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ABSTRACT

Conformal prediction uses the degree of strangeness (nonconformity) of new data

instances to determine the confidence values of new predictions. Conformal predictors

are implemented in conjunction with traditional pattern classification algorithms yield-

ing a set of predicted class labels with guaranteed error rate, a property referred to as

validity. Different from Bayesian methods, which require prior knowledge of the distri-

bution that generates the data, conformal prediction is only based on the assumption

that the data are independent and identically distributed.

Conformal prediction has been shown to improve the performance of pattern

classification algorithms, including support vector machines and neural networks,

through active learning. Instances are selected based on their level of uncertainty,

instead of being selected at random from an unlabeled pool. Moreover, the quality of

the confidence values produced by conformal prediction has been demonstrated in the

literature through experimentation, verifying the validity property.

Despite these advances, previous work on conformal prediction considers only

uncertainty as the selection criterion for active learning. Selecting a batch of m > 1

instances based only on uncertainty may result in the selection of similar instances that

do not provide additional information. Moreover, outlier detection is crucial to avoid

the selection of instances that are not representative of the data.

In light of the above, we propose novel active learning approaches, within the

conformal prediction framework, considering uncertainty, diversity, and representa-

tiveness, as the selection criteria. Diversity is used to avoid the selection of similar in-

stances, whereas representativeness is used for outlier detection. This work focuses on

the application of conformal prediction to image classification. Experiments conducted

xvi



on face, object, and emotion recognition databases demonstrate that the proposed ac-

tive learning approaches improve the performance of a variety of pattern classification

algorithms while producing reliable confidence values.
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Chapter 1

INTRODUCTION

Conformal prediction (CP) was proposed by Vovk, Shafer and Gammerman [1]

based on the principles of algorithmic randomness and transductive inference. CP

uses the degree of strangeness (nonconformity) of new data instances to determine

the confidence values of new predictions, which indicate the likelihood of a prediction

being correct. Predictions accompanied by confidence values are desirable, since they

provide information on the reliability of such predictions. Conformal predictors can be

implemented on top of traditional pattern classification algorithms, which are referred

to as underlying algorithms.

The CP framework yields a set of predicted class labels with guaranteed error

rate, a property referred to as validity, i.e., the probability that the correct class label

is excluded is less than a specified threshold. The applications of conformal predic-

tion include: breast cancer diagnosis, clinical diagnosis and prognosis of depression,

arrhythmia detection, and robust face recognition [2, 3, 4, 5].

Different methods have been proposed to obtain confidence values. The theory

of Probably Approximately Correct (PAC) learning provides bounds on the predictive

error [6]. However, PAC learning has two major drawbacks: first, the data must be

clean in order to avoid loose bounds [7], and, second, the bounds obtained through

PAC apply to the overall error rate rather than individual test instances.

The Bayesian framework can also be used to obtain confidence values. Bayesian

methods are optimal assuming correct knowledge on the generating prior. However, for

real world data, prior knowledge on the generating distribution is often not available.

Therefore, Bayesian approaches can lead to incorrect confidence values when their

1



assumptions are violated. This is experimentally demonstrated by Melluish et al.

in [8].

The CP framework, on the other hand, yields confidence values associated with

individual test instances, which is advantageous for online learning strategies. More-

over, unlike Bayesian methods, CP is only based on the assumption that the data

are independent and identically distributed. Therefore, no knowledge on the prior

is required. The disadvantage of traditional CP is the computational inefficiency of

transductive inference, which restricts its applicability.

Transductive conformal prediction for active learning has been reported in the

literature. Shen-Shyang Ho et al. [9] proposed the query by transduction, which sequen-

tially selects the most informative instances (uncertainty sampling) from the unlabeled

pool. Balasubramanian et al. [10] proposed a modified version of this technique, which

is known as the generalized query by transduction. The novelty of their approach lies in

the information indicator, which is based on eigendecomposition. The aforementioned

approaches have been shown to enhance the performance of incremental support vector

machines (SVM) with applications to image classification.

Although transductive inference is a promising active learning technique, its

major drawback is high computational complexity, since the underlying algorithm must

be trained every time a new instance is processed. This becomes computationally

prohibitive for any approach that requires significantly long training times.

Inductive conformal prediction emerged as an alternative to transductive in-

ference [1]. This approach only requires that the underlying algorithm be employed

once to generate a classification rule, which is then used for active or online learning.

Furthermore, inductive conformal prediction satisfies the validity property. The ap-

plication of inductive conformal predictors (ICP) to decision trees is studied in [11].

Papadopoulos et al. [12] applied ICP to neural networks, verifying the validity prop-

erty through experimentation. Moreover, the authors perform active learning based

on uncertainty (informativeness) to improve the performance of neural networks, with

applications to image classification. ICP for ensembles of neural networks is studied

2



Figure 1.1: Active learning categories.

in [13]. Although the efforts mentioned above are shown to enhance performance, those

techniques consider only uncertainty as the selection criterion for active learning, which

is only optimal for the selection of one instance at each iteration. Selecting a batch

of m > 1 instances based solely on uncertainty may result in the selection of similar

instances that do not provide additional information.

Active learning algorithms automatically select appropriate data instances to

train a classifier reducing the cost (human effort) associated with annotation. Active

learning has been extensively applied in domains like classification, image segmentation

and information retrieval [14, 15, 16, 17]. Active learning can be roughly divided into

two categories: online and pool based, as shown in Fig. 1.1. In online active learning,

the learner processes data instances sequentially, as they are observed, and the model

has to decide whether or not to query the observed instance to update the hypothesis.

Pool based active learning is further divided into serial query based active learning and

batch mode active learning. In a serial query based active learning system, the classifier

is updated after every single query [18, 19, 20]. This approach is time consuming since

the model needs to be retrained frequently. Batch mode active learning techniques
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address this issue by selecting multiple instances at a time from the unlabeled pool

for annotation [14, 21, 22]. This work focuses on batch mode active learning with

applications to image classification.

Batch mode active learning based on both uncertainty and diversity has been

shown to improve the performance of pattern classification algorithms [14, 16, 22, 23,

24, 25, 26, 27], avoiding the selection of similar instances that do not provide additional

information. Several approaches based on similarity measures have been proposed to

measure diversity [14, 28]. For instance, K. Brinker [14] proposes a diversity crite-

rion based on the cosine angle distance between two different instances. Z. Y. Gu et

al. [28] employ the Gaussian kernel to measure the similarity between two instances.

Xu et al. [21] apply clustering to measure diversity. Shi et al. [16] combine spatial

coherence with clustering to improve the performance of remote sensing image clas-

sification. Chakraborty et al. [26] combine entropy with diversity in a single query

function, solving the active leaning problem using quadratic optimization. However,

query functions based only on uncertainty and diversity may lead to the selection of

outliers that are not representative of the data. Uncertainty and information density

(representativeness) have been combined in a single query function to select instances

that are both informative and representative [17, 29, 30, 31, 32, 33]. Li et al. [30]

propose a systematic way for measuring and combining uncertainty and representa-

tiveness of unlabeled instances for active learning. Wang et al. [32] combine clustering

with active/semi-supervised learning to select instances that are representative and dis-

criminative. Du et al. [33] derive a robust multi-label active learning algorithm based

on the maximum correntropy criterion, merging uncertainty and representativeness in

a single optimization problem.

Figure 1.2 divides batch mode active learning mode into work considering un-

certainty, diversity, and representativeness. Several authors are placed in the areas

where they have made contributions. The question mark in the region where the three

criteria overlap indicates that there is little work considering uncertainty, diversity,

and representativeness jointly. Recent work by Wang et al. [34] combine the three
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Figure 1.2: Related work on batch mode active learning.

aforementioned criteria via sparse modeling for active learning, however, they consider

only SVMs. Kee et al. [35] use a weighted sum of three terms, associated with uncer-

tainty, diversity, and representativeness, as a query function for active learning, using

random forest as the classifier. Distance metric learning (DML) has recently gained

interest in a variety of applications including clustering, classification, and information

retrieval [36, 37, 38, 39, 40]. DML produces similarity measures (transformations) that

minimize the difference (e.g. distance/correlation) of within-class instances and maxi-

mize the difference of between-class instances. The performance of k-means clustering

is enhanced through DML in [36, 40]. Weinberger et al. [37] propose a large-margin
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DML algorithm based on the Mahalanobis distance to improve the performance of

k-nearest neighbor classification.

Machine learning algorithms, such as support vector machines (SVMs), sparse

coding, and convolutional neural networks (CNNs), have recently gained interest in a

variety of problems in image processing and computer vision, including face recognition,

classification, and image denoising [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. Support

vector machines have received ample treatment being both theoretically well founded

and showing excellent generalization performance in practice [41, 42]. Sparse coding

algorithms incorporating class label information in the objective function have been

show to produce state-of-the-art results for image classification [43, 51]. Moreover,

CNNs have led to a series of breakthroughs in image classification. LeCun et al. [46]

developed a multilayer CNN, referred to as LeNet-5, for classification of handwritten

digits. Krizhevsky et al. [52] propose a classic CNN architecture, referred to as AlexNet,

showing significant improvements upon previous methods for image classification.

Despite these advances, traditional pattern classification algorithms produce

simple predictions, without any associated confidence values. Therefore, they re-

quire modifications, or additional techniques to be implemented in conjunction with

them [53, 54, 55] to perform active learning, since confidence values and a measure of

uncertainty are required for that purpose. Moreover, references to active learning con-

sidering uncertainty, diversity, and representativeness jointly as the selection criteria

are limited in the literature, that is, the majority of existing active learning techniques

are prone to either selecting outliers, when representativeness is left out, or similar (re-

dundant) instances, when diversity is not considered. Last but not least, as uncertainty

measures differ from each other across different types of classifiers, it becomes difficult

to implement the same active learning technique over different pattern classification

algorithms without performing modifications.

In light of the above, we propose novel active learning approaches, within the

conformal prediction framework, considering uncertainty, diversity, and representa-

tiveness, as the selection criteria. Diversity is uased to avoid the selection of similar
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instances, whereas representativeness is used for outlier detection. We improve upon

previous work on active learning, including that of K. Brinker [14], B. Demir et al. [22],

and Chakraborty et al. [26]. This work focuses on the application of conformal pre-

diction to image classification. By using the CP framework, the proposed techniques

offer two advantages: 1) they are flexible across different pattern classification algo-

rithms, since CP produces uncertainty measures that are normalized, regardless of the

type classifier being used, 2) in addition to performance enhancement, the proposed

approaches produce reliable confidence values.

This work is organized as follows. First, an introduction to conformal prediction,

active learning, and the considered databases is presented in Chapter 2. Conformal

prediction based active learning for sparse coding classifiers is described in Chapter 3.

An active learning algorithm for convolutional neural networks is presented in Chap-

ter 4. Conformal prediction based active learning by linear regression and by nonlinear

constrained optimization is described in Chapter 5 and Chapter 6, respectively.
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Chapter 2

BACKGROUND

2.1 Conformal prediction

CP uses the nonconformity of new data instances to determine the confidence

values of new predictions. For an arbitrary significance level ǫ ∈ [0, 1], CP yields a set

Ψǫ containing the correct class label of a given data instance with probability (1− ǫ),

a property referred to as validity [56]. Define a bag of size n ∈ R as a collection of n

elements, some of which may be identical with each other. Let that bag be denoted

as Hz1, . . . , znI. Define zi = (xi, hi), where xi represents a data instance and hi its

corresponding class label.

A nonconformity measure A(Hz1, . . . , znI, z) is a function producing a noncon-

formity score α ∈ R, representing how different z is from the elements in the bag

Hz1, . . . , znI. The nonconformity score of an element zi in Hz1, . . . , znI is obtained as

αi = A(Hz1, . . . , zi−1, zi+1, . . . , znI, zi).

In addition, we can measure the conformity of xn+j to class q using p-values,

which are defined as [1]:

p(α
(Hq)
n+j ) =

count{i : αi > α
(Hq)
n+j }

n+ 1
, (2.1)

where α
(Hq)
n+j is the nonconformity score of xn+j, under the null hypothesis Hq, and

p(α
(Hq)
n+j ) is its p-value. Notice that the p-value is highest when all previous nonconfor-

mity scores, α1, . . . αn, are higher than that of the new instance, α
(Hq)
n+j , meaning that

xn+j best conforms to class q. CP uses Equation (2.1) to predict the label for xn+j

using the highest p-value. In addition, for each new instance xn+j and significance level
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ǫ ∈ [0, 1], we form a set of labels Ψǫ
n+j = {i : p(α(Hi)

n+j ) > ǫ} containing the correct class

label for xn+j with probability (1− ǫ), according to the validity property.

The p-values are also used to compute the quality of information [18, 10] . Ho

and Wechsler [18] define the quality of information (confidence) of instance xn+j as

s(xn+j) = p
(1)
n+j − p

(2)
n+j, (2.2)

where p
(1)
n+j and p

(2)
n+j are the largest and second largest p-values for instance xn+j,

respectively. The uncertainty of an instance xn+j, within the CP framework, can be

defined as:

I(xn+j) = 1− s(xn+j). (2.3)

Conformal predictors can be divided in two types: transductive and inductive.

A detailed description of these two approaches is provided below.

2.1.0.1 Transductive Conformal Predictors

Transductive predictors use the actual training set together with a new instance

to make a prediction. Let xn+j be the new instance, j ∈ {1, 2, . . .}, M the number of

classes, and n the size of the training set. The steps followed by transductive conformal

predictors are described below.

• Apply the underlying algorithm to each one of the possible completions

(x1, h1), . . . , (xn, hn), (xn+j,Hi) , for i = 1, . . . ,M.

• For every null hypothesis Hi, assign a nonconformity score to the training in-
stances (x1, h1), . . . , (xn, hn) and to the pair (xn+j,Hi). This results in the se-
quences

α
(Hi)
1 , . . . , α(Hi)

n , α
(Hi)
n+j , for i = 1, . . . ,M.

• Compute the p-value for xn+j based on all possible null hypothesesHi by applying

(2.1) to the sequences α
(Hi)
1 , . . . , α

(Hi)
n , α

(Hi)
n+j .

• Predict the classification with the largest p-value and calculate the quality of
information I(xn+j).
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Notice that this approach applies the underlying algorithm M times every time a new

instance is processed, which is computationally intensive.

2.1.0.2 Inductive Conformal Predictors

Inductive predictors first learn a classification rule, which is then used to make

new predictions. Therefore, the underlying algorithm is applied only once, saving

significant computation time. For a new instance xn+j, ICPs perform the following

steps:

• Split the training set of size n into two smaller sets, the proper training set of
size ℓ = n − r and the calibration set of size r, where r is a parameter of the
algorithm.

• Employ the proper training set (z1, . . . , zℓ) to generate a classification ruleD(z1,...,zℓ)

using the underlying algorithm.

• Assign a nonconformity score to each one of the instances in the calibration set
(using the correct label for each instance). This results in the sequence

αℓ+1, . . . , αℓ+r.

• Compute the p-values for xn+j for all possible null hypotheses Hi by applying
(2.1) to the sequences

αℓ, . . . , αℓ+r, α
(Hi)
n+j , for i = 1, . . . ,M.

• Predict the classification with the largest p-value and calculate the quality of
information I(xn+j).

Notice that in inductive conformal prediction the first three steps need only be per-

formed once.

2.1.1 Query Functions for Active learning

A variety of query functions have been studied in the literature to the select

unlabeled instances [14, 22, 28, 29, 30, 57, 58]. A brief summary of some of the most

popular selection criteria is presented below.
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2.1.1.1 Multiclass-level Uncertainty (MCLU)

The MCLU criterion selects the unlabeled instances that have maximum un-

certainty (minimum confidence) about their correct label among all instances in the

unlabeled pool. For instance, let us consider a SVM classifier. The confidence value

associated with xj, denoted as cj , can be computed as cj = d
(1)
j − d

(2)
j [14], where d

(1)
j

and d
(2)
j are the largest and second largest Euclidean distances from an instance xj to

the separating hyperplanes, respectively.

In the CP framework, the uncertainty given by equation (2.3) is equivalent to

the confidence value cj. Several works, including [9, 12, 11], have successfully applied

active learning to ICPs based on the uncertainty criterion.

2.1.1.2 Cluster Based Diversity (CBD)

Clustering techniques group similar instances into the same clusters. Since the

instances within the same cluster are correlated and provide similar information, a

representative instance is selected for each cluster. In [59], k-means is used to obtain

a number of clusters equal to the number of instances to be selected, denoted as NAL.

The instance closest to each of the cluster centers is selected.

2.1.1.3 Combination of Uncertainty and Diversity

Uncertainty and diversity can be used jointly to enhance the performance of

active learning [14, 22, 28].

The following optimization problem combines uncertainty and diversity in a

unique query function

xt = argmin
xi∈Tu/Td

{

ρ|cj |+ (1− ρ) max
xj∈Td

S(·)(xi,xj)

}

, (2.4)

where S(·)(xi,xj) is a similarity measure, Td contains the set of selected instances for

training (the most uncertain and diverse), Tu denotes the set containing the L ≤ |U |
most uncertain instances, Tu/Td represents the set of instances of Tu that are not
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contained in the current set Td, S(·)(xi,xj) represents a similarity measure applied to

instances xi, and xj, and ρ ∈ [0, 1] provides the tradeoff between uncertainty and

diversity. The first instance of Td is selected as the most uncertain instance in Tu. The

algorithm stops when the number of selected instances in Td is equal to the number of

desired instances NAL.

