; 16 - 12 

hexose-6-phosphate <0.0001 20 - 10; 20 - 12; 12 - 4; 12 - 6; 20 - 14 
leucine <0.0001 12 - 10; 14 - 10; 18 - 10; 6 - 10; 8 - 10 

methanolphosphate <0.0001 20 - 10; 16 - 12; 20 - 12; 20 - 14; 14 - 4 

ribonic_acid <0.0001 14 - 10; 16 - 10; 20 - 10; 14 - 12; 16 - 
12 

1-monopalmitin <0.0001 10 - 18; 4 - 10; 6 - 10; 4 - 12; 6 - 12 
glucose <0.0001 18 - 10; 20 - 10; 10 - 4; 14 - 12; 18 - 12 
valine <0.0001 12 - 10; 18 - 10; 6 - 10; 8 - 10; 12 - 14 

fructose-6-phosphate <0.0001 12 - 10; 16 - 10; 20 - 10; 20 - 12; 12 - 4 
tyrosine <0.0001 12 - 10; 18 - 10; 10 - 20; 4 - 10; 6 - 10 

nicotinamide <0.0001 12 - 10; 14 - 10; 16 - 10; 18 - 10; 12 - 
20 

Plasma Compound 
Adjusted 
p-value 
(FDR) 

Top Contrasts 

threonic_acid <0.0001 14 - 10; 16 - 10; 18 - 10; 20 - 10; 14 - 
12 

cholesterol <0.0001 10 - 20; 14 - 12; 16 - 12; 18 - 12; 12 - 
20 

phenylethylamine <0.0001 14 - 10; 16 - 10; 18 - 10; 14 - 12; 16 - 
12 

retinal <0.0001 4 - 10; 4 - 12; 4 - 14; 16 - 20; 4 - 16 
4-hydroxybutyric_acid <0.0001 20 - 10; 8 - 10; 20 - 12; 8 - 12; 20 - 14 
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Table 3 continued 

hydroxylamine <0.0001 20 - 10; 20 - 12; 20 - 14; 20 - 16; 20 - 
18 

valine <0.0001 10 - 16; 10 - 18; 4 - 10; 6 - 10; 12 - 14 

glyceric_acid <0.0001 16 - 10; 18 - 10; 20 - 10; 16 - 12; 20 - 
12 

phenylalanine <0.0001 4 - 10; 6 - 10; 6 - 12; 6 - 14; 4 - 16 

mannose <0.0001 14 - 10; 16 - 10; 18 - 10; 20 - 10; 16 - 
12 

inosine <0.0001 10 - 20; 4 - 10; 4 - 12; 6 - 12; 8 - 12 
isothreonic_acid 0.0001 4 - 10; 8 - 10; 4 - 12; 8 - 12; 4 - 14 

putrescine 0.0001 4 - 10; 6 - 10; 8 - 10; 4 - 12; 6 - 12 
tocopherol_gamma- 0.0002 14 - 10; 10 - 20; 10 - 6; 10 - 8; 14 - 12 

3-hydroxybutyric_acid 0.0002 10 - 6; 10 - 8; 12 - 14; 12 - 20; 12 - 4 
myo-inositol 0.0003 16 - 10; 10 - 4; 14 - 12; 16 - 12; 12 - 4 
methionine 0.0003 20 - 10; 12 - 4; 12 - 8; 14 - 4; 14 - 8 

alanine 0.0003 20 - 10; 4 - 10; 6 - 10; 12 - 16; 20 - 12 
uric_acid 0.0003 10 - 20; 4 - 10; 8 - 10; 12 - 20; 4 - 12 

oxoproline 0.0005 14 - 10; 16 - 10; 20 - 10; 14 - 12; 20 - 
12 

phosphate 0.0006 12 - 10; 14 - 10; 16 - 10; 18 - 10; 20 - 
10 

glycyl_proline 0.0008 14 - 10; 16 - 10; 10 - 6; 14 - 12; 16 - 12 
conduritol-beta-epoxide 0.0009 10 - 18; 10 - 20; 4 - 10; 4 - 12; 8 - 12 

beta-alanine 0.0010 20 - 10; 20 - 12; 20 - 14; 20 - 16; 20 - 
18 

citric_acid 0.0018 16 - 10; 18 - 10; 20 - 10; 16 - 12; 18 - 
12 

 

3.2.2 WGCNA 

35 WGCNA modules were created, ranging in size from 33 to 2307 features. 

Of these, 11 contained both genes and metabolites, 18 contained only genes, and 5 

contained only metabolites. Many modules showed high correlation with physiologic 
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traits (Figure 11), but we chose to focus on four blood chemistry measures related to 

metabolism that showed fluctuations around D6 and D16 (Figure 12). All measures 

(pH, BE, HCO3, Glu) tend to increase with bird age and body mass, but show slight 

fluctuations in levels at one or more points during the time course, suggesting shifts in 

metabolism. Blood pH is a measure of acid-base balance, of which base excess (BE) 

and HCO3 represent the metabolic component. These two measures were noted in the 

previous analysis to be significantly different between D4 and D20, with little change 

in respiratory components of acid-base balance. Glucose (Glu) was chosen for its 

direct relation to the liver’s metabolism.  

12 WGCNA modules, summarized in Table 4, were selected for export to 

Cytoscape (82), containing a total of 946 features. Molecular Complex Detection 

(MCODE) is an algorithm that identifies subclusters within a network based on 

connectivity (83). When used on protein-protein interaction networks, it can identify 

groups that may identify complexes or pathways, but it also commonly used on 

WGCNA networks (84,85). Although WGCNA networks do not explicitly represent 

protein-protein interactions, the correlation-based clustering of features has powerful 

potential to identify functionally related groups of features, relate these to physiologic 

traits, and quantify network-based measures of relatedness based on the Topological 

Overlap Measure (TOM). MCODE identified 28 clusters within the Cytoscape 

network. While most genes and metabolites were segregated in separate clusters, there 

were several clusters containing features from multiple different WGCNA modules, 

and one containing both genes and metabolites. 
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Figure 11: Correlations of each module with physiologic traits. The modules, 
identified by the color bars on the left, represent clusters of features that 
exhibit synchronized patterns of abundance throughout the time course. 
The heat map shows correlation of each module eigengene (ME) with 
physiological traits, including organ masses and blood chemistry 
measurements. WGCNA modules were selected based on quality 
measures, functional enrichment, and correlation with four traits of 
interest: Blood pH, HCO3, BE, and Glu. 
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Figure 12: The metabolism-related blood chemistry measures that influenced 
WGCNA module choice, including pH, base excess (BE), bicarbonate 
(HCO3), and glucose (Glu). While many measures were strongly 
correlated with Body Mass and Day, these four measures showed 
fluctuations during the intervening days of the time course, suggesting 
they may be related to more subtle changes in metabolism. 

Table 4: Summary of 12 WGCNA clusters chosen for export to Cytoscape, along with 
notable enrichment and features. Hub feature is the feature with the top Module 
Membership value, or correlation with the Module Eigengene. 

WGCNA 
Cluster 

Total features, 
type Functional enrichment Other notable 

features Hub feature 

coral1 33 genes Metabolism GC, ADH5, 
SORD, PAH 

Autocrine Motility Factor 
Receptor (AMFR) 
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 Table 4 continued 

 

Table 4 continued 

floral 
white 67 genes 

Collagen 
biosynthesis, ECM, 
Protein digestion & 
absorption, PDGF 

binding, TGF 

LGALS1, 
FSTL1, 
TGFB3 

Serpin Family H 
Member 1 

(SERPINH1) - 
collagen 

biosynthesis 

honey 
dew1 

45 genes 
and 

metabolites 

Immunoglobulin, 
TCA & sugar 
metabolites 

JCHAIN, 
TCA &, 

carbohydrate 
metabolites 

Immunoglobulin 
lambda like 

polypeptide 1 
(ENSGALG00000

049450) 

ivory 
68 genes 

and 
metabolites 

Blood coagulation, 
Angiogenesis, 

Integrin signaling, 
Epithelial cell 
proliferation 

TGFBR3, 
VWF, HK1, 

aspartate 

Tyrosine Kinase 
With 

Immunoglobulin 
Like And EGF 
Like Domains 1 

(TIE1) - 
angiogenesis 

navajo 
white 54 genes Vasculogenesis FABP5 

Transmembrane 
Protein 204 

(TMEM204) - cell 
adhesion 

orange 
107 genes 

and 
metabolites 

AP-1 complex, gas 
transport/hemoglobin, 

PPAR signaling, 
immune (T cell, B 

cell, IL) 

FOS, JUN, 
PPARD, 
CTGF, 
CYR61, 
retinal, 
plasma 

putrescine, 
fatty acids, 
vitamin E 

Translocator 
Protein 2 (TSPO2) 

- cholesterol 
binding during 

erythrocyte 
maturation 



 62 

plum1 85 
metabolites 

Glutamine/glutamate 
metabolism, Amino 

acid metabolism 

Liver: 
lactamide, 
glutamine, 
erythronic 

acid lactone, 
glutamate; 

Plasma: 
phosphate 

Unidentified liver 
metabolite (120781) 

purple 
287 genes 

and 
metabolites 

DNA replication, 
Cell cycle, p53 

signaling, 
Pyrimidine 
metabolism 

E2F8, 
glucose, 

ethanolamine 

Nucleolar And 
Spindle Associated 

Protein 1 
(NUSAP1) 

saddle 
brown 

103 genes 
and 

metabolites 

Phosphatase and 
hydrolase (ester) 

activity, Response to 
insulin stimulus 

MYC, 
LPIN1, 

IGFBP1, 
LIPG, G6PC 

WT1 Associated 
Protein (WTAP) 

salmon4 55 
metabolites 

Glutamine/glutamate 
metabolism, Amino 

acid metabolism 

Plasma: 
lactamide, 
oxoproline, 
gluconate, 
galactonic 

acid, 
glutamine 

Unidentified plasma 
metabolite (208646) 

skyblue 105 genes 

Complement, 
immunity, EGFR, 

Acylglycerol 
metabolism 

DGAT2, 
CD48 

Cathepsin S (CTSS) 
- immune, ECM 

remodeling 

thistle1 
56 genes 

and 
metabolites 

Fatty acid 
metabolism, PPAR 
signaling, Insulin 
resistance, AMPK 

signaling 

GYS2, 
EGFR, 

IGFBP2, 
AGPAT4, 

Plasma fatty 
acids 

(palmitic, 
arachidonic) 

Carnitine 
Palmitoyltransferase 

1A (CPT1A) - 
mitochondrial 

oxidation of LCFA 
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3.2.3 Summary of selected metabolism-related WGCNA modules 

Each WGCNA module is formed around a Module Eigengene that represents 

the first principal component and summarizes the abundance profile of the features in 

the module. Each feature has a Module Membership value and associated p-value 

representing its correlation with the Module Eigengene. Features with very high 

Module Membership (>0.8) are most representative of the Module Eigengene 

abundance profile, and are considered hub features that are likely to be important, 

highly connected within the network, and may be drivers of other features in the 

module. The abundance profiles of the hub features for each of the 12 selected 

WGCNA modules are shown in Figure 13, and a summary of each of these modules is 

shown in Table 4. 

