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ABSTRACT 

Even though Artificial Intelligence is still a black box to a lot of people, both 

experts and non-experts alike, it has become an important tool in current and future 

technology. Every day, we trust Artificial Intelligence (AI) with our lives, from 

driving cars to using medical devices. One such important part of life is the Internet 

which is basically a worldwide exchange of data packets at a very high rate. Security 

is an integral part of this exchange which encourages enterprises to use Intrusion 

Detection Systems (IDS)[1,2,3] and Intrusion Prevention Systems (IPS)[4,5] to detect 

and prevent anomalous activities. As much as we want to use AI to ease our task of 

anomaly detection, we want to win the trade-off between the true positives, true 

negatives and false positives, false negatives and ultimately achieve true AI. 

Amongst various applications of AI, machine learning (ML) is the most 

famous. Conceptually, ML is discipline of discovering probabilistic models which use 

algorithms to learn new things from data like patterns, behaviors, and decision-making 

capabilities, etc. The higher the accuracy of a model, the better these patterns are 

learned. These models are developed by training with a large set of data and testing 

their accuracy on a test dataset. Therefore, we can safely say that the driving engine 

behind ML is data. If we want ML to make decisions like a human brain, we need to 

train it on the best possible version of the data we have. 

Trusting a probabilistic mechanism to make the right decision might be 

mathematically acceptable but that is not the case in a dynamic environment like a 

network where multiple devices like computers, routers, switches and servers, etc. are 



 xii 

communicating and thousands of packets are exchanged every minute and passing 

through multiple devices. The volume of data seen or collected at a node in a network 

is enormous, even in a short span of time. 

Our goal in this thesis is to collect a dataset of different types of packets that 

arrive at a node, for long durations of time, in order to facilitate the identification of 

unusual traffic which might indicate a system error or a possible attack. All the data in 

a packet does not contribute to identification of the anomaly so we don’t use the raw 

data downloaded directly into a machine learning model. We study the data collected 

and filter it in a way that useful information is retained, and noise and repetitive data is 

removed. We also can perform feature engineering[6,7] on the traffic. We compute 

several derived characteristics of the data by performing several statistical 

computations like mean and variance on the numeric data and quantitative flow 

records[8,9] to find derived characteristics which might play an important role in 

spotting specific behaviors. As a result, we are able to develop an extensive taxonomy 

of packet data which may be useful in our goal of detecting anomalies. 

This taxonomy is a collection of information both taken directly from the 

packet files as well as derived from the information collected. It defines a tree-like 

structure which represents all the features of a packet as well as the traffic flow. The 

branches of the tree are the categories and subcategories and the leaves of the tree 

represent the final features which can be directly used as estimators of a machine 

learning model. 
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Chapter 1 

INTRODUCTION 

1.1 Cybersecurity 

IoT sensors networks are exponentially expanding. Millions of gigabytes of 

data travel through them every day in the form of data packets. Amongst a lot of 

things, these sensors include data exchanges from government and other organizations 

like defense bodies, space research institutes, online money transfer, data from 

healthcare organizations like Electronic Health Records (EHR) and medical devices 

like pacemakers, etc. These data packets carry highly sensitive and confidential 

information which makes it critical to protect these devices from adversary attacks by 

hackers and terrorist organizations. If delivered into wrong hands, they can have a 

direct impact on human life. The sensitive nature of these exchanges forces us to 

administer the highest level of security measures to detect and prevent anomalous 

activities. The practice of protecting data from malicious attacks is called Computer 

and Network Security or Cybersecurity. 

As the attacks surface is increasing, panic around cybersecurity is also high. To 

help private sectors deal with malicious activities, the government of the United States 

has provided several guidelines to approach cybersecurity. The National Institute of 

Standards and Technology or NIST cybersecurity framework designed in 2014 is one 

of the most approachable and easy to implement guide. It classifies cybersecurity 

practices into five phases namely, Identify, Protect, Detect, Respond, and Recover. 

The below figure from NIST.gov depicts these functions. 
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Figure 1.1 NIST Cybersecurity Framework 

During the “Identify” phase, a clear understanding is developed by an 

organization by identifying all its IoT and other computer and network assets, the data 

held by these assets, the processes and procedures followed in the organization for 

communication between devices, and the capabilities as well as the limitation of the 

organization with respect to its assets. This will help in setting a clear picture of the 

organization, specifically portraying needed areas of improvement. The second phase 

recognized by the NIST framework is “Protect” where an organization needs to ensure 

that it delivers its services by developing information security schemes and 

implementing them to safeguard their data and maintain availability. The next phase is 

called “Detect”. Detection of malicious activity should be done quickly, and its 

implications must be understood. The “Respond” phase follows detection where in 

case of a cybersecurity event like breach, an organization should be ready with 

appropriate plans and resources to provide first response, mitigate the effects of the 

attack and stop the attack, if possible. The organization should perform root cause 

analysis on the attacked assets to find the source of the attack. The final phase of the 

framework is called recover in which an organization learns from the cyberattacks and 

frames security policies and implements protocols to make their systems more resilient 
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to future similar attacks and breaches. It also tries to restore the damaged assets and 

lost data from backup.  

It is a widely accepted fact that the breaches are inevitable, therefore detection 

and understanding of a cybersecurity event is the key to resolution and loss 

prevention. History shows that the protect phase can never be 100% effective, 

therefore, it is undeniable that we must focus on the “detect” phase of the NIST 

cybersecurity framework as our final defense. As the name suggest, we will try to 

detect a cybersecurity event and gather information about it in this phase. The process 

of detection should answer the following questions: 

a. Which cybersecurity event was carried out? The answer that we look for here is 

which attack was carried out on the organization. This will also help us realize 

the hidden ultimate motives of the attacker. We can study similar cyberattacks 

in the history and find the best possible way for save ourselves from it.  

b. What information has been compromised in the attack? This is the area where a 

cyberattack hits the most. The motivation behind the majority of cyberattacks is 

to hack sensitive data. Therefore, it is important to know how much data has 

been stolen or even changed as we don’t want the latter to compromise the 

integrity of our databases. This will help us to make decisions if we can save 

some data and if we have backup. 

c. When the cyber-attack happened. The timing of the cyberattack is also an 

important information. We want to know if the attackers had been in the system 

for months or years or a few days. Increasingly the attacked organization is 

informed of the breach by another organization. 
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d. How the attack happened? It is critical to know how the attack was carried out. 

With the help of all the information mentioned above, we must find the cause of 

the breach. The breach could be a result of flaws in the application, network or 

hardware. If the breach was due to errors in application, we need to change the 

code and if it is in the network, we need to find the protocol or service where 

the leak happened. If the breach came from hardware, we might have to replace 

our current hardware and buy new. Some breaches are a combination of all; 

application, hardware and network. 

e. What are the impacts of the attack? Answer to this question will help us in 

reconciliation. It will indicate to us how to restore damaged assets. It will also 

help us get prepared for future. It will point out the gaps in the cybersecurity 

plan of the enterprise and may illustrate gaps that had not been seen before. 

After all these questions are properly answered and accurately recorded, it is 

the duty of the information security team of the organization to perform root cause 

analysis and investigate to help the organization prevent any malicious activity in the 

future. It is also their responsibility to inform the clients. 

1.2 Machine Learning 

Whenever a cybersecurity event is encountered, we investigate the network 

traffic that arrived at the device to find where the attack came from, what steps it took, 

and which service was responsible for the breach. In addition to that, we would also 

want to collectively analyze the behavior of the flow of data packets and the device’s 

reaction over time. Every single data packet contains an enormous amount of 

information from which we can find evidence which contributed to the breach in 

security. Collective study of all the dimensions of this information including the flows 
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can be scary as it is scattered around in millions of packets. Even after this manual 

labor, there is still chance of a miss finding the attack or issue. One fairly new, 

innovative and reliable way to find anomalies in traffic is by using artificial 

intelligence. 

AI is a technology which encourages computers to act like a human brain. The 

human capabilities which AI can display are playing a strategic game, implementing a 

decision system like the trolley dilemma, understanding different languages, deducing 

signals/information from noisy data and remembering behaviors, etc. The ultimate 

goal of AI is to achieve wisdom. To enable a computer to portray human like 

intelligence, we implement the AI technology into applications like machine learning. 

Given the amount of work done in the field of machine learning, the proportion 

of people having a clear understanding of it is very low. Machine learning is like a 

black box to a many people. It is a secret sauce which takes in numbers and gives 

hopefully accurate results. It is a sauce but it’s not secret. A lot of implementations of 

AI require very specific coding to perform computations explicitly for an application, 

for example robotic arms or industrial robots found in warehouses. Machine learning 

is an idea which states that we don’t need a lot of custom coding for an algorithm to 

learn interesting facts about our data, instead we can just provide a lot of data and the 

algorithm recognizes patterns and displays facts. In most cases, it gives accurate 

results which is the ultimately the goal. By using machine learning, we can solve 

problems like true or false classification, image recognition, value prediction like 

stock prices and customer churn data, future cost of houses, etc. Other applications are 

clustering unknown data into groups with similar behavior, audio analysis, text 
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generation and reinforcement learning. More complex applications of machine 

learning are generative adversarial networks, deep learning models, etc. 

As mentioned above, we can use a generic algorithm, just feed it a large 

amount of data and our machine learning model is ready to use. So, it is fair to say that 

dataset plays a decisive role in a machine learning model to reach semantically correct 

decisions with the help of these algorithms. Machine learning will only work if the 

dataset we have matches the needs of the problems that it should solve. It means that 

the dataset should be a true representative of the task a model is supposed to do. We 

can measure the quality of the dataset by the features present in it. These features are 

fine identifiers of anomalous and non-anomalous situation. Later, when the model is 

trained to predict classes, these will be computed into the estimators of the model.  
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Chapter 2 

RELATED WORK 

A variety of research work has been conducted in this field of anomaly 

detection in a network using machine learning[10,11]. Some researches use features to 

combat adversarial machine learning[12,13] while other use features to create anomaly 

detection models. But there has been limited work on actually identifying a 

comprehensive set of features to help AI reach accurate solutions. 

Limthong[30] has shown how machine learning approaches can be used to 

detect anomaly by experimenting on a dataset with malicious data in them collected 

over a period of around 8 weeks. Their dataset contained back, ipsweep, neptune, 

portsweep and smurf attacks with a maximum anomaly detection percentage of 1.25, 

5.3, 7.38, 1.19, and 2.22 respectively. The features used were number of packets, sum 

of packet size, number of flows, number of source addresses, number of destination 

addresses, number of source ports, number of destination ports, difference between 

source and destination addresses, and difference between source and destination ports. 