A variety of similarity measures have been used in the literature for active

learning [14, 22, 28]. Brinker et al. [14] use the cosine angle distance to measure the

similarity between instances xi and xj , whereas Gu et al. [28] employ the Gaussian

kernel.

2.1.2 Generalized Batch Mode Active Learning

Chakraborty et. al. [26] solve the active learning problem through quadratic

optimization. Let wt be the classification rule at time t, U be the unlabeled pool, Td

be a set containing the selected unlabeled instances at time t, and define C as the

possible number of classes. The relevance of an instance is given by the following

expression:

r(Td) =
∑

i∈Td

ρi − λ
∑

i∈U/Td

E(h|xi, w
t+1), (2.5)

where E = −∑h∈C P (h|xi, w
t+1) logP (h|xi, w

t+1) is the entropy, U/Td represents the

set of instances of U that are not contained in the current set Td, and λ is a tradeoff

parameter. The term ρi is computed as the average distance of instance xi to the

instances in Td. Once the relevance of all instances in U is found, the top NAL most

relevant instances are selected.

2.1.3 Representativeness using the Gaussian Framework

X. Li et al. [30] measure representativeness (information density) through en-

tropy within a Gaussian process framework. Let Ui denote the index set of unlabeled

instances after removing label i, and assume U = {1, 2, . . . , m}. Let K(·) be a positive
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semidefinite kernel, such as the Gaussian kernel [28]. Define the covariance matrix

ΣUiUi
as:

ΣUiUi
=









K(xi,xi) . . . K(xm,xi)
...

. . .
...

K(xi,xm) . . . K(xm,xm)









. (2.6)

The information density for instance xi can be calculated as:

DGF (xi) = 0.5 ln
(

−σ2
i /σ

2
i|Ui

)

, (2.7)

where σ2
i = K(xi,xi), and σ2

i|Ui
= σ2

i −ΣiUi
Σ−1

UiUi
ΣUii. The matrix Σ−1

UiUi
can be efficiently

computed from Σ−1
UU , without matrix inversion, using the algorithm described in [60].

2.1.4 Representativeness through k-Nearest Neighbors

The representativeness of an instance xi, denoted as di, in the unlabeled pool

can be computed using the distance between xi and its k-nearest neighbors, denoted

as z
(j)
i [61], for j = 1, . . . , k. Define the value d̂i, associated with instance xi, as:

d̂i =
k∑

n=1

∥
∥
∥xi − z

(n)
i

∥
∥
∥

2

2
. (2.8)

Notice that the value d̂i will be low if instance xi is close to its k-nearest neigh-

bors (densely populated region, low penalty). Conversely, the value d̂i will be high if

instance xi is far from its k-nearest neighbors (sparsely populated region, high penalty).

Let n be the size of the unlabeled pool, and let dmax = max {di}, for i = 1, 2, . . . , n.

The normalized representativeness of instance xi, denoted as di, can be computed as:

di = d̂i/dmax. (2.9)
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2.2 Distance Metric Learning (DML)

Let
{
(xi, hi)

}n

i=1
be a set of n instances xi ∈ R

K×1 with their corresponding class

labels hi. DML attempts to obtain a linear transformation L ∈ R
K×K maximizing the

distances between examples belonging to different classes and minimizing the distances

of examples within the same class. The original examples are then mapped onto a

transformed space as yi = Lxi. Define M = LTL, the distance between two vectors

can be calculated as:

dM(xi,xj) = (xi − xj)
TM(xi − xj), (2.10)

where dM(·) and M ∈ R
K×K are referred to as Mahalanobis distance and Mahalanobis

matrix, respectively [37, 62]. The matrix M is required to be symmetric and positive

semidefinite (M � 0). Bar-Hillel et al. [62] propose Relevant Component Analysis

(RCA) to learn a Mahalanobis matrix M. Weinberger et al. [37] propose to learn

a Mahalanobis distance metric for k-nearest neighbor classification by semidefinite

programming, referring to this approach as LMNN. The Mahalanobis matrix M is

obtained solving the following optimization problem:

max
M

∑

ij

ηij(xi − xj)
TM(xi − xj) + c

∑

ij

ηij(1− hil)ξijl

subject to:

1. (xi − xl)
TM(xi − xl)− (xi − xj)

TM(xi − xj) ≥ 1− ξijl

2. ξijl ≥ 0

3. M � 0, (2.11)

where ηij ∈ {0, 1} indicate whether input xi is a target neighbor of input xj , the binary

matrix hij ∈ {0, 1} indicates whether or not the labels hi and hj match. The hinge

loss function is modeled by introducing the slack variables ξij for all pairs of differently

labeled inputs, i.e., for all 〈i, j〉 such that yij = 0. The LMNN solver is based on a
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(a) (b)

Figure 2.1: Images from (a) Extended YaleB database and (b) AR database.

combination of sub-gradient descent in both the matrices L and M, the latter used

mainly to verify convergence. The updates in M are projected back onto the positive

semidefinite cone after each step [37].

2.3 Image Database Description

Two face databases are considered in this work, the Extended YaleB database

[63] and the AR face database [64], along with one object recognition database, Cal-

tech101 [65], and one emotion recognition database, Oulu-CASIA NIR&VIS facial ex-

pression [66]. We describe each one of the databases below.

2.3.1 Extended YaleB Database

The Extended YaleB database consists of 2,414 frontal-face images of 38 people

(38 different classes) taken under varying lightning conditions. There are about 64

images for each person. The images are cropped to 192 × 168 pixels and normalized.

Example images from the Extended YaleB database are shown in Fig. 2.1(a).

2.3.2 AR Database

The AR database contains over 4,000 frontal-face images of 100 people (100

different classes), each of size 165× 120. Compared to the Extended Yale B database,

these images include more facial variations and also facial disguises, such as sunglasses
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(a) ketch

(b) llama

(c) lotus

(d) gramophone

(e) lamp

Figure 2.2: Images from the Caltech101 database.

and scarves, which makes classification more challenging. Example images from the

AR database are shown in Fig. 2.1(b).

2.3.3 Caltech101

The Caltech101 dataset [65] contains 9,144 images from 102 classes (101 object

classes and a background class) including animals, vehicles, flowers, etc. The samples

within the same category display considerable shape variability. The number of images

in each category varies from 31 to 800. Example images from the Caltech101 database

are shown in Fig. 2.2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.3: Images from the Oulu-CASIA database. Subject 2: (a) angry, (b) disgust,
(c) fear, (d) happy, (e) surprise, (f) sad. Subject: 38 (g) angry, (h)
disgust, (i) fear, (j) happy, (k) surprise, (l) sad.

2.3.4 Oulu-CASIA NIR&VIS database

The Oulu-CASIA NIR&VIS facial expression database [66] consists of six expres-

sions (surprise, happiness, sadness, anger, fear, and disgust) from 80 people between

23 to 58 years old. The imaging hardware works at rate of 25 frames per second and
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image resolution is 320 × 240 pixels. All expressions are captured in three different

illumination conditions: normal, weak and dark. The number of video sequences is

480 (80 subjects by six expressions) for each illumination and imaging system pair,

so totally there are 2880 (480 × 6) video sequences in the database. Example images

extracted from the video snippets are shown in Fig. 2.3.
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Chapter 3

CONFORMAL PREDICTION BASED ACTIVE LEARNING FOR
SPARSE CODING CLASSIFIERS

Two types of DL approaches are considered in this work: synthesis dictionary

learning (SDL), and dictionary pair learning (DPL). The two aforementioned tech-

niques are briefly introduced in this section. For the following definitions, letY ∈ R
N×n

be a matrix composed of n training vectors y ∈ R
N×1, X ∈ R

K×n be a matrix com-

posed of vectors x ∈ R
K×1, which are the sparse representations of the training vectors

in matrix Y, and M be the number of classes. Let D ∈ R
N×K be the dictionary,

constituted by K atoms d ∈ R
N×1 that are the columns of D.

3.1 Synthesis Dictionary Learning

A reconstructive dictionary D ∈ R
N×K is learned by solving < X,D >=

argmin
X,D ‖Y−DX‖2F . This optimization problem is solved by alternating between

the updates of D and X [67]. LC-KSVD [43] and LC-RLSDLA [51] use an augmented

version of matrix Y, including the class label information, to simultaneously obtain a

linear classifier W ∈ R
M×K . Define u = [u1, . . . , uM ]T = Wx. The predicted label for

x is obtained as ĥ = argmaxj uj, for j = 1, . . . ,M .

3.2 Dictionary Pair Learning

DPL [68, 47] learns M synthesis dictionaries Dj ∈ R
N×K , and M analysis dic-

tionaries Pj ∈ R
K×N (j = 1, . . . ,M). DPL solves the following optimization problem:

< P,D >= argmin
P,D

∑M
j=1

∥
∥Yj −DjPjYj

∥
∥2

F
+
∥
∥PjȲj

∥
∥2

2
, where Yj is a matrix con-

taining the training vectors of class j, and Ȳj is a the complementary data matrix ofYj .

Define vj =
∥
∥x−DjPjx

∥
∥
2
. The predicted label for x is obtained as ĥ = argminj vj ,

for j = 1, . . . ,M .
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3.3 CPAL-SCC: Conformal Prediction Based Active Learning for Sparse

Coding Classifiers

We propose an active learning algorithm within de CP framework, referred to

as CPAL-SCC, in which instances are selected from an unlabeled pool based on two

criteria, uncertainty and diversity. In the remainder of this section the proposed non-

conformity measures and query function are introduced, and the CPAL-SCC algorithm

is described.

3.3.1 CPAL-SCC Nonconformity Measures

We propose two nonconformity measures, the first one is designed for SDL,

and the second one for DPL. A description of the nonconformity measures is provided

below.

3.3.1.1 Nonconformity measure for SDL

Let W ∈ R
M×K be a linear classifier, for M distinct class labels, constituted

by row vectors wq ∈ R
K , q ∈ {1, 2, . . . ,M}. Define ŵq = wq/

∥
∥wq

∥
∥. The proposed

nonconformity measure for SDL under the null hypothesis Hq is given by

A
(Hq)
SDL := −ŵqx+

1

M − 1

∑

i 6=q

ŵix, (3.1)

3.3.1.2 Nonconformity measure for DPL

Let Dj ∈ R
N×K , and Pj ∈ R

K×N be the synthesis and analysis dictionaries for

class j (j = 1, . . . ,M), respectively. The proposed nonconformity measure for DPL

under the null hypothesis Hq is given by

A
(Hq)
DPL :=

∥
∥x−DqPqx

∥
∥
2
− 1

M − 1

∑

i 6=q

‖x−DiPix‖2 , (3.2)

Assuming that the classifiers are accurate and the null hypothesis Hq is true, the

values of A
(Hq)
SDL, and A

(Hq)
DPL will decrease (it may become negative for SDL), indicating
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Algorithm 1 CPAL-SCC
1: Input: Proper training set Tprop = {z1, ..., zℓ}, calibration set Tcal = {zℓ+1, ..., zℓ+r}, unlabeled

pool U = {xn+1, . . . ,xn+v}, classification rule Cprop, number of desired instances NAL, and num-
ber of class labels M

2: Use Equation (3.1) or (3.2) and the classification rule Cprop to calculate:

• The nonconformity scores {αℓ+1, . . . , αℓ+r} corresponding to the instances
in the calibration set.

• The nonconformity scores {αHi

n+1, . . . , α
Hi
n+v} corresponding to the instances

in the unlabeled pool, where i = {1, . . . ,M}
3: Use Equation (2.1) to calculate the p-values associated with the instances in U , and obtain

their confidence s(xn+j) through equation (2.2), where j ∈ {1, . . . , v}
4: Apply equation (3.3) to select NAL most uncertain and diverse instances in the unlabeled pool.

Then group such instances and their corresponding class labels as Td = {zd1 , . . . , zdNAL
}

5: Construct TAL = Tprop ∪ Td

6: Output: TAL

that x conforms to class q. Conversely, if the null hypothesis is false, the value of A
(Hq)
SDL,

and A
(Hq)
LM will tend increase, indicating that x does not conform to that particular class.

3.3.2 CPAL-SCC Query Function

Different from previous work on ICP [12, 13], the proposed approach considers

both uncertainty and diversity as the selection criteria for active learning. The proposed

query function is given by

xt = argmin
xi∈Ti/Td






ρs(xi) + (1− ρ) max

xj∈Td

[

|xi · xj|
‖xi‖‖xj‖

]





, (3.3)

where U , Td and, U/Td are the sets containing the instances in U , the instances selected

for training, and the instances in U that are not contained in Td, respectively. Diversity

is measured by the second term using cosine angle distance [14]. The parameter ρ

provides the trade-off between uncertainty and diversity. The first instance of Td is

selected as the instance with the highest uncertainty in Ti. The algorithm stops when

the number of selected instances in Td is equal to the desired number NAL.

3.3.3 CPAL-SCC Algorithm

CPAL-SCC selects the most uncertain and diverse instances from an unlabeled

pool using the proposed query function described in (3.3). The selected instances,

21



along with their corresponding class labels, are used in a subsequent training stage to

improve performance, instead of relying on instances that are selected at random.

Define Ttrain = {z1, ..., zn} as the training set and U = {xn+1, . . . ,xn+v} as

the unlabeled pool. Following the steps described for ICP in [1], we split Ttrain into

Tprop = {z1, ..., zℓ}, the proper training set, and Tcal = {zℓ+1, ..., zℓ+r}, the calibration

set, where the size of the training set satisfies n = ℓ+ r. Let Cprop be the classification

rule obtained through the underlying algorithm employing only Tprop. Let NAL and M

be the number of desired instances from U and the number of class labels, respectively.

Let TAL = Tprop∪ Td, where Td = {zs1, . . . , zsNAL
} is the set of pairs containing the NAL

most uncertain and diverse instances in U and their corresponding class labels. The

proposed active learning approach is summarized in Algorithm 1.

3.4 Experimental Results

The focus of CPAL-SCC is twofold: 1) to improve the performance of sparse

coding classifiers through active learning; and 2) to produce reliable confidence val-

ues. Therefore, CPAL-SCC is to evaluated based on the improvement achieved in

classification performance and the quality of the produced confidence values.

3.4.1 Experimental Setup

The performance of CPAL-SCC is evaluated using two different sparse coding

algorithms: LC-KSVD [43], and DPL [68]. The baseline for our experiments is random

sampling. Experiments are conducted on the Extended YaleB, AR, and Caltech 101

databases. The feature descriptors are used for the Extended YaleB and AR databases

are randomfaces of size N = 504 and N = 540, respectively. For Caltech101, SIFT

descriptors are first extracted. Next, spatial pyramid features, based on the SIFT

descriptors, are obtained. The dimension of the spatial pyramid features is then reduced

to 3000 through PCA [43].

For each of the experiments, 5 trials are conducted. In each trial, the order of

the training instances is permuted. The average classification accuracy is presented.

22



The number of images per class in the proper training set for the Extended YaleB, AR,

and Caltech101 databases is 8, 5, and 5, respectively. The calibration set consists of

199 instances, which results in a resolution of 0.5% in the confidence values, according

to (2.1). Optimization is performed over the parameter ρ through exhaustive search,

and the best results are presented.

3.4.2 Results: CPAL-SCC for Active Learning

The performance improvement obtained through CPAL-SCC is compared with

that of: random sampling, active learning based on uncertainty [9, 12, 13], and MCLU-

ECDB [22], which are denoted as (rnd), AL(MCLU), and AL(MCLU-ECDB) respec-

tively. The performance of LC-KSVD and DPL as a function of the number of se-

lected instances NAL, for the different databases and query functions, is shown in

Fig. 3.1, 3.2, and 3.3. It is observed that the performance of both algorithms is im-

proved when CPAL-SCC is used, for all the considered databases.

Table 3.1 shows that for the Extended YaleB database (DPL, NAL = 200) the

performance of (rnd), AL(MCLU), and AL(MCLU-ECDB) is 92.3%, 95.8%, and 96.2%,

respectively, whereas that of CPAL-SCC is 96.9%.

For the AR database (LC-KSVD, NAL = 300), it is observed in Table 3.1 that

the classification accuracy of (rnd), AL(MCLU), and AL(MCLU-ECDB) is 74.0%,

77.9%, and 78.1%, respectively, whereas that of CPAL-SCC is 79.9%.

Similarly, for Caltech101 (DPL, NAL = 200), Table 3.1 shows that for DPL, the

classification accuracy of (rnd), AL(MCLU), and AL(MCLU-ECDB) is 50.8%, 51.1%,

and 51.5%, respectively, whereas that of CPAL-SCC is 52.5%.

The effect of the parameter ρ on the performance of LC-KSVD (AR database)

is shown in Fig. 3.4. Notice that ρ has to be optimized for the each value of NAL.

