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ABSTRACT

At the level of individual living cells, key species such as genes, mRNAs, and

proteins are typically present in small numbers. Consequently, the biochemical reac-

tions involving these species are inherently noisy and result in considerable cell-to-cell

variability. This thesis outlines two mathematical tools to quantify stochasticity in

these biochemical reaction systems: (i) a novel computational method that provides

exact lower and upper bounds on statistical moments of population counts of impor-

tant species, and (ii) a first-passage time framework to study noise in the timing of a

cellular event that occurs when population count of an underlying regulatory protein

attains a critical threshold.

The method to compute bounds on moments builds upon the well-known linear

dynamical system that describes the time evolution of statistical moments. However,

except for some ideal cases, this dynamical system is not closed in the sense that lower-

order moments depend upon some higher-order moments. To overcome this issue, our

method exploits the fact that statistical moments of a random variable must satisfy

constraints that are compactly represented through the positive semidefiniteness of

moment matrices. We find lower and upper bounds on a moment of interest via a

semidefinite program that includes linear constraints obtained from moment dynam-

ics, along with semidefinite constraints on moment matrices. We further show that

these bounds improve as the size of the semidefinite program is increased by including

dynamics of more moments as well as constraints involving them. We also extend the

scope of this method for stochastic hybrid systems, which are a more general class of

stochastic systems that integrate discrete and continuous dynamics.

The second tool proposed in this thesis–a first-passage time framework to study

event timing–is based on the premise that several cellular events in living cells occur

xvi



upon attainment of critical levels by corresponding regulatory proteins. Two particular

examples that we study here are the lysis of a bacterial cell infected by the virus

bacteriophage λ and the cell-division in exponentially growing bacterial cells. We

provide analytical calculations for the first-passage time distribution and its moments

for both these examples. We show that the first-passage time statistics can be used to

explain several experimentally observed behaviors in both these systems. Finally, the

thesis discusses potential directions for future research.

xvii



Chapter 1

INTRODUCTION

Stochasticity or noise is an integral aspect of biochemical systems. For example,

genetically identical cells are known to exhibit considerable variability in their behav-

ior. This variability can in principle stem from fluctuations in external environment of

the cells (temperature, nutrients, stresses, etc.) as well as in intrinsic factors. However,

the cell-to-cell variability is present even in a controlled and supposedly homogenous

environment. With recent progress in single-cell and single-molecule technologies, it

has become apparent that the inherent probabilistic nature of biochemical reactions,

coupled with the fact that important species such as genes, mRNAs, etc. occur in in-

dividual cells at low copy numbers, leads to noise in gene-product levels across isogenic

cells [5–16]. This noise then manifests as variability in biological functions [17–32].

Prevalence of noise in biochemical systems raises several fundamental questions.

For example, how cells behave reliably despite the presence of noise at the molecular

and cellular levels? Is it possible to exploit noise for certain cellular functions? Have

single-cell and more complex organisms evolved to exploit noise to enhance perfor-

mance? These questions have been widely investigated in the last decade and it has

been shown that cells use a variety of regulatory mechanisms to suppress or exploit

fluctuations in gene-product levels [33–43]. Interestingly, the noise in gene-product

levels can also manifest as noise in other important variables, such as timing of cellular

events that occur up on accumulation of a regulatory proteins up to critical threshold

levels. The questions of reliable performance in presence of noise or its utilization to a

cell’s advantage can also be asked in context of timing of events [44, 45].

1



Given how important the noise in gene-product levels (and consequently in other
variables such as timing of cellular events) is, quantification of noise is extremely im-
portant for understanding the cellular function. Towards that end, this thesis develops
two mathematical tools:

• A novel computational method that provides exact lower and upper bounds on
statistical moments of gene-product levels. These tools are later extended to
stochastic hybrid systems which are a much broader class of stochastic systems.

• A first-passage time framework to study noise in timing of cellular events that
occur once levels of associated regulatory proteins achieve some critical thresh-
olds.

The first tool proposed above is described in Chapter 2. It utilizes the well-

known linear dynamical system that governs time evolution of moments. It turns out

that when the biochemical system contains nonlinearities, the linear dynamical sys-

tem is an infinite-hierarchical system of coupled differential equations. Computing, or

even estimating, moments of species level in such systems has implications in not only

quantitative understanding of these systems, but also in parameter inference [46–50].

Furthermore, accurate estimation of moments are desirable for identification of molec-

ular underpinnings of biochemical processes [9]. Whereas current methods to approx-

imate moments are based on ad-hoc assumptions [48, 51–73], we propose a method

to obtain both lower and upper bounds on moments of a biochemical system with-

out any assumption. The method uses the steady-state moment equations along with

semidefinite constraints that required to be satisfied by moments of a random variable.

These inequalities are constructed from positive semidefinite constraints on moments

of a positive random variable. We show that not only one can obtain upper and lower

bounds on a given stationary moment, but also both upper and lower bounds improve

considerably as one uses more moment equations. Later in Chapter 3, we extend the

scope of the method to stochastic hybrid systems (SHSs) that integrate both continuous

dynamics with discrete events. We show that our method extends to both polynomial

SHSs and rational SHSs. Furthermore, we also discuss an alternate method to estimate

moments for simple SHSs that exploits the positivity of the characteristic function.
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With regards to the second tool proposed here, we formulate event timing as

the first-passage time for a protein’s level to cross a threshold. Although we study

two particular problems here – the lysis time of an E. coli cell infected by a bacterio-

phage λ (Chapter 4) and cell division time in bacteria (Chapter 5) – there are several

other examples in context of development [74–77], cell-cycle control [78–82], cell dif-

ferentiation [83, 84], sporulation [85, 86], apoptosis [87–89], etc. wherein the proposed

framework could be useful. We particularly ask how different parameters of interest

shape the statistics of event timing. Moreover, in context of bacteriophage λ, lysis

time is presumably scheduled so as to minimize noise in timing, and therefore also ex-

amine how cells would regulate gene expression to minimize noise in timing around a

given mean time. For both examples, we discuss how the proposed framework explains

important experimentally observed characteristics of event timing.

1.1 Notation

For stochastic processes and their moments, we omit explicit dependence on

time unless it is not clear from the context. Inequalities for vectors are element-wise.

Random variables are denoted in bold. The n-dimensional Euclidian space is denoted

by Rn. The set of non-negative integers is denoted by N whereas set of complex numbers

is represented by C. E(x) or 〈x〉 is used for expectation of a random variable x.

1.2 Publication List

This thesis is based on the material in the following publications:

[90] (Chapter 2) K. Ghusinga, C. Vargas-Garcia, A. Lamperski, and A. Singh. Ex-
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[91] (Chapter 3 & 4) A. Lamperski, K. Ghusinga, and A. Singh. Analysis and Control
of Stochastic Systems using Semidefinite Programming over Moments. Under
Review, 2017

[92] (Chapter 3) K. Ghusinga, A. Lamperski, and A. Singh. Moment Analysis of
Stochastic Hybrid Systems using Semidefinite Programming. Under Review, 2018
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Chapter 2

BOUNDING MOMENTS OF BIOCHEMICAL SYSTEMS

In a well-mixed biochemical reaction system, the reactions are inherently stochas-

tic owing to the perpetual random motion at the molecular level. These stochastic

effects are particularly relevant when the species are present at low molecular counts.

Mathematical characterization of such systems is done by employing the chemical

master equation (CME) [102–104]. To formally write the CME, consider a system

of n species Xj, j = {1, 2, . . . , n} and denote the state of the system by a vector

x(t) =
[
x1(t) x2(t) . . . xn(t)

]>
, where xj(t) represents the population of Xj at

time t. The time evolution of the probability, P (x(t)), that the system is in state x(t)

follows the following differential equation

dP (x(t))

dt
=

S∑
i=1

fi(x(t)− ηi)P (x(t)− ηi)−
S∑
i=1

fi(x(t))P (x(t)) . (2.1)

Here S represents the number of reactions Ri, i ∈ {1, 2, . . . , S} through which the

species interact. The term fi(x(t)) denotes the propensity of the ith reaction Ri in the

sense that the probability that it occurs in an infinitesimal small time-interval [t, t+dt)

is given by fi(x(t))dt. Upon occurrence of Ri, the state of the system is transitioned

to x+ ηi where ηi is the stoichiometry vector that describes the change in population.

It turns out that the CME is analytically intractable except for few special cases,

and generally requires considerable computation effort if solved numerically [105–114].

The computational cost tends to become prohibitive if one is interested in studying

the long time (i.e., stationary or steady-state) behavior of the system. Perhaps a

reasonable goal is to determine a few lower order moments (such as mean, variance,

etc.) of different species. Not only is moment computation of primary importance for
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many purposes, but it can also be used to infer useful information about the probability

density function using the tools such as the Chebyshev’s inequality [115], moment-based

reconstruction of the probability density function [116], etc.

The time evolution of moments of a biochemical system is governed via a system

of differential equations which can be obtained from the CME [117–119]. Given a vector

m =
[
m1 m2 . . .mn

]>
of n non-negative integers, a statistical moment of x is defined

as 〈xm1
1 xm2

2 · · ·xmnn 〉 where the sum
∑n

j=1mj is referred to as the order of the moment.

Using a short-hand x[m] := xm1
1 xm2

2 · · ·xmnn , the time derivative of
〈
x[m]

〉
obtained

from the CME is given by [117–119]

d
〈
x[m]

〉
dt

=

〈
S∑
i=1

fi(x)
(

(x+ ηi)
[m] − x[m]

)〉
. (2.2)

Typically the propensity functions fi(x) for mass action kinetics are taken as finite

polynomials in x [102–104]. In that case, it follows from (2.2) that if all moments up

to order M are stacked in a vector X (including the zeroth order moment which is

equal to 1), then the time evolution of X is given by

dX
dt

= AX + Ā X (2.3)

Here X is a finite vector consisting of moments of order higher than M [118]. The

elements of matrices A and B depend upon reaction parameters.

When the reaction propensities are constants (zero-order reactions), linear (first-

order reactions), or the system has some special structure [120], then Ā = 0 and the

moments in X can be determined exactly by solving (2.3). However, in general the

matrix Ā 6= 0, which implies that (2.3) represents an unclosed system of differential

equations. One widely used approach for handling such cases is to employ an appro-

priate moment closure technique. Based on different assumptions, these techniques

approximate the vector X as a, possibly nonlinear, function of X [48,51–73]. Although

presumed to be reasonably accurate, the moment closure schemes typically do not

provide any mathematical guarantees on the accuracy of the approximation.
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In this chapter we present an alternate method that provides both upper and

lower bounds on moments. Here, instead of finding an approximation of X , we use

the fact that at all times the elements of X and X are moments of some probability

distribution. Therefore, these elements cannot take arbitrary values and must sat-

isfy some constraints (e.g., variance is non-negative). These constraints are compactly

represented in terms of positive semidefiniteness of moment matrices [121]. We show

that solutions to the moment dynamics that preserve the positive semidefiniteness of

moment matrices results in the lower and upper bounds on elements of X at a given

time. Furthermore, increasing the order of truncation, i.e., the size of X , and corre-

spondingly increasing the number of moment constraints often results in improvement

in these bounds.

2.1 Constraints on Moments

In the proposed method, our aim is to exploit the constraints satisfied by mo-

ments of any random variable [121]. For simplicity, let us first consider the case of

a scalar random variable x. Suppose we construct a vector Γ =
[
1 x x2 . . .xd

]>
that consists of monomials up to degree d of x. Then the outer product ΓΓ> is positive

semidefinite (denoted by � 0), and the semidefiniteness is preserved if expectation is

taken (see Appendix A). That is, we have

He =
〈
ΓΓ>

〉
=


1 〈x〉 . . .

〈
xd
〉

〈x〉 〈x2〉 . . .
〈
xd+1

〉
...

... . . .
...〈

xd
〉 〈

xd+1
〉

. . .
〈
x2d
〉

 � 0, (2.4)

for all d = {1, 2, . . .}. Furthermore, if the random variable x is non-negative, which is

the case when x represents the level of some biochemical species, another semidefinite

constraint can be obtained as

Hoi =
〈
hi(x)ΓΓ>

〉
, (2.5)
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where hi(x) belongs to a family of non-negative polynomial functions of x that are

indexed by i. For example, when hi(x) = x, we have
〈x〉 〈x2〉 . . .

〈
xd+1

〉
〈x2〉 〈x3〉 . . .

〈
xd+2

〉
...

... . . .
...〈

xd+1
〉 〈

xd+2
〉

. . .
〈
x2d+1

〉

 � 0, (2.6)

for all d = {1, 2, . . .}. This fact can be further exploited if x has bounded support. For

example, if x ∈ [L,U ] ⊂ R then
〈
(x− L)ΓΓ>

〉
� 0 and

〈
(U − x)ΓΓ>

〉
� 0.

