

A FEATURE TAXONOMY FOR NETWORK TRAFFIC

by

Arshiya Khan

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment

of the requirements for the degree of Master of Science in Cybersecurity

Summer 2019

© Arshiya Khan

All Rights Reserved

A FEATURE TAXONOMY FOR NETWORK TRAFFIC

by

Arshiya Khan

Approved: __

 Chase Cotton, Ph.D.

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 Kenneth E. Barner, Ph.D.

 Chair of the Department of Electrical and Computer Engineering

Approved: __

 Levi T. Thompson, Ph.D.

 Dean of the College of Engineering

Approved: __

 Douglas J. Doren, Ph.D.

 Interim Vice Provost for Graduate and Professional Education and

Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my mentor, philosopher and

advisor Dr. Chase Cotton, who has extended his continuous support for my study and

research. I thank him for his patience, motivation, supervision, knowledge and

enthusiasm. His guidance has been a driving force not only for research, but also

beyond that. As a research guide, he was ever assisting and would always improvise

research tasks. He provided ample opportunities and illustrious research ideas and

allowed me to choose whatever ideas caught my attention. As an advisor, he was

always keen on assisting me with the courses that would prove to be beneficial for me.

My knowledge of cybersecurity has been broadened significantly over the last two

years. I could not have imagined having a better advisor and mentor for my study.

Without his supervision, I would have not been where I am today.

I would also like to thank the University of Delaware for giving me the

platform and opportunity to accomplish this work.

I extend my vote of thanks to my husband Imran Ahmad who has been my

driving force in the two years of my M.S. course. I thank my family and friends who

have also been very supportive. Their encouragement has been really valuable.

I also appreciate the valuable inputs from my colleague Ishaani Priyadarshini

who is not only a fellow graduate student at the University but is also another

researcher of Dr. Cotton.

 iv

TABLE OF CONTENTS

LIST OF TABLES .. viii
LIST OF FIGURES ... ix
ABSTRACT .. xi

Chapter

1 INTRODUCTION .. 1

1.1 Cybersecurity ... 1
1.2 Machine Learning .. 4

2 RELATED WORK ... 7

3 FEATURES OF TRAFFIC DATA .. 9

3.1 Network Traffic Focus .. 9
3.2 IPv4 Packet .. 9
3.3 Feature Identification ... 10
3.4 Tools Used ... 11

3.4.1 Wireshark .. 11
3.4.2 Zeek ... 12

3.4.2.1 stats.log ... 12
3.4.2.2 conn.log .. 12
3.4.2.3 weird.log ... 13
3.4.2.4 signature.log ... 13
3.4.2.5 stderr.log ... 13
3.4.2.6 ssh.log ... 13

3.5 Expansive Feature Taxonomy ... 13

3.5.1 Packet field .. 14

3.5.1.1 Frame .. 15
3.5.1.2 IPv4... 18
3.5.1.3 Protocol... 20

 v

3.5.1.3.1 UDP .. 21
3.5.1.3.2 SMB .. 22
3.5.1.3.3 TCP ... 23
3.5.1.3.4 SSL ... 25
3.5.1.3.5 DNS .. 26
3.5.1.3.6 ICMP/ICMPv6 ... 29
3.5.1.3.7 ARP .. 31
3.5.1.3.8 SSH ... 33
3.5.1.3.9 HTTP: ... 35
3.5.1.3.10 Bootp .. 36
3.5.1.3.11 IGMP .. 37
3.5.1.3.12 NBNS ... 38
3.5.1.3.13 SSDP... 39
3.5.1.3.14 DCE/RPC ... 40

3.5.2 Traffic Volume .. 42

3.5.2.1 Group by Type .. 44

3.5.2.1.1 Directionality .. 44
3.5.2.1.2 Channels ... 44
3.5.2.1.3 Conversation or flow 44
3.5.2.1.4 Protocols ... 45

3.5.2.2 Group by Time ... 45

3.5.2.2.1 Hourly/Daily window 45
3.5.2.2.2 Peak hour window 46
3.5.2.2.3 No activity windows 46
3.5.2.2.4 Occasional activity window 46

3.5.2.3 Statistical Features .. 46

3.5.2.3.1 No statistics .. 46
3.5.2.3.2 Traditional statistics.................................... 47

3.5.2.4 Packet Volume.. 48

3.5.2.4.1 Packets per second 49
3.5.2.4.2 Max no. of packets 49
3.5.2.4.3 Average packets per second 49
3.5.2.4.4 Packet Histogram.. 50

3.5.2.5 Data volume.. 50

 vi

3.5.2.5.1 Bytes per second ... 50
3.5.2.5.2 Average packet size 51
3.5.2.5.3 Bytes histogram .. 51

3.5.3 Protocol state ... 51

3.5.3.1 TCP graceful close ... 52
3.5.3.2 Delayed DNS .. 52
3.5.3.3 ARP request: lots of ARP request and few replies 52
3.5.3.4 Failure nodes in Zeek. .. 53

3.5.4 Temporal.. 53

3.5.4.1 Time-based features .. 54

3.5.4.1.1 Group by Type .. 55
3.5.4.1.2 Group by Time ... 57
3.5.4.1.3 Statistical Operations 58

3.5.4.2 Time-series features .. 59

3.5.5 Traffic flow .. 60

3.5.5.1 Group by Time ... 61

3.5.5.1.1 Hourly/Daily window 61
3.5.5.1.2 Peak hour window 62
3.5.5.1.3 No activity windows 62
3.5.5.1.4 Occasional activity window 62

3.5.5.2 Group by Session .. 62

3.5.5.2.1 Frequency of protocols used 63
3.5.5.2.2 Average number of bytes exchanged 63
3.5.5.2.3 Average lengths of exchanges 63
3.5.5.2.4 Average duration of a connection 63
3.5.5.2.5 Average number of ports used 64

3.5.6 Computed Features .. 64

3.5.6.1 n-grams ... 64
3.5.6.2 Entropy of compressed payload 65

3.5.7 Other .. 66

 vii

4 MACHINE LEARING USING TRAFFIC DATA FEATURES 67

4.1 Learning ... 67

4.1.1 Supervised Learning .. 68
4.1.2 Unsupervised Learning .. 68
4.1.3 Reinforcement Learning .. 68
4.1.4 Semi-supervised Learning ... 69

4.2 Supervised Learning Models ... 69

4.2.1 Regression models ... 69
4.2.2 Classification Models .. 71
4.2.3 Support Vector Machines .. 72
4.2.4 Artificial Neural networks ... 72

4.3 Stages of Machine Learning Problem Solving Process 74

4.3.1 Identify the problem .. 74
4.3.2 Data Gathering... 74
4.3.3 Data Preprocessing .. 76
4.3.4 Feature Engineering... 76

4.3.4.1 Feature selection ... 77
4.3.4.2 Feature Creation ... 77
4.3.4.3 Feature Compliance .. 78

4.3.5 Defining the model .. 79
4.3.6 Training the model .. 79
4.3.7 Testing the model .. 79
4.3.8 Tuning the parameters ... 80
4.3.9 Prediction ... 80

4.4 Time series data ... 80
4.5 Why perform time series analysis ... 81
4.6 Time series modeling .. 81

5 CONCLUSION .. 83

REFERENCES ... 84

 viii

LIST OF TABLES

Table 3.1 Feature taxonomy of a frame .. 18

Table 3.2 Feature taxonomy of an IPv4 packet .. 20

Table 3.3 Feature taxonomy of a packet .. 21

Table 3.4 Feature taxonomy of a UDP packet ... 21

Table 3.5 Feature taxonomy of a SMB protocol .. 23

Table 3.6 Feature taxonomy of TCP protocol .. 24

Table 3.7 Feature taxonomy of SSL protocol .. 26

Table 3.8 Feature taxonomy of DNS protocol ... 28

Table 3.9 Feature taxonomy of ICMP protocol .. 30

Table 3.10 Feature taxonomy of ARP protocol .. 31

Table 3.11 Feature taxonomy of SSH protocol .. 34

Table 3.12 Feature taxonomy of HTTP protocol ... 36

Table 3.13 Feature taxonomy of BOOTP protocol .. 37

Table 3.14 Feature taxonomy of IGMP protocol ... 37

Table 3.15 Feature taxonomy of NBNS protocol ... 39

Table 3.16 Feature taxonomy of SSDP protocol .. 40

Table 3.17 Feature taxonomy of DCE/RPC protocol ... 41

 ix

LIST OF FIGURES

Figure 1.1 NIST Cybersecurity Framework ... 2

Figure 3.1 IPv4 Packet ... 10

Figure 3.2 Wireshark GUI .. 11

Figure 3.3 Feature Taxonomy .. 14

Figure 3.4 Packet Field Branch .. 15

Figure 3.5 Frames features ... 16

Figure 3.6 Wireshark packet frame .. 17

Figure 3.7 IPv4 features ... 18

Figure 3.8 IPv4 packet .. 19

Figure 3.9 Basic protocol features .. 20

Figure 3.10 UDP features ... 22

Figure 3.11 SMB features... 23

Figure 3.12 TCP features .. 25

Figure 3.13 SSL features .. 26

Figure 3.14 DNS request features .. 28

Figure 3.15 DNS response features .. 29

Figure 3.16 ICMP request features ... 30

Figure 3.17 ICMP response features .. 31

Figure 3.18 ARP request features ... 32

Figure 3.19 ARP reply features .. 33

 x

Figure 3.20 SSL features .. 35

Figure 3.21 HTTP features ... 36

Figure 3.22 IGMP features ... 38

Figure 3.23 NBNS features .. 39

Figure 3.24 SSDP features ... 40

Figure 3.25 DCE/RPC features .. 41

Figure 3.26 Traffic volume... 43

Figure 3.27 Traffic volume grouping ... 43

Figure 3.28 Packet volume examples ... 49

Figure 3.29 Data volume example .. 50

Figure 3.30 Temporal features ... 54

Figure 3.31 Time based grouping ... 55

Figure 3.32 HTTP compression ... 66

Figure 4.1 Distribution of points in X-Y plane .. 70

Figure 4.2 Linear regression ... 70

Figure 4.3 Machine learning based classification .. 71

Figure 4.4 Artificial neural network ... 73

Figure 4.5 Stages of ML process .. 75

 xi

ABSTRACT

Even though Artificial Intelligence is still a black box to a lot of people, both

experts and non-experts alike, it has become an important tool in current and future

technology. Every day, we trust Artificial Intelligence (AI) with our lives, from

driving cars to using medical devices. One such important part of life is the Internet

which is basically a worldwide exchange of data packets at a very high rate. Security

is an integral part of this exchange which encourages enterprises to use Intrusion

Detection Systems (IDS)[1,2,3] and Intrusion Prevention Systems (IPS)[4,5] to detect

and prevent anomalous activities. As much as we want to use AI to ease our task of

anomaly detection, we want to win the trade-off between the true positives, true

negatives and false positives, false negatives and ultimately achieve true AI.

Amongst various applications of AI, machine learning (ML) is the most

famous. Conceptually, ML is discipline of discovering probabilistic models which use

algorithms to learn new things from data like patterns, behaviors, and decision-making

capabilities, etc. The higher the accuracy of a model, the better these patterns are

learned. These models are developed by training with a large set of data and testing

their accuracy on a test dataset. Therefore, we can safely say that the driving engine

behind ML is data. If we want ML to make decisions like a human brain, we need to

train it on the best possible version of the data we have.

Trusting a probabilistic mechanism to make the right decision might be

mathematically acceptable but that is not the case in a dynamic environment like a

network where multiple devices like computers, routers, switches and servers, etc. are

 xii

communicating and thousands of packets are exchanged every minute and passing

through multiple devices. The volume of data seen or collected at a node in a network

is enormous, even in a short span of time.

Our goal in this thesis is to collect a dataset of different types of packets that

arrive at a node, for long durations of time, in order to facilitate the identification of

unusual traffic which might indicate a system error or a possible attack. All the data in

a packet does not contribute to identification of the anomaly so we don’t use the raw

data downloaded directly into a machine learning model. We study the data collected

and filter it in a way that useful information is retained, and noise and repetitive data is

removed. We also can perform feature engineering[6,7] on the traffic. We compute

several derived characteristics of the data by performing several statistical

computations like mean and variance on the numeric data and quantitative flow

records[8,9] to find derived characteristics which might play an important role in

spotting specific behaviors. As a result, we are able to develop an extensive taxonomy

of packet data which may be useful in our goal of detecting anomalies.

This taxonomy is a collection of information both taken directly from the

packet files as well as derived from the information collected. It defines a tree-like

structure which represents all the features of a packet as well as the traffic flow. The

branches of the tree are the categories and subcategories and the leaves of the tree

represent the final features which can be directly used as estimators of a machine

learning model.