Similar results are obtained for the YaleB, and Caltech101 databases.
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Figure 3.1: Classification accuracy (%) for DPL and LC-KSVD as a function of NAL,
YaleB (K = 380).
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Figure 3.2: Classification accuracy (%) for DPL and LC-KSVD as a function of NAL,
AR (K = 400).
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Figure 3.3: Classification accuracy (%) for DPL and LC-KSVD as a function of NAL,
Caltech101 (K = 510).
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Figure 3.4: Effect of ρ on the performance of LC-KSVD (AR).
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Table 3.1: Classification accuracy (%) for different query functions as a function of
the number of selected instances NAL.

Algorithm Query func.

YaleB AR Cal101

NAL NAL NAL

200 300 200 300 200 300

LC-KSVD

(rnd)
AL(MCLU)

AL(MCLU-ECBD)
CPAL-SCC

86.9
90.1
90.7
91.9

87.6
91.4
91.8
92.5

73.5
76.5
76.8
77.6

74.0
77.9
78.1
79.9

51.3
51.1
51.4
51.7

51.4
51.3
51.6
51.8

DPL

(rnd)
AL(MCLU)

AL(MCLU-ECBD)
CPAL-SCC

92.3
95.8
96.2
96.9

93.7
97.3
97.4
97.9

88.3
91.0
91.3
92.4

89.9
92.4
92.9
93.9

50.8
51.1
51.5
52.5

51.4
51.5
52.1
52.6

Table 3.2: Experimental results of the validity property.

Algorithm Confidence (%)
Error (%)

YaleB AR Cal101

LC-KSVD
95
90
85

4.8
10.0
15.5

4.7
12.2
15.9

3.9
9.9
14.3

DPL
95
90
85

5.1
10.4
15.8

5.7
11.7
16.2

4.2
9.2
15.6

3.5 Chapter Conclusion

In this chapter we propose a conformal prediction based active learning algo-

rithm for sparse coding classifiers, referred to as CPAL-SCC, which considers uncer-

tainty and diversity as the selection criteria. Moreover, two nonconformity measures,

one for synthesis dictionary learning, and the other one for dictionary pair learning are

proposed. Experiments conducted on face and object recognition databases demon-

strate that CPAL-SCC improves the classification accuracy of state-of-the-art dictio-

nary learning algorithms, while producing reliable confidence values.

In the following chapter the concepts of distance metric learning and repre-

sentativeness are introduced to further improve the performance of active learning.
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Moreover, a nonconformity measure for convolutional neural networks is presented.
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Chapter 4

CONFORMAL PREDICTION BASED ACTIVE LEARNING FOR
CONVOLUTIONAL NEURAL NETWORKS

We propose an active learning algorithm within de CP framework, referred

to as CPAL-CNN, which uses a novel nonconformity measure that produces reliable

confidence values. CPAL-CNN selects instances from an unlabeled pool based on

the evaluation of three criteria: uncertainty, diversity, and representativeness. In the

remainder of this section the proposed nonconformity measure and query function are

introduced, and the CPAL-CNN algorithm is described.

4.1 CPAL-CNN Nonconformity Measure

Consider a CNN with M ouputs, corresponding to M different class labels.

Let xj be an input instance, and hj ∈ {1, . . . ,M} be its corresponding class label

(j = 1, 2, . . . ). Let the outputs of the CNN satisfy o
(i)
j = P (hj = i|xj ,ΘΘΘ), where ΘΘΘ

represents the parameters of the CNN, i.e., the predicted class is given by the expresion

maxi=1,...,M o
(i)
j , and the outputs satisfy

∑M
i=1 o

(i)
j = 1. The proposed nonconformity

measure is given by:

A
(Hq)
CNN := 1− γo

(q)
j + (1− γ) max

i=1,...,M,i 6=q
o
(i)
j , (4.1)

where A
(Hq)
CNN represents the proposed nonconformity measure under the null hypothesis

Hq. The second term in Equation (4.1) represents the q-th output of the CNN for

an input instance xj (j = 1, 2, . . . ). The third term represents the output with the

highest value, different from the q-th output, taken from the remaining M −1 outputs.

Assuming that the CNN is accurate and the null hypothesis Hq is true, the second
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term in equation (4.1) will be large, preceded by a negative sign, outweighing the

positive third term, meaning that instance xj conforms to class q. Conversely, if the

null hypothesis is false, the third term in (4.1) will tend to outweigh the second term,

indicating that xj does not conform to that particular class. The term γ ∈ [0, 1] is

introduced to provide a tradeoff between the importance of the second and third terms.

Notice that the hinge and margin nonconformity measures are special cases of (4.1),

when γ = 1 and γ = 0.5, respectively.

4.2 CPAL-CNN Query Function

The proposed query function selects instances from the unlabeled pool based on

the evaluation of three criteria: uncertainty, diversity, and representativeness (informa-

tion density). Different from previous work on active learning, the proposed query func-

tion measures diversity and information density in a reduced space, obtained through

Principal Component Analysis (PCA), thereby reducing the computational burden and

allowing the use of DML techniques [62, 37]. In particular, LMNN [37] is utilized to ob-

tain the Mahalanobis matrixM that adapts to the statistics of the database being used,

which is then used to measure the similarity between different instances. Moreover,

representativeness is considered to remove possible outliers in the selection process.

We adapt the query function given by equation (2.4) to the CP framework. The term

cj is replaced by the confidence s(·), which is defined in equation (2.2), and two more

terms, associated with diversity and representativeness, are also considered. Let x̃i

denote the low-dimensional representation of instance xi, obtained through PCA. The

proposed query function is given by

xt = argmin
xi∈U/Td

{

(1− α− β)s(xi) + α max
xj∈Td

SM(x̃i, x̃j)− βD(x̃i)

}

, (4.2)

where SM(x̃i, x̃j) measures the similarity between the low-dimensional vectors x̃i and

x̃j using the Mahalanobis matrix M, obtained through LMNN. The term SM(xi,xj)
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Algorithm 2 CPAL-CNN
1: Input: Proper training set Tprop = {z1, ..., zℓ}, calibration set Tcal = {zℓ+1, ..., zℓ+r}, un-

labeled pool U = {xn+1, . . . ,xn+v}, CNN parameters ΘΘΘprop, number of desired instances
NAL, and number of class labels M

2: Perform PCA to obtain the low-dimensional representations of Tprop and U , denoted as
T̃prop and Ũ , respectively

3: Compute information density for the instances in Ũ , as described in equation (2.7)
4: Use LMNN to obtain the Mahalanobis matrix M, employing the low-dimensional train-

ing set T̃M = T̃prop ∪ T̃D (DML is performed on a set containing instances that are
representative of the data)

5: Use equation (4.1) along with the parameters ΘΘΘprop to calculate:

• The nonconformity scores {αℓ+1, . . . , αℓ+r} corresponding to the instances
in the calibration set.

• The nonconformity scores {αHi

n+1, . . . , α
Hi
n+v} corresponding to the instances

in the unlabeled pool, where i = {1, . . . ,M}
6: Use Equation (2.1) to calculate the p-values associated with the instances in U , and

obtain their confidence s(xn+j) through equation (2.2), where j ∈ {1, . . . , v}
7: Apply equation (4.2) to select NAL instances based on uncertainty, diversity, and

information density. Then group those instances and their corresponding labels as
Td = {zd1 , . . . , zdNAL

}
8: Construct TAL = Tprop ∪ Td

9: Output: TAL

is defined as

SM(xi,xj) = exp

(

−(xi − xj)
TM(xi − xj)

2σ

)

. (4.3)

where σ is a hyperparameter to be optimized. The terms U , Td and, U/Td in (4.2)

denote the unlabeled pool, the current set of instances selected for training, and the set

of instances of U that are not contained in the current set Td, respectively. The param-

eters {α, β ∈ [0, 1] | α + β ≤ 1} provide a tradeoff between uncertainty, diversity, and

representativeness. Representativeness is calculated using the Gaussian framework, as

described by equation (2.7). The first instance of Td is selected as the most informative

instance in U . The algorithm stops when the number of selected instances in Td is

equal to NAL.
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4.3 CPAL-CNN Algorithm

We propose an active learning algorithm for convolutional neural networks

within the CP framework. First, we split the training set into the proper training

set, and the calibration set, as described in Section 2. Then, the nonconformity scores

of the instances in calibration set and the unlabeled pool are computed using equa-

tion (4.1). The nonconformity scores are used to compute the p-values and the con-

fidence of the instances in the unlabeled pool according to equation (2.1) and (2.2),

respectively. The low-dimensional representation of the instances in the unlabeled

pool is obtained through PCA, and the information density is measured within the

Gaussian framework, using equation (2.7). DML is performed in the reduced space

to obtain the Mahalanobis matrix M. Dimensionality reduction, DML, and the com-

putation of information density need only be performed once at the beginning of the

algorithm. Then, instances are selected from the unlabeled pool through the query

function described by equation (4.2), which considers uncertainty, diversity, and infor-

mation density. We derive the active learning mode for the offline setting, meaning

that the entire unlabeled pool is used as a batch.

Define Ttrain = {z1, ..., zn} as the training set, U = {xn+1, . . . ,xn+v} as the

unlabeled pool. Following the steps described for ICPs in Section 2, we split Ttrain into

Tprop = {z1, ..., zℓ}, the proper training set, and Tcal = {zℓ+1, ..., zℓ+r}, the calibration

set, where the size of the training set satisfies n = ℓ + r. Let T̃prop and Ũ be the low-

dimensional representation of the sets Tprop and U obtained through PCA, respectively.

Let ΘΘΘprop represent the parameters of the CNN obtained employing Tprop for training.

Let NAL and M be the number of desired instances from U and the number of class

labels, respectively. Define T̃M = T̃prop∪ T̃D, where T̃D is the set of pairs containing the

NAL instances with the highest information density from Ũ , i.e., the instances in T̃D

are representative of the data and do not lie in sparsely populated regions (outliers).

Define TAL = Tprop ∪ Td, where Td = {zs1, . . . , zsNAL
} is the set of pairs containing the

NAL instances from U selected through the query function described in (4.2), and their

corresponding class labels. Define TR = Tprop ∪ Trnd, where Trnd is a set containing
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Table 4.1: CNN architecture for the Extended YaleB database.

Layers
Filter
Size

Stride Padding
Output

W ×H × L

Input - - - 32× 32× 1

Conv-ReLU
Avg pool

5× 5
2× 2

1
2

0 14× 14× 25

Conv-ReLU
Avg pool

5× 5
2× 2

1
2

0 10× 10× 65

FC-ReLU
Dropout

- - - 400

FC-Softmax - - - 38

NAL pairs of instances with their corresponding class labels selected at random from

the unlabeled pool.

The performance of the underlying algorithm can be improved employing TAL,

instead of TR, in a subsequent training stage. CPAL-CNN returns the training set TAL.

The proposed approach is summarized in Algorithm 2.

4.4 Experimental Results

The focus of CPAL-CNN is twofold: 1) to improve the performance of CNNs

through active learning; and 2) to produce reliable confidence values. Therefore, our

goal is to evaluate CPAL-CNN based on the improvement achieved in classification

performance and the quality of the produced confidence values. This section is orga-

nized as follows. First, we present the experimental setup and provide a description of

the databases used in this paper; second, we present experimental results to evaluate

the performance of CPAL-CNN for active learning, providing a comparison between

the proposed technique and previous work. Last, we demonstrate the quality of the

confidence values obtained through CPAL-CNN.

4.4.1 Experimental Setup

Experiments are conducted on two face databases, the Extended YaleB database

[63] and the AR face database [64], and one object recognition database, Caltech101 [65].
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Table 4.2: CNN architecture for the AR database.

Layers
Filter
Size

Stride Padding
Output

W ×H × L

Input - - - 50× 50× 1

Conv-ReLU
Avg pool

7× 7
2× 2

1
2

0 22× 22× 15

Conv-ReLU
Avg pool

7× 7
2× 2

1
2

0 8× 8× 45

FC-ReLU
Dropout

- - - 500

FC-Softmax - - - 100

Table 4.3: CNN architecture for the Caltech101 database.

Layers
Filter
Size

Stride Padding
Output

W ×H × L

Input - - - 32× 32× 3

Conv-ReLU
Avg pool

5× 5
3× 3

1
2

2
1 bot/right

32× 32× 32

Conv-ReLU
Avg pool

5× 5
3× 3

1
2

2
1 bot/right

32× 32× 32

Conv-ReLU
Avg pool

5× 5
3× 3

1
2

2
1 bot/right

32× 32× 64

FC-ReLU
Dropout

- - - 400

FC-Softmax - - - 101

The performance of CPAL-CNN is evaluated over three different CNNs architectures,

one for each database. The reference classification accuracy is taken as that obtained

when TR is employed for training, i.e., instances are selected randomly from the un-

labeled pool U . CPAL-CNN is implemented in conjunction with the different CNN

architectures to produce the training set TAL, which is then used to improve perfor-

mance. The quality of the CPAL-CNN confidence values is demonstrated through the

evaluation of validity property [12] across the different databases.

For each of the experiments in this section, 5 trials are conducted. In each trial,

the order of the instances in the training set is permuted. The average classification

accuracy is presented. The proper training set Tprop consists of 10 images per class
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for the Extended YaleB database, 5 images per class for the AR database, and 10

images per class for Caltech101. The calibration set consists of 199 instances for all the

experiments, which results in a resolution of 0.5% in the confidence values calculated,

according to equation (2.1).

Experiments are conducted on two face databases, the Extended YaleB database

[63] and the AR face database [64], and one object recognition database, Caltech101 [65].

Example images from the Extended YaleB database are shown in Fig. 2.1(a). The

original images are reshaped to 32 × 32 pixels. The CNN architecture used for this

database is described in Table 4.1. Example images from the AR database are shown in

Fig. 2.1(b). As part of the preprocessing, the orginal images are converted to greyscale

and reshaped to 50 × 50 pixels. The CNN architecture used for this database is de-

scribed in Table 4.2. Example images from the Caltech101 database are shown in

Fig. 2.2. The original images are reshaped to 32 × 32 × 3 pixels (RGB format). The

CNN architecture used for this database is described in Table 4.3.

4.4.2 Results: CPAL-CNN for Active Learning

In this set of experiments, CPAL-CNN is implemented in conjunction with three

different CNN architectures, one for each database. The performance is presented as

a function of the number of selected instances, NAL, from the unlabeled pool U . We

compare the performance improvement obtained through CPAL-CNN with that of the

following approaches: random sampling, i.e., we take instances from the unlabeled

pool at random, active learning based only on uncertainty [9, 12, 13], active learning

considering uncertainty and ABD [14], and active learning considering uncertainty and

KBD [28], which are denoted as (rnd), AL(MCLU), AL(MCLU-ABD), and AL(MCLU-

KBD), respectively. Random sampling is used as the baseline for the experiments.

Parameter optimization using exhaustive search is performed over the weights, α, β

and the kernel variance, σ, for the proposed query function. For AL(MCLU-ABD) and

AL(MCLU-KBD), the parameters ρ, L, and σ are optimized using the same approach.

The best results are presented.
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For random sampling, the training set TR = Tprop ∪ Trnd is employed, where

Trnd contains NAL randomly selected instances from U with their corresponding class

labels, and Tprop is the proper training set. The results for active learning are obtained

using the training set TAL = Tprop∪ Td, where Td contains NAL instances selected from

U using the aforementioned active learning approaches, with their corresponding class

labels. The size of the unlabeled pool |U | for the different databases is the following:

for the Extended YaleB database |U | = 912, for the AR database we select |U | = 1500,

and for Caltech101 |U | = 3264. The parameter γ is set to 1 in the nonconformity score

given by (4.1). Diversity and information density are measured in a reduced space,

obtained through PCA. The dimensionality is reduced until 95% of the variance is

explained. The size of the instances in the reduced space for the Extended YaleB, AR,

and Caltech101 databases is 59× 1, 76× 1, and 214× 1, respectively.

The performance of CPAL-CNN as a function of the number of selected instances

NAL, for the different databases and query functions, is shown in Fig. 4.1, 4.2, and 4.3.

It is observed that the classification accuracy of the different CNN architectures is

improved significantly when active learning is used, for all the considered databases.

Notice that when uncertainty, diversity, and information density are taken into account,

the performance is improved. This occurs since similar instances are not selected and

outliers are rejected. Moreover, it is observed that the performance of CPAL-CNN is

the best among all the considered approaches. This demonstrates the effectiveness of

the proposed approach.

The results for the Extended YaleB database in Fig. 4.1 show that the biggest

performance gain is obtained for NAL = 400, and the performance gain due to active

learning stays within about 8.2%, using random sampling as the baseline. Table 4.4

shows that for NAL = 400 the performance of random sampling is 74.8%, whereas that

of CPAL-CNN is 83.0%.

The results for the AR database in Fig. 4.2 show that the largest perfor-

mance gain is obtained when CPAL-CNN is applied for NAL = 400, which is about

7.5%, with respect to random sampling. It can also be seen that the performance
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Figure 4.1: Classification accuracy (%) as a function of NAL for different query func-
tions (YaleB).

of CPAL-CNN is highest among all the considered approaches for the different val-

ues of NAL. For instance, for NAL = 400, the classification accuracy of AL(MCLU),

AL(MCLU-ABD), and AL(MCLU-KBD) is 70.8%, 70.7%, and 72.2%, respectively,

whereas that of CPAL-CNN is 73.9%.