Several machine learning algorithms were used like Naïve Bayes algorithm[14,15] and 

K-nearest neighbor[16,17]. Although, the accuracy was good, but the features taken 

into consideration were limited. 

De Lucia[37] discusses the importance of features in adversarial learning in the 

context of cybersecurity. The study of features was divided into network packet 

features and network flow/traffic features. A need of derived features was also 

expressed to be computed using statistical methods. Data mining approach like 
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TF/IDF[18,19,20,21,22,23] was used to study the frequency of TLS record 

sizes[24,25] in a conversation. This study presents good discussion and direction to 

capture complete set of features for machine learning. 

Muehlstein[38] performed classification of HTTP[26] encrypted traffic 

(HTTPS[27]) using machine learning classifiers to identify user’s operating system, 

browser and application by exploiting passive attack techniques such as sniffing on 

traffic. Their dataset contains around 2000 labeled online sessions, with Ubuntu, 

Windows, Linux and OSX operating systems. The users browsed using common 

applications like Internet Explorer, Safari, Chrome and Firefox. The sites that were 

used for classification were Facebook, twitter and YouTube. All the traffic that passed 

through port 443 (for SSL) through was collected. They used support vector machines 

(SVMs)[28] to perform classification and achieved more than 90% accuracy in all 

cases. Some base features included number/mean of forward/backward packets, mean 

packet size/bytes, etc. Some new features were proposed like TCP initial window size, 

SSL[29] information, peak throughputs, peak interval time differences, the number of 

keep alive packets. The features collected were meaningful to this experiment but are 

not able to represent the collective nature of a packet and network flow. 



 9 

Chapter 3 

FEATURES OF TRAFFIC DATA 

3.1 Network Traffic Focus 

An anomaly in a network traffic is a disruption of the intended behavior of a 

service. This disruption can act as a loophole to be exploited by cyber attackers and 

the whole system can be compromised. Despite efforts made to secure all 

communication channels and devices, mischievous actors find a way to harm the 

system. The primary contribution of my thesis is to identify characteristics of network 

traffic that help us differentiate between anomalous behavior from normal. 

3.2 IPv4 Packet 

Data is sent from source to destination by dividing them into small units of 

packets (i.e. datagrams). The majority of traffic on modern networks is carried in IPv4 

datagrams with sizes ranging from 20 to 65,535 bytes though realistic packet sizes are 

usually limited by the maximum packet size carried by the underlying network (e.g. 

Ethernet). An IPv4 packet is divided into header and payload. The payload, as the 

name suggests, contains the message that needs to be delivered at the destination. The 

header, the most important part of a packet contains 14 fields and occupies 20 bytes of 

data which can be extended, if needed. It contains all the information that is required 

by a packet to reach its destination node. The figure below from Cisco[35] depicts the 

fields in the packet header and their distribution across the header. 
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Figure 3.1 IPv4 Packet 

3.3 Feature Identification 

There have been several discussions of network features that can be used as 

training data in machine learning. Prior use restricted these features to very limited set  

of data has been selected from the traffic to differentiate behaviors like source, 

destination and ports. Although, the results of such studies have been precise, 

unfortunately there is a chance of overfitting as the decision of declaring a packet that 

contains an anomaly seems to be incomplete with such limited data. 

In order to reach meaningful results, we need to identify all the features that 

might play a role in disrupting a packet or traffic overall. To achieve this, we need to 

look beyond just header values. We need to consider the traffic movements and header 

values at those instances. As tedious as this task sounds, it is necessary that we use it 

to achieve true AI. 
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3.4 Tools Used 

The tools that we used to achieve all measurement of traffic are 

Wireshark/tshark and Zeek (previously known as Bro). 

3.4.1 Wireshark 

Wireshark is a GUI tool used to sniff traffic over an Internet connection. It has 

a companion command-line tool is called tshark. We use Wireshark to watch all the 

traffic passing through the node. We can even download the packets seen by 

Wireshark into a file. The files which hold the packets are called pcap (or pcapng) 

format files. The tshark tool is a command-line version of Wireshark. By using tshark 

on any operating system, we can download all the packet information into a pcap file. 

We can filter out this file to remove unnecessary and repetitive information and use 

the results as a training dataset. 

 

 

Figure 3.2 Wireshark GUI 
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3.4.2 Zeek 

Zeek (aka Bro) is a network analysis framework which is used as an Intrusion 

Detection System (IDS). Zeek is an open source architecture which is driven by 

cybersecurity events and handles security exceptions to stop malicious activity. It 

monitors traffic over the whole network from a central or multiple point and stores its 

results in multiple log files at the host. These files can be examined to examine and 

find a variety of information from logging of connections to signature mismatches, 

and other exceptions. These files are logged on an hourly basis. This information can 

be useful to detect behaviors over a network at different instances of time. Changes in 

the normal behavior can be identified as an anomaly.  Some types of files produced by 

Zeek are: 

3.4.2.1 stats.log 

Zeek records all the connections This file contains the obvious statistics related 

the connections of the node. This file contains 

3.4.2.2 conn.log 

This file logs all the connection information that the node has seen on the 

network. The connection.log is created on an hourly basis. All the connection from the 

previous hour are recorded here. It contains the IP, TCP, UDP and ICMP connections. 

Some of the fields found in this log are: source and destination IP addresses and ports, 

duration of the connections, protocols used, number of RESP packets, and GeoIP 

country codes of the packets. 
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3.4.2.3 weird.log 

The weird.log shows the records the events which are not understood by 

Zeek’s protocol analyzers. This information which contains some valid and/or invalid 

protocols or unexpected events which Zeek is not able parse are placed into this file. 

3.4.2.4 signature.log 

The signature.log file contains all the signature matches from the signature 

framework. 

3.4.2.5 stderr.log 

The standard errors found in the packets when Zeek is started are logged into 

this file. 

3.4.2.6 ssh.log 

This file contains information about the SSH handshakes that took place over 

the network. It has the following fields: ID record of source, destination and ports; 

status of the login attempt, client and server responses. 

3.5 Expansive Feature Taxonomy 

Our goal here is to study all the characteristics of a system. To score good 

analysis results, we need to find all the dependencies and internal and external 

environments that influence a system. In this development of an expansive taxonomy, 

we will classify our data based on the source where it came from and what it signifies. 

We have achieved this by developing a taxonomy tree whose sub-roots are the main 

categories into which the features have been divided. The features at the leaves of this 

tree can be used into a machine learning model as estimators of the model. 

We have divided the network traffic into the following categories: 
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a. Packet field: These features are directly obtained from the packets. They 

provide information about the packet and the source and destination of the 

packets. 

b. Traffic volume: Volume based features represent the quantitative 

measurements of the size (e.g. packet length, average packet length, etc.) in a of 

different groupings (sets) of packets, e.g. a flow, in the channel, etc..  

c. Protocol state: State based features represent behavior of the packet. 

d. Time series: Time based features depict the time dependent characteristics 

of the packets. 

e. Traffic flow: Characteristics of the data stream are included in this category. 

f. Computed features: Computed features are not directly observed from the 

packet stream. They are calculated from the recorded from the packet/stream to 

determine their behavior and recognize any patterns. 

g. Other: All other miscellaneous information gathered from either packet or 

stream which does not fit in the above categories is included here. 

 

 

Figure 3.3 Feature Taxonomy 

3.5.1 Packet field 

These features are directly collected from the defined fields found in any 

standard communications devices for protocols defined at any layer of the 

communications stack. Both header fields as well as data fields are included in our 
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definition. This set of define fields form an almost unlimited set of features to use in 

traffic classification, clustering, anomaly detection, and any other potential use of 

statistical or neural machine learning system. The header fields will largely indicate 

the state activity in the protocol and the data fields may help understand the content of 

the data being transferred by the protocol. 

 

 

Figure 3.4 Packet Field Branch 

Observation of these features is the easiest way of detecting anomaly. We have 

used Wireshark to define the features for this category as the Wireshark community 

has invested a significant amount of time defining the fields of commonly seen 

network traffic.  

A lot of important information is retrieved from this field therefore, we try to 

retain maximum information in this category, except for a few redundant and trivial 

fields. The packet field-based features are further classified into three categories 

named after the section of the header they come from: 

3.5.1.1 Frame 

The frame section of the protocol contains the summary of the packet. It is a 

collection of metadata about the packet. Therefore, we observe important 

characteristics about the packet from this section. The notation of frame in Wireshark 

is “frame”. We are going to directly use this notation to describe our features.  
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Figure 3.5 Frames features 

The features that are important to be noted are: 

a. Frame number: It is a record of the sequence in which the frame was downloaded 

in the file. It is vital that the frame numbers remain in sequence. A missing frame 

might be a potential sign of malicious activity. 

b. Frame length: Length of the frame as seen on the wire. It is recorded in bytes 

c. Capture length: Length of the frame captured in the file. It is recorded in bytes. 

d. Capture ratio: It is imperative that all the packets seen on the wire be captured in 

Wireshark for analysis. This means that the ideal value of ratio of capture length 

over frame length should be 1. If any other value is observed, it should be 

reported. 

Let’s see how these features look like in Wireshark. 
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Figure 3.6 Wireshark packet frame 

e. Interface id: ID of the interface on which the packet was seen. Interface is the 

network connection on which the data exchange happens physically. It is being 

used to capture the packets. It can be used for either wired or wireless 

connections. Examples of interfaces are en0, en1, lo1 (loopback interface), and 

fw0 (firewall interface IP), vmnet0 (for virtual machines installed), eth0 (non 

OSX devices), etc. 

The table below is a useful explanation of the nature of the features captured in this 

section following the Wireshark notation. 

 

Taxonomy Notation Type Size 

Frame number frame.number Unsigned Integer 4 bytes 

Frame length frame.pckt_len Unsigned Integer 4 bytes 
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Capture length frame.cap_len Unsigned Integer 4 bytes 

Interface id frame.interface_id Unsigned Integer 4 bytes 

Table 3.1 Feature taxonomy of a frame 

3.5.1.2 IPv4 

All the features which come from the IPv4 header of the packet are recorded in 

this section. The basic and the most important information among all the field-based 

features come from this section. Features like protocol, source, destination, TTL, etc. 

are observed in this field and a lot of direct anomalies can be deduced from these set 

of fields. The field name notation for IPv4 section in Wireshark is “ip”. Therefore, the 

notations for fields inside this section start with “ip”. 

