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ABSTRACT

This dissertation splits into two major parts. First, given a function, f , over Fq and

nonzero a ∈ Fq we define the difference function as ∆ f (x, a) := f (x + a) − f (x) − f (a). The

differential uniformity (DU) of f is δ := maxb∈Fq #{c : c ∈ Fq | ∆ f (c, a) = b}. Functions with

lower differential uniformity are more resistant to differential cryptanalysis and as such are

more desirable for use in substitution boxes. Inspired by the work in [23], we investigate the

differential uniformity of functions of the form f (x) = x ∗ x using multiplication from al-

gebraic objects with the objective of constructing functions with low differential uniformity.

The second major part concerns the classification of planar monomials over fields of size

Fp3 . Previous work on this problem has been completed for fields of size p, p2, and p4 with

p odd [48], [21], [26] and the problem has been reduced considerably for fields of size p2k

with p ≥ 5 and k ≥ 2 through the work in [26]. We make significant progress on the p3 case.

The thesis can be broken down as follows. In Chapter 1, we give the preliminary ma-

terial that we will need throughout this work including: background on finite fields and poly-

nomials over those fields; the framework for algebraic objects like S-sets, (pre)semifields,

and nearfields; and the background of differential uniformity. The main result for Chapter 2,

Theorem 2.1.1, explores the notion of creating a new function with low DU by replacing

the coordinate functions of known functions. We use mutually orthogonal systems to create

bounds for the differential uniformity of these new functions and we discuss known results

in terms of this new methodology. The results of our investigation for low DU functions

from algebraic objects are included in Chapter 3. We find functions corresponding to spe-

cific Kantor presemifields that are at most 4 DU in Theorem 3.3.2 and give a bound for

the differential uniformity of functions from other Kantor presemifields in Theorem 3.3.3.

In Theorem 3.4.3, we give a lower bound for the differential uniformity for the function

f (x) = x ∗ x where the multiplication is from the regular planar nearfield N(2, q2) with q

ix



odd. This constitutes the first major part. The second major part of the thesis is contained

in Chapter 4. The classification of planar monomials for fields of size p3 falls in three parts.

Proposition 4.2.1 and Proposition 4.2.2 fully resolve two of those cases while Section 4.3

outlines the current status of case three. Finally, in Chapter 5 we give discuss open problems

that have come from this work.

x



Chapter 1

PRELIMINARIES

1.1 Motivation

Cryptography is the science of secure communication between individuals through

the threat of interference from a third party. Encryption is the process of encoding a piece

of information, called the plaintext, into a new form, called the ciphertext, such that an

unintended recipient cannot gain access to it. Decryption is the process of returning the

ciphertext to its plaintext form. A cipher is the algorithm for the encryption and decryption

processes. A common example of such a process is the Caesar Cipher or a shift cipher. In

this work we will be focused on substition boxes or S-boxes. S-boxes take some number

of bits of the plaintext and transform them into some number of output bits. We will focus

on S-boxes whose input and output sizes are the same, though you can have S-boxes with

different input and output bits. These S-boxes can be thought of as functions over a finite

field, which is how we study them in this thesis.

An eavesdropper can perform types of attacks on the cipher to attain the key to de-

crypt the ciphertext. Differential cryptanalysis is the study of how differences in the input

bits in a S-box affect the differences of the output bits in a S-box. Considering the S-box as a

function f (x) and a fixed non-zero element of the field a, differential cryptanalysis observes

how f (x + a) and f (x) are related for every input value of x. If the behavior of these differ-

ences does not appear random, then an attacker can exploit these properties to help decode

the ciphertext and gain access to the information. Therefore, for a fixed nonzero a in the field

and b an arbitrary element of the field, we will be interested in the number of solutions of

f (x + a) − f (x) = b (equivalently f (x + a) − f (x) − f (a) = b). We want this to have as even

a distribution as possible for all nonzero a. This would be we have the lowest possible and
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thus, optimal differential uniformity. A major aim of this thesis is to construct near optimal,

or low, differentially uniform functions.

1.2 Finite Fields

Throughout this work we let p be a prime, n be a natural number, and q be a power

of p. The finite field with q elements will be denoted as Fq and Fn
q denotes the n dimensional

vector space over Fq. In general, if we have a set S with a binary operation and an identity

element e corresponding to the binary relation we will denote the set S \ {e} as S ∗. For

example, let 0 be the additive identity of Fq, then the set of non-zero elements of Fq is F∗q.

Since the multiplicative group of a finite field is cyclic, it can be generated by a primitive

element a ∈ F∗q; in general we denote the group generated by a as 〈a〉 = {an | n ∈ Z}.

Given a fixed basis, {bi}
n
i=1, for Fqn over Fq we can view x ∈ Fqn as the element

(x1, . . . , xn) ∈ Fn
q where x = x1b1+. . . xnbn. This is an isomorphism between Fqn and Fn

q (when

viewed as vector spaces over Fq); therefore, we will use these interchangeably depending on

what is more useful. Any function φ : Fq → Fq can be represented uniquely as a polynomial

of degree less than q which we call the reduced form. We will let Fq[X] denote the polynomial

ring over Fq in indeterminate X. The following theorem from [19] is an example of the

relationship between functions and polynomials. An indicator function for a subset S ⊆ Fq

is a function iS : Fq → Fq satisfying:

iS (x) =


0, x < S

1, x ∈ S .

Theorem 1.2.1. (Castillo, [19]) Let m be a divsor of q − 1. The polynomial representation

of the indicator function for the multiplicative coset ca〈c(q−1)/m〉 ⊆ F∗q is given by

ica〈c(q−1)/m〉(X) = −m
(
hq−1/m((c−aX)m) − 1

)
where hk(X) = 1 + X + X2 + . . . Xk ∈ Fq[X] and c is a primitive element of Fq.

Given the isomorphism between Fqn and Fn
q fix a basis, {b1, . . . , bn}, for Fqn over Fq.

Let f : Fqn → Fqn . We can view f as a function in n variables, called F, where

F(x1, . . . , xn) = f (x1b1 + . . . + xnbn).
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We may also view f as a vectorial function ( f1(x), . . . , fn(x)) each fi : Fqn → Fq defined as

fi(x) = ci where f (x) = c1b1 + . . . + cnbn. We call the fi’s coordinate functions. We can also

view the coordinate functions as multivariate functions given as (F1(x1, . . . , xn), . . . , Fn(x1, . . . xn))

with Fi : Fqn → Fq. The version of the function we will look at will depend on how we will

use the function.

1.2.1 S-sets

Every degree 2 polynomial over Fq splits completely in Fq2 . That is, for every a, b ∈

Fq there exists some u1, u2 ∈ Fq2 such that

X2 + bX + a = (X + u1)(X + u2).

Therefore, u1 and u2 satisfy the equations

u1u2 = a, and

u1 + u2 = b.

Without loss of generality if u1 = 0, then a = 0 and u2 = b. Assuming that a , 0 and

rearranging these equations we find that u1 + au−1
1 = b. It follows that, given a fixed a ∈ Fq,

every b ∈ Fq can be written as u + au−1 for some u ∈ Fq2 .

Let q is odd and a is a square in Fq; in other words a = α2 for some α ∈ Fq. We can

partition the elements in Fq into the following sets:

S a
0(q) = {±2α},

S a
1(q) = {u + au−1 | u ∈ Fq2 and uq−1 = 1 and u , ±

√
a}, and

S a
2(q) = {u + au−1 | u ∈ Fq2 and uq+1 = a and u , ±

√
a}.

If b = ±2α, then the equation is x2 ± 2αx + a = 0. This is the same as (x ± α)2 = 0.

Which implies that u = ±α. When a is not a square ±2
√

a is not an element of Fq2 . Thus,

S a
0(q) = ∅ and we can partition the elements of Fq into the sets:

S a
1(q) = {u + au−1 | u ∈ Fq2 and uq−1 = 1 and u , ±

√
a} and

S a
2(q) = {u + au−1 | u ∈ Fq2 and uq+1 = a and u , ±

√
a}.
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The above S-sets can be a useful representation of Fq. They arise, for example, in the

study of Dickson polynomials of the first and second kind see [27], [44], and [53] Chapter 7

for more information.

1.2.2 Distribution of Squares and Non-squares in Fpn

Fix a non-zero a ∈ Fpn . One can partition the elements of Fq in the following way:

K1(a) = {b : b ∈ Fpn | b and a + b are non-squares in Fpn},

K2(a) = {b : b ∈ Fpn | b and a + b are squares in Fpn},

K3(a) = {b : b ∈ Fpn | b is a square and a + b is a non-square in Fpn},

K4(a) = {b : b ∈ Fpn | b is a non-square and a + b is a square in Fpn}.

The cardinalities of these sets were considered by Raber [62], who showed that

#Ki(a) =
pn − 1

4
+ ti

where ti is either 0 or 1 for i = 1, 2, 3, 4.

We will be interested in these sets in Section 3.4.2. We will also use the quadratic

character ηq : Fq → C known as the quadratic character, see [53] Chapter 5. If the domain is

clear from context we may drop the subscript q. If a ∈ Fq, then

ηq(a) =


0 a = 0,

1 if a , 0 and a is a square,

−1 if a is not a square.

1.3 Some Classes of Polynomials

A polynomial is called linearized if it is of the form
∑

i aiXpi
with ai ∈ Fpn . Any

linearized polynomial acts as linear transformation; in other words, L(ax) = aL(x) and L(x +

y) = L(x) + L(y) for all a ∈ Fp and x, y ∈ Fpn . The trace function maps Fqn to a subfield Fqm

and is given by

Trn/m(α) = α + αqm
+ αq2m

+ . . . + αqm( n
m −1)

.
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When q is a prime and m = 1, this is called the absolute trace function and maps into the

prime subfield. All of the linear transformations from Fqn to Fqm can be written in terms of

the trace function as Trn/m(bx) for some b ∈ Fqn ([53], Theorem 2.24). We will denote the

polynomial representation of the trace function as Trn/m(X) later in this thesis.

Given a basis B = {bi}
n
i=1 for Fqn over Fq the dual basis corresponding to B is the basis,

{βi}
n
i=1, for Fqn over Fq satisfying

Tr(biβ j) =


0 i , j,

1 i = j.

If {bi}
n
i=1 is a basis for Fqn over Fq and {βi}

n
i=1 is the corresponding dual basis, then it can be

verified that the coordinate functions for f (x) is {Tr(βi f (x))}ni=1.

In addition to linearized polynomials, we will refer to many special types of func-

tions over Fq throughout this work. A polynomial is called a permutation polynomial if the

polynomial induces a bijection on Fq. In Section 3.5 and Chapter 4, we will use Hermite’s

criterion for permutation polynomials.

Theorem 1.3.1. [Hermite, [45]; Dickson, [33]] Let q = pn. A polynomial f ∈ Fq[X] is a

permutation polynomial over Fq if and only if

i. f has exactly one root in Fq, and

ii. the reduction of f t mod (Xq − X) ,with 0 < t < q− 1 and t . 0 mod p, has degree less

than q − 1.

A polynomial is called affine if it is a sum of a linearized polynomial and a constant.

The kernel of a linearized polynomial, L(X), is the set Ker(L(x)) = {x : x ∈ Fq | L(x) = 0} A

polynomial is called a Dembowski-Ostrom (DO) polynomial if it is of the form
∑

k, j ak jXpk+p j

for ak j ∈ Fq. Finally, a polynomial is called quadratic if it is the sum of a DO polynomial

and an affine polynomial.

There are also a number of relevant equivalence relations on functions. Let F1 and

F2 map Fpn to Fpm . Then F1 and F2 are

5



• affine (linearized) equivalent if F2 = A1◦F1◦A2 where A1 and A2 are affine (linearized)

permutations of Fpm and Fpn respectively;

• extended affine equivalent (EA equivalent) if F2 = A1 ◦ F1 ◦ A2 + A where A1 and A2

are affine (linearized) permutations of Fpm and Fpn respectively and A is an affine map

from Fpn → Fpm;

• CCZ equivalent if for some permutation L of Fpn × Fpm the image of the graph of F1 is

the graph of F2. In other words L(GF1) = GF2 where GFi = {(x, Fi(x))|x ∈ Fpn}.

1.4 Semifields

A finite set S with a binary operation ∗ is a quasigroup if for every a, b ∈ S there

exists unique x, y ∈ S such that a ∗ x = b and y ∗ a = b.

Definition 1.4.1. A finite set S with two operations, + (addition) and ∗ (multiplication), is

called a presemifield if

• (S ,+) is an abelian group with identity 0,

• (S ∗, ∗) is a quasigroup,

• there are no zero divisors, and

• left and right distributive properties hold.

If a presemifield has a multiplicative identity, then we call it a semifield.

The additive structure of a presemifield is necessarily elementary abelian so pre-

semifields can be viewed as S = (Fq,+, ∗), where (Fq,+) is the additive group of Fq and

x ∗ y = φ(x, y) for some function φ : F2
q → Fq. Since finite fields are semifields, we call a

semifield which is not a finite field a proper semifield. Note that presemifields and semifields

do not have to be associative nor commutative with respect to multiplication.
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Definition 1.4.2. Let S 1 = (Fq,+, ∗) and S 2 = (Fq,+, ◦) be two presemifields. Then S 1 and

S 2 are isotopic if and only if there exists three linearized permutation polynomials L,M,N ∈

Fq[x] such that for all x, y ∈ Fq M(x) ∗N(y) = L(x ◦ y). We say that (L,M,N) is an isotopism

between S 1 and S 2. If M = N, then it is called a strong isotopism.

One can always extend a presemifield to a semifield in the following way. Let S =

(Fq,+, ∗) be a presemifield which does not contain an identity. To create a semifield from

S choose any a ∈ F∗q and define a new multiplication ◦ by (x ∗ a) ◦ (a ∗ y) = x ∗ y for all

x, y ∈ Fq. Then S ′ = (Fq,+, ◦) is a semifield isotopic to S with identity a ∗ a and isotopism

(x ∗ a, a ∗ x, x). We say S ′ is a semifield corresponding to the presemifield S . If the original

presemifield is commutative, then the semifield constructed is commutative and strongly

isotopic to the original presemifield [23].

Lemma 1.4.3. A non commutative presemifield cannot be strongly isotopic to a commutative

presemifield.

Proof. Suppose that there is a presemifield R = (Fq,+, ∗), a commutative presemifield S =

(Fq,+, ◦), and linearized permutation polynomials L,M ∈ Fq[x] where

M(x) ◦ M(y) = L(x ∗ y) ∀x, y ∈ Fq.

Since S is commutative, for all x, y ∈ Fq M(x) ◦ M(y) = M(y) ◦ M(x). Since M(x) ◦ M(y) =

L(x ∗ y) we have that L(x ∗ y) = L(y ∗ x). We have that x ∗ y = y ∗ x since L is a permutation

polynomial. So, R is commutative. Hence, our lemma is proven. �

1.4.1 Nuclei

To investigate a proper semifield’s “distance" from multiplicative associativity we

look at the following subsets.

Definition 1.4.4. Let S be a semifield. Then

• the left nucleus is the set Nl(S ) = {α ∈ S |(α ∗ x) ∗ y = α ∗ (x ∗ y)};

• the middle nucleus is the set Nm(S ) = {α ∈ S |(x ∗ α) ∗ y = x ∗ (α ∗ y)};
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• the right nucleus is the set Nr(S ) = {α ∈ S |(x ∗ y) ∗ α = x ∗ (y ∗ α)}; and

• the nucleus is the set N = Nl(S ) ∩ Nm(S ) ∩ Nr(S ).

Each of these sets are fields and semifields are vector spaces over their corresponding

nuclei. The larger these sets are the closer the semifield is to having multiplicative associa-

tivity. These sets are useful in the classification of semifields.