It is important to note that an unsigned WGCNA network was chosen for this 

analysis, due to the biological relevance of both positive and negative relationships 

between features and traits. However, this does complicate interpretation, as some 

features belonging to a cluster may have a negative Module Membership value, and an 

inverse relationship to the Module Eigengene and therefore traits. Features with 

weaker Module Membership correlations may also vary significantly from the 

abundance profile of the Module Eigengene. Without observing the Module 

Membership value, or the trend of the feature over time, it is impossible to tell this, 

and therefore it is important not to assume that a feature’s membership in a particular 

module is reflective of its abundance over time or correlation with a physiological 

trait. For this reason, WGCNA with an unsigned network is best used to select groups 

and features of interest, prior to downstream methods that can investigate specific 

trends and relationships.  
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Figure 13: Hub genes for 12 selected modules over time, in logTPM and scaled by z-
score. Correlations with Module Eigengene are shown next to feature 
name. 

3.2.4 Ontology enrichment of 12 WGCNA modules chosen 

The entire gene list with symbols matching human proteins (616 in total) and 

those matching chicken proteins (631 total) was dominated by ontology terms related 

to different stages of DNA replication and the cell cycle due to inclusion of the highly 

enriched purple module, which was also the largest containing 287 features. Other 

notable terms included those related to hypoxia detection, gas transport, fatty acid 

metabolism (especially triacylglycerol synthesis), vasculature development, T-cell 

differentiation, immune system development, bicarbonate transport, and collagen 
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biosynthesis. Top KEGG pathways were DNA replication and Cell cycle, with several 

signaling pathways (p53, FoxO, MAPK, PI3K-Akt), and two metabolic pathways 

(fatty acid degradation, protein digestion and absorption) also represented. 

3.2.5 Summary of MCODE clusters: 

The MCODE algorithm identifies densely connected regions within a network, 

that may be biologically interpreted as representing complexes or pathways (83). 28 

clusters were identified within the network of 12 selected WGCNA modules; these 

clusters are summarized in Table 5. Cluster 1, containing genes from the purple 

WGCNA module that was positively correlated with normalized liver mass (0.47), and 

negatively correlated with bird age and metabolic measures of interest, was highly 

interconnected and functionally enriched for DNA replication and Cell cycle related 

terms. It also contained three transcription factors (ZNF367, E2F8, TFDP2). E2F8 has 

roles in angiogenesis and polyploidization. TFDP2 and E2F8 form a complex that 

regulates progression from G1 to S phase in the cell cycle. The purple module also 

contained glucose, although it was not included in this cluster. 

Cluster 2 contained liver metabolites from the plum1 WGCNA module, which 

was positively correlated with NLM and negatively with metabolic measures of acid-

base balance. The plum1 module was mostly isolated in the WGCNA network, 

sharing one connection between liver metabolite ribonic acid and two liver metabolites 

from the orange module (fucose and 196279). Notable metabolites also in this module 

included dehydroascorbic acid, lactamide, glutamine, L-gulonic acid, and 

erythronolactone. 

Cluster 3 contained mostly genes from the thistle1 module, but also three from 

saddlebrown. The two modules had mostly opposite trait correlations, with 
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saddlebrown most negatively correlated with glucose, and thistle1 most positively 

correlated with pH and HCO3. The cluster was functionally enriched for fatty acid 

metabolism, PPAR signaling and AMPK signaling, containing multiple important 

genes noted in Chapter 2 to be differentially expressed between D4 and D20, and 

involved in both carbohydrate and lipid metabolism. It also contained several 

transporters and metabolic enzymes. There were multiple interesting first-neighbor 

connections between members of this module and those in other modules, including 

coral1, purple, ivory, saddlebrown, and thistle1. 

Cluster 4 contained genes from the skyblue module, which was positively 

correlated with HCO3 and BE. This cluster was mostly isolated, with no first neighbors 

from outside modules except for FGR (ivory module), an important regulator of 

immune cell migration and activation. The seed for this module was SLC2A6, a 

glucose transporter thought to regulate glycolysis in macrophages. The cluster itself 

was enriched for terms related to complement cascade, macrophage differentiation, 

and collagen. Cluster 14 also contained genes from the skyblue module, that were 

enriched for terms related to immune and Th1 cells, and included transcription factors 

TBX21 and IRF5. 

Cluster 5 contained genes from the coral1 module, which positively correlated 

with HCO3, BE, and pH, and negatively correlated with NLM. The cluster was 

enriched for metabolism, and genes contained in this module shared connections with 

Cluster 6 contained genes from the ivory, navajowhite2, and floralwhite modules, 

which were positively correlated with NLM and negatively with pH, HCO3, BE, and 

Glu. It was not strongly enriched for relevant ontology terms or pathways, according 

to String, but contained two transcription factors (ZNF521, ZNF423) and growth 
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regulator TGFBR3. Cluster 21 also contained genes from the ivory and navajowhite2 

modules, and was enriched for vasculature development and HIF1 signaling. Notable 

features included transcription factor GATA4, two genes involved in angiogenesis and 

vasculature development (TEK, EGFL7), and hexose kinase HK1. Features from this 

cluster were also highly connected with many others from the floralwhite, 

saddlebrown, ivory, and orange modules. GATA4 was connected with PDGFC. 

Cluster 8 contained genes from the honeydew1 WGCNA module, which was 

positively correlated with HCO3, BE, pH, and Glu, and negatively correlated with 

NLM. It contained almost entirely immunoglobulin-related genes, including JCHAIN. 

This cluster was fairly isolated, with three of its members sharing a connection with 

liver metabolite fumaric acid, also from the honeydew1 module. Overall, the 

honeydew1 module was enriched for glycolysis and the TCA cycle. Cluster 17 

contained multiple important TCA and glycolysis-related liver metabolites from the 

honeydew1 module, with malic acid as the seed. Other metabolites in this cluster were 

fumaric acid, H-6P, G-6P, F-6P, and GAP. Features in Cluster 17 were first neighbors 

with other metabolites from the honeydew1 module, including uridine, uric acid, 

succinic acid, two from the purple module (glucose, ethanolamine) and two from the 

orange module (adenine, inosine). 

Cluster 9 contained both genes and liver metabolites from the orange WGCNA 

module, which was strongly positively correlated with NLM, and negatively 

correlated with pH, HCO3, BE, and Glu. The seed for this cluster was liver metabolite 

retinal, and the cluster was enriched for gas transport and hemoglobin. Other features 

of interest were TSPO2, the hub feature for the orange module, which is involved in 

cholesterol binding and erythrocyte maturation, and metabolites (threonic acid, fucose, 
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adenine). First neighbors of these cluster members included ribonic acid (plum1 

module), H-6P & G-6P (honeydew1 module), and NCAPD2 (purple module), along 

with others from ivory, floralwhite, and saddlebrown. Cluster 28 contained three fatty 

acid metabolites from the orange module (stearic acid, palmitic acid, myristic acid), 

which are yolk-derived fatty acids noted in Chapter 2 to decrease from D4 to D20. 

Cluster 10 contained genes from the saddlebrown WGCNA module, which 

was the module most highly negatively correlated with Glu (-0.53). It was enriched for 

T-cell differentiation, and contained LPIN1, FOXP3, and PTPN2. Members of this 

cluster were mostly isolated, but shared connections with some features from the 

thistle1 cluster, including GYS2, CPT1A, and EGFR. The entire saddlebrown module 

was enriched for metabolism, specifically phosphatase and hydrolase activity, and also 

response to insulin stimulus, and contained multiple interesting genes (MYC, LPIN1, 

LIPG, G6PC), and the hub gene was tumor suppressor WTAP, which controls mRNA 

methylation, the cell cycle transition from G2/M phase, and likely also regulates 

splicing. Cluster 12 contained a different group of genes from the saddlebrown 

module, including IGFBP1, follistatin (FST), and LGALSL. One study found that in 

mice, knocking down hepatic FST affected glucose tolerance, regulation of hepatic 

glucose production by insulin, and thus may be a potential target for those controlling 

insulin resistance (Tao 2018). LGALSL encodes a galectin-like protein. Several other 

galectins were represented in the entire network, including LGALS1 (floralwhite), 

LGALS2 (orange), and LGALS3 (skyblue). LGALS1 in particular is involved in T-

cell regulation, innate immunity, apoptosis, and cell adhesion. IGFBP1 is an insulin-

like growth factor mainly expressed in the liver and responsible for binding IGF1 and 

IGF2, stabilizing them and regulating their interactions, and may also be related to 
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glucose tolerance. Cluster 24 also contained genes from the saddlebrown module, 

including a transcription factor involved in regulating glucose metabolism and aerobic 

glycolysis (FOXK1). 

Cluster 11 contained genes from the navajowhite2, floralwhite, orange, and 

ivory modules, which were mainly positively correlated with NLM and negatively 

with other measures. It was enriched for Collagen related terms, and protein digestion 

and absorption. Features of interest included a kinase involved in angiogenesis (TIE1), 

an FST-related gene thought to act on growth factors that regulate endothelial cell 

proliferation and differentiation (FSTL1), and TGFB3. 

Cluster 19 contained plasma metabolites from the salmon4 module, which was 

positively correlated with HCO3 and BE, and negatively correlated with NLM. Two 

metabolites of note were gulonic acid and lactamide. Notably, the same compounds in 

the liver also grouped together (plum1 module and Cluster 2). In each case, these 

metabolites had opposite correlations with the module eigengenes (lactamide positive, 

gulonic acid negative) but were very strongly related. 

Cluster 22 contained genes from the floralwhite, orange, and saddlebrown 

modules, which were mainly positively correlated with NLM and negatively with 

other measures. It was enriched for cell proliferation and MAPK signaling, and 

included transcription factor MYC, and PPARD.  

The metabolites lactamide and oxoproline showed strong relationships to each 

other within each tissue type: liver and plasma. These two metabolites occurred in the 

same WGCNA modules for each tissue (plasma – salmon4, liver – plum1). Glutamine, 

gulonic acid, and galactonic acid also occurred in these same modules, but with a 

negative module membership. The module containing liver metabolites (plum1) was 
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positively correlated with the chosen blood chemistry measures of metabolic interest 

(HCO3, Glu, pH, BE), while the module containing plasma metabolites (salmon4) was 

negatively correlated with these measures. 

Table 5: Summary of the network subclusters identified by MCODE algorithm, in 
order of decreasing size and score. Cluster seed is the feature with the 
highest connectivity within each cluster, indicating possible importance 
or regulatory role. 