 1

Chapter 1

INTRODUCTION

1.1 Cybersecurity

IoT sensors networks are exponentially expanding. Millions of gigabytes of

data travel through them every day in the form of data packets. Amongst a lot of

things, these sensors include data exchanges from government and other organizations

like defense bodies, space research institutes, online money transfer, data from

healthcare organizations like Electronic Health Records (EHR) and medical devices

like pacemakers, etc. These data packets carry highly sensitive and confidential

information which makes it critical to protect these devices from adversary attacks by

hackers and terrorist organizations. If delivered into wrong hands, they can have a

direct impact on human life. The sensitive nature of these exchanges forces us to

administer the highest level of security measures to detect and prevent anomalous

activities. The practice of protecting data from malicious attacks is called Computer

and Network Security or Cybersecurity.

As the attacks surface is increasing, panic around cybersecurity is also high. To

help private sectors deal with malicious activities, the government of the United States

has provided several guidelines to approach cybersecurity. The National Institute of

Standards and Technology or NIST cybersecurity framework designed in 2014 is one

of the most approachable and easy to implement guide. It classifies cybersecurity

practices into five phases namely, Identify, Protect, Detect, Respond, and Recover.

The below figure from NIST.gov depicts these functions.

 2

Figure 1.1 NIST Cybersecurity Framework

During the “Identify” phase, a clear understanding is developed by an

organization by identifying all its IoT and other computer and network assets, the data

held by these assets, the processes and procedures followed in the organization for

communication between devices, and the capabilities as well as the limitation of the

organization with respect to its assets. This will help in setting a clear picture of the

organization, specifically portraying needed areas of improvement. The second phase

recognized by the NIST framework is “Protect” where an organization needs to ensure

that it delivers its services by developing information security schemes and

implementing them to safeguard their data and maintain availability. The next phase is

called “Detect”. Detection of malicious activity should be done quickly, and its

implications must be understood. The “Respond” phase follows detection where in

case of a cybersecurity event like breach, an organization should be ready with

appropriate plans and resources to provide first response, mitigate the effects of the

attack and stop the attack, if possible. The organization should perform root cause

analysis on the attacked assets to find the source of the attack. The final phase of the

framework is called recover in which an organization learns from the cyberattacks and

frames security policies and implements protocols to make their systems more resilient

 3

to future similar attacks and breaches. It also tries to restore the damaged assets and

lost data from backup.

It is a widely accepted fact that the breaches are inevitable, therefore detection

and understanding of a cybersecurity event is the key to resolution and loss

prevention. History shows that the protect phase can never be 100% effective,

therefore, it is undeniable that we must focus on the “detect” phase of the NIST

cybersecurity framework as our final defense. As the name suggest, we will try to

detect a cybersecurity event and gather information about it in this phase. The process

of detection should answer the following questions:

a. Which cybersecurity event was carried out? The answer that we look for here is

which attack was carried out on the organization. This will also help us realize

the hidden ultimate motives of the attacker. We can study similar cyberattacks

in the history and find the best possible way for save ourselves from it.

b. What information has been compromised in the attack? This is the area where a

cyberattack hits the most. The motivation behind the majority of cyberattacks is

to hack sensitive data. Therefore, it is important to know how much data has

been stolen or even changed as we don’t want the latter to compromise the

integrity of our databases. This will help us to make decisions if we can save

some data and if we have backup.

c. When the cyber-attack happened. The timing of the cyberattack is also an

important information. We want to know if the attackers had been in the system

for months or years or a few days. Increasingly the attacked organization is

informed of the breach by another organization.

 4

d. How the attack happened? It is critical to know how the attack was carried out.

With the help of all the information mentioned above, we must find the cause of

the breach. The breach could be a result of flaws in the application, network or

hardware. If the breach was due to errors in application, we need to change the

code and if it is in the network, we need to find the protocol or service where

the leak happened. If the breach came from hardware, we might have to replace

our current hardware and buy new. Some breaches are a combination of all;

application, hardware and network.

e. What are the impacts of the attack? Answer to this question will help us in

reconciliation. It will indicate to us how to restore damaged assets. It will also

help us get prepared for future. It will point out the gaps in the cybersecurity

plan of the enterprise and may illustrate gaps that had not been seen before.

After all these questions are properly answered and accurately recorded, it is

the duty of the information security team of the organization to perform root cause

analysis and investigate to help the organization prevent any malicious activity in the

future. It is also their responsibility to inform the clients.

1.2 Machine Learning

Whenever a cybersecurity event is encountered, we investigate the network

traffic that arrived at the device to find where the attack came from, what steps it took,

and which service was responsible for the breach. In addition to that, we would also

want to collectively analyze the behavior of the flow of data packets and the device’s

reaction over time. Every single data packet contains an enormous amount of

information from which we can find evidence which contributed to the breach in

security. Collective study of all the dimensions of this information including the flows

 5

can be scary as it is scattered around in millions of packets. Even after this manual

labor, there is still chance of a miss finding the attack or issue. One fairly new,

innovative and reliable way to find anomalies in traffic is by using artificial

intelligence.

AI is a technology which encourages computers to act like a human brain. The

human capabilities which AI can display are playing a strategic game, implementing a

decision system like the trolley dilemma, understanding different languages, deducing

signals/information from noisy data and remembering behaviors, etc. The ultimate

goal of AI is to achieve wisdom. To enable a computer to portray human like

intelligence, we implement the AI technology into applications like machine learning.

Given the amount of work done in the field of machine learning, the proportion

of people having a clear understanding of it is very low. Machine learning is like a

black box to a many people. It is a secret sauce which takes in numbers and gives

hopefully accurate results. It is a sauce but it’s not secret. A lot of implementations of

AI require very specific coding to perform computations explicitly for an application,

for example robotic arms or industrial robots found in warehouses. Machine learning

is an idea which states that we don’t need a lot of custom coding for an algorithm to

learn interesting facts about our data, instead we can just provide a lot of data and the

algorithm recognizes patterns and displays facts. In most cases, it gives accurate

results which is the ultimately the goal. By using machine learning, we can solve

problems like true or false classification, image recognition, value prediction like

stock prices and customer churn data, future cost of houses, etc. Other applications are

clustering unknown data into groups with similar behavior, audio analysis, text

 6

generation and reinforcement learning. More complex applications of machine

learning are generative adversarial networks, deep learning models, etc.

As mentioned above, we can use a generic algorithm, just feed it a large

amount of data and our machine learning model is ready to use. So, it is fair to say that

dataset plays a decisive role in a machine learning model to reach semantically correct

decisions with the help of these algorithms. Machine learning will only work if the

dataset we have matches the needs of the problems that it should solve. It means that

the dataset should be a true representative of the task a model is supposed to do. We

can measure the quality of the dataset by the features present in it. These features are

fine identifiers of anomalous and non-anomalous situation. Later, when the model is

trained to predict classes, these will be computed into the estimators of the model.

 7

Chapter 2

RELATED WORK

A variety of research work has been conducted in this field of anomaly

detection in a network using machine learning[10,11]. Some researches use features to

combat adversarial machine learning[12,13] while other use features to create anomaly

detection models. But there has been limited work on actually identifying a

comprehensive set of features to help AI reach accurate solutions.

Limthong[30] has shown how machine learning approaches can be used to

detect anomaly by experimenting on a dataset with malicious data in them collected

over a period of around 8 weeks. Their dataset contained back, ipsweep, neptune,

portsweep and smurf attacks with a maximum anomaly detection percentage of 1.25,

5.3, 7.38, 1.19, and 2.22 respectively. The features used were number of packets, sum

of packet size, number of flows, number of source addresses, number of destination

addresses, number of source ports, number of destination ports, difference between

source and destination addresses, and difference between source and destination ports.

Several machine learning algorithms were used like Naïve Bayes algorithm[14,15] and

K-nearest neighbor[16,17]. Although, the accuracy was good, but the features taken

into consideration were limited.

De Lucia[37] discusses the importance of features in adversarial learning in the

context of cybersecurity. The study of features was divided into network packet

features and network flow/traffic features. A need of derived features was also

expressed to be computed using statistical methods. Data mining approach like

 8

TF/IDF[18,19,20,21,22,23] was used to study the frequency of TLS record

sizes[24,25] in a conversation. This study presents good discussion and direction to

capture complete set of features for machine learning.

Muehlstein[38] performed classification of HTTP[26] encrypted traffic

(HTTPS[27]) using machine learning classifiers to identify user’s operating system,

browser and application by exploiting passive attack techniques such as sniffing on

traffic. Their dataset contains around 2000 labeled online sessions, with Ubuntu,

Windows, Linux and OSX operating systems. The users browsed using common

applications like Internet Explorer, Safari, Chrome and Firefox. The sites that were

used for classification were Facebook, twitter and YouTube. All the traffic that passed

through port 443 (for SSL) through was collected. They used support vector machines

(SVMs)[28] to perform classification and achieved more than 90% accuracy in all

cases. Some base features included number/mean of forward/backward packets, mean

packet size/bytes, etc. Some new features were proposed like TCP initial window size,

SSL[29] information, peak throughputs, peak interval time differences, the number of

keep alive packets. The features collected were meaningful to this experiment but are

not able to represent the collective nature of a packet and network flow.

 9

Chapter 3

FEATURES OF TRAFFIC DATA

3.1 Network Traffic Focus

An anomaly in a network traffic is a disruption of the intended behavior of a

service. This disruption can act as a loophole to be exploited by cyber attackers and

the whole system can be compromised. Despite efforts made to secure all

communication channels and devices, mischievous actors find a way to harm the

system. The primary contribution of my thesis is to identify characteristics of network

traffic that help us differentiate between anomalous behavior from normal.

3.2 IPv4 Packet

Data is sent from source to destination by dividing them into small units of

packets (i.e. datagrams). The majority of traffic on modern networks is carried in IPv4

datagrams with sizes ranging from 20 to 65,535 bytes though realistic packet sizes are

usually limited by the maximum packet size carried by the underlying network (e.g.

Ethernet). An IPv4 packet is divided into header and payload. The payload, as the

name suggests, contains the message that needs to be delivered at the destination. The

header, the most important part of a packet contains 14 fields and occupies 20 bytes of

data which can be extended, if needed. It contains all the information that is required

by a packet to reach its destination node. The figure below from Cisco[35] depicts the

fields in the packet header and their distribution across the header.

 10

Figure 3.1 IPv4 Packet

3.3 Feature Identification

There have been several discussions of network features that can be used as

training data in machine learning. Prior use restricted these features to very limited set

of data has been selected from the traffic to differentiate behaviors like source,

destination and ports. Although, the results of such studies have been precise,

unfortunately there is a chance of overfitting as the decision of declaring a packet that

contains an anomaly seems to be incomplete with such limited data.

In order to reach meaningful results, we need to identify all the features that

might play a role in disrupting a packet or traffic overall. To achieve this, we need to

look beyond just header values. We need to consider the traffic movements and header

values at those instances. As tedious as this task sounds, it is necessary that we use it

to achieve true AI.

 11

3.4 Tools Used

The tools that we used to achieve all measurement of traffic are

Wireshark/tshark and Zeek (previously known as Bro).

3.4.1 Wireshark

Wireshark is a GUI tool used to sniff traffic over an Internet connection. It has

a companion command-line tool is called tshark. We use Wireshark to watch all the

traffic passing through the node. We can even download the packets seen by

Wireshark into a file. The files which hold the packets are called pcap (or pcapng)

format files. The tshark tool is a command-line version of Wireshark. By using tshark

on any operating system, we can download all the packet information into a pcap file.

We can filter out this file to remove unnecessary and repetitive information and use

the results as a training dataset.

Figure 3.2 Wireshark GUI

 12

3.4.2 Zeek

Zeek (aka Bro) is a network analysis framework which is used as an Intrusion

Detection System (IDS). Zeek is an open source architecture which is driven by

cybersecurity events and handles security exceptions to stop malicious activity. It

monitors traffic over the whole network from a central or multiple point and stores its

results in multiple log files at the host. These files can be examined to examine and

find a variety of information from logging of connections to signature mismatches,

and other exceptions. These files are logged on an hourly basis. This information can

be useful to detect behaviors over a network at different instances of time. Changes in

the normal behavior can be identified as an anomaly. Some types of files produced by

Zeek are:

3.4.2.1 stats.log

Zeek records all the connections This file contains the obvious statistics related

the connections of the node. This file contains

3.4.2.2 conn.log

This file logs all the connection information that the node has seen on the

network. The connection.log is created on an hourly basis. All the connection from the

previous hour are recorded here. It contains the IP, TCP, UDP and ICMP connections.

Some of the fields found in this log are: source and destination IP addresses and ports,

duration of the connections, protocols used, number of RESP packets, and GeoIP

country codes of the packets.