These constraints can be generalized to multivariate random variables. For

example, for an n-dimensional random variable x =
[
x1 x2 . . . xn

]>
, a matrix He

that is analogous to the one in (2.4) can be constructed by taking expectation of outer

product ΓΓ> where the vector Γ (with slight abuse of the notation) consists of all

monomials of x up to order d

Γ =
[
1 x1 . . .xn x2

1 x1x2 . . .x1xn . . .x
2
n . . .x

d
n

]>
. (2.7)

Furthermore, a family of matrices analogous to Hoi in (2.6) can be generated as〈
hi(x)ΓΓ>

〉
� 0. For example, when hi(x) = xi then n matrices can be obtained

as
〈
xiΓΓ>

〉
� 0 for i = 1, 2, . . . , n.

The constraints described by (2.4)–(2.6) and their multivariate analogues essen-

tially ensure that the higher order moments appearing in (2.3) do not take arbitrary

values. To see this, we can use the fact that a matrix is positive semidefinite if and only

if all of its leading principal minors are non-negative (this is known as the Sylvester’s

criterion [122]). Therefore, for d = 1, the non-negative determinants of the matrices in

(2.4) and (2.6) result in

〈
x2
〉
≥ 〈x〉2 ,

〈
x3
〉
≥ 〈x

2〉2

〈x〉
, (2.8)
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respectively. Note that the first inequality above is nothing but the well-known in-

equality representing non-negativity of variance. Similarly, for d = 2, the determinant

of the matrix in (2.4) yields

〈
x4
〉
≥ 〈x

3〉2 + 〈x2〉3 − 2 〈x3〉 〈x2〉 〈x〉
〈x2〉 − 〈x〉2

. (2.9)

In essence, these determinants for varying d allow higher-order moments to be bounded

from below by nonlinear functions of the lower-order moments.

Another point to note is that the matrix
〈
ΓΓ>

〉
generates inequalities for even

order moments whereas
〈
xΓΓ>

〉
generates inequalities for odd order moments. Like-

wise, for the multivariate random variable x, non-negativity of the principal minors of

matrix
〈
ΓΓ>

〉
gives bounds on the moments

〈
x2d
i

〉
, i = {1, 2, . . . , n}. As an example,

for x =
[
x1 x2

]>
, the following is obtained for d = 1

〈
1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


〉
� 0, (2.10)

which results in 〈x2
1〉 ≥ 〈x1〉2, and the following inequality bounding 〈x2

2〉

〈
x2

2

〉
≥ 〈x1x2〉2 + 〈x2

1〉 〈x2〉 − 2 〈x1〉 〈x2〉 〈x1x2〉
〈x2

1〉 − 〈x1〉2
. (2.11)

The moments whose form is different from
〈
x2d
i

〉
can be bounded by taking expectation

of
〈
hi(x)ΓΓ>

〉
with appropriately chosen functions, hi’s. For instance, when x takes

positive values, hi(x) = x1 gives the constraint

〈
x1


1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


〉
� 0, (2.12)

which can be used to find a lower bound on 〈x1x
2
2〉.
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It should also be noted that the univariate inequalities obtained from (2.4)–(2.6)

are valid for both x1 and x2. Furthermore, as x1 and x2 are positive random variables,

additional inequalities as follows can also be written〈
x1

 1 x2

x2 x2
2

〉 � 0,

〈
x2

 1 x1

x1 x2
1

〉 � 0. (2.13)

These inequalities translate to lower bounds on moments 〈x2
1x2〉 and 〈x1x

2
2〉. To sum

up, one can write a multitude of positive semidefinite matrix constraints satisfied by

the moments.

For simplicity we first illustrate the methodology to obtain bounds on stationary

moments. Here we implicitly assume that at least one stationary distribution with

valid moments exist. This is typically a valid assumption for biochemical systems,

and the reader may refer to [123,124] for technical details. We find that the approach

is particularly well suited for stationary moments, although it is applicable to bound

moments at any given time.

2.2 Bounds on Steady-State Moments

In this section, we provide a general methodology to obtain bounds on stationary

moments of a biochemical system, and illustrate it using examples.

2.2.1 Method

Broadly speaking, the method utilizes the linear equations obtained from the
moment dynamics in (2.3) and constraints on the higher order moments discussed in
the previous section. The key steps are enumerated below

1. Obtain the system of linear equations AX + ĀX = 0 for the stationary moments.

2. Solve AX + ĀX = 0 for the elements of X in terms of the elements of X .

3. Use inequalities which bound the elements of X in terms of elements of X in
conjuction with equations in step 2. This yields inequalities for the elements of
X .

4. Usually, there are multiple solutions; the spurious solutions can be discarded
based on moment inequalities satisfied by the lower order moments.
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5. Reverting to step 2, the bound on elements of X are readily obtained by substi-
tuting the corresponding bounds on X .

These steps can be easily implemented in a computational tool such as Mathematica

or Matlab, and can even give analytical bounds if the problem at hand is small enough.

However, it turns out that as the size of the problem grows, solving the inequalities

becomes difficult for these off-the-shelf tools.

A more specialized approach is to recognize the fact that we are essentially

looking for minimum or maximum value taken by a moment of interest, subject to linear

constraints arising from the moment equations AX + ĀX = 0 and the semidefinite

constraints in (2.4)–(2.6) (or their multivariate analogues). Thus, the problem could

be posed as a semidefinite program [125] whereby maximizing (minimizing) a moment

gives upper (lower) bound. For example, a lower bound on a moment of interest µ ∈ X

can be computed via the semidefinite program

minimize
X ,X

µ (2.14a)

subject to 0 = AX + ĀX (2.14b)

He � 0 (2.14c)

Hoi � 0. (2.14d)

The upper bound can be computed by multiplying the objective function by −1. These

semidefinite programs could be solved using specialized algorithms [125]. In what

follows, we will illustrate the proposed method via examples.

2.2.2 Stochastic Logistic Growth with Constant Immigration Rate

Consider the following biochemical system, where a species X arrives in the

system via two modes, a constant immigration rate k and a species dependent rate r,

and each species degrades or leaves the system with a rate rx
Ω

∅ k−→ X, X
r−→ X + 1, X

rx/Ω−−−−→ X − 1, (2.15)
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where x denotes the population level of the species. With k = 0, this model essentially

represents a logistic growth model which is widely used to model growth of populations

in ecology, and virus dynamics [59,126–128]. In the deterministic sense, the population

grows with a rate r and saturates once it reaches a finite carrying capacity Ω due to

resource limitations. The term k here represents a constant rate of immigration so as

to avoid the extinction of the population.

In this example, there are three reactions with propensity functions and stoichio-

metric vectors tabulated in Table 2.1. Using (2.2), we can write the moment dynamics

for a mth order moment as

d 〈xm〉
dt

=
〈

(k + rx) ((x+ 1)m − xm) +
r

Ω
x2 ((x− 1)m − xm)

〉
. (2.16)

Note that these equations are not closed because of the quadratic propensity function,

and time evolution of a mth order moment depends upon a moment of (m+ 1)th order.

Thus, if we construct a vector X consisting of first M moments, then X = [
〈
xM+1

〉
].

Table 2.1: Description of reactions for the logistic growth model

.
Reaction, Ri Stoichiometric vector, ηi Propensity function, fi(x)

∅ k−→ X + 1
[
1
]>

k

X
r−→ X + 1

[
1
]>

rx

X
rx/Ω−−−→ X − 1

[
−1
]>

(r/Ω)x2

To see how the moment inequalities lead to bounds, we start with the simplest

case of M = 1. From (2.45), the steady-state moment satisfies

d〈x〉
dt

= k + r 〈x〉 − r

Ω

〈
x2
〉

= 0. (2.17)

Solving the above equation gives

〈x〉 =
r 〈x2〉 − kΩ

rΩ
. (2.18)
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Using this with the non-negative variance inequality 〈x2〉 ≥ 〈x〉2 gives a quadratic

inequality in 〈x2〉

r2
〈
x2
〉2 −

(
2krΩ + r2Ω2

) 〈
x2
〉

+ k2Ω2 ≤ 0, (2.19)

whose solution can be used in (2.18) to obtain bounds on 〈x〉

Ω

2
− 1

2

√
4kΩ + Ω2r

r
≤ 〈x〉 ≤ 1

2

√
4kΩ + Ω2r

r
+

Ω

2
. (2.20)

The lower bound on 〈x〉 can be discarded from the fact that 〈x〉 ≥ 0. Thus, we have

the following lower and upper bounds on 〈x〉

0 ≤ 〈x〉 ≤ 1

2

√
4kΩ + Ω2r

r
+

Ω

2
. (2.21)

Next, consider the case of M = 2. In this case, the steady-state moment equa-

tions are given by

d〈x〉
dt

= k + r 〈x〉 − r

Ω

〈
x2
〉

= 0, (2.22)

d〈x2〉
dt

= k +
(

2k +
r

Ω

)
〈x〉+

(
2r +

r

Ω

) 〈
x2
〉
− 2r

Ω

〈
x3
〉

= 0. (2.23)

Solving these equations results in

〈x〉 = −kΩ2 + kΩ− r 〈x3〉
Ω(k + Ωr + r)

,
〈
x2
〉

=
k2Ω + r2 〈x3〉
r(k + Ωr + r)

. (2.24)

Using the above expressions in the second inequality from (2.8) leads to a quadratic

inequality in 〈x3〉. Substituting the solution back to expressions of 〈x〉 and 〈x2〉 results

in bounds on them. Upon rejecting the spurious solutions by using inequalities 〈x2〉 ≥

〈x〉 and 〈x〉 ≥ 0, a more useful lower bound for 〈x〉 is found as compared to the M = 1

case

1

2

√
4k3Ω + k2Ω2r + 2k2Ωr + k2r

r(k + r)2
+
k(Ω− 1)

2(k + r)
≤ 〈x〉 ≤ 1

2

√
4kΩ + Ω2r

r
+

Ω

2
. (2.25)

As the order of truncation M is increased, the same approach can be used:

take steady-state equations of first M moments, use the inequality bounding the
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Figure 2.1: Estimated bounds on steady-state moments for the logistic growth model.
Left: Upper and lower bounds on the second moment of the population
level are shown for different orders of truncation M . As M is increased,
the bounds obtained get tighter. The exact mean value of 19.149 is
obtained by averaging 100, 000 MC simulations performed using SSA [1].
Parameters in (2.15) taken as k = 1, r = 5, and Ω = 20. Right: The
bounds on the coefficient of variation (standard deviation/mean) of the
steady-state population level are shown as the relative immigration rate
k/r is changed. Both lower and upper bounds decrease as the relative
immigration rate increases. These bounds are obtained via a 5th order
truncation.

(M + 1)th moment, and apply the inequalities for lower order moments to prune solu-

tions. Though the resulting expressions do not lead to closed-form analytical bounds,

numerical solutions are still possible. Interestingly, the solutions for odd values of M

improve the upper bounds on the average population level whereas the solutions for

even values of M improve the lower bounds (Fig. 2.4 (Left)). At M = 9, the lower

and upper bounds obtained are respectively given by 18.9711 and 19.1635. The ex-

act average population level obtained from Monte Carlo simulations of the process is

19.1495.

Although we have discussed the bounds only on 〈x〉 thus far, this approach yields

bounds on all moments up to order M . These bounds can be straightforwardly used to

infer the bounds on other statistical quantities of interest, e.g., coefficient of variation,

skewness, etc. In particular, the coefficient of variation is equal to
(
〈x2〉 / 〈x〉2

)
− 1.

Thus, a lower (upper) bound on the coefficient of variation can be computed by using
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the lower (upper) bound of 〈x2〉 and the upper (lower) bound of 〈x〉.

To illustrate this point, we compute the bounds on the coefficient of variation

squared as k/r is varied. It is worth noting that both the upper and lower bounds on 〈x〉

in (2.25) depend only on k/r, and not on individual values of k and r. This holds true

for all bounds obtained here as evident from the steady-state of the moment equation

in (2.45). We call the ratio k/r as the relative immigration rate and show its effect on

the coefficient of variation in Fig. 2.4 (Right). It is seen that both the upper and lower

bounds on coefficient of variation decrease with increase in k/r, thus suggesting that

the coefficient of variation decreases. Interestingly, the difference between the bounds

is large for small values of k/r and it becomes negligible for high values of k/r. Thus,

depending upon a parameter regime, a lower or higher order truncation might be used

to obtain bounds within desired accuracy.