MCODE 
Cluster 

Feature 
Type 

WGCNA 
modules Cluster Seed Functional 

enrichment 
Features of 

interest 

1 genes purple 

Centromere 
Protein Q 

(ENSGALG00
000016692) 

DNA 
replication, 
Cell cycle 

E2F8, TFDP2 

2 
liver 

metabo-
lites 

plum1 
Unidentified 

liver metabolite 
(47) 

None 

vitamin C, 
lactamide, 
glutamine, 

gluconic acid, 
erythronolac-

tone 

3 genes 
thistle1, 
saddle-
brown 

SLC25A47 
(Hepatocellular 

Carcinoma 
Down-

Regulated 
Mitochondrial 

Carrier Protein) 

Fatty acid 
metabolism, 

PPAR, AMPK 

ACSL1, 
GYS2, G6PC, 

EHHADH, 
HADHB, 
CPT1A, 
EGFR 
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Table 5 continued 

4 genes skyblue 

Solute Carrier 
Family 2 

Member 6 
(SLC2A6) 

Complement, 
macrophage 

differentiation, 
collagen, 

VEGF 
signaling, 
immune 

None 

5 genes coral1 

MFS domain-
containing 

protein 
(ENSGALG0000

0011579) 

Metabolism ADH5, PAH, 
SORD 

6 genes 

ivory, 
navajo-
white2, 
floral-
white 

Von Willebrand 
Factor (VWF) 

LDL, 
Coagulation 

TGFBR3, 
ZNF521, 
ZNF423 

7 
plasma 
metabo
-lites 

salmon4 
Unidentified 
metabolite 

(31460) 
None none, all 

unidentified 

8 genes honeydew 

Immunoglobulin 
Lambda Variable 

3-10 
(ENSGALG0000

0051167) 

Immune 
JCHAIN, 
immuno-
globulins 
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9 

genes, 
liver 

metabo-
lites 

orange retinal Gas transport, 
Hemoglobin 

TSPO2, 
retinal, 

threonate, 
fucose, 
adenine 

10 genes saddle-
brown 

Coenzyme 
Q10B 

(COQ10B) 

T-cell 
differentiation 

LPIN1, 
FOXP3, 
PTPN2 

11 genes 

navajo-
white2, 
floral-
white, 
orange, 
ivory 

Aquaporin 1 
(AQP1) 

Collagen, 
Protein 

digestion and 
absorption 

TIE1, FSTL1, 
TGFB3 

12 genes saddle-
brown 

Salt Inducible 
Kinase 1 
(SIK1) 

None IGFBP1, FST, 
LGALSL 

13 
liver 

metabo-
lites 

honeydew 

Unidentified 
liver 

metabolite 
(5990) 

None none, all 
unidentified 

14 genes skyblue 

T-Box 
Transcription 

Factor 21 
(TBX21) 

Immune, Th1 
cells TBX21, IRF5 

15 
plasma 
metabo-

lites 
salmon4 None none none, all 

unidentified 

16 genes 
floral-
white, 
ivory 

Proline And 
Arginine 
Rich End 

Leucine Rich 
Repeat 
Protein 

(PRELP) 

Endothelial 
cell 

proliferation 
and migration, 

ECM 

None 
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Table 5 continued 

17 
liver 

metabo
-lites 

honeydew malic acid 
(liver) 

TCA, 
Glycolysis 

Malate, 
Fumarate, H-
6P, G-6P, F-

6P, GAP 

18 genes skyblue 
Gasdermin 

A 
(GSDMA) 

Immune LGALS3 

19 
plasma 
metabo
-lites 

salmon4 gulonic 
acid None Gulonic acid, 

Lactamide 

20 genes ivory, navajo-
white2 None None ISYNA1 

21 genes ivory, navajo-
white2 

Lymphatic 
Vessel 

Endothelial 
Hyaluronan 
Receptor 1 
(LYVE1) 

Vasculature 
development, 

HIF1 signaling 

GATA4, 
TEK, HK1, 

EGFL7 

22 genes 
floral-white, 

orange, saddle-
brown 

Annexin 
A2 

(ANXA2) 

Cell 
proliferation, 

MAPK 
signaling 

MYC, 
PPARD 

23 genes purple None Cell cycle, 
DNA repair USP1 

24 genes saddle-brown 

Serine/ 
Threonine/
Tyrosine 

Interacting 
Protein 
(STYX) 

None FOXK1 
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Table 5 continued 

25 genes purple 

Ankyrin 
Repeat And 

LEM Domain 
Containing 1 
(ANKLE1) 

DNA repair None 

26 genes floral-
white None Collagen PDGFC 

27 genes saddle-
brown 

Lipase G, 
Endothelial 

Type (LIPG) 
None None 

28 
liver 

metabo-
lites 

orange stearic acid Fatty acids 
stearic acid, 

palmitic acid, 
myristic acid 

 

3.3 Discussion 

3.3.1 Purple module represents strong initial cell proliferation 

The hub gene for the purple module (NUSAP1, 0.96) gradually decreases with 

bird age, but shows peaks around D14 and D18, and was positively correlated with 

NLM (0.47). This module was highly enriched for transcripts involved in the cell 

cycle and DNA replication. Three subclusters were identified by MCODE (Clusters 1, 

23, 25). Three identified liver metabolites (glucose, pantothenic acid, ethanolamine) 

were in this module but negatively correlated, along with one plasma metabolite 

(methionine). Glucose, methionine, and ethanolamine are important in cell 

proliferation, while pantothenic acid increases glutathione levels to protect cells from 

oxidative stress (86). The inverse relationship of these metabolites with bird age and 
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robust cell proliferation may point to metabolic utilization during proliferation, or 

metabolic regulation of proliferation. 

Clusters of genes involved with cell cycle and DNA replication gradually 

decrease with bird age, but show peaks around D14 and D18, indicating possible 

periods of increased cell proliferation at these time points. Although this module did 

not show the strongest correlation with NLM, it may contain the main drivers and 

regulators of the liver’s overall growth. In Chapter 2, we noted that cell proliferation 

was increased at D4 when compared with D20. Additionally, the subcluster identified 

by MCODE (Cluster 1) was highly interconnected and likely represents a very robust 

group of genes responsible for the regulation of liver growth. Metabolites (liver: 

lysine, conduritol-beta-epoxide, urea, threonine; plasma: 2-Glyceryl monooleate, 

conduritol-beta-epoxide) show more weak associations, but may be important to cell 

proliferation, either as building blocks or signaling molecules. Without further 

experiments, there is little indication of which cell types are represented by this 

proliferation, but we hypothesize that the majority of early proliferation is occurring in 

hepatocytes and epithelial cells driven by HIF1a-upregulated angiogenesis, while later 

peaks at D14 and D18 represent proliferating populations of immune cells. 

As suggested in one study comparing liver growth in meat-type chickens with 

that in low-weight selected and a crossbreed (18), the liver in meat-type birds may 

proliferate mainly via hypotrophy from polyploidization rather than hypoplasia. The 

metabolic demands on meat-type birds that support increased growth potential could 

require this more efficient means of increasing cell volume and organ mass. 

Polyploidy is common in hepatocytes, and although its role is unknown, it has been 

proposed to confer a metabolic advantage (87,88). A critical transcription factor 
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stimulating polyploidization is E2F8, a member of the E2F family involved in 

regulation of cell proliferation and the cell cycle. They form complexes with another 

transcription factor, TFDP2, stimulating transcription of target genes. Both E2F8 and 

TFDP2 were present in the purple module and highly interconnected Cluster 1. 

Furthermore, RBL1, which regulates the effects of E2F on their targets, was also 

present in the purple module. MYC, which has also been shown to promote 

polyploidization in liver cells (89,90), was part of the saddlebrown module and 

decreased with bird age. Thus, early liver growth via polyploidization is supported in 

our data, and could confer a metabolic advantage to broilers during this period of 

increased cell proliferation. Cluster 1 may represent a tight group of genes whose 

function is to ensure the proliferation of cells critical to liver function and metabolism, 

indicating an effort to establish the liver’s identity early on. Later peaks in these genes 

may be associated with other cells proliferating, especially immune. Glucose, also 

included in the purple module but with a gradually increasing trend with age, is critical 

in cell proliferation (91). Features within Cluster 1, those unclustered in the purple 

module, and those showing connections with other modules warrant further 

investigation to determine if their correlative relationships fluctuate at different points 

in the time course, suggesting possible regulatory changes. 

3.3.2 Saddlebrown – linking metabolic changes with other functions 

The saddlebrown module had the highest negative correlation with blood 

glucose (-0.53); the hub gene for this module (WTAP, 0.88) decreases very gradually 

with bird age, showing a slight peak at D18. This module contained genes involved in 

carbohydrate or lipid metabolism (LPIN1, LIPG, G6PC, HK1), cell proliferation 

(MYC, GADD45B) and two plasma fatty acid metabolites (palmitoleic and linoleic 
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acid). Several of these features were noted in Chapter 2 to be differentially expressed, 

an important indicator of metabolic reprogramming: G6PC was upregulated at D20, 

LPIN1 and LIPG were upregulated at D4. While these the patterns in abundance are 

likely recapitulating trends related to diet and maturing metabolism, as described in 

Chapter 2, the saddlebrown module goes further and attaches other features to these 

trends. In this way, these changes associated with metabolic reprogramming are 

related to more finely-tuned regulatory mechanisms or biological processes over the 

time course. The subclusters identified by MCODE (Clusters 3, 10, 12, 22, 24, 27), 

support this, as each had differing enrichment, possibly representing different 

functional groups contained in this module. 

3.3.3 Cluster 3 - regulation of carbohydrate and lipid metabolism during 
metabolic reprogramming 

Cluster 3 was the largest and highest-scoring group containing saddlebrown 

features. It was predominately comprised of features from the thistle1 module, but 

included three from saddlebrown (SLC25A25, G6PC, NCALD). Both modules 

showed slight fluctuations over the time course, but had contrasting overall trends and 

trait correlations. The seed for the module was a mitochondrial transporter 

(SLC25A47) whose substrate and mechanism is unknown, but is downregulated in 

hepatocellular carcinoma (92). It is thought to be a liver-specific uncoupling protein 

causing proton leak (or incomplete coupling of oxygen with ATP) that may help 

regulate the production of reactive oxygen species (93). Several other transporters 

were present in Cluster 3, including a mitochondrial adenine and phosphate carrier 

(SLC25A25), a mitochondrial coenzyme A transporter (SLC25A42), one responsible 

for cellular phosphate uptake (SLC20A2), a urate exporter (ABCG2), and one 
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catalyzing bidirectional transport on multiple types of monocarboxylates including 

lactate, pyruvate, ketone bodies, and derivates of branched-chain amino acids 

(SLC16A5). SLC16A5 was noted in Chapter 2 for its ability to export alternative 

energy sources for utilization by the rest of the body, ensuring the liver’s own supply 

of glucose. Two genes were related to glucose homeostasis (GYS2, G6PC). GYS2, the 

rate limiting enzyme in glycogen synthesis, is transcriptionally regulated by PPARs 

(94). EGFR was also present, epidermal growth factor receptor with critical roles in 

cell proliferation. EGFR has been noted in cancer types for its regulation of 

metabolism, specifically glucose and glutamine utilization (95–97). Glucose-6-

Phosphatase (G6PC) converts glucose-6P to free glucose for release into the 

bloodstream, and was noted in Chapter 2 for being upregulated at D20, a hallmark of 

maturing liver metabolism. Multiple genes in Cluster 3 were related to fatty acid 

metabolism: a carnitine palmitoyltransferase preparing fatty acids for mitochondrial 

uptake (CPT1A), an acyl-coA synthetase activating fatty acids (ACSL1), 

multifunctional enzymes involved in several steps of beta-oxidation (EHHADH, 

HADHB), an acyltransferase involved in lipid synthesis (AGPAT4), a peroxisomal 

acyl-coA oxidase (ACOX1), an acyl-coA dehydrogenase (ENSGALG00000008040), 

and a short-chain dehydrogenase (DHRS3).  