 

 

Figure 3.7 IPv4 features 

Fields in the above figure shape an IP packet and are defined below: 

a. Protocol type: The protocol used in this conversation to exchange information is 

recorded in the protocol type field. Protocols like TCP, UDP, ICMP can be 

found in this field. 

b. Header length: This is the length of the IPv4 header. 

c. Source IP address: This field contains the IP address of the source machine. 

d. Destination IP address: This field contains the IP address of the destination 

machine. 
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Figure 3.8 IPv4 packet 

e. TTL: Time-to-live is a very important feature of a packet. It is the maximum 

time an IP packet has to reach its destination hopping from one network device 

to another. Once a packet has reached TTL, it is discarded on the hop it has 

arrived on, assuming it to be lost. Every time a packet hops to a new device in 

the network, TTL is reduced by a few units equal to or more than 1. 

f. Header checksum status: This field is a description of whether the checksum of 

the header is verified or not. 

g. Total length: It shows the length of the IP header. We can extend this length if 

need. 

 

Feature name Taxonomy Type Size 

Protocol type ip.proto Unsigned Integer 1 byte 
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Header length ip.hdr_len Unsigned Integer 1 byte 

Source IP address ip.src IPv4 address - 

Destination IP 

address 

ip.dst IPv4 address - 

TTL ip.ttl Unsigned Integer 1 byte 

Header checksum 

status 

ip.checksum.status Unsigned Integer 1 byte 

Total length ip.len Unsigned Integer 2 bytes 

Table 3.2 Feature taxonomy of an IPv4 packet 

3.5.1.3 Protocol 

This section of the packet field-based features contains the protocol that is used to 

exchange information between the source and destination using the packets. This can 

be TCP, UDP, SMB etc. For notation in this section, we have recorded the most 

important fields critical to anomaly detection in any protocol are: 

 

 

Figure 3.9 Basic protocol features 

a. Source port: The port number of the sender’s device from where the information 

is sent on the wire. 

b. Destination port: The port number of the destination’s 

c. Length: This is the length of the protocol header. 
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Feature name Taxonomy Type Size 

Source port protocol.srcport Unsigned Integer 2 bytes 

Destination port protocol.dstport Unsigned Integer 2 bytes 

Length protocol.length Unsigned Integer 2 bytes 

Table 3.3 Feature taxonomy of a packet 

Protocols can be of different types in this context. Some of the common protocols 

found in this section are: 

3.5.1.3.1 UDP 

User Datagram Protocol(UDP) sends data in an insecure way. It’s not the job 

of UDP to make sure that data arrived at the destination which makes it easier to 

attack. 

Feature name Taxonomy Type Size 

Source port udp.srcport Unsigned 

Integer 

2 bytes 

Destination port udp.dstport Unsigned 

Integer 

2 bytes 

Length udp.length Unsigned 

Integer 

2 bytes 

Time since previous frame udp.time_delta Time offset - 

Time since first frame udp.time_relative Time offset - 

udp.time_delta/udp.time_relative - Unsigned 

Integer 

- 

Table 3.4 Feature taxonomy of a UDP packet 
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udp.time_delta/udp.time_relative: Another famous attack displayed in the UDP 

protocol is DoS flood attack. To detect the attack, we take the ratio of the time features 

in the above table. udp.time_delta gives the time from the previous frame and 

udp.time_relative gives the time from the first frame. The ratio will give the speed at 

which the packets are arriving at the node. If the rate is very high, it can be an 

indicator of UDP Dos attack. 

 

 

Figure 3.10 UDP features 

3.5.1.3.2 SMB 

Feature name Taxonomy Type Size 

Server Component smb.server_component Unsigned Integer 4 bytes 

SMB Command smb.cmd Unsigned Integer 1 byte 

NT Status smb.nt_status Unsigned Integer 4 bytes 
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Flags2 smb.flags2 Unsigned Integer 2 bytes 

Security Mode smb.sm Unsigned Integer 2 bytes 

Word Count (WCT) smb.wct Unsigned Integer 1 byte 

Byte Count (BCC) smb.bcc Unsigned Integer 2 bytes 

Table 3.5 Feature taxonomy of a SMB protocol 

 

Figure 3.11 SMB features 

3.5.1.3.3 TCP 

 

Feature name Taxonomy Type Size 

Source port tcp.srcport Unsigned Integer 2 bytes 

Destination port tcp.dstport Unsigned Integer 2 bytes 

Header Length tcp.hdr_len Unsigned Integer 1 byte 
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TCP Segment Len tcp.len Unsigned Integer 4 bytes 

Checksum Status tcp.checksum.status Unsigned Integer 1 byte 

MSS Value tcp.options.mss_val Unsigned Integer 2 bytes 

Time since previous frame tcp.time_delta Time offset - 

Time since first frame tcp.time_relative Time offset - 

Calculated window size tcp.window_size  Unsigned Integer 4 bytes 

Window size value tcp.window_size_value Unsigned Integer 2 bytes 

ACKed segment that 

wasn't captured  

tcp.analysis.ack_lost_seg

ment 

Label - 

ACK to a TCP keep-alive 

segment 

tcp.analysis.keep_alive_

ack 

Label - 

Table 3.6 Feature taxonomy of TCP protocol 
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Figure 3.12 TCP features 

3.5.1.3.4 SSL 

SSL or Secure Socket Layer is used to encrypt the messages using some 

common encryption techniques like Elliptical Curve Cryptography.  

 

Feature name Taxonomy Type Size 

Handshake Protocol ssl.handshake Label - 

Alert Message ssl.alert_message Label  - 

Content Type ssl.record.content_type Unsigned 

Integer 

1 byte 

Length ssl.record.length Unsigned 

Integer 

2 bytes 

Session ID Length ssl.handshake.session_id_length Unsigned 2 bytes 
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Integer 

Cipher Suites Length ssl.handshake.cipher_suites_length Unsigned 

Integer 

2 bytes 

Compression 

Methods 

ssl.handshake.comp_method Unsigned 

Integer 

1 byte 

Public key length ssl.handshake.server_point_len Unsigned 

Integer 

1 byte 

Table 3.7 Feature taxonomy of SSL protocol 

 

 

Figure 3.13 SSL features 

3.5.1.3.5 DNS 

DNS stands for Domain Name Server. This protocol hunts for IP addresses for 

the given domain names when using a web page. DNS protocol has request and 
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response queries where a node sends a DNS request to the root domain servers and 

response contains the IP address of the webserver. 

 

Feature name Taxonomy Type Size 

Transaction ID dns.id Unsigned Integer 2 bytes 

Questions dns.count.queries Unsigned Integer 2 bytes 

Answer RRs dns.count.answers Unsigned Integer 2 bytes 

Authority RRs dns.count.auth_rr Unsigned Integer 2 bytes 

Name length dns.qry.name.len Unsigned Integer 2 bytes 

Name dns.qry.name Character string - 

Label Count dns.count.labels Unsigned Integer 2 bytes 

Type dns.qry.type Unsigned Integer 2 bytes 

Class dns.qry.class Unsigned Integer 2 bytes 

Time dns.time Time Offset - 

Answer authenticated dns.flags.authenticated Boolean - 

Type dns.resp.type Unsigned Integer 2 bytes 

Class dns.resp.class Unsigned Integer 2 bytes 

Time to live dns.resp.ttl Signed Integer 4 bytes 

Data length dns.resp.len Unsigned Integer 4 bytes 

Primary name server dns.soa.mname Character string - 

Refresh Interval dns.soa.refresh_interval Unsigned Integer 4 bytes 

Retry Interval dns.soa.retry_interval Unsigned Integer 4 bytes 

Expire limit dns.soa.expire_limit Unsigned Integer 4 bytes 
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Minimum TTL dns.soa.mininum_ttl Unsigned Integer 4 bytes 

Table 3.8 Feature taxonomy of DNS protocol 

 

 

Figure 3.14 DNS request features 
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Figure 3.15 DNS response features 

3.5.1.3.6 ICMP/ICMPv6 

Feature name Taxonomy Type Size 

Type icmp(v6).type Unsigned 

Integer 

1 byte 

Code icmp(v6).code Unsigned 

Integer 

1 byte 

Checksum icmp(v6).checksum Unsigned 

Integer 

2 bytes 

Checksum Status icmp(v6).checksum.status Unsigned 

Integer 

1 byte 

 
ICMPv6 

  

Number of Multicast 

Address Records 

icmpv6.mldr.nb_mcast_records Unsigned 

Integer 

2 bytes 
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Record Type icmpv6.mldr.mar.record_type Unsigned 

Integer 

1 byte 

Aux Data Length icmpv6.mldr.mar.aux_data_len Unsigned 

Integer 

1 byte 

Number of sources icmpv6.mldr.mar.nb_sources Unsigned 

Integer 

2 bytes 

Table 3.9 Feature taxonomy of ICMP protocol 

 

 

Figure 3.16 ICMP request features 
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Figure 3.17 ICMP response features 

3.5.1.3.7 ARP 

Feature name Taxonomy Type Size 

Hardware Type arp.hw.type Unsigned Integer 2 bytes 

Protocol Type arp.proto.type Unsigned Integer 2 bytes 

Hardware Size arp.hw.size Unsigned Integer 1 byte 

Opcode arp.opcode Unsigned Integer 2 bytes 

Sender IP address arp.src.proto_ipv4 IPv4 address - 

Target IP address arp.dst.proto_ipv4 IPv4 address - 

Is gratuitous arp.isgratuitous Boolean - 

Table 3.10 Feature taxonomy of ARP protocol 
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Table 3.10 Feature taxonomy of ARP protocol 

 

 

Figure 3.18 ARP request features 
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Figure 3.19 ARP reply features 

 

3.5.1.3.8 SSH 

Feature name Taxonomy Type Size 

Packet Length ssh.packet_length Unsigned 

Integer 

4 bytes 

Padding Length ssh.padding_length  Unsigned 

Integer 

1 byte 

Message Code ssh.message_code Unsigned 

Integer 

1 byte 

Kex Algorithm Length ssh.kex_algorithms_length Unsigned 

Integer 

4 bytes 

Kex_algorithms string ssh.kex_algorithms Character 

String 

- 
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First KEX Packet 

Follows 

ssh.first_kex_packet_follows Unsigned 

Integer 

1 byte 

Server_host_key_algorit

hms length 

ssh.server_host_key_algorithms_le

ngth 

Unsigned 

Integer 

4 bytes 

Server_host_key_algorit

hms string 

ssh.server_host_key_algorithms Character 

String 

- 

Mac_algorithms_client_t

o_server length 

ssh.mac_algorithms_client_to_serv

er_length  

Unsigned 

Integer 

4 bytes 

Mac_algorithms_client_t

o_server string 

ssh.mac_algorithms_client_to_serv

er 

Character 

String 

- 

Compression_algorithms

_client_to_server length 

ssh.compression_algorithms_client

_to_server_length 

Unsigned 

Integer 

4 bytes 

Compression_algorithms

_server_to_client string 

ssh.compression_algorithms_serve

r_to_client 

Character 

String 

- 

SSH Protocol ssh.protocol Character 

String 

- 

Table 3.11 Feature taxonomy of SSH protocol 
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Figure 3.20 SSL features 