 13

3.4.2.3 weird.log

The weird.log shows the records the events which are not understood by

Zeek’s protocol analyzers. This information which contains some valid and/or invalid

protocols or unexpected events which Zeek is not able parse are placed into this file.

3.4.2.4 signature.log

The signature.log file contains all the signature matches from the signature

framework.

3.4.2.5 stderr.log

The standard errors found in the packets when Zeek is started are logged into

this file.

3.4.2.6 ssh.log

This file contains information about the SSH handshakes that took place over

the network. It has the following fields: ID record of source, destination and ports;

status of the login attempt, client and server responses.

3.5 Expansive Feature Taxonomy

Our goal here is to study all the characteristics of a system. To score good

analysis results, we need to find all the dependencies and internal and external

environments that influence a system. In this development of an expansive taxonomy,

we will classify our data based on the source where it came from and what it signifies.

We have achieved this by developing a taxonomy tree whose sub-roots are the main

categories into which the features have been divided. The features at the leaves of this

tree can be used into a machine learning model as estimators of the model.

We have divided the network traffic into the following categories:

 14

a. Packet field: These features are directly obtained from the packets. They

provide information about the packet and the source and destination of the

packets.

b. Traffic volume: Volume based features represent the quantitative

measurements of the size (e.g. packet length, average packet length, etc.) in a of

different groupings (sets) of packets, e.g. a flow, in the channel, etc..

c. Protocol state: State based features represent behavior of the packet.

d. Time series: Time based features depict the time dependent characteristics

of the packets.

e. Traffic flow: Characteristics of the data stream are included in this category.

f. Computed features: Computed features are not directly observed from the

packet stream. They are calculated from the recorded from the packet/stream to

determine their behavior and recognize any patterns.

g. Other: All other miscellaneous information gathered from either packet or

stream which does not fit in the above categories is included here.

Figure 3.3 Feature Taxonomy

3.5.1 Packet field

These features are directly collected from the defined fields found in any

standard communications devices for protocols defined at any layer of the

communications stack. Both header fields as well as data fields are included in our

 15

definition. This set of define fields form an almost unlimited set of features to use in

traffic classification, clustering, anomaly detection, and any other potential use of

statistical or neural machine learning system. The header fields will largely indicate

the state activity in the protocol and the data fields may help understand the content of

the data being transferred by the protocol.

Figure 3.4 Packet Field Branch

Observation of these features is the easiest way of detecting anomaly. We have

used Wireshark to define the features for this category as the Wireshark community

has invested a significant amount of time defining the fields of commonly seen

network traffic.

A lot of important information is retrieved from this field therefore, we try to

retain maximum information in this category, except for a few redundant and trivial

fields. The packet field-based features are further classified into three categories

named after the section of the header they come from:

3.5.1.1 Frame

The frame section of the protocol contains the summary of the packet. It is a

collection of metadata about the packet. Therefore, we observe important

characteristics about the packet from this section. The notation of frame in Wireshark

is “frame”. We are going to directly use this notation to describe our features.

 16

Figure 3.5 Frames features

The features that are important to be noted are:

a. Frame number: It is a record of the sequence in which the frame was downloaded

in the file. It is vital that the frame numbers remain in sequence. A missing frame

might be a potential sign of malicious activity.

b. Frame length: Length of the frame as seen on the wire. It is recorded in bytes

c. Capture length: Length of the frame captured in the file. It is recorded in bytes.

d. Capture ratio: It is imperative that all the packets seen on the wire be captured in

Wireshark for analysis. This means that the ideal value of ratio of capture length

over frame length should be 1. If any other value is observed, it should be

reported.

Let’s see how these features look like in Wireshark.

 17

Figure 3.6 Wireshark packet frame

e. Interface id: ID of the interface on which the packet was seen. Interface is the

network connection on which the data exchange happens physically. It is being

used to capture the packets. It can be used for either wired or wireless

connections. Examples of interfaces are en0, en1, lo1 (loopback interface), and

fw0 (firewall interface IP), vmnet0 (for virtual machines installed), eth0 (non

OSX devices), etc.

The table below is a useful explanation of the nature of the features captured in this

section following the Wireshark notation.

Taxonomy Notation Type Size

Frame number frame.number Unsigned Integer 4 bytes

Frame length frame.pckt_len Unsigned Integer 4 bytes

 18

Capture length frame.cap_len Unsigned Integer 4 bytes

Interface id frame.interface_id Unsigned Integer 4 bytes

Table 3.1 Feature taxonomy of a frame

3.5.1.2 IPv4

All the features which come from the IPv4 header of the packet are recorded in

this section. The basic and the most important information among all the field-based

features come from this section. Features like protocol, source, destination, TTL, etc.

are observed in this field and a lot of direct anomalies can be deduced from these set

of fields. The field name notation for IPv4 section in Wireshark is “ip”. Therefore, the

notations for fields inside this section start with “ip”.

Figure 3.7 IPv4 features

Fields in the above figure shape an IP packet and are defined below:

a. Protocol type: The protocol used in this conversation to exchange information is

recorded in the protocol type field. Protocols like TCP, UDP, ICMP can be

found in this field.

b. Header length: This is the length of the IPv4 header.

c. Source IP address: This field contains the IP address of the source machine.

d. Destination IP address: This field contains the IP address of the destination

machine.

 19

Figure 3.8 IPv4 packet

e. TTL: Time-to-live is a very important feature of a packet. It is the maximum

time an IP packet has to reach its destination hopping from one network device

to another. Once a packet has reached TTL, it is discarded on the hop it has

arrived on, assuming it to be lost. Every time a packet hops to a new device in

the network, TTL is reduced by a few units equal to or more than 1.

f. Header checksum status: This field is a description of whether the checksum of

the header is verified or not.

g. Total length: It shows the length of the IP header. We can extend this length if

need.

Feature name Taxonomy Type Size

Protocol type ip.proto Unsigned Integer 1 byte

 20

Header length ip.hdr_len Unsigned Integer 1 byte

Source IP address ip.src IPv4 address -

Destination IP

address

ip.dst IPv4 address -

TTL ip.ttl Unsigned Integer 1 byte

Header checksum

status

ip.checksum.status Unsigned Integer 1 byte

Total length ip.len Unsigned Integer 2 bytes

Table 3.2 Feature taxonomy of an IPv4 packet

3.5.1.3 Protocol

This section of the packet field-based features contains the protocol that is used to

exchange information between the source and destination using the packets. This can

be TCP, UDP, SMB etc. For notation in this section, we have recorded the most

important fields critical to anomaly detection in any protocol are:

Figure 3.9 Basic protocol features

a. Source port: The port number of the sender’s device from where the information

is sent on the wire.

b. Destination port: The port number of the destination’s

c. Length: This is the length of the protocol header.

 21

Feature name Taxonomy Type Size

Source port protocol.srcport Unsigned Integer 2 bytes

Destination port protocol.dstport Unsigned Integer 2 bytes

Length protocol.length Unsigned Integer 2 bytes

Table 3.3 Feature taxonomy of a packet

Protocols can be of different types in this context. Some of the common protocols

found in this section are:

3.5.1.3.1 UDP

User Datagram Protocol(UDP) sends data in an insecure way. It’s not the job

of UDP to make sure that data arrived at the destination which makes it easier to

attack.

Feature name Taxonomy Type Size

Source port udp.srcport Unsigned

Integer

2 bytes

Destination port udp.dstport Unsigned

Integer

2 bytes

Length udp.length Unsigned

Integer

2 bytes

Time since previous frame udp.time_delta Time offset -

Time since first frame udp.time_relative Time offset -

udp.time_delta/udp.time_relative - Unsigned

Integer

-

Table 3.4 Feature taxonomy of a UDP packet

 22

udp.time_delta/udp.time_relative: Another famous attack displayed in the UDP

protocol is DoS flood attack. To detect the attack, we take the ratio of the time features

in the above table. udp.time_delta gives the time from the previous frame and

udp.time_relative gives the time from the first frame. The ratio will give the speed at

which the packets are arriving at the node. If the rate is very high, it can be an

indicator of UDP Dos attack.

Figure 3.10 UDP features

3.5.1.3.2 SMB

Feature name Taxonomy Type Size

Server Component smb.server_component Unsigned Integer 4 bytes

SMB Command smb.cmd Unsigned Integer 1 byte

NT Status smb.nt_status Unsigned Integer 4 bytes

 23

Flags2 smb.flags2 Unsigned Integer 2 bytes

Security Mode smb.sm Unsigned Integer 2 bytes

Word Count (WCT) smb.wct Unsigned Integer 1 byte

Byte Count (BCC) smb.bcc Unsigned Integer 2 bytes

Table 3.5 Feature taxonomy of a SMB protocol

Figure 3.11 SMB features

3.5.1.3.3 TCP

Feature name Taxonomy Type Size

Source port tcp.srcport Unsigned Integer 2 bytes

Destination port tcp.dstport Unsigned Integer 2 bytes

Header Length tcp.hdr_len Unsigned Integer 1 byte

 24

TCP Segment Len tcp.len Unsigned Integer 4 bytes

Checksum Status tcp.checksum.status Unsigned Integer 1 byte

MSS Value tcp.options.mss_val Unsigned Integer 2 bytes

Time since previous frame tcp.time_delta Time offset -

Time since first frame tcp.time_relative Time offset -

Calculated window size tcp.window_size Unsigned Integer 4 bytes

Window size value tcp.window_size_value Unsigned Integer 2 bytes

ACKed segment that

wasn't captured

tcp.analysis.ack_lost_seg

ment

Label -

ACK to a TCP keep-alive

segment

tcp.analysis.keep_alive_

ack

Label -

Table 3.6 Feature taxonomy of TCP protocol

 25

Figure 3.12 TCP features

3.5.1.3.4 SSL

SSL or Secure Socket Layer is used to encrypt the messages using some

common encryption techniques like Elliptical Curve Cryptography.

Feature name Taxonomy Type Size

Handshake Protocol ssl.handshake Label -

Alert Message ssl.alert_message Label -

Content Type ssl.record.content_type Unsigned

Integer

1 byte

Length ssl.record.length Unsigned

Integer

2 bytes

Session ID Length ssl.handshake.session_id_length Unsigned 2 bytes

 26

Integer

Cipher Suites Length ssl.handshake.cipher_suites_length Unsigned

Integer

2 bytes

Compression

Methods

ssl.handshake.comp_method Unsigned

Integer

1 byte

Public key length ssl.handshake.server_point_len Unsigned

Integer

1 byte

Table 3.7 Feature taxonomy of SSL protocol

Figure 3.13 SSL features

3.5.1.3.5 DNS

DNS stands for Domain Name Server. This protocol hunts for IP addresses for

the given domain names when using a web page. DNS protocol has request and

 27

response queries where a node sends a DNS request to the root domain servers and

response contains the IP address of the webserver.