Features in Cluster 3 that were first neighbors with those in other modules also 

suggest changing relationships over the time course, and warrant further investigation 

to determine how these correlations fluctuate in a time-dependent way. Among these 

were several genes encoding enzymes from the coral module and Cluster 5: one 

converting sorbitol to fructose (SORD), a triglyceride lipase (AADAC), a phosphatase 

(LHPP), a phenylalanine hydroxylase (PAH), an alcohol dehydrogenase (ADH5), and 
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an acyl-coA synthetase (ACSF2). First neighbors from the saddlebrown module 

included two plasma fatty acid metabolites (palmitoleic acid and linoleic acid), two 

genes from Cluster 12, discussed below, with roles in regulating metabolism and 

hepatic stellate cell proliferation (IGFBP1, FST), and two metabolic kinases (PDK4, 

PCK1). Also related was a growth regulator from the ivory module and cluster 21 

(TGFBR3). 

3.3.4 Cluster 12 represents control over HSC proliferation 

Cluster 12 contained several notable genes (SIK1, IGFBP1, FST, LGALSL, 

CHAC1), that together may represent regulation of glucose metabolism, and control 

over proliferation and activation of different cell types. These genes were most 

abundant at D4, decreasing with bird age but showing small increases around D8 and 

D16. The seed for this cluster, SIK1, regulates hepatic lipogenesis through 

phosphorylating SREBP-1c (98) and also gluconeogenesis through suppressing 

gluconeogenic genes (99). IGFBP1 and FST may have roles in metabolically 

regulating the type of growth occurring. IGFBP1 regulates IGF 1 and 2, growth factors 

with known roles in growth and development. IGFBP1 can either inhibit or stimulate 

these effects, although it has been shown to promote cell migration. Follistatin (FST) 

has been linked to glucose tolerance in mice with metabolic abnormalities (100). 

Another study found that FST, through inhibiting activin, controls the proliferation of 

hepatic stellate cells and prevents hepatocyte apoptosis, thereby controlling hepatic 

fibrogenesis (101). The abundance of FST and IGFBP1 may control hepatic stellate 

cell proliferation and activation, to regulate ECM deposition and cell migration. 

LGALSL encodes a galectin-like protein (GRP). CHAC1 degrades glutathione and 

promotes apoptosis (102). Hepatic stellate cells have many roles, including storage of 
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vitamin A when quiescent (103), stimulating the proliferation of hepatocytes and other 

liver cells in response to energy, producing extracellular matrix (104), and hypoxia-

sensing (105). When activated in response to liver injury, they release vitamin A and 

contribute to fibrogenesis. FST, and FSTL1 as discussed below, may be mediating 

hepatic stellate cell activation and proliferation to control inflammatory processes and 

expansion of the immune system.  

Cluster 22 contained genes from floralwhite, orange, and saddlebrown 

modules, including two with regulatory roles in metabolism and cell proliferation 

(PPARD, MYC). MYC is a transcription factor involved in cell proliferation, and is 

involved in normal liver growth but also hepatocyte proliferation during regeneration, 

where it promotes the transition from G1/G0 to S phase (89). Metabolically, MYC has 

been shown to directly target and upregulate almost all glycolytic genes (96,106), 

while PPARD, widely known as a regulator of lipid metabolism through PPAR 

signaling, also directly regulates rate-limiting glycogen synthase GYS2 (94). GYS2 

was related to the saddlebrown module through cluster 3. EGFR, also related to the 

saddlebrown module through Cluster 3, may affect glycolysis through its regulation of 

the MYC pathway; inhibition of EGFR was shown to decrease glycolysis in cancer 

cells (96). GADD45B, although unclustered, is also involved in hepatocyte 

proliferation, serving protective functions to promote cell survival and proliferation 

during different types of growth (107). The sustained but more gradual decrease of 

MYC and GADD45B, in contrast with the sharper drop in the purple module strongly 

linked to cell cycle and DNA replication, may represent a more steady, prolonged 

regulation of liver cell proliferation once the initial liver growth and establishment of 

the organ’s functions has reached a critical threshold. 
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Four clusters (10, 12, 24, and 27) contained only genes from the saddlebrown 

module. Cluster 10 contained three genes associated with T-cells (FOXP3, PTPN2, 

CYLD) as well as one involved in multiple steps of fatty acid metabolism (LPIN1). 

This cluster may be related to lipid metabolism during development of T-cells. It also 

contained WTAP, a tumor suppressor and hub gene of the saddlebrown module. 

Cluster 24 contained endothelial lipase G (LIPG), involved in fatty acid metabolism, 

and also FOXK1, a transcription factor critical to metabolic reprogramming that 

promotes aerobic glycolysis through its upregulation of multiple glycolytic enzymes 

(108). 

3.3.5 Regulation of oxygen homeostasis 

The orange module was most strongly correlated with NLM (0.6), and 

negatively with other measures. Its hub gene (TSPO2, 0.88) showed a steady decrease 

with bird age. MCODE identified three subclusters from the orange module with 

differing functional enrichments including cell proliferation (Cluster 22, discussed 

previously), and fatty acids (Cluster 28). A number of other notable features were 

unclustered (PODXL, EZR, FOS, JUN). FOS and JUN make up the multi-functional 

AP-1 complex. PODXL and EZR are known markers for progression of some cancer 

types because of their associated with migration and morphogenesis (109). EZR was 

first neighbors with transcription factor E2F8 from the purple module.  

 Cluster 9 was the strongest MCODE subcluster containing orange features, 

and includes both genes and metabolites. The seed of this cluster was liver metabolite 

and antioxidant retinal, which was most abundant at D4, decreased steadily until D12 

and then remained fairly constant until D20. The presence of retinal may be related to 

mediating oxidative stress, however one study found that while vitamin C and E may 
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have protective roles, vitamin A in particular increased erythropoietin production, and 

also may increase levels of HIF1A (110). Cluster 9 contained genes encoding for 

multiple components of hemoglobin (HBE1, HBM, HBA1, HBBA) and also 

erythrocyte-related genes (TSPO2, RHAG, EPB42, SLC4A1, ANK1). Four of these 

(SLC4A1, RHAG, EPB42, ANK1) are erythrocyte membrane components, with 

SLC4A1 involved in anion transport and RHAG involved in transport of ammonia. 

TSPO2 and is involved in cholesterol metabolism during erythrocyte differentiation 

(111). Three of the metabolites (threonic acid, fucose, adenine) were inversely related 

to the module eigengene, increasing gradually with bird age. This cluster may 

represent an increased population of erythrocytes in the liver during early post-hatch 

growth, that decreases with bird age. This could point to mechanisms regulating 

oxygen homeostasis that are especially critical during the first week post-hatch, when 

an increased rate of cellular proliferation is occurring. Controlling oxygen levels may 

serve in stabilizing the hypoxia response, or may be related to mediating oxidative 

stress through increased binding of reactive oxygen species. The biological importance 

of this is discussed further in Chapter 4, which corroborates the relationship of 

hemoglobin, erythrocytes, and oxidative stress to normalized liver mass. 

3.3.6 Clustering of metabolites identify possible relationships 

Most metabolites clustered separately in MCODE analysis, likely due to 

unavoidable differences in feature scale. However, even metabolite-only clusters show 

biological relationships, recapitulating known function and also suggesting the power 

of this method to infer unknown relationships or classify unidentified compounds by 

relation to known metabolites. For example, gulonic acid and lactamide were two 

metabolites that were strongly but oppositely related in both liver and plasma; they 
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occurred together in both WGCNA module and MCODE cluster. Gulonic acid is an 

intermediate of pentose and glucuronate interconversions and ascorbate metabolism, 

while lactamide is derived from lactic acid. Lactamide also occurred in the same 

module as oxoproline, both for liver and plasma. Oxoproline is an amino acid 

derivative associated with glutamine and glutathione metabolism. 

Another example is the plum1 module, made up of all liver metabolites, and 

positively correlated with NLM. The hub metabolite for this module (Unidentified – 

120781, 0.98) decreases gradually with bird age, with several small peaks. About half 

of plum1 features grouped into MCODE Cluster 2. Most of these were unidentified, 

but several were identified including dehydroascorbic acid, lactamide, glutamine, L-

gulonic acid, and D-erythronolactone. Dehydroascorbic acid and L-gulonic acid are 

both involved in ascorbate metabolism. Dehydroascorbic acid is the oxidized form of 

Vitamin C (ascorbic acid), and is transported by glucose transporters where it is 

reduced in normal cells (112,113). One study suggested that the liver’s role in 

recycling dehydroascorbic acid and releasing could be important in maintaining 

plasma levels of ascorbic acid, and dealing with oxidative stress (114). The levels of 

dehydroascorbic acid and ascorbic acid increased gradually with bird age, while levels 

of these metabolites in plasma did not change appreciably, possibly demonstrating the 

liver’s role in buffering plasma levels. The juxtaposition of these known metabolites 

alongside unknowns may help with the prioritization of these compounds for 

subsequent identification and research into function, and may inevitably represent 

biomarkers. 
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3.3.7 Rise of B-cells is concurrent with increased carbohydrate availability 

The honeydew module was characterized by gradual increase with bird age, 

and contained many metabolites, including a group of carbohydrates and TCA 

intermediates (Cluster 17) and a group of immunoglobulin-related genes (Cluster 8). 

Cluster 8 likely represents an increase in antibody-producing B-cells in the liver. 

Mature liver harbors many types of immune cells, which serve a variety of functions 

including protection against pathogens, triggering local or systemic immune response, 

and tissue-sensing roles such as identifying inflammation or injury (115,116). Young 

broilers still benefit from maternal antibodies contained in the yolk remnant, but this is 

gradually depleted within the first week post-hatch, so the liver must begin developing 

its own immune system, both recruiting non-resident cells and allowing resident cells 

to proliferate. The gradual increase in this cluster of immunoglobulin-related genes 

may be stimulated both by the depletion of maternal antibodies and the consumption 

of oral nutrition.  

The metabolites present in the honeydew module may be related to immune 

cell metabolism, but are likely a coincidence of similar trends. The increase in 

carbohydrates and TCA metabolites as the birds age, first noted in Chapter 2, is 

representative of both the liver’s maturing metabolism and increased reliance on a 

carbohydrate-based diet. Cluster 17 contains phosphorylated sugars (H-6P, G-6P, F-

6P) glycolysis intermediates (glycerol-alpha-phosphate) and TCA intermediates 

(fumarate, malate). Immune cells do undergo metabolic reprogramming upon 

activation (117,118). Although liver metabolite succinate was also contained in the 

honeydew module, and is associated with this metabolic reprogramming (119), there 

are no other signs indicating robust activation of immune cells. However, immune 

cells depend on glucose for proliferation, and activation of immune cells increases 
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glucose metabolism (120,121), suggesting a possible metabolic control over the 

proliferation of immune cells in the liver. HIF1A controls a number of different 

functions in immune cells through its effects on metabolic genes (122), and is also 

known as the main regulator of metabolism in B-cells, while MYC is the main 

regulator of transcription (123). 