3.5.1.3.9 HTTP: 

Feature name Taxonomy Type Size 

Connection http.connection Character String - 

Accept Encoding http.accept_encoding Character String - 

Request Method http.request.method  Character String - 

Request URI http.request.uri Character String - 

Status Code http.response.code Unsigned Integer 2 bytes 

Status Code Description http.response.code.desc Character String - 

Content-Type http.content_type Character String - 
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Server http.server Character String - 

Time since request http.time Time offset - 

Table 3.12 Feature taxonomy of HTTP protocol 

 

 

Figure 3.21 HTTP features 

3.5.1.3.10 Bootp 

Feature name Taxonomy Type Size 

Message Type bootp.type Unsigned Integer 1 byte 

Hardware Type bootp.hw.type Unsigned Integer 1 byte 

Hardware 

address length 

bootp.hw.len Unsigned Integer 1 byte 

Hops bootp.hops Unsigned Integer 1 byte 
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Transaction ID bootp.id Unsigned Integer 1 byte 

Seconds 

Elapsed 

bootp.secs Unsigned Integer 2 

bytes 

Bootp Flags bootp.flags Unsigned Integer 2 

bytes 

Client IP 

Address 

bootp.ip.client IPv4 address - 

Your (client) IP 

address 

bootp.ip.your IPv4 address - 

Private/Proxy 

autodiscovery 

bootp.option.private_proxy_auto

discovery 

Character String - 

Relay agent IP 

address 

bootp.ip.relay IPv4 address - 

DHCP bootp.option.dhcp Unsigned Integer 1 byte 

Table 3.13 Feature taxonomy of BOOTP protocol 

3.5.1.3.11 IGMP 

 

Feature name Taxonomy Type Size 

IGMP Version igmp.version Unsigned Integer 1 byte 

Type igmp.type Unsigned Integer 1 byte 

Checksum Status igmp.checksum.status Unsigned Integer 1 byte 

Num Group Records igmp.num_grp_recs Unsigned Integer 2 bytes 

Record Type igmp.record_type Unsigned Integer 1 byte 

Aux Data Len igmp.aux_data_len Unsigned Integer 1 byte 

Num Src igmp.num_src Unsigned Integer 2 bytes 

Table 3.14 Feature taxonomy of IGMP protocol 
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Figure 3.22 IGMP features 

3.5.1.3.12 NBNS 

 

Feature name Taxonomy Type Size 

Address nbns.addr IPv4 - 

Transaction ID nbns.id Unsigned 

Integer 

2 bytes 

Additional 

RRs 

nbns.count.add_rr Unsigned 

Integer 

2 bytes 

Answer RRs nbns.count.answers Unsigned 

Integer 

2 bytes 

Authority RRs nbns.count.auth_rr Unsigned 

Integer 

2 bytes 

Questions nbns.count.queries Unsigned 

Integer 

2 bytes 
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Data length nbns.data_length Unsigned 

Integer 

2 bytes 

Type nbns.type Unsigned 

Integer 

2 bytes 

Name nbns.name Character string - 

Time to live nbns.ttl Unsigned 

Integer 

4 bytes 

Table 3.15 Feature taxonomy of NBNS protocol 

 

 

Figure 3.23 NBNS features 

 

3.5.1.3.13 SSDP 

 

Feature name Taxonomy Type Size 
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Host http.host Character string - 

Request line http.request.line Character string - 

User-Agent http.user_agent Character string - 

Request 

number 

http.request_number Unsigned 

Integer 

4 bytes 

Full request 

URI 

http.request.full_uri Character string - 

Table 3.16 Feature taxonomy of SSDP protocol 

 

 

Figure 3.24 SSDP features 

 

3.5.1.3.14 DCE/RPC 

 

Feature name Taxonomy Type Size 
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Packet type dcerpc.pkt_type Unsigned Integer 1 byte 

Packet flags dcerpc.cn_flags Unsigned Integer 1 byte 

Byte order dcerpc.drep.byteorder Unsigned Integer 1 byte 

Character dcerpc.drep.character Unsigned Integer 1 byte 

Floating point dcerpc.drep.fp Unsigned Integer 1 byte 

Call ID dcerpc.cn_call_id Unsigned Integer 4 bytes 

Alloc hint dcerpc.cn_alloc_hint Unsigned Integer 4 bytes 

Opnum dcerpc.opnum Unsigned Integer 2 bytes 

Table 3.17 Feature taxonomy of DCE/RPC protocol 

 

 

Figure 3.25 DCE/RPC features 
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3.5.2 Traffic Volume 

This branch of the feature taxonomy discusses all the information describing 

the volume of information seen in the traffic. Volume-based features represent the 

quantitative measurements of the size or count of entities e.g. the number of packets, 

packet or field length, average packet length, etc. These measurements are quantified 

in different groupings or sets of packets, e.g. a flow, in the channel, etc. over a 

specified period of time e.g. a second, minute, weekly, etc. 

Analysis of the volume of traffic is one of the simplest ways to detect 

anomalous behavior in a network flow. To identify an anomaly, certain metrics of 

behavior are observed over time. Any disorientation from normal behavior is spotted 

as an anomaly in the behavior and further investigation is performed on it. An example 

of the metrics of volume can be average bytes of the data collected on a node. In a 

normal scenario without an anomaly, this value remains within a specific range for 

long periods of time. However, in case of an attack, this value may spike to higher 

values (like DoS) or fall down if the node is brought down. Hence, it is proved that 

some attack scenarios can be spotted very easily using these simple statistical 

techniques on volumetric features. 

The first step is to identify the entities we want to quantify. When we are 

talking in terms of network captures, it is obvious to measure the quantities of packets 

in different sets. In addition to that, we can measure the volume of data that flowed 

through a node over different periods of time and in different sets. Therefore, this 

branch is divided into two measurements according to how we are viewing the data 

flow: packet volume and data volume. There are two ways to view the measurements 

both as time-series as well as being quantified statistically over different periods of 
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time (e.g. the packet volume evaluation of “packets per second”, or the data volume 

evaluation of the “average packet size”). 

 

 

Figure 3.26 Traffic volume 

 

The second step is to identify the metrics we want to use to measure the traffic. 

This can be done in two ways: we can either measure the count of entities or the size 

(length) of entities. Both are very important measurements and insightful in anomaly 

detection. These metrics can be used as follows: 

a.  Number of packets captured 

b. Number of bytes exchanged 

c. Size of packets (at different protocol layers, e.g. MAC, IP, etc.) 

d. Size of fields 

 

 

Figure 3.27 Traffic volume grouping 

 

An anomaly can only be identified when we compare the value of any of the 

above metrics at one instance with other (normal) values of the same metrics at other 
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instances. So, the third step is to make small groupings or sets and observe the general 

behavior of these groupings and spot any indifferent behavior. 

There are different approaches to group the volumetric features: 

3.5.2.1 Group by Type 

3.5.2.1.1 Directionality 

One of the multiple jobs of a node in a network is to communicate with other 

nodes in the form of packets. The node first listens to the request from other nodes, 

and if necessary, send replies. There are several broadcast packets which a node 

doesn’t need to reply. Therefore, this traffic can be either unidirectional or bi-

directional. 

3.5.2.1.2 Channels 

Packets arrive from multiple channels on the wire at the node. The rate of 

arrival is dependent on external and internal factors. There are cases when the packet 

loss is occurred due to issues on the wire. Similarly, packets go out to multiple 

channels on the wire but can be caught in congestion. Monitoring of channels can 

bring interesting outcomes to the study. 

3.5.2.1.3 Conversation or flow 

Since a node may converse in a different manner with different nodes, we 

group the data into its conversation groups. One group contains a conversation from 

one set of source-destination pair. When we first address an anomaly, we want to find 

where it is coming from, therefore it is essential to analyze the to-and-fro 

conversations between each pair of source-destination. 
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3.5.2.1.4 Protocols 

All the packets flowing from one node to another run on multiple protocols at 

different layers of the OSI model. In order to maintain efficiency, not all the protocols 

are designed to emphasize on security of information like UDP. Some protocols run 

the risk of carrying malicious data through them. Therefore, we group the packet 

captures according to the protocols. To make a comprehensive model, we further 

divide the outer layer protocols and sub-set them into protocols of the inner layers. 

Once we start grouping our captured data into any of the above types, we move 

on to the analysis phase, but before that, we have to decide how much data we want to 

analyze in one phase. To find reliable patterns of malicious activity, we analyze the 

volume of data exchanged during specific periods of time like over a period of a day 

or week. In our fourth step, we group the volume once again into windows of time and 

analyze them in groups of the same window. 

This process of making groups can be approached in the following ways: 

3.5.2.2 Group by Time 

3.5.2.2.1 Hourly/Daily window 

The straightest way to realize patterns in a group of captured packet streams is 

to analyze traffic volume on an hourly basis. It is a short span of time which provides 

a detailed picture of the behavior of the node during the normal course of the day. If 

we want to get an overall picture of the everyday flow of packets, we analyze packets 

on a daily basis. For example, during the hourly window, we analyze data from 5 pm 

to 6 pm every day. On the other hand, if we want to analyze daily, we observe data 

every 24 hours. We can also analyze packets weekly or monthly, etc. 
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3.5.2.2.2 Peak hour window 

In commercial and financial settings like a bank, thousands of monetary and 

non-monetary transactions take place every day. Exchanges happen only during fixed 

hours only from verified sources. In such a case, it is easy to for malicious transactions 

to sneak their way into the secure traffic. Therefore, we analyze the properties of 

transactions during rush hours and spot irregularities. 

3.5.2.2.3 No activity windows 

In industrial organizations, where millions of bytes are exchanged during a 

fixed period of time every day, traffic at the server during non-rush hours is abnormal 

and may be a sign of anomalous activity. Therefore, it is important to look for data at 

windows in time where no activity is expected. 

3.5.2.2.4 Occasional activity window 

During special occasions like a holiday or a natural phenomenon, there is a 

spike in the exchange of data in a region. There might be exponential decrease in the 

online activity of users resulting in an ebb of the packet flow. Such incidents need to 

be closely monitored and analyzed to prevent unnecessary loss. 