2.2.3 Stochastic Gene Expression with Negative Auto–regulation

Consider stochastic expression of an auto-regulating gene represented by the

following reactions

GeneOFF
kon−−−−⇀↽−−−−
koffx2

GeneON , GeneON
kp−−→ B × Protein γp−−→ ∅. (2.26)

Here the gene is assumed to reside in one of the two states: ON (active), and OFF

(inactive). The protein is producted at a rate kp from the ON state whereas there

is no protein production when the gene is in the OFF state. Each production event

produces B number of protein molecules where B follows a geometric distribution. The

gene state is represented by x1, which is a Bernoulli random variable (x1 = 1(0) for

the ON (OFF) state), and the protein level is represented by x2. The gene negatively

regulates itself by switching to OFF state in a protein copy number dependent fashion

with a rate koffx2. Finally, the protein molecules can degrade with a rate γp. This

gene expression model has been studied previously [2, 63, 129, 130]; exact solution to

its moments are available which allows us to validate the bounds obtained using our

method.
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Figure 2.2: Estimated bounds on moments for a stochastic gene expression model.
Left: The lower and upper bounds for the average gene activity (left
axis)/protein level (right axis) for different orders of truncation M is
shown. The bound for M = 1 correspond to (2.31). As M is in-
creased, the bounds obtained get tighter. The exact mean values are
obtained from the analytical solution of the system from [2]. Parame-
ters in (2.26) taken as kon = 10, koff = 0.1, kp = 15, 〈B〉 = 5, and
γp = 1. Right: The coefficient of variation (standard deviation/mean)
of the steady-state protein level as a function of the gene activation
rate kon is plotted. The steady-state protein level in the deterministic
sense is kept constant at 50 molecules by varying kp with kon such that
kp = 50γp (50koff + kon) /(kon 〈B〉). The lower and upper bounds on the
coefficient of variation are obtained for M = 5 and they exhibit U -shape
profiles, thus showing that the noise is minimizing at a specific value of
kon. Other parameters are taken as koff = 0.1, 〈B〉 = 5, and γp = 1.
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Table 2.2: Description of reactions for the auto–regulating gene

.
Reaction, Ri Stoichiometric vector, ηi Propensity function, fi(x)

GeneOFF
kon−−→ GeneON

[
1 0

]>
kon(1− x1)

GeneON
koffA x2−−−−−→ GeneOFF

[
−1 0

]>
koffx1x2

GeneON
kp−→ GeneON +B × Protein

[
0 B

]>
kpx1

Protein
γp−→ ∅

[
0 −1

]>
γx2

In this example, the state of the system is x =
[
x1 x2

]>
. There are four reac-

tions whose propensity functions and stoichiometric vectors are described in Table 2.2.

Using (2.2), the time evolution of a moment 〈xm1
1 xm2

2 〉 is given as

d 〈xm1
1 xm2

2 〉
dt

= 〈kon(1− x1) ((x1 + 1)m1 − xm1
1 )xm2

2 + koffx1x2 ((x1 − 1)m1 − xm1
1 )xm2

2

+ kpx
m1
1 ((x2 +B)m2 − xm2

2 ) + γpx2x
m1
1 ((x2 − 1)m2 − xm2

2 )〉 . (2.27)

Note that dynamics is not closed due to the nonlinearity arising from the negative

feedback: a moment 〈xm1
1 xm2

2 〉 depends upon
〈
xm1

1 xm2+1
2

〉
. Furthermore, x1 ∈ {0, 1}

is a binary random variable for which the following relations hold

〈xm1
1 xm2

2 〉 = 〈x1x
m2
2 〉 ,m1 ∈ {1, 2, 3, . . .},m2 ∈ {0, 1, 2, 3, . . .}. (2.28)

The above relations imply that the moment vector X does not need to contain all

cross moments. For example, the moments up to order 3 can be stacked as X =[
1 〈x1〉 〈x2〉 〈x1x2〉 〈x2

2〉 〈x1x
2
2〉 〈x3

2〉
]>

. In this case, the corresponding X is

given by X = [〈x1x
4
2〉].

As with the one-dimensional example, here too we are interested in obtaining

bounds on moments of the state x. Towards this end, we begin by writing the first

order moment equations in steady-state

d 〈x1〉
dt

= kon − kon 〈x1〉 − koff 〈x1x2〉 = 0, (2.29)

d 〈x2〉
dt

= kp 〈B〉 〈x1〉 − γp 〈x2〉 = 0. (2.30)
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To obtain a bound on 〈x1〉 and 〈x2〉, we require a bound on the second order moment

〈x1x2〉. Generally, the only bound that we can use is 〈x1x2〉 ≥ 0. However, because x1

is a binary random variable, we have that 〈x2
1x2〉 = 〈x1x2〉. Thus, using the inequality

obtained from first matrix of (2.13), a bound 〈x1x2〉 ≤ 〈x2〉 can be found. Plugging

this in the moment equations yields

konγp
konγp + koffkp 〈B〉

≤ 〈x1〉 ≤ 1,
kp 〈B〉
γp

konγp
konγp + koffkp 〈B〉

≤ 〈x2〉 ≤
kp 〈B〉
γp

.

(2.31)

In the similar fashion as above, we can write moment equations up to order two and use

the inequality for 〈x1x
2
2〉 obtained from the second matrix of (2.13). This eventually

leads to an improvement in the lower bounds on both 〈x1〉 and 〈x2〉.

Continuing in similar way, we obtain improvements in the lower bounds for

M = 4 and M = 6, and improvements in the upper bounds for M = 3, M = 5

and M = 7. The bounds up to M = 4 are shown in Fig. 2.2 (Left). The lower and

upper bounds obtained for 〈x1〉 via 7th order truncation are 0.667463 and 0.667465

respectively. These are quite precise as the exact solution for 〈x1〉 is 0.667464 as

obtained using the exact solution from [2]. It is worth noting that as discussed below

(2.6), we can also use additional bounds arising from the fact that x1 ∈ [0, 1], so x1

and 1 − x1 both would be positive. However, in this particular example, they do not

lead to significant improvements in the bounds.

As done in the logistic growth example, we also obtain the bounds on the second

order moment and compute the bounds on coefficient of variation. In particular, we

study the effect of varying the parameter kon (gene activation rate). Our results show

that there is a U-shape curve, and the noise is minimized at an optimal value of kon

(Fig. 2.2 (Right)). Furthermore, the coefficient of variation approaches a limiting value

for large values of kon (i.e., the gene is always ON). Similar results were obtained in [63]

for an auto-regulating gene expression model using the moment closure techniques.

Notably, here the lower and upper bounds remain reasonably close to each other for

the range of kon considered as opposed to the logistic growth example.
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2.2.4 Activator-Repressor Gene Motif

Next we apply the proposed method to estimate bounds on moments of a slightly

more complicated example of a gene network motif that consists of two genes as de-

scribed by the following reactions:

GeneAOFF
konA−−−−⇀↽−−−−
koffAx4

GeneAON , GeneAON
kA−−→ BA × ProteinA

γA−−→ ∅ (2.32)

GeneROFF
konR x2−−−−−⇀↽−−−−−
koffR

GeneRON , GeneRON
kR−−→ BR × ProteinR

γR−−→ ∅ (2.33)

Here the notations with subscript A denote the activator whereas those with subscript

R represent the repressor. The state of the system is represented by the vector x =[
x1 x2 x3 x4

]>
, where x1 and x3 respectively represent the activator and repressor

gene state. The corresponding proteins are represented by x2 and x4. As with the

previous example, the genes are assumed to reside in two states: OFF and ON. The

activator turns the repressor gene ON, whereas, the repressor turns the activator gene

OFF, thereby creating a feedback loop. There are eight reactions in this example. The

corresponding stoichiometric vectors and propensity functions are given in Table 2.3.

Table 2.3: Description of reactions for the activator repressor motif

.
Reaction, Ri Stoichiometric vector, ηi Propensity function, fi(x)

GeneAOFF
konA−−−→ GeneAON

[
1 0 0 0

]>
konA(1− x1)

GeneAON
koffA x4−−−−−→ GeneAOFF

[
−1 0 0 0

]>
koffAx1x4

GeneAON
kA−−→ GeneAON +BA × ProteinA

[
0 BA 0 0

]>
kAx1

ProteinA
γA−→ ∅

[
0 −1 0 0

]>
γAx2

GeneROFF
konR x2−−−−→ GeneRON

[
0 0 1 0

]>
konRx2(1− x3)

GeneRON
koffR−−−→ GeneROFF

[
0 0 −1 0

]>
koffRx3

GeneRON
kR−→ GeneRON +BR × ProteinR

[
0 0 0 BR

]>
kRx3

ProteinR
γR−→ ∅

[
0 0 0 −1

]>
γRx4
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The time evolution of a moment 〈xm1
1 xm2

2 xm3
3 xm4

4 〉 can be computed using (2.2).

For example, the first order moment equations in the steady state are given by:

d 〈x1〉
dt

= konA − konA 〈x1〉 − koffA 〈x1x4〉 = 0, (2.34)

d 〈x2〉
dt

= kA 〈BA〉 〈x1〉 − γA 〈x2〉 = 0, (2.35)

d 〈x3〉
dt

= konR 〈x2〉 − konR 〈x2x3〉 − koffR 〈x3〉 = 0, (2.36)

d 〈x4〉
dt

= kR 〈BR〉 〈x3〉 − γR 〈x4〉 = 0. (2.37)

These equations are not closed as the first order moments depend upon the second

order moments 〈x1x4〉 and 〈x2x3〉. Solving the first order moments gives

〈x1〉 = 1− koffA
konA

〈x1x4〉 , (2.38)

〈x2〉 =
kA 〈BA〉
γA

(
1− koffA

konA
〈x1x4〉

)
(2.39)

〈x3〉 =
konR
koffR

(
kA 〈BA〉
γA

(
1− koffA

konA
〈x1x4〉

)
− 〈x2x3〉

)
, (2.40)

〈x4〉 =
kR 〈BR〉
γR

konR
koffR

(
kA 〈BA〉
γA

(
1− koffA

konA
〈x1x4〉

)
− 〈x2x3〉

)
. (2.41)

Using the property mentioned in (2.28) of Bernoulli random variables x1 and x3, we

have that 0 ≤ 〈x1x4〉 ≤ 〈x4〉 and 0 ≤ 〈x2x3〉 ≤ 〈x2〉. Applying these inequalities

in the moment equations yields the trivial bounds, such as 0 ≤ 〈x1〉 ≤ 1. As the

order of truncation is increased, the number of moment equations and corresponding

inequalities grows significantly such that the bounds cannot be obtained with off-the-

shelf tools. We therefore employ the semidefinite programming based optimization to

obtain lower and upper bounds on moments of interest. As expected, these bounds

improve as more moment equations and subsequently semidefinite matrices with higher

order moments are used (Fig. 2.3). For M = 7, the bounds for both mean and second

order moments of the activator and repressor are fairly close to each other.

20



3 4 5 6 7
Order of truncation

0

20

40

60

S
ec

on
d

 m
o

m
en

t o
f s

te
ad

y-
st

at
e

 a
ct

iv
at

or
/r

ep
re

ss
or

 le
ve

l

Bounds (Activator)

Bounds (Repressor)

Exact values

2 3 4 5 6 7
Order of truncation

0

2

4

6

8

10

M
ea

n 
st

ea
d

y-
st

at
e

ac
tiv

a
to

r/
re

pr
es

so
r 

le
ve

l

Bounds (Activator)

Bounds (Repressor)

Exact values

Figure 2.3: Estimated bounds on steady-state moments for the activator repressor
motif. Left: Upper and lower bounds on the mean of both the activator
and repressor are shown for different orders of truncation M . As M
is increased, the bounds obtained get tighter. The exact mean values of
1.23 for the activator and 4.24 for the repressor are obtained by averaging
30, 000 MC simulations performed using SSA [1]. Parameters are taken as
konA = konR = 1, koffA = 5, koffR = 1, kA = kR = 10, γA = γR = 1, and
BA = BR = 1 with probability one. Right: The bounds on the second
order moments of the steady-state activator/repressor levels are shown
for different orders of truncation. The bounds improve with increase in
the order of truncation. The exact second order moments of 4.48 for
activator and 30.98 for the repressor are shown as obtained from 30, 000
MC simulations. The parameters are taken to be same as those for the
left part.
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2.3 Bounds on Transient Moments

The method to obtain bounds on stationary moments can also be expanded to

moments at a given time point. In this case, the methodology based on inequalities on

moments is hard to solve analytically, and one needs to adopt the specialized approach

based on semidefinite programming. To this end, the semidefinite program in (2.14)

that gives a lower bound on a moment of interest µ at a given time τ can be modified

as

minimize
X (t),X (t)

µ(τ) (2.42a)

subject to
dX
dt

= AX (t) + ĀX (t) (2.42b)

He(t) � 0 (2.42c)

Ho,e(t) � 0 (2.42d)

X (0) = X0 (2.42e)

for all t ∈ [0, τ ]. The upper bound can be computed by maximizing the objective

function. The key difference with (2.14) is that (2.42) involves a dynamic constraint

imposed by moment dynamics. This constraint can be handled by discretizing the

differential equation using Euler’s method, and imposing the positive semidefiniteness

of Ho,i and He at all discrete time points.