Next, we introduce two classes of presemifields. Our list is not intended to be ex-

haustive.

1.4.2 Albert’s Generalized Twisted Fields

Twisted fields and generalized twisted field were introduced by Albert in [1, 2, 3,

4]. Let Fpn be a finite field of odd characteristic p and n > 2. Consider the nontrivial

automorphisms θ and α defined by xθ = xpi
and xα = xp j

for some i, j ∈ [1, . . . , n − 1]. Fix

an element c ∈ Fpn satisfying c , x
xθ

y
yα for any x, y, y ∈ F∗q and define a new multiplication

x ∗ y = xy − cxθyα for x, y ∈ Fq. Then A = (Fpn ,+, ∗) is a semifield where + is field addition.

Albert showed in [2] that A is commutative if and only if (xθ)α = x and c = −1.

1.4.3 Kantor’s Characteristic Two Presemifields

Consider the field Fqn with q a power of 2 and n odd. Given a chain of fields

K = Fq ⊆ Fk ( . . . ( F1 ( F = Fqn

with the corresponding trace functions Ti : F → Fi defined as in Section 1.2 and a sequence

(a1, . . . an) where ai ∈ F∗, define a new multiplication as

x ∗ y = xy2 +

n∑
i=1

(Ti(aix)y + aiTi(xy)).

Then Kantor [49] showed (Fqm ,+, ∗), is a presemifield.

1.4.4 A few Classification Results for Commutative Semifields

There have been a few classification results for commutative semifields. Knuth in

1965 showed that any semifield of order p2 is a finite field [51]. In 1977, Menichetti showed
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that a commutative presemifield which is three dimensional over its middle nucleus is nec-

essarily isotopic to Albert’s commutative twisted field [57].

1.5 Quasifields and Nearfields

Definition 1.5.1. A set S with binary operations + and ∗ is a left quasifield if it satisfies:

• (S ,+) is a group,

• for every a, b ∈ S there exists x, y ∈ S such that a ∗ x = b and y ∗ a = b.

• there exists a multiplicative identity element,

• the left distributive law holds, and

• a ∗ x = b ∗ x + c has exactly one solution for all a, b, c ∈ S with a , b.

You can make a similar definition for the right quaifield where the right distributive

law holds and the last property is x ∗ a = x ∗ b + c has exactly one solution for all a, b, c ∈ S

with a , b. As with semifields, the additive structure of a quasifield is elementary abelian.

Definition 1.5.2. A finite set S with two operations, + (addition) and ∗ (multiplication), is

called a nearfield if

• (S ,+) is an abelian group with identity 0,

• multiplication is associative,

• there is a multiplicative identity,

• for all non-zero a ∈ S there is a multiplicative inverse a−1, and

• one of the distributive properties hold.

If (S ,+, ∗) is also a left quasifield, then it is a planar nearfield.

Dickson discovered two types of planar nearfields: regular and irregular nearfields

[34]. Zassenhaus proved that every finite nearfield is either a regular nearfield or one of the

irregular nearfields [65]. We will describe the nearfields below. For more about nearfields

see [31], [34], and [65].
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1.5.1 The Regular Planar Nearfields

Let q be a prime power and n a natural number such that the prime divisors of n also

divide q − 1. Additionally, if q ≡ 3 (mod 4), then n . 0 (mod 4). Let c be a primitive

element of Fqn and let C be the group generated by cn. The coset representatives of C are

ci = cqi−1/q−1 with i = 0, . . . , n − 1. We define the function α(y) x 7→ xqi
if and only if

y ∈ ciC. Define a new multiplication on Fqn by x ∗ y = xα(y)y for y , 0 and x ∗ 0 = 0. Then

N(n, q) = (Fqn ,+, ∗), where + is the field addition, can be shown to be a nearfield, see [34].

These are called the regular nearfields.

1.5.2 The Irregular Nearfields

Though we have only computational results regarding them, and so don’t need a

theoretical description, for completeness we outline a description of the irregular nearfields

in the remainder of this section. To describe them, we need to give a description of both the

addition and multiplication of each. For the addition, we have the following theorem which

holds for all nearfields.

Theorem 1.5.3. Let N be a nearfield of finite dimension n over its prime field Fp. Then (n, p)

has a fixed point free subgroup S ? such that if S = S ? ∪ {0}, where 0 denotes the n × n zero

matrix, then an addition can be defined on S in such a way that, under this addition and

matrix multiplication, S is a nearfield isomorphic to N.

Though this does not give an explicit description of the addition, it does allow for a

description of the irregular nearfields in terms of just the generators of the subgroup S ? of

the theorem. This is given in the following classification statement due to Zassenhaus [65].

Theorem 1.5.4. Let N be a finite irregular nearfield. Then N has order p2 and is isomorphic

to one of the following nearfields S i, where S ?
i is the subgroup of (2, p) generated by the

matrices given below and where addition is defined as in Theorem 1.5.3.

I. |S 1| = 52 and S ?
1 = 〈a,b〉, where

a =

 0 −1

1 0

 ,b =

 1 −2

−1 −2

 .
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II. |S 2| = 112 and S ?
2 = 〈a,b, c〉, where

a =

 0 −1

1 0

 ,b =

 1 5

−5 −2

 , c =

 4 0

0 4

 .
III. |S 3| = 72 and S ?

3 = 〈a,b〉, where

a =

 0 −1

1 0

 ,b =

 1 4

−1 −2

 .
IV. |S 4| = 232 and S ?

4 = 〈a,b, c〉, where

a =

 0 −1

1 0

 ,b =

 1 −6

12 −2

 , c =

 2 0

0 2

 .
V. |S 5| = 112 and S ?

5 = 〈a,b〉, where

a =

 0 −1

1 0

 ,b =

 2 4

1 −3

 .
VI. |S 6| = 292 and S ?

6 = 〈a,b, c〉, where

a =

 0 −1

1 0

 ,b =

 1 −7

−12 −2

 , c =

 16 0

0 16

 .
VII. |S 7| = 592 and S ?

7 = 〈a,b, c〉, where

a =

 0 −1

1 0

 ,b =

 9 15

−10 −10

 , c =

 4 0

0 4

 .
While there are several standard treatments of the irregular nearfields, the description

just given comes from S.D. Groves in [43].
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1.6 Orthogonal Systems

Definition 1.6.1. A system of functions f1, . . . , fm over Fn
q with 1 ≤ m ≤ n is said to be

orthogonal in Fq if the system

f1(x1, . . . , xn) = y1

f2(x1, . . . , xn) = y2

...

fm(x1, . . . , xn) = ym

has exactly qn−m solutions in Fn
q for each (y1, . . . , ym) ∈ Fm

q . If m = n, then an orthogonal

system is said to be maximal.

Orthogonal systems were introduced implicitly by Carlitz in [17, 18], and again by

Nöbauer in [59]. Orthogonal systems with n = 2 and q a prime were studied by Kurvbatov

and Starkov in [52]. The following theorems will prove useful.

Theorem 1.6.2. (Carlitz, [18]; Niederreiter, [58]) Every orthogonal system can be extended

to a maximal orthogonal system.

Theorem 1.6.3. (Niederreiter, [58]) Fix natural numbers n and m with m ≤ n. A sys-

tem of polynomials f1, . . . , fm ∈ Fq[X1, . . . , Xn] is orthogonal if and only if for all non-zero

(b1, . . . , bm) ∈ Fm
q the polynomial b1 f1 + . . . bm fm is a permutation polynomial.

1.7 Differential Uniformity

Let f : Fpn → Fpm . We call ∆ f (x, a) = f (x +a)− f (x)− f (a) the difference function of

f ; if f is in its polynomial representation, then ∆ f (X, a) is called the difference polynomial.

We call D f (x, a) the derivative of f in the direction of a.

The following definition is central to this thesis.

Definition 1.7.1. A function, f : Fpn → Fpm is said to be δ differentially uniform (δ - DU) if

for all non-zero a ∈ Fpn and for all b ∈ Fpm ∆ f (x, a) = b has at most δ solutions.
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This definition is equivalent if we use D f (x, a) in place of ∆ f (x, a); later in this work it

will be advantageous for us to use D f (x, a) instead of ∆ f (x, a). For a DO polynomial, f (X) =∑
ai jXpi+p j

, the difference polynomial is the linearized polynomial ∆ f (X, a) =
∑

ai j(Xpi
ap j

+

api
Xp j

). The differential uniformity of a DO polynomial is maxa∈F∗q #Ker(∆ f (X, a)). The

worst possible differential uniformity that a function f : Fq → Fq can have is q. This is only

attained when the difference function is constant for some a ∈ F∗q. We will use these facts in

future proofs.

There are some special cases of differential uniformity. We outline them in the next

definition.

Definition 1.7.2. A function f : Fpn → Fpm is called perfect nonlinear if it is pn−m - DU.

When n = m, a function that is differentially 1 uniform is called a planar function. A function

is called almost perfect nonlinear (APN) if it is differentially 2 uniform.

Planar functions were introduced in a more general context by Dembowski and Os-

trom in [32], while studying projective planes with a collineation group acting transitively on

the affine points. An example of a planar function is x2 over any field with odd characteristic.

Another important example is given by the following lemma.

Lemma 1.7.3 (Coulter and Matthews, [29]). Let p be an odd prime. The function Xpα+1 is

planar over Fpn if and only if
n

(n, α)
is odd.

Planar functions do not exist over characteristic two fields. In characteristic two, the

difference function of f (x) is ∆ f ,a(x) = f (x + a) + f (x) + f (a). Suppose x0 is a solution of

∆ f (x, a) = b. Then

f (x0 + a + a) + f (x0 + a) + f (a) = b.

So, x0 + a is also a solution and there are at least two solutions to ∆ f ,a(x) = b. A family of

APN functions over F2n is the set of Gold functions. A Gold function is of the form x2i+1

where gcd(i, n) = 1 [42, 56, 60].
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For all nonzero a ∈ Fpn and b ∈ Fpm , if ∆ f ,a(x) = b has either λ or 0 solutions,

then f (x) is a semiplanar function of index λ. The following theorem describes a family of

semiplanar functions.

Theorem 1.7.4 (Coulter and Fain, [22]). If
n

(i, n)
is even, then xpi+1 is semiplanar of index

p(i,n).

In 2008, Budaghyan and Helleseth showed that a DO polynomial is CCZ-inequivalent

to the planar function x2 if a j j = 0 for all j and is CCZ-inequivalent to the planar function

xpt+1 with n
(t,n) odd if ak j = 0 for all k and j = k ± t (mod n) [15].

All of the equivalences in Section 1.3 preserve differential δ uniformity.

The Walsh transform of F : F2n → F2n is the integer valued function

WF(a, b) =
∑
x∈F2n

(−1)Tr(bF(x)+ab) for a, b ∈ F2n .

The Walsh coefficients of F are the values WF(a, b) and the multiset {WF(a, b) : a, b ∈

F2n} is the Walsh spectrum of F. The extended Walsh spectrum is the multiset {|WF(a, b)| :

a, b ∈ F2n}. These too are invariants under the equivalences of Section 1.3.

1.7.1 Planar Functions and Orthogonal Systems

There is a natural relationship between planar functions and orthogonal systems that

stems from the relationship between orthogonal systems and permutation polynomials in

Theorem 1.6.3.

Theorem 1.7.5 (Coulter and Matthews, [28]). Let f ∈ Fqn[X] be planar, {b1, . . . , bn} a fixed

basis for Fqn over Fq, and f1, . . . , fn ∈ Fq[X] be the corresponding coordinate functions for

f as polynomials. The system of polynomials {∆ fi(X, a) | i = 1, . . . , n} forms a maximal

orthogonal system in Fq for each non-zero a ∈ Fqn .

1.7.2 Correspondence Between Commutative Presemifields and Planar Functions

In 2008 Coulter and Henderson showed that there is a correspondence between com-

mutative semifields and planar DO polynomials.
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Theorem 1.7.6 (Coulter and Henderson, [23]). Let q be an odd prime power. If f ∈ Fq[X] is

a planar DO polynomial, then (Fq,+, ∗) is a commutative presemifield, where x ∗ y = f (x +

y)− f (x)− f (y). Conversely, if (Fq,+, ∗) is a commutative presemifield, then f (X) = 1
2 (X ∗X)

is a planar DO polynomial.

This connection between algebraic objects and functions with low differential unifor-

mity form the core motivation for the majority of the work of this thesis.

1.8 The Dembowski-Ostrom Conjecture

In [32], Dembowski and Ostrom questioned whether, ignoring constants and lin-

earized terms the only planar polynomial over finite fields are Dembowski-Ostrom poly-

nomials.

This query is nowadays called the Dembowski-Ostrom conjecture.

Conjecture 1.8.1 (Dembowski and Ostrom, 1968). A planar polynomial is necessarily a

Dembowski-Ostrom polynomial.

This conjecture was proven for prime fields in 1989-1990 [41], [46], and [63]. In

1997, Coulter and Matthews showed the conjecture was false in [29] with the smallest coun-

terexample being X14 over F34 .

Theorem 1.8.2 (Coulter and Matthews, [29]). Let q = 3e and α a natural number. Then

X(3α+1)/2 is planar over Fq is and only if (α, e) = 1 and α is odd.

Up to EA equivalence, these are the only known counterexamples; thus, the conjec-

ture is open for characteristic larger than 3.

1.8.1 Classification of Planar Monomials.

More is known when we restrict the problem to planar monomials

Proposition 1.8.3 (Coulter and Matthews [29]). The following statments hold.

(i) If Xpα+1 is planar over Fpe if and only if e
(α,e) is odd.
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(ii) If Xn is planar over Fq, then Xn is planar over every subfield of Fq.

(iii) If Xn is planar over Fq, then (n, q − 1) = 2.

(iv) The monomial Xn is planar over Fq if and only if Xnpi
is planar over Fq for any non-

negative integer i.

Some progress has been made on the DO conjecture for monomials. The next propo-

sition outlines that progress.

Proposition 1.8.4. The current status on the Dembowski-Ostrom Conjecture is as follows.

(i) The polynomial Xn is planar over Fp if and only if n ≡ 2 mod (p−1) (Johnson, [48]).

(ii) Let p be an odd prime. The polynomial Xn is planar over Fp2 if and only if n ≡ 2

mod (p2 − 1) or n ≡ 2p mod (p2 − 1) (Coulter, [21]).

(iii) The polynomial Xn is planar over Fp4 , with p ≥ 5 an odd prime, if and only if n ≡ 2p j

mod (p4 − 1) for some integer 0 ≤ j < 4 (Coulter and Lazebnik, [26]).

Coulter and Lazebnik in 2012 give a classification of planar monomials for p4 and

made additional progress on Conjecture 1.8.1. They resolved case one and case two of the

following theorem.

Theorem 1.8.5 (Coulter and Lazebnik, [26]). Let q = pe with p an odd prime and e = 2w

with w ≥ 2. Suppose Xn is planar over Fq, n < q, and there exists an integer j, 0 ≤ j < w,

for which n ≡ 2p j mod (pw − 1). If n = (ae−1 · · · a0)p, then some cyclic shift of the w-tuple

(a0 + a0+w, a1 + a1+w, . . . , aw−1 + ae−1)

must be one of the following:

(0, 0, . . . , 0, 2),

(p − 1, p − 1, . . . , p − 1, p + 1), or

(0, 0, . . . , 0︸      ︷︷      ︸
m≥0 times

, p, p − 1, p − 1, . . . , p − 1︸                       ︷︷                       ︸
w−2−m times

, 1).
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1.9 APN Functions and the switching technique

A function f that maps into F2 is called a boolean function. Given an APN function

F and u ∈ F∗2n , Edel and Pott [39] gave the following conditions on a boolean function f so

that F(x) + u f (x) is APN. They called this the Dillon Switching Technique.