3.5.2.3 Statistical Features 

The final step is to search for anomalies in the recorded metrics grouped in the 

above forms. These sets will act as training data for our machine learning model. 

There are two ways to conclude these anomalies: 

3.5.2.3.1 No statistics 

In this approach, no statistical operations are computed on the datasets. Raw 

data collected from the packet captures are used in neural networks (e.g. convolutional 
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neural networks) to perform supervised learning. Before training the neural networks 

on these datasets, it is cleaned, transformed and normalized. It is then labeled and 

trained. When the data stream captured is grouped by time, the dataset is viewed as a 

time series sequence. We can then perform time-series analysis on these datasets. In 

this approach, it is the job of neural networks to find intelligence in the datasets to 

learn the difference between anomalous and non-anomalous traits. 

3.5.2.3.2 Traditional statistics 

In this approach, traditional statistical operations are derived over the groups 

created in the previous step. These statistical derivatives are indicators of the behavior 

possessed by the groups calculated in the previous step. Some of the common 

statistical operations are: 

a. Max/Min 

Maximum (or minimum) values of column data in all the groups should lie in 

the same region with a small window of error. If the max and min values of all the 

columns of the groups are in the same window, they are considered normal. If any 

max (or min) value do not fall in the same window, it is considered abnormal or 

anomaly. 

b. Mean 

Mean of the columns in different groups should be similar over time 

groupings. 

c. Standard deviation 

Standard deviation of the data in a column over a sequence of the groups. 

d. Histogram 
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It is a depiction of statistical information over a consecutive interval of time. It 

is an emphatic way to analyze the sequence of data and detect abnormal patterns. 

e. Null 

It is important to acknowledge the null values in statistical operations any null 

data captured is abnormal. 

A volumetric feature can be generated as follows, 

Compute this statistic {actual-value, minimum, maximum, average, mean, standard-

deviation, histogram, etc.} of the measurement {size, count} of this object {packet, 

field} for this group {unidirectional, bidirectional, flow, protocol(s)} over this time 

period {all-time, second, hour, day, etc.}. 

The result can be a single scalar number, e.g. all-time minimum packet size, 

the average size of a given field (e.g. TSL segment field length). Or it can be a time 

series sequence like an average TCP traffic rate in bytes per second over 5-minute 

measurement windows. 

Like the other major categories in the taxonomy, the traffic volume category 

has an arbitrary set of possible features. In the two subsections that follow, some of the 

features most likely to be important in the security analysis of packet traffic are 

defined and discussed. 

3.5.2.4 Packet Volume 

In this section, we observe the bulk of packets seen at a point in the network 

(e.g. at a node, or on a wire). Measuring packets is one of the simplest ways to 

calculate bulk statistics. We analyze this bulk and find voluminous patterns from it. 

The below figure is a shot of the Wireshark capture. 4104 packets were captured in 

this Wireshark session. These captures are used to analyze packet bulk statistics. 
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Figure 3.28 Packet volume examples 

 

We calculate the features using the below formula to calculate 

< measure:{size, count}of packets, group:{uni, bi, flow, protocols}, 

period{second, hour, day,...}, stats{NULL, min, max, avg, mean, std dev, hist} > 

Some of these features can be: 

3.5.2.4.1 Packets per second 

No. of packets (at any layer, but typically MAC) seen at any point over a one 

second period. The observation point can be a point in a wire (connection) or inbound 

to a node (ingress) or outbound from a node (egress). It can also be summations of all 

one or all node interfaces or all measures wires collected in one second. Packets 

collected in a minute or hour can also be used for the same type of analysis. 

3.5.2.4.2 Max no. of packets 

Maximum no of packets seen at any point entering or leaving a node over a 

period of a second or minute. For the purpose of analysis, the minimum no. of packets 

can also be calculated. 

3.5.2.4.3 Average packets per second 

Average packet counts captured during a second. Average packets per minute 

or hour are also calculated for analysis. 
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3.5.2.4.4 Packet Histogram 

A histogram of packet-counts and packet-sizes is a graphic depiction of the 

patterns found in counts and sizes. 

3.5.2.5 Data volume 

Similar to the above analysis, this section deals with the analysis of the data in 

bytes. In this section, we observe the bulk of bytes seen at a point in the network (e.g. 

at a node, or on a wire). Measuring the volume of data is one of the direct ways to 

calculate bulk statistics. We analyze this bulk and find voluminous patterns from it. 

The below figure is a shot of the Wireshark capture. 410 bytes were captured in this 

Wireshark session between two IP addresses and a total of 812 KB were exchanged in 

this session. These captures are used to analyze packet bulk statistics. 

 

 

Figure 3.29 Data volume example 

 

We calculate the features using the below formula to calculate 

< measure: {size, count}of bytes, group:{uni, bi, flow, protocols}, 

period{second, hour, day,...}, stats{NULL, min, max, avg, mean, std dev, hist} > 

Some of the features can be: 

3.5.2.5.1 Bytes per second 

No. of bytes exchanged during a period of time like seconds or hours. 
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3.5.2.5.2 Average packet size 

Average size of the packets seen during any periodic instance of time. 

3.5.2.5.3 Bytes histogram 

Statistical representation of byte distribution across dataset. 

3.5.3 Protocol state 

There are several ways in which a packet reacts to certain conditions. Protocols 

have a long list of flags which need to be green before a protocol is sent out on the 

Internet to reach a destination. Some of them are security flags, ACK flags, error flags, 

etc. Other important information that packets carry are sequential numbers, error 

bytes. A very important way to detect malicious activity in a system is to observe 

unusual behavior in before/after/during its interaction with outside systems. In this 

case, we observe the two-party state behavior. The state of our node, the other nodes it 

is interacting it with. 

The protocol state features deal with closely watching the state of the different 

component in the packet. By definition, the states are ever-changing and should be 

address upon the fulfilment of certain conditions. The features defined in this branch 

of the taxonomy tree have the following functions: 

a. Make sure that state of the components/resources are valid. 

b. The changes in the state are a result of valid operations. 

As much as we can detect invalid activities by watching the sniffed traffic, it 

can be complicated and time taking. Zeek does a fair job in identifying such unusual 

operations performed by a node. It logs the unparsed operations in a logger known as 

weird.log. It provides a detailed statistic about unexplained activities by a node. 

However, not everything is logged or understood by Zeek. We need to identify those 
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unusual activities and mark the states which look suspicious. Some of the important 

checkpoints can be: 

3.5.3.1 TCP graceful close 

This is the normal way to close a TCP connection. The client sends a FIN 

packet to the server. The application is set to FIN_WAIT state. The server sends back 

an acknowledgement(ACK) packet back to the client. Then, it sends all the remaining 

packets to the client which are in the queue. It also sends a FIN packet after all the 

packets are sent. The client then sends an ACK to the server. The connection is closed 

now. 

3.5.3.2 Delayed DNS 

When the web hosts are changed, the DNS entry in the local cache is rendered 

obsolete. When a client machine tries to reach a website, it needs to perform a DNS 

query. If the cache is cleared it goes to the upper level DNS servers (root, Top-level 

domain, etc.) to find the IP address of the website. This query is a UDP packet, so it 

travels through a series of hops to find the correct IP address. Once, a response is 

received, DNS is filled again. The TTL decreases every step. To avoid all this delay, 

the DNS servers need to be backed up so they can be used in failover 

3.5.3.3 ARP request: lots of ARP request and few replies 

An example of an attack on the protocol state is ARP request and response. 

Suppose, if there are 5 hosts in a network and a host receives 200 ARP requests. It 

means that 195 are anomalous. This type of behavior is a sign of malicious activity. It 

means that the network was being scanned. 
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3.5.3.4 Failure nodes in Zeek. 

There may be some instances where Zeek nodes fail and are not able to detect 

attacks. State of the data streams is crucial to observe in this case. 

3.5.4 Temporal 

A lot of things happen in a very short span of time at a node. In this fast 

forward exchange of information, it is acceptable to send packets quickly, even if you 

lose some in the middle. There can be a lot of reasons for a data stream to mess up and 

cause a disturbance. These disturbances can range from an actual mishap with the 

node to external interference from malicious sources. We capture such disturbances so 

that we can record abnormal timings seen in the flow of packets and use them for 

analysis to detect anomalies. Therefore, we add temporal features as taxonomy branch 

for anomaly detection. 

This branch of the feature taxonomy discusses the instances of time-related 

information which might be helpful to spot an illegal activity in a packet stream. The 

analysis of temporal features of a data stream is very crucial because all data streams 

flowing through a node are time critical operations. An example of such operation is 

the time of the arrival or delivery of packet sequences. If any discrepancy is found in 

their timings, it can be assumed to be the result of malicious activity. This 

identification of the features works in similar ways as the traffic volume branch of the 

taxonomy except this represents time-based features. 

The temporal features are further divided into two branches depending upon 

how we are quantifying time. 
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Figure 3.30 Temporal features 

3.5.4.1 Time-based features 

Network packets are exchanged at a very high rate between nodes and 

thousands of packets pass through each node very quickly. At this high exchange, it 

possible that some packets are misplaced or lost in the mix. In some cases, this loss of 

packets is acceptable like pixels lost causing blurry pictures during video calls, 

however, in some cases, this loss can be harmful like breaking a connection over a 

congested channel. Therefore, we need to make sure maximum packets arrive on time 

and in sequence at a destination. If we find any discrepancy, we need to take a look at 

it to find the root causes of delay or total loss. Time-based features represent the 

quantitative measurements of time (e.g. TTL, the lag between packet arrivals, etc.) in 

different settings of packet-captures (e.g. a flow, in the channel, etc.) represented in 

any unit of time (e.g. seconds, minutes, etc.). Just as we studied volumetric features in 

the above section where the metrics were size and counts of captures, in this analysis 

of time series features, the metrics are time-space and exact instances of time units like 

seconds, milliseconds, etc. 

The first step is to identify the metrics we want to measure. When we are 

timing the network captures, it is obvious to measure the duration of flows of packets 

in all possible conditions. In addition to that, we can measure the time-space of a 

capture. Time-space of a packet can be defined as the time difference between two 
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consecutive captures that flowed through a node over different periods of time and in 

different sets. It can be represented as 𝚫t (delta_t). Both of these metrics are calculated 

over periods of time so that they can be used for statistical evaluations and find 

behaviors in different scenarios. Some of the examples of these metrics are average 

time-space between arrival time two consecutive packets from the same session, the 

average value of TTLs during different instances in time, etc. 