Feature name Taxonomy Type Size

Transaction ID dns.id Unsigned Integer 2 bytes

Questions dns.count.queries Unsigned Integer 2 bytes

Answer RRs dns.count.answers Unsigned Integer 2 bytes

Authority RRs dns.count.auth_rr Unsigned Integer 2 bytes

Name length dns.qry.name.len Unsigned Integer 2 bytes

Name dns.qry.name Character string -

Label Count dns.count.labels Unsigned Integer 2 bytes

Type dns.qry.type Unsigned Integer 2 bytes

Class dns.qry.class Unsigned Integer 2 bytes

Time dns.time Time Offset -

Answer authenticated dns.flags.authenticated Boolean -

Type dns.resp.type Unsigned Integer 2 bytes

Class dns.resp.class Unsigned Integer 2 bytes

Time to live dns.resp.ttl Signed Integer 4 bytes

Data length dns.resp.len Unsigned Integer 4 bytes

Primary name server dns.soa.mname Character string -

Refresh Interval dns.soa.refresh_interval Unsigned Integer 4 bytes

Retry Interval dns.soa.retry_interval Unsigned Integer 4 bytes

Expire limit dns.soa.expire_limit Unsigned Integer 4 bytes

 28

Minimum TTL dns.soa.mininum_ttl Unsigned Integer 4 bytes

Table 3.8 Feature taxonomy of DNS protocol

Figure 3.14 DNS request features

 29

Figure 3.15 DNS response features

3.5.1.3.6 ICMP/ICMPv6

Feature name Taxonomy Type Size

Type icmp(v6).type Unsigned

Integer

1 byte

Code icmp(v6).code Unsigned

Integer

1 byte

Checksum icmp(v6).checksum Unsigned

Integer

2 bytes

Checksum Status icmp(v6).checksum.status Unsigned

Integer

1 byte

ICMPv6

Number of Multicast

Address Records

icmpv6.mldr.nb_mcast_records Unsigned

Integer

2 bytes

 30

Record Type icmpv6.mldr.mar.record_type Unsigned

Integer

1 byte

Aux Data Length icmpv6.mldr.mar.aux_data_len Unsigned

Integer

1 byte

Number of sources icmpv6.mldr.mar.nb_sources Unsigned

Integer

2 bytes

Table 3.9 Feature taxonomy of ICMP protocol

Figure 3.16 ICMP request features

 31

Figure 3.17 ICMP response features

3.5.1.3.7 ARP

Feature name Taxonomy Type Size

Hardware Type arp.hw.type Unsigned Integer 2 bytes

Protocol Type arp.proto.type Unsigned Integer 2 bytes

Hardware Size arp.hw.size Unsigned Integer 1 byte

Opcode arp.opcode Unsigned Integer 2 bytes

Sender IP address arp.src.proto_ipv4 IPv4 address -

Target IP address arp.dst.proto_ipv4 IPv4 address -

Is gratuitous arp.isgratuitous Boolean -

Table 3.10 Feature taxonomy of ARP protocol

 32

Table 3.10 Feature taxonomy of ARP protocol

Figure 3.18 ARP request features

 33

Figure 3.19 ARP reply features

3.5.1.3.8 SSH

Feature name Taxonomy Type Size

Packet Length ssh.packet_length Unsigned

Integer

4 bytes

Padding Length ssh.padding_length Unsigned

Integer

1 byte

Message Code ssh.message_code Unsigned

Integer

1 byte

Kex Algorithm Length ssh.kex_algorithms_length Unsigned

Integer

4 bytes

Kex_algorithms string ssh.kex_algorithms Character

String

-

 34

First KEX Packet

Follows

ssh.first_kex_packet_follows Unsigned

Integer

1 byte

Server_host_key_algorit

hms length

ssh.server_host_key_algorithms_le

ngth

Unsigned

Integer

4 bytes

Server_host_key_algorit

hms string

ssh.server_host_key_algorithms Character

String

-

Mac_algorithms_client_t

o_server length

ssh.mac_algorithms_client_to_serv

er_length

Unsigned

Integer

4 bytes

Mac_algorithms_client_t

o_server string

ssh.mac_algorithms_client_to_serv

er

Character

String

-

Compression_algorithms

_client_to_server length

ssh.compression_algorithms_client

_to_server_length

Unsigned

Integer

4 bytes

Compression_algorithms

_server_to_client string

ssh.compression_algorithms_serve

r_to_client

Character

String

-

SSH Protocol ssh.protocol Character

String

-

Table 3.11 Feature taxonomy of SSH protocol

 35

Figure 3.20 SSL features

3.5.1.3.9 HTTP:

Feature name Taxonomy Type Size

Connection http.connection Character String -

Accept Encoding http.accept_encoding Character String -

Request Method http.request.method Character String -

Request URI http.request.uri Character String -

Status Code http.response.code Unsigned Integer 2 bytes

Status Code Description http.response.code.desc Character String -

Content-Type http.content_type Character String -

 36

Server http.server Character String -

Time since request http.time Time offset -

Table 3.12 Feature taxonomy of HTTP protocol

Figure 3.21 HTTP features

3.5.1.3.10 Bootp

Feature name Taxonomy Type Size

Message Type bootp.type Unsigned Integer 1 byte

Hardware Type bootp.hw.type Unsigned Integer 1 byte

Hardware

address length

bootp.hw.len Unsigned Integer 1 byte

Hops bootp.hops Unsigned Integer 1 byte

 37

Transaction ID bootp.id Unsigned Integer 1 byte

Seconds

Elapsed

bootp.secs Unsigned Integer 2

bytes

Bootp Flags bootp.flags Unsigned Integer 2

bytes

Client IP

Address

bootp.ip.client IPv4 address -

Your (client) IP

address

bootp.ip.your IPv4 address -

Private/Proxy

autodiscovery

bootp.option.private_proxy_auto

discovery

Character String -

Relay agent IP

address

bootp.ip.relay IPv4 address -

DHCP bootp.option.dhcp Unsigned Integer 1 byte

Table 3.13 Feature taxonomy of BOOTP protocol

3.5.1.3.11 IGMP

Feature name Taxonomy Type Size

IGMP Version igmp.version Unsigned Integer 1 byte

Type igmp.type Unsigned Integer 1 byte

Checksum Status igmp.checksum.status Unsigned Integer 1 byte

Num Group Records igmp.num_grp_recs Unsigned Integer 2 bytes

Record Type igmp.record_type Unsigned Integer 1 byte

Aux Data Len igmp.aux_data_len Unsigned Integer 1 byte

Num Src igmp.num_src Unsigned Integer 2 bytes

Table 3.14 Feature taxonomy of IGMP protocol

 38

Figure 3.22 IGMP features

3.5.1.3.12 NBNS

Feature name Taxonomy Type Size

Address nbns.addr IPv4 -

Transaction ID nbns.id Unsigned

Integer

2 bytes

Additional

RRs

nbns.count.add_rr Unsigned

Integer

2 bytes

Answer RRs nbns.count.answers Unsigned

Integer

2 bytes

Authority RRs nbns.count.auth_rr Unsigned

Integer

2 bytes

Questions nbns.count.queries Unsigned

Integer

2 bytes

 39

Data length nbns.data_length Unsigned

Integer

2 bytes

Type nbns.type Unsigned

Integer

2 bytes

Name nbns.name Character string -

Time to live nbns.ttl Unsigned

Integer

4 bytes

Table 3.15 Feature taxonomy of NBNS protocol

Figure 3.23 NBNS features

3.5.1.3.13 SSDP

Feature name Taxonomy Type Size

 40

Host http.host Character string -

Request line http.request.line Character string -

User-Agent http.user_agent Character string -

Request

number

http.request_number Unsigned

Integer

4 bytes

Full request

URI

http.request.full_uri Character string -

Table 3.16 Feature taxonomy of SSDP protocol

Figure 3.24 SSDP features

3.5.1.3.14 DCE/RPC

Feature name Taxonomy Type Size

 41

Packet type dcerpc.pkt_type Unsigned Integer 1 byte

Packet flags dcerpc.cn_flags Unsigned Integer 1 byte

Byte order dcerpc.drep.byteorder Unsigned Integer 1 byte

Character dcerpc.drep.character Unsigned Integer 1 byte

Floating point dcerpc.drep.fp Unsigned Integer 1 byte

Call ID dcerpc.cn_call_id Unsigned Integer 4 bytes

Alloc hint dcerpc.cn_alloc_hint Unsigned Integer 4 bytes

Opnum dcerpc.opnum Unsigned Integer 2 bytes

Table 3.17 Feature taxonomy of DCE/RPC protocol

Figure 3.25 DCE/RPC features

 42

3.5.2 Traffic Volume

This branch of the feature taxonomy discusses all the information describing

the volume of information seen in the traffic. Volume-based features represent the

quantitative measurements of the size or count of entities e.g. the number of packets,

packet or field length, average packet length, etc. These measurements are quantified

in different groupings or sets of packets, e.g. a flow, in the channel, etc. over a

specified period of time e.g. a second, minute, weekly, etc.

Analysis of the volume of traffic is one of the simplest ways to detect

anomalous behavior in a network flow. To identify an anomaly, certain metrics of

behavior are observed over time. Any disorientation from normal behavior is spotted

as an anomaly in the behavior and further investigation is performed on it. An example

of the metrics of volume can be average bytes of the data collected on a node. In a

normal scenario without an anomaly, this value remains within a specific range for

long periods of time. However, in case of an attack, this value may spike to higher

values (like DoS) or fall down if the node is brought down. Hence, it is proved that

some attack scenarios can be spotted very easily using these simple statistical

techniques on volumetric features.

The first step is to identify the entities we want to quantify. When we are

talking in terms of network captures, it is obvious to measure the quantities of packets

in different sets. In addition to that, we can measure the volume of data that flowed

through a node over different periods of time and in different sets. Therefore, this

branch is divided into two measurements according to how we are viewing the data

flow: packet volume and data volume. There are two ways to view the measurements

both as time-series as well as being quantified statistically over different periods of

 43

time (e.g. the packet volume evaluation of “packets per second”, or the data volume

evaluation of the “average packet size”).

Figure 3.26 Traffic volume

The second step is to identify the metrics we want to use to measure the traffic.

This can be done in two ways: we can either measure the count of entities or the size

(length) of entities. Both are very important measurements and insightful in anomaly

detection. These metrics can be used as follows:

a. Number of packets captured

b. Number of bytes exchanged

c. Size of packets (at different protocol layers, e.g. MAC, IP, etc.)

d. Size of fields

Figure 3.27 Traffic volume grouping

An anomaly can only be identified when we compare the value of any of the

above metrics at one instance with other (normal) values of the same metrics at other

 44

instances. So, the third step is to make small groupings or sets and observe the general

behavior of these groupings and spot any indifferent behavior.

There are different approaches to group the volumetric features:

3.5.2.1 Group by Type

3.5.2.1.1 Directionality

One of the multiple jobs of a node in a network is to communicate with other

nodes in the form of packets. The node first listens to the request from other nodes,

and if necessary, send replies. There are several broadcast packets which a node

doesn’t need to reply. Therefore, this traffic can be either unidirectional or bi-

directional.

3.5.2.1.2 Channels

Packets arrive from multiple channels on the wire at the node. The rate of

arrival is dependent on external and internal factors. There are cases when the packet

loss is occurred due to issues on the wire. Similarly, packets go out to multiple

channels on the wire but can be caught in congestion. Monitoring of channels can

bring interesting outcomes to the study.

3.5.2.1.3 Conversation or flow

Since a node may converse in a different manner with different nodes, we

group the data into its conversation groups. One group contains a conversation from

one set of source-destination pair. When we first address an anomaly, we want to find

where it is coming from, therefore it is essential to analyze the to-and-fro

conversations between each pair of source-destination.

 45

3.5.2.1.4 Protocols

All the packets flowing from one node to another run on multiple protocols at

different layers of the OSI model. In order to maintain efficiency, not all the protocols

are designed to emphasize on security of information like UDP. Some protocols run

the risk of carrying malicious data through them. Therefore, we group the packet

captures according to the protocols. To make a comprehensive model, we further

divide the outer layer protocols and sub-set them into protocols of the inner layers.

Once we start grouping our captured data into any of the above types, we move

on to the analysis phase, but before that, we have to decide how much data we want to

analyze in one phase. To find reliable patterns of malicious activity, we analyze the

volume of data exchanged during specific periods of time like over a period of a day

or week. In our fourth step, we group the volume once again into windows of time and

analyze them in groups of the same window.

This process of making groups can be approached in the following ways:

3.5.2.2 Group by Time

3.5.2.2.1 Hourly/Daily window

The straightest way to realize patterns in a group of captured packet streams is

to analyze traffic volume on an hourly basis. It is a short span of time which provides

a detailed picture of the behavior of the node during the normal course of the day. If

we want to get an overall picture of the everyday flow of packets, we analyze packets

on a daily basis. For example, during the hourly window, we analyze data from 5 pm

to 6 pm every day. On the other hand, if we want to analyze daily, we observe data

every 24 hours. We can also analyze packets weekly or monthly, etc.

 46

3.5.2.2.2 Peak hour window

In commercial and financial settings like a bank, thousands of monetary and

non-monetary transactions take place every day. Exchanges happen only during fixed

hours only from verified sources. In such a case, it is easy to for malicious transactions

to sneak their way into the secure traffic. Therefore, we analyze the properties of

transactions during rush hours and spot irregularities.

3.5.2.2.3 No activity windows

In industrial organizations, where millions of bytes are exchanged during a

fixed period of time every day, traffic at the server during non-rush hours is abnormal

and may be a sign of anomalous activity. Therefore, it is important to look for data at

windows in time where no activity is expected.

3.5.2.2.4 Occasional activity window

During special occasions like a holiday or a natural phenomenon, there is a

spike in the exchange of data in a region. There might be exponential decrease in the

online activity of users resulting in an ebb of the packet flow. Such incidents need to

be closely monitored and analyzed to prevent unnecessary loss.

3.5.2.3 Statistical Features

The final step is to search for anomalies in the recorded metrics grouped in the

above forms. These sets will act as training data for our machine learning model.

There are two ways to conclude these anomalies:

3.5.2.3.1 No statistics

In this approach, no statistical operations are computed on the datasets. Raw

data collected from the packet captures are used in neural networks (e.g. convolutional

 47

neural networks) to perform supervised learning. Before training the neural networks

on these datasets, it is cleaned, transformed and normalized. It is then labeled and

trained. When the data stream captured is grouped by time, the dataset is viewed as a

time series sequence. We can then perform time-series analysis on these datasets. In

this approach, it is the job of neural networks to find intelligence in the datasets to

learn the difference between anomalous and non-anomalous traits.