3.3.8 Clusters facilitating and indicating hepatic expansion of immune system 

The skyblue module hub gene showed only subtle fluctuations throughout the 

time course (CTSS, 0.92), yet this module contained three highly connected regions 

identified by MCODE and enriched for immune-related terms including differentiation 

and migration. CTSS is a protease expressed by a number of immune cells, but has 

roles in regulating inflammation and also contributing to extracellular matrix (ECM) 

remodeling (124). CTSS was part of Cluster 4, along with genes related to 

macrophages (SLC2A6, NRROS), T-cells (BTK, HCLS1), cell migration (MERTK, 

FUT7, FES, CD48, PLCG1, CCL24, ANG, BIN2), and collagen (C1QC, C1QA, 

C1QB). The cluster seed was SLC2A6, a lysosomal glucose transporter affecting 

glycolysis in macrophages (125). Cluster 14 contained a chemokine 

(ENSGALG00000014585), an interferon regulatory factor (IRF5) and was driven by 

transcription factor TBX21. TBX21 is a T helper cell-specific gene involved in 

development. Cluster 21 also contained macrophage-related genes (CSF1R), an 

interleukin receptor (IL21R). Overall, the skyblue module may represent regulation of 

immune cell expansion in the liver that takes over once the liver cells have completed 

their initial rapid burst of proliferation.  

Clusters 6, 11, 21, and 26 contained features from mixed WGCNA clusters, 

mainly navajowhite2, floralwhite, ivory, and orange. Except for the orange module, 
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which showed a strong decreasing trend with bird age, these modules exhibited subtle 

fluctuations. Together, these clusters were enriched for collagen-related terms, 

coagulation, PDGFC binding, and angiogenesis, suggesting roles in liver structural 

formation and core functions. In Cluster 11, two genes were related to vascularization: 

TIE1 plays an important role in angiogenesis through inhibiting angiopoetin 1, while 

FSTL1 promotes endothelial development (126). FSTL1, similar to FST in Cluster 8, 

is also known to suppress proliferation of hepatic stellate cells (127)s. One metabolic 

gene present in the ivory module and Cluster 21 was hexokinase HK1, which showed 

decreasing expression with bird age, and is predominately expressed in erythrocytes 

(128). These clusters of features, along with those in skyblue, likely represent a 

plethora of functions that occur once the main burst of liver cell proliferation is 

slowing. The enrichment of collagen and ECM-related genes, along with those related 

to immune cell migration, proliferation, and differentiation, suggest that the liver is 

being structurally prepared for immune cell expansion and colonization. 

3.3.9 Regulation of glucose availability plays a greater role in liver development 

In Chapter 2, we described metabolic reprogramming between D4 and D20 

post-hatch. We hypothesized that HIF1A is regulating carbohydrate metabolism to 

allow increased cell proliferation under oxygen-limited conditions, causing a Warbug-

like effect at D4, and contrasting with upregulated TCA cycle and mature liver 

metabolism at D20. We also proposed the metabolic conditions at D4 may lead the 

liver to conserve glucose and glycolytic intermediates for its own needs, releasing 

alternative energy sources such as lactate and short-chain-fatty-acids for use by the 

rest of the body. Glucose uptake increases from hatch in young birds, as the 

gastrointestinal system develops, absorptive capabilities increase, and the birds 
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consume a carbohydrate-rich diet (7). The maturation of liver metabolism, increased 

availability of carbohydrate nutrients, and release from hypoxia is evident in 

metabolism at D20. The metabolite and blood chemistry data across the time course 

support this as well: both blood and liver glucose gradually increase with bird age. The 

increases in glycolysis, gluconeogenesis, and glycogen metabolism noted at D20 also 

support the abundance of carbohydrate nutrients, and the liver’s enhanced ability to 

release or store excess nutrients. However, regulation of glucose availability may play 

an even more critical role in growth of the liver than previously thought.  

Glucose is crucial in cell proliferation, and as an energy source in anaerobic 

glycolysis observed at D4. HIF1A promotes this, allowing for ATP production and 

also stimulating angiogenesis to prepare the liver for eventual aerobic metabolism. 

The shift in metabolism, however, may not indicate reaching a threshold of 

vascularization and oxygen availability, but instead a coordinated mechanism of 

metabolic regulation that frees up carbohydrate resources to allow another critical 

process to occur: proliferation of the immune system. We hypothesize that HIF1A and 

other factors regulating metabolism in the liver play a multifaceted role in keeping the 

immune system, especially inflammatory processes, under control until the liver’s 

identity is established. 

3.3.10 Benefits and challenges of WGCNA as a method for data integration 

The identification of modules of correlated features, and relation to measured 

traits with WGCNA is a powerful tool for dimension reduction and feature 

prioritization, but can still yield modules that are unwieldy or difficult to interpret. 

Visualizing the network, with nodes representing features and edges representing the 

strength of the relationship between their abundance profiles (based on TOM), 
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exposed closely related features both within and across modules. The use of the 

MCODE algorithm in conjunction with this provides a way to reduce these groups 

even further by analyzing the connectivity of the network itself, identifying highly-

connected subclusters that may represent biological pathways or complexes. 

Computationally predicted relationships do not always hold true to biological 

meaning, however in this analysis there were many examples where they did. For 

example, Cluster 8 contained JCHAIN, and almost entirely immunoglobulins. Similar 

effects were observed with metabolites, such as Cluster 17 which contained TCA 

metabolites and sugars. The ability of these algorithms to identify related biology adds 

confidence when extrapolating to genes and metabolites of unknown function, and 

hints at possibly novel relationships. WGCNA modules, the WGCNA network edges, 

and MCODE clusters provide multiple ways to locate unknown genes and metabolites 

in context of potential biological functions, by relating them to those with known 

function. 

WGCNA is typically used on one type of data, as it can be highly sensitive to 

variation including sample outliers and differences in feature scale. Even when using 

with purely transcriptome data, great care must be taken to normalize, remove batch 

effect and other unwanted sources of variation. Therefore, a major challenge in this 

analysis was appropriate normalization and scaling of the disparate metabolome and 

transcriptome datasets, in preparation for integration. Although differences in feature 

scale could not be entirely removed, the fact that many WGCNA modules contained 

both genes and metabolites was indicative of the success of this scaling. Additionally, 

functional enrichment and biological interpretation provided further support for the 

validity of the modules. As the ability of the methods to identify biologically 
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meaningful relationships has been established, future analyses will explore different 

types of networks such as signed networks. Additionally, WGCNA will be done 

separately on transcriptome and metabolome to examine relationships that may have 

been missed by shortcomings in the feature scaling methods or noise due to integration 

of different data types. As WGCNA was done mainly for data integration and a means 

of feature selection based on biological knowledge, it was considered an exploratory 

analysis in this work. 

3.4 Conclusions 

WGCNA integrating liver transcriptome, and liver and plasma primary 

metabolome yielded a plethora of information about clusters of features with 

coordinated abundance profiles across the time course, and additionally linked some 

of these with interesting physiologic traits, including body mass, normalized liver 

mass, and blood chemistry measurements. WGCNA, along with MCODE, also 

demonstrated the ability to identify biologically related groups of features from 

correlations. Many other clusters and relationships were not investigated, but there is 

great potential in these methods and results generated by the current analysis to 

explore the dataset even further, and many opportunities for downstream methods that 

can help to characterize the nature of these relationships in the context of regulatory 

networks or modeling. 

This analysis built on hypotheses from Chapter 2, the comparison of D4 and 

D20 liver transcriptome and liver primary metabolome, and contributed to our 

understanding of the complex fluctuations occurring as the liver develops. In 

particular, it provided further evidence that control of metabolism by hypoxia at D4 

not only ensures efficient energy production during rapid tissue growth, but plays a 
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critical regulatory role in proliferation of the immune system. Maintaining hypoxic 

regulation of metabolism in early post-hatch growth allows liver cells to proliferate 

and sequester glucose. After the first week post-hatch, the liver’s metabolism shifts to 

a more mature state marked by upregulation of the TCA cycle, gluconeogenesis, and 

glycogen metabolism. This transition, likely driven by the liver reaching a threshold of 

mass or metabolic functionality, along with increased availability of glucose due to 

dietary carbohydrates and improved absorption, is a metabolic trigger for the rise of 

the immune system in the liver. Proliferation and tissue health during the first week 

post-hatch is protected by several mechanisms: regulation of glucose supply and 

utilization, regulation of oxygen availability, and increased factors combatting 

oxidative stress. Hypoxia and other mechanisms suppress inflammation and 

proliferation of cell types such as hepatic stellate cells.  

3.5 Methods 

3.5.1 Transcriptome and metabolome preprocessing 

Preprocessing and normalization of datasets, in preparation for integration, was 

done according to recommendations by WGCNA package authors (81), in particular 

to minimize noise and sample-sample variability, stabilize variance, and scale features. 

This was considered highly important due to integration of different data types 

(transcriptome and metabolome) that were on different scales. 

Transcriptome samples were rigorously filtered for quality, including 

correlation within day groups and rest of dataset; 99 samples were retained. 

Transcriptome data was filtered to include genes with expression of at least 0.1 TPM 

in at least 10 samples, and then by interquartile range (IQR) to retain genes in the top 
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75% of variance, retaining 11261 genes. Batch effect correction using sva/combat was 

not elected for transcriptome, as samples were not appropriately randomized, and to 

avoid introducing confounding bias. 

Primary metabolome samples from liver and plasma were filtered separately to 

exclude those present in less than 4% of samples for each tissue, retaining 532 liver 

compounds and 521 plasma compounds. Filtering was then done separately for each 

organ using Metaboanalyst (56–58): by median to exclude metabolites with very small 

values, and IQR to exclude those with near-constant values. 399 liver and 391 plasma 

metabolites were retained. Transcriptome, primary liver metabolome, and primary 

plasma metabolome datasets were merged by overlapping samples, for a total of 83 

samples and 12051 features. Combined dataset was variance-stabilized by log2(x+1) 

transformation, and features scaled and centered by conversion to z-scores. 

Transcriptome and metabolome data was combined in a meta-analysis, as there were 

not enough replicates per time point to generate individual networks for comparison. 

3.5.2 ANOVA of liver and plasma metabolome 

Statistical analysis was done using Metaboanalyst on each tissue (liver and 

plasma) separately after filtering described previously: Pareto normalization (mean-

centering, then dividing by the square root of standard deviation for each metabolite), 

followed by PCA. Parametric ANOVA was done using adjusted p-value cutoff (FDR) 

of 0.05, and Fisher’s Least Significant Difference (LSD) for post-hoc analysis, to 

identify metabolites that were significantly different in abundance between at least two 

time points.  
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3.5.3 Integrated WGCNA and network analysis using MCODE 

WGCNA analysis was done in R using WGCNA package (81). 12 outlier 

samples were removed based on hierarchical clustering of samples, after visual 

inspection and choosing a cutoff, which led to greatly improved scale-free topology. 