Theorem 1.9.1 (Edel and Pott, [39]). Assume that F : F2n → F2n is an APN function. Let

u ∈ F2n with u , 0 and let f : F2n → F2 be a Boolean function. Then F(x) + u f (x) is an APN

function if and only if for all x, y, a ∈ F2n such that F(x) + F(x + a) + F(y) + F(y + a) = u,

f (x) + f (x + a) + f (y) + f (y + a) = 0.

Similarly, Budaghyan, Carlet, and Leander gave conditions on an APN DO polyno-

mial F(x) and a DO polynomial f (x) such that F(x) + f (x) is APN.

Theorem 1.9.2 (Budaghyan, Carlet, and Leander, [14]). Let F : F2n → F2n be a DO APN

function and f be a DO function from F2n to F2m where m is a divisor of n. If for every

nonzero a ∈ F2n there exists a linear function la from F2n to F2m satisfying:

1. ∆ f ,a(x) = la(∆F,a(x)), and

2. if there exists x ∈ F2n such that ∆F,a(x) = y ∈ F2m with y , 0, then la(y) , y,

then the function F(x) + f (x) is APN.

The methods in these two theorems prove to be very useful in showing that a function

has low differential uniformity. We will generalize these theorems in Chapter 2 and use them

in Chapter 3.

1.10 Further Results

In this section we give some more results that are needed in this thesis.

We are interested in algebraic objects; all of which have a set and a multiplication ∗.

Given a set S and a binary operation ∗ the center is the set

Z(S ) = {c : c ∈ S | c ∗ a = a ∗ c ∀a ∈ S }.

As shall be seen, depending on the properties of the algebriac object and the function, f , the

center can help us determine a bound for the differential uniformity of f .
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1.10.1 Number Theory Results

The following theorem of Lucas was instrumental in the proofs of Proposition 1.8.4

and will be used in Section 3.5 and Chapter 4.

Lemma 1.10.1 (Lucas, [54]). Let p be a prime and α ≥ β be positive integers with base p

expansion α =
∑

i αi pi and β =
∑

j β j p j. Then,(
α

β

)
=

∏
i

(
αi

βi

)
mod p,

where
(

n
k

)
= 0 if n < k.

Lucas’ Theorem is particularly relevant when considering the differential uniformity

of monomials, see Proposition 1.8.3 (iv) for example.

For Xk, consider k in its p-ary expansion

k = (an−1 an−2 . . . a1 a0)p,

where k = an−1 pn−1 + an−2 pn−2 + . . . a1 p + a0. Calculating Xkα mod (Xq − X) is the same as

calculating kα mod (q − 1), and kp mod (q − 1) results in simply a cyclic shift of the base

p coefficients. That is, kp mod (q − 1) = (an−2 an−3 . . . a1 a0 an−1)p. Additionally, if a bi in

kα =

n−1∑
i=0

bi pi is at least p, say bn−1, then determining the base p description of kα results in

a subtraction of p from the 1st coordinate, and an adding of 1 to the last coordinate. That is
n−1∑
i=0

bi pi mod (q − 1) = (bn−1 − p)pn−1 + bn−2 + · · · + b1 p + (b0 + 1). We will refer to such an

occurrence as a carry.

1.10.2 Projective Planes

Given a system of points and lines with an incidence structure we say that two or

more points are collinear if they lie on the same line.

Definition 1.10.2. An affine plane is an incidence structure that satisfies the following prop-

erties:

• any two points line on a unique line;
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• every line has at least two points;

• given any line and any point not on that line there is a unique line which contains the

point and does not meet the given line; and

• there exists three non-collinear points.

In an affine plane, two lines are parallel if they are either the same line or there is no

point that is incident to both lines. The relation defined by parallel lines is an equivalence

relation and we can partition the set of lines into sets of parallel lines, called the parallel

classes.

For a finite affine plane there exists a natural number n, called the order of the affine

plane, such that

• each line contains n points;

• each point is on n + 1 lines;

• there are n2 points; and

• there are n2 + n lines.

Give a set of n elements R and two binary relations on R, + and ∗, we can define an

incidence structure using (R,+, ∗) by:

• the points are R × R,

• one of the parallel class is the set of lines of the form [v] := {(v, y) : y ∈ R} - these are

called the vertical lines,

• the other parallel classes are the the lines with the same slope [m, k] : {(x,m ∗ x + k) :

x ∈ R} - these are called the slope lines.

Given a semifield, nearfield, or quasifield the incidence structure defined above is an

affine plane of order n.
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Definition 1.10.3. A projective plane is an incidence structure that satisfies the following

properties:

• every two distinct points line are incident to a unique line;

• every two distinct lines are incident to a unique point; and

• there exists four points no three of which are non-collinear.

For a finite projective plane plane there exists a natural number n, called the order of

the projective plane, such that

• each line contains n + 1 points;

• each point is on n + 1 lines; and

• there are n2 + n + 1 points and there are n2 + n + 1 lines.

There is a standard technique for extending an affine plane to a projective plane. For

each class of parallel lines we add a new point, also adding that point to each line in the

parallel class. A new line consisting of all the new points is also created. To obtain an affine

plane from a projective plane you simply delete any one line of the projective plane along

with all the points on it.
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Chapter 2

COORDINATE FUNCTIONS

In this chapter, we will generalize Dillon’s Switching Technique in Theorem 2.1.1.

We then apply this technique in Theorem 2.3.1 to get bounds on the differential uniformity

for functions that are a sum of a planar function and an arbitrary function.

2.1 Extended Switching Technique

As was outlined in Section 1.2, by fixing a basis for F2n over F2 that includes u,

call it {u = b1, b2, . . . , bn}, we can represent the F : F2n → F2n by the coordinate functions

( f1, . . . , fn). Given any boolean function f : Fq → F2 Then the coordinate functions of

F(X) + u f (X) are ( f1 + f , f2, . . . , fn).

We can think of the Dillon switching technique as a condition on how to change one

coordinate of an APN function and obtain an APN function, see Theorem 1.9.1. Our first

theorem generalizes Theorem 1.9.1 to multiple coordinates. We will refer to this as Extended

Switching Technique.

Theorem 2.1.1. Let F : F2n → F2n be an APN function and f : F2n → B where B is a k

dimensional subspace of F2n over F2. Then F(X) + f (X) is an APN function if and only if for

all x, y, a in F2n , a , 0, such that f (x) + f (x + a) + f (y) + f (y + a) = b ∈ B,

F(x) + F(x + a) + F(y) + F(y + a) , b.

Proof. As was stated in Section 1.7, if x is a solution to ∆ f (x, a) = b in characteristic 2 then

x + a is also a solution. Let z ∈ F2n and suppose to the contrary there are four solutions to
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F(x) + F(x + a) + f (x) + f (x + a) = z for some nonzero a ∈ F2n . We can call our solutions

x, x + a, y, y + a. So, we have the following system of equations:

F(x) + F(x + a) + f (x) + f (x + a) = z,

F(y) + F(y + a) + f (y) + f (y + a) = z.

Then we have

F(x) + F(x + a) + F(y) + F(y + a) + f (x) + f (x + a) + f (y) + f (y + a) = 0,

or equivalently,

F(x) + F(x + a) + F(y) + F(y + a) = f (x) + f (x + a) + f (y) + f (y + a).

These can only be equal when F(x) + F(x + a) + F(y) + F(y + a) = b for some b ∈ B. So,

F(x)+ f (x) is APN if and only if F(x)+F(x+a)+F(y)+F(y+a) , b for all x, y, a in F2n with

a , 0 such that f (x)+ f (x+a)+ f (y)+ f (y+a) = b ∈ B, F(x)+F(x+a)+F(y)+F(y+a) , b. �

Let {u1, u2, . . . , uk} be a basis for B and consider a basis for Fpn , {u1 = b1, u2 =

b2, . . . , uk = bk, bk+1, . . . , bn}. If we represent F(x) and f (x) in their coordinate function

form with respect to their bases as F(x) = ( f1(x), . . . , fn(x)) and f (x) = (g1(x), . . . gk(x)),

then the coordinate function form of F(x) + f (x) is

( f1(x) + g1(x), f2(x) + g2(x), . . . , fk(x) + gk(x), fk+1(x), . . . , fn(x)).

So, we can consider the extended switching technique as a condition on how to

change multiple coordinates of an APN function to obtain another APN function. Thus

Theorem 1.9.2 is a consequence of our Theorem 2.1.1. We can, in fact, obtain the following

generalization of Theorem 1.9.2.

Theorem 2.1.2. Let F ∈ F2n[X] be a DO APN polynomial and f ∈ F2n[X] be a DO polyno-

mial from F2n to B where B is a k dimensional subspace of F2n over F2. The polynomial F + f

is APN if for every a ∈ F∗2n there exists a linear function la : F2n → B satisfying

i. ∆ f ,a(x) = la(∆F,a(x)), and
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ii. if there exists x ∈ F2n such that ∆F,a(x) = y ∈ B with y , 0, then la(y) , y.

Proof. Since F(x) + f (x) is a DO polynomial, then we only need to determine the roots of

∆F+ f (x, a) for all nonzero a ∈ F∗2n . If there are at most two solutions, then the function is

APN. By (i), we have

0 = ∆F+ f (x, a)

= ∆F(x, a) + ∆ f (x, a)

= ∆F(x, a) + la(∆F(x, a)).

By (ii), this only occurs when ∆F(x, a) = 0. Since F(x) is APN we know there are only 2

solutions, namely x = 0 and x = a. Hence, F(x) + f (x) is APN. �

2.2 Coordinate Functions and Orthogonal Systems

Motivated by the correspondence between planar functions and maximal orthogonal

systems, we now investigate what happens to planar functions when we consider them as

orthogonal systems and alter the coordinate functions.

Theorem 2.2.1. Changing any k coordinate functions of a planar function f (x) over Fpn

gives us a function that is at most pk-DU.

Proof. Consider f (x) = ( f1(x), . . . , fn(x)) as a planar function over Fpn in coordinate function

form. Without loss of generality, suppose we replace the last k coordinate functions in the

following way:

g(x) = ( f1(x), . . . , fn−k(x), gn−k+1(x), . . . , gn(x)).

Then, the difference polynomial of g is

∆g(x, a) = (∆ f1(x, a), . . . ,∆ fn−k(x, a),∆gn−k+1(x, a), . . . ,∆gn(x, a)).

The set {∆ f1(x, a), . . . ,∆ fn−k(x, a)} still forms a mutually orthogonal system but it is no longer

maximal. This means that for α1, . . . αn−k ∈ Fp there exists pk solutions to

∆ f1(x, s) = α1, . . . ,∆ fn−k(x, a) = αn−k.
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So when (α1, . . . αn) ∈ Fpn , the maximum number of solutions to

(∆ f1(x, a), . . . ,∆ fn−k(x, a),∆gn−k+1(x, a), . . . ,∆gn(x, a)) = (α1, . . . , αn)

is pk. Specifically the elements satisfying

(∆ f1(x, a), . . . ,∆ fn−k(x, a)) = (α1, . . . , αn−k)

all also satisfy ∆gn−k+1(x, a) = αn−k+1, . . . ,∆gn(x, a) = αn. Hence, the new function g is at most

pk differential uniform. �

Corollary 2.2.2. Let f ∈ Fq[X1, . . . Xn] be a planar polynomial and consider its coordinate

polynomials, f1, . . . , fn ∈ Fq[X1, . . . , Xn]. Fix i, j with 1 ≤ i, j,≤ n and let F j ∈ Fq[X1, . . . , Xn]

be the polynomial we obtain from removing all the terms involving Xi from coordinate func-

tion f j. The function F ∈ Fq[X1, . . . Xn] defined by ( f1, . . . , f j−1, F j, f j+1, . . . fn) is p - DU.

Proof. From Theorem 2.2.1, we know that this new function is at most differential p uniform.

Without loss of generality, suppose we remove all terms involving xn from fn. Then when

we consider a = (0, . . . , 0, 1), the difference polynomials of the coordinate functions fi(x)

are f1(x1, . . . , xn−1, xn + 1) − f1(x1, . . . , xn) for i ∈ [1, . . . , n − 1] and for fn the difference

polynomial is fn(x1, . . . xn−1) − fn(x1, . . . , xn−1) = 0. We know by properties of orthogonal

systems that for any (α1, . . . , αn−1) ∈ Fn
p there are p elements satisfying

f1(x1, . . . , xn−1, xn + 1) − f1(x1, . . . , xn) = b1,

...

fn−1(x1, . . . , xn−1, xn + 1) − fn−1(x1, . . . xn) = bn−1.

So, the new function is p differentially uniform. �

2.3 Applications of Extended Switching Technique

We can also use the extended switching technique to get bounds on the differential

uniformity of functions.
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Theorem 2.3.1. Let p be odd, D : Fpn → Fpn be a planar function, and F : Fpn → Fpn . Let

∆Max(F) := maxa∈F∗q #Im(∆F(x, a)). Then f (X) = D(X) + F(X) is at most ∆Max(F)-DU.

Proof. The derivative of f (x) in direction of a is

∆ f (x, a) = ∆D(x, a) + ∆F(x, a).

For a fixed b ∈ Fpn , we need to know the number of solutions to ∆ f (x, a) = b. By the

extended switching technique, we need to know when ∆D(x, a) + b = ∆F(x, a). Since D(x) is

planar ∆D(x, a) + b is a permutation. Therefore, we can bound the differential uniformity of

D(x) + F(x) by the maximum image size of ∆F(x, a) which by definition is ∆Max(F). Thus,

f (x) is at most ∆Max(F)-DU. �

From this last theorem we see that we can create a low differentially uniform function

from a known planar function by adding a function whose difference function has a small

image size.

It seems reasonable that we could use the Extended Switching Technique to obtain

new APN functions. We have completed the following computational searches in search of

APN functions that were inequivalent to known examples and that required the use of the

extended switching technique; in other words, we tested to be sure that these functions did

not use Dillon’s switching technique inductively.

Recall that Gold functions are APN functions over F2n of the form x2i+1 with (i, n) = 1.

We have run code for small extensions to see how adding coordinate functions of a Gold

function with coordinate functions from other Gold functions affects the differential unifor-

mity.

First, fix a basis. We choose the basis B = {1, α, α2, . . . , α2n−2}. We started by decon-

structing a Gold function, f (x), into its coordinate functions { f1(x), . . . , fn(x)}. Then we took

two other Gold functions, g(x) and h(x), and wrote them in their coordinate function form

{g1(x), . . . , gn(x)} and {h1(x), . . . , hn(x)} respectively. Note that g(x) and h(x) could be the

same Gold function. We test the differential uniformity of the function that has coordinate

functions { f1(x) + g1(x), f2(x) + h2(x), f3(x), . . . , fn(x)}. For n from 3 to 12, we do not obtain
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any new APN functions using this method. Similarly, we have computational data for adding

three coordinate functions to a Gold function in a similar manner as above. For n from 4 to

9, we do not obtain any new APN functions.

We extended this computational search by adding coordinate functions of APN func-

tions to the coordinate functions of another APN functions. We focused on the following

known APN functions which you can find in Appendix B: Gold, Kasami, Welch, Niho, In-

verse, Dobbertin, and the function from [14].