3.5.2.3.2 Traditional statistics

In this approach, traditional statistical operations are derived over the groups

created in the previous step. These statistical derivatives are indicators of the behavior

possessed by the groups calculated in the previous step. Some of the common

statistical operations are:

a. Max/Min

Maximum (or minimum) values of column data in all the groups should lie in

the same region with a small window of error. If the max and min values of all the

columns of the groups are in the same window, they are considered normal. If any

max (or min) value do not fall in the same window, it is considered abnormal or

anomaly.

b. Mean

Mean of the columns in different groups should be similar over time

groupings.

c. Standard deviation

Standard deviation of the data in a column over a sequence of the groups.

d. Histogram

 48

It is a depiction of statistical information over a consecutive interval of time. It

is an emphatic way to analyze the sequence of data and detect abnormal patterns.

e. Null

It is important to acknowledge the null values in statistical operations any null

data captured is abnormal.

A volumetric feature can be generated as follows,

Compute this statistic {actual-value, minimum, maximum, average, mean, standard-

deviation, histogram, etc.} of the measurement {size, count} of this object {packet,

field} for this group {unidirectional, bidirectional, flow, protocol(s)} over this time

period {all-time, second, hour, day, etc.}.

The result can be a single scalar number, e.g. all-time minimum packet size,

the average size of a given field (e.g. TSL segment field length). Or it can be a time

series sequence like an average TCP traffic rate in bytes per second over 5-minute

measurement windows.

Like the other major categories in the taxonomy, the traffic volume category

has an arbitrary set of possible features. In the two subsections that follow, some of the

features most likely to be important in the security analysis of packet traffic are

defined and discussed.

3.5.2.4 Packet Volume

In this section, we observe the bulk of packets seen at a point in the network

(e.g. at a node, or on a wire). Measuring packets is one of the simplest ways to

calculate bulk statistics. We analyze this bulk and find voluminous patterns from it.

The below figure is a shot of the Wireshark capture. 4104 packets were captured in

this Wireshark session. These captures are used to analyze packet bulk statistics.

 49

Figure 3.28 Packet volume examples

We calculate the features using the below formula to calculate

< measure:{size, count}of packets, group:{uni, bi, flow, protocols},

period{second, hour, day,...}, stats{NULL, min, max, avg, mean, std dev, hist} >

Some of these features can be:

3.5.2.4.1 Packets per second

No. of packets (at any layer, but typically MAC) seen at any point over a one

second period. The observation point can be a point in a wire (connection) or inbound

to a node (ingress) or outbound from a node (egress). It can also be summations of all

one or all node interfaces or all measures wires collected in one second. Packets

collected in a minute or hour can also be used for the same type of analysis.

3.5.2.4.2 Max no. of packets

Maximum no of packets seen at any point entering or leaving a node over a

period of a second or minute. For the purpose of analysis, the minimum no. of packets

can also be calculated.

3.5.2.4.3 Average packets per second

Average packet counts captured during a second. Average packets per minute

or hour are also calculated for analysis.

 50

3.5.2.4.4 Packet Histogram

A histogram of packet-counts and packet-sizes is a graphic depiction of the

patterns found in counts and sizes.

3.5.2.5 Data volume

Similar to the above analysis, this section deals with the analysis of the data in

bytes. In this section, we observe the bulk of bytes seen at a point in the network (e.g.

at a node, or on a wire). Measuring the volume of data is one of the direct ways to

calculate bulk statistics. We analyze this bulk and find voluminous patterns from it.

The below figure is a shot of the Wireshark capture. 410 bytes were captured in this

Wireshark session between two IP addresses and a total of 812 KB were exchanged in

this session. These captures are used to analyze packet bulk statistics.

Figure 3.29 Data volume example

We calculate the features using the below formula to calculate

< measure: {size, count}of bytes, group:{uni, bi, flow, protocols},

period{second, hour, day,...}, stats{NULL, min, max, avg, mean, std dev, hist} >

Some of the features can be:

3.5.2.5.1 Bytes per second

No. of bytes exchanged during a period of time like seconds or hours.

 51

3.5.2.5.2 Average packet size

Average size of the packets seen during any periodic instance of time.

3.5.2.5.3 Bytes histogram

Statistical representation of byte distribution across dataset.

3.5.3 Protocol state

There are several ways in which a packet reacts to certain conditions. Protocols

have a long list of flags which need to be green before a protocol is sent out on the

Internet to reach a destination. Some of them are security flags, ACK flags, error flags,

etc. Other important information that packets carry are sequential numbers, error

bytes. A very important way to detect malicious activity in a system is to observe

unusual behavior in before/after/during its interaction with outside systems. In this

case, we observe the two-party state behavior. The state of our node, the other nodes it

is interacting it with.

The protocol state features deal with closely watching the state of the different

component in the packet. By definition, the states are ever-changing and should be

address upon the fulfilment of certain conditions. The features defined in this branch

of the taxonomy tree have the following functions:

a. Make sure that state of the components/resources are valid.

b. The changes in the state are a result of valid operations.

As much as we can detect invalid activities by watching the sniffed traffic, it

can be complicated and time taking. Zeek does a fair job in identifying such unusual

operations performed by a node. It logs the unparsed operations in a logger known as

weird.log. It provides a detailed statistic about unexplained activities by a node.

However, not everything is logged or understood by Zeek. We need to identify those

 52

unusual activities and mark the states which look suspicious. Some of the important

checkpoints can be:

3.5.3.1 TCP graceful close

This is the normal way to close a TCP connection. The client sends a FIN

packet to the server. The application is set to FIN_WAIT state. The server sends back

an acknowledgement(ACK) packet back to the client. Then, it sends all the remaining

packets to the client which are in the queue. It also sends a FIN packet after all the

packets are sent. The client then sends an ACK to the server. The connection is closed

now.

3.5.3.2 Delayed DNS

When the web hosts are changed, the DNS entry in the local cache is rendered

obsolete. When a client machine tries to reach a website, it needs to perform a DNS

query. If the cache is cleared it goes to the upper level DNS servers (root, Top-level

domain, etc.) to find the IP address of the website. This query is a UDP packet, so it

travels through a series of hops to find the correct IP address. Once, a response is

received, DNS is filled again. The TTL decreases every step. To avoid all this delay,

the DNS servers need to be backed up so they can be used in failover

3.5.3.3 ARP request: lots of ARP request and few replies

An example of an attack on the protocol state is ARP request and response.

Suppose, if there are 5 hosts in a network and a host receives 200 ARP requests. It

means that 195 are anomalous. This type of behavior is a sign of malicious activity. It

means that the network was being scanned.

 53

3.5.3.4 Failure nodes in Zeek.

There may be some instances where Zeek nodes fail and are not able to detect

attacks. State of the data streams is crucial to observe in this case.

3.5.4 Temporal

A lot of things happen in a very short span of time at a node. In this fast

forward exchange of information, it is acceptable to send packets quickly, even if you

lose some in the middle. There can be a lot of reasons for a data stream to mess up and

cause a disturbance. These disturbances can range from an actual mishap with the

node to external interference from malicious sources. We capture such disturbances so

that we can record abnormal timings seen in the flow of packets and use them for

analysis to detect anomalies. Therefore, we add temporal features as taxonomy branch

for anomaly detection.

This branch of the feature taxonomy discusses the instances of time-related

information which might be helpful to spot an illegal activity in a packet stream. The

analysis of temporal features of a data stream is very crucial because all data streams

flowing through a node are time critical operations. An example of such operation is

the time of the arrival or delivery of packet sequences. If any discrepancy is found in

their timings, it can be assumed to be the result of malicious activity. This

identification of the features works in similar ways as the traffic volume branch of the

taxonomy except this represents time-based features.

The temporal features are further divided into two branches depending upon

how we are quantifying time.

 54

Figure 3.30 Temporal features

3.5.4.1 Time-based features

Network packets are exchanged at a very high rate between nodes and

thousands of packets pass through each node very quickly. At this high exchange, it

possible that some packets are misplaced or lost in the mix. In some cases, this loss of

packets is acceptable like pixels lost causing blurry pictures during video calls,

however, in some cases, this loss can be harmful like breaking a connection over a

congested channel. Therefore, we need to make sure maximum packets arrive on time

and in sequence at a destination. If we find any discrepancy, we need to take a look at

it to find the root causes of delay or total loss. Time-based features represent the

quantitative measurements of time (e.g. TTL, the lag between packet arrivals, etc.) in

different settings of packet-captures (e.g. a flow, in the channel, etc.) represented in

any unit of time (e.g. seconds, minutes, etc.). Just as we studied volumetric features in

the above section where the metrics were size and counts of captures, in this analysis

of time series features, the metrics are time-space and exact instances of time units like

seconds, milliseconds, etc.

The first step is to identify the metrics we want to measure. When we are

timing the network captures, it is obvious to measure the duration of flows of packets

in all possible conditions. In addition to that, we can measure the time-space of a

capture. Time-space of a packet can be defined as the time difference between two

 55

consecutive captures that flowed through a node over different periods of time and in

different sets. It can be represented as 𝚫t (delta_t). Both of these metrics are calculated

over periods of time so that they can be used for statistical evaluations and find

behaviors in different scenarios. Some of the examples of these metrics are average

time-space between arrival time two consecutive packets from the same session, the

average value of TTLs during different instances in time, etc.

Figure 3.31 Time based grouping

The second step is to group these metrics by type of packet/flow. An anomaly

can only be identified when we compare the value of any of the above metrics at one

instance with other (normal) values of the same metrics at other instances. So, the

third step is to make small groupings or sets and observe the general behavior of these

groupings and spot any indifferent behavior. There are different approaches to group

the volumetric features:

3.5.4.1.1 Group by Type

a. Directionality: One of the multiple jobs of a node in a network is to

communicate with other nodes in the form of packets. The node first listens to

the request from other nodes, and if necessary, send replies. There are several

broadcast packets which a node doesn’t need to reply. Therefore, this traffic can

be either unidirectional or bi-directional. When a node sends a request, it

 56

expects a response. If the response is not sent within a small time, the

conversation becomes obsolete. Therefore, we group the response times by

directionality.

b. Response Type: Conversation between two nodes is initiated by a sender node.

If the destination node replies by a response, the conversation is sustained

otherwise, the connection is suspended. Responses vary with the request. For

example, the response to a DNS query is an IP address, however the response to

a SYN packet is an ACK packet. These responses arrive at different timings.

Therefore, it is essential to group the packets by response type.

c. Conversation or flow: Since a node may converse in a different manner with

different nodes, we group the data into its conversation groups. One group

contains a conversation from one set of source-destination pair. When we first

address an anomaly, we want to find where it is coming from, therefore it is

essential to analyze the to-and-fro conversations between each pair of source-

destination.

d. Protocols: All the packets flowing from one node to another run on multiple

protocols at different layers of the OSI model. In order to maintain efficiency,

not all the protocols are designed to emphasize on security of information like

UDP. Some protocols run the risk of carrying malicious data through them

which can lead to loss of packets. Therefore, we group the packet captures

according to the protocols. To make a comprehensive model, we further divide

the outer layer protocols and sub-set them into protocols of the inner layers.

Once we start grouping our captured data into any of the above types, we move on to

the analysis phase, but before that, we have to decide how much data we want to

 57

analyze in one phase. To find reliable patterns of malicious activity, we analyze the

lapse in the of packet exchanged during specific periods of time like over a period of a

day or week. In our third step, we group the metrics once again into windows of time

and analyze them in groups of the same window. This process of making groups can

be approached in the following ways:

3.5.4.1.2 Group by Time

a. Hourly/Daily window: The straightest way to realize patterns in a group of

captured packet streams is to analyze them on an hourly basis. It is a short span

of time which provides a detailed picture of the behavior of the node during the

normal course of the day. If we want to get an overall picture of the everyday

flow of packets, we analyze packets on a daily basis. For example, during the

hourly window, we analyze data from 5 pm to 6 pm every day. On the other

hand, if we want to analyze daily, we observe data every 24 hours. We can also

analyze packets weekly or monthly, etc.

b. Peak hour window: In commercial and financial settings like a bank, security-

efficient packets are exchanged at a very high rate every day. Exchanges

happen only during fixed hours only from verified sources. At such a high rate,

even if every packet is examined, it is easy to for malicious transactions to

sneak their way into the secure traffic. Therefore, we analyze the properties of

transactions during rush hours and spot irregularities.

c. No activity windows: In industrial organizations, where millions of bytes are

exchanged during a fixed period of time every day, traffic at the server during

non-rush hours is abnormal and may be a sign of anomalous activity. It can be

 58

part of the routine activity or malicious activity. Therefore, it is important to

look for data at windows in time where no activity is expected.

d. Occasional activity window: During special occasions like a holiday or a

natural phenomenon, there is a spike in the exchange of data in a region. This

can lead to congestion and highly volatile connections. Such incidents need to

be closely monitored and analyzed to prevent unnecessary loss.