2.3.1 Stochastic Logistic Model

Consider a version of the stochastic logistic model studied in [59]. This model

is described as

X
k1−k2x−−−−→ X + 1, X

k3+k4x−−−−→ X − 1 (2.43)

Here we assume that the coefficients satisfy

Ω :=
k1

k2

∈ N, k1 > 0, k2 > 0, k3 > 0, k4 ≥ 0. (2.44)

These assumptions guarantee that if x(0) ∈ {0, 1, 2, . . . ,Ω} then x(t) ∈ {0, 1, 2, . . . ,Ω}

for all t ≥ 0. In this example, there are two reactions with propensity functions and

stoichiometric vectors tabulated in Table 2.4.
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Table 2.4: Description of reactions for the logistic growth model

.
Reaction, Ri Stoichiometric vector, ηi Propensity function, fi(x)

X
k1−k2x−−−−→ X + 1

[
1
]>

k1x− k2x
2

X
k3+k4x−−−−→ X − 1

[
−1
]>

k3x+ k4x
2

Using (2.2), we can write the moment dynamics for a mth order moment as

d 〈xm〉
dt

=
〈
(k1x− k2x

2) ((x+ 1)m − xm) + (k3x+ k4x
2) ((x− 1)m − xm)

〉
. (2.45)

Note that these equations are not closed because of the quadratic propensity functions,

and time evolution of a mth order moment depends upon a moment of (m+ 1)th order.

Thus, if we construct a vector X consisting of first M moments, then X = [
〈
xM+1

〉
].

As discussed above, if x(0) is an integer between 0 and Ω = a1
b1

, then x(t) is

an integer in [0,Ω] for all time [59]. Recalling the discussion around (2.6), we also

utilize bounding constraints
〈
xΓΓ>

〉
� 0 and

〈
(Ω− x)ΓΓ>

〉
� 0 at all times. Using

the semidefinite program in (2.42), we compute upper and lower bounds on the second

moment at the final time, 〈x(τ)2〉. Surprisingly, the bounds give a good approximation

to 〈x(t)2〉 for all t ∈ [0, τ ], despite only optimizing the bound at the final time, τ .

While the above simple example illustrates the methodology, solving the semidef-

inite program in (2.42) has several challenges. First, the semidefinite program needs

discretization of the time in the interval [0, τ ] and thereby the size of the overall pro-

gram gets large quickly. Secondly, the semidefinite matrices He and Hoi are often

ill-conditioned because their elements are moments. Due to these issues, the semidefi-

nite program based approach is computationally restrictive. The program is of course

much simpler if bounds on only stationary moments are desired.
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Figure 2.4: Lower and upper bounds on the second moment of the logistic model. For
the model in (2.43), maximizing and minimizing the bounds on 〈x(τ)2〉,
we get upper and lower bounds on the true value. The result of 5000 runs
of the model are also shown. The parameters used are k1 = 3, k2 = 1,
k3 = 1, k4 = 0 and initial condition x(0) = 1. While we only penalized
the final value of 〈x(τ)2〉, the upper and lower bound trajectories have
similar values over most of the time horizon. Furthermore, these trajec-
tories both give good approximations to the average trajectory found by
Monte Carlo simulations.
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2.4 Conclusion

We proposed a method to compute lower and upper bounds on moments of a

stochastic biochemical reaction system. Our results show that not only one can obtain

upper and lower bounds on a given moment, but also both upper and lower bounds

improve considerably as one uses more moment equations. Thus, there is a trade-off

between the computational cost and the accuracy of bounds.
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Chapter 3

BOUNDING MOMENTS OF STOCHASTIC HYBRID SYSTEMS

In the previous chapter, we discussed a method to bound moments of stochastic

biochemical systems. Here we extend the framework to Stochastic Hybrid Systems

(SHSs). An SHS is a mathematical framework that is applicable to a wide-array of

phenomena in engineering, biological and physical systems [131–143]. The biochemical

systems described previously are nothing but a sub-class of SHS [119]. Specifying

an SHS involves a finite number of discrete states (modes), stochastic dynamics of a

continuous state, a set of rules governing transitions that can change the continuous

state as well as the discrete state, and reset maps that define how the states change

after a transition [133,144–146].

As with the biochemical systems in the previous chapter, formal analysis of SHSs

is often challenging. That is the probability density function of the SHS state space

can be characterized by Kolmogorov equations, but solving them analytically is not

possible in most cases. Computing moments of SHS is another approach that provides

important insights into its dynamics and it turns out that the form of moment dynamics

for biochemical systems also holds for some SHSs. In particular, for an SHS whose

continuous state, transition intensities, and reset maps are described via polynomials,

the time evolution of its moments is governed by a system of linear ordinary differential

equations [133]. As one could expect, the issues with moment dynamics of biochemical

systems also carry over to the moment dynamics of these polynomial SHSs: it is not

closed except for a few special cases [147,148].

A natural question that arises at this point is whether the methodology to es-

timate moments in the previous chapter extends to polynomial SHSs. In this chapter,

we show that this indeed can be done. Further, in some cases, the SHS might consist
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of non-polynomial nonlinearities. For example, in modeling of stochastic biochemi-

cal systems, some reaction propensities consist of rational functions [119]. Here, the

moment dynamics also contains non-polynomial moments, in addition to the higher

order moments as in the polynomial case. We cast the SHS with rational functions

as polynomial SHSs by defining additional states [149, 150]. By doing so, we obtain

approximate values of desired moments with provable guarantees.

3.1 Background on Stochastic Hybrid Systems

In this section, we provide brief overview of a SHS construction and its mathe-

matical characterization. The reader is referred to [133, 144–146] for technical details

on SHS, and its relationship with various other classes of stochastic systems.

3.1.1 Basic Setup

The state space of a SHS consists of a continuous state x(t) ∈ Rn and a discrete

state q(t) ∈ Q = {s1, s2, . . . , sN}. There are three components of SHS that define

how its states evolve over time. First, the continuous state evolves as per a stochastic

differential equation (SDE)

dx = f(q,x)dt+ g(q,x)dw, (3.1a)

where f : Q×Rn → Rn and g : Q×Rn → Rn×k are respectively the drift and diffusion

terms, and w is a k–dimensional Weiner process. Second, the state (q,x) changes

stochastically through S transitions/resets that are characterized by the transition

intensities

λr(q,x), λr : Q× Rn → [0,∞), r = 1, 2, . . . , S. (3.1b)

Third, the transition for each r = 1, 2, . . . , S has an associated reset map

(q,x) 7→ (θr(q), φr(q,x)) ,

θr : Q→ Q, φr : Q× Rn → Rn (3.1c)
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that defines how the pre-transition discrete and continuous states map into the post-

transition discrete and continuous states. One way to think about an SHS is to consider

the discrete states as different modes, each of which has an associated SDE describ-

ing the time evolution of the continuous state. The reset events can either reset the

continuous state and remain in the same mode (i.e, the continuous state evolves via

the same SDE as before the reset occured), or reset both the continuous state and the

mode.

For purpose of this work, we first assume that for a given discrete state, the

functions f , g, λr, and φr are polynomials in x. We then consider the case when

these could be non-polynomial functions that are composition of rational functions,

trigonometric functions, exponential, and logarithm.

3.1.2 Extended Generator

Mathematical characterization of SHS (3.1) requires computation of expectation

of some large class of functions evaluated on its state space. To this end, the extended

generator describes time evolution of a scalar test function ψ : Q × Rn → R which is

twice continuously differentiable with respect to its second argument (i.e., x). This is

given as

dE [ψ(q,x)]

dt
= E [(Lψ)(q,x)] , (3.2a)

where E denotes the expectation operator and L is called the extended generator

(Lψ)(q,x) :=
∂ψ(q,x)

∂x
f(q,x)

+
1

2
Trace

(
∂2ψ(q,x)

∂x2
g(q,x)g(q,x)>

)
+

S∑
r=1

(ψ (θr(q), φr(q,x))− ψ(q,x))λr(q,x). (3.2b)

The terms ∂ψ(q,x)
∂x

and ∂2ψ(q,x)
∂x2 respectively denote the gradient and the Hessian of

ψ(q,x) with respect to x [133]. Appropriate choice of ψ(q,x) gives a dynamics of

moments of SHS as described in the next section.

28



3.2 Moment Analysis of Polynomial SHS

In this section, we focus on SHS defined over polynomials: for each discrete state

q, the functions f , g, λr, and φr are polynomials in the continuous state x. We describe

how the extended generator gives time evolution of its moments. We then discuss the

problem of moment closure, and propose our methodology to estimate moments.

3.2.1 Moment Dynamics for Polynomial SHS with Single Discrete State

We first consider a simpler system that has only one discrete mode/state (q can

be dropped for ease of notation). For a given n-tuple m = (m1,m2, . . . ,mn) ∈ Nn,

moment dynamics can be computed by plugging in the monomial test function

ψ(x) = xm1
1 xm2

2 . . .xmnn (3.3)

in (3.2). Here order of the moment E(xm1
1 xm2

2 . . .xmnn ) is given by
∑n

i=1 mi, and there

are
(∑n

i=1mi+n−1
n−1

)
moments of the order of order

∑n
i=1mi. The following standard result

shows how dynamics of a collection of moments of x evolves over time for a special

class of SHS that are defined via polynomials.

Lemma 1 Let f(x), g(x)g(x)>, λr(x) and φr(x) be polynomials in x. Denoting the

vector consisting of all moments up to a specific order of x by X , its time evolution

can be compactly written as
dX
dt

= AX + ĀX (3.4)

for appropriately defined matrices A, Ā. Here X is a collection of moments whose

order is higher than those stacked up in X .

Proof: Since f(x), g(x)g(x)>, λr(x) and φr(x) are polynomials, the extended gener-

ator in (3.2b) maps monomials of the form xm1
1 xm2

2 . . .xmnn to a linear combination of

monomials of different orders. Collecting all moments up to some order (including the

zeroth order moment) in a vector X , the form in (3.4) follows from (3.2a). �

The moment dynamics in (3.4) is well-known [133]. It is worth noting that the

matrix Ā has all its elements zero if all the functions f(x), g(x)g(x)>, λr(x) and φr(x)
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are affine in x. In this case, the moments contained in X can be exactly computed.

Next, we discuss moment dynamics for SHS with multiple discrete states.

3.2.2 Moment Dynamics for Polynomial SHS with Finite Number of Dis-

crete States

Now we consider a general SHS that has a finite, but more than one, discrete

states. In this case, one is interested in knowing moments of the continuous state given

a discrete state and the probability that the system is in the given discrete state. To

compute these, we define an N -dimensional state

β = (β1,β2, . . . ,βN) ∈ RN (3.5a)

such that each βi, i = 1, 2, . . . , N serves as an indicator of the discrete state being

q = si

βi =

1, q = si

0, else

. (3.5b)

For example, when the discrete state q = s1, then we represent it by the tuple β =

(1, 0, . . . , 0). It follows that the following properties hold

N∑
i=1

βi = 1; βiβj = 0, i 6= j; β2
i = βi. (3.5c)

Furthermore, E(βi) is equal to the probability of q = si, while E(βix
m1
1 xm2

2 . . .xmnn ) is

equal to the product of the the probability that q = si and the moment of xm1
1 xm2

2 . . .xmnn ,

conditioned on q = si. We can recast the SHS in (3.1) to the new state space (β,x)

as described via the following lemma.

Lemma 2 Consider the SHS described in (3.1). With β ∈ RN defined in (3.5), let a

single-discrete mode SHS with state space (β,x) ∈ RN+n be described by the continuous

dynamics

d

β
x

 =

 0∑N
i=1 βif(si,x)

 dt+

 0∑N
i=1 βig(si,x)dw

 , (3.6a)
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reset intensities
N∑
i=1

βiλr(si,x), r = 1, 2, . . . , S, (3.6b)

and reset maps

(β,x) 7→

(
β −

N∑
i=1

βi1si +
N∑
i=1

βi1θr(si),

N∑
i=1

βiφr(si,x)

)
, (3.6c)

where 1si denotes an N-dimensional vector consisting of zeros except for ith position.

Then (3.6) recasts (3.1) in (β,x) space.

Proof: Let q(t) = sj ∈ Q. Then (3.5) implies that dynamics of x in (3.6a) becomes

dx = f(sj,x)dt+ g(sj,x)dw, (3.7)

which is same as (3.1a). Likewise, the rest intensities for both (3.6) and (3.1) take the

form

λr(sj,x), r = 1, 2, . . . , S. (3.8)

As for the reset maps, (3.6c) yields

(
1sj ,x

)
7→
(
1sj − 1sj + 1θr(sj), φr(sj,x)

)
, (3.9)

which by definition in (3.5) is same as (3.62)

(sj,x) 7→ (θr(sj), φr(sj,x)) . (3.10)

Since we arbitrarily chose q = sj ∈ Q, the equivalence between the two SHSs will hold

true for any q. �

To write the moment dynamics of SHS in (3.6), we can use monomial test

functions

ψ(β,x) = βm1
1 βm2

2 . . .βmNN x
mN+1

1 xN+m2
2 . . .xmN+n

n , (3.11)

supplemented with the constraints in (3.5c). It is worth noting that (3.6) is a polyno-

mial SHS in (β,x) space if the original SHS was polynomial in x. The following result

provides a general form for the moment dynamics.
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Theorem 1 Consider the SHS in (3.6). Let f , g, λl and φl be polynomials in x.