The computer search included the following:

• replace 2 coordinate function of any of the functions listed above with the correspond-

ing 2 coordinate functions of any other function listed above with n from 4 to 8;

• replace 3 coordinate function of any of the functions listed above with the correspond-

ing 3 coordinate functions of any other function listed above with n from 4 to 5;

• add 2 coordinate functions of Gold functions to a different Gold function for n from 3

to 10;

• add 2 coordinate functions of Kasami functions to a different Kasami function for n

from 3 to 8;

These additional computational searches did not yield any new APN functions that

are inequivalent to known examples. There are more known APN functions that you can see

in Appendix B that could also be used in the search method above.
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Chapter 3

LOW DIFFERENTIAL UNIFORM FUNCTIONS FROM ALGEBRAIC
STRUCTURES

Let S = (Fq,+, ∗) be a commutative presemifield of odd order. Theorem 1.7.6 shows

the polynomial F(X) = X ∗ X must be planar. Thus, commutative semifields give rise to

low DU functions. Motivated by this connection, in this chapter, we replace commutative

semifields with other well-structured algebraic objects and examine the DU of the function

x ∗ x. As shall be seen, though we do not find APN or planar function, we still obtain

functions with low DU. Theorem 3.3.2 gives conditions on some of the Kantor presemifields

to create functions that are 4 differentially uniform. In Theorem 3.4.3, we give a lower bound

for the differential uniformity for the function f (x) = x ∗ x where the multiplication is from

the regular planar nearfield N(2, q2) with q odd and we conjecture that this lower bound is

the differential uniformity of these functions.

3.1 Albert’s Generalized Twisted Fields

In Section 1.4.2 we defined Albert’s Generalized Twisted fields. We want to investi-

gate the differential uniformity of the function f (x) = x ∗ x using the twisted field multipli-

cation. We note that the planar functions that we obtain computationally for order 35 were

found by Weng, see Coulter and Kosick, [25]. In addition, all of the planar functions that we

obtain computationally for order 73 are known as all must correspond to either a finite field

or Albert’s twisted field.

Table 3.4 gives the differential uniformities for specific primes p and extension n.

Since c runs through the elements of Fpn that satisfy the properties in Section 1.4.2, the

frequency column notes the number of c’s that yield functions that correspond to that specific

differential uniformity.
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Table 3.1: Differential Uniformity of f (x) = x ∗ x with multiplication from Albert’s Gener-
alized Twisted Fields.

p n δ frequency
3 3 3 13
3 4 3 120
3 5 1 11

3 473
9 242

3 6 3 1768
9 2145

3 7 3 6558
9 9837

3 8 3 19760
9 56500

5 3 5 62
25 31

5 4 5 1404
5 5 1 71

5 6621
25 7384

7 3 1 38
7 228
49 19

7 4 7 5520
49 480

11 3 11 1064
121 133
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Let p be an odd prime and n > 2. Given automorphisms x� xpi
and x� xp j

and a

c ∈ Fpn satisfying the conditions in Section 1.4.2, then f (X) = X2 − cXpi+p j
. Therefore, the

difference polynomial is ∆ f (X, a) = 2aX−c[Xpi
ap j

+ Xp j
api

]. Since f (X) is a DO polynomial

then we want to know how many solutions to ∆ f (x, a) = 0; equivalently, the number of

solutions to

2ax = c[xpi
ap j

+ xp j
api

].

For every b ∈ Fpn there exists an x ∈ Fpn such that 2ax = b, specifically x = 2−1a−1b.

We want to know the number of elements in Fpn such that

−b = c[(2−1a−1b)p j
api

+ (2−1a−1b)pi
ap j

]. (3.1)

When we rearrange Equation 3.1 we get −2c−1 = api−p j
bp j−1+ap j−pi

bpi−1. For a fixed a, c ∈ Fq

with a , 0, we want the number of solutions in Fq of

−2c−1 = api−p j
xp j−1 + ap j−pi

xpi−1. (3.2)

From our discussion above, we get the following theorem.

Theorem 3.1.1. Given a non-commutative generalized twisted field A = (Fpn ,+, ∗), the dif-

ferential uniformity of f (x) = x ∗ x is

max
a∈F∗qn

#{γ : γ ∈ Fqn | − 2c−1 = api−p j
γp j−1 + ap j−pi

γpi−1},

where x ∗ y = xy + cxpi
yp j

.

We note here that if we loosen our restrictions and allow one of the automorphisms to

be the identity, say j = 0, then Equation 3.2 can be simplified to [−2c−1 − api−1]api−1 = bpi−1.

In this case, we want to determine the number of solutions in Fq of the equation

[−2c−1 − api−1]a1−pi
= xpi−1

for any natural number i < n. For a fixed element of Fq = Fpn there is either 0 or pgcd(n,i) − 1

solutions. For example, if n is even, j = 0, and i = n
2 , then the differential uniformity of f is

p
n
2 .
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We also note that if i = j then f (X) = X2 + cX2pi
. So, f (X) = l(X2) where l(X) = X +

cXpi
. Since l(X) is a linearized polynomial, the differential uniformity of f (X) is exactly the

number of roots of l(X). If l(X) is a permutation polynomial, then f (X) is linearly equivalent

to X2.

We can use Theorem 2.3.1 to bound the differentially uniformity of f (X) obtained

from specific generalized twisted fields. The bound is nontrivial only if n is even, j , i, and
n

( j−i,n) is even.

Theorem 3.1.2. Suppose (Fpn ,+, ∗) is a generalized twisted field described in Section 1.4.2

where n is even, j , i, and n
( j−i,n) is even. Then the differential uniformity of f (x) = x ∗ x is

bounded above by pn−( j−i,n).

Proof. The function is

f (x) = x2 − cxp j+pi

= x2 − c(xp j−i+1)pi
.

We have that D(x) = x2 and F(x) = L(G(x)) where L(x) = −cxpi
, and G(x) = xp j−i+1. Since

n
( j−i,n) is even, G(x) is semiplanar of index p( j−i,n) from Theorem 1.7.4. Therefore, the image

size of F(x) is pn−( j,i) and by Theorem 2.3.1 the differential uniformity of f (x) is at most

pn−( j−i,n). �

You can see a comparison between the bound in Theorem 3.1.2 and the actual dif-

ferential uniformity for characteristic 3 and 3 ≤ n ≤ 8 in Table 3.2. These are very loose

bounds that we have obtained from Theorem 2.3.1. Note that the dimension of the bounds is

the same regardless of the characteristic.

3.2 Arbitrary Semifields of Characteristic Two

Suppose q is a power of two we have a semifield of the form S = (Fq,+, ∗) and

consider f (x) = x ∗ x over Fq. The difference function of f is ∆ f (x, a) = x ∗ a + a ∗ x. If

a = 1 then ∆ f (x, 1) = 0. So, f (x) is q differential. More generally, for all elements a ∈ Z(S ),

∆ f (x, a) = 0.For a ∈ Fq \ Z(G), the number of solutions to ∆ f (x, a) = 0 is the size of the
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Table 3.2: Comparison of the bound in Theorem 3.1.2 and corresponding differential uni-
formity of functions from Albert’s Generalized Twisted Fields for characteristic
3 for 3 ≤ n ≤ 8.

p n i j j − i n
( j−i,n) bound =

pn−( j−i,n)
δ(s)

3 4 1 2 1 4
(1,4) = 4 34−1 = 33 3

3 4 1 3 2 4
(2,4) = 2 34−2 = 32 3

3 4 2 3 1 4
(1,4) = 4 34−1 = 33 3

3 6 1 2 1 6
(1,6) = 6 36−1 = 35 3

3 6 1 4 3 6
(3,6) = 2 36−3 = 33 3

3 6 2 3 1 6
(1,6) = 6 36−1 = 35 9

3 6 2 5 3 6
(3,6) = 2 36−3 = 33 3

3 6 3 4 1 6
(1,6) = 6 36−1 = 35 9

3 6 3 5 2 6
(2,6) = 3 36−2 = 33 9

3 6 4 5 1 6
(1,6) = 6 36−1 = 36 3

3 8 1 2 1 8
(1,8) = 8 38−1 = 37 3

3 8 1 3 2 8
(2,8) = 4 38−2 = 36 9

3 8 1 4 3 8
(1,8) = 8 38−1 = 37 3, 9

3 8 1 5 4 8
(4,8) = 4 38−4 = 34 3

3 8 1 6 5 8
(5,8) = 8 38−1 = 37 9

3 8 1 7 6 8
(6,8) = 4 38−2 = 36 9

3 8 2 3 1 8
(1,8) = 8 38−1 = 37 9

3 8 2 4 2 8
(2,8) = 4 38−2 = 36 9

3 8 2 5 3 8
(1,8) = 8 38−1 = 37 3

3 8 2 6 4 8
(4,8) = 2 38−4 = 34 9

3 8 2 7 5 8
(5,8) = 8 38−1 = 37 9

3 8 3 4 1 8
(1,8) = 8 38−1 = 37 9

3 8 3 5 2 8
(2,8) = 4 38−2 = 36 9

3 8 3 6 3 8
(3,8) = 8 38−1 = 37 3

3 8 3 7 4 8
(4,8) = 2 38−4 = 34 3

3 8 4 5 1 8
(1,8) = 8 38−1 = 37 9

3 8 4 6 2 8
(2,8) = 4 38−2 = 36 9

3 8 4 7 3 8
(3,8) = 8 38−1 = 37 9

3 8 5 6 1 8
(1,8) = 8 38−1 = 37 9

3 8 5 7 2 8
(2,8) = 4 38−2 = 36 9

3 8 6 7 1 8
(1,8) = 8 38−1 = 37 3
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Table 3.3: Differential Uniformity of f (x) = x ∗ x where ∗ is Kantor’s presemifield multi-
plication defined in Section 1.4.3.

Size of the field Chain of Subfields Sequence of elements in F2n Differential Uniform
23 F2 ⊂ F23 1 2
23 F2 ⊂ F23 g, g2, g3, g4, g5, g6 4
25 F2 ⊂ F25 every element of F∗25 4
27 F2 ⊂ F27 every element of F∗27 4
29 F2 ⊂ F29 every element of F∗29 4
29 F2 ⊂ F23 ⊂ F29 see the appendix 4

see the appendix 8
see the appendix 16

centralizer of a. For a , 1 in Fq, the number of solutions to ∆ f (x, a) = 0 is bounded below

by 4 for all a ∈ Fq, because ∆ f (1, a) = 1 ∗ a + a ∗ 1 = a + a = 0. So even if we restrict to

Fq \ F2, we sill get a function which is at least 4-DU.

3.3 Kantor’s Presemifields of Characteristic Two

In Section 1.4.3 we defined the Kantor presemifield. We want to investigate the

function f (x) = x ∗ x using the multiplication defined in Section 1.4.3. In Table 3.3 we give

computational results that we have obtained using MAGMA.

Theorem 3.3.1. Consider the presemifield (F23 ,+, ∗) defined by Section 1.4.3 with F0 = F2,

F1 = F23 , and a1 = 1. The function f (x) = x ∗ x is APN and linearly equivalent to x5.

Proof. The function f (x) is

x3 + Tr(x)x + Tr(x) = x3 + x2 + x3 + x5 + Tr(x)

= x5 + x2 + Tr(x)

Since f (x) is affine equivalent to x5, which is a Gold function, f (x) is APN. �

Theorem 3.3.2. Consider the presemifield (F2n ,+, ∗) defined by Section 1.4.3 where n > 3 is

odd and the chain of fields is F0 = F2 and F2n = F1 with a1 ∈ F
∗
2n . The function f (x) = x ∗ x

is at most 4-DU . Furthermore, if a1 , 1, then f is 4-DU.
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Proof. We note that f (X) = X3 + Tr(a1X)X + a1 Tr(X) is affine equivalent to g(X) = X3 +

X Tr(a1X); therefore, we need only investigate the differential uniformity of g(X). We have

∆g(X, a) = X2a + a2X + a Tr(a1X) + x Tr(a1a). We will use the extended switching technique

(Theorem 2.1.1) to determine the differential uniformity. Since g(X) is a DO polynomial we

want to determine the number of solutions to

x2a + a2x = a Tr(a1x) + x Tr(a1a).

Set b = x2a + a2x. Clearly, x = 0 and x = a are always solutions and they correspond

to x2a + a2x = 0. For the remainder we assume b , 0 and x ∈ F2n \ {0, a}. Regardless of the

value of Tr(a1a), x = b or x = b + a and replacing b with ether of these results in a quadratic

equation in x. Thus, there are at most 2 more solutions for a total of at most 4 solutions to

x2a + a2x = a Tr(a1x) + x Tr(a1a). Thus the differential uniformity of f (X) is at most 4.

To prove that f is 4-DU when a1 , 1 we need only produce an element a ∈ F∗2n such

that

x2a + a2x = a Tr(a1x) + x Tr(a1a) (3.3)

has 4 solutions. There are two cases when Tr(a1) = 1 or Tr(a1) = 0.

Case 1: When Tr(a1) = 1 set a = a−1
1 . Then Equation (3.3) reduces to

0 = x2 + (a1 + a−1
1 )x + Tr(a1x).

It is easily verified that x = 0, a1, a−1
1 , a1 + a−1

1 are solutions. If a1 , 1, then these are four

distinct solutions and thus f is 4-DU.

Case 2: Suppose Tr(a1) = 0. If α ∈ Fq \ F2 satisfies Tr(a1α) = Tr(a1α
−1) = 1, set

a = α+α−1. Note Tr(a1a) = 0. We may again verify that x = 0, α, α−1, a are solutions to

Equation (3.3). If α exists, f is 4-DU.

Let Ti(a1) = {α ∈ Fq : Tr(a1α) = i} for i = 0, 1. Now |Ti(a1)| = 2n−1 and 0, 1 ∈ T0(a1).

Furthermore, the only element in Fq which is its own multiplicative inverse is 1. Thus, if

there were no pairs α, α−1 contained in T1(a1), then we would have |{α−1 : α ∈ T1(a1)}| =

2n−1 < 2n−1 − 2, a clear contradiction. Hence there must exist an α ∈ Fq \ F2 for which

Tr(a1α) = Tr(a1α
−1) = 1, and the theorem is proved.
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Theorem 3.3.3. Consider the presemifield (F2n ,+, ∗) defined by Section 1.4.3 where n is odd

and the chain of fields is K = F2 ( F1 ( F2 ( . . . ( Fk = F2m ( F = F2n with m odd and

a1, a2, . . . , ak ∈ F
∗
2n . The function f (x) = x ∗ x has differential uniformity at most 2m+1.

Proof. The polynomial we are considering is f (X) = X3 + X
∑k

i=1 Tri(aiX) +
∑k

i=1 ai Tr(X2).

The difference polynomial is ∆ f (x, a) = x2a+a2x+a
∑k

i=1 Tr(aix)+x
∑k

i=1 Tr(aia). We already

know that 0 and a are roots of this difference polynomial. Set b = x2a + a2x with x ∈ F2n .If

x satisfies ∆g(x, a) = 0, then a
∑k

i=1 Tr(aix) + x
∑k

i=1 Tr(aia) = b.

We have two cases, either
∑k

i=1 Tr(aix) = 0 or not.

Case 1: If
∑k

i=1 Tr(aix) = 0. then b = αx for some α ∈ F∗2m . Solving for x we get

αa−1 + a = x. Hence, in this case there are at most 2 more roots of ∆g(x, a) namely, αa−1 + a

and αa−1. So, in this case there are at most 4 roots to ∆ f (x, a).

Case 2: If
∑k

i=1 Tr(aix) = β ∈ F∗2m , then b = αx + βa where α ∈ F2m . Rearranging the

equation b = ax2 + a2x we find that the roots of ∆g(x, a) are the roots of x2 + (a +αa−1)x + β.

There are at most two solutions for each β ∈ F∗2m to add to the solution set. Hence the

differential uniformity is at most 2m+1. �

This result means that we can create relatively low differentially uniform functions

with respect to the field size using this method. Given a large extension n and a small divisor,

m, of n with arbitrary choice of (a1, . . . , ak) ∈ (F∗2n)k, we can create a function that is at most

2m+1 differentially uniform.

3.4 Nearfields

In this section we consider the function f (x) = x ∗ x where we use nearfield multipli-

cation, see Section 1.5. Using Theorem 1.2.1 we can write f as s polynomial.