Similar results are obtained for Caltech101, as shown in Fig. 4.3. The largest

performance improvement is obtained when CPAL-CNN is applied for NAL = 400,
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Figure 4.2: Classification accuracy (%) as a function of NAL for different query func-
tions (AR).
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Figure 4.3: Classification accuracy (%) as a function of NAL for different query func-
tions (Caltech101).
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Table 4.4: Classification accuracy (%) using different active learning techniques as a
function of the number of selected instances NAL.

Query function

YaleB AR Caltech101

No. instances NAL No. instances NAL No. instances NAL

300 400 500 400 600 800 400 600 800

(rnd) 71.4 74.8 78.9 66.4 75.8 81.6 32.7 35.0 37.6

AL(MCLU) 74.3 79.5 82.2 70.8 77.8 81.1 33.3 36.1 38.1

AL(MCLU-ABD) 76.5 80.8 83.4 70.7 79.9 83.6 31.9 34.9 37.6

AL(MCLU-KBD) 77.4 81.9 85.5 72.2 80.6 84.5 28.1 34.9 35.9

CPAL-CNN 79.2 83.0 86.0 73.9 81.9 86.0 35.0 37.1 38.9

which is about 2.3%, with respect to random sampling. As in the previous exper-

iments, the performance of CPAL-CNN is the best among all the considered ap-

proaches. For instance, for NAL = 400, the classification accuracy of AL(MCLU),

AL(MCLU-ABD), and AL(MCLU-KBD) is 33.3%, 31.9%, and 28.1%, respectively,

whereas that of CPAL-CNN is 35.0%.

Figure 4.4 shows the classification accuracy of CPAL-CNN as a function of

the parameters α and β for the Extended YaleB, AR, and Caltech101 databases. It

is observed that the best performance is obtained for a combination of uncertainty,

diversity, and information density, i.e., α, β ∈ (0, 1), for all the considered databases.

The best performance is obtained when α = 0.4, and β = 0.3, for the Extended YaleB

database (64.3%), α = 0.6, and β = 0.2, for the AR database (73.9%), and α = 0.2,

and β = 0.4, for the Caltech101 database (35.0%).

4.4.3 Results: Dimensionality Reduction for DML and Computational

Load

DML is performed in a reduced space, obtained through PCA, to lower the

computational load. The dimensionality of the vectorized images is reduced until 95%

of the variance is explained. The size of the vectorized images in the Extended YaleB,

AR, and Caltech101 databases is reduced from 1024 × 1, 2500 × 1, and 3072× 1 to

59 × 1, 76 × 1, and 214 × 1, respectively. Table 4.5 shows the execution time (total
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Figure 4.4: Classification accuracy (%) of CPAL-CNN as a function of α and β, (a)
YaleB (NAL = 100), (b) AR (NAL = 400), (c) Caltech101 (NAL = 400).

and average per iteration), speed-up (obtained through PCA), and number of itera-

tions for convergence of LMNN for the aforementioned databases. It is observed that

LMNN converges significantly faster when PCA is used. The speed increase of LMNN

(total/avg. iter) obtained through PCA for the Extended YaleB, AR, and Caltech101

databases is 4.5x/2.1x, 35.7x/11.4x, and 10.9x/6.7x, respectively. In addition, the

results in Table 4.5 show that the number of iterations for convergence of LMNN is

decreased when PCA is employed.
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Table 4.5: Execution time, speed-up, and number of iterations for convergence of
LMNN.

Database
Execution time (s)

Iterations

total avg. iter.

YaleB

PCA 99.2 0.7 146

original 446.5 1.5 198

speed-up 4.5x 2.1x -

AR

PCA 75.3 0.8 97

original 2691.9 9.1 296

speed-up 35.7x 11.4x -

Caltech101

PCA 527.8 2.9 181

original 5792.2 19.5 297

speed-up 10.9x 6.7x -

4.4.4 Results: Quality of CPAL-CNN confidence values

In this section, the quality of the confidence values produced by CPAL-CNN is

compared with that of the confidence values obtained through the hinge and margin

nonconformity measures. Experiments are performed on the Extended YaleB, AR,

and Caltech101 databases. Different significance levels, ǫ ∈ [0, 1], are used yielding

different prediction sets Ψǫ
n+j, for test instances xn+j. Notice that the hinge and margin

nonconformity measures are particular cases of the CPAL-CNN nonconformity measure

described by equation (4.1), when γ = 1.0 and γ = 0.5, respectively. The quality of

the CPAL-CNN confidence values is demonstrated using three metrics: [12] [69]:

• ValE : The percentage of errors measured as the number of times the correct label
for instances xn+j is not in Ψǫ

n+j, for a given ǫ, divided by the total number of
test instances [12] (ValE ≈ ǫ, according to the validity property)

• SinP : The proportion of all predictions that are singletons, i.e., instances xn+j

that produce |Ψǫ
n+j| = 1, for a given ǫ ∈ [0, 1]. The motivation for this metric is

that singleton predictions are the most informative [69] (high SinP is preferable).

• AvgC : The average number of class labels in the prediction sets Ψǫ
n+j, as a per-

centage of the total number of classes, i.e., a direct measure of how good the
model is at rejecting class labels (low AvgC is preferable)

For the following experiments, different significance levels, ǫ, are used yielding

different sets Ψǫ
n+j for the test instances xn+j. The CPAL-CNN nonconformity measure
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Figure 4.5: Performance of the proposed nonconformity measure for ǫ = 0.05 as a
function of the parameter γ ∈ [0, 1] using different metrics: (a) ValE, (b)
SinP, (c) AvgC.

given by (4.1) is evaluated along with the hinge and margin nonconformity measures for

comparison. Notice that the hinge and margin nonconformity measures are particular

cases of (4.1) when γ = 1.0 and γ = 0.5, respectively.

Figure 4.5 shows the performance of the proposed nonconformity measure, as

a function of the parameter γ ∈ [0, 1], using the three aforementioned metrics. It

is observed in Fig. 4.5(a) that the validity property is satisfied for all the consid-

ered databases and values of γ (ValE ≈ ǫ). This demonstrates the usefulness of the
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Table 4.6: Performance of hinge, margin, and CPAL-CNN nonconformity measures.

Database Confidence (%)

Performance (%)

Hinge Margin CPAL-CNN

ValE SinP AvgC ValE SinP AvgC ValE SinP AvgC

YaleB
98
95
90

2.3

5.2
9.9

33.7
44.9
58.1

22.2

14.8

8.1

2.6
5.0

10.4

55.4
65.6
76.4

31.4
33.2
21.1

2.3

5.0

9.9

57.1

67.2

79.6

22.2

14.8

8.1

AR
98
95
90

3.0
6.1
10.6

47.0
65.2
81.6

3.6

1.9

1.3

2.7
5.2

10.4

66.1
76.7
88.1

31.4
20.2
7.4

2.5

5.2

10.3

67.8

78.9

90.3

3.6

1.9

1.3

Cal101
98
95
90

1.7
5.3
8.4

0
0
0

83.1

66.5

57.9

1.6
4.7
7.7

0.1
0.2
0.2

84.5
68.4
58.7

1.9

4.9

8.8

3.6

6.9

10.9

83.1

66.5

57.9

CPAL-CNN confidence values. Fig. 4.5(b) shows the behavior of singleton predictions

as a function of γ (SinP). It is observed that as the value of γ increases, the percentage

of singleton predictions decreases, meaning that lower values of γ produce higher num-

ber of singleton predictions. The highest number of singletons is obtained for γ = 0,

with SinP = 67.2%, SinP = 78.9%, and SinP = 6.9% for the Extended YaleB, AR, and

Caltech101 databases, respectively. The average number of class labels in the predic-

tion sets, as a percentage of the total number of classes (AvgC), is shown in Fig. 4.5(c),

for different values of γ. Notice that AvgC decreases as the value of γ increases, i.e.,

higher values of γ produce more discriminative predictions sets Ψǫ
n+j. The smallest

prediction sets Ψǫ
n+j are obtained for γ = 1, with AvgC = 14.8%, AvgC = 1.9%, and

AvgC = 66.5% for the Extended YaleB, AR, and Caltech101 databases, respectively.

Based on the results presented in Fig. 4.5, it is observed that the parameter γ can

be used to select between discriminativeness (high values of γ, low AvgC) and high

number of singleton predictions (low values of γ, high SinP).

The performance results of the hinge, margin, and CPAL-CNN nonconformity

measures are summarized in Table 4.6. For CPAL-CNN, the best results are shown

(from those obtained using different values of γ). The results in Table 4.6 show that
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CPAL-CNN achieves similar or better performance than that of the hinge and margin

nonconformity measures, for all the considered performance metrics.

4.5 Chapter Conclusion

A conformal prediction based active learning algorithm for convolutional neural

networks, referred to as CPAL-CNN, is proposed in this chapter. CPAL-CNN, uses a

novel nonconformity measure that produces reliable confidence values. Furthermore,

CPAL-CNN selects instances from an unlabeled pool based on the evaluation of three

criteria: uncertainty, diversity, and representativeness. Different from previous work

on active learning, the proposed query function employs DML to obtain similarity

measures that adapt to the statistics of the database being used. DML is performed

in a reduced space, obtained through PCA, thereby lowering the computational load.

Experiments conducted on two face databases, the Extended YaleB database

and the AR database, and one object recognition database, Caltech101, demonstrate

the improved performance obtained through CPAL-CNN. Moreover, it is shown that

the proposed query function for CPAL-CNN outperforms previous work on active

learning, increasing classification performance across different CNN architectures and

databases.

In addition to performance enhancement, CPAL-CNN produces reliable confi-

dence values that are used to predict class labels with guaranteed error rate. The qual-

ity of the CPAL-CNN confidence values is demonstrated experimentally using three

different metrics: the evaluation of the validity property, the percentage of singleton

predictions, and the average number of class labels in the prediction sets. The results

show that CPAL-CNN achieves similar or better performance than that obtained using

previously proposed techniques.

In the following chapter, a constrained linear regression model is considered

to determine the relevance of instances in the unlabeled pool. Moreover, experiments

conducted on synthetic databases are performed to give a greater insight into the effect

of uncertainty, diversity, and representativeness on the selection of instances.
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Chapter 5

CONFORMAL PREDICTION BASED ACTIVE LEARNING BY
LINEAR REGRESSION OPTIMIZATION

We propose a conformal prediction based active learning algorithm that obtains

a measure of the relevance of an instance through the solution of a constrained linear

regression model. This approach is referred to as CPAL-LR. The proposed technique

considers uncertainty, diversity, and representativeness as the selection criteria. In the

remainder of this section, the proposed query function is introduced, and the CPAL-LR

algorithm is described.

5.1 CPAL-LR Query Function

The proposed query function determines the relevance of unlabeled instances

through the solution of a constrained linear model, incorporating uncertainty, diversity,

and representativeness in the optimization problem. Define U = {x1,x2, . . . ,xL} as the
unlabeled pool. Let Q ∈ R

L×L be a kernel distance matrix, containing the distances

between each one of the elements in the unlabeled pool. The entries qij ∈ [0, 1] in

matrix Q are computed as:

Kη(xi,xj) = qij = exp

(

−(xi − xj)
T (xi − xj)

η

)

. (5.1)

Let y ∈ R
L be a vector consisting of elements yi, containing the value of un-

certainty associated with instances xi ∈ U (i = 1, . . . , L), calculated according to

equation (2.3). Let D ∈ R
L×L be a positive diagonal matrix, whose diagonal elements

di ∈ [1, 0] provide a measure of the representativeness (information density) of instances

xi. The value di decreases when instance xi is located in a densely populated region,
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otherwise the value di increases. The proposed approach obtains a vector ŵ ∈ R
L,

consisting of elements ŵi, containing the relevance values associated with instances xi

by solving the following optimization problem:

ŵ = argmin
w

‖Qw− y‖22 + λ‖Dw‖22 (5.2)

s.t. 0 ≤ w ≤ 1,

which is a generalized ridge regression problem, penalized by the diagonal matrix D.

Expanding the first term in equation (5.2) we have

(Qw− y) =












q11 q12 . . . q1L

q21 q22 . . . q2L
...

...
. . .

...

qL1 qL2 . . . qLL























w1

w2

...

wL












︸ ︷︷ ︸

diversity

−












y1

y2
...

yL












.

Notice that the values wj are weighed by the terms qij . The weights qij increase

when instances xi and xj are close to each other (qij = 1, for i = j). Since the

solution 0 ≤ w̃j ≤ 1, the instances whose uncertainty is high, and are also different

from each other, receive a low penalty. Conversely, the instances that are close to

each other, i.e., they are not diverse, receive a higher penalty. Therefore, the term

‖Qw− y‖22 accounts for diversity, and the parameter η in equation (5.1) provides a

tradeoff between uncertainty and diversity.
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Expanding the second term in (5.2) we obtain

Dw =












d1 0 . . . 0

0 d2 . . . 0
...

...
. . .

...

0 0 . . . dN























w1

w2

...

wL












︸ ︷︷ ︸
representativeness

.

The elements di penalize the solution ŵi depending on the representativeness of in-

stance xi. When xi is located in a densely populated region, the value di decreases

(representative, low penalty). Conversely, when xi is located in a sparsely populated

region, di increases (not representative, high penalty). Therefore, the parameter λ

controls the penalty associated with representativeness, which is used to filter possible

outliers.

The expression in (5.2) can be rewritten as:

ŵ = argmin
w

∥
∥
∥Q̃w− ỹ

∥
∥
∥

2

2
(5.3)

= argmin
w

wT Q̃
T
Q̃w−wT Q̃

T
ỹ

s.t. 0 ≤ w ≤ 1,

where Q̃ =
[

Q
√
λD
]T

∈ R
2L×L, and ỹ = [y 0]T ∈ R

2L. Notice that the expression

in (5.3) is a quadratic programming (QP) optimization problem.

After the optimization problem in (5.3) is solved, the number of desired in-

stances, NAL, associated with the highest relevance values wj (j = 1, . . . , L) are se-

lected.
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5.2 Incorporating Representativeness

The second term in equation (5.2) penalizes the solution ŵ through the weights

di in matrix D. CPAL-LR computes the weights di, associated with instances xi in the

unlabeled pool, using the distance between xi and its k-nearest neighbors, denoted as

z
(j)
i [61], for j = 1, . . . , k. Define the value d̂i, associated with instance xi, as:

d̂i =

k∑

n=1

∥
∥
∥xi − z

(n)
i

∥
∥
∥

2

2
. (5.4)

Notice that the value d̂i will be low if instance xi is close to its k-nearest neigh-

bors (densely populated region, low penalty). Conversely, the value d̂i will be high if

instance xi is far from its k-nearest neighbors (sparsely populated region, high penalty).

Define dmax = max {di}. CPAL-LR computes the values d̂i for all instances xi in the

unlabeled pool (i = 1, . . . , L) as:

di = d̂i/dmax. (5.5)

5.3 CPAL-LR Nonconformity Measure

We use the nonconformity measure described by equation (4.1). Notice that,

regardless of the type of classifier, the nonconformity scores are normalized through

the computation of p-values, which are then used to measure uncertainty, according

to (2.3). For instance, the j-th output of a linear classifier to input x can be defined as

oj = wjx+ bj ∈ R, whereas the j-th output of a CNN is obtained through its forward

propagation function, and it is taken directly from its last layer (usually a softmax).

In both cases, the value of uncertainty I(·) computed within the CP framework is

normalized in the range [0, 1], and can be readily used for active learning without

further scaling.
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5.4 CPAL-LR Algorithm

We propose an active learning algorithm within the CP framework. First, we

split the training set, Ttrain = {z1, ..., zn}, into the proper training set, Tprop = {z1, ..., zℓ},
and the calibration set, Tcal = {zℓ+1, ..., zℓ+r}, where n = ℓ + r, as described in Sec-

tion 2. Then, the classification rule, Cprop, is obtained through the underlying algorithm

employing Tprop.

The nonconformity scores of the instances in calibration set, Tcal, and the unla-

beled pool, U , are computed using equation (4.1) and Cprop. The nonconformity scores

are used to measure the p-values and the uncertainty of instances in the unlabeled

pool, according to equation (2.1) and (2.3), respectively.

Matrix Q is computed using the Gaussian kernel distance as described by (5.1),

and matrix D is computed using the k-nearest neighbors approach, according to equa-

tions (5.4) and (5.5). Then, the quadratic optimization problem described by equa-

tion (5.3) is solved to obtain the relevance ŵ of the instances in the unlabeled pool.

The NAL instances xi whose relevance is highest are selected.

CPAL-LR returns the training set TAL = Tprop∪ Td, where Td is the set of pairs

containing the NAL instances from U , with their corresponding class labels, whose

associated relevance ŵ is the highest after solving the optimization problem in (5.3).

The proposed approach is summarized in Algorithm 3.