Denoting the vector consisting of all moments up to a specific order of the state (β,x)

by X , its time evolution can be compactly written as

dX
dt

=AX + ĀX , (3.12a)

0 =CX + C̄X (3.12b)

for appropriately defined matrices A, Ā, C, C̄. Here X̄ is a collection of moments

whose order is higher than those stacked up in X .

Proof: Since (3.6) is polynomial in (β,x), the form in (3.12a) follows from Lemma 1.

The property βiβj = 0 in (3.5c) implies that for a non-zero mi ∈ N, all moments except

those of the form E
(
βmii x

mN+1

1 x
mN+2

1 . . .x
mN+n
n

)
are zero. Furthermore, β2

i = βi results

in

E
(
βmii x

mN+1

1 x
mN+2

1 . . .xmN+n
n

)
= E

(
βix

mN+1

1 x
mN+2

1 . . .xmN+n
n

)
, (3.13)

for all mi ≥ 1. The constraint
∑N

i=1 βi = 1 results in

N∑
i=1

E
(
βix

mN+1

1 x
mN+2

1 . . .xmN+n
n

)
− E

(
x
mN+1

1 x
mN+2

1 . . .xmN+n
n

)
= 0. (3.14)

These three constraints can be compactly represented by (3.12b). �

In Theorem 1 we have assumed that all moments up to a certain order are

collected in X and remaining, higher order, moments are collected in X . However,

since many of these moments are equal to zero, in practice we do not include them in

X and X . Similarly, higher order moments that are equal to lower order moments, as

in (3.13), are not included.

The form of moment dynamics for polynomial SHSs implies that the moments

in X cannot be computed exactly, since they depend upon the moments in X . This is

often referred to the problem of moment closure, and there are many methods that have

been proposed in the literature to close the moment dynamics. Some of these methods

ignore the higher order moments or cumulants to find the closure, while others use

dynamical systems properties or physical principles to find the closure [149, 151–153].
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In all these methods, the approximations are ad-hoc; they could be quite accurate for

a specific system under study while they could perform poorly for other systems.

Recall the semidefinite program proposed in (2.42). The moment dynamics in

single-mode, polynomial SHS case has exact same form as the biochemical reaction

system considered in the previous chapter, and therefore the semidefinite program

trivially applies to the SHS setup. For the multimode polynomial SHS, we have an

additional linear constraint CX (t) + C̄X (t) = 0 that needs to be appended to (2.42)

minimize
X (t),X (t)

µ(τ) (3.15a)

subject to
dX
dt

= AX (t) + ĀX (t) (3.15b)

0 = CX (t) + C̄X (t) (3.15c)

He(t) � 0 (3.15d)

Hoi(t) � 0 (3.15e)

X (0) = X0 (3.15f)

for all t ∈ [0, τ ]. Next, we discuss how this method could be extended to rational SHS.

3.3 Moment Analysis for Rational SHS

Consider the SHS in (3.1) wherein all functions are rationals except for the reset

maps φl which we assume to be polynomial. Without loss of generality, we can consider

a single discrete state since Lemma 2 allows reduction of a SHS with multiple discrete

modes. Let J(x) be the least common denominator for all f(x), g(x)g>(x), and λl(x).

Defining a new state y = 1
J(x)

, it is straightforward to see that one gets a polynomial

SHS in the state (x,y) ∈ Rn+1, with an equality constraint

J(x)y − 1 = 0. (3.16)

While not studied formally in the context of SHSs, a similar approach to define

additional states to study non-polynomial stochastic systems has been used earlier

[149, 150]. For SHSs with rational functions, if the reset map is rational then each
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monomial in x is mapped to a different rational function and a lot many additional

states may be required to define moment dynamics up to a certain order. In light of this,

the above method may seem bit restrictive, but in practice there are numerous examples

of SHSs wherein only polynomial reset maps appear. In the following Theorem, we

provide a general form of moment dynamics for non-polynomial SHSs that can be

casted as a polynomial SHS with constraints of the form (3.16).

Theorem 2 Consider a single discrete mode SHS in (3.1) with constraints of the form

(3.16). Collecting moments of the state space (x,y) up to a specific order in the vector

X , the moment dynamics is given by

dX
dt

=AX + ĀX , (3.17a)

0 =CeX + C̄eX (3.17b)

where X contains moments of higher order and the matrices A, Ā, Ce, C̄e are appro-

priately defined.

Proof: Since the test function is monomial of the form xm1
1 xm2

2 . . .xmnn , these are closed

under the extended generator. Thus, (3.17a) follows from Lemma 1. The algebraic

constraints of the form J(x)y − 1 = 0 imply that the moments in which elements of

J(x)y − 1 appear are equal to zero. Similar to (3.12b), these are encoded as (3.17b).

�

We can straightforwardly extend the above form of moment dynamics to an SHS with

multiple discrete states by virtue of Lemma 2
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3.3.1 Bounds on Moments via Semidefinite Programming

The preceding discussion provides a recipe to write a rational SHS as polynomial

SHS with algebraic constraints. Formally the semidefinite program is now given by

minimize
X (t),X (t)

µ(τ) (3.18a)

subject to
dX
dt

= AX (t) + ĀX (t) (3.18b)

0 = CeX (t) + C̄eX (t) (3.18c)

He(t) � 0 (3.18d)

Hoi(t) � 0 (3.18e)

X (0) = X0 (3.18f)

for all t ∈ [0, τ ]. As mentioned earlier, if a multimode SHS were to be considered, the

form of semidefinite program remains to be similar with another constraint CX+C̄X =

0 being added. Further, in the steady-state version of program, the moment dynamics

constraint needs to be equal to zero.

3.4 Numerical Examples of Moment Estimation

We illustrate our approach using three examples. As discussed in the previ-

ous chapter, the methodology is more suitable for studying the steady-state moments.

Therefore, here we only provide examples of estimating stationary moments of SHSs.

The first example is a simple SHS with single discrete mode, the second example

comprises of multiple discrete states and polynomial dynamics/resets, and the second

example consists of a single discrete state with rational dynamics. The first two ex-

amples are taken and slightly modified from [144] wherein these are studied with a

moment closure technique.

3.4.1 Network Control System

Consider a scalar linear stochastic system

dx = k1xdt+ k2dw, (3.19)
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whose state is being estimated through measurements received over a communication

network. Then, the error e in state estimation can be generated by a SHS with con-

tinuous dynamics

de = k1edt+ k2dw. (3.20)

The error is reset to zero

e 7→ φ(e) = 0, (3.21)

whenever the measurement is received (see Fig. 3.1). The intensity of the reset, i.e.,

the transmission rate of the messages is assumed to be dependent on the continuous

state e. For purpose of this work, we take the reset intensity to be

λ = e2. (3.22)

!" = $%" !&
+$( !)

"(

" ↦ 0

Figure 3.1: Stochastic Hybrid System representation of the error dynamics in a net-
work control system. Here, the system consists of one discrete mode,
and the error (continuous dynamics) evolves as per a stochastic differen-
tial equation. Upon the reset (which occurs with intensity e2), the error
resets to zero.

Using (3.2b), the extended generator can be written as

(Lψ) (e) = k1e
∂ψ(e)

∂e
+
k2

2

2

∂2ψ(e)

∂e2
+ e2 (ψ(0)− ψ(e)) . (3.23)

Let the test function in (3.23) be

ψ(e) = em, (3.24)

then the moment of mth order evolves as

dE (em)

dt
= k1mE (em) +

m(m− 1)k2
2

2
E
(
em−2

)
− E

(
em+2

)
. (3.25)
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Thus, if the first m moments (including the zeroth-order moment which is equal to

one) are stacked up in X then

X =

E (em+1)

E (em+2)

 . (3.26)

For this example, we compute bound on the second order moment E (e2) in stationary

state. Solving this semidefinite program for k1 = 1 and k2 = 5 results in the trivial

minimum bound 0 and maximum bound 6.99. On increasing the number moment

equations and correspondingly the size of M , it is seen that the bounds improve (see

Fig. 3.2).
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Figure 3.2: Lower and upper bounds on stationary second order moment of the net-
work control system. The parameters are taken to be k1 = 1 and k2 = 5.
The bounds converge to the true value as more number of moment equa-
tions are used.

3.4.2 TCP On–Off

We consider a simple version of the TCP on-off model. Here, the continuous

state of the model is denoted by v, which represents the congestion window size of the
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Figure 3.3: Stochastic Hybrid System representation of TCP On-Off model. Here,
there are three discrete modes and the continuous dynamics v evolves
as per different differential equations depending upon which mode the
system is operating in. Various reset intensities and reset maps are also
shown.

TCP. The model consists of three discrete states, namely, {off, ss, ca}, which stand

for off, slow start, and congestion avoidance, respectively.

During these modes, the continuous-state evolves as

f(q,v, t) =


0, q = off

log 2
R
v + δ, q = ss

1
R
, q = ca

(3.27)

The transitions between the discrete modes are of three types: drop occurences,

which correspond to transitions from the ss and ca modes to the ca mode; start of

new flow, which correspond to the transitions from the off mode to the ss mode; and

termination of flows, which correspond to transitions from the ss and ca modes to the
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off mode. These transitions are described via the reset maps

φdrop(q,v) =


(
ca, v

2

)
, q ∈ {ss, ca}

(off,v), q = off

(3.28)

φstart(q,v) =

(q,v) , q ∈ {ss, ca}

(ss, v0), q = off

(3.29)

φend(q,v) =

(off, 0) , q ∈ {ss, ca}

(off,v), q = off

(3.30)

with reset intensities

λdrop(q,v) =


pv
R
, q ∈ {ss, ca}

0, q = off

(3.31)

λstart(q,v) =

0, q ∈ {ss, ca}

1
τoff

, q = off

(3.32)

λend(q,v) =


v
kR
, q ∈ {ss, ca}

0, q = off

. (3.33)

Here R is the round trip time, p is the packet drop rate parameter.

To write moment dynamics, we define the indicator state variables βss, βca, and βoff

as in (3.5b). The resulting single-mode SHS is shown in Fig. 3.4. Using extended

generator, we write dynamics of the non-zero moments. In particular, we have

dE(βssv
m)

dt
=
m log 2

R
E (βssv

m) +mδE
(
βssv

m−1
)

+
vm0
τoff

E(βoff )−
(
p+

1

k

)
E(βssv

m+1)

kR
, (3.34a)

dE(βcav
m)

dt
=
m

R
E
(
βcav

m−1
)

+
p

2mR
E(βssv

m+1)−
(
p(2m − 1)

2mR
+

1

kR

)
E(βcav

m+1),

(3.34b)

dE(βoffv
m)

dt
= −

E(βoffv
m)

τoff
+

E(βssv
m+1)

kR
+

E(βcav
m+1)

kR
, (3.34c)
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Figure 3.4: An equivalent single-mode representation of the Stochastic Hybrid Sys-
tem representation of TCP On-Off model.

for m ∈ N. Using these moment equations along with the semidefinite constraints

and algebraic constraints arising from the definition of βss,βca,βoff , the semidefinite

program can be set up. We can also generate matrices Mi by using non-negativity of

βss,βca,βoff , 1 − βss, 1 − βca, 1 − βoff . Taking specific values of R = 5, τoff = 0.5,

k = 20, p = 0.05, v0 = 1, we get 0.0252 ≤ E (βss) ≤ 1 by utilizing moments of

order 2. Considering higher order moments improves these estimates, and we get

0.0912 ≤ E (βss) ≤ 0.115 for moments of order 7 (see Fig. 3.5).