Scale-free topology (>=0.8) was met and used to choose a soft threshold of 9. The 

network was generated step by step, beginning with calculating a similarity matrix 

using median-based biweight midcorrelation for robustness to outliers. The adjacency 

matrix and topological overlap matrix (TOM) were calculated from this using the soft 

threshold power and unsigned option, due to interest in both positively and negatively 

correlated features. Module assignment parameters were as follows: minimum module 

size of 30, and deepSplit of 3. Module merging was then performed using a module 

eigengene (ME) dissimilarity threshold of 0.15, corresponding to correlation of 0.85, 

and yielding 35 modules ranging in size from 33 to 2307 features. Quality of modules 

was evaluated by module size, biological enrichment, quality of feature module 

membership. Modules were selected for further analysis by overall quality, biological 

interest, and containing both gene and metabolite features. 12 modules were selected 

based on correlation with pH, HCO3, Glu, and BE and connectivity (from TOM) 

exported for Cytoscape (82) using a cutoff threshold of 0.02, for a total of 946 

features. Network analysis, including identification of densely connected regions 

representing subnetworks, was done using Cytoscape MCODE plugin with default 

settings (83). WGCNA networks and MCODE subclusters were visualized in 

Cytoscape, especially in reference to crosstalk between different modules and clusters. 
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3.5.4 Functional enrichment and interpretation 

Ontology and pathway enrichment was done in STRING (78) on all genes 

present in the 12 selected WGCNA modules, and also separately on each WGCNA 

module and MCODE cluster. Gene symbols and Homo sapiens terms were used, as 

these are more strongly annotated than Gallus gallus. Pathways were also visualized 

using KEGG search and color tool (59), with Gallus gallus-specific pathways, by 

inputting the list of genes (identified by NCBI ID) and metabolites (identified by 

KEGG compound ID) and coloring each by WGCNA module to which it belonged. 

Genes were also annotated using PANTHER (74,75).  
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MODELING FEATURES ASSOCIATED WITH A RESPONSE VARIABLE: 
NORMALIZED LIVER MASS 

4.1 Background 

The final aim of this dissertation was to develop a workflow that could be used 

to take any high-throughput dataset through feature screening and prioritization, model 

development, and generation of computationally validated hypotheses based on 

statistically significant associations between a set of strong predictors and a response 

variable. High-throughput biological datasets are unwieldy by nature; even with 

sophisticated feature reduction and clustering methods they can be difficult to reduce 

to biologically meaningful groups that are small enough for modeling, without relying 

on prior knowledge. Additionally, complex biological relationships may not be fully 

explained by what we already know. While incorporating prior knowledge is 

necessary at some point during analysis, doing so too early can introduce bias and also 

overlook one of the main strengths of high-throughput data: exposing potentially 

unrecognized biological relationships.  

Heterogeneity is inevitable in biological populations, even when working with 

genetically identical individuals. Being able to capture this heterogeneity and associate 

it with meaningful biology can be powerful and informative. In this work, one 

measure displaying heterogeneity was Normalized Liver Mass (NLM). The trend of 

this measure over time was part of the inspiration for this study, and rationale for 

choosing the first three weeks post-hatch. Specifically, a previous study comparing 

Chapter 4 
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allometric growth of the liver between a modern broiler line (Ross 708) and an 

unselected line (UIUC), noted that while a similar peak in normalized liver mass 

occurs in both lines, this peak is shifted one week earlier in the modern broiler line (4). 

It was then hypothesized that this peak in normalized liver mass may represent some 

biological event that occurs earlier in the modern broiler, and may be related to its 

metabolic edge or growth potential. Allometric data collected during the current study 

provided a higher-definition look at NLM, showing a peak around D6, and then a 

second one around D14 (Figure 14). The preliminary differential expression of D4 and 

D20 transcriptome, as described in Chapter 2, revealed an increase in cell proliferation 

at D4, occurring prior to the first peak, compared with an increase in immune-related 

genes at D20, occurring after the second peak. A subsequent study on the same line of 

birds using RNA Fluorescence in situ Hybridization (FISH) to visualize mRNA 

expression in the liver over the first three weeks post-hatch also confirmed that there is 

a higher number of cells expressing immune cell marker CD3D at D20 post hatch 

when compared with D4. This led to a refined hypothesis: the peaks in NLM may 

represent proliferation of different cell types - hepatocytes and endothelial cells to 

increase liver function and vascularization at D6, and immune system expansion at 

D16, concurrent with the depletion of maternal yolk-derived antibodies. Thus, we 

expected to see strong correlation of markers of cell proliferation associated with 

NLM. 
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Figure 14: Normalized Liver Mass over time, by age group (left) and frequency of 
Normalized Liver Mass values (right). Although the total liver mass 
increases steadily with time, its mass relative to body mass decreases to 
approach adult values, showing two distinct peaks at Day 6 and Day 14. 
The histogram shows that Normalized Liver Mass may be comprised of 
three different distributions, possibly driven by latent sources of variation 
in the birds. 

4.1.1 Workflow overview 

The workflow, summarized in Figure 15, can be split into five parts: 

Exploratory analysis, feature prioritization, model development and refinement, model 

validation, and generation of hypotheses based on statistically significant associations. 

Exploratory analysis can begin with investigating unknown heterogeneity in a 

population. One way to capture this is through Finite Mixture Modeling (FMM). 

FMM can be used to statistically confirm the presence of different distributions within 

a variable. In this way, it could serve as a simple clustering method for use with 
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downstream modeling, or could also be used purely for exploratory analysis. These 

different distributions may represent “latent classes” or groups of individuals driven 

by unknown sources of variation. Determining which features contribute to these 

groups can distill the biological differences between them, prioritizing features or 

identifying biomarkers. In modeling, the groups can also be used to investigate if the 

relationships between features and the response variable change between the groups of 

individuals. For this analysis, we used FMM to confirm heterogeneity present within 

NLM, further justifying our interest in this measure. 

The second step in the workflow is to prioritize features based on their relation 

to a response variable. This is done using Spearman correlation, which is simple, 

efficient, and distribution-free, and provides a ranked list of features. Spearman 

correlation is rank-based and robust, requiring little pre-processing of data. It can also 

screen tens of thousands of features within minutes, expediting the most 

computationally-intensive step of the workflow. Features are ranked using rho value 

and p-value, applying generous cutoffs (rho>0.2, p<0.2). Features meeting these 

typically show good association with the response variable, but if the group of 

potential predictors is still too large the user can select a top percentage of features 

based on the statistical power required. Here, to validate the workflow and also aid in 

interpretation of the model, we chose to incorporate broad biological knowledge and 

focus on the top 20 features with identifying information.  

Before building linear models, it is important to shrink the pool of possible 

features, to help find the simplest group of predictors and also eliminate collinear 

features that would invalidate the assumption that predictor variables are independent. 

Least absolute shrinkage and selection operator (Lasso) regression, is one way to do 
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this that is also easy to incorporate in an automated workflow; while other methods 

may fail, lasso regression will automatically reduce the coefficients of collinear or 

insignificant variables to 0 (129). Lasso relies on simulations, yielding coefficients for 

each variable that give the minimum mean cross-validated error for the model. 

However, when considering two collinear variables, it is possible to accidentally 

eliminate the one that actually describes more variation in the response variable. To 

avoid this problem in our workflow, we run 1000 Lasso simulations and retain the 

variables that survive 60% of the time. 

After eliminating collinear features and reducing the pool of possible 

predictors using Lasso, our workflow proceeds to linear modeling. Importantly, this 

step begins to move beyond correlation to quantify the association of predictors with 

the response variable. The goal of this is not to build a predictive model, but rather to 

identify features that are strongly associated with the response. The first linear model 

is built using the surviving features from lasso regression, and model fit evaluated 

based on adjusted R2. This also helps to further reduce the pool of features through 

eliminating variables with insignificant regression coefficients. The second, refined 

linear model is then tested to see if it is still a good fit for the response variable. In our 

model, we also incorporated bird age in the model, both as a continuous measure and 

categorical measure, to see which model performed better. 

The final step in the workflow is to validate the model parameters to check for 

overfitting, ensuring the model is not dependent on the data that generated it. For this, 

we use bootstrap resampling (130). With small sample sizes, bootstrap is a good 

method to simulate sampling from a larger population. Resampling is done with 

replacement, generating a distribution for the parameter of interest. The model statistic 
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should lie within the 95% confidence interval for the simulated parameter. Although 

bootstrap can be used with any model statistic, we chose to validate the regression 

coefficients from the refined linear model, confirming that the predictors are likely to 

be associated with the response variable, even in other datasets. 

Figure 15: Automated workflow computationally screens datasets and develops 
models describing associations between predictor variables and a 
response variable; statistically significant associations provide the basis 
for hypothesis generation. 
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4.2 Results 

4.2.1 Evaluation of response variable – Normalized Liver Mass 

NLM was chosen as the response variable based on biological interest and 

visual inspection of the frequency histogram (Figure 14) which appears to show three 

Gaussian distributions. Three distinct clusters were identified by FMM (Figure 16). 

Cluster 1, made up of the lowest values of NLM (mean = 0.0263), contained mostly 

older birds, but also a few younger ones. Cluster 2 (mean = 0.0348), with mid-range 

NLM values, contained birds in every age group, but had a higher proportion of birds 

D8-D14. Cluster 3, with the highest values of NLM (mean = 0.0414), were 

represented by the youngest birds. This exploration confirmed our interest in NLM, 

but NLM clusters were not used in further modeling for this analysis. 
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Figure 16: Distribution of bird ages within Normalized Liver Mass clusters identified 
by FMM. 

4.2.2 Top features from Spearman correlation 

3668 features met the generous cutoffs of rho>0.2 and p-value<0.2. Many of 

the top features correlated with NLM (rho >0.6) were unidentified metabolites, mostly 

complex lipids detected in the liver, but also some from plasma, along with several 
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biogenic amines. For ease of interpretation, unidentified compounds and plasma 

metabolites were excluded from the current workflow. Out of the top 100 features 

with identifying information, 82 were genes, and 67 of these possessed gene symbols 

associated with human proteins in String. These were enriched for gas transport, but 

also terms related to cell proliferation. Two genes were related to retinal metabolism 

(RPE65, ALDH1A3), and two were fatty acid binding proteins (FABP1, FABP2). The 

remaining 18 were mostly primary metabolites, including several fatty acids 

(palmitoleic acid, palmitic acid, oleic acid), amino acids (threonine, lysine), amino 

acid derivatives (N-Methyllysine), antioxidants (vitamin E, retinal), waste products of 

amino acid metabolism (uric acid, urea), and intermediates of carbohydrate and lipid 

metabolism (3-phosphoglycerate, 1-monopalmitin). 

Table 6: Top 20 identified features associated with NLM by Spearman correlation, 
showing which survived after each step in the workflow. The final four 
significant features are shown along with regression coefficients and p-
values. Note: all p-values associated with rho correlation were <0.0001. 

Feature rho Lasso Linear 
Model 1 

Final Coef, 
p-value 

10.91_920.82_10.92_944.87 (liver) 0.638 X   
Hemoglobin beta, subunit A 

(HBBA) 0.607    

Galectin 2 (LGALS2) 0.599 X   

Hemoglobin subunit mu (HBM) 0.595    

Erythrocyte Membrane Protein 
Band 4.2 (EPB42) 0.581    

Hemoglobin subunit alpha 1 
(HBA1) 0.574 X X 0.0037287, 

0.0006 
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Table 6 continued 

Translocator Protein 2 
(TSPO2) 0.572 X X -0.0050558, 

0.0001 

Vitamin E (liver metabolite) 0.564 X X 0.0024936, 
0.0004 

Glial Fibrillary Acidic 
Protein (GFAP) 0.559 X   

Neurotrophic Receptor 
Tyrosine Kinase 3 (NTRK3) 0.552 X   

palmitoleic_acid (liver 
metabolite) 0.550 X   

Nestin 
(ENSGALG00000013239) 0.548 X X  

11.32_922.84_11.33_946.88 
(liver metabolite) 0.545 X   

Hemoglobin Subunit 
Epsilon 1 (HBE1) 0.542    

PRC1 - protein regulator of 
cytokinesis 1 (ENSGALG 

00000012836) 
0.533 X   

Prolactin-releasing peptide 
(ENSGALG00000043381) 0.525 X X  

Solute Carrier Family 47 
Member 1 (SLC47A1) 0.523 X X 0.0020024, 

0.004 
retinal (liver metabolite) 0.519    

Rh Associated Glycoprotein 
(RHAG) 0.515 X   

DNA Polymerase Theta 
(POLQ) 0.512 X   

4.2.3 Features significantly associated with Normalized Liver Mass 

Table 6 shows the top 20 genes and liver metabolites with identifying 

information selected by Spearman correlation with NLM and used in lasso regression. 