Theorem 3.4.1. Consider a regular nearfield N(n, q). The polynomial representation of the

function f (x) = x ∗ x is

f (X) =
−qn + 1

n

n−1∑
j=0

n∑
i=1

(c
−q j+1

q−1 X)
qn−1

n iXq j+1.
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Proof. Let the indicator function for the multiplicative co-set ciC be denoted as Ici(x). We

can write f (x) terms of the indicator functions as

f (x) =

n−1∑
j=0

Ic j(x)xq j+1. (3.4)

Since m =
qn−1

n , Ic j(x) =
−qn−1

n

(
hn(c−1

j x)
qn−1

n − 1
)

from Theorem 1.2.1. Replacing hn(x)

with 1 + x + x2 + . . . xn, the indicator function can be represented by the polynomial

−qn − 1
n

n∑
i=0

(c−1
j X)

qn−1
n i. (3.5)

When we substitute Equation 3.5 into Equation 3.4, we obtain the desired result. �

The Table 3.4 gives computational results for the differential uniformity of f (x) for a

given regular nearfield.

3.4.1 The Exceptional Nearfield

The exceptional nearfield is N(2, 3). Using MAGMA we find that

f (X) = X8 + 2X6 + 2X4 + 2X2 = X8 + 2 Tr(X2) + Tr(X4)( mod Xq − X)

over F32 . We now show that f is 7-DU.

Proof. The polynomial f can be written as a pieciewise function in the following way

f (x) =


0 x = 0

1 x ∈ F∗3

2 x ∈ F9 \ F3

.

Let a ∈ F∗3, then

∆ f (x, a) =


0 x ∈ F3 \ {a}

−1 x ∈ F9 \ F3 ∪ {a}
.
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Table 3.4: Differential Uniformity of f (x) = x ∗ x with multiplication from the regular
nearfield N(n, q).

q n δ

q 2 q+1
2

*

3 2 7 **

5 2 4
5 4 4
7 2 9
7 3 6
11 2 11
13 2 8
13 3 8
13 4 8
17 2 9
17 4 9
19 2 5
19 3 9
23 2 17
25 3 12
27 2 19
29 2 15
31 2 21
37 2 19
81 2 41

* See Conjecture 3.4.2.
** This is the exceptional nearfield. See Section 3.4.1.
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So, when a ∈ F∗3 and b = −1 there are 7 solutions to ∆ f (x, a) = b. When b , −1 then there

are fewer than 7 solutions. On the other hand, when a ∈ F9 \ F3, then

∆ f (x, a) =


0 x ∈ {0, 1 − a, 2 − a}

−1 x ∈ F∗3

−2 x ∈ F9 \ (F3 ∪ {1 − a, 2 − a})

.

Therefore, when a ∈ F9 \ F3 and b ∈ F9 there are less than 7 solutions. Hence, f is

7-DU. �

3.4.2 Nearfields of the Form N(2s, p2t)

We next consider the regular nearfields N(2s, q) where q = p2t for some odd prime p

and integers t, s ≥ 1. Consider the function f (x) = x ∗ x where ∗ is the multiplication on this

nearfield. We make the following conjecture.

Conjecture 3.4.2. The function f (x) defined above is q+1
2 differentially uniform.

In support of our conjecture, we prove that the DU of f can be no smaller than q+1
2 .

Theorem 3.4.3. When s = 1 f (x) defined above is at least q+1
2 differentially uniform.

This proof will require the following obvious lemma and corollary.

Lemma 3.4.4. Let q be odd then, 4k . 4 j+r (mod q2−1) for any integers k, j and 0 < r < 4.

We immediately get the following corollary which is a necessary condition for Con-

jecture 3.4.2.

Corollary 3.4.5. Consider h to be the generator of the multiplicative group of Fq2 . Then, for

any integers k and j, h4k , h4 j+2.

The following lemmas are joint work with Fain during our dissertation studies.

Lemma 3.4.6. Let Trq2/q(X) = Xq + X be trace function of Fq2 over Fq for odd prime power

q. If q ≡ 1 (mod 4), the kernel of Trq2/q(X) is the set of q− 1 non-square elements of Fq2 and

0 and if q ≡ −1 (mod 4) the kernel of Trq2/q(X) is a set of squares and 0.
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Proof. Suppose Trq2/q(β) = 0. Then βq + β = β(βq−1 + 1) = 0. If β , 0, then βq−1 = −1. So,

β(q2−1)/2 = (βq−1)(q+1)/2 = (−1)(q+1)/2.

Thus β is a square if q ≡ −1 (mod 4) and a non-square if q ≡ 1 (mod 4). �

As a generalization we have the following lemma.

Lemma 3.4.7. Let L(x) = Trq2/q(aqx) = axq +aqx be a function over Fq2 for odd prime power

q and non-zero a in Fq2 . If L(β) = 0, then either β = 0 or ηq2(β) = −ηq(−1)ηq2(a).

Proof. Suppose L(β) = 0. Then aβq + aqβ = aβ(βq−1 + aq−1) = 0. If β , 0, then βq−1 = −aq−1.

So,

ηq2(β) = (βq−1)(q+1)/2 = (−aq−1)(q+1)/2 = (−1)(q+1)/2ηq2(a).

Thus ηq2(β) = ηq2(a) if q ≡ −1 (mod 4) and ηq2(β) = −ηq2(a) if q ≡ 1 (mod 4). �

Lemma 3.4.8. Let q be an odd prime power. If Trq2/q(β) = 0 then ηq2(β + 1) = ηq2(β − 1).

Proof. Consider the following relationship:

(x + 1)q+1 − (x − 1)q+1 = (xq + 1)(x + 1) − (xq − 1)(x − 1)

= xq+1 + xq + x + 1 − xq+1 + xq + x − 1

= 2(xq + x)

= 2 Trq2/q(x)

Therefore, if Trq2/q(β) = 0 then (β+1)q+1−(β−1)q+1 = 0. Thus, (β+1)q+1 = (β−1)q+1.

Raising both sides to the q−1
2 we get that ηq2(β + 1) = ηq2(β − 1). �

Lemma 3.4.9. The equation Trq2/q(x) = 0 has q solutions. When q ≡ 1 (mod 4) the q − 1

nonzero solutions, α, are non-squares and (q − 1)/2 are such that α + 1 are squares and

(q − 1)/2 such that α + 1 being a non-square. When q ≡ −1 (mod 4) then the q − 1 nonzero

solutions, α, are squares and (q − 1)/2 are such that α + 1 are squares and (q − 1)/2 such

that α + 1 being a non-square.
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Proof. Since q ≡ 1 (mod 4) we know that the non-zero elements of the kernel of Trq2/q(x)

are non-squares from Lemma 3.4.6. The kernel of Trq2/q(x) is a on dimensional subspace

of Fq and we can denote it as β where β is a nonzero element in the kernel. Then we want

to investigate the quadratic character of α + 1 = kβ + 1. We can divide Fq2\Fq into q one

dimensional subspaces, β + λ for λ ∈ F∗q. The members of the same subspace will have the

same quadratic character; thus (q − 1)/2 of them are sets of squares and (q + 1)/2 are sets of

non-squares. The set {kβ+1 | k ∈ F?q } intersects each of these subspaces, other than the space

β, exactly once. Since β is a set of non-square then the number of solutions to Trq2/q(α) = 0

remove zero divides evenly into q−1
2 elements such that α+1 is a non-square and q−1

2 elements

such that α + 1 is a square.

The proof for q ≡ −1 (mod 4) is the same as above except the kernel of the elements of

Trq2/q are squares from Lemma 3.4.6. �

Now, we will prove Theorem 3.4.3.

Proof. We consider the derivative D f (x, a) in place of the difference function ∆ f (x, a).

Suppose a is a nonzero element in Fp4t . We have four cases, based on if x and x + a

are each squares or not. We outline the cases below.

1. If x and x + a are squares, then, D f (x, a) = (x + a)2 − x2 = 2ax + a2.

2. If x is a square and x + a is not a square, then, D f (x, a) = (x + a)q+1 − x2 = xq+1 + xqa +

aqx + aq+1 − x2.

3. If x + a is a square and x is not a square, then, D f (x, a) = (x + a)2 − xq+1 = x2 + 2xa +

a2 − xq+1.

4. If x and x + a is not squares, then, D f (x, a) = (x + a)q+1 − xq+1 = xqa + aqx + aq+1.

Each case corresponds to one of the S-sets which we know from Section 1.2.2 have sizes

either p4−1
4 or p4−1

4 + 1.
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In Case 1, after we fix a c ∈ Fq2 we are solving 2xa + a2 = c. Solving this we obtain

x = 2−1a−1c− 2−1a. Case 1 only adds a solution if 2−1a−1c− 2−1a and 2−1a−1c− 2−1a + a are

squares.

Similarly, Case 4 provides at most q solutions. In Case 4, D f (x, a) = aqx + xqa =

Dxq+1(x, a). Since 4t
(4t,2t) = 4t

2t = 2 is even xq+1 is semiplanar of index p2t = q by Theorem 1.7.4.

So, there is at most q solutions. However, we need to determine how many of these solutions

satisfy the conditions that x and x + a must both be non-squares.

We will prove that the differential uniformity is at least q+1
2 by allowing a = 1 and

b = 0. First, we have in Case 1 that x = −2−1 and x + 1 = 1 − 2−1; since both x and x + 1 are

in Fq then they are squares in Fq2 . So this will yield a solution.

Furthermore, we have that Case 2 and Case 3 yield no solutions. In Case 2 we get,

0 = (x + 1)q+1 − x2, or equivalently,

x2 = (x + 1)q+1.

But, x is a square then x = h2s where h is the generator of the multiplicative group

of Fq and s is an integer. On the other hand, (x + 1) is a non-square then h2k+1 and k is an

integer.

Since q ≡ 1 (mod 4), the left hand side is

(h2s)2 = h4s

The right hand side is

(h2k+1)4 j+1+1 = h(2k+1)(4 j+2)

= h8k j+4k+4 j+2

= h4(2k j+k+ j)+2

These cannot be the same by Corollary 3.4.5. So there are no solutions in this case.
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Similarly, in Case 3 we get the following:

0 = (x + 1)2 − xp2+1

xq+1 = (x + 1)2

But, x is not a square then x = h2s+1 where h is the generator of the multiplicative

group of Fq and s is an integer. (x + 1) is a square then h2k and k is an integer. Then the same

argument above holds and there are no solutions in this case.

By Lemma 3.4.9, since q = p2t ≡ 1 (mod 4) there are q−1
2 solutions for Case 4.

Therefore, there are a total of q+1
2 solutions to D f (x, 1) = 0. Hence, the differential uniformity

of f (x) is at least q+1
2 . �

3.4.3 Computational Results for The Seven Irregular Nearfields

Using the MAGMA algebra package, we set up a correspondence between the ele-

ments of a given exceptional nearfield Ni of order p2 and the finite field Fp2: this is done

via the command Element(N,a), where a ∈ Fp2 . This then allows us to generate, through

interpolation, a polynomial fi that satisfies fi(x) = x ∗ x. The DU of that function is then

computed.

Magma # Order du( f )

1 25 = 52 6

2 121 = 112 6

3 49 = 72 9

4 529 = 232 19

5 121 = 112 17

6 841 = 292 21

7 3481 = 592 25

So, in particular we see that for i = 2 and i = 7 we obtain functions with low DU. Indeed we

obtain f with differential uniformity less than or equal to p+1
2 on fields of order p2.
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3.5 Permutation Property

Since low differentially uniform functions are desirable for designing substitution

boxes, we are interested in the size of the set of pre-images of any fixed element in the

field. Permutations are particularly desirable as the number of pre-images corresponds to

the number of possible plaintext bits for the ciphertext output. Ideally, the function is a

permutation so that decryption is considerably easier. However, there is usually a trade off

between ease of decryption and security against differential cryptanalysis.

It is easy to see that the functions obtained from the nearfields and Albert’s Twisted

fields are even functions and thus not permutations. We know that the Kantor functions of

the form f (x) = x3 + x Tr(a1x) + a1 Tr(x) are EA equivalent to g(x) = x3 + x Tr(a1x) so we

will investigate if either of these are permutations.

When Tr(a1) = 1 we know that g(1) = 0 = g(0); thus, g(x) is not a permutation if

Tr(a1) = 1. It is not as easily seen for g(x) when Tr(a1) = 0.

Theorem 3.5.1. Consider the function g(x) = x3 + x Tr(a1x) which is EA equivalent to the

Kantor function seen in Theorem 3.3.2. Then g(x) is not a permutation.

Proof. We will consider f (X) as the reduced polynomial of g(X) and use Hermite’s criterion

(Theorem 1.3.1) to prove this theorem. Let t = 2 +
∑ n−3

2
i=0 22i. We will show that f t(X) has

degree q − 1 with leading coefficient α2n−1
.

First, we note that the absolute trace in characteristic 2 has the property that Tr(x)k =

Tr(x) for any integer k. We also note that f t(X) has the form

f t(X) = (X2+1 + X Tr(αX))t

≡ (X2+1 + X Tr(αX))(X4+2 + X2 Tr(αX))

n−3
2∏

i=2

(X22i+1+22i
+ X22i

Tr(αX)) (mod Xq − X).

Each term in the expanded form of f t(X) is constructed by choosing one of the two

terms in each part of the product. We will let A0 = X2+1 + X Tr(αX), A1 = X4+2 + X2 Tr(αX),

and Ai = X22i+1+22i
+ X22i

Tr(αX) for i = 2, . . . , n−3
2 . We want the degree of f t(X) to be 2n − 1

after reduction modulo Xq − X which means that the coefficient of the X2n−1 term is not zero.
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Now 2n − 1 =
∑n−1

i=0 2i. The choices of terms from the Ais are powers of two which

will yield an exponent that is a sum of powers of two. This restricts our choices.

Before taking into account the terms involving the trace function, the largest power

of X you can choose to include in a particular term is 2n−2 + 2n−3 which is less than 2n−1.

So, the 2n−1 power must be obtained from the trace function. When we construct the terms

for the expanded version of f t(X) the X2n−1 term will be the result of a term that includes

the absolute trace function. We also notice that each term in the absolute trace function will

only add one power of two to the exponent. Therefore, we will only choose the term with

the power 2n−1 from the trace function.

The A1 term will always add at least 2 to the exponent of a particular term. Since the

A1 and A0 terms offer the only way to choose a term that adds a 2 to the exponent. If we

choose 2 in both of them then we get 4 instead and cannot construct the X2n−1 term. This

forces us to choose X Tr(αX) from A1. Similarly, we are also forced to choose X2 Tr(αX)

from A1 as A2 adds at least 4 to the power. When i = 2, · · · , n−3
2 we are forced to choose

X22i+1+22i
. Otherwise, we will miss an odd power of two for our exponent. Therefore, the

coefficient of the X2n−1 term in this polynomial is α2n−1
from choosing α2n−1

X2n−1
from the

Tr(αX) term. Clearly, α2n−1
is not zero; hence, f (x) is not a permutation. �

When we consider the function f (x) = x3 + x Tr(αx) + αTr(x) over F2n we find that

there is an example of a permutation function. Computationally we found when α = 1 and

n = 3, f is a permutation.

Theorem 3.5.2. The Kantor functions f (x) = x3 + x Tr(αx) +αTr(x) over F2n with n > 3 and

α ∈ F∗2n are not permutations.

Proof. We will use Hermite’s criterion again; however, we must split the proof into two

cases: α = 1 and α , 1.