3.4.3 Cell division

An ubiquitous feature of living cells is their growth and subsequent division in

daughter cells. Several models have been proposed to explain how growing cells decide

to divide [154–158]. Here, we consider a model wherein the cell size grows as per the

differential equation

dv =

(
α1 +

α1v

v + v1

)
dt. (3.35)

This setup encompasses both the linear growth of cell size (if α2 = 0 or if v1 = 0)

and the exponential growth (if v � v1). We assume that the cell divides as per a
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Figure 3.5: Bounds on E(βss) (i.e., the probability that the system is in the mode ss)
for the TCP on-off example. The bounds improve and converge to the
true value of the moment as the order of moments used in the semidefinite
program is increased.

size-dependent rate

λ(v) = (v/v2)n (3.36)

This rate is analogous to the so-called sizer strategy in the limit when n→∞ wherein

the cell divides as it attains a critical volume v2. A finite value of n represents imperfect

implementation of a sizer model. Upon the reset, the cell size is reset to

φ(v) =
v

2
. (3.37)

Since the dynamics contains a rational function, we define a new state y = 1
v+v1

. The

SHS can then be recasted as polynomial SHS with the new continuous dynamics

dv = (α1 + α1vy) dt, (3.38)

and an algebraic constraint

vy + v2y − 1 = 0. (3.39)

The dynamics of the moment of a form E(vm1) can be computed as

dE(vm1)

dt
= m1α1E(vm1−1) +m1α2E(vm1y)− 2m − 1

2mvn2
E
(
vm1+nym2

)
. (3.40)
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Figure 3.6: Stochastic Hybrid System representation of sizer model of cell division.
The cell size v grows as per the deterministic differential equation that is
a combination of two growth regimes, a linear growth with parameter α1

and a saturating exponential growth with parameter α2. The cell divides
with intensity (v/v2)n and the size resets to v/2 (i.e., size divides in two
daughters). The parameter n represents imperfect implementation of the
sizer and the cell divides at attainment of volume v2 as n→∞.

These moment equations can be used along with the semidefinite constraints obtained

from joint moments of the form E(vm1ym2) and utilizing the algebraic constraints

vy + v2y − 1 = 0.

As in the previous example, here too we can solve the steady-state moment

equations. The technique can be used to explore the effect of parameters in noise in

cell size. To this end, we plot the noise in cell size as a function of the cell size exponent

n in Fig. 3.7. Our results show that the cell size noise decreases with increase in n,

which is expected since the size control on when the division should take place becomes

stronger. Similar results were obtained in [159], albeit for only exponential growth rate

strategy and polynomial dynamics.

3.5 Estimating Characteristic Functions via Semidefinite Programming

So far, both in this chapter and the previous one, we have obtained bounds

on moments of stochastic dynamical systems by exploiting the fact that moments

satisfy semidefinite properties. It turns out that the characteristic function of a random

variable is also a positive definite function [160–163]. This poses a question: can we

exploit the positive definiteness of the characteristic function to estimate characteristic

functions of stochastic dynamical systems? In this section, we attack this question
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Figure 3.7: Bounds on noise (quantified via coefficient of variation squared) in cell
size as a function of cell size exponent. Using ten moment equations, the
bounds are computed via semidefinite program for different exponents of
cell size. It is seen that the noise in cell size decreases with increase in the
exponent. Moreover, the noise is lower when the linear growth coefficient
α1 is greater than the exponential growth coefficient α2.

for a small stochastic setup consisting of one dimension. However, before going into

that, we first review some basic properties of characteristic functions. In this section,

we provide background results pertaining characteristic functions and their properties.

The reader is referred to [160–163] for proofs and more details. For simplicity, we only

consider one dimensional systems.

3.5.1 Review of Relevant Properties of Characteristic Function

The characteristic function ϕ : R → C for a univariate random variable x ∈ R

is defined as

ϕ(ω) := E
(
ejωx

)
=

∫ ∞
−∞

ejωxdF (x), (3.41)

where F is the distribution function of X and j =
√
−1.

For any random variable, the characteristic function always exists and it uniquely

determines the distribution. If F (x) has a density ρ(x) then ϕ(ω) can be written in
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terms of ρ

ϕ(ω) =

∫ ∞
−∞

ejωxρ(x)dx. (3.42)

Given ϕ(ω), the distribution function F (x) and/or the density ρ(x) can be obtained

via inversion.
As an immediate consequence of its definition, the characteristic function of a

random variable has the following properties

1. ϕ(0) = 1.

2. |ϕ(ω)| ≤ 1.

3. ϕ(−ω) = ϕ(ω).

4. If the random variable has a finite mth order moment, then it is given by

E (xm) = (−j)md
mϕ

dωm
|ω=0. (3.43)

Another important property of a characteristic function that we particularly use in this

work is that it is a positive definite function. The following theorem of Bochner forms

basis of our analysis.

Theorem 3 (Bochner) A continuous complex-valued function ϕ on R is a charac-

teristic function if and only if ϕ(0) = 1 and ϕ is positive definite [161, 162].

The positive definiteness of a function required by this theorem is defined as

follows. A complex valued function ϕ : R → C is said to be positive definite if the

inequality
q∑

k,l=1

ϕ(ωi − ωj)ckcl ≥ 0 (3.44)

holds for every positive integer q, for all ω1, . . . , ωq ∈ R, and for all c1, . . . , cq ∈ C. In

other words, ϕ is positive definite if and only if the matrix

Hc =


ϕ(0) ϕ(ω1 − ω2) . . . ϕ(ω1 − ωq)

ϕ(ω2 − ω1) ϕ(0) . . . ϕ(ω2 − ωq)
...

...
. . .

...

ϕ(ωq − ω1) ϕ(ωq − ω2) . . . ϕ(0)

 � 0. (3.45)
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for an arbitrary choice of q ∈ N and ω1, . . . , ωq ∈ R.

As a consequence of this definition, a variety of properties of the characteristic

function (including properties 2 and 3 above) can be established by choosing some test

points and enforcing Hc � 0. For example, consider the case q = 1. Then, we must

have that

ϕ(0) ≥ 0. (3.46)

Likewise, for q = 2, we should have ϕ(0) ϕ(ω1 − ω2)

ϕ(ω2 − ω1) ϕ(0)

 � 0. (3.47)

Without loss of generality, we can assume ω1 = 0 and ω2 = ω ∈ R. Then, we should

have ϕ(−ω) = ϕ(ω) and |ϕ(ω)|2 ≤ ϕ(0)2.

3.5.2 Characteristic Function of a Stochastic Process

Consider the SHS defined in (3.1). We restrict ourselves to a single mode SHS

with no jumps, and assume that the functions f , and g are polynomials in the state x.

Our goal is to compute the time evolution of the test function

ψ(x(t)) = ejωx(t). (3.48)

The following theorem shows how a partial differential equation governing the evolution

of the characteristic function can be obtained. We wish to point out that it is presented

here for a formal statement, and it has been used in some form or other in several works,

e.g., see [164].

Theorem 4 Let f and g2 be finite polynomials of degrees df ∈ N and dg ∈ N re-

spectively. Assuming that a stationary distribution with finite moments of order n =

max{df , dg} exists, the characteristic function of the stationary distribution satisfies

the following partial differential equation

∂ϕ

∂t
= jω

df∑
l=0

aflj
−l∂

lϕ

∂ωl
+

1

2
(jω)2

dg∑
l=0

aglj
−l∂

lϕ

∂ωl
. (3.49)

45



Proof: Since we assume that f , and g2 are polynomials, without loss of generality we

can take their forms to be

f(x) =

df∑
l=0

aflx
l, g2(x) =

dg∑
l=0

aglx
l, (3.50)

where afl ∈ R, and agl ∈ R are coefficients. Taking ψ(x) = ejωx, ω ∈ R, we have that

∂mψ

∂xm
= (jω)mψ,

∂mψ

∂ωm
= (jx)mψ ∀m ∈ N (3.51)

Using these, we can write the extended generator as

Lψ(x) = jωψ(x)

df∑
l=0

aflx
l +

1

2
(jω)2ψ(x)

dg∑
l=0

aglx
l. (3.52)

Using (3.51), the terms xlψ can be replaced by (j)−l ∂
lψ
∂ωl

. This yields

Lψ(x) = jω

df∑
l=0

aflj
−l∂

lψ

∂ωl
+

1

2
(jω)2

dg∑
l=0

aglj
−l∂

lψ

∂ωl
. (3.53)

Taking expectation, we get a partial differential equation in characteristic func-

tion ϕ = E(ψ(x))

∂ϕ

∂t
= jω

df∑
l=0

aflj
−l∂

lϕ

∂ωl
+

1

2
(jω)2

dg∑
l=0

aglj
−l∂

lϕ

∂ωl
. (3.54)

�

If the stationary distribution with finite moments of order n exists, then we must have

that ∂ϕ
∂t

= 0. This results in the ordinary differential equation (3.49). The degree of

this ODE is n = max{df , dg}. It is worth pointing out that there are pathological cases

wherein expectation of a test function may not be appropriately defined (see [165] for

some examples), the finite moments requirement allows us to avoid them [166].

3.5.3 Solving for Stationary Characteristic Function

The ODE obtained by putting ∂ϕ
∂t

= 0 (3.49) cannot be solved analytically

except for a handful of cases. However, it can be solved via numerical techniques.
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Either way it would require n initial/intermediate/boundary values to find the solution.

Other than the usual ϕ(0) = 1, previous works have either utilized prior knowledge

about the system (e.g., the distribution is symmetric), or used lim|ω|→∞ ϕ(ω) = 0 and

lim|ω|→∞
∂lϕ(ω)
∂ωl

= 0 for some l [164]. In practice these are hard to incorporate in a

solution. Furthermore, if one is interested only in stationary moments, then solution

of ϕ(ω) only in neighborhood of zero is sufficient.

We propose a different approach to compute both the moments and the char-

acteristic function. This approach relies on two ideas. First being the fact that the

characteristic function is related with the moments as

∂lϕ

∂ωl
|ω=0 = jlµl, l = {1, . . . , n− 1}, (3.55)

where µl ∈ R represents the lth order moment. Thus, the moments are natural quan-

tities to be used in computing the characteristic function. Second idea is to utilize the

Bochner’s theorem to estimate the moments µl. In particular, we can use ϕ(0) = 1 and

positive semidefinite property of the matrix M in (3.45). Using these, a semidefinite

program can be formulated that gives lower and upper bounds on µl as stated in the

theorem below.

Theorem 5 Assuming that f and g2 are polynomials of degree df and dg, a lower

bound on a moment µk can be obtained via the semidefinite program

min µk (3.56a)

jω

df∑
l=0

aflj
−l∂

lϕ

∂ωl
+

1

2
(jω)2

dg∑
l=0

aglj
−l∂

lϕ

∂ωl
+ η(ω)ϕ = 0, (3.56b)

∂lϕ

∂ωl
|ω=0 = jlµl, l = 1, 2, . . . n, (3.56c)

ϕ(0) = 1, (3.56d)

Hc � 0. (3.56e)

Here k = {1, . . . , n} with n = max{df , dg} and Hc is defined as in (3.45). Further, the

minimum value obtained by the program increases as size of M is increased by including

more test points.
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Proof: Since f and g2 are assumed to be polynomials, Theorem 4 implies that the char-

acteristic function ϕ(ω) satisfies the ODE of order n given by (3.56b). The moments

are related with the derivatives of the characteristic function by the linear constraints

in (3.56c). The constraint in (3.56d) and (3.56e) are a consequence of the Bochner’s

theorem. Since the objective function is linear in decision variables µk and the con-

straints are either equality or semidefinite constraints, the optimization problem is a

semidefinite program [167].

Now suppose that the size of Hc is increased by including more test points

ω1, . . . , ωq. This corresponds to adding more constraints in the program, and the solu-

tion cannot get worse by doing so. �

The upper bound on µk can be found by minimizing −µk. Note that we can

choose any test points ω1, ω2, . . . , ωq ∈ R in order to generate the matrix Hc. For

sake of simplicity, we will choose uniformly spaced values on the real-line. The above

semidefinite program can be used to compute lower and upper bounds on each of the

moments µk. These values can be then used to determine the solution to the ODE

for characteristic function and thereby finding an approximation of the characteristic

function. If the lower and upper bounds on each of the moments are reasonably close,

then the approximate characteristic function would be quite close to the true charac-

teristic function. It can be further used to compute the stationary probability density

via inversion.

The formulation in (3.56) may not always be convenient, specially if (3.56b)

does not have an analytical solution. In this case, we can interpret (3.56) as an op-

timal control problem for a linear time varying system. Specifically, consider a state

vector χ =
[
ϕ ∂ϕ

∂ω
· · · ∂n−1ϕ

∂ωn−1

]>
. Then, the differential equation describing the char-

acteristic function becomes a linear time (in ω-space) varying system

dχ

dω
= P(ω)χ(ω), (3.57)

for an appropriately defined matrix P . In this setup, the objective would be to optimize

48



the elements of χ(0) subject to the linear matrix inequality (3.56e). The linear system

in (3.57) can be appropriately discretized, and the decision variables of the optimization

problem are values of the the state vector χ at those discrete points. The solution to

this semidefinite program incurs numerical errors due to discretization.

The semidefinite program in (3.56) can be used to find bounds on first n mo-

ments where n is the degree of the ODE (3.56b). If one is interested in computing

the higher order moments, the approximate characteristic function can be differenti-

ated and computed at ω = 0. By doing so, bounds on the higher order moments can

also be computed. Alternatively, for systems with finite moments, one can compute

the bounds on first n moments via the proposed method, and then use the fact that

stationary moments are related via a linear system of equations given by

AX + ĀX = 0. (3.58)

Here X is collection of moments up to some order and X contains moments of order

higher than those in X . The number of elements of X is as many as the degree

of nonlinearity in the system given by n. While the usual moment closure methods

estimate elements of X in terms of those of X , we simply supplement (3.58) with lower

and upper bounds on n moments and thereby compute bounds on all other moments

in (3.58).