Although selection due to prior knowledge is not necessary in this workflow, we chose 

to focus on known features to aid in model validation and interpretation. 1000 lasso 

simulations were repeated, and 15 features survived 60% of the time. Of the first 
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linear models, that using bird age as a continuous measure performed the best. This 

model contained 6 features with significant regression coefficients. Three genes 

(HBA1, TSPO2, SLC47A1) and one liver metabolite (Vitamin E) remained significant 

in the refined linear model, which predicted NLM with an adjusted R2 of 0.6232. 

Figure 17 shows the trends of these features over time, and Figure 18 shows their 

associations with NLM. 

Figure 17: Trends of the four features significantly predicting Normalized Liver Mass. 
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Figure 18: Scatterplots of each variable showing association with NLM. 

4.3 Discussion 

4.3.1 Normalized Liver Mass as an indicator of biological events 

After comparing D4 and D20 transcriptome and metabolome, revealing 

differences in cell proliferation and immune cell genes, and confirming the increased 

number of cells expressing immune cell marker CD3D after the second week post-

hatch, we hypothesized that the peaks in NLM correspond to different populations of 

cells proliferating. We expected to see strong correlation of markers of cell 

proliferation, such as PCNA, with NLM. This relationship was investigated and found 
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to have no significant association. This indicates that the real model is likely more 

complex and would benefit from computational prioritization of features. 

Liver mass itself, though reliably stabilized in adult birds (7) may be affected 

by a number of unknown factors throughout development. For example, the storage of 

yolk lipid evident at D4 may contribute to its mass until its eventual depletion. 

Normalized liver mass is also convoluted, depending not only on actual liver mass, but 

on the combined mass of multiple other organ systems with their own allometric 

trends, and musculoskeletal growth, which selection for production characteristics has 

both increased and accelerated in the modern broiler. Given this, it is possible the 

features driving NLM may not be specifically related to the biological processes we 

hypothesize they represent, namely cell proliferation. First, the influence of other 

organ masses on this measure may offset any measures representing actual liver 

growth, enough that these may not show a strong association with NLM. Second, 

other mechanisms increasing organ mass may be at work, such as cell hypertrophy, 

autophagy, or migration of different cell types. Association of these proliferative 

events may also be offset, resulting in weaker correlations. For example, proliferation 

occurring at D4 could lead to the peak seen at D6. Furthermore, if the peaks do not 

represent proliferation, or are driven by different biology, it may be harder to find 

associations that hold true across the across the entire time course. In spite of these 

caveats, NLM was still considered an interesting variable to investigate. Due to the 

likely complexity of associations describing NLM, this is an excellent opportunity to 

apply our workflow, which relies on computational feature selection rather than prior 

biological knowledge. 



 107 

4.3.2 Summary of features in final model, overlap with Chapter 3 

Many of the top genes correlated with NLM were related to erythrocytes and 

hemoglobin, and were also present in MCODE Cluster 9 (TSPO2, HBBA, HBA1, 

HBM, HBE1, RHAG) within the orange WGCNA module, as described in Chapter 3. 

This module showed the highest positive correlation with NLM (0.6). As both of these 

approaches begin with correlation-based strategies, the overlap makes sense, and the 

findings corroborate each other. Other features that showed high Spearman correlation 

with NLM were present in different clusters in the orange module (LGALS2, 

palmitoleic acid, retinal, vitamin E, ENSGALG00000013239), or in different modules 

(SLC47A1 – blue; ENSGALG00000012836, ENSGALG00000043381 - purple).  

Of the four remaining features, which together described NLM with an 

adjusted R2 of 0.6232, all had a positive association with NLM except for TSPO2. 

HBA1 is a subunit of hemoglobin; tocopherol gamma (vitamin E) is an antioxidant 

metabolite; TSPO2 is involved in cholesterol binding in erythrocytes during 

differentiation; SLC47A1, or MATE1, is a solute transporter most well-studied for its 

ability to eliminate glucose-lowering Type 2 diabetes drug metformin (131,132). The 

four features identified by this workflow as being strongly associated with NLM were 

initially surprising, as we expected to see features strongly related to cell proliferation. 

However, after further investigation and comparison with results from Chapter 3, these 

features are likely related to cell proliferation but in a different way than previously 

thought.  

4.3.3 Evidence for increased erythrocyte presence in the liver 

Hemoglobin is typically associated with erythrocytes, but can be expressed in 

other cell types where maintaining oxygen homeostasis is crucial (133–135). There is 
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also evidence that the non-erythroid expression of hemoglobin can reduce oxidative 

stress (135,136). One study found that hepatocytes express HBA1 and HBB during 

non-alcoholic steatohepatitis to combat oxidative stress (136), suggesting a role for 

these proteins in dealing with oxidative stress brought on by rapid cell proliferation. 

Although this also indicates that expression of hemoglobin by other non-erythroid 

cells present in the liver is possible, many other erythroid-specific genes, including 

those involved in membranes, transport, and metabolism were closely related both 

here and in Chapter 3. We investigated the possibility that erythrocytes could be 

proliferating in the liver in the first week post-hatch, and thus represent part of the 

increase in normalized liver mass. In neonatal mammals, erythropoiesis takes place in 

erythroid centers in the liver, and the expression of TSPO2 decreases when these 

centers disappear and bone marrow becomes the main site for erythropoiesis (124). 

However, this does not appear to be the case in young birds, where the yolk sac is the 

main site of erythropoiesis through embryonic development and early post-hatch 

development until it transitions to the bone marrow, and any hematopoiesis in the liver 

takes place in portal spaces (137,138). We also considered whether the tissue hypoxia 

hypothesized in the liver at D4 could actually be more widespread, stimulating an 

overall increase in erythrocyte proliferation. Blood oxygen saturation (sO2) does 

decrease from D4-8, then shows a spike at D10 and gradual decrease. Erythropoiesis is 

increased under systemic hypoxia due to the stimulating effects of HIF1A on 

erythropoietin (EPO) production in the liver and erythropoietin receptors (EPOR) 

receptors in bone marrow (111). Although EPO production is likely stimulated by 

hypoxia observed at D4, and EPO mRNA has been found in the chicken, the gene 

encoding EPO in chickens has not been annotated so its abundance cannot be 
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quantified in our data. The strong presence of hemoglobin-related genes, along with 

many erythroid-specific genes, led us to hypothesize that there is in fact an increase in 

erythrocyte population in the liver during the first week post-hatch. However, given 

the unlikelihood that erythropoiesis occurs in avian liver, this is likely due to another 

reason.  

Erythrocytes in birds differ from those in mammals both morphologically and 

metabolically. In contrast to mammalian erythrocytes, avian erythrocytes are nucleated 

and contain functional mitochondria (139). Although mammalian erythrocytes depend 

on glucose for energy, they must produce ATP anaerobically, relying on the PPP and 

lactate production (140). Mammalian erythrocytes also respond to hypoxia by 

increasing glucose consumption (141,142). Avian erythrocytes, however, can produce 

energy aerobically. One study found that, in spite of this, birds had lower levels of 

oxidative stress in the blood compared to a size-similar mouse model (139). This 

suggests two important hypotheses about the increased presence of erythrocytes: 1) the 

metabolic reprogramming observed at D4, specifically the increase in lower glycolysis 

and Warburg-like effect, is unlikely to be due to an increased presence of erythrocytes 

at this time point, since avian erythrocytes can produce ATP aerobically; 2) Avian 

erythrocytes may have increased ability to mediate oxidative stress, suggesting a 

possibly critical role during increased cell proliferation. 

4.3.4 Features describing NLM reflect critical functions during cell 
proliferation 

Regulating oxygen homeostasis in liver tissue is likely especially important in 

the early stages of post-hatch development, due not only to increased cell proliferation 

in the liver, but also to maintain the critical hypoxia response and metabolically 
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regulate the expansion of the immune system. Also paramount is the liver’s ability to 

mediate the harmful effects of oxidative stress. Two of the features describing NLM in 

our model are directly related to combatting oxidative stress in metabolism-related 

liver disease (Vitamin E, HBA1). HBA1 was found to be expressed by hepatocytes to 

help control oxidative stress during non-alcoholic steatohepatitis (136), while vitamin 

E has been shown to help reduce oxidative stress in non-alcoholic fatty liver disease 

(NAFLD) (143). This suggests that mechanisms of dealing with oxidative stress are 

strongly linked to processes resulting in rapid liver growth. Furthermore, the increased 

erythrocyte presence in liver, as indicated by hemoglobin-related genes, TSPO2, and 

other erythrocyte-specific genes, when taken with the possibility that avian 

erythrocytes are especially efficient at binding reactive oxygen species (ROS), suggest 

a critical role for these cells related to cell proliferation over the first week post-hatch, 

and thus NLM. Since erythropoiesis does not occur in avian liver, we hypothesize that 

the liver instead recruits and maintains an increased population of erythrocytes to help 

regulate oxygen homeostasis, stabilizing the hypoxia response and promoting a 

hypoxic environment while the liver increases its mass, and concurrently protecting 

against oxidative stress brought on by rapid cell proliferation. 

The role of SLC47A1 in driving NLM is somewhat perplexing, given most of 

our understanding concerns its ability to transport and eliminate diabetes drug 

metformin. However, one study investigating its ability to transport the hypolipidemic 

flavonoid quercetin also noted that its overexpression enhanced cellular glucose 

uptake (144). Although this study did not investigate mechanisms, it hints at a more 

widespread metabolic role for SLC47A1 beyond toxin extrusion, hinging on its 

abilities to increase intracellular concentrations of a lipid-lowering compound, and 
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increase the availability of intracellular glucose. When this is evaluated along with its 

role in decreasing levels of a glucose-lowering drug, it appears this transporter may 

play a part in ensuring glucose supply, and thus could be critical during times of 

increased glucose demand as observed in early post-hatch liver. The relationship 

between SLC47A1 and NLM may thus be under control of a higher regulatory 

mechanism responsible for metabolic reprogramming associated with post-hatch 

hepatic development.  

4.4 Conclusions: 

In this analysis, four features (HBA1, Vitamin E, TSPO2, SLC47A1) showed 

strong ability to predict NLM. While none of these were directly linked to cell 

proliferation, they indicate an interesting finding: the predictors describing NLM are 

more related to biological processes that facilitate and mediate the effects of 

proliferation, rather than to proliferation itself. These features provide further support 

building on the hypotheses from Chapters 2 and 3 and linking the importance of 

oxygen homeostasis, controlling oxidative stress, and regulating glucose availability to 

cell proliferation. 

In addition to the statistically significant, validated associations discussed in 

this analysis, there are multiple other ways to examine the results and extend the 

model to more complex situations. For example, NLM was evaluated with FMM to 

confirm the presence of different distributions representing latent classes of variation 

in our population, but these clusters were not utilized in the downstream linear models. 