Case 1: Let α , 1 and t = 1 + 4 +
∑ n−5

2
i=0 22i+1. Then f t(X) mod (Xq − X) is

(X2+1 + X Tr(αX) +αTr(X))(X2+1 + X Tr(αX) +αTr(X))4

n−5
2∏

i=0

(X2+1 + X Tr(αX) +αTr(X))22i+1
.
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Let A0 = (X2+1 + X Tr(αX) + αTr(X)), A1 = (X2+1 + X Tr(αX) + αTr(X))4 and for

i = 2 · · · n−1
2 let

Ai = (X2+1 + X Tr(αX) + αTr(X))22(i−2)+1
= (X22(i−1)+22(i−2)+1

+ X22(i−2)+1
Tr(αX) + α22(i−2)+1

Tr(X)).

We want to determine the coefficient of the X2n−1 term. Since the powers X in each

part of the product of f t(X) are sums of powers of X, we will view n as
∑n−1

i=0 2i.

Before we consider the trace functions, the largest power of X that we can choose

from any part of the product is X22(n−5/2+1)
= X2n−3

. So, we will be forced to choose X2n−2
and

X2n−1
from Tr(αX) and Tr(X). In order to get terms of the form X22k

for k ≥ 2 we need to

choose the term X22k+22(k−1)+1
from Ak+1.

So, we have to make choices for A0, A1, and A2 to get the X2n−1 term. We are forced

to choose either X2+1 or X Tr(αX) from A0 in order to get the 1 in the representation of 2n − 1

as a sum of powers of 2. From A1 we are forced to choose X4 Tr(αX) or α4 Tr(X) to avoid

getting 2(8) in the sum of powers of 2. The choice of A2 is completely determined by the

choices we make in A0 and A1.

Subcase 1: Suppose we choose the terms X2+1 and X4 Tr(αx). Then we will choose

α2 Tr(X) from A2. Then the coefficient on X2n−1 is α2n−1
α2 + α2n−2

α2 = α2n−2
α2(1 + α2).

Subcase 2: Suppose we choose X Tr(αX) and α4 Tr(X) then we will choose X4+2

from A2. So the coefficient of X2n−1 is α2n−1
α4 + α2n−2

α4 = α4α2n−2
(1 + α2).

Then, the coefficient of X2n−1 is

α2n−2
α2(1 + α2) + α2n−2

α4(1 + α2) = α2n−2
α2(1 + α2)2.

This is only zero if α = 0 or α = 1. Since, α is neither 0 nor 1 then the coefficient is

non-zero. Therefore, the degree of f t(X) is 2n − 1 and f (X) is not a permutation.

Case 2: Let α = 1. When n = 5 then t = 11 and when n > 5, then t = 11 +
∑ n−3

2
i=2 22i.

Subcase 1: When n = 5 then f t(X) (mod Xq − X) is

(X2+1 + X Tr(X) + Tr(X))(X4+2 + X2 Tr(X) + Tr(X))(X8+16 + X8 Tr(X) + Tr(X)).

44



Table 3.5: Choosing terms from A0, A1, and A2 to obtain a X2n−1 term.

Term from A0 Term from A1 Term from A2 Choice from
Tr(X)

Coefficient

X2+1 X2 Tr(X) X16+8 X2 1
X2+1 Tr(X) X16+8 X4 1
X Tr(X) X4+2 X8 X16 1
X Tr(X) X2 Tr(X) X16+8 X4 1
Tr(X) X4+2 X16+8 X 1

We will let

A0 = (X2+1 + X Tr(X) + Tr(X)),

A1 = (X4+2 + X2 Tr(X) + Tr(X)), and

A2 = (X8+16 + X8 Tr(X) + Tr(X))

There are 5 ways to choose terms to multiply to a term with exponent X2n−1; they are in the

Table 3.5.

Summing we find the coefficient is 1. Hence, the degree of f t(X) is 2n − 1 and

therefore, f (X) is not a permutation.

Subcase 2: When n > 5 and t = 11 +
∑ n−3

2
i=2 22i. Then f t(X) is (X2+1 + X Tr(X) +

Tr(X))(X4+2+X2 Tr(X)+Tr(X))(X8+16+X8 Tr(X)+Tr(X))
∏ n−3

2
i=2

(
X22i+1+22i

+ X22i
Tr(X) + Tr(X)

)
.

We let

A0 = (X2+1 + X Tr(X) + Tr(X)),

A1 = (X4+2 + X2 Tr(X) + Tr(X)),

A2 = (X8+16 + X8 Tr(X) + Tr(X)), and

Ai = (X22(i−1)+1+22(i−1)
+ X22(i−1)

Tr(X) + Tr(X)) for i ≥ 3.

The largest exponent on X that we can choose from one of these terms before taking into

account Tr(X) is 2( n−3
2 ) + 1 = n − 2. We need a 2n−1 exponent on X. Therefore, we must

choose the X2n−1
term from the trace function.
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To obtain the odd powers of 2 (the terms of the form 22(i−1)+1) we must choose the

X22(i−1)+1+2(i−1)
term from Ai for 1 ≤ i ≤ n−1

2 . This will give us the term X2+4+...+2n−2
. This forces

us to choose X Tr(X) from A0. Therefore, there is only one way to choose terms to get the

term X2n−1 and the coefficient on the term is 1. Hence, f (X) is not a permutation.

�

3.6 Equivalences

As we are looking for low differential uniform functions, we want to make sure that

they are not equivalent to each other or other known examples. From Section 1.7, we know

that in addition to the differential uniformity, the extended Walsh spectrum is invariant under

the CCZ equivalence. We computed the extended Walsh spectrum for some of the low dif-

ferential uniform which are given in Appendix C Table C.1. Comparing the extended Walsh

spectrum allows us to determine which functions are not CCZ equivalent to each other and

which we need to investigate further.
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Chapter 4

CLASSIFICATION OF PLANAR MONOMIALS OVER FP3

In this chapter we present our work on the Dembowski-Ostrom conjecture for mono-

mials over fields of order p3.

Our work falls into three cases, with one of the cases much more complicated than the

other two. In the next section we show how the problem can be broken into these three cases.

In Section 4.2, we resolve the two easier cases. The remainder of the chapter considers the

more difficult remaining case. In Section 4.3 we outline how the remaining case is broken

down and partially resolved; there are 3 main and 11 minor subcases we must contend with.

Some of these are unresolved. This is joint work with my advisor and I. Villa from the

University of Bergen.

4.1 The basic principles of our approach

We wish to consider the planarity of Xn over Fq. This involves examining the per-

mutation behaviour of the polynomial fn(X) = (X + 1)n − Xn. As planarity is a property

of functions, we need only consider n < q. In fact, we may insist on n ≤ q − 3 as it is a

necessary condition of planarity that gcd(n, q − 1) = 2 from Proposition 1.8.3. We assume

this throughout the chapter.

There are several points about Hermite’s criteria, Theorem 1.3.1, and our specific

problem which we now expand on.

For arbitrary 0 < t < q − 1, we may write fn(X)t mod (Xq − X) as

f t
n mod (Xq − X) =

t∑
i=0

(
t
i

)
(−1)t−i

[
(X + 1)ni mod (Xq − X)

] [
Xn(t−i) mod (Xq − X)

]
, (4.1)

and first reduce each of the terms (X + 1)ni and Xn(t−i) independently. Subsequently, unless

both terms have degree q−1, the only way in which we can obtain Xq−1 terms in the reduced
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form of fn(X)t is via the actual Xq−1 term generated. This allows for much simplication in our

arguments, and in what follows we shall rely on it consistently without further explanation.

The value of binomial coefficients, whether it be in (4.1) or in the expansion of (X +

1)ni, is clearly something we will need to handle. Fortunately, we have the classical result

of Lucas, see Lemma 1.10.1, and the notion of a carry, see Section 1.10, at our disposal. So

we will consider our exponent n in its base p expansion form. Set n = (ae−1 · · · a0)p, with

0 ≤ ai < p for all i. There are several advantages in considering the base p expansion of n,

over and above the possibility of applying Lucas’ Theorem.

Firstly, Xnp is planar over Fq if and only if Xn is planar over Fq, and the reduction of

Xnp modulo Xq−X is Xm, where m = (ae−2 · · · a0ae−1)p. Thus, we may cycle the base p digits

of n around and could, for instance, choose to place the largest ai in the most significant bit.

Secondly, if Xn is planar over Fq, then it is necessarily planar over Fp. This follows at

once from observing fn ∈ Fp[X]. The classification of planar monomials over Fp now forces

n ≡ 2 mod (p − 1). This provides the necessary condition

a0 + a1 + · · · + ae−1 = S ≡ 2 mod (p − 1).

Since ai < p for all 0 ≤ i < e, we have S = 2 + k(p − 1) for some 0 ≤ k < e.

4.1.1 Fixing our setup and the three main cases

For the rest of the chapter we fix q = p3, where p is an odd prime, and consider the

planarity of the monomial Xn over Fq. In order to avoid certain degenerate situations later,

we further assume p ≥ 11. The cases p ∈ {3, 5, 7} can easily be checked computationally.

We write the base p expansion of the integer n with 0 ≤ n < q by n = (a2a1a0)p. Based on

our above discussion, there are three possible cases we must deal with:

Case 1. S = 2.

Case 2. S = 2p.

Case 3. S = p + 1.
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The first case will be shown to be the only positive case that we have confirmed while

the second case will prove to be empty of planar examples. The remainder of the chapter will

be taken up with dealing with Case 3, which breaks into multiple subcases - some of which

we resolve while others are still open. However, we conjecture that the remaining cases do

not yield any planar functions.

4.2 Resolution of Cases 1 and 2

Coulter and Matthews showed Xpi+p j
is planar over Fpe if and only if e/ gcd( j − i, e)

is odd, see [29], Theorem 3.3. This completely resolves Case 1.

Proposition 4.2.1. If S = 2, then n = pi + p j with 0 ≤ i ≤ j < 3, and Xn is always planar

over Fq.

The case S = 2p is also relatively straightforward, the proof following very similarly

to the classification of planar monomials over Fp2 , even down to the exponent used in [21].

Proposition 4.2.2. If S = 2p, then Xn is never planar over Fq.

Proof. For this case we must have ai ≥ 2 for all i and ai + a j > p whenever i , j. We prove

Hermite’s criteria fails with power t = p + 1. We have

((X + 1)n − Xn)t = (X + 1)n(p+1) − (X + 1)npXn − (X + 1)nXnp + Xn(p+1).

We determine the coefficient of Xq−1 for each of these terms modulo Xq − X. Raising a term

Xk to the p and reducing modulo Xq − X results in a term with degree a cyclic shift of the

base p expansion of k. Thus, for example, we can calculate Xnp modulo Xq − X easily as an

interim step in determining Xn(p+1) mod (Xq − X). Proceeding as described we see

Xn(p+1) = XnpXn ≡ Xa2+a0 p+a1 p2
Xa0+a1 p+a2 p2

mod (Xq − X).

Set k = (a2 + a0) + (a0 + a1)p + (a1 + a2)p2. Now n < q− 1, so that k < 2(q− 1). On the other

hand, we also know a1 + a2 > p, so that k > q. Consequently, Xk mod (Xq − X) reduces to a

term of degree not equal to q − 1.
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We move to consider the remaining three terms. We note that, as a consequence of

Lemma 1.10.1, we may write

(X + 1)n =

a0∑
α0=0

a1∑
α1=0

a2∑
α2=0

 2∏
i=0

(
ai

αi

) Xα0+α1 p+α2 p2
.

Following a similar method as above, we see that the coefficient of the term of degree q − 1

in (X + 1)nXnp mod (Xq − X) is
2∏

i=0

(
ai

αi

)
mod p,

where α0 + a2 = α1 + a0 = α2 + a1 = p − 1. Since ai ≤ p − 1, it is clear this coefficient

is non-zero. The same argument shows the coefficient of the term of degree q − 1 in (X +

1)npXn mod (Xq − X) is
2∏

i=0

(
ai

αi

)
mod p,

where a0 + α2 = a1 + α0 = a2 + α1 = p − 1, and that this too is nonzero. We note that the

two coefficients for Xq−1 so far determined are, in fact, equal, so that there sum is nonzero

modulo p.

The situation for (X + 1)n(p+1) is slightly more complicated but still relatively straight-

forward. Expanding in much the same way as above, it can be seen that the coefficients of

resulting terms of degree Xq−1 in (X + 1)n(p+1) mod (Xq − X) are given by∏
i

∏
j

(
ai

αi

)(
a j

β j

)
where α0 + β2 = α1 + β0 = α2 + β1 = p− 1. Along with these equations, the bounds on αi, β j

reduce the resulting coefficient of Xq−1 in (X + 1)n(p+1) mod (Xq − X) to

a0∑
α0=p−1−a2

a1∑
α1=p−1−a0

a2∑
α2=p−1−a1

 2∏
i=0

(
ai

αi

) ( a0

p − 1 − α1

)(
a1

p − 1 − α2

)(
a2

p − 1 − α0

)
.

We may rearrange this: a0∑
α0=p−1−a2

(
a0

α0

)(
a2

p − 1 − α0

)
 a1∑
α1=p−1−a0

(
a1

α1

)(
a2

p − 1 − α1

)
 a2∑
α2=p−1−a1

(
a2

α2

)(
a2

p − 1 − α2

) .
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Recalling a0 + a2 > p and ai ≤ p − 1 for all i, we have

a0∑
α0=p−1−a2

(
a0

α0

)(
a2

p − 1 − α0

)
=

a0+a2∑
j=p−1

(
a0

j − a2

)(
a2

p − 1 − ( j − a2)

)
=

(
a0 + a2

p − 1

)
≡ 0 mod p.

Thus the coefficient of Xq−1 in (X + 1)n(p+1) mod (Xq − X) is zero.

From the above calculations we see the coefficient of Xq−1 in ((X+1)n−Xn)t mod (Xq−

X) is

−2
(

a0

p − 1 − a2

)(
a1

p − 1 − a0

)(
a2

p − 1 − a1

)
. 0 mod p.

By Hermite’s criteria, (X + 1)n − Xn is not a permutation polynomial. Thus Xn is not planar

in this case. �

4.3 Outline of Case 3 resolution

The remainder of the chapter will solely be aimed at presenting our contribution to

the remaining case.

Conjecture 4.3.1. If S = p + 1, then Xn is never planar over Fq.

To establish this statement, we will have to resort to dealing with a number of sub-

cases involving a number of Hermite exponents. A synthesis of our approach to Conjec-

ture 4.3.1 is as follows. We assume S = a0 + a1 + a2 = p + 1 with a2 ≥ a0, a1. We then

proceed through a sequence of Hermite’s exponents:

(i) We determine the coefficient of Xq−1 in (4.1) for the exponent t = (1 1 2)p when 2 ≤

a0, a1 ≤ a2. The situation splits into two subcases based on whether a2 > (p − 1)/2 or

a2 ≤ (p − 1)/2. In the former subcase, the coefficient is clearly non-zero, and so there

are no planar monomials in this subcase.

(ii) We determine the coefficient of Xq−1 in (4.1) for the exponent t = (0 2 2)p when 2 ≤

a0, a1 ≤ a2 ≤ (p − 1)/2.
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(iii) We then show that the coefficient of Xq−1 for t = (0 2 2)p and for t = (1 1 2)p cannot be

zero simultaneously, thereby showing that this subcase contains no planar monomials.

This concludes the situation where all of the ai are at least 2.

(iv) We determine the coefficient of Xq−1 in (4.1) for the exponent t = (2 2 2)p when at least

one of a0 and a1 is less than 2. This eliminates many situations, but leaves us with 11

explicit subcases to deal with.

(v) We eliminate some of the remaining explicit 11 subcases using various Hermite’s ex-

ponents.

Steps (4) and (5) remain incomplete and are therefore omitted from this thesis. The

following subsections correspond to the solution of the first 3 steps outlined above.

For the ease of notaion, we will refer to the Hermite exponent t = (1 1 2)p as (1, 1, 2)

and so forth in what follows.