The final step is to search for anomalies in the recorded metrics grouped in the above

forms. These sets will act as training data for our machine learning model. To

conclude these anomalies, we use traditional statistics. In this approach, traditional

statistical operations are derived over the groups created in the previous step. These

statistical derivatives are indicators of the behavior possessed by the groups calculated

in the previous step. Some of the common statistical operations are:

3.5.4.1.3 Statistical Operations

a. Max/Min: Maximum (or minimum) values of column data in all the groups

should lie in the same region with a small window of error. If the max and min

values of all the columns of the groups are in the same window, they are

considered normal. If any max (or min) value do not fall in the same window, it

is considered abnormal or anomaly.

b. Mean: Mean of the columns in different groups should be similar over time

groupings.

c. Standard deviation: Standard deviation of the data in a column over a

sequence of the groups.

 59

d. Histogram: It is a depiction of statistical information over a consecutive

interval of time. It is an emphatic way to analyze the sequence of data and

detect abnormal patterns.

e. Null: It is important to acknowledge the null values in statistical operations any

null data captured is abnormal.

A time-based feature can be generated as follows,

Compute this statistic {actual-value, minimum, maximum, average, mean,

standard-deviation, histogram, etc.} of the measurement {duration, 𝚫t} of this object

{packet, field} for this group {unidirectional, bidirectional, flow, protocol(s)} over

this time period {all-time, second, hour, day, etc.}.

3.5.4.2 Time-series features

The process of input or output of packets at a node is done continuously over

time. Each packet sequentially captured in a data stream is an entity unique in time.

Each of these entities can be represented as a combination of a set of properties. This

bag of entities, when collected equidistant in time or when they have the same lag, is

called time-series. A dataset is called time series data as it represents a set of

properties seen at instances in time which are equally spaced. The time series data is a

matrix of a set of characteristics where each row is a unit of time when those

characteristics is recorded.

Time series analysis is a behavioral analysis technique of entities distributed

equally in time. The behavior of the features is analyzed over all the entities present in

the dataset. This analysis helps us to understand the difference between the values of

the features in normal conditions and anomalous conditions. Analysis of time-series

data is imperative to feature taxonomy of a network as the packets exchanged between

 60

nodes are a function of time. Delay in arrival or departure of packets can lead to issues

like loss of connection and high congestion windows.

In this approach, no statistical operations are computed on the datasets. Raw

data collected from the packet captures are used in neural networks (e.g. convolutional

neural networks) to perform supervised learning. Before training the neural networks

on these datasets, it is cleaned, transformed and normalized. It is then labeled and

trained. When the data stream captured is grouped by time, the dataset is viewed as a

time series sequence. We can then perform time-series analysis on these datasets. In

this approach, it is the job of neural networks to find intelligence in the datasets to

learn the difference between anomalous and non-anomalous traits.

3.5.5 Traffic flow

Observations in this branch of feature taxonomy are the information captured

from the network traffic. Data in the form of packets travel across the Internet all over

the earth and space via satellites. During this time, it can get infected with malicious

information. Therefore, it is essential to go through the whole traffic and find

infectious data. We have discussed identifying infections in packets in the protocol

state branch of the taxonomy. In this branch, we will discuss the series of packets as a

set and perform analysis on the flow.

Throughout the history, there have been a lot of famous cyber-attacks where

the organization which was attacked has no information that they were being attacked.

This happened because of the fact that the attack was performed so meticulously that

no alarms were triggered. In such type of cases, even though no packets were found

individually malicious, the attack was carried out over a long period of time and

successfully executed. To overcome this situation, behavioral analysis of network

 61

traffic needs to be taken seriously. The flow of the traffic as a whole is observed to

find anomalies. To accomplish this task, a data stream flowing through a node is

captured and saved, its properties as a flow are analyzed to find abnormal behavior

over time/session.

Flow of traffic at a node is a continuous operation. To keep track of the

observations, we group them according to our requirements. Therefore, we look at the

flow in two ways: time-based and session-based depending upon the requirement.

3.5.5.1 Group by Time

In time-based approach, the division of traffic is done into fixed intervals of

time and its flow characteristics are observed. A network analyzer at an end host

continuously screens traffic arriving and exiting the host. In this approach, we want

the quantitative analysis of flows. For the purpose of analysis and detection of unusual

behavior of flows, we observe them hourly or daily.

Zeek is a very advanced network analyzer which generates hourly reports of

the traffic as long it is in operation. These reports contain the connections statistics,

signature errors, downloaded files, etc. We can use this data to analyze periodic

behavior of the flow at node. We can analyze flow in the following ways:

3.5.5.1.1 Hourly/Daily window

The straightest way to realize patterns in a group of captured packet streams is

to analyze them on an hourly basis. It is a short span of time which provides a detailed

picture of the behavior of the node during the normal course of the day. If we want to

get an overall picture of the everyday flow of packets, we analyze packets on a daily

basis. For example, during the hourly window, we analyze data from 5 pm to 6 pm

 62

every day. On the other hand, if we want to analyze daily, we observe data every 24

hours. We can also analyze packets weekly or monthly, etc.

3.5.5.1.2 Peak hour window

In commercial and financial settings like a bank, security-efficient packets are

exchanged at a very high rate every day. Exchanges happen only during fixed hours

only from verified sources. At such a high rate, even if every packet is examined, it is

easy to for malicious transactions to sneak their way into the secure traffic. Therefore,

we analyze the properties of transactions during rush hours and spot irregularities.

3.5.5.1.3 No activity windows

In industrial organizations, where millions of bytes are exchanged during a

fixed period of time every day, traffic at the server during non-rush hours is abnormal

and may be a sign of anomalous activity. It can be part of the routine activity or

malicious activity. Therefore, it is important to look for data at windows in time where

no activity is expected.

3.5.5.1.4 Occasional activity window

During special occasions like a holiday or a natural phenomenon, there is a

spike in the exchange of data in a region. This can lead to congestion and highly

volatile connections. Such incidents need to be closely monitored and analyzed to

prevent unnecessary loss.

3.5.5.2 Group by Session

In session-based approach, traffic is divided into sessions. Sessions are the

interaction between a client and a server for a certain duration of time. If our device is

 63

the client, a session is unique to the server our device is interacting with. A device

may interact with multiple servers at the same time. Therefore, while capturing traffic

using sniffing devices like Wireshark or Zeek, we may capture many sessions.

Wireshark downloads all the traffic in one file, and we need filters to manually

filter out the session by providing specific source and destination IP addresses. Zeek

has advanced features where it can group connection between two nodes automatically

and shows their interaction like the bytes exchanged and packets flowed. The features

that can be found in periodic evaluations of a flow of network traffic can be:

3.5.5.2.1 Frequency of protocols used

Number of different types of protocols used during the duration of time or the

session we are taking into observation.

3.5.5.2.2 Average number of bytes exchanged

Average number of bytes exchanged during the duration of time or the session

we are taking into observation.

3.5.5.2.3 Average lengths of exchanges

Average number of packets exchanged during the duration of time or the

session we are taking into observation.

3.5.5.2.4 Average duration of a connection

Average duration of the connection taken into observation during the duration

of time or the session.

 64

3.5.5.2.5 Average number of ports used

Average number of ports used during the duration of time or the session we are

taking into observation.

A traffic flow feature can be generated as follows,

Compute this statistic {frequency, average, quantitative, etc.} of the

measurement {period, session} of this object {flow}.

3.5.6 Computed Features

Computed features are not directly present in the dataset that we capture at the

IDS, neither during the exploratory analysis phase. They are a set of features which

are created explicitly to implement the domain knowledge of network captures and

make the taxonomy more robust to unexplored scenarios. Some of the notable

computed features are:

3.5.6.1 n-grams

Any sequences containing a group of “n” adjoining elements. An n-gram

model is a statistical technique to identify patterns in a large set of data. In a n-gram

model, the dataset is run over with a sliding window of length n. All entities which

have the same n-items in a window are statistically related. n-grams models are

generally used for prediction in language processing entities. A very clear example of

n-gram is our DNA. DNA sequences are made of nucleotides and the sequence of

nucleotides in a DNA sets them apart from others. The nitrogenous bases in the

nucleotides are adenine, guanine, cytosine and thymine (A, G, C, T). It makes DNA a

4-gram.

 65

In a data stream, with a fixed number of elements contributing to the dataset,

we can look for n-grams present in normal packets. There are three ways to use a n-

gram model:

a. Identify n-grams which should be present in the traffic for a traffic to be

identified as normal

b. Identify n-grams which should not be present in a normal traffic. If these n-

grams are found, traffic might be malicious.

Although, presence or absence of n-grams in a packet is not necessarily an absolute

indicator of anomaly, long-term behavior of these entities can be an indicator of their

nature.

3.5.6.2 Entropy of compressed payload

Entropy of a system is an indicator of its diversity or disorder. It is directly

proportional to randomness. Higher the entropy[31] of a payload is, the less redundant

it is. Less the redundancy of the payload, less compressible it is. Compression

techniques can be either lossy or lossless where bits of the payload are statistically

reduced after compression than the original bits. Lossy compression can’t be fully

decompressed as while lossless can be. Entropy is a measure of limit of lossless

compression.

When a packet is sent from one node to another, it is compressed at the

browser to increase the efficiency. In Google chrome, Shared Dictionary Compression

for HTTP (SDCH) scheme is used and the most common HTTP compression

technique - gzip is used where the payload is encoded. The below figure depicts that

gzip was used to encode the packet and compress it.

 66

Figure 3.32 HTTP compression

Although compression does not help in securing data, it is used by all web

servers to increase the speed of transfer. Direct observation of compressed bits cannot

be performed on the packets. Therefore, we record the before and after data of the

decompression scenario and calculate the usage statistics of the compression

techniques.

3.5.7 Other

All the other features which do not fall under the above categories go into this

category. Properties displayed due to human error can be a part of this classification.

Attacks like SQL injections[36] and cross-site scripting show some unique properties

which can be captured in this category.

 67

Chapter 4

MACHINE LEARING USING TRAFFIC DATA FEATURES

A lot of people confuse machine learning with artificial intelligence. AI is a

technology and machine learning is a methodology for implementation of AI. Machine

learning, as the name suggests, is a way of making a computer knowledgeable. The

computer learns from the algorithm it runs with the help of data that we train it on. We

don’t need to teach it a lot of algorithms. They are small set of algorithms which can

be used differently in different situations which means we don’t need to explicitly

write algorithms for specific problems. For example, a classification algorithm which

can classify spam and non-spam emails, can also classify one image from the other.

The only difference here is that we train a general machine learning algorithm on

different training datasets. Once, the machine is trained, it has learned and it ready to

make decisions for example, a classifier can classify any unknown data that we give it.

This process is called modeling and the learned system is called a model. But how do

we know that model’s decisions are right. Well, the metric which validates a model is

its accuracy which is tested on unseen data. Let’s dig deep into machine learning.

4.1 Learning

Learning for machines is divided into four general categories, supervised,

unsupervised, semi-supervised and reinforcement.

 68

4.1.1 Supervised Learning

As the name suggests, in supervised learning an algorithm knows what it is

looking for. The training data provided to it is labeled with output class. Its ultimate

goal is to find a correlation between the input and output. The algorithm will need to

fit itself with the training data to reach a reasonable parametric equation which will try

to fit with all the samples in the training data. This process is cyclic to reach an

equation by minimizing loss.

Examples of supervised learning models are classification, decision trees,

neural networks, support vector machines and regression.

4.1.2 Unsupervised Learning

Unsupervised learning is used when there is no output class defined for the

system. It does not know what it's looking for. It is the task of a non-custom algorithm

to find patterns, develop an equation which calculates input values from the sample

data and form groups of alike samples. It is the most common form of machine

learning. There is no need to train the samples. Examples of unsupervised learning

models are cluster analysis, pattern recognition, genetic programming and association

rules.

4.1.3 Reinforcement Learning

It is dependent on a feedback system, where the model learns from its previous

steps. It doesn’t know the output, nor does it knows how to reach the output. If it

learns the wrong thing, the user can penalize it, if it learns the right thing the user can

reward it, and so it learns. Examples are driving a vehicle or playing a game.

 69

4.1.4 Semi-supervised Learning

It is combination of unsupervised and supervised learning. It is done when we

have some missing information from the labeled dataset. First, we perform

unsupervised learning on the dataset to identify clusters. Then, cluster wise we fill the

missing values with the mode or mean of that cluster. Once all the samples are

completely filled, we perform supervised learning.

4.2 Supervised Learning Models

Since, we want to detect an anomaly based on numerous attributes, we are

interested in working with supervised learning in this study, so we will dig deeper into

some of the famous supervised machine learning models.