Given that NLM may not be as closely related to cell proliferation as previously 

thought, or the possibility that different mechanisms affecting organ mass may be 
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occurring, it may be advantageous to explore the association between our predictors 

within each NLM cluster separately. 

This approach has several advantages, making it broadly applicable and 

adaptable to many situations beyond the context of this work. First, it is highly 

scalable since the first step – prioritization of features – relies on a very simple and 

efficient correlation measure. High-throughput datasets even larger than the one 

evaluated here can be screened within minutes for relation to any response variable. 

Secondly, the workflow is customizable, both in terms of biological question and 

modeling approach. Features can be prioritized based on any physiological measure, 

such as NLM or blood glucose, or even based on association with another variable, 

such as levels of the metabolite citrate. By the time linear models are developed, the 

pool of predictors is small enough to allow flexible manipulation of the models 

themselves, to explore the effects of different interactions and covariates. Third, this 

workflow can rely almost entirely on computation, eliminating bias. Aside from 

choosing the measure by which to screen the features, driven by biological question of 

interest and experimental design, it is not necessary to bring in biological knowledge 

until the very last step, when developing the assumptions to test. Statistically 

significant assumptions based on these models leave us with solid, computationally 

validated associations, which can be interpreted and used to generate hypotheses, or 

tested experimentally.  
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4.5 Methods 

4.5.1 Data preprocessing 

The dataset screened in this analysis consisted of all transcriptome and 

metabolome data. Rigorous sample-wise quality control was conducted as described in 

Chapter 3, then matching of samples to include those containing both transcriptome 

and metabolome data. Gentle filtering was done on the larger datasets to speed up the 

screening. The transcriptome, quantified by relative expression (TPM) values was 

filtered to remove any rows consisting entirely of 0s. The primary plasma and liver 

metabolome was the smallest dataset and included without filtering. The liver and 

plasma biogenic amines and complex lipid metabolome datasets were filtered using 

Metaboanalyst: 1) for low repeatability using relative standard deviation (RSD = 

standard deviation/mean) excluding those that deviated from QC samples >25%, 2) 

using IQR to robustly exclude those with near-constant values, 3) using median to 

detect compounds with very small values close to the detection limit. The final filtered 

dataset consisted of 83 birds and 31475 features.  

4.5.2 Workflow 

All analysis was done in statistical software R unless otherwise noted. Finite 

mixture modeling (mixtools package) (142) was used to confirm the presence of three 

Gaussian distributions within the measure of Normalized Liver Mass (NLM). 

Spearman correlation was used to screen this dataset for correlation with NLM. 3688 

features met the generous cutoffs (rho >=0.2, p <=0.2), so the top few candidates were 

chosen based on statistical power for the number of observations (83 birds total). For 

ease of downstream biological interpretation and development of models, the top 20 

liver genes and live metabolites that possessed meaningful annotation or identification 
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were selected. Lasso regression (caret and glmnet packages) (143,144) was performed 

1000 times on this group, allowing simulation results to vary, and first cross-validating 

and selecting the value of lambda that gave the minimum mean cross-validated error. 

Features that survived in 60% or more of the simulations were retained for linear 

modeling (15 total features). Two linear models were tested with these 15 features, 

one using bird age (Day) as a continuous measure, and one using it as a categorical 

measure or factor. The model using bird age as continuous performed the best 

(adjusted R2 0.6882), with six features significant at p<0.05. The linear model was 

rerun using these six features, and still performing well (adjusted R2 0.6232). 

Bootstrap resampling was performed 1000 times (boot and modelr packages) to 

validate the regression coefficients, which were all within the 95% confidence 

intervals (145-147).  
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CONCLUSIONS 

5.1 Hypotheses generated 

This work generated multiple testable hypotheses highlighted below: 
• A hypoxic environment exists in the liver at D4, regulated by HIF1A, and 

evident in metabolic reprogramming. This metabolic flexibility allows for 
ATP production during a period of rapid cell proliferation. 

• At D4, the liver is sequestering glucose and glycolytic intermediates for its 
own use, to support cell proliferation, the PPP, and to feed lower 
glycolysis. It releases alternative energy sources, including lactate and 
acetate, to support the rest of the body. 

• The reservoir of yolk-derived fatty acids abundant in liver at D4 are 
modified and elongated for utilization in cell membrane components during 
proliferation rather than energy through beta-oxidation. This also stabilizes 
the hypoxia response and limits oxidative stress that would come from 
oxidizing lipids for energy. 

• Hypertrophy through polyploidization, controlled by E2F8, contributes to 
organ growth during the initial burst of cell proliferation, offering a 
metabolic advantage by leading to larger cells that may also contain 
increased numbers of mitochondria. 

• Metabolic flexibility is exhibited in amino acid catabolism at D4, with 
glucogenic products supporting the liver’s requirements for proliferation 
and energy production, and ketogenic products exported for use by other 
tissues. 

• At D4, the liver is poised to respond to oxygen availability, while at D20, 
maintaining energy balance between storage and release of nutrients is 
prioritized. 

• Hypoxia response controls metabolism and glucose availability, 
suppressing the proliferation of other cell types over the first week post-
hatch, and allowing a burst of hepatocyte proliferation and vascularization 
to occur as the liver establishes its identity. Changes in oxygen and glucose 
availability then trigger expansion of the immune system in the liver. 

Chapter 5 
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• There is an increased erythrocyte presence in the liver in the first week 
post-hatch, that helps to regulate oxygen homeostasis and combat oxidative 
stress during rapid cell proliferation. 

In addition to the hypotheses generated, this work also implemented several 

methods with demonstrated ability to computationally capture biological relationships, 

even when integrating different types of high-throughput data. WGCNA and MCODE 

grouped genes and metabolites into biologically related groups and correlated these 

with physiological traits. These clusters also linked metabolic reprogramming to other 

biological events such as regulation of cell proliferation and immune system 

expansion. The modeling workflow described in Chapter 4 identified predictors 

strongly associated with NLM, providing a statistical foundation for hypothesis 

generation. This workflow is also broadly applicable and flexible outside of the 

context of this work. 

5.2 Future work 

There are multiple opportunities to extend and enhance the analyses in each 

section of this work. The comparison of D4 versus D20 in Chapter 2 exposed many 

differences in signaling, for example, that were not evaluated due to the focus on core 

metabolism. There were also several clusters identified by WGCNA in Chapter 3 that 

contained interesting features, such as those related to hypoxia response. Time-

dependent correlations, and crosstalk between modules and clusters, can also be 

explored computationally to clarify the relationships present and lead to observations 

about how regulation changes over the time course. For example, two genes involved 

in cell cycle, may have grouped in separate modules: gene A in purple and gene B in 

saddlebrown. These genes, exhibiting large enough differences in abundance over the 

time course to be classified in separate modules, may actually be very closely linked 
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during D4-D8, but show a decoupling in trends after D10. Targeting these pre-

identified relationships for a closer look at how correlations change from day to day 

could expose regulatory changes associated with different types of cells proliferating. 

Strong relationships can even be investigated using ordinary differential equations to 

model the interactions of multiple features over time. There is also the potential to 

construct regulatory networks based on this dataset, identifying hierarchies of features, 

both within and across modules. 

The workflow described and implemented in Chapter 4 can be applied as-is to 

this dataset to examine any number of relationships, such as plasma metabolites 

strongly associated with blood glucose levels. The models developed can also be 

extended to investigate associations in more complex, biologically accurate contexts. 

The linear models developed were fairly simple, but exploring interactions between 

predictor variables, or employing other types of models such as structural equation 

modeling could capture these relationships with more precision. This knowledge can 

then be taken further and tested experimentally, for example by knocking out genes in 

the chicken.  

This work also included many unknown genes and metabolites that were 

identified computationally as important contributors to differences during liver 

development. The prioritization of these features, and ability of these methods to 

locate them within the context of well-known features and pathways, identifies them 

as possible targets for further studies. Although investigation of these unknowns was 

beyond the scope of this work, they clearly warrant further exploration to determine 

their identify and specific function, as they may represent important novel biomarkers 

or regulatory targets. 
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In addition to experimental testing of the hypotheses generated in this work, 

future work should also address the shortcomings of this study. For example, a major 

limitation of both RNA-seq and tissue metabolomics is that they each provide an 

averaged snapshot of biological processes occurring. While this is beneficial for 

comparing tissues that are fairly similar in terms of cell type and composition, it is 

something that must be taken into consideration when analyzing tissues where these 

factors may differ, as it will have broad impact on the overall picture. A growing liver 

almost certainly exhibits large shifts in cell populations as a function of development, 

and it is nearly impossible to quantify how much variation is due to differences in cell 

composition or changes in the metabolic reprogramming of actual hepatocytes, for 

example. Future analyses could explore the relationships noted in this analysis through 

techniques that allow the quantification of transcription in specific cell types, such as 

single-cell RNA-seq, or visualization of RNA expression in the context of the tissue, 

such as RNA FISH. 

5.3 Broad-reaching utility 

Characterizing the stages of liver development in the modern broiler in terms 

of metabolic regulation, oxidative stress, timing of biological processes, and 

awareness of different cell populations can lead to improvements in the meat bird 

industry – specifically management techniques, feed supplement studies, or breed 

enhancement strategies. However, the value of this work extends beyond the chicken, 

to knowledge of general gene-metabolite relationships, but also to implications in 

human medicine. For example, although rapid cell proliferation and metabolism under 

hypoxia is well-characterized in cancer cells, less is known about these processes 

under normal growth conditions. Understanding metabolism during normal, 
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development-programmed rapid cell proliferation can provide a critical contrast to 

metabolism during abnormal, malignant cell proliferation. This could help to 

differentiate between gene or metabolite targets for therapies, identifying those more 

likely to specifically inhibit metabolism in cancer cells, without crippling metabolism 

or proliferation in healthy cells. Understanding hypoxia’s role as a protective 

mechanism during rapid organ growth and clarifying its regulatory involvement 

during the transition to normal metabolism could also contribute to general scientific 

knowledge about metabolism during organ development. 

The broiler is also an interesting model for investigating processes contributing 

to metabolic disease in human medicine. Broilers are especially well-equipped to 

mobilize excess nutrients, converting this to muscle but also preventing the buildup of 

lipids in the liver. Due to decreased appetite regulation, the liver meets a near-constant 

carbohydrate burden that would cause overnutrition-related disease in many other 

species. Broilers display improved lipogenesis and lipid transport, even when 

compared with layer chickens or migratory avian breeds, and are far less prone to 

issues like hepatic steatosis. Understanding how broiler liver efficiently manages an 

abundance of nutrients could shed light on mechanisms contributing to a number of 

human diseases related to obesity and accumulation of fat in the liver, including Non-

alcoholic Fatty Liver Disease (NAFLD). Also, although birds show major differences 

in insulin resistance and glucose tolerance when compared with mammals, exploring 

the molecular basis for this could provide a valuable comparison with diseases relating 

to human metabolic dysregulation, such as diabetes. Computationally, this work has 

demonstrated and established the value of several methods for hypotheses generation 

from high-throughput data, while biologically, it has led to observations warranting 
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further exploration and consideration of the chicken as a valuable model for organ 

development and metabolism. 
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