3.5.4 Numerical Examples

Here we illustrate the proposed method for two simple examples.

3.5.4.1 Logistic Growth with Continuous Dynamics

Consider the following modified stochastic logistic growth model

dx = (1 + x− 0.1x2)dt+
√

2xdw. (3.59)

Without the constant term in the drift, this model is widely-used in modeling popu-

lation growth [168]. We added the constant term so that the trivial solution x = 0 is

ruled out.
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Figure 3.8: Comparison of estimated mean and characteristic function with exact val-
ues. Top: The mean µ1 is estimated via semidefinite program in (3.56).
The matrix Hc is constructed by taking frequencies spaced by one (e.g.,
ω1 = 1, ω2 = 2, . . .). Increasing the number of test frequencies leads to
a better estimation of the moment as both lower and upper bounds con-
verge.Estimation of mean via SDP. Bottom: The characteristic function
is estimated by using the middle value of lower and upper bounds for µ1

obtained from 30 test frequencies in (3.62)–(3.63). The estimated prob-
ability densify function is obtained by numerically inverting the charac-
teristic function. Notably, this particular system is exactly solvable, and
the exact probability densify function is provided for comparison purpose,
showing an excellent match with its estimated counterpart.
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Using (3.54), the characteristic function evolves as per

∂ϕ

∂t
= jωϕ+ ω

∂ϕ

∂ω
+ j0.1ω

∂2ϕ

∂ω2
+ ω2∂

2ϕ

∂ω2
. (3.60)

Therefore, the stationary characteristic function is the solution to the following differ-

ential equation

jωϕ+ ω
∂ϕ

∂ω
+
(
j0.1ω + ω2

) ∂2ϕ

∂ω2
= 0. (3.61)

It can be shown that the above ODE has the following generalized solution

ϕ(ω) =
c1√

5
I0

(
2
√

0.1− jω
)

+
c2√

5
K0

(
2
√

0.1− jω
)
, (3.62)

where I and K denote the modified Bessel functions of first and second kinds, and c1,

c2 are unknown coefficients. As expected, the number of unknown coefficients is same

as the order of nonlinearity in the dynamics.

To determine the coefficients, we can use the fact that ϕ(0) = 1 and ∂ϕ
∂ω
|ω=0 =

jµ1, where µ1 ∈ R is the mean that is to be determined. This results in

c1√
5
I0

(
2
√

0.1
)

+
c2√

5
K0

(
2
√

0.1
)

= 1 (3.63a)

− j
√

2c1I1

(
2
√

0.1
)

+ j
√

2c2K1

(
2
√

0.1
)

= jµ1 (3.63b)

Using these, the stationary characteristic function can be written in terms of only one

unknown µ1. Now, we can compute bounds on µ1 using the semidefinite program as

in (3.56). By choosing uniformly spaced values of ω1, ω2, . . . , ωn, we computed the

maximum and minimum allowable values µ1. We also find that increasing the size

of the program by choosing more test points improves both lower and upper bounds.

Taking 30 test points at ω1 = 1, . . . ω30 = 30, we get 5.2024 ≤ µ1 ≤ 5.2025 (see Fig. 3.8,

Top). This result is in excellent agreement with Monte Carlo simulations which yield

an value of 5.2 for 10000 simulations.

Using the value of µ1 obtained here, we can use the characteristic function to

reconstruct the probability density function of the stationary distribution (see Fig. 3.8,
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Bottom). As mentioned earlier, the bounds on µ1 can be used to estimate bounds on

higher order moments as well (results not shown here).

While the preceding discussion so far has been to consider continuous dynamics,

we illustrate by a simple example below that the method also works for discrete-

dynamics.

3.5.4.2 Protein Production and Decay

Consider the following reactions, where proteins are synthesized in geometric-

distributed bursts of size Bi at a rate kp, and two protein molecules come together for

degradation with rate γp

∅ kp−−→ Bi × Protein, Protein+ Protein
γp−−→ ∅. (3.64)

The reaction propensity functions are assumed to be kp and γpx
2, respectively, where

x denotes the single-cell protein level. Taking the Fourier transform of its CME, it can

be shown that the characteristic function evolves as per

∂ϕ

∂t
= kpψ (ϕB − 1)− γp(e−jω − 1)

∂2ϕ

∂ω2
, (3.65)

where ψB =
〈
ejωB

〉
is the characteristic function of the burst size B and is given by

ϕB = 1
1+〈B〉−〈B〉ejω . Although the above partial differential equation is difficult to solve,

it is possible to compute the stationary characteristic function by setting ∂ϕ
∂t

= 0 and

solving the resulting ordinary differential equation

ϕ(ω) = c1G
2,0
2,2

 〈U〉 ejω
〈U〉+ 1

∣∣∣∣∣∣ 1− j
√

kp
γp
, 1 + j

√
kp
γp

0, 0

+ c2 2F1

(
−j

√
kp
γp
, j

√
kp
γp

; 1;
〈U〉 ejω

〈U〉+ 1

)
(3.66)

Here coefficients c1 and c2 are unknown coefficients that need to be determined while

G2,0
2,2 and 2F1 respectively denote Meijer G and Hypergeometric functions. To compute

c1 and c2, one can use ϕ(0) = 1 and ∂ϕ
∂ω
|ω=0 = j 〈x〉, where 〈x〉 is the mean. Even

though exact value of 〈x〉 cannot be computed, it can be estimated to arbitrary pre-

cision via semidefinite programming subject to semidefinite constraints on moments
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Figure 3.9: Comparison of probability mass functions computed from the proposed
method and 105 MC simulations. The unknown moment 〈x〉 is estimated
via semidefinite with constraints in (3.45) computed at 30 frequencies
equally spaced between 1 and 30, giving 7.75660 ≤ 〈x〉 ≤ 7.75667. The
characteristic function in (3.66) is computed by using 〈x〉 = 7.75663. The
parameters are taken as kp = 10 min−1, 〈B〉 = 3 and γp = 0.04 min−1.

and/or constraints encoded in Hc � 0 for appropriately chosen (uniformly spaced, in

our case) values of ω1, ω2, . . . , ωq. Using the estimated values of c1 and c2 in (3.66)

gives the approximate characteristic function, which in turn yields the corresponding

probability mass function ρk = P(x = k) via the inverse transform

ρk =
1

2π

∫ π

−π
e−jωkϕ(ω)dω. (3.67)

As shown in Fig. 3.9, comparing the estimated ρk with that obtained from simulations

of the process shows excellent match between them.

3.6 Conclusion

In this chapter we extended the moment estimation methodology proposed in

the previous chapter to a much larger class of stochastic systems called the Stochastic

hybrid systems (SHSs). We first showed that the methodology straightforwardly applies

to polynomial SHSs with a single-mode. We then showed that a multimode SHS can
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be recasted as a single-mode SHS, thus extending the moment estimation framework to

mutimode polynomial SHSs. Using a state-space augmentation, we then showed that

a class of rational SHSs can also be dealt with in the same way. Finally, we proposed

another semidefinite programming based method that can be used to estimate the

moments as well as characteristic functions of some stochastic systems.
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Chapter 4

MODELING EVENT TIMING IN SINGLE–CELLS

So far we have focused on estimating moments of species level in biochemical re-

action systems. In individual cells, however, there are other quantities of physiological

interest (e.g., timing of cellular events that occur upon accumulation of a regulatory

protein to specific level) that are random as a consequence of the randomness in gene-

product levels. For instance, lysis time of an E. coli cell infected by a bacteriophage

λ is governed by accretion of a protein, holin, up to an effective level [169–171]. In

the same vein, diploid yeast cells enter meiosis upon facing nutritional deprivation,

and the decision to enter meiosis depends upon accumulation of the meiotic master

regulator Ime1 [44]. Many other examples of such events appear in context of develop-

ment [74–77], cell-cycle control [78–82], cell differentiation [83,84], sporulation [85,86],

apoptosis [87–89], etc. As the protein levels are subject to molecular fluctuations due to

inherent noise in gene expression [5–7,172–178], the timing of an event that triggers at

a critical threshold is expected to exhibit cell-to-cell variation. Indeed, recent single-

cell experiments have shown considerable cell-to-cell variability in timing of cellular

events [169,179].

How cells are able to function reliably in face of the variability in timing? On one

hand, it has been suggested that cells exploit the timing variability to their advantage

by generating temporal phenotypic variability before committing to irreversible cell-

fates [44]. One the other hand, precision in timing is thought to be paramount in

processes related to development decisions [45]. Understanding how cells schedule key

events at desired times and deal with the inherent variability in timing is critical to

unravel biological design principles.
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Towards this end, we formulate event timing as a first-passage time problem

which corresponds to characterizing the first time at which the protein level crosses

a certain threshold. Motivated from precision in timing in lysis of bacteriophage λ

[169, 171], we investigate the feedback regulation strategies that can reduce noise in

timing (quantified using coefficient of variation squared) around a given mean time

while other gene expression parameters are fixed.

4.1 Formulating Event Timing as a First–Passage Time Problem

In this section, we provide a brief background on modeling event timing as a

first-passage time problem. Let x(t) denote the protein level in a cell at a time t, where

t = 0 represents the induction of gene expression. The event of interest is assumed to

occur when the protein level crosses a specific threshold level θ (Fig. 4.1). The time

to this event can be conveniently formulated as a first-passage time (FPT) problem

where the timing of an event is represented by the random variable

T := min{t ≥ 0 : x(t) ≥ θ|x(0) = 0}. (4.1)

To compute the probability density function (pdf) of T, we need a description of

how the protein level x(t) evolves over time. For analytical tractability, we only model

the protein production and degradation events. The mRNA half-life is assumed to be

considerably small than that of the protein and its dynamics is approximated by a burst

that follows the geometric distribution [180–182]. More precisely, the probabilities of

occurrences of protein birth and death in an infinitesimal time interval (t, t + dt) are

considered as

Probability (x(t) = i+B|x(t) = i) = kidt, (4.2a)

Probability (x(t) = i− 1|x(t) = i) = iγdt, (4.2b)

Here ki is an arbitrary positive-valued function of its argument i, and it denotes the

protein production rate when the protein level is x(t) = i. The parameter γ denotes

the degradation rate of one protein molecule. In biological terms, ki represents a feed-

back regulation of the promoter activity by its own protein. Note that an increasing
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(decreasing) function ki corresponds to a positive (negative) feedback whereas a con-

stant ki represents absence of any feedback. Furthermore, B denotes the burst size

which follows a geometric distribution

P(B = i) =
bi

(b+ 1)i+1
, b ∈ (0,∞), i ∈ {0, 1, 2, 3 . . . , }, (4.2c)

with b denoting the mean translation burst size which is equal to the translation rate

divided by the mRNA degradation rate.

Note that if the protein did not decay, then x(t) accumulates over time and the

T distribution is obtained by observing

P (x(t) ≥ θ) = P (T ≤ t) . (4.3)

However, with protein degradation, the FPT calculation needs careful consideration

so as to avoid counting multiple crossings of the threshold. To this end we construct

an auxiliary process that has same probabilities of occurrences as x(t) in (4.2) except

that the auxiliary process is absorbed as soon as the protein count crosses θ (Fig. 4.2).

In this setup, the probability of the protein level reaching θ in the small time window

(t, t + dt) is the probability of being in state i at time t, and a jump of size θ − i or

larger occurs in (t, t + dt). Using the fact that for a geometrically distributed burst

size B,

P (B ≥ θ − i) =

(
b

b+ 1

)θ−i
(4.4)

and rate of burst arrival is ki when x(t) = i, the probability density function (pdf) of

the first-passage time is given by

ρT(t) =
θ−1∑
i=0

ki

(
b

b+ 1

)θ−i
pi(t)dt, (4.5a)

pi(t) = P (x(t) = i) (4.5b)
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Figure 4.1: Event timing as a first-passage time problem. Top: A sketch of the
gene expression model that includes production and degradation of
mRNA/protein molecules. A feedback regulation scheme is implemented
by assuming the protein production rate to be a function of the protein
level. Bottom: An event of interest is triggered when the protein level
reaches a critical event threshold for the first time. Each protein tra-
jectory is representative of protein level over time inside individual cells.
As a consequence of stochastic expression of the protein, the threshold
is attained at different times in different cells. The corresponding time
at which the event happens denotes the first-passage time (FPT). The
portion of each trajectory after threshold has been crossed is shown in
light color.
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Figure 4.2: Illustration of an auxiliary process for computing the first-passage time.
States [0, 1, . . . , θ] represent the protein population counts, and arrows
represent transition between states due to burst and decay events. The
destination of a forward jump (a birth event) is decided by the burst
size while each degradation event reduces the protein count by one. The
process terminates when the protein level reaches the absorbing-state θ
and the first-passage time is recorded.