4.3.1 The Hermite exponent t = (1, 1, 2)

In this section, we assume 2 ≤ a0, a1 ≤ a2. This forces a2 ≤ p − 3.

Via Lucas’ Theorem, the non-zero binomial coefficients in (4.1) correspond to the

terms (X + 1)nαXnβ and (X + 1)nβXnα in the following table:

α β

(1, 1, 2) (0, 0, 0)

(1, 1, 1) (0, 0, 1)

(1, 1, 0) (0, 0, 2)

(1, 0, 2) (0, 1, 0)

(1, 0, 1) (0, 1, 1)

(1, 0, 0) (0, 1, 2)

We proceed to work through these six scenarios. Recall that the only way we can obtaing an

Xq−1 term in the reduced form of fn(X)t having already reduced (X + 1)nα and Xnβ, is from

the Xq−1 term in the product of (X + 1)nα and Xnβ. We note that to obtain such a term, the

sum of the corresponding coordinates of nα and nβ must be at least p − 1 in each case.
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4.3.1.1 α = (1, 1, 2) and β = (0, 0, 0)

We have

nα = (a2, a1, a0) × (1, 1, 2)

= (a2 + a1 + 2a0, a1 + a0 + 2a2, a0 + a2 + 2a1)

= (p + 1 + a0, p + 1 + a2, p + 1 + a1)

= (2 + a0, 2 + a2, 2 + a1).

To have an Xq−1 term from (X + 1)nα or Xnα, we would need 2 + ai = p− 1 for i = 0, 1, 2. But

this impossible under the restriction a0 + a1 + a2 = p + 1 and p ≥ 11. So we obtain no Xq−1

term from this scenario.

4.3.1.2 α = (1, 1, 1) and β = (0, 0, 1)

We have

nα = (a2 + a1 + a0, a1 + a0 + a2, a0 + a2 + a1)

= (2, 2, 2), and

nβ = (a2, a1, a0).

Since nα+ nβ = (a2 + 2, a1 + 2, a0 + 2) < (p− 1, p− 1, p− 1), it is clear we cannot obtain an

Xq−1 term from this scenario.

4.3.1.3 α = (1, 1, 0) and β = (0, 0, 2)

We have

nα = (a1 + a0, a0 + a2, a2 + a1), and

nβ = (2a2, 2a1, 2a0).

If a2 > (p − 1)/2. then there is a carry in the first coordinate of nβ and ai < (p − 1)/2 for

i = 0, 1. Thus nβ = (2a2 − p, 2a1, 2a0 + 1). However, now the sum of the first coordinates is

a0 + a1 + 2a2 − p = a2 + 1 < p − 1. Hence we cannot obtain an Xq−1 term if a2 > (p − 1)/2.
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Now suppose a2 ≤ (p− 1)/2. Then there is no carry in either nα and nβ, and the sum

of each coordinate is ai + p + 1 > p − 1. So we must get an Xq−1 term. For (X + 1)nαXnβ, the

coefficient of the Xq−1 term is

C1 =

(
a1 + a0

p − 1 − 2a2

)(
a0 + a2

p − 1 − 2a1

)(
a2 + a1

p − 1 − 2a0

)
=

(
a1 + a0

a2 + 2

)(
a0 + a2

a1 + 2

)(
a2 + a1

a0 + 2

)
. (4.2)

For (X + 1)nβXnα, the coefficient of the Xq−1 term is

C2 =

(
2a2

p − 1 − (a1 + a0)

)(
2a1

p − 1 − (a0 + a2)

)(
2a0

p − 1 − (a2 + a1)

)
=

(
2a2

a2 + 2

)(
2a1

a1 + 2

)(
2a0

a0 + 2

)
. (4.3)

4.3.1.4 α = (1, 0, 2) and β = (0, 1, 0)

We have

nα = (2a2 + a0, 2a1 + a2, 2a0 + a1), and

nβ = (a1, a0, a2).

Now 2a2 + a0 = a2 − a1 + p + 1 > p, so nα must have a carry. Hence

nα = (a2 − a1 + 1, 2a1 + a2, 2a0 + a1 + 1).

If there is no carry in the 2nd coordinate of nα, then the sum of the first coordinates of nα

and nβ is a2 + 1 ≤ p − 2 < p − 1, so we could not get an Xq−1 term if there was no carry in

the 2nd coordinate.

If there is a carry in the 2nd coordinate, then the sum of the 2nd coordinates of nα

and nβ could be no larger than

2a1 + a2 − p + 1 + a0 = a1 + 2 < p − 1,

as a1 ≤ a2. Hence we cannot obtain an Xq−1 term in this situation either.
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4.3.1.5 α = (1, 0, 1) and β = (0, 1, 1)

We have

nα = (a2 + a0, a1 + a2, a0 + a1), and

nβ = (a2 + a1, a1 + a0, a0 + a2).

There are no carries in either nα or nβ, while the sum of the corresponding coordinates is

ai + p + 1 > p − 1. So we must obtain an Xq−1 term. For (X + 1)nαXnβ, the coefficient of the

Xq−1 term is

C3 =

(
a2 + a0

p − 1 − (a2 + a1)

)(
a1 + a2

p − 1 − (a1 + a0)

)(
a0 + a1

p − 1 − (a0 + a2)

)
=

(
a2 + a0

a2 + 2

)(
a1 + a2

a1 + 2

)(
a0 + a1

a0 + 2

)
. (4.4)

For (X + 1)nβXnα, the coefficient of the Xq−1 term is

C4 =

(
a2 + a1

p − 1 − (a2 + a0)

)(
a1 + a0

p − 1 − (a1 + a2)

)(
a0 + a2

p − 1 − (a0 + a1)

)
=

(
a2 + a1

a2 + 2

)(
a1 + a0

a1 + 2

)(
a0 + a2

a0 + 2

)
. (4.5)

It is now a simple matter to show C3 = C4. Indeed, it is enough to expand each of the

binomial coefficients in C3 and C4 and observe that all numerator and denominator terms

pair off.

4.3.1.6 α = (1, 0, 0) and β = (0, 1, 2)

This scenario can be dealt with using an argument very similar to that of the α =

(1, 0, 2) and β = (0, 1, 0) scenario. The conclusion will be the same, there is no Xq−1 term

obtained.

4.3.1.7 Summary of the t = (1, 1, 2) exponent

From our analysis of the above scenarios, we see that we have two situations.

� If a2 > (p−1)/2, then we only get an Xq−1 term from the case α = (1, 0, 1), β = (0, 1, 1).

In this case, the coefficient of Xq−1 in fn(X)t mod (Xq − X) is(
2
1

)
C3 +

(
2
1

)
C4 = 4C3 , 0.
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Thus Xn is not planar if a2 > (p − 1)/2.

� If a2 ≤ (p − 1)/2, then the coefficient of Xq−1 in fn(X)t mod (Xq − X) is

4C3 + C1 + C2. (4.6)

4.3.2 The Hermite exponent t = (0, 2, 2)

In this section, we assume 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2.

Via Lucas’ Theorem, the non-zero binomial coefficients in (4.1) correspond to the

terms (X + 1)nαXnβ and whenever α , β, (X + 1)nβXnα in the following table:

α β

(0, 2, 2) (0, 0, 0)

(0, 2, 1) (0, 0, 1)

(0, 2, 0) (0, 0, 2)

(0, 1, 2) (0, 1, 0)

(0, 1, 1) (0, 1, 1)

4.3.2.1 α = (0, 2, 2) and β = (0, 0, 0)

We have

nα = (2a2 + 2a1, 2a1 + 2a0, 2a0 + 2a2)

= (2p + 2 − 2a0, 2p + 2 − 2a2, 2p + 2 − 2a1)

= (p + 3 − 2a0, p + 3 − 2a2, p + 3 − 2a1).

To obtain an Xq−1 term in this scenario, we need p + 3 − 2ai = p − 1, so that ai = 2 for

i = 0, 1, 2, implying p = 5. For p ≥ 11 (as is assumed), we get no Xq−1 term in this scenario.

4.3.2.2 α = (0, 2, 1) and β = (0, 0, 1)

We have

nα = (a2 + 2a1, a1 + 2a0, a0 + 2a2), and

nβ = (a2, a1, a0).
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Now nα must have at least one carry, as the sum of its coordinates is 3(a0 + a1 + a2) =

3(p + 1) > 3(p− 1). If there are 2 or more carries, then the sum of the coordinates of nα+ nβ

will be at most

3(p + 1) − 2(p − 1) + a2 + a1 + a0 = 2p + 5 < 3(p − 1) for p ≥ 11,

and so we cannot possibly obtain an Xq−1 term in that situation.

Suppose, then, there is exactly one carry in nα. It can either occur in the 1st or 3rd

coordinate of nα. If it is in the 1st coordinate, then

nα = (a2 + 2a1 − p, a1 + 2a0, a0 + 2a2 + 1).

Now the sum of the 1st coordinates of nα and nβ is

2a2 + 2a1 − p ≤ 2(p − 1) − p = p − 2 < p − 1,

so we cannot obtain an Xq−1 term in this scenario. A similar argument shows that a 3rd

coordinate carry in nα cannot generate an Xq−1 term also. Thus we do not obtain an Xq−1

term in this scenario.

4.3.2.3 α = (0, 2, 0) and β = (0, 0, 2)

We have

nα = (2a1, 2a0, 2a2), and

nβ = (2a2, 2a1, 2a0).

There are no carries as ai ≤ (p − 1)/2. Additionally,

2ai + 2a j = 2(p + 1) − 2ak ≥ 2(p + 1) − (p − 1) = p + 3 > p − 1,

and so we must obtain Xq−1 terms here. For (X + 1)nαXnβ, the coefficient of the Xq−1 term is

C5 =

(
2a2

p − 1 − 2a1)

)(
2a1

p − 1 − 2a0)

)(
2a0

p − 1 − 2a2)

)
. (4.7)

For (X + 1)nβXnα, the coefficient of the Xq−1 term is

C6 =

(
2a1

p − 1 − 2a2)

)(
2a0

p − 1 − 2a1)

)(
2a2

p − 1 − 2a0)

)
. (4.8)

It is not difficult to show C5 = C6.
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4.3.2.4 α = (0, 1, 2) and β = (0, 1, 0)

The argument for this scenario is almost a replica of the argument for α = (0, 2, 1)

and β = (0, 1, 0). The conclusion will be the same, there is no Xq−1 term obtained.

4.3.2.5 α = (0, 1, 1) and β = (0, 1, 1)

We have

nα = (a2 + a1, a1 + a0, a0 + a2).

As ai ≤ (p−1)/2, there are no carries. In this scenario, we must get an Xq−1 term. (X+1)nαXnβ,

the coefficient of the Xq−1 term is

C7 =

(
a2 + a1

p − 1 − (a2 + a1)

)(
a1 + a0

p − 1 − (a1 + a0)

)(
a0 + a2

p − 1 − (a0 + a1)

)
=

(
a2 + a1

a0 − 2

)(
a1 + a0

a2 − 2

)(
a0 + a2

a1 − 2

)
. (4.9)

4.3.2.6 Summary of the t = (0, 2, 2) exponent

From our analysis of the above scenarios, we see that the coefficient of Xq−1 in fn(X)t

mod (Xq − X) is (
2
1

) (
2
1

)
C7 + C5 + C6 = 4C7 + 2C5. (4.10)

4.3.3 Playing the two Hermite exponents (1, 1, 2) and (0, 2, 2) against each other

In this section we assume 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2. We shall show that for such n,

with a0 + a1 + a2 = p + 1, that it is impossible for both Hermite exponents t = (1, 1, 2) and

t = (0, 2, 2) to fail to generate an Xq−1 term, and consequently Xn is cannot be planar over Fq.

The following identity will prove useful. For odd prime p and arbitrary 0 ≤ k < p we have

(p − 1 − k)! ≡
(−1)k+1

k!
mod p.

The lemma can be established by first proving(
p − 1

k

)
≡ (−1)k mod p.

using an inductive argument and the identity
(

n−1
k−1

)
+

(
n−1

k

)
=

(
n
k

)
. The result then follows from

observing (p − 1)! ≡ −1 mod p.
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For convenience, we preemptively set

U = (a0 + a2)! (a1 + a0)! (a2 + a1)!,

V = (a0 − 2)! (a1 − 2)! (a2 − 2)!,

W = (2a0)! (2a1)! (2a2)!,

and view U,V and W as elements of Fp. We first derive a relation between U and V . In fact,

we prove UV = −1 if 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2.

Proof. From Lemma 4.3.3 we find

(a0 − 2)! =
(−1)a0−1

(p + 1 − a0)!

=
(−1)a0−1

(a1 + a2)!
.

A similar identity can be derived for (a1 − 2)! and (a2 − 2)!. It now follows that

V =
(−1)a0+a1+a2−3

U

=
−1
U
,

as claimed. �

Now assume that both the coefficients of Xq−1, given in (4.6) and (4.10), are zero.

We next simplify (4.6). Taking the equation 4C3 + C1 + C2 = 0 and multiplying through by∏
(ai + 2)!, we have

0 = 4
U
V

+
U

(a1 + a2 − a0 − 2)! (a2 + a0 − a1 − 2)! (a0 + a1 − a2 − 2)!
+

W
V

= 4
U
V
− UW +

W
V
,

where we have again used Lemma 4.3.3. We therefore find

2U + W = 0. (4.11)
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Next we shall simplify (4.10). Taking the equation 2C7 + C5 = 0 and multiplying through by∏
(p + 3 − 2ai)!, we have

0 = 2
U
V

+ +
W

(p − 1 − 2a0)! (p − 1 − 2a1)! (p − 1 − 2a2)!

= −2U2 + (−1)3W2,

again using Lemma 4.3.3. From (4.11) we have W2 = 4U2, and so 6U2 = 0 must hold.

However, this is a contradiction as U , 0 and p ≥ 11. This means that it is impossible

for the Hermite exponents t = (1, 1, 2) and t = (0, 2, 2) to simultaneously generate a zero

coefficient for Xq−1 in fn(X)t mod (Xq − X). Hence, Xn cannot be planar when n = (a2a1a0)p,

a0 + a1 + a2 = p + 1 and 2 ≤ a0, a1 ≤ a2 ≤ (p − 1)/2.

The final two steps of our outline are still open problems. We will discuss these in

Chapter 5 with other open problems.
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Chapter 5

OPEN PROBLEMS

In this chapter, we will discuss interesting open problems that resulted from this

work. We include conjectures that follow from computational and theoretical evidence that

we have collected along with our intuition for each of these problems.

5.1 Coordinate Replacement

In Chapter 2, we give the framework behind the extended switching technique. It

seems reasonable to expect a new construction of low differentially uniform functions from

this technique. As we saw in Section 2.3, we did not obtain new APN functions from adding

coordinate functions of APN functions together. While we did not test these functions for

their actual differential uniformity we know that the differential uniformity is bounded by 2k

where k is the number of coordinate functions that we alter. This leads us to our first set of

open problems.

Open Problems One:

1. Can we find new APN functions that are inequivalent to any known examples using

the extended switching technique? If we can, how do we classify these?

2. When do we obtain a function that is 2k-DU when we alter k coordinate functions of

an APN functions?

3. Can we alter k coordinate functions of an APN function and obtain a new function that

is δ-DU with δ < 2k?
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5.2 Mutually Orthogonal systems

Given the relationship between planar functions and orthogonal systems that we pre-

sented in Section 1.7.1, we can consider the coordinate functions of the difference poly-

nomial of a planar function as a maximal orthogonal system. When we remove a coordi-

nate function we have an orthogonal system that is no longer maximal. We noted in Theo-

rem 1.6.2 that we can always extend an orthogonal system to a maximal orthogonal system.