5.5 CPAL-LR as a Conformal Predictor

The proposed nonconformity measure, described by equation (4.1), can be used

to produce confidence values associated with new predictions, during the testing phase.

After training the underlying algorithm and obtaining a classification rule, denoted as

Ctrain, the nonconformity scores α
(Hq)
n+j and p-values p(α

(Hq)
n+j ), associated with a new

instance xn+j, are computed according to equations (4.1) and (2.1), respectively. Then,

for a given significance level ǫ ∈ [0, 1], we form a set of labels Ψǫ
n+j = {i : p(α(Hi)

n+j ) > ǫ}
containing the correct class label for xn+j with probability (1 − ǫ), according to the

validity property. CPAL-LR as a conformal predictor is described in Algorithm 4.
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Algorithm 3 CPAL-LR
1: Input: Proper training set Tprop = {z1, ..., zℓ}, calibration set Tcal = {zℓ+1, ..., zℓ+r}, un-

labeled pool U = {xn+1, . . . ,xn+v}, classification rule Cprop, number of desired instances
NAL, and number of class labels M

2: Compute matrix Q using equation (5.1)
3: Compute the weights di, using equations (2.8), and (2.9), for all instances in the

unlabeled pool U to form D
4: Use Equation (4.1) and the classification rule Cprop to calculate:

• The nonconformity scores {αℓ+1, . . . , αℓ+r} corresponding to the instances
in the calibration set.

• The nonconformity scores {αHi

n+1, . . . , α
Hi
n+v} corresponding to the instances

in the unlabeled pool, where i = {1, . . . ,M}
5: Use Equation (2.1) to calculate the p-values associated with the instances in U , and

obtain their uncertainty I(xn+j) through equation (2.3), where j ∈ {1, . . . , v}
6: Solve the quadratic optimization problem in (5.3) and form the set Td containing

the NAL instances from U , with their corresponding class labels, whose associated
relevance w is the highest

7: Construct TAL = Tprop ∪ Td

8: Output: TAL

Algorithm 4 CPAL-LR (conformal predictor)

1: Input: Testing instance xn+j, calibration set nonconformity scores {αℓ+1, . . . , αℓ+r},
classification rule Ctrain, significance level ǫ, parameter γ, and number of class labels M

2: Use Equations (2.1) and (4.1), along with the classification rule Ctrain, to calculate:

• The nonconformity scores αHi

n+j corresponding to the new instance xn+j ,
for the different null hypothesis Hi (i = {1, . . . ,M})
• The p-values p(α

(Hi)
n+j ), associated with αHi

n+j

3: Construct the set Ψǫ
n+j = {i : p(α

(Hi)
n+j ) > ǫ}

4: Output: Ψǫ
n+j

5.6 Experimental Results

The focus of CPAL-LR is twofold: 1) to improve the performance of pattern

classification algorithms through active learning; and 2) to produce reliable confidence

values. Therefore, our goal is to evaluate CPAL-LR based on the improvement achieved

in classification performance and the quality of the produced confidence values. This

section is organized as follows. First, we present simulation results obtained on a syn-

thetic database to provide a greater insight into the proposed query function and show
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its effectiveness. Then, we evaluate the performance of CPAL-LR on face and object

recognition databases, providing a comparison between the proposed technique and

previous work on active learning. Last, we demonstrate the quality of the confidence

values obtained through CPAL-LR.

5.6.1 Synthetic Database Experiments

Experiments are conducted on two different synthetic databases, which are de-

scribed below:

The Gaussian database consists of four two-dimensional clusters, denoted as Ci

(i = 1 . . . 4). The data in Ci is randomly generated following a multivariate gaussian

distribution given by N ∼ (µµµi,ΣΣΣi), where µµµi = (µ
(1)
i , µ

(2)
i ) and ΣΣΣi =

(
σi 0
0 σi

)

are

the mean and covariance matrix of Ci, respectively. The parameters of the synthetic

database are set to µµµ1 = (−0.3, 0.3), µµµ2 = (−0.3,−0.3), µµµ3 = (0.3, 0.3), µµµ4 = (0.3,−0.3)
and σ1 = σ2 = σ3 = σ4 = σ (different values of σ are used). The proper training set

Tprop consists of 10 examples per class. The unlabeled pool U and the testing set consist

of 200 images per class, each.

The Two-moon database consists of two semicircles (moons), denoted as Si

(i = 1, 2), with radii ri, and center ci. This database is generated by adding two-

dimensional Gaussian noise to the two semicircles. We denote N ∼ (µµµ,ΣΣΣ) as the

Gaussian mean and covariance matrix, where µµµ = (µ(1), µ(2)) and ΣΣΣ = ( σ 0
0 σ ). The

parameters of the synthetic database are set to µµµ = (0, 0), r1 = r2 = 0.5, c1 = {−0.3, 0},
and c2 = {0.3, 0.25}. Various values of σ are used. The proper training set Tprop consists

of 14 examples per class. The unlabeled pool U and the testing set consist of 200 images

per class, each.

SVMs are employed for these experiments, using the one-vs-all (OVA) approach.

Linear SVMs are used for the Gaussian database, whereas kernel SVMs (polynomial of

order 3) are used for the Two-moon database. We compare the performance improve-

ment obtained through CPAL-LR with that of the following batch active learning ap-

proaches: random sampling, i.e., we take instances from the unlabeled pool at random,
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Figure 5.1: Synthetic databases and selected instances (highlighted) (Gaussian →
σ = 0.14, and Two-moon → σ = 0.08) using CPAL-LR (a) (η = 10−9,

λ = 0), (b) (η = 5.0× 10−5, λ = 4), (c) (η = 5.0× 10−5, λ = 0), (d) (η = 2.5× 10−5,

λ = 4), (e) (η = 5.0× 10−5, λ = 12), (f) (η = 10−9, λ = 12), (g) (η = 10−9, λ = 0),
(h) (η = 2.5× 10−5, λ = 0), (i) (η = 5.0× 10−5, λ = 0), (j) (η = 2.5× 10−5, λ = 4),
(k) (η = 5.0× 10−5, λ = 8), (l) (η = 10−9, λ = 12).
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active learning based on uncertainty [9, 12, 13], clustering [22], clustering with uncer-

tainty [22], uncertainty and ABD [14], uncertainty and KBD [28], and active learning by

sparse selection [70], which are denoted as (rnd), AL(MCLU), AL(CBD), AL(MCLU-

ECBD), AL(MCLU-ABD), AL(MCLU-KBD), and AL(Sparse), respectively. Random

sampling is used as the baseline for the experiments.

For the proposed approach, parameter optimization using exhaustive search is

performed over the weights η and λ. For AL(MCLU-ABD) and AL(MCLU-KBD), the

parameter ρ is optimized using the same approach. For random sampling, the training

set TR = Tprop∪Trnd is employed, where Trnd contains NAL randomly selected instances

from U with their corresponding class labels, and Tprop is the proper training set. The

results for active learning are obtained using the training set TAL = Tprop ∪ Td, where

Td contains NAL instances selected from U using the aforementioned active learning

approaches, with their corresponding class labels. Five trials are conducted to compute

the classification accuracy. In each trial, the proper, calibration, training and testing

sets are selected at random. For each trial, the best results are selected after parameter

optimization and the average classification accuracy is presented.

Figure 5.1 shows the instances selected by the proposed technique for different

parameters α and β. It is observed in Fig. 5.1(a) and (g) that when uncertainty is

predominant (η = 10−9, λ = 0), CPAL-LR selects instances that are concentrated on

high uncertainty the regions, i.e., the regions where clusters tend to overlap (near the

decision boundaries).

Figure 5.1(f) and (l) shows the instances selected by CPAL-LR when repre-

sentativeness is predominant (η = 10−9, λ = 12). It is observed that the selected

instances are located near the cluster centers for the Gaussian database (Fig. 6.1(f)),

and they concentrate near coordinate (0,0) for the Two-moon database, which corre-

spond to densely populated regions. On the other hand, when diversity is predominant

(η = 5.0 × 10−5, λ = 0), the instances selected by CPAL-LR are located in sparsely

populated regions. as shown in Fig. 6.1(c) and (i).
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Table 5.1: Classification accuracy (%) for different query functions and standard
deviation σ as a function of the number of selected instances NAL.

Algorithm Query function

Gaussian Two-moon

σ = 0.13 σ = 0.17 σ = 0.08 σ = 0.14

NAL NAL NAL NAL

12 20 12 20 12 20 12 20

SVM

(rnd)
AL(MCLU)
AL(CBD)

AL(MCLU-ECBD)
AL(MCLU-ABD)
AL(MCLU-KBD)

AL(Sparse)
CPAL-LR

94.3
93.4
94.3
94.7
94.7
95.4
96.0
97.1

94.9
95.8
94.6
95.7
96.1
95.8
97.0
97.4

87.1
87.8
87.4
88.6
88.7
89.3
89.9
90.6

87.7
88.6
88.4
89.3
89.5
89.7
90.2
90.9

90.9
91.0
91.1
92.3
92.4
92.9
92.7
93.4

91.6
91.7
92.0
93.5
93.2
93.3
93.8
96.4

86.3
87.8
87.8
88.0
88.1
88.0
89.8
90.7

88.4
88.5
88.4
89.2
89.7
88.5
90.1
91.0

Figures 5.1(e) and (k) show the instances selected by CPAL-LR when un-

certainty, diversity, and representativeness are considered together. The parameters

for the Gaussian and Two-moon databases are (η = 5.0 × 10−5, λ = 12) and (η =

5.0×10−5, λ = 8), respectively. It is observed that the selected instances are located in

high uncertainty regions, and the spread of the selected instances is lower. In addition,

there are no instances located in sparsely populated regions.

Table 5.1 shows the classification accuracy obtained on the synthetic databases

for different query functions and values σ, as a function of the number of selected

instances NAL. It is observed that the proposed technique outperforms the considered

active learning approaches for all the values of σ and NAL. For instance, when the

Gaussian database is employed, for σ = 0.17 and NAL = 12, the performance of (rnd),

AL(MCLU), AL(MCLU-ABD), AL(MCLU-KBD), AL(CBD), AL(MCLU-ECBD) and

AL(Sparse) is 87.1%, 87.8%, 87.4%, 88.6%, 88.7%, 89.3%, and 89.9%, respectively,

whereas that of CPAL-LR is 90.6%.

To visualize the effect of the parameters η and λ on the performance of CPAL-

LR we perform a second experiment. In this experiment, we conduct 100 trials. In each

trial, the instances in proper, training, and testing sets are selected at random, along

with those in the unlabeled pool, and the average classification accuracy is presented.
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Figure 5.2: Classification accuracy (%) obtained through CPAL-LR as a function
of η and λ. Gaussian: (a) σ = 0.10, (b) σ = 0.12, (c) σ = 0.17, (d)
σ = 0.20.

The proper training set Tprop consists of 14 instances, and the number of selected

instances from the unlabeled pool is NAL = 16.

The classification accuracy for the Gaussian database as a function of η and λ for

σ = 0.10, 0.12, 0.17, and 0.20 is depicted in Fig. 5.2(a), (b), (c), and (d), respectively.

The values of η and λ that produce different combinations of uncertainty, diversity,

and representativeness are depicted in Fig. 5.4. It is observed that in the low variance

(low noise) scenario, i.e., Fig. 5.2(a) and (b), the best performance is obtained for high
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Figure 5.3: Classification accuracy (%) obtained through CPAL-LR as a function of
η and λ. Two-moon: (a) σ = 0.08, (b) σ = 0.13, (c) σ = 0.16, (d)
σ = 0.18.

values of η and low values of λ, which is a combination of uncertainty and diversity

(towards the region (η > 0, λ = 0) in Fig. 5.4). On the other hand, as the variance

(noise) increases, Fig. 5.2(c) and (d), it is observed that the parameter λ becomes more

relevant (towards the region (η → 0, λ > 0) in Fig. 5.4).

The classification accuracy for the Two-moon database as a function of η and λ

for σ = 0.08, 0.13, 0.16, and 0.18 is shown in Fig. 5.3(a), (b), (c), and (d), respectively.

Similar to the results for the Gaussian database, it is observed that for the low noise
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Figure 5.4: Values of η and λ that produce different combinations of uncertainty,
diversity, and representativeness.

scenario, Fig. 5.3(a) and (b), high values of η produce the best results (towards the

region (η > 0, λ = 0) in Fig. 5.4). For the high noise case, Fig. 5.3(c) and (d),

the parameter λ becomes more relevant. Different from the Gaussian database, the

parameter λ does not need to be increased significantly to produce good performance

in the high noise scenario for the Two-moon database.

The synthetic database experiments demonstrate that the parameters η and

λ effectively control the uncertainty, diversity, and representativeness of the selected

instances, providing flexibility to the proposed approach. Moreover, it is observed that

CPAL-LR outperforms other existing active learning approaches for classification.

59



5.6.1.1 Parameter Selection Modeling for Synthetic Databases

The classification accuracy of CPAL-LR vs the parameters η and λ can be

approximated by a surface defined by a fifth order polynomial in two dimensions for

ease of use. The polynomial is given by the following expression:

f(x, y) = p00 + p10x+ p01y + p20x
2 + p11xy + p02y

2 + p30x
3 + p21x

2y + p12xy
2+

p03y
3 + p40x

4 + p31x3y + p22x
2y2 + p13xy

3 + p04y
4 + p50x

5 + p41x
4y+

p32x
3y2 + p23x

2y3 + p14xy
4 + p05y

5,

(5.6)

where we assign x← η × 104 (to avoid errors due to numerical precision), and y ← λ.

The results of the surface-fitting exercise are shown in Fig. 5.5. It is observed that the

surface defined by the fifth order polynomial closely approximates the experimental

results. The coefficients of the different polynomials are summarized in Table 5.2

5.6.2 Face and Object Recognition

Experiments are conducted on two face databases, the Extended YaleB database

[63] and the AR face database [64], and one object recognition database, Caltech101 [65]1.

CPAL-LR is implemented in conjunction with three different pattern classification algo-

rithms: SVMs, sparse coding (LC-RLSDLA [51]), and CNNs. We compare the perfor-

mance improvement obtained through CPAL-LR with that of the (rnd), AL(MCLU),

AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU-KBD), and AL(Sparse).

Random sampling is used as the baseline for the experiments, and parameter optimiza-

tion is performed using exhaustive search, as in synthetic database experiments.

For each of the experiments in this section, five trials are conducted. In each

trial, the proper, calibration, training, and testing sets are selected at random. For

each trial, the best results are selected after parameter optimization and the average

1 In this section we use a subset of the Caltech101 database including the following classes: ketch,
chandelier, hawksbill, grand piano, brain, butterfly, helicopter, menorah, kangaroo, starfish, trilobite,
buddha, ewer, sunflower, scorpion, revolver, laptop, ibis, llama, umbrella, crab, crayfish, cougar face,
dragonfly, ferry, flamingo, and lotus.
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(a) (b)

(c) (d)

Figure 5.5: Characterization of the surface defined by performance vs parameters η
and λ using a fifth order polynomial in two dimensions (fitted surface
shown in red). Gaussian: (a) σ = 0.10, (b) σ = 0.20, Two-moon: (c)
σ = 0.08, (d) σ = 0.18.

classification accuracy is presented. The calibration set consists of 199 instances for all

the experiments, which results in a resolution of 0.5% in the confidence values calcu-

lated, according to equation (2.1). The parameter γ is set to 0.5 in the nonconformity

measures given by equation (4.1). For the Extended YaleB database, the proper train-

ing set Tprop and U consist of eight and 24 images per class, respectively. For SVMs and

LC-RLSDLA, the feature descriptors are randomfaces of size N = 504. The dictionary
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Table 5.2: Polynomial coefficients for the synthetic databases.

Coefficients
Gaussian Two-moon

σ = 0.10 σ = 0.20 σ = 0.08 σ = 0.18

p00
p10
p01
p20
p11
p02
p30
p21
p12
p03
p40
p31
p22
p13
p04
p50
p41
p32
p23
p14
p05

98.58
0.43
0.03
−0.25

0.77× 10−2

−0.03
0.05
0.03

−0.85×10−2

0.48× 10−2

−0.58×10−2

−0.55×10−2

0.00
0.36× 10−3

−0.25×10−3

0.31× 10−3

0.00
0.22× 10−3

0.00
0.00
0.00

85.38
−1.19
0.28
−0.07
0.36
−0.05
0.27
−0.15

−0.99×10−2

0.29× 10−2

−0.07
0.01

0.79× 10−2

−0.59×10−3

0.00
0.47× 10−2

0.35× 10−3

−0.73×10−3

0.00
0.00
0.00

95.12
0.89
−0.76
−0.65
0.33
0.04
0.32
−0.03
−0.07

0.48× 10−2

−0.07
0.01

0.15× 10−2

0.43× 10−2

−0.05×10−2

0.62× 10−2

0.17× 10−2

0.04× 10−2

0.02× 10−2

0.00
0.00

83.54
5.27
0.01
−4.38
−0.29
−0.06
1.55
0.2.6

0.76× 10−2

0.42× 10−2

−0.25
−6.97×10−2

0.39× 10−2

−0.21×10−2

0.00
1.54× 10−2

0.49× 10−2

0.05× 10−2

−0.03×10−2

0.00
0.00

Table 5.3: CNN architecture for the Caltech101 (30 classes subset) database.