4.2.1 Regression models

Regression models are considered the simplest. These models work for a

continuous data, for example age of person, sales of a company, salary of an employee

etc. The training data for regression models should be real numerical values. They are

used to predict output values of continuous data. Regression are a statistical way of

finding correlation between the predictor (X) which is independent variable(s) and the

target/output label (y) or dependent variable of a sample. This correlation can be

depicted in the form of a parametric equation which tries to fit with all the values in a

sample with minimum root mean square errors (RMSE) and predictions for unseen

cases are mapped based on that equation. The figure below[34] shows the distribution

of X and y. In an ideal world, a regression model will try to fit a curve on this

distribution which should pass through all these points. Unfortunately, that is very

difficult to achieve, so a model is computed where the curve passes between these

points in such a way that distance between them is minimum.

 70

Figure 4.1 Distribution of points in X-Y plane

If the predictor X contains a single feature, it is called a simple model, else if X

is conjunction of more than one features, it is called multiple model. The common

types of regression techniques are linear regression, logistic regression, polynomial

regression, ridge regression, stepwise regression, lasso regression and Elasticnet

regression.

Figure 4.2 Linear regression

Above is figure[33] depicting linear regression for a housing price prediction

project. It shows the relationship between the price of the house given the size. As we

can see, the red line is the fitting equation that defines the linear model but not all the

test samples fall on the line. Some samples are very far away from the line which

 71

means the RMSE values would be very high for them. Thus, the linear regression is

not accurate and therefore cannot be used in all situations.

4.2.2 Classification Models

Classification models are the most common application of supervised machine

learning. Classification models are tasked to make observations from non-continuous

categorical data. The output labels of a classification model are the categories. A very

common example of classification model is categorizing an email as ‘spam’ or ‘not

spam’. Here, the features can be email address of the sender, number of emails per

day, number of links in an email, etc. and the ‘spam’ and ‘not spam’ are the classes or

output label.

Figure 4.3 Machine learning based classification

The classification model can be either binary as depicted in above figure or

multi class when the number of categories are more than two. The classification model

is heavily dependent on the quality of training data containing discrete sequence of the

features (X) and the category (y). To test whether the model is working or not, we test

https://medium.com/@naveeen.kumar.k/naive-bayes-spam-detection-7d087cc96d9d

 72

it on new samples and find the accuracy by calculating the number percentage of

correct hits over all hits.

4.2.3 Support Vector Machines

Support vector machines are highly efficient in solving non-linear supervised

learning problems. Support vector machines are an equation which represent some

hyperplanes A hyperplane is like a decision boundary between two or more classes

and support vectors are data points which validate the hyperplane.

4.2.4 Artificial Neural networks

Artificial Neural Networks are one of the simplest models closer to artificial

intelligence. One important specialty of these artificial neural networks that make

them similar to biological ones is the ability to make decisions just based on the

dataset they know i.e. training data without need a complicated algorithm to perform

computations.

The main components of a neural network are neurons, weighted connections,

layers, propagation function, bias and a learning rule. A layer is a vertical array of

neurons. Value of a neuron from the previous layer is propagated to all the neurons of

the next layer as output after multiplying it with some weight. This output goes to the

next layer as input. This The more layers we create, the more fitting functions we can

create but at the same time we can increase bias and do not react well to new data. In

addition to these computations at the layers, we need some more functions like

activation functions and feature scaling. The below[32] figure is plain representation

of Artificial Neural Networks.

 73

Figure 4.4 Artificial neural network

Neural networks can be categorized into stateless and stateful. A stateless

neural network does not remember its previous states which means that its response

will remain same with respect to a certain input. However, in a stateful neural network

the neural net remembers its previous state and it affects its decision in the current

state. In this way, it is continuously learning. Convolutional neural networks (CNN)

and multi-layer perceptron models are stateless neural nets, whereas recurrent neural

networks (RNN) and Long Short-Term Memory (LSTM) are stateful.

It has been widely assumed that any supervised learning problems can be

solved by either using classification or regression if it gives more than 90% accuracy.

Even though both the categories have the same goal to predict an output class of a

sample, they approach the problem in a different way. They do not always give the

highest accuracy.

 74

4.3 Stages of Machine Learning Problem Solving Process

4.3.1 Identify the problem

The first stage of solving a machine learning problem is to actually identify the

problem. This step will help us in realizing if the problem is actually a machine

learning problem or not. If it is a machine learning problem, then further

categorization into supervised or unsupervised can be made. If a problem is a

prediction problem most common in economic field, it can be solved using supervised

learning, or else if it is more of an exploration, we can it by using unsupervised

learning. To successfully identify a problem, we should explore the following sub-

tasks:

a. Define the objective of the problem

b. Define the metric which decides the success criteria

c. Discover constraint over the solution of the problem, if any.

4.3.2 Data Gathering

During this stage, dataset which will help us formulate our model is acquired.

In our case the data has come from IoT devices. In case of supervised learning, the

dataset should represent all the output classes justifiably, whereas in unsupervised

 75

Figure 4.5 Stages of ML process

learning, the dataset should represent true characteristics. We perform the following

tasks to ensure successful completion of this stage:

a. We assess the type of dataset we need

b. We access the data from proper means

c. Data exploration to find interesting facts about the data and clear understanding.

 76

4.3.3 Data Preprocessing

After the dataset has been identified, in this stage, the dataset is cleaned to

remove any noise, repetition, and unrelated information which does not contribute to

the problem to be solved. We perform transformation of values in the dataset if

required. We also perform normalization on dataset so that all the numeric columns

are follow the same distribution which is normal distribution. The following tasks are

performed during phase:

a. Data cleaning from noise and repetitive values

b. Data normalization to bring all the columns on the same scale

4.3.4 Feature Engineering

The dataset collected directly from the IoT devices during the data gathering

phase may have several impurities and noise in it. We cannot use these raw features

directly in our model. Therefore, we need to clean the data first and then perform

feature engineering on the dataset so that we can convert the features into estimators

of the model. There are two reasons to perform feature engineering:

a. To discover new feature to make the model more effective

b. To implement domain knowledge of the data and make the training data more

compliant to the algorithm so it can understand the input.

This stage of problem solving is the most important and maximum significant

proportion of our effort is required in this stage. Other than directly using the crude

fields in the dataset, we perform feature engineering to deduce new information and

develop a more sensible model which is capable of understand the underlying

reasoning, rather than just a probabilistic decision system. For example, if we are

performing stock prediction modeling, we want our machine learning model to

 77

understand how the stock markets work. In order to make our model excel and

understand these concepts, we develop equations to make statistical computations to

our dataset, which in turn discover new features to train our model on. This will make

our model more effective for new unseen data.

Feature engineering is performed in the following steps:

4.3.4.1 Feature selection

During this step, irrelevant features or partially relevant features are dropped

from the training set. These features might negatively influence the decision-making

capability of the model. These can also result in long training periods, so we avoid

such features. To find the relevant features, we find the relationship of output variable

with other features. Following are the common practices used to achieve this

relationship:

a. We discover the relationship of each feature with the output variable using

statistical tests like chi-square tests. This process is called univariate selection.

These tests show the features which have the strongest relationship with the

output variable.

b. Several tree-based classifiers are helpful in calculating the important features

like Extra Tree classifier.

c. Correlation matrices and heatmaps are very helpful in visualizing the features

which are closely related to the output variable.

4.3.4.2 Feature Creation

Valid datasets to solve certain machine learning problems are not always easy

to find. Due to the issue of information sensitivity, especially in the field of

 78

cybersecurity, most of the datasets are either truncated or too corrupt to even

be downloaded on a machine. In some cases, we have to adjust with the dataset

that is made available to us. In this scenario, feature creation is very important.

A set of newly created features are derived from the information that we

already have in the training set. We create new features for the following

reasons:

a. Due to unavailability of rich datasets, we tend to use whatever data we have and

enrich it by performing some statistical operations. These operations are the art

of adjusting the model to improve its domain knowledge. Some datasets are

plain numbers and do not possess any intelligence. We modify such datasets to

provide insights to the behavior of the plain numbers. One of the simplest

statistical operations include mean, mode, median, standard deviation etc.

b. Not all the features in the training set can be directly used as their formats might

mismatch. For. example, some values may be numerical, and some may be

Boolean. Since the neural network only works with numbers, we need to deal

with such mismatch we introduce solutions like hot encoding and dummy

variables. These create encoded columns which represent categorical data

which can be directly used to train the model.

4.3.4.3 Feature Compliance

The newly created features need to be tested if they can be implemented into

the model. As we know that the neural network will work only with numbers, we need

to make the features comply. If it does not fit the model, we need to devise the features

again.

 79

4.3.5 Defining the model

In this stage, we model the objective to perform either clustering or prediction.

For example, for clustering, we can use k-means algorithms, and for classification we

can use SVM or neural networks. There are a lot of framework available to develop a

neural network like TensorFlow, Keras etc. which help us make neural networks and

libraries like scikit-learn which help make clustering or classification models. To

make a model, we perform the below tasks:

a. Decide which approach will help us develop the model

b. Select the modeling algorithm

c. Use libraries and framework to build it.

4.3.6 Training the model

This is the stage where the model is constructed into an intelligent machine. It

takes each sample of training data one-by-one, learns its values, moves on to the next

sample until the end of the dataset. Once it is trained, it is deemed to be learned and

ready to use. It is not always necessary that model learns from one cycle of training

also known as one epoch, especially in case of a neural network. Therefore, we run it

through several epochs for better accuracy. Also, the layers of the model are not so

long that it can accommodate all the training data in one go, therefore we send the

samples in small batches. The number of batches and the number of epochs are called

the “hyperparameters”. In case of a clustering model, the trained model is set of

clusters of samples in a training set.

4.3.7 Testing the model

As the model is trained now, we still don’t know if it is the best version of the

model. We have to verify if the trained model has learned what it is supposed to learn.

 80

Some models perform better than others. To test a supervised learning model, we give

it unseen test data and the models give a prediction of the test data in a percentage

form. It gives the percentage of the output being one class or the other. The output

class which has the highest percentage is the prediction of the model. If it is an

unsupervised model, the output of the evaluation will be the assignment of the test

data into a cluster.

4.3.8 Tuning the parameters

Sometimes, we are not satisfied with the performance of our model and

sometimes are curious to know if it can perform better. In this case, we can change the

values of the hyperparameters to find out if we can get better results.

4.3.9 Prediction

Once we are satisfied with the result, our model is ready for operational use.

We can deploy it in our business and make predictions. In our case, it will be ready for

anomaly detection.

4.4 Time series data

Any data is a measurement of a set of entities at different instances of time. In

order to perform data analysis, there are three different types of data that spike

interest:

a. Time series data: A series of recorded data points where any two consecutive

points are recorded equidistant in time. For example, stock prices of a company

collected over a continuous period of time, customer churn data, etc.

 81

b. Cross sectional data: A series of recorded data of different entities at same

instance of time. For example, stock prices of different companies at the same

instance of time.

c. Panel data: Panel data is a conjunction of time-series and cross-sectional data.

It is a matrix of records of different entities at different instances of time where

each row is a record of multiple entities at one time. Therefore, the rows are

equidistant in time. In other words, it is a cross-sectional time series data. For

example, stock prices of different companies at collected over a continuous

period of time.

We will deal with cross-sectional time series data which essentially means for

different units of time in data, we will observe multiple qualities of data that define the

data. These features will later be used as estimators in our machine learning model.

4.5 Why perform time series analysis

We analyze time series data assuming that there might be a repetitive pattern

between the successive values in the data which were measured at equally spaced time

intervals. It helps us differentiate between patterns and noise. Major two ways to

explore time series data which coexist in the same training data:

a. Analysis of Trend: As the name suggests, find components which change over

time (either increase or decrease) and non-repetitive over the sample range.

b. Seasonality Analysis: Seasonality repeats after some intervals of time.

4.6 Time series modeling

In the past, statistical techniques were used to analyze time series data. We use

machine learning to analyze time series now because it ensures high interpretability,

 82

realistic modeling in some cases, and less biased prediction. Machine learning is able

to look past trend and seasonality issues in the data and achieve true AI. This is

achieved with the help of feature engineering. Time series modeling, unlike general

modeling, is independent of the length of training data. If we train on more data, the

model might show overfitting. We use time series modeling in anomaly detection. The

most effective ways to perform time series modeling are:

a. ARIMA: As the name suggests, an Autoregressive Moving Average Model is

an old statistical technique which is made up of two parameters: autoregressive

and moving average. Along with stationary mean and variance, ARIMA is

identified by stationary autocorrelation over time. This model is widely used in

financial forecasting.

b. LSTM: Long Short-Term Memory models are a special form of recurrent

neural networks. Most neural networks including RNNs conventionally work

using a feed-forward network, which is why they are good in making decisions,

but they are not as good in understanding the underlying context and make

aware AI. LSTMs are called so, because of their ability to hold previous

information to make aware decisions. The below figure is a simplified version

of an LSTM.

http://deeplearning.net/tutorial/lstm.html

 83

Chapter 5

CONCLUSION

In this study, we have performed a comprehensive study of the network data

stream. The packet stream has been observed in two ways, as set of fields as well as a

pattern. As a result of this study, we have generated a detailed tree-like structure of

features which represent a packet stream. Some of these features are directly observed

in the stream, some are observed statistically from the stream and some are computed

using detailed knowledge of the factors that may affect packets like entropy and

compression.