However, arbitrarily extending this orthogonal system and obtaining a another APN func-

tion seems hard. In [30], Coulter and Matthews give an algorithm to determine if for a

fixed bivariate function, φ, over a finite field there exists a univariate function, f , such that

f (x + y) − f (x) − f (y) = φ(x, y). However, this uses the algebraic form of φ rather than the

functional description of φ. Therefore, to use this algorithm we would need to extend the

orthogonal system into a maximal orthogonal system, then interpolate to get the coordinate

functions before we could use the algebraic form. This leads us to our next set of open

questions.

Open Questions Two:

1. What restrictions can we put on Theorem 1.6.2 to extend an orthogonal system to a

maximal orthogonal system to ensure that the functions that we add to the system are

difference polynomials?

2. Is the extension unique? How many coordinate functions do we need to remove before

we can obtain a new planar function through Theorem 1.6.2?

3. Can we classify these planar functions?

5.3 Kantor Functions

In Section 3.3, we focused on creating relatively low differential uniform functions

from Kantor’s presemifields. When n is odd and the chain of fields is F2 ( F2n we have shown

that the differential uniformity of a Kantor function, f (x) = x3 +x Tr(a1x)+a1 Tr(x) is at most

4. We showed that when a1 , 1 f (x) is differentially 4 uniform. However, computationally

we find that when n > 3 and a1 = 1, f (x) is also 4-DU; so we have the following conjecture.
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Conjecture 5.3.1. For n > 3 and n odd f (x) = x3 + Tr(a1x) + a1 Tr(x) is differentially 4

uniform for all a1 ∈ F
∗
2n .

When the chain of fields is F2 ( Fk ( . . . ( F1 = F2m ( F2n , we have shown in

Theorem 3.3.3 that f (x) = x3 +
∑k

i=1 x Tri(αix) + αx Tri(x2) is at most 2m+1 differentially

uniform. To see if we can get more information on when the function obtains the bounds

we investigate what the solutions of x2 + (a + αa−1)x + β look like. There are two roots of

x2 + (a + αa−1)x + β, call them γ1 and γ2, if and only if γ1γ2 = β and γ1 + γ2 = a + αa−1.

Rearranging we find that γ2 = βγ−1
1 and we need γ1 + βγ−1

1 = a + αa−1. So, the number

of roots of ∆g(x, a) equals the number of β ∈ F∗2m such that γ1 + βγ−1
1 = a + αa−1 for some

γ1 ∈ F2n where
∑k

i=1 Tr(aiγ1) = β.

We would like to classify {αi}
k
i=1 by the differential uniformity that their corresponding

f (x) yields. In other words which {αi}
k
i=1 yield a function that is 2m+1-DU; which yield

functions that are 4-DU; and to determine if there are any that are APN.

Open Problems 3:

1. For what set of {αi}
k
i=1, does f (x) = x3 +

∑k
i=1 x Tri(αix) +αi Tri(x2) obtain the maximal

differential uniformity of 2m+1?

2. For what set of {αi}
k
i=1 is f (x) = x3 +

∑k
i=1 x Tri(αix) + αx Tri(x2) 4-DU?

We also showed in Section 3.3 that the Kantor functions of the form f (x) = x3 +

x Tr(αx) were almost always not permutations. The smaller the number of the pre-images

for each b ∈ F2n the more efficient the decryption process is. Therefore, we are interested

in determining "how close" Kantor functions in general are to permutations. We will let

γ( f ) = maxb∈F2n #{x : f (x) = b}. If γ( f ) = 1, then clearly f (X) is a permutation. The larger

γ( f ) is, the further f is from being a permutation.

Open Problem 4:

1. Are there any other Kantor functions that are permutations?

2. For each Kantor function, f , that is not a permutation can we determine γ( f )?
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5.4 Planar Nearfields

Recall the functions, f (x), from the planar nearfields that we described in Conjec-

ture 3.4.2. We proved in Theorem 3.4.3, that the differential uniformity of f (x) is at least
q+1

2 . This leads us to the following open problems.

Open Problems 5:

1. Can we prove Conjecture 3.4.2?

2. Can we determine the differential uniformity of f (x) = x∗x for arbitrary regular planar

nearfield, N(n, q)?

5.5 Equivalence of Low Differentially Uniform Functions.

In Table C.1 we found the extended Walsh spectrum for some of the low differen-

tially uniform functions that we constructed from algebraic objects. Some of these functions

have the same differential uniformity and extended Walsh spectrum; thus, they may be CCZ

equivalent. We want to investigate such functions and classify these low differential uniform

functions into their equivalence classes.

5.6 Low Differentially Uniform Functions and Affine Planes

Planar functions give rise to specific affine planes. The geometry gives insight into

properties about these functions. In Section 1.10.2 we discussed the relationship between

algebraic structures and affine planes. The low differentially uniform functions that we have

discussed are associated with affine planes; however, at no point in this thesis has the geom-

etry been used to study the DU of these functions. We would like to use information about

the affine plane to help determine the differential uniformity of f (x) = x ∗ x.

5.7 Classification of Planar Monomials over p3

In Chapter 4 there are still two major parts left to prove that Case 3 does not yield

any more planar functions. Determining the coefficient of Xq−1 in (4.1) for the exponent

t = (2 2 2)p when at least one of a0 and a1 is less than 2 is still in progress. We also need

to prove that the explicit 11 subcases that are not covered by this exponent do not yield
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any planar functions. Based on computational evidence, we believe we have determined the

correct exponents in all 11 subcases too and have even determined the coefficient for most

of them. However, we have so far been unable to prove the coefficients are nonzero.
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Appendix A

KNOWN PLANAR FUNCTIONS

There is a one-to-one correspondence between planar DO functions and commutative

semifields Theorem 1.7.6. The table below gives known planar functions and commutative

semifields.

Table A.1: Known Planar Functions

Planar Function as a

Polynomial

Conditions Citation Corresponding Semi-

fields

X2 The finite field of order

pn.

L(t2(X)) + 1
2 X2 p2en with p odd and

n, e natural numbers,

L(X) = (8)−1(Xpe
− X),

and t(X) = Xpen
− X

Dickson, [35] Dickson semifields

Xpe+1 over Fpn with
n

gcd(n, e)
is odd pn where p is

odd

Albert, [2] Albert’s commutative

twisted fields.
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X1+q′ − vXq2+q′q over Fq3 with p an odd

prime, q = ps, q′ =

pt, s′ = s
(s,t) , s′ odd,

t′ = t
(s,t) , ord(v) = q2 +

q + 1, and at least one

of the following holds:

s′ + t′ ≡ 0 mod 3 or

q ≡ q′ ≡ 1 mod 3

Zha, Kyureghyan,

Wang [66]

Zha-Kyureghyan-

Wang (ZKW) semi-

fields

X1+q′ − vXq3+q′q over Fq4 with p an odd

prime, q = ps, q′ = pt,

such that 2s
(2s,t) is odd,

q ≡ q′ ≡ 1 mod 4,

and ord(v) = q3 + q2 +

q + 1

Bierbrauer [8] Bierbrauer semifields

Tr(Xq+1)+Tr(βXps+1)ω over Fq2 with p an odd

prime, q = pm, and

Tr(x) is the trace func-

tion from Fq2 to Fq,

ω, β ∈ Fq2 , Tr(ω) = 0

and s is a positive inte-

ger such that βq−1 is not

contained in the sub-

group of order q+1
(q+1,ps+1)

in (Fq2 , ∗) and there is

no 0 , a ∈ Fq2 , such

that Tr(a) = 0 and

aps
= −a.

Budaghyan and Helle-

seth [15] and Bier-

brauer [7]

Budaghyan-Helleseth-

Bierbrauer (BHB)

semifields
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Tr(X2) + G(Xq2+1) over Fq2m where q is a

power of an odd prime

p, m = 2k + 1, Tr(x) is

the trace function from

Fq2m to Fqm , and G(x) =

h(x − xqm
) where h ∈

Fq2m[x] is defined as

h(x) =
∑k

i=0(−1)ixq2i
+∑k−1

j=0(−1)k+ jxq2 j+1
.

Bierbrauer [7, 55] Lunardon-Marino-

Polverino-Trombetti-

Bierbrauer (LMPTB)

semifields.

L(t2(X)+D(t(X))+ 1
2 X2 over F38 with L(X) =

X243−X81+X9+X3−X,

D(X) = X246−X10, and

t(X) = X9 − X 1

Coulter, Henderson,

Kosick [24]

Coulter-Henderson-

Kosick semifields

L(t2(X)) + 1
2 X2 over q = 32en with

t(X) = X3en
− X, α =

t(β) for β ∈ Fq \ F3en

fixed, and L(X) = X9 −

αX3 + (1 − α2)X

Cohen and Ganley [20] Cohen-Ganley semi-

fields

L(t2(X))+D(t(X))+ 1
2 X2 over 32en where en ≥ 3

is odd, t(X) = X3en
−

X, α = t(β) for a

fixed β ∈ F32en \ F3en ,

L(X) = −α−1X3 + X,

and D(X) = α−2X10

Ganley [40] Ganley semifields

1 The authors of [24] acknowledge an error in the original publication regarding this exam-
ple. The correction was found on Dr. Coulter’s webpage.
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X10 ± X6 − X2 over 3n with n odd or

n = 2

Coulter and Matthews

[29]

Coulter-Matthews and

Ding-Yuan semifields

L(t2(X)) + 1
2 X2 over 310 with t(X) =

X243 − X, α = t(β)

for some fixed β ∈

F310 \ F35 , and L(X) =

−(α−53X27+α−18X9−X)

Penttila and Williams

[61]

Penttila-Williamss

semifield

X
3k+1

2 over F3n where k is odd

and (k, n) = 1

Coulter and Matthews,

[29]

X2 + X90 over F35 found by Weng [25] At-Cohen-Weng

(ACW) semifield [5]
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Appendix B

KNOWN APN FUNCTIONS

The table belows give the known APN monomials and quadratic functions over F2n .

Table B.1: Known APN monomials and quadratic functions.

Function Conditions Name and Refer-

ence

xpi+1 gcd(i, n) = 1 Gold [42], [60]

x22i−2i+1 gcd(i, n) = 1 Kasami [50], [47]

x2t+3 n = 2t + 1 Welch [37]

x2t+2
t
2 −1 t even and n = 2t + 1 Niho [36]

x2t+2
3t+1

2 −1 t odd and n = 2t + 1 Niho [36]

x22t−1 n = 2t + 1 Inverse [6], [60]

x24i+23i+22i+2i−1 n = 5i Dobbertin [38]

x2s+1 + u2k−1x2ik+2mk+s
n = pk, gcd(k, 3) = gcd(s, 3k) =

1, p ∈ {3, 4}, i = sk (mod p),m =

p − i, n ≥ 12, u primitive in F∗2n ,

i = sk (mod p), m = p−i, n ≥ 12,

u primitive in F∗2n

[13]

sxq+1 + x2i+1 + xq(2i+1) +

cx2iq+1 + cqx2i+q

q = 2m, n = 2m, gcd(i,m) = 1,

c ∈ F2n , s ∈ F2n \Fq, X2i+1 + cX2i
+

cqX +1 has no solution x such that

xq+1 = 1, X2i+1 +cX2i
+cqX +1 has

no solution x such that xq+1 = 1

[11]
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x3 + a−1 Trn(a3x9) a , 0 [14]

x3 + a−1 Tr3
n(a3x9 +

a6x18)

3|n, a , 0 [12]

x3 + a−1 Tr3
n(a6x18 +

a12x36)

3|n, a , 0 [12]

ux2s+1 + u2k
x2−k+2k+s

+

vx2−k+1 + wu2k+1x2s+2k+s

n = 3k, gcd(k, 3) = gcd(s, 3k) =

1, v,w ∈ F2k , vw , 1, 3|(k + s), u

primitive in F∗2n

[9]

(x + x2m
)2k+1 + u′(ux +

u2m
x2m

)(2k+1)2i
+ u(x +

x2m
)(ux + u2m

x2m
)

n = 2m, m > 2 even, gcd(k,m) =

1 and i > 2, ei > 2 even, u primi-

tive in F∗2n , u′ ∈ F2m not a cube

[67]

L(x)2i
x + L(x)x2i

n = km, gcd(n, i) = 1, L(x) =∑k−1
j=0 a jx2 jm

satisfies the conditions

in Theorem 6.3 of [10]

[10]

ut(x)(xq + x) +

t(x)22i+23i
+ at(x)22i

(xq +

x)2i
+ b(xq + x)2i+1

n = 2m, q = 2m, gcd(m, i) = 1,

t(x) = uqx + xqu, X2i+1 + aX + b

has no solution over F2m

[64]

x3 +a(x2i+1)2k
+bx3·2m

+

c(x2i+m+2m
)2k

n = 2, m = 10, (a, b, c) =

(β, 1, 0, 0), i = 3, k = 2, β prim-

itive in F22

[16]

x3 +a(x2i+1)2k
+bx3·2m

+

c(x2i+m+2m
)2k

n = 2m, m odd, 3 - m, (a, b, c) =

(β, β2, 1), β primitive in F22 , i ∈

{m−2,m, 2m−1, (m−2)−1 mod n}

[16]
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Appendix C

EXTENDED WALSH SPECTRUM OF LOW DU FUNCTIONS

The following table gives the extended Walsh spectrum that we calculated for a sam-

ple of the low DU functions that we constructed in Chapter 3. We note that functions that

have the same differential uniformity and extended Walsh spectrum should be investigated

to determine if they are CCZ equivalent.

Table C.1: Extended Walsh Transforms

The Algebraic Object

corresponding to the

function

Differential

Uniformity

The Extended Walsh

Spectrum

i Albert’s Generl-

ized Twisted Field

with p = 3, n = 3,

i = 1, j = 2, and

c ∈ {2, g, g3, g9}

3 3

ii Albert’s Generlized

Twisted Field with

p = 3, n = 3, i = 1,

j = 2, and c ∈ S 1
1

3 1, 3

1 S 1 = {g5, g7, g11, g15, g17, g19, g21, g21, g25}
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iii Albert’s Generlized

Twisted Field with

p = 3, n = 4, for any

combination of i and j

in Section 1.4.2 for 12

choices of c

3 3

iv Albert’s Generlized

Twisted Field with

p = 3, n = 4, and for

any combination of i

and j in Section 1.4.2

for 27 choices of c.

3 1,3

v Kantor’s presemifield

with the chain of fields

F2 ⊂ F23 and c , 0, 1

4 0,4,8

vi Kantor’s presemifield

with the chain of fields

F2 ⊂ F25 and c ∈

{15, 23, 27, 29, 30}

4 0, 8, 16, 32

vii Kantor’s presemifield

with the chain of fields

F2 ⊂ F25 and c <

{0, 15, 23, 27, 29, 30}

4 0, 8, 32

viii N(9, 2) 5 5, 7, 17, 25, 31, 33, 37,

47, 57, 71, 81

ix N(19, 2) 5 1, 17, 19, 21, 23, 39,

41, 57, 59, 61, 79, 97,

201, 217, 361
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x N(5, 2) 4 1, 3, 5, 7, 9, 15, 17, 19,

25

xi N(5, 4) 4 7, 9, 15, 17, 21, 25, 27,

31, 33, 41, 49, 51, 57,

63, 65, 69, 71, 73, 79,

81, 87, 89, 91, 97, 101,

105, 107, 109, 111,

113, 115, 117, 121,

129, 131, 133, 135,

137, 143, 145, 149,

153, 155, 163, 169,

171, 175, 183, 187,

191, 197, 201, 207,

209, 211, 217, 225,

233, 235, 243, 257,

273, 275, 287, 305,

327, 625

xii N(13, 2) 8 1, 3, 5, 7, 13, 15, 17,

19, 23, 31, 33, 35, 39,

41, 43, 47, 49, 51, 67,

73, 81, 87, 89, 97, 105,

169
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