Layers
Filter
Size

Stride Padding
Output

W ×H × L

Input - - - 32× 32× 1

Conv-ReLU
Avg pool

5× 5
2× 2

1
2

0 14× 14× 30

Conv-ReLU
Avg pool

5× 5
2× 2

1
2

0 10× 10× 60

FC-ReLU - - - 200

FC-Softmax - - - 30

size is 190 (5 atoms per class) for LC-RLSDLA. The CNN architecture used for this

database is described in Table 4.1 (original images are resized to 32 × 32 pixels). For

the AR database, Tprop and U consist of five and 12 images per class, respectively.

For SVMs and LC-RLSDLA, the feature descriptors are randomfaces of size N = 540.
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The dictionary size is 400 (4 atoms per class) for LC-RLSDLA. The CNN architec-

ture used is described in Table 4.2 (original images are converted to greyscale and

resized to 50 × 50 pixels). For Caltech101, Tprop and U consist of ten and 30 images

per class, respectively. For SVMs and LC-RLSDLA, SIFT descriptors are first ex-

tracted. Next, spatial pyramid features, based on the SIFT descriptors, are obtained.

The dimension of the spatial pyramid features is then reduced to 3000 through PCA.

For LC-RLSDLA, the dictionary size is 300 (10 atoms per class). The CNN architec-

ture used for this database is described in Table 5.3 (original images are converted to

greyscale and resized to 32× 32 pixels). For SVMs, the one-vs-all approach is used for

all the databases.

5.6.3 Results: CPAL-LR for Face and Object Recognition

The performance of CPAL-LR, along with that of the considered active learning

approaches, as a function of the number of selected instances NAL, for the different

algorithms and databases, is shown in Fig. 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13,

and 5.14. It is observed that the performance of the different pattern classification

algorithms is significantly improved through active learning, for all the considered

databases. Notice that the performance of CPAL-LR compares favorably with that

of the other active learning techniques. This demonstrates the effectiveness of the

proposed approach.

The results for the Extended YaleB database in Fig. 5.6 (LC-RLSDLA) show

that the biggest performance gain is obtained by CPAL-LR for NAL = 300. Ta-

ble 5.4 shows that for NAL = 500 the classification accuracy of (rnd), AL(MCLU),

AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU-KBD), AL(Sparse) is

83.7%, 86.1%, 86.3%, 86.7%, 87.0%, 86.8% and 86.7%, respectively, whereas that of

CPAL-LR is 87.3

The results for the AR database in Fig. 5.13 (CNNs) show that the largest per-

formance gain is obtained when CPAL-LR is applied for NAL = 500, which is about

9.0%, with respect to random sampling. It can also be seen that the performance of
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Figure 5.6: Classification accuracy (%) using different active learning techniques as a
function of the number of selected instances NAL, YaleB (LC-RLSDLA).
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Figure 5.7: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL, AR (LC-RLSDLA).
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Figure 5.8: Classification accuracy (%) using different active learning tech-
niques as a function of the number of selected instances NAL, Cal-
tech101 (LC-RLSDLA).

66



(rnd)

AL(MCLU)

AL(CBD)

AL(MCLU-ECBD)

AL(MCLU-ABD)

AL(MCLU-KBD)

AL(Sparse)

CPAL-LR

100 200 300 400 500 600

Number of selected instances N
AL

78

82

86

90

94

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

Figure 5.9: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL, YaleB (SVM).
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Figure 5.10: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL, AR (SVM).
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Figure 5.11: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL, Caltech101 (SVM).
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Figure 5.12: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL, YaleB (CNN).
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Figure 5.13: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL, AR (CNN).
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Figure 5.14: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL, Caltech101 (CNN).
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Table 5.4: Classification accuracy (%) using different active learning techniques as a
function of the number of selected instances NAL.

Algorithm Query function

YaleB AR Caltech101

300 400 500 300 400 500 200 300 400

LC-RLSDLA

(rnd)
AL(MCLU)
AL(CBD)

AL(MCLU-ECBD)
AL(MCLU-ABD)
AL(MCLU-KBD)

AL(Sparse)
CPAL-LR

83.7
86.1
86.3
86.7
87.0
86.8
86.7
87.3

84.8
87.3
87.3
87.4
87.5
87.4
87.3
87.8

85.8
87.7
87.8
87.7
88.0
87.9
87.8
88.1

78.5
78.0
78.7
78.8
79.5
79.3
79.7
80.2

79.0
79.4
79.4
79.6
81.2
80.6
81.1
81.7

79.9
79.5
80.3
80.5
81.4
81.0
81.2
82.2

68.3
69.3
69.4
69.6
69.7
69.5
69.9
70.6

69.1
69.2
69.5
69.9
70.8
70.4
70.5
71.3

69.9
71.0
71.1
71.5
72.0
71.8
71.7
72.6

SVM

(rnd)
AL(MCLU)
AL(CBD)

AL(MCLU-ECBD)
AL(MCLU-ABD)
AL(MCLU-KBD)

AL(Sparse)
CPAL-LR

85.3
86.2
86.2
86.3
87.2
87.3
87.2
88.0

88.0
88.2
88.4
88.5
88.6
89.1
89.2
89.6

89.6
89.9
90.1
90.0
90.4
90.5
90.5
90.9

85.2
84.9
85.5
85.8
86.2
86.1
86.4
87.1

87.1
87.2
87.6
87.9
88.2
88.4
88.5
89.5

89.0
89.1
90.2
90.5
90.4
90.3
90.6
91.2

70.5
71.0
71.2
71.4
72.8
71.9
72.6
73.8

71.9
74.2
74.2
74.5
74.9
75.0
74.9
75.5

73.2
74.6
74.6
74.8
76.6
76.7
77.0
77.3

CNN

(rnd)
AL(MCLU)
AL(CBD)

AL(MCLU-ECBD)
AL(MCLU-ABD)
AL(MCLU-KBD)

AL(Sparse)
CPAL-LR

68.4
72.1
72.9
73.9
76.0
76.1
74.4
76.6

72.8
76.3
76.9
77.5
80.0
80.7
80.0
81.1

76.7
80.9
81.0
82.8
81.7
83.5
82.2
84.3

61.7
64.9
65.1
67.7
68.7
68.2
67.7
70.1

68.5
72.0
72.3
72.5
72.5
72.0
71.8
75.1

71.0
73.9
73.9
74.0
77.5
76.9
76.4
79.9

57.8
58.7
58.9
59.1
59.4
59.0
59.3
60.5

60.4
59.9
59.2
60.7
61.6
61.9
61.5
63.0

61.7
62.8
62.1
63.2
63.6
63.5
63.9
64.8

CPAL-LR is highest among all the considered approaches for the different values of

NAL. For instance, for NAL = 500, the classification accuracy of (rnd), AL(MCLU),

AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU-KBD), AL(Sparse) is

71.0%, 73.9%, 73.9%, 74.0%, 77.5%, 76.9% and 76.4%, respectively, whereas that of

CPAL-LR is 79.9%.

Similar results are obtained for Caltech101, as shown in Fig. 5.11 (SVMs).

For instance, for NAL = 200, the largest performance improvement is obtained when

CPAL-LR is applied, which is about 3.3%, with respect to random sampling. The clas-

sification accuracy of (rnd), AL(MCLU), AL(CBD), AL(MCLU-ECBD), AL(MCLU-

ABD), AL(MCLU-KBD), AL(Sparse) is 70.5%, 71.0%, 71.2%, 71.4%, 72.8%, 71.9%
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Figure 5.15: Classification accuracy (%) obtained through CPAL-LR (SVMs) as a
function of η and λ, (a) YaleB (NAL = 600), (b) AR (NAL = 100), (c)
Caltech101 (NAL = 400).

and 72.6%, respectively, whereas that of CPAL-LR is 73.8%.

Figure 5.15 shows the classification accuracy of CPAL-LR (SVMs) as a function

of the parameters η and λ for the Extended YaleB, AR, and Caltech101 databases

(average over the five trials for the different values of η and λ). It is observed that the

best performance is obtained for a combination of uncertainty, diversity, and represen-

tativeness, i.e., η, λ ≥ 0, for all the considered databases. For the Extended YaleB
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database (NAL = 600), the best performance is obtained in the region λ ∈ [0, 2] and

η ∈ [3.0× 10−3, 5.0× 10−3], and the classification accuracy peaks when η = 4.0× 10−3

and λ = 1.0 (91.9%). For the AR database (NAL = 100), the best performance is ob-

tained in the region λ ∈ [1, 2] and η ∈ [2.0×10−3, 4.0×10−3], and the classification accu-

racy peaks when η = 3.0×10−3 and λ = 1.5 (80.7%). For Caltech101 (NAL = 200), the

best performance is obtained in the region λ ∈ [2.5, 3.5] and η ∈ [5.0×10−2, 1.0×10−1],

and the classification accuracy peaks when η = 7.0×10−2 and λ = 3.0 (76.9%). Similar

results are obtained for LC-RLSDLA and CNNs.

The results on face and object recognition show that CPAL-LR improves the

performance of several pattern classification algorithms across different databases, out-

performing other state-of-the-art active learning techniques.

5.6.4 Results: Quality of CPAL-LR Confidence Values

In this section, the quality of the confidence values produced by CPAL-LR

(through Algorithm 4) is compared with that of the confidence values obtained through

the hinge and margin nonconformity measures, which are given by A
(Hq)
hinge := 1 −

maxi=1,...,M, o
(i)
j , and A

(Hq)
margin := −o(q)j + maxi=1,...,M,i 6=q o

(i)
j , respectively. Notice that

the hinge and margin nonconformity measures are particular cases of the proposed

nonconformity measure described by equation (4.1), when γ = 1.0 and γ = 0.5, re-

spectively. Experiments are performed for SVMs, LC-RLSDLA, and CNNs on the Ex-

tended YaleB, AR, and Caltech101 databases. Different significance levels, ǫ ∈ [0, 1],

are used yielding different prediction sets Ψǫ
n+j, for test instances xn+j. The quality of

the CPAL-LR confidence values is demonstrated using the three metrics described in

Section 4: ValeE, SinP, and AvgC.

Figure 5.16 shows the performance of the proposed nonconformity measure, as a

function of the parameter γ ∈ [0, 1], using the three aforementioned metrics, for ǫ = 0.1.

It is observed in Fig. 5.16(a) that ValE fluctuates around 10%, for the different values

of λ, across all the considered pattern classification algorithms and databases, which

agrees with the validity property (ValE ≈ 10%). The parameter γ can be adjusted to
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Figure 5.16: Performance of the proposed nonconformity measure for ǫ = 0.1 as a
function of the parameter γ ∈ [0, 1] using different metrics: (a) ValE,
(b) SinP, (c) AvgC.

obtain the desired performance . For instance, when γ = 0.3 (LC-RLSDLA, YaleB),

ValeE=10.1%. For SVMs (Caltech101, γ = 0.1), ValeE=10.0%. For CNNs (AR,

γ = 0.9), ValeE=10.7%. This demonstrates the usefulness of the CPAL-LR confidence

values.

Fig. 5.16(b) shows the behavior of singleton predictions as a function of γ (SinP).

It is observed that SinP behaves differently across the considered pattern classification
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Table 5.5: Performance of hinge, margin, and CPAL-LR nonconformity measures.

Performance (%)

Algorithm Database
Confidence

(%)
Hinge Margin CPAL-LR

ValE SinP AvgC ValE SinP AvgC ValE SinP AvgC

YaleB
98
95
90

2.9
5.8
10.2

0.0
0.9
13.5

28.5
10.8
4.5

2.5
5.7
10.5

0.0
2.4
18.0

27.5
8.6
3.7

2.0

5.0

10.1

3.8

11.6

32.9

24.2

7.6

3.4

LC-
RLSDLA

AR
98
95
90

2.7

5.4
10.0

0.0
0.0
7.7

26.0

15.8
3.9

2.8
5.4
9.9

0.0
0.0
6.8

27.3
15.8
4.0

2.7

5.3

10.0

2.0

8.7

18.9

26.0

15.3

3.0

Cal101
98
95
90

2.4
5.3
8.8

0.0
0.0
0.2

21.1
15.2
9.2

2.7
4.9
9.9

0.0
0.2
0.2

20.5
11.9

7.2

2.2

5.0

9.9

3.7

6.4

9.9

19.9

11.9

6.9

YaleB
98
95
90

1.8
4.9
10.8

0.4
3.8
24.7

22.2
7.7

3.2

2.5
5.4
10.7

56.2
69.4
84.2

13.9
9.5
4.7

2.2

5.0

10.5

63.4

72.5

84.9

12.4

7.7

3.1

SVM AR
98
95
90

2.4
4.6
9.8

10.2
21.1
74.7

6.7
2.9

1.2

1.8
4.5
8.6

85.3

88.9

94.2

11.4
7.5
3.2

2.0

5.0

10.0

85.3

88.9

94.2

6.1

2.9

1.0

Cal101
98
95
90

2.5
5.1
10.1

0.0
0.4
1.2

16.3
12.3
5.1

2.7
5.5
10.2

25.5
32.0
39.9

8.8

6.3

4.2

2.3

5.0

10.0

46.3

50.1

59.2

8.8

6.3

3.4

YaleB
98
95
90

2.6
5.1
8.9

8.5
9.9
23.9

44.1

40.8

20.0

2.2
5.0

8.8

25.4
42.4
48.4

73.1
55.8
48.9

2.0

5.0

9.2

28.3

47.1

52.1

44.1

40.8

20.0

CNN AR
98
95
90

2.1

4.3

10.8

9.5
18.9
37.9

16.1

8.8

3.8

1.7
6.2
11.2

36.8
58.5
68.4

59.5
38.0
27.6

2.1

4.3

10.7

39.9

62.1

73.3

16.1

8.8

3.8

Cal101
98
95
90

2.8
6.5
10.2

0.0
0.0
0.0

71.1
56.8
35.1

2.5
5.9
9.8

0.4
0.8
2.0

63.0

54.1
40.2

1.7

5.2

10.1

2.9

6.3

13.3

63.0

46.8

33.1

algorithms. The results in Fig. 5.16(b) show that SVMs obtain the highest number

of singleton predictions, followed by CNNs and LC-RLSDLA, respectively. For the

Extended YaleB database, the production of singleton predictions peaks when γ = 0.1,

γ = 0.4, and γ = 0.2 for LC-RLSDLA (32.9%), SVMs (84.9%), and CNNs (52.1%),

respectively.
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The average number of class labels in the prediction sets, as a percentage of

the total number of classes (AvgC), is shown in Fig. 5.16(c), for different values of

γ. The results show that LC-RLSDLA and SVMs produce more discriminative sets

Ψǫ than CNNs (low AvgC). For the AR database, AvgC reaches its minimum when

γ = 0.1, γ = 0.7, and γ = 1.0 for LC-RLSDLA (3.0%), SVMs (1.0%), and CNNs

(3.8%), respectively.

The performance results of the hinge, margin, and CPAL-LR nonconformity

measures are summarized in Table 5.5. For CPAL-LR, the best results are shown

(from those obtained using different values of γ). Table 5.5 shows that CPAL-LR

achieves similar or better performance than that obtained through the hinge and margin

nonconformity measures, for the considered performance metrics.

5.7 Chapter Conclusion

A conformal prediction based active learning algorithm is presented in this chap-

ter. The proposed approach uses a novel query function that determines the relevance

of unlabeled instances through the solution of a constrained linear regression model,

incorporating uncertainty, diversity, and representativeness in the optimization prob-

lem.

CPAL-LR is implemented in conjunction with three different pattern classi-

fication algorithms: SVMs, sparse coding (LC-RLSDLA), and CNNs. Experiments

conducted on face and object recognition databases show that CPAL-LR outperforms

previous work on active learning, improving performance across different pattern classi-

fication techniques and databases. Moreover, experiments performed on synthetic data

provide a greater insight into the working mechanism of the proposed approach and

also show the behavior of the parameters η and λ for two different synthetic databases.

In addition to performance enhancement, CPAL-LR produces reliable confidence

values that are used to predict class labels with guaranteed error rate. Experimental

results show that the proposed nonconformity measure achieves similar or better per-

formance (quality of the confidence values) than previously proposed techniques.
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In the following chapter, a nonlinear constrained optimization problem is con-

sidered to determine the relevance of instances in the unlabeled pool. Experiments

conducted on synthetic databases are performed to give a greater insight into the pro-

cess of instance selection. Moreover, active learning is performed on a video database

for emotion recognition.
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Chapter 6

CONFORMAL PREDICTION BASED ACTIVE LEARNING BY
NONLINEAR CONSTRAINED OPTIMIZATION

We propose a conformal prediction based active learning algorithm, referred to

as CPAL-NCO. The proposed approach uses a novel query function that considers un-

certainty, diversity, and representativeness as the selection criteria. In the remainder of

this section, the proposed query function is introduced, and the CPAL-NCO algorithm

is described.