With the help of this study, we will address the issue of data security which is

the universal problem of understanding all kinds of data flows. The future work after

this study is to use the features calculated in the above tree as guidance and obtain

knowledge about good and bad packets, and normal and abnormal flow of data. The

streams which present as abnormal from normal flows will be labeled as anomalous

and their behavior will be recorded for future use to detect more anomalies.

To detect anomalous streams from the normal ones, we will approach these

streams as time series datasets as packets arrive at a node sequentially in time.

Regression analysis is one of the widely used ways to analyze such data. Another very

effective way to analyze time series data is by using 1-Dimensional Convolutional

Neural Networks. We use the power of neural network’s perceptibility and its

generality of algorithms to make intelligent systems which will be able to detect

abnormal patterns from the normal ones.

 84

REFERENCES

[1] Shahid Anwar, Jasni Mohamad Zain, Mohamad Fadli Zolkipli, Zakira Inayat,

Suleman Khan, Bokolo Anthony and Victor Chang, From Intrusion Detection to an

Intrusion Response System: Fundamentals, Requirements, and Future Directions,

Algorithms, 2017

[2] Asmaa Shaker Ashoor and Sharad Gore. Intrusion Detection System (IDS):

Case Study, International Conference on Advanced Materials Engineering, 2011

[3] Zhang, Y.; Lee, W. Intrusion detection in wireless ad-hoc networks. In

Proceedings of the 6th Annual International Conference on Mobile Computing and

Networking, Boston, MA, USA, 6–11 August 2000

[4] IPS vs. IDS, Similar on the Surface Polar Opposites Underneath. 503190-003

10/09 www.getadvanced.net

[5] Scarfone, K.; Mell, P. Guide to Intrusion Detection and Prevention Systems

(IDPS); Report Number: 800-94; NIST Special Publication: Gaithersburg, MD, USA,

2007

[6] Avrim L. Bluma, Pat Langley. Selection of relevant features and examples in

machine learning. Artificial Intelligence December 1997

[7] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B. Khalil,

Deepak Turaga. Learning Feature Engineering for Classification, Proceedings of the

Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

[8] Hofstede, Rick; Čeleda, Pavel; Trammell, Brian; Drago, Idilio; Sadre, Ramin;

Sperotto, Anna; Pras, Aiko (2014). "Flow Monitoring Explained: From Packet

http://www.getadvanced.net/

 85

Capture to Data Analysis with NetFlow and IPFIX". IEEE Communications Surveys

& Tutorials

[9] Sambuddho Chakravarty, Marco V. Barbera, Georgios Portokalidis, Michalis

Polychronakis, Angelos D. Keromytis. On the Effectiveness of Traffic Analysis

Against Anonymity Networks Using Flow Records, 2013

[10] Chandola V.; Banerjee A. und Kumar V. Anomaly Detection: A Survey. ACM

computing survey (CSUR), 2009

[11] Julian Keppel and Sascha Schmalz. Real-time detection of anomalies in

computer networks with methods of machine learning, 2017.

https://www.inovex.de/blog/real-time-detection-of-anomalies-in-computer-networks-

with-methods-of-machine-learning/

[12] H. Zenati, M. Romain, C. Foo, B. Lecouat and V. Chandrasekhar.

"Adversarially Learned Anomaly Detection," 2018 IEEE International Conference on

Data Mining (ICDM), Singapore, 2018

[13] A. Radford, L. Metz, S. Chintala, "Unsupervised representation learning with

deep convolutional generative adversarial networks", International Conference on

Learning Representations Workshop Track, 2016

[14] Mitchell, Tom. M. 1997. Machine Learning. New York: McGraw-Hill

[15] Witten, Ian H., and Eibe Frank. 2000. Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations. San Diego, CA: Morgan

Kaufmann

[16] Cunningham, Padraig & Delany, Sarah. k-nearest neighbor classifiers. Multi

Classification System, 2007

https://www.inovex.de/blog/real-time-detection-of-anomalies-in-computer-networks-with-methods-of-machine-learning/
https://www.inovex.de/blog/real-time-detection-of-anomalies-in-computer-networks-with-methods-of-machine-learning/

 86

[17] Cover TM, Hart PE. “Nearest neighbor pattern classification”. IEEE

Transaction on Information Theory 1967.

[18] Juan Ramos. Using TF-IDF to Determine Word Relevance in Document

Queries, 2003

[19] Berger, A & Lafferty, J. (1999). Information Retrieval as Statistical

Translation. In Proceedings of the 22nd ACM Conference on Research and

Development in Information Retrieval (SIGIRí99)

[20] Salton, G. & Buckley, C. Term-weighing approaches in automatic text

retrieval. In Information Processing & Management, 1988

[21] Stephen Robertson. Understanding Inverse Document Frequency: On

theoretical arguments for IDF. Journal of Documentation, 2014

[22] Lukas Havrlanta and Vladik Kreinovich. A Simple Probabilistic Explanation

of Term Frequency-Inverse Document Frequency Heuristic. International Journal of

General Systems, 2014

[23] Manning, C.D.; Raghavan, P.; Schutze, H. "Scoring, term weighting, and the

vector space model". Introduction to Information Retrieval, 2008

[24] Kenneth G. Paterson , Thomas Ristenpart , and Thomas Shrimpton. Tag Size

Does Matter: Attacks and Proofs for the TLS Record Protocol, 2011

[25] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, January

1999. http://www.ietf.org/rfc/rfc2246.txt

[26] Artūrs Lavrenovs, HTTP Security Headers Analysis of Top One Million

Websites. 10th International Conference on Cyber Conflict, 2018

http://nlp.stanford.edu/IR-book/pdf/06vect.pdf
http://nlp.stanford.edu/IR-book/pdf/06vect.pdf
http://www.ietf.org/rfc/rfc2246.txt

 87

[27] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan,

Elie Bursztein, Michael Bailey, J. Alex Halderman, Vern Paxson. The Security Impact

of HTTPS Interception. NDSS Symposium, 2017

[28] Yichuan Tang. Deep Learning using Linear Support Vector Machines.

International Conference on Machine Learning 2013: Challenges in Representation

Learning Workshop. Atlanta, Georgia, USA

[29] Elnaggar, Ahmed. (2015). Secure Socket Layer. 10.13140/RG.2.1.2671.3044.

[30] K. Limthong and T. Tawsook, "Network traffic anomaly detection using

machine learning approaches," 2012 IEEE Network Operations and Management

Symposium, Maui, HI, 2012

[31] Data streaming algorithms for estimating entropy of network traffic.

.Proceedings of the Joint International Conference on Measurement and Modeling of

Computer Systems, SIGMETRICS/Performance 2006, Saint Malo, France, June 26-

30, 2006

[32] https://quantra.quantinsti.com/glossary/Artificial-Neural-Network

[33] https://www.geeksforgeeks.org/regression-classification-supervised-machine-

learning/

[34] https://www.geeksforgeeks.org/regression-classification-supervised-machine-

learning/

[35] Source: https://www.cisco.com

[36] Halfond, W.G.; Viegas, J.; Orso, A. A classification of SQL-injection attacks

and countermeasures. In Proceedings of the IEEE International Symposium on Secure

Software Engineering, Washington, DC, USA, 13–15 March 2006

https://quantra.quantinsti.com/glossary/Artificial-Neural-Network
https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/
https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/
https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/
https://www.geeksforgeeks.org/regression-classification-supervised-machine-learning/
https://www.cisco.com/

 88

[37] Michael J. De Lucia, Chase Cotton. Importance of Features in Adversarial

Machine Learning for Cyber Security. 2018 Proceedings of the Conference on

Information Systems Applied Research, Norfolk, Virginia

[38] J. Muehlstein et al., "Analyzing HTTPS encrypted traffic to identify user's

operating system, browser and application," 2017 14th IEEE Annual Consumer

Communications & Networking Conference (CCNC), Las Vegas, NV, 2017, pp. 1-6

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	Chapter 1
	1.1 Cybersecurity
	1.2 Machine Learning

	Chapter 2
	Chapter 3
	3.1 Network Traffic Focus
	3.2 IPv4 Packet
	3.3 Feature Identification
	3.4 Tools Used
	3.4.1 Wireshark
	3.4.2 Zeek
	3.4.2.1 stats.log
	3.4.2.2 conn.log
	3.4.2.3 weird.log
	3.4.2.4 signature.log
	3.4.2.5 stderr.log
	3.4.2.6 ssh.log

	3.5 Expansive Feature Taxonomy
	3.5.1 Packet field
	3.5.1.1 Frame
	3.5.1.2 IPv4
	3.5.1.3 Protocol
	3.5.1.3.1 UDP
	3.5.1.3.2 SMB
	3.5.1.3.3 TCP
	3.5.1.3.4 SSL
	3.5.1.3.5 DNS
	3.5.1.3.6 ICMP/ICMPv6
	3.5.1.3.7 ARP
	3.5.1.3.8 SSH
	3.5.1.3.9 HTTP:
	3.5.1.3.10 Bootp
	3.5.1.3.11 IGMP
	3.5.1.3.12 NBNS
	3.5.1.3.13 SSDP
	3.5.1.3.14 DCE/RPC

	3.5.2 Traffic Volume
	3.5.2.1 Group by Type
	3.5.2.1.1 Directionality
	3.5.2.1.2 Channels
	3.5.2.1.3 Conversation or flow
	3.5.2.1.4 Protocols

	3.5.2.2 Group by Time
	3.5.2.2.1 Hourly/Daily window
	3.5.2.2.2 Peak hour window
	3.5.2.2.3 No activity windows
	3.5.2.2.4 Occasional activity window

	3.5.2.3 Statistical Features
	3.5.2.3.1 No statistics
	3.5.2.3.2 Traditional statistics

	3.5.2.4 Packet Volume
	3.5.2.4.1 Packets per second
	3.5.2.4.2 Max no. of packets
	3.5.2.4.3 Average packets per second
	3.5.2.4.4 Packet Histogram

	3.5.2.5 Data volume
	3.5.2.5.1 Bytes per second
	3.5.2.5.2 Average packet size
	3.5.2.5.3 Bytes histogram

	3.5.3 Protocol state
	3.5.3.1 TCP graceful close
	3.5.3.2 Delayed DNS
	3.5.3.3 ARP request: lots of ARP request and few replies
	3.5.3.4 Failure nodes in Zeek.

	3.5.4 Temporal
	3.5.4.1 Time-based features
	3.5.4.1.1 Group by Type
	3.5.4.1.2 Group by Time
	3.5.4.1.3 Statistical Operations

	3.5.4.2 Time-series features

	3.5.5 Traffic flow
	3.5.5.1 Group by Time
	3.5.5.1.1 Hourly/Daily window
	3.5.5.1.2 Peak hour window
	3.5.5.1.3 No activity windows
	3.5.5.1.4 Occasional activity window

	3.5.5.2 Group by Session
	3.5.5.2.1 Frequency of protocols used
	3.5.5.2.2 Average number of bytes exchanged
	3.5.5.2.3 Average lengths of exchanges
	3.5.5.2.4 Average duration of a connection
	3.5.5.2.5 Average number of ports used

	3.5.6 Computed Features
	3.5.6.1 n-grams
	3.5.6.2 Entropy of compressed payload

	3.5.7 Other

	Chapter 4
	4.1 Learning
	4.1.1 Supervised Learning
	4.1.2 Unsupervised Learning
	4.1.3 Reinforcement Learning
	4.1.4 Semi-supervised Learning

	4.2 Supervised Learning Models
	4.2.1 Regression models
	4.2.2 Classification Models
	4.2.3 Support Vector Machines
	4.2.4 Artificial Neural networks

	4.3 Stages of Machine Learning Problem Solving Process
	4.3.1 Identify the problem
	4.3.2 Data Gathering
	4.3.3 Data Preprocessing
	4.3.4 Feature Engineering
	4.3.4.1 Feature selection
	4.3.4.2 Feature Creation
	4.3.4.3 Feature Compliance

	4.3.5 Defining the model
	4.3.6 Training the model
	4.3.7 Testing the model
	4.3.8 Tuning the parameters
	4.3.9 Prediction

	4.4 Time series data
	4.5 Why perform time series analysis
	4.6 Time series modeling

	Chapter 5