 

 

Figure 3.31 Time based grouping 

 

The second step is to group these metrics by type of packet/flow. An anomaly 

can only be identified when we compare the value of any of the above metrics at one 

instance with other (normal) values of the same metrics at other instances. So, the 

third step is to make small groupings or sets and observe the general behavior of these 

groupings and spot any indifferent behavior. There are different approaches to group 

the volumetric features: 

3.5.4.1.1 Group by Type 

a. Directionality: One of the multiple jobs of a node in a network is to 

communicate with other nodes in the form of packets. The node first listens to 

the request from other nodes, and if necessary, send replies. There are several 

broadcast packets which a node doesn’t need to reply. Therefore, this traffic can 

be either unidirectional or bi-directional. When a node sends a request, it 
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expects a response. If the response is not sent within a small time, the 

conversation becomes obsolete. Therefore, we group the response times by 

directionality. 

b. Response Type: Conversation between two nodes is initiated by a sender node. 

If the destination node replies by a response, the conversation is sustained 

otherwise, the connection is suspended. Responses vary with the request. For 

example, the response to a DNS query is an IP address, however the response to 

a SYN packet is an ACK packet. These responses arrive at different timings. 

Therefore, it is essential to group the packets by response type. 

c. Conversation or flow: Since a node may converse in a different manner with 

different nodes, we group the data into its conversation groups. One group 

contains a conversation from one set of source-destination pair. When we first 

address an anomaly, we want to find where it is coming from, therefore it is 

essential to analyze the to-and-fro conversations between each pair of source-

destination. 

d. Protocols: All the packets flowing from one node to another run on multiple 

protocols at different layers of the OSI model. In order to maintain efficiency, 

not all the protocols are designed to emphasize on security of information like 

UDP. Some protocols run the risk of carrying malicious data through them 

which can lead to loss of packets. Therefore, we group the packet captures 

according to the protocols. To make a comprehensive model, we further divide 

the outer layer protocols and sub-set them into protocols of the inner layers. 

Once we start grouping our captured data into any of the above types, we move on to 

the analysis phase, but before that, we have to decide how much data we want to 
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analyze in one phase. To find reliable patterns of malicious activity, we analyze the 

lapse in the of packet exchanged during specific periods of time like over a period of a 

day or week. In our third step, we group the metrics once again into windows of time 

and analyze them in groups of the same window. This process of making groups can 

be approached in the following ways: 

3.5.4.1.2 Group by Time 

a. Hourly/Daily window: The straightest way to realize patterns in a group of 

captured packet streams is to analyze them on an hourly basis. It is a short span 

of time which provides a detailed picture of the behavior of the node during the 

normal course of the day. If we want to get an overall picture of the everyday 

flow of packets, we analyze packets on a daily basis. For example, during the 

hourly window, we analyze data from 5 pm to 6 pm every day. On the other 

hand, if we want to analyze daily, we observe data every 24 hours. We can also 

analyze packets weekly or monthly, etc. 

b. Peak hour window: In commercial and financial settings like a bank, security-

efficient packets are exchanged at a very high rate every day. Exchanges 

happen only during fixed hours only from verified sources. At such a high rate, 

even if every packet is examined, it is easy to for malicious transactions to 

sneak their way into the secure traffic. Therefore, we analyze the properties of 

transactions during rush hours and spot irregularities. 

c. No activity windows: In industrial organizations, where millions of bytes are 

exchanged during a fixed period of time every day, traffic at the server during 

non-rush hours is abnormal and may be a sign of anomalous activity. It can be 
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part of the routine activity or malicious activity. Therefore, it is important to 

look for data at windows in time where no activity is expected. 

d. Occasional activity window: During special occasions like a holiday or a 

natural phenomenon, there is a spike in the exchange of data in a region. This 

can lead to congestion and highly volatile connections. Such incidents need to 

be closely monitored and analyzed to prevent unnecessary loss. 

The final step is to search for anomalies in the recorded metrics grouped in the above 

forms. These sets will act as training data for our machine learning model. To 

conclude these anomalies, we use traditional statistics. In this approach, traditional 

statistical operations are derived over the groups created in the previous step. These 

statistical derivatives are indicators of the behavior possessed by the groups calculated 

in the previous step. Some of the common statistical operations are: 

3.5.4.1.3 Statistical Operations 

a. Max/Min: Maximum (or minimum) values of column data in all the groups 

should lie in the same region with a small window of error. If the max and min 

values of all the columns of the groups are in the same window, they are 

considered normal. If any max (or min) value do not fall in the same window, it 

is considered abnormal or anomaly. 

b. Mean: Mean of the columns in different groups should be similar over time 

groupings. 

c. Standard deviation: Standard deviation of the data in a column over a 

sequence of the groups. 
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d. Histogram: It is a depiction of statistical information over a consecutive 

interval of time. It is an emphatic way to analyze the sequence of data and 

detect abnormal patterns. 

e. Null: It is important to acknowledge the null values in statistical operations any 

null data captured is abnormal. 

A time-based feature can be generated as follows, 

Compute this statistic {actual-value, minimum, maximum, average, mean, 

standard-deviation, histogram, etc.} of the measurement {duration, 𝚫t} of this object 

{packet, field} for this group {unidirectional, bidirectional, flow, protocol(s)} over 

this time period {all-time, second, hour, day, etc.}. 

3.5.4.2 Time-series features 

The process of input or output of packets at a node is done continuously over 

time. Each packet sequentially captured in a data stream is an entity unique in time. 

Each of these entities can be represented as a combination of a set of properties. This 

bag of entities, when collected equidistant in time or when they have the same lag, is 

called time-series. A dataset is called time series data as it represents a set of 

properties seen at instances in time which are equally spaced. The time series data is a 

matrix of a set of characteristics where each row is a unit of time when those 

characteristics is recorded. 

Time series analysis is a behavioral analysis technique of entities distributed 

equally in time. The behavior of the features is analyzed over all the entities present in 

the dataset. This analysis helps us to understand the difference between the values of 

the features in normal conditions and anomalous conditions. Analysis of time-series 

data is imperative to feature taxonomy of a network as the packets exchanged between 
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nodes are a function of time. Delay in arrival or departure of packets can lead to issues 

like loss of connection and high congestion windows. 

In this approach, no statistical operations are computed on the datasets. Raw 

data collected from the packet captures are used in neural networks (e.g. convolutional 

neural networks) to perform supervised learning. Before training the neural networks 

on these datasets, it is cleaned, transformed and normalized. It is then labeled and 

trained. When the data stream captured is grouped by time, the dataset is viewed as a 

time series sequence. We can then perform time-series analysis on these datasets. In 

this approach, it is the job of neural networks to find intelligence in the datasets to 

learn the difference between anomalous and non-anomalous traits. 

3.5.5 Traffic flow 

Observations in this branch of feature taxonomy are the information captured 

from the network traffic. Data in the form of packets travel across the Internet all over 

the earth and space via satellites. During this time, it can get infected with malicious 

information. Therefore, it is essential to go through the whole traffic and find 

infectious data. We have discussed identifying infections in packets in the protocol 

state branch of the taxonomy. In this branch, we will discuss the series of packets as a 

set and perform analysis on the flow. 

Throughout the history, there have been a lot of famous cyber-attacks where 

the organization which was attacked has no information that they were being attacked. 

This happened because of the fact that the attack was performed so meticulously that 

no alarms were triggered. In such type of cases, even though no packets were found 

individually malicious, the attack was carried out over a long period of time and 

successfully executed. To overcome this situation, behavioral analysis of network 
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traffic needs to be taken seriously. The flow of the traffic as a whole is observed to 

find anomalies. To accomplish this task, a data stream flowing through a node is 

captured and saved, its properties as a flow are analyzed to find abnormal behavior 

over time/session. 

Flow of traffic at a node is a continuous operation. To keep track of the 

observations, we group them according to our requirements. Therefore, we look at the 

flow in two ways: time-based and session-based depending upon the requirement. 

3.5.5.1 Group by Time 

In time-based approach, the division of traffic is done into fixed intervals of 

time and its flow characteristics are observed. A network analyzer at an end host 

continuously screens traffic arriving and exiting the host. In this approach, we want 

the quantitative analysis of flows. For the purpose of analysis and detection of unusual 

behavior of flows, we observe them hourly or daily. 

Zeek is a very advanced network analyzer which generates hourly reports of 

the traffic as long it is in operation. These reports contain the connections statistics, 

signature errors, downloaded files, etc. We can use this data to analyze periodic 

behavior of the flow at node. We can analyze flow in the following ways: 

3.5.5.1.1 Hourly/Daily window 

The straightest way to realize patterns in a group of captured packet streams is 

to analyze them on an hourly basis. It is a short span of time which provides a detailed 

picture of the behavior of the node during the normal course of the day. If we want to 

get an overall picture of the everyday flow of packets, we analyze packets on a daily 

basis. For example, during the hourly window, we analyze data from 5 pm to 6 pm 
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every day. On the other hand, if we want to analyze daily, we observe data every 24 

hours. We can also analyze packets weekly or monthly, etc. 

3.5.5.1.2 Peak hour window 

In commercial and financial settings like a bank, security-efficient packets are 

exchanged at a very high rate every day. Exchanges happen only during fixed hours 

only from verified sources. At such a high rate, even if every packet is examined, it is 

easy to for malicious transactions to sneak their way into the secure traffic. Therefore, 

we analyze the properties of transactions during rush hours and spot irregularities. 

3.5.5.1.3 No activity windows 

In industrial organizations, where millions of bytes are exchanged during a 

fixed period of time every day, traffic at the server during non-rush hours is abnormal 

and may be a sign of anomalous activity. It can be part of the routine activity or 

malicious activity. Therefore, it is important to look for data at windows in time where 

no activity is expected. 

3.5.5.1.4 Occasional activity window 

During special occasions like a holiday or a natural phenomenon, there is a 

spike in the exchange of data in a region. This can lead to congestion and highly 

volatile connections. Such incidents need to be closely monitored and analyzed to 

prevent unnecessary loss. 

3.5.5.2 Group by Session 

In session-based approach, traffic is divided into sessions. Sessions are the 

interaction between a client and a server for a certain duration of time. If our device is 
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the client, a session is unique to the server our device is interacting with. A device 

may interact with multiple servers at the same time. Therefore, while capturing traffic 

using sniffing devices like Wireshark or Zeek, we may capture many sessions. 

Wireshark downloads all the traffic in one file, and we need filters to manually 

filter out the session by providing specific source and destination IP addresses. Zeek 

has advanced features where it can group connection between two nodes automatically 

and shows their interaction like the bytes exchanged and packets flowed. The features 

that can be found in periodic evaluations of a flow of network traffic can be: 

3.5.5.2.1 Frequency of protocols used 

Number of different types of protocols used during the duration of time or the 

session we are taking into observation. 