6.1 CPAL-NCO Query Function

The proposed query function determines the relevance of unlabeled instances

through the solution of quadratic programming optimization problem, incorporating

uncertainty, diversity, and representativeness. Define U = {x1,x2, . . . ,xL} as the un-

labeled pool. Let Tprop = {z1, ..., zℓ} be the proper training set, containing ℓ instances

with their corresponding class labels. Let Td be a set containing the instances that

have been selected from the unlabeled pool. The relevance of an instance is given by

the following expression:

r(Td) = (1− α− β)
∑

i∈Td

ui + α
∑

i∈Td

ρ
(k1)
i − β

∑

i∈Td

ρ
(k2)
i , (6.1)

where the first and second terms in (6.1), with their corresponding weights {α, β ∈
[0, 1] | α + β <= 1}, promote diversity and representativeness, respectively. The term

ui is the uncertainty of instance xi, calculated according to equation (2.3), and k1 ≪ k2.
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The term ρ
(k)
i is computed using the distance of instance xi from its k-nearest neighbors

in the unlabeled pool, denoted as z
(n)
i (n = 1, . . . , k), as:

ρ̂
(k)
i =

k∑

n=1

∥
∥
∥xi − z

(n)
i

∥
∥
∥

2

2
. (6.2)

Notice that the value ρ̂
(k)
i will be low if instance xi is close to its k-nearest

neighbors (densely populated region). Conversely, the value d̂i will be high if instance

xi is far from its k-nearest neighbors (sparsely populated region). Define ρmax =

max{ρ(k)i }. CPAL-NCO computes the values ρ
(k)
i for all instances xi in the unlabeled

pool (i = 1, . . . , |U |) as:
ρ
(k)
i = ρ̂

(k)
i /ρmax. (6.3)

The term ρ
(k1)
i (k1 ≪ k2,) indicates how close instance xi is to other instances in a

small neighborhood. Therefore, low values of ρ
(k1)
i are penalized to promote diversity.

The term ρ
(k1)
i indicates how representative of the data instance xi is by measuring

the distance of xi to other instances in a large neighborhood. High values of ρ
(k1)
i are

penalized to promote representativeness.

CPAL-NCO selects a batch Td of unlabeled instances so as to maximize (6.1).

Since brute force search methods are prohibitive, numerical optimization techniques

are employed to obtain a solution. Following the scheme utilized in [24, 26], we define

a binary vector v = [v1, ..., v|U |], where each entry denotes whether the corresponding

point is to be queried for its class label. The objective function given by (6.1) can be

rewritten in terms of v as:

max
v

(1− α− β)
∑

i∈U

uivi + α
∑

i∈U

ρ
(k1)
i vi − β

∑

i∈U

ρ
(k2)
i vi (6.4)

s.t . vi ∈ {0, 1},

The above optimization is an integer programming problem and is NP hard. We
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therefore relax the constraints to make it a continuous optimization problem:

max
v

(1− α− β)
∑

i∈U

uivi + α
∑

i∈U

ρ
(k1)
i vi − β

∑

i∈U

ρ
(k2)
i vi (6.5)

s.t 0 ≤ vi ≤ 1

vT1 = NAL

The optimization problem in (6.5) is solved as a nonlinear constrained optimization

problem using the interior-point barrier method [71, 72]. After solving for vector v, the

instances associated with top largest NAL entries in v are selected from the unlabeled

pool.

6.2 CPAL-NCO Nonconformity Measure

Nonconformity measures produce nonconformity scores, which are then used to

compute informativeness, as described in Section 2. CPAL-NCO uses the nonconfor-

mity measure given by equation (4.1).

6.3 CPAL-NCO Algorithm

We propose an active learning algorithm within the CP framework. First, we

split the training set, Ttrain = {z1, ..., zn}, into the proper training set, Tprop = {z1, ..., zℓ},
and the calibration set, Tcal = {zℓ+1, ..., zℓ+r}, where n = ℓ + r, as described in Sec-

tion 2. Then, the classification rule, Cprop, is obtained through the underlying algorithm

employing Tprop.

The nonconformity scores of the instances in calibration set, Tcal, and the unla-

beled pool, U , are computed using equation (4.1) and Cprop. The nonconformity scores

are used to measure the p-values and the uncertainty of instances in the unlabeled

pool, according to equation (2.1) and (2.3), respectively.

The terms ρk1i and ρk2i are computed using the k-nearest neighbors approach,

according to equations (6.2) and (6.3). Then, the optimization problem described by
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Algorithm 5 CPAL-NCO
1: Input: Proper training set Tprop = {z1, ..., zℓ}, calibration set Tcal = {zℓ+1, ..., zℓ+r}, un-

labeled pool U = {xn+1, . . . ,xn+v}, classification rule Cprop, number of desired instances
NAL, and number of class labels M

2: Compute the weights p
(k1)
i and p

(k2)
i , using equations (6.2), and (6.3), for all instances

in the unlabeled pool U
3: Use Equation (4.1) and the classification rule Cprop to calculate:

• The nonconformity scores {αℓ+1, . . . , αℓ+r} corresponding to the instances
in the calibration set.

• The nonconformity scores {αHi

n+1, . . . , α
Hi
n+v} corresponding to the instances

in the unlabeled pool, where i = {1, . . . ,M}
4: Use Equation (2.1) to calculate the p-values associated with the instances in U , and

obtain their uncertainty un+j through equation (2.3), where j ∈ {1, . . . , v}
5: Solve the nonlinear contrained optimization problem in (6.5) and form the set Td

containing the NAL instances from U , with their corresponding class labels, whose
associated relevance v is the highest

6: Construct TAL = Tprop ∪ Td

7: Output: TAL

equation (6.5) is solved to obtain the relevance v of the instances in the unlabeled pool.

The NAL instances xi whose relevance is highest are selected.

CPAL-NCO returns the training set TAL = Tprop ∪ Td, where Td is the set of

pairs containing the NAL instances from U , with their corresponding class labels, whose

associated relevance v is the highest after solving the optimization problem in (6.5).

The proposed approach is summarized in Algorithm 5.

6.4 CPAL-NCO as a Conformal Predictor

The proposed nonconformity measure, described by equation (4.1), can be used

to produce confidence values associated with new predictions, during the testing phase.

After training the underlying algorithm and obtaining a classification rule, denoted as

Ctrain, the nonconformity scores α
(Hq)
n+j and p-values p(α

(Hq)
n+j ), associated with a new

instance xn+j, are computed according to equations (4.1) and (2.1), respectively. Then,

for a given significance level ǫ ∈ [0, 1], we form a set of labels Ψǫ
n+j = {i : p(α(Hi)

n+j ) > ǫ}
containing the correct class label for xn+j with probability (1 − ǫ), according to the

validity property. CPAL-NCO as a conformal predictor is described in Algorithm 6.
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Algorithm 6 CPAL-NCO (conformal predictor)

1: Input: Testing instance xn+j, calibration set nonconformity scores {αℓ+1, . . . , αℓ+r},
classification rule Ctrain, significance level ǫ, parameter γ, and number of class labels M

2: Use Equations (2.1) and (4.1), along with the classification rule Ctrain, to calculate:

• The nonconformity scores αHi

n+j corresponding to the new instance xn+j ,
for the different null hypothesis Hi (i = {1, . . . ,M})
• The p-values p(α

(Hi)
n+j ), associated with αHi

n+j

3: Construct the set Ψǫ
n+j = {i : p(α

(Hi)
n+j ) > ǫ}

4: Output: Ψǫ
n+j

6.5 Experimental Results

The focus of CPAL-NCO is twofold: 1) to improve the performance of pattern

classification algorithms through active learning; and 2) to produce reliable confidence

values. Therefore, our goal is to evaluate CPAL-NCO based on the improvement

achieved in classification performance and the quality of the produced confidence val-

ues. This section is organized as follows. First, we present simulation results obtained

on several synthetic databases to provide a greater insight into the proposed query

function and show its effectiveness. Then, we evaluate the performance of CPAL-NCO

on face and object recognition databases, providing a comparison between the proposed

technique and previous work on active learning.

6.5.1 Synthetic Database Experiments

Experiments are conducted on the Gaussian and Two-moon synthetic databases

described in Section 5.6.

SVMs are employed for these experiments, using the one-vs-all (OVA) approach.

Linear SVMs are used for the Gaussian database, whereas kernel SVMs (polynomial of

order 3) are used for the Two-moon database. We compare the performance improve-

ment obtained through CPAL-NCO with that of the following batch active learning

approaches: random sampling, i.e., we take instances from the unlabeled pool at ran-

dom, active learning based on uncertainty [9, 12, 13], clustering [22], clustering with

uncertainty [22], uncertainty and ABD [14], uncertainty and KBD [28], and generalized
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Figure 6.1: Synthetic databases and selected instances (highlighted) (Gaussian →
σ = 0.14, and Two-moon → σ = 0.10) using CPAL-NCO (a) (α = 0,

β = 0), (b) (α = 0, β = 6), (c) (α = 0, β = 1), (d) (α = 2, β = 0), (e) (α = 6, β = 0),
(f) (α = 1, β = 0), (g) (α = 0, β = 0), (h) (α = 0, β = 8), (i) (α = 0, β = 1), (j) (α = 2,

β = 8), (k) (α = 6, β = 2), (l) (α = 1, β = 0).

batch mode active learning [26], which are denoted as (rnd), AL(MCLU), AL(CBD),
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Table 6.1: Classification accuracy (%) for different query functions and standard
deviation σ as a function of the number of selected instances NAL.

Algorithm Query function

Gaussian Two-moon

σ = 0.13 σ = 0.17 σ = 0.08 σ = 0.14

NAL NAL NAL NAL

12 20 12 20 12 20 12 20

SVM

(rnd)
AL(MCLU)
AL(CBD)

AL(MCLU-ECBD)
AL(MCLU-ABD)
AL(MCLU-KBD)
AL(GBMAL)
CPAL-NCO

94.0
94.0
94.3
94.7
95.3
95.6
95.9
96.9

94.7
95.7
95.3
95.9
96.7
96.1
96.5
97.1

87.5
87.8
87.4
88.6
88.6
89.6
89.3
90.6

88.0
88.7
88.4
89.3
89.3
89.7
89.7
90.9

91.5
91.7
91.4
91.9
92.2
92.9
92.6
93.5

91.9
92.2
92.0
92.8
93.1
93.4
93.1
93.7

86.8
87.6
87.6
88.8
89.1
89.8
89.0
90.5

87.5
87.8
88.2
89.0
89.4
89.9
89.5
90.7

AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU-KBD), and AL(GBMAL), respec-

tively. Random sampling is used as the baseline for the experiments.

For the proposed approach, parameter optimization using grid search is per-

formed over the weights α and β. For AL(MCLU-ABD) and AL(MCLU-KBD), the

parameter ρ is optimized using the same approach. For random sampling, the training

set TR = Tprop∪Trnd is employed, where Trnd contains NAL randomly selected instances

from U with their corresponding class labels, and Tprop is the proper training set. The

results for active learning are obtained using the training set TAL = Tprop ∪ Td, where

Td contains NAL instances selected from U using the aforementioned active learning

approaches, with their corresponding class labels. Five trials are conducted to compute

the classification accuracy. In each trial, the proper, calibration, training and testing

sets are selected at random. For each trial, the best results are selected after parameter

optimization and the average classification accuracy is presented.

Figure 6.1 shows the instances selected by the proposed technique for different

parameters α and β. It is observed in Fig. 6.1(a) and (g) that when uncertainty is

predominant (α = 0, β = 0), CPAL-NCO selects instances that are concentrated on

high uncertainty the regions, i.e., the regions where clusters tend to overlap (near the

decision boundaries).
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Figure 6.1(f) and (l) shows the instances selected by CPAL-NCO when represen-

tativeness is predominant (α = 0, β = 1). It is observed that the selected instances are

located near the cluster centers for the Gaussian database (Fig. 6.1(f)), and they con-

centrate near coordinate (0,0) for the Two-moon database, which correspond to densely

populated regions. On the other hand, when diversity is predominant (α = 1, β = 0),

the instances selected by CPAL-NCO are located in sparsely populated regions. as

shown in Fig. 6.1(c) and (i).

Figures 6.1(e) and (k) show the instances selected by CPAL-NCO when un-

certainty, diversity, and representativeness are considered together. The parameters

for the Gaussian and Two-moon databases are (α = 1, β = 0) and (α = 1, β = 0),

respectively. It is observed that the selected instances are located in high uncertainty

regions, and the spread of the selected instances is lower. In addition, there are no

instances located in sparsely populated regions.

Table 6.1 shows the classification accuracy obtained on the synthetic databases

for different query functions and values σ, as a function of the number of selected

instances NAL. It is observed that the proposed technique outperforms the considered

active learning approaches for all the values of σ and NAL. For instance, when the

Two-moon database is employed, for σ = 0.08 and NAL = 12, the performance of (rnd),

AL(MCLU), AL(MCLU-ABD), AL(MCLU-KBD), AL(CBD), AL(MCLU-ECBD) and

AL(GBMAL) is 91.5%, 91.7%, 91.4%, 91.9%, 92.2%, 92.9%, and 92.6%, respectively,

whereas that of CPAL-NCO is 93.5%.

To visualize the effect of the parameters α and β on the performance of CPAL-

NCO we perform a second experiment. In this experiment, we conduct 100 trials.

In each trial, the instances in proper, training, and testing sets are selected at ran-

dom, along with those in the unlabeled pool, and the average classification accuracy

is presented. The proper training set Tprop consists of 14 instances, and the number of

selected instances from the unlabeled pool is NAL = 12.

The classification accuracy for the Gaussian database as a function of α and β for

σ = 0.10, 0.12, 0.17, and 0.20 is depicted in Fig. 6.2(a), (b), (c), and (d), respectively.
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Figure 6.2: Classification accuracy (%) obtained through CPAL-NCO as a function
of α and β. Gaussian: (a) σ = 0.10, (b) σ = 0.12, (c) σ = 0.17, (d)
σ = 0.20.

The values of α and β that produce different combinations of uncertainty, diversity,

and representativeness are depicted in Fig. 6.4. It is observed that in the low variance

(low noise) scenario, i.e., Fig. 6.2(a) and (b), the best performance is obtained for low

values of β, and high values of α, which is a combination of uncertainty and diversity

(towards the region (α > 0, β = 0) in Fig. 6.4). On the other hand, as the variance

(noise) increases, Fig. 6.2(c) and (d), it is observed that the parameter β becomes more

relevant and the values of α decrease (towards the region (α = 0, β > 0) in Fig. 6.4).
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Figure 6.3: Classification accuracy (%) obtained through CPAL-NCO as a function
of α and β. Two-moon: (a) σ = 0.08, (b) σ = 0.13, (c) σ = 0.16, (d)
σ = 0.18.

The classification accuracy for the Two-moon database as a function of α and β

for σ = 0.08, 0.13, 0.16, and 0.18 is shown in Fig. 6.3(a), (b), (c), and (d), respectively.

Similar to the results for the Gaussian database, it is observed that for the low noise

scenario, Fig. 6.3(a), and (b), high values of α produce the best results (towards the

region (α > 0, β = 0) in Fig. 6.4). For the high noise case, Fig. 6.3(c), and (d),

the parameter β becomes more relevant. Different from the Gaussian database, the

parameter β does not need to be increased significantly to produce good performance
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Figure 6.4: Values of α and β that produce different combinations of uncertainty,
diversity, and representativeness.

in the high noise scenario for the Two-moon database.

The synthetic database experiments demonstrate that the parameters α and

β effectively control the uncertainty, diversity, and representativeness of the selected

instances, providing flexibility to the proposed approach. Moreover, it is observed that

CPAL-NCO outperforms other existing active learning approaches for classification.

6.5.1.1 Parameter Selection Comparison for CPAL-LR and CPAL-NCO

on the Synthetic Databases

Figure. 6.5 shows the performance as a function of parameters η and λ for

CPAL-LR, and the performance as a function of α and β for CPAL-NCO, for both

the Gaussian and the Two-moon databases. It is observed in Fig. 6.5(a) and (c)
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that for the Gaussian database (low-noise, σ = 0.10) both algorithms perform better

using a combination of uncertainty and diversity. On the other hand Fig. 6.5(b) and

(d) show that, when the noise is high (σ = 0.20), a combination of uncertainty and

representativeness is a better choice.

Figure. 6.5 (e), (f), (g), and (h) show that the best results for the Two-moon

database are obtained for a combination of uncertainty and diversity. However, repre-

sentativeness becomes more relevant as σ increases.

The results shown in Fig. 6.5 indicate that the trends for the optimal parameters

may be similar across different active learning algorithms provided that they consider

the same selection criteria.

6.5.1.2 Parameter Selection Modeling for Synthetic Databases

The classification accuracy of CPAL-NCO vs the parameters α and β can be

approximated by a surface defined by a fifth order polynomial in two dimensions for

ease of use. The polynomial is given by equation (5.6), where we assign x ← α,

and y ← β. The results of the surface-fitting exercise are shown in Fig. 6.6. It is

observed that the surface defined by the fifth order polynomial closely approximates

the experimental results. The coefficients of the different polynomials are summarized

in Table 6.2.