3.5.5.2.2 Average number of bytes exchanged 

Average number of bytes exchanged during the duration of time or the session 

we are taking into observation. 

3.5.5.2.3 Average lengths of exchanges 

Average number of packets exchanged during the duration of time or the 

session we are taking into observation. 

3.5.5.2.4 Average duration of a connection 

Average duration of the connection taken into observation during the duration 

of time or the session. 
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3.5.5.2.5 Average number of ports used 

Average number of ports used during the duration of time or the session we are 

taking into observation. 

A traffic flow feature can be generated as follows, 

Compute this statistic {frequency, average, quantitative, etc.} of the 

measurement {period, session} of this object {flow}. 

3.5.6 Computed Features 

Computed features are not directly present in the dataset that we capture at the 

IDS, neither during the exploratory analysis phase. They are a set of features which 

are created explicitly to implement the domain knowledge of network captures and 

make the taxonomy more robust to unexplored scenarios. Some of the notable 

computed features are: 

3.5.6.1 n-grams 

Any sequences containing a group of “n” adjoining elements. An n-gram 

model is a statistical technique to identify patterns in a large set of data. In a n-gram 

model, the dataset is run over with a sliding window of length n. All entities which 

have the same n-items in a window are statistically related. n-grams models are 

generally used for prediction in language processing entities. A very clear example of 

n-gram is our DNA. DNA sequences are made of nucleotides and the sequence of 

nucleotides in a DNA sets them apart from others. The nitrogenous bases in the 

nucleotides are adenine, guanine, cytosine and thymine (A, G, C, T). It makes DNA a 

4-gram. 
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In a data stream, with a fixed number of elements contributing to the dataset, 

we can look for n-grams present in normal packets. There are three ways to use a n-

gram model: 

a. Identify n-grams which should be present in the traffic for a traffic to be 

identified as normal 

b. Identify n-grams which should not be present in a normal traffic. If these n-

grams are found, traffic might be malicious. 

Although, presence or absence of n-grams in a packet is not necessarily an absolute 

indicator of anomaly, long-term behavior of these entities can be an indicator of their 

nature. 

3.5.6.2 Entropy of compressed payload 

Entropy of a system is an indicator of its diversity or disorder. It is directly 

proportional to randomness. Higher the entropy[31] of a payload is, the less redundant 

it is. Less the redundancy of the payload, less compressible it is. Compression 

techniques can be either lossy or lossless where bits of the payload are statistically 

reduced after compression than the original bits. Lossy compression can’t be fully 

decompressed as while lossless can be. Entropy is a measure of limit of lossless 

compression. 

When a packet is sent from one node to another, it is compressed at the 

browser to increase the efficiency. In Google chrome, Shared Dictionary Compression 

for HTTP (SDCH) scheme is used and the most common HTTP compression 

technique - gzip is used where the payload is encoded. The below figure depicts that 

gzip was used to encode the packet and compress it. 

 



 66 

 

Figure 3.32 HTTP compression 

 

Although compression does not help in securing data, it is used by all web 

servers to increase the speed of transfer. Direct observation of compressed bits cannot 

be performed on the packets. Therefore, we record the before and after data of the 

decompression scenario and calculate the usage statistics of the compression 

techniques. 

3.5.7 Other 

All the other features which do not fall under the above categories go into this 

category. Properties displayed due to human error can be a part of this classification. 

Attacks like SQL injections[36] and cross-site scripting show some unique properties 

which can be captured in this category. 



 67 

Chapter 4 

MACHINE LEARING USING TRAFFIC DATA FEATURES 

A lot of people confuse machine learning with artificial intelligence. AI is a 

technology and machine learning is a methodology for implementation of AI. Machine 

learning, as the name suggests, is a way of making a computer knowledgeable. The 

computer learns from the algorithm it runs with the help of data that we train it on. We 

don’t need to teach it a lot of algorithms. They are small set of algorithms which can 

be used differently in different situations which means we don’t need to explicitly 

write algorithms for specific problems. For example, a classification algorithm which 

can classify spam and non-spam emails, can also classify one image from the other. 

The only difference here is that we train a general machine learning algorithm on 

different training datasets. Once, the machine is trained, it has learned and it ready to 

make decisions for example, a classifier can classify any unknown data that we give it. 

This process is called modeling and the learned system is called a model. But how do 

we know that model’s decisions are right. Well, the metric which validates a model is 

its accuracy which is tested on unseen data. Let’s dig deep into machine learning. 

4.1 Learning 

Learning for machines is divided into four general categories, supervised, 

unsupervised, semi-supervised and reinforcement. 
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4.1.1 Supervised Learning 

As the name suggests, in supervised learning an algorithm knows what it is 

looking for. The training data provided to it is labeled with output class. Its ultimate 

goal is to find a correlation between the input and output. The algorithm will need to 

fit itself with the training data to reach a reasonable parametric equation which will try 

to fit with all the samples in the training data. This process is cyclic to reach an 

equation by minimizing loss. 

Examples of supervised learning models are classification, decision trees, 

neural networks, support vector machines and regression. 

4.1.2 Unsupervised Learning 

Unsupervised learning is used when there is no output class defined for the 

system. It does not know what it's looking for. It is the task of a non-custom algorithm 

to find patterns, develop an equation which calculates input values from the sample 

data and form groups of alike samples. It is the most common form of machine 

learning. There is no need to train the samples. Examples of unsupervised learning 

models are cluster analysis, pattern recognition, genetic programming and association 

rules. 

4.1.3 Reinforcement Learning 

It is dependent on a feedback system, where the model learns from its previous 

steps. It doesn’t know the output, nor does it knows how to reach the output. If it 

learns the wrong thing, the user can penalize it, if it learns the right thing the user can 

reward it, and so it learns. Examples are driving a vehicle or playing a game. 
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4.1.4 Semi-supervised Learning 

It is combination of unsupervised and supervised learning. It is done when we 

have some missing information from the labeled dataset. First, we perform 

unsupervised learning on the dataset to identify clusters. Then, cluster wise we fill the 

missing values with the mode or mean of that cluster. Once all the samples are 

completely filled, we perform supervised learning. 

4.2 Supervised Learning Models 

Since, we want to detect an anomaly based on numerous attributes, we are 

interested in working with supervised learning in this study, so we will dig deeper into 

some of the famous supervised machine learning models. 

4.2.1 Regression models 

Regression models are considered the simplest. These models work for a 

continuous data, for example age of person, sales of a company, salary of an employee 

etc. The training data for regression models should be real numerical values. They are 

used to predict output values of continuous data. Regression are a statistical way of 

finding correlation between the predictor (X) which is independent variable(s) and the 

target/output label (y) or dependent variable of a sample. This correlation can be 

depicted in the form of a parametric equation which tries to fit with all the values in a 

sample with minimum root mean square errors (RMSE) and predictions for unseen 

cases are mapped based on that equation. The figure below[34] shows the distribution 

of X and y. In an ideal world, a regression model will try to fit a curve on this 

distribution which should pass through all these points. Unfortunately, that is very 

difficult to achieve, so a model is computed where the curve passes between these 

points in such a way that distance between them is minimum. 
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Figure 4.1 Distribution of points in X-Y plane 

 

If the predictor X contains a single feature, it is called a simple model, else if X 

is conjunction of more than one features, it is called multiple model. The common 

types of regression techniques are linear regression, logistic regression, polynomial 

regression, ridge regression, stepwise regression, lasso regression and Elasticnet 

regression. 

 

 
Figure 4.2 Linear regression 

 

Above is figure[33] depicting linear regression for a housing price prediction 

project. It shows the relationship between the price of the house given the size. As we 

can see, the red line is the fitting equation that defines the linear model but not all the 

test samples fall on the line. Some samples are very far away from the line which 
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means the RMSE values would be very high for them. Thus, the linear regression is 

not accurate and therefore cannot be used in all situations. 

4.2.2 Classification Models 

Classification models are the most common application of supervised machine 

learning. Classification models are tasked to make observations from non-continuous 

categorical data. The output labels of a classification model are the categories. A very 

common example of classification model is categorizing an email as ‘spam’ or ‘not 

spam’. Here, the features can be email address of the sender, number of emails per 

day, number of links in an email, etc. and the ‘spam’ and ‘not spam’ are the classes or 

output label. 

 

 

Figure 4.3 Machine learning based classification 

 

The classification model can be either binary as depicted in above figure or 

multi class when the number of categories are more than two. The classification model 

is heavily dependent on the quality of training data containing discrete sequence of the 

features (X) and the category (y). To test whether the model is working or not, we test 

https://medium.com/@naveeen.kumar.k/naive-bayes-spam-detection-7d087cc96d9d
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it on new samples and find the accuracy by calculating the number percentage of 

correct hits over all hits. 

4.2.3 Support Vector Machines 

Support vector machines are highly efficient in solving non-linear supervised 

learning problems. Support vector machines are an equation which represent some 

hyperplanes A hyperplane is like a decision boundary between two or more classes 

and support vectors are data points which validate the hyperplane. 

4.2.4 Artificial Neural networks 

Artificial Neural Networks are one of the simplest models closer to artificial 

intelligence. One important specialty of these artificial neural networks that make 

them similar to biological ones is the ability to make decisions just based on the 

dataset they know i.e. training data without need a complicated algorithm to perform 

computations. 

The main components of a neural network are neurons, weighted connections, 

layers, propagation function, bias and a learning rule. A layer is a vertical array of 

neurons. Value of a neuron from the previous layer is propagated to all the neurons of 

the next layer as output after multiplying it with some weight. This output goes to the 

next layer as input. This The more layers we create, the more fitting functions we can 

create but at the same time we can increase bias and do not react well to new data. In 

addition to these computations at the layers, we need some more functions like 

activation functions and feature scaling. The below[32] figure is plain representation 

of Artificial Neural Networks. 
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Figure 4.4 Artificial neural network 

 

Neural networks can be categorized into stateless and stateful. A stateless 

neural network does not remember its previous states which means that its response 

will remain same with respect to a certain input. However, in a stateful neural network 

the neural net remembers its previous state and it affects its decision in the current 

state. In this way, it is continuously learning. Convolutional neural networks (CNN) 

and multi-layer perceptron models are stateless neural nets, whereas recurrent neural 

networks (RNN) and Long Short-Term Memory (LSTM) are stateful. 

It has been widely assumed that any supervised learning problems can be 

solved by either using classification or regression if it gives more than 90% accuracy. 