6.5.2 Face and Object Recognition

Experiments are conducted on two face databases, the Extended YaleB database

[63] and the AR face database [64], and one object recognition database, Caltech101 [65]2.

CPAL-NCO is implemented in conjunction with SVMs. We compare the perfor-

mance improvement obtained through CPAL-NCO with that of the (rnd), AL(MCLU),

AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU-KBD), and AL(GBMAL).

2 In this section we use a subset of the Caltech101 database including the following classes: ketch,
chandelier, hawksbill, grand piano, brain, butterfly, helicopter, menorah, kangaroo, starfish, trilobit,
buddha, ewer, sunflower, scorpion, revolver, laptop, ibis, llama, umbrella, crab, crayfish, cougar face,
dragonfly, ferry, flamingo, and lotus.
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Table 6.2: Polynomial coefficients for the synthetic databases.

Coefficients
Gaussian Two-moon

σ = 0.10 σ = 0.20 σ = 0.08 σ = 0.18

p00
p10
p01
p20
p11
p02
p30
p21
p12
p03
p40
p31
p22
p13
p04
p50
p41
p32
p23
p14
p05

95.23
0.16
1.05
−4.85
−1.18
−6.07
13.82
−0.59
1.16
15.38
−13.24
−0.15
−4.19
7.91
−18.14
3.99
2.83
−4.40
6.52
−7.83
7.84

85.75
−2.84
1.10
20.78
21.18
−44.46
−49.39
−32.23
0.98

107.52
45.51
14.07
48.28
−67.20
−84.94
−13.69
−8.71
0.88
−23.85
46.32
20.44

95.09
12.61
−5.00
−89.55
7.19
−9.19
179.8
117.1
−75.14
24.47
−173.30
−199.70
88.23
19.82
−10.51
67.35
75.03
11.66
−62.03
20.23
−2.80

83.53
23.17
−3.80
−126.32
−25.47
9.93
278.63
134.31
−50.44
−28.85
−274.04
−157.52
34.51
48.08
35.40
99.93
47.85
23.58
−53.52
1.46
−2.80

Random sampling is used as the baseline for the experiments, and parameter optimiza-

tion is performed using exhaustive search, as in the synthetic database experiments.

For each of the experiments in this section, five trials are conducted. In each

trial, the proper, calibration, training, and testing sets are selected at random. For

each trial, the best results are selected after parameter optimization and the average

classification accuracy is presented. The calibration set consists of 199 instances for all

the experiments, which results in a resolution of 0.5% in the confidence values calcu-

lated, according to equation (2.1). The parameter γ is set to 0.5 in the nonconformity

measure given by equation (4.1).

In the following experiments, SVMs are used using the one-vs-all approach. For

the Extended YaleB database, the proper training set Tprop and U consist of eight

and 24 images per class, respectively. The feature descriptors are randomfaces of size
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N = 504. For the AR database, Tprop and U consist of five and 12 images per class,

respectively. The feature descriptors are randomfaces of size N = 540. For Caltech101,

Tprop and U consist of ten and 30 images per class, respectively. SIFT descriptors are

first extracted. Next, spatial pyramid features, based on the SIFT descriptors, are

obtained. The dimension of the spatial pyramid features is then reduced to 3000

through PCA.

6.5.3 Results: CPAL-NCO for Face and Object Recognition

The performance of CPAL-NCO, along with that of the considered active learn-

ing approaches, as a function of the number of selected instances NAL, for the different

algorithms and databases, is shown in Fig. 6.7, 6.8, and 6.9. It is observed that the

performance of the different pattern classification algorithms is significantly improved

through active learning, for all the considered databases. Notice that the performance

of CPAL-NCO compares favorably with that of the other active learning techniques.

This demonstrates the effectiveness of the proposed approach.

The results for the Extended YaleB database in Fig. 6.7 show that the best

performance is obtained by CPAL-NCO. Table 6.3 shows that for NAL = 300 the clas-

sification accuracy of (rnd), AL(MCLU), AL(CBD), AL(MCLU-ECBD), AL(MCLU-

ABD), AL(MCLU-KBD), AL(GBMAL) is 85.3%, 86.2%, 86.2%, 86.3%, 87.2%, 87.3%

and 87.5%, respectively, whereas that of CPAL-NCO is 88.1%.

The results for the AR database in Fig. 6.8. It is observed that the performance

of CPAL-NCO is highest among all the considered approaches for the different values

of NAL. For instance, for NAL = 400, the classification accuracy of (rnd), AL(MCLU),

AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU-KBD), AL(GBMAL) is

87.1%, 87.2%, 87.6%, 87.9%, 88.2%, 88.4% and 88.7%, respectively, whereas that of

CPAL-NCO is 89.5%.

Similar results are obtained for Caltech101, as shown in Fig. 6.9. For in-

stance, when NAL = 200, the classification accuracy of (rnd), AL(MCLU), AL(CBD),

AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU-KBD), AL(GBMAL) is 70.5%, 71.0%,
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Table 6.3: Classification accuracy (%) using different active learning techniques as a
function of the number of selected instances NAL.

Algorithm Query function

YaleB AR Caltech101

300 400 500 300 400 500 200 300 400

SVM

(rnd)
AL(MCLU)
AL(CBD)

AL(MCLU-ECBD)
AL(MCLU-ABD)
AL(MCLU-KBD)
AL(GBMAL)
CPAL-NCO

85.3
86.2
86.2
86.3
87.2
87.3
87.5
88.1

88.0
88.2
88.4
88.5
88.6
89.1
89.2
89.7

89.6
89.9
90.1
90.0
90.4
90.5
90.7
91.4

85.2
84.9
85.5
85.8
86.2
86.1
86.3
87.1

87.1
87.2
87.6
87.9
88.2
88.4
88.7
89.5

89.0
89.1
90.2
90.5
90.4
90.3
90.9
91.4

70.5
71.0
71.2
71.4
72.8
71.9
72.5
74.3

71.9
74.2
74.2
74.5
74.9
75.0
75.0
75.9

73.2
74.6
74.6
74.8
76.6
76.7
76.6
77.4

71.2%, 71.4%, 72.8%, 71.9% and 72.5%, respectively, whereas that of CPAL-NCO is

74.3%.

Figure 6.10 shows the classification accuracy of CPAL-NCO as a function of

the parameters α and β for the Extended YaleB, AR, and Caltech101 databases (av-

erage over the five trials for the different values of α and β). It is observed that the

best performance is obtained for a combination of uncertainty, diversity, and represen-

tativeness, i.e., α, β ≥ 0, for all the considered databases. For the Extended YaleB

database (NAL = 600), the best performance is obtained in the region α ∈ [0.4, 0.7] and

β ∈ [0, 0.3], and the classification accuracy peaks when α = 0.6 and β = 0.1 (91.6%).

For the AR database (NAL = 100), the best performance is obtained in the region

α ∈ [0.2, 0.4] and β ∈ [0.2, 0.4], and the classification accuracy peaks when α = 0.4

and β = 0.3 (79.3%). For Caltech101 (NAL = 500), the best performance is obtained

in the region α ∈ [0, 0.4] and β ∈ [0.4, 0.8], and the classification accuracy peaks when

α = 0.1 and β = 0.6 (73.4%).

The results on face and object recognition show that CPAL-NCO improves

the performance of several pattern classification algorithms across different databases,

outperforming other state-of-the-art active learning techniques.

The confusion matrix for ten classes (trilobite, buddha, ewer, sunflower, scor-

pion, revolver, laptop, ibis, llama, and umbrella), for two different sets of parameters
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α and β, when SVMs are used, is shown in Fig. 6.11 (α = 0, β = 0.6) and Fig. 6.12

(α = 0.4, β = 0.5). It is observed that for (α = 0.4, β = 0.5) the performance is better

(85.9%), compared to that obtained for (α = 0, β = 0.6) (83.7%).

Figure 6.11 shows that three elements of class buddha are classified as ewer,

when (α = 0, β = 0.6). On the other hand, when (α = 0.4, β = 0.5), only one element

of class buddha is regarded as ewer. Fig. 6.13(a), (b), and (c) show the images of class

buddha that are regarded as ewer when (α = 0, β = 0.6), while only Fig. 6.13(c) is

regarded as ewer when (α = 0.4, β = 0.5). This shows the importance of parameter

selection in the proposed technique. An example image of class ewer is shown in

Fig. 6.13(d).

Moreover, Fig. 6.11 shows that three elements of class ibis are classified as llama,

when (α = 0, β = 0.6). On the other hand, when (α = 0.4, β = 0.5), none of the

elements of class buddha are regarded as ewer. Fig. 6.13(e), (f), and (g) show the

images of class ibis that are regarded as llama when (α = 0, β = 0.6). An example

image of class llama is shown in Fig. 6.13(h).

6.5.4 Applications to Video for Emotion Recognition

In the following experiments we employ the Oulu-CASIA NIR&VIS database.

The proposed approach is shown in Fig. 6.14. For each one of the video snippets,

optical flow is obtained for the different frames using the technique described in [73].

Optical flow is then converted into RGB images, and averaged across the video frames

to mitigate noise. The resulting image is normalized, dividing by the highest optical

flow magnitude across the video snippet, then cropped to 200×200 pixels and rescaled

to 50×50 pixels. For the following experiments we use the CNN described in Table 6.4.

For each of the experiments in this section, 5 trials are conducted. In each trial,

the order of the instances in the training set is permuted. The average classification

accuracy is presented. The proper training set Tprop consists of 120 images per class,

and the unlabeled pool U consists of 70 images per class. The calibration set consists
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Table 6.4: CNN architecture for the Oulu-CASIA database.

Layers
Filter
Size

Stride Padding
Output

W ×H × L

Input - - - 50× 50× 3

Conv-ReLU
Avg pool

7× 7
2× 2

1
2

0 22× 22× 20

Conv-ReLU
Avg pool

7× 7
2× 2

1
2

0 8× 8× 60

FC-ReLU
Dropout

- - - 500

FC-Softmax - - - 6

Table 6.5: Classification accuracy (%) using different active learning techniques as a
function of the number of selected instances NAL.

Query function

Oulu-CASIA NIR&VIS

No. instances NAL

50 150 200

(rnd) 61.1 64.2 66.5

AL(MCLU) 63.2 64.7 68.0

AL(MCLU-ABD) 64.2 67.2 69.2

AL(MCLU-KBD) 64.9 66.8 68.6

AL(GBMAL) 63.7 67.3 68.6

CPAL-NCO 66.2 68.1 69.5

of 99 instances, and the parameter γ is set to 0.5 in the nonconformity measure given

by equation (4.1).

The classification accuracy for different values of NAL can be seen in Fig 6.15.

Notice that the performance of CPAL-NCO compares favorably with that of the other

active learning techniques. The results are summarized in Table 6.5. It is observed

that for NAL = 100 the classification accuracy of (rnd), AL(MCLU), AL(MCLU-ABD),

AL(MCLU-KBD), AL(GBMAL) is 64.2%, 64.7%, 67.2%, 66.8%, and 67.3%, respec-

tively, whereas that of CPAL-NCO is 68.1%. Similar results are obtained for NAL = 50

and NAL = 300.
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Table 6.6: Execution time of different active learning techniques as a function of the
number of selected instances NAL (AR database).

Query function

Execution time (s)

No. instances NAL

200 300 400

(rnd) 2.0× 10−4 2.2× 10−4 2.4× 10−4

AL(MCLU) 0.9 0.9 0.9

AL(MCLU-ABD) 1.9 3.1 3.9

AL(MCLU-KBD) 2.1 3.7 5.0

CPAL-CNN 2.4 4.0 5.2

CPAL-LR 1.3 1.3 1.4

CPAL-NCO 11.9 11.7 12.0

6.6 Execution Time of Active Learning Approaches

We calculate the average execution time of (rnd), AL(MCLU), AL(MCLU-

ABD), AL(MCLU-KBD), CPAL-CNN, CPAL-LR, and CPAL-NCO. The execution

times are averaged over 10 iterations, and the results are summarized in Table 6.6.

The algorithms are tested using MATLAB running on a 2.5 GHz Intel Core i7 pro-

cessor. It is observed that (rnd) is the simplest approach, with execution times in the

order of 10−4. However, its performance is the lowest, as shown in Sections 3, 4, 5,

and 6. Notice that the execution times of CPAL-LR (≈ 1.3) and CPAL-NCO (≈ 11.9)

remain similar for the different values of NAL, since these two approaches compute the

relevance for all the instances in the unlabeled pool, regardless of the value of NAL. The

execution times of AL(MCLU-ABD), AL(MCLU-KBD), and CPAL-CNN are similar,

and increase with the number of selected instances NAL.

6.7 Chapter Conclusion

A conformal prediction based active learning algorithm is presented in this chap-

ter. The proposed approach uses a novel query function that determines the relevance

of unlabeled instances through the solution of a nonlinear constrained optimization

problem. The proposed query function considers uncertainty, diversity, and represen-

tativeness for instance selection. Moreover, experiments performed on synthetic data
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provide a greater insight into the working mechanism of the proposed approach and

also show the behavior of the parameters α and β for two different synthetic databases.

CPAL-NCO is implemented in conjunction with SVMs and CNNs. Experiments

conducted on face, object, and emotion recognition databases show that CPAL-NCO

outperforms previous work on active learning, improving performance across different

pattern classification techniques and databases.
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Figure 6.5: Classification accuracy (%) obtained through CPAL-LR, and CPAL-NCO
as a function of η, λ, α, and β. Gauss: (a) σ = 0.10, (CPAL-LR) (b)
σ = 0.20 (CPAL-LR), (c) σ = 0.10 (CPAL-NCO), (d) σ = 0.20 (CPAL-
LR). Two-moon: (e) σ = 0.08 (CPAL-LR), (f) σ = 0.18 (CPAL-LR), (g)
σ = 0.08 (CPAL-NCO), (h) σ = 0.18 (CPAL-LR).
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(a) (b)

(c) (d)

Figure 6.6: Characterization of the surface defined by performance vs parameters α
and β using a fifth order polynomial in two dimensions (fitted surface
shown in red). Gaussian: (a) σ = 0.10, (b) σ = 0.20, Two-moon: (c)
σ = 0.08, (d) σ = 0.18.
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Figure 6.7: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL (YaleB).
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Figure 6.8: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL (AR).
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Figure 6.9: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL (Caltech101).
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Figure 6.10: Classification accuracy (%) obtained through CPAL-NCO (SVMs) as a
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Figure 6.11: Confusion matrix for classes trilobite, buddha, ewer, sunflower, scorpion,
revolver, laptop, ibis, llama, and umbrella (α = 0, β = 0.6).
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Figure 6.12: Confusion matrix for classes trilobite, buddha, ewer, sunflower, scorpion,
revolver, laptop, ibis, llama, and umbrella (α = 0.4, β = 0.5).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.13: Caltech101 images of class buddha that are regarded as ewer by file-
name: (a) image 0007.jpg, (b) image 0045.jpg, and (c) image 0046.jpg.
Images of class ibis that are regarded as llama: (e) image 0056.jpg, (f)
image 0022.jpg, and (g) image 0028.jpg. Example image of class ewer
(d) image 0010.jpg, and llama (h) image 0001.jpg.
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Optical Flow Averaging/
Normalizing

Figure 6.14: Feature extraction using optical flow.
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Figure 6.15: Classification accuracy (%) using different active learning techniques as
a function of the number of selected instances NAL for the Oulu-CASIA
database.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

Several conformal prediction based active learning approaches are proposed

in this work. The proposed techniques use novel query functions that determine

the relevance of unlabeled instances considering uncertainty, diversity, and represen-

tativeness. Moreover, several nonconformity measures that produce reliable confi-

dence values are presented. The contributions made in this work are categorized in

Fig. 7.1 [74, 75, 76, 77], along with previous work on batch mode active learning.

The proposed techniques are implemented in conjunction with three different

pattern classification algorithms: SVMs, sparse coding, and CNNs, outperforming pre-

vious work on active learning. Experiments are conducted on two face recognition

databases, Extended YaleB and AR, one object recognition database, Caltech101, and

one emotion recognition video database, Oulu-CASIA NIR&VIS. The experimental

results demonstrate the improved performance obtained through the proposed tech-

niques.

In addition to performance enhancement, conformal prediction based active

learning produces reliable confidence values that are used to predict class labels with

guaranteed error rate. The quality of the confidence values is demonstrated exper-

imentally using three different metrics: the evaluation of the validity property, the

percentage of singleton predictions, and the average number of class labels in the pre-

diction sets.

As part of future work, more efficient ways to compute information density

can be explored, since the kernel method and k-nearest neighbors approach used in

this work become computationally intensive for large databases. Recent work has
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Figure 7.1: Contributions and related work on batch mode active learning.

addressed this issue using density estimation based on mass [78], which we plan to

investigate on our ongoing work. Moreover, when the proper training set is small,

supervised DML algorithms, such as LMNN [37], may overfit the data, degrading the

performance of the subsequent active learning stage. Therefore, further improvements

may be obtained by investigating semi-supervised DML techniques [79, 80], which

exploit the information of both labeled and unlabeled data. Future developments of

this work also include parameter estimation using optimization algorithms to obtain

the query function weights, thereby avoiding grid search procedures.
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