Even though both the categories have the same goal to predict an output class of a 

sample, they approach the problem in a different way. They do not always give the 

highest accuracy. 
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4.3 Stages of Machine Learning Problem Solving Process 

4.3.1 Identify the problem 

The first stage of solving a machine learning problem is to actually identify the 

problem. This step will help us in realizing if the problem is actually a machine 

learning problem or not. If it is a machine learning problem, then further 

categorization into supervised or unsupervised can be made. If a problem is a 

prediction problem most common in economic field, it can be solved using supervised 

learning, or else if it is more of an exploration, we can it by using unsupervised 

learning. To successfully identify a problem, we should explore the following sub-

tasks: 

a. Define the objective of the problem 

b. Define the metric which decides the success criteria 

c. Discover constraint over the solution of the problem, if any. 

4.3.2 Data Gathering 

During this stage, dataset which will help us formulate our model is acquired. 

In our case the data has come from IoT devices. In case of supervised learning, the 

dataset should represent all the output classes justifiably, whereas in unsupervised  
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Figure 4.5 Stages of ML process 

 

learning, the dataset should represent true characteristics. We perform the following 

tasks to ensure successful completion of this stage: 

a. We assess the type of dataset we need 

b. We access the data from proper means 

c. Data exploration to find interesting facts about the data and clear understanding. 
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4.3.3 Data Preprocessing 

After the dataset has been identified, in this stage, the dataset is cleaned to 

remove any noise, repetition, and unrelated information which does not contribute to 

the problem to be solved. We perform transformation of values in the dataset if 

required. We also perform normalization on dataset so that all the numeric columns 

are follow the same distribution which is normal distribution. The following tasks are 

performed during phase: 

a. Data cleaning from noise and repetitive values 

b. Data normalization to bring all the columns on the same scale 

4.3.4 Feature Engineering 

The dataset collected directly from the IoT devices during the data gathering 

phase may have several impurities and noise in it. We cannot use these raw features 

directly in our model. Therefore, we need to clean the data first and then perform 

feature engineering on the dataset so that we can convert the features into estimators 

of the model. There are two reasons to perform feature engineering: 

a. To discover new feature to make the model more effective 

b. To implement domain knowledge of the data and make the training data more 

compliant to the algorithm so it can understand the input. 

This stage of problem solving is the most important and maximum significant 

proportion of our effort is required in this stage. Other than directly using the crude 

fields in the dataset, we perform feature engineering to deduce new information and 

develop a more sensible model which is capable of understand the underlying 

reasoning, rather than just a probabilistic decision system. For example, if we are 

performing stock prediction modeling, we want our machine learning model to 
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understand how the stock markets work. In order to make our model excel and 

understand these concepts, we develop equations to make statistical computations to 

our dataset, which in turn discover new features to train our model on. This will make 

our model more effective for new unseen data. 

Feature engineering is performed in the following steps: 

4.3.4.1 Feature selection 

During this step, irrelevant features or partially relevant features are dropped 

from the training set. These features might negatively influence the decision-making 

capability of the model. These can also result in long training periods, so we avoid 

such features. To find the relevant features, we find the relationship of output variable 

with other features. Following are the common practices used to achieve this 

relationship: 

a. We discover the relationship of each feature with the output variable using 

statistical tests like chi-square tests. This process is called univariate selection. 

These tests show the features which have the strongest relationship with the 

output variable. 

b. Several tree-based classifiers are helpful in calculating the important features 

like Extra Tree classifier. 

c. Correlation matrices and heatmaps are very helpful in visualizing the features 

which are closely related to the output variable. 

4.3.4.2 Feature Creation 

Valid datasets to solve certain machine learning problems are not always easy 

to find. Due to the issue of information sensitivity, especially in the field of 
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cybersecurity, most of the datasets are either truncated or too corrupt to even 

be downloaded on a machine. In some cases, we have to adjust with the dataset 

that is made available to us. In this scenario, feature creation is very important. 

A set of newly created features are derived from the information that we 

already have in the training set. We create new features for the following 

reasons: 

a. Due to unavailability of rich datasets, we tend to use whatever data we have and 

enrich it by performing some statistical operations. These operations are the art 

of adjusting the model to improve its domain knowledge. Some datasets are 

plain numbers and do not possess any intelligence. We modify such datasets to 

provide insights to the behavior of the plain numbers. One of the simplest 

statistical operations include mean, mode, median, standard deviation etc. 

b. Not all the features in the training set can be directly used as their formats might 

mismatch. For. example, some values may be numerical, and some may be 

Boolean. Since the neural network only works with numbers, we need to deal 

with such mismatch we introduce solutions like hot encoding and dummy 

variables. These create encoded columns which represent categorical data 

which can be directly used to train the model. 

4.3.4.3 Feature Compliance 

The newly created features need to be tested if they can be implemented into 

the model. As we know that the neural network will work only with numbers, we need 

to make the features comply. If it does not fit the model, we need to devise the features 

again. 
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4.3.5 Defining the model 

In this stage, we model the objective to perform either clustering or prediction. 

For example, for clustering, we can use k-means algorithms, and for classification we 

can use SVM or neural networks. There are a lot of framework available to develop a 

neural network like TensorFlow, Keras etc. which help us make neural networks and 

libraries like scikit-learn which help make clustering or classification models. To 

make a model, we perform the below tasks: 

a. Decide which approach will help us develop the model 

b. Select the modeling algorithm 

c. Use libraries and framework to build it. 

4.3.6 Training the model 

This is the stage where the model is constructed into an intelligent machine. It 

takes each sample of training data one-by-one, learns its values, moves on to the next 

sample until the end of the dataset. Once it is trained, it is deemed to be learned and 

ready to use. It is not always necessary that model learns from one cycle of training 

also known as one epoch, especially in case of a neural network. Therefore, we run it 

through several epochs for better accuracy. Also, the layers of the model are not so 

long that it can accommodate all the training data in one go, therefore we send the 

samples in small batches. The number of batches and the number of epochs are called 

the “hyperparameters”. In case of a clustering model, the trained model is set of 

clusters of samples in a training set. 

4.3.7 Testing the model 

As the model is trained now, we still don’t know if it is the best version of the 

model. We have to verify if the trained model has learned what it is supposed to learn. 
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Some models perform better than others. To test a supervised learning model, we give 

it unseen test data and the models give a prediction of the test data in a percentage 

form. It gives the percentage of the output being one class or the other. The output 

class which has the highest percentage is the prediction of the model. If it is an 

unsupervised model, the output of the evaluation will be the assignment of the test 

data into a cluster. 

4.3.8 Tuning the parameters 

Sometimes, we are not satisfied with the performance of our model and 

sometimes are curious to know if it can perform better. In this case, we can change the 

values of the hyperparameters to find out if we can get better results. 

4.3.9 Prediction 

Once we are satisfied with the result, our model is ready for operational use. 

We can deploy it in our business and make predictions. In our case, it will be ready for 

anomaly detection. 

4.4 Time series data 

Any data is a measurement of a set of entities at different instances of time. In 

order to perform data analysis, there are three different types of data that spike 

interest: 

a. Time series data: A series of recorded data points where any two consecutive 

points are recorded equidistant in time. For example, stock prices of a company 

collected over a continuous period of time, customer churn data, etc. 
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b. Cross sectional data: A series of recorded data of different entities at same 

instance of time. For example, stock prices of different companies at the same 

instance of time. 

c. Panel data: Panel data is a conjunction of time-series and cross-sectional data. 

It is a matrix of records of different entities at different instances of time where 

each row is a record of multiple entities at one time. Therefore, the rows are 

equidistant in time. In other words, it is a cross-sectional time series data. For 

example, stock prices of different companies at collected over a continuous 

period of time. 

We will deal with cross-sectional time series data which essentially means for 

different units of time in data, we will observe multiple qualities of data that define the 

data. These features will later be used as estimators in our machine learning model. 

4.5 Why perform time series analysis 

We analyze time series data assuming that there might be a repetitive pattern 

between the successive values in the data which were measured at equally spaced time 

intervals. It helps us differentiate between patterns and noise. Major two ways to 

explore time series data which coexist in the same training data: 

a. Analysis of Trend: As the name suggests, find components which change over 

time (either increase or decrease) and non-repetitive over the sample range. 

b. Seasonality Analysis: Seasonality repeats after some intervals of time. 

4.6 Time series modeling 

In the past, statistical techniques were used to analyze time series data. We use 

machine learning to analyze time series now because it ensures high interpretability, 
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realistic modeling in some cases, and less biased prediction. Machine learning is able 

to look past trend and seasonality issues in the data and achieve true AI. This is 

achieved with the help of feature engineering. Time series modeling, unlike general 

modeling, is independent of the length of training data. If we train on more data, the 

model might show overfitting. We use time series modeling in anomaly detection. The 

most effective ways to perform time series modeling are: 

 

a. ARIMA: As the name suggests, an Autoregressive Moving Average Model is 

an old statistical technique which is made up of two parameters: autoregressive 

and moving average. Along with stationary mean and variance, ARIMA is 

identified by stationary autocorrelation over time. This model is widely used in 

financial forecasting. 

b. LSTM: Long Short-Term Memory models are a special form of recurrent 

neural networks. Most neural networks including RNNs conventionally work 

using a feed-forward network, which is why they are good in making decisions, 

but they are not as good in understanding the underlying context and make 

aware AI. LSTMs are called so, because of their ability to hold previous 

information to make aware decisions. The below figure is a simplified version 

of an LSTM. 

http://deeplearning.net/tutorial/lstm.html
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Chapter 5 

CONCLUSION 

In this study, we have performed a comprehensive study of the network data 

stream. The packet stream has been observed in two ways, as set of fields as well as a 

pattern. As a result of this study, we have generated a detailed tree-like structure of 

features which represent a packet stream. Some of these features are directly observed 

in the stream, some are observed statistically from the stream and some are computed 

using detailed knowledge of the factors that may affect packets like entropy and 

compression. 

With the help of this study, we will address the issue of data security which is 

the universal problem of understanding all kinds of data flows. The future work after 

this study is to use the features calculated in the above tree as guidance and obtain 

knowledge about good and bad packets, and normal and abnormal flow of data. The 

streams which present as abnormal from normal flows will be labeled as anomalous 

and their behavior will be recorded for future use to detect more anomalies. 

To detect anomalous streams from the normal ones, we will approach these 

streams as time series datasets as packets arrive at a node sequentially in time. 

Regression analysis is one of the widely used ways to analyze such data. Another very 

effective way to analyze time series data is by using 1-Dimensional Convolutional 

Neural Networks. We use the power of neural network’s perceptibility and its 

generality of algorithms to make intelligent systems which will be able to detect 

abnormal patterns from the normal ones. 
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