The pdf can be compactly written as a product

ρT(t) = U>P (t), (4.6a)

U =
[
k0

(
b
b+1

)θ
k1

(
b
b+1

)θ−1 · · · kθ−1
b
b+1

]>
, (4.6b)

P (t) =
[
p0(t) p1(t) · · · pθ−1(t)

]>
, (4.6c)

where U is a row vector of kiP (B ≥ θ − i) and P (t) is a column vector of pi(t). The

time evolution of P (t) is given by the linear dynamical system

dP

dt
= ΛP (4.7)

derived from the Chemical Master Equations (CME) corresponding to the bursty birth-

death process [102, 103]. It turns out that, in this case the matrix Λ is a Hessenberg
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matrix whose ith row and jth column element is given by

aij =



0, j > i+ 1

(i− 1)γ, j = i+ 1

−ki−1
b
b+1
− (i− 1)γ, j = i

ki−1
bi−j

(b+1)i−j+1 , j < i

(4.8)

i, j ∈ {1, . . . , θ}. Solving (4.7) and using (4.6a) yields the following pdf for the first-

passage time

ρT(t) = U>P (t) = U> exp(Λt)P (0), (4.9)

where P (0) =
[
1 0 · · · 0

]T
is vector of probabilities at t = 0 that follows from

x(0) = 0. While this pdf provides complete characterization of the event timing, we

are particularly interested in the lower-order statistical moments of FPT . Next, we

exploit the structure of the Λ matrix to obtain analytical formulas for the first and

second order moments of the first-passage time.

4.2 Moments of First–Passage Time

From (4.9), the mth order uncentered moment of the first-passage time is given

by

〈Tm〉 = U>
(∫ ∞

0

tm exp(Λt)

)
P (0). (4.10)

Here in computing the above integral, we use the fact that the matrix A is full-rank

with negative eigenvalues (see Appendix B). This results in

〈Tm〉 = (−1)m+1m! U>
(
A−1

)m+1
P (0). (4.11)

It turns out that the above expression of FPT moments can be written in terms of

series summations. Specifically, the first two moments have the following forms

〈Tm〉 =
1

k0

+
1

b

θ∑
i=1

ki−1

ki−1 + (i− 1)γ

(
1

ki−1

+
θ∑

j=i+1

1

kj−1

j−1∏
l=i

kl
kl + lγ

(b+ 1)lγ

bkl−1

)
, (4.12a)
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〈
T2
〉

=
2

b2

θ∑
i=1

ki−1

ki−1 + (i− 1)γ

(
bΞi +

∑i
j=1 Ξj

ki−1

+

θ∑
r=i+1

bΞi +
∑r

j=1 Ξj

kr−1

r−1∏
l=i

kl
kl + lγ

(b+ 1)lγ

bkl−1

)
, (4.12b)

where the terms Ξi are given by

Ξi =
b

k0

δi−1 +
ki−1

ki−1 + (i− 1)γ

(
1

ki−1

+
θ∑

j=i+1

1

kj−1

j−1∏
l=i

kl
kl + lγ

(b+ 1)lγ

bkl−1

)
, (4.12c)

with δi−1 denoting the Kronecker delta which is one if i = 1 and zero otherwise. To our

knowledge, these results represent the first analytical computations of the FPT statis-

tics for a bursty-birth death process with a random burst size and a state-dependent

burst arrival rate (i.e., feedback regulation in transcription). In what follows, we ana-

lyze the pdf and moments of T to explore how different model parameters affect these

quantities.

4.2.1 When the Protein is Stable

Analysis of the FPT moments in some limiting cases gives important insights.

For the simplest case of a stable protein (γ = 0) and a constant transcription rate (no

feedback; ki = k), the moment expressions simplify to

〈T〉 =
1

k

(
θ

b
+ 1

)
≈ θ

bk
, CV 2

T =
b2 +X + 2bθ

(b+ θ)2
≈ 1 + 2b

θ
, (4.13)

where CV 2
T represents the noise in FPT as quantified by its coefficient of variation

squared (variance/mean2; 〈T2〉 / 〈T〉2 − 1). The approximate formulas in (4.13) are

valid for a high event threshold compared to the mean protein burst size (θ/b � 1).

The mean FPT formula can be interpreted as the time taken to reach θ with an

accumulation rate bk. Further, θ/b represents the average number of burst events

required for the protein level to cross the threshold, and increasing θ/b leads to noise

reduction through more efficient averaging of the bursty process. One can also gain

important insights, such as, the noise in FPT is invariant of the transcription rate k.

Therefore, 〈T〉 and CV 2
T can be independently tuned – increasing the event threshold
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and/or reducing the burst size will lower the noise level. Once CV 2
T is sufficiently

reduced, k can be altered to obtain a desired mean event timing.

4.2.2 When Protein is Unstable

We next investigate how changing the degradation rate influences FPT statistics.

4.2.2.1 Scale Invariance of FPT Distribution

For simplicity, we assume that there is no feedback regulation, i.e., ki = k. In the

deterministic sense, the protein level is described via the following ordinary differential

equation
dx

dt
= kb− γx. (4.14)

The solution is of the form x = kb
γ

(1− e−γt), and it approaches the steady state xss =

kb/γ as t → ∞. The timescale of protein turnover is set by the protein degradation

rate γ.

In view of this, we define a normalized first-passage time T = γT. The pdf of

T can be written in terms of pdf of T as

ρT(τ) =
1

γ
ρT

(
τ

γ

)
. (4.15)

Using the expression of ρT(t), we have

ρT(τ) =
U>

γ
exp

(
Aτ

γ

)
P (0). (4.16)

Recall the forms of U> and A from (4.6a). Using the fact that ki = k for no feedback

regulation, it can be seen that elements of both A/γ and U>/γ involve the ratio k/γ.

As a consequence, the pdf and the moments of T only depend upon the ratio k/γ and

not on the individual values of k and γ. The ratio k/γ represents the average number

of transcription events in occurred in a protein’s lifetime and we will refer to it as the

relative transcription frequency.

Since T = γT, we have that

〈
T
〉

= γ 〈T〉 ,

〈
T
j
〉

〈
T
〉j =

〈Tj〉
〈T〉j

, j = 2, 3, . . . (4.17)
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Therefore, if the relative transcription frequency, k/γ, is kept constant then 〈T〉 is

proportional to 1/γ. Other statistical metrics of T and T that involve a higher order

moment scaled by appropriate power of mean (e.g., coefficient of variation, skewness,

kurtosis, etc.) are equal and they only depend on k/γ. Such behavior is referred to as

scale invariance. Quite interestingly, it has recently been observed in distributions of

intra– and inter–species body sizes in several species [4, 183].
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Figure 4.3: First-passage time distribution is scale invariant with respect to changes
in protein degradation rate. Left: The FPT pdf is plotted for various
values of protein degradation rate while keeping the ratio k/γ constant.
Right: Upon normalizing the time by the degradation rate, the distribu-
tions correspond to (4.16) and collapse upon each other. The parameter
values used for the plots are k/γ = 30, b = 1, and θ = 30.

The scale invariance of FPT distribution implies that the noise (quantified using

coefficient of variation squared, CV 2
T) in timing could be tuned by choosing appropriate

values of parameters, and the mean event time could be set by selecting the γ such that

the relative transcription frequency is constant. It is worth noting that for proteins

without active degradation (proteolysis), the term γ represents the dilution due to cell

growth. Consequently, the mean event time is set by the cell cycle time if the other

parameters are kept constant. However, for proteins with active degradation, γ could

be tuned to maintain a desired k/γ. In this case, a higher value of γ requires a higher

value of k and thus imposes a higher cost of protein production for the cell.
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4.2.2.2 Effect of Model Parameters on FPT Statistics

A natural question that arises now is how these quantities alter with changes

in the ratio k/γ? To answer this, we use the formulas in (4.12) to plot the changes in

γ 〈T〉 and CV 2
T as the steady state protein level is altered using k/γ. It is seen that for

fixed values of other parameters, both γ 〈T〉 and CV 2
T decrease with increase in k/γ

(Fig. 4.4 [A]). Specifically for values of k/γ such that the steady state protein level

(xss = kb/γ) is smaller than the event threshold (θ), we have γ 〈T〉 � 1 and CV 2
T ≈ 1.

Thus the threshold crossing takes place at exponentially distributed random times and

the time scale of the event is much larger than the time scale of protein turnover.

Intuitively the exponential distribution arises because at the steady state protein level,

the transient fluctuations from the steady state die out and threshold crossing becomes

rare. The quantities γ 〈T〉 and CV 2
T decrease sharply as the xss is raised towards θ;

the decrease is not as sharp later on for higher values of xss.

Another point to note is that if another value of the mean burst size b is taken

then the qualitative behavior of γ 〈T〉 and CV 2
T does not change. Interestingly, compar-

ing across different values of burst sizes reveals that when xss is smaller than θ, having

a larger burst size reduces both the normalized FPT mean and noise. In contrast,

when xss is larger than θ, then a higher mean burst size implies higher value of noise.

This behavior could be explained by noting that when the bursting is high, it leads to

higher noise among protein trajectories for a given steady-state. Because in xss � θ

regime, the threshold crossing is noise driven, a higher noise may suppress noise in

timing vis-à-vis noise in timing when the bursting is absent (b → 0). In other case

when xss is sufficiently higher than θ, bursting increases noise in timing and there is

a one-to-one correspondence between noise in protein trajectories and noise in timing.

The noise finally approaches a limiting value which corresponds to the case when k/γ

is large. Note that the formulas for the FPT moments in this case reduce to

γ 〈T〉 =
γ

k

(
θ

b
+ 1

)
≈ γθ

bk
, CV 2

T =
b2 + θ + 2bθ

(b+ θ)2
≈ 1 + 2b

θ
. (4.18)

Thus for the no bursting case, the noise approaches the Poisson limit 1/θ whereas when
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burst is present it approaches (1 + 2b)/θ.

Motivated from the distinct effect of the burst size, we next investigate the case

when the steady-state is varied by only changing the burst size and the ratio k/γ is

kept fixed. In this case, it is seen that for a given event threshold θ, there is an optimal

steady state level (i.e., optimal burst size) that minimizes noise in timing (Fig. 4.4[B]).

This behavior could be explained by the relative positions of event threshold and the

steady state. When the event threshold is higher than xss then the noise in timing is

high and it decreases as b is increased. However, towards the other limiting case when

the burst size becomes high such that only a few bursting events are required to cross

the threshold then the noise becomes high again. As a result, the noise is minimized

by an intermediate optimal burst size. Furthermore, consistent with observations in

Fig. 4.4 [A], increasing k/γ reduces both γ 〈T〉 and CV 2
T.

Until now we have considered a fixed event threshold and varied the steady-

state protein level. Here, we take up the opposite scenario wherein the steady-state

is constant and an appropriate event threshold is to be chosen. As shown in Fig. 4.4

[C], the noise in timing exhibits a U -shape profile as θ is varied. To understand the

U shape behavior, let us consider the curve corresponding to the no bursting (b→ 0)

case. In this case, the noise in timing approaches follows as xss � θ. Therefore for

small values of θ, the noise in timing decreases as θ increases. In contrast, as θ gets

close to k/γ, crossing the threshold is dominated by noise, and therefore, becomes a

rare event which results in CV 2
T → 1. These two opposite behaviors are balanced at

some intermediate value of θ (close to half of k/γ) for which CV 2
T is minimum. Next,

if bursts are considered, then the burst size increases noise in timing in the regime

when θ � xss, whereas it decreases noise in the regime when is θ is higher than xss.

This effect can be explained by similar arguments as in Fig. 4.4 [A]–[B] that bursting

increase noise in protein level and it has differential effect on noise in timing depending

upon the relative positions of the event threshold and the steady state protein level.

How does the minimum noise obtained by choosing the optimal threshold varies

with alterations in the steady state protein level? As shown in Fig. 4.4 [D], the optimal
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noise initially decreases as the steady state is increased regardless of the underlying

tuning parameter (b or k/γ). However, after a certain steady state level, the noise does

not change appreciably if the tuning is carried out via the mean burst size whereas it

keeps decreasing if tuning is done via k/γ. Taken together, these results show that the

relative position of the steady state with respect to the event threshold is an important

factor. If the steady state protein level is much higher, then the noise in protein

trajectories is propagated to noise in timing. However, if the steady state level is lower

in comparison to the event threshold, a higher noise in protein trajectory can even

reduce noise in timing.

4.3 Optimal Feedback Strategy

Having derived the FPT moments, we investigate optimal forms of transcrip-

tional feedback that schedule an event at a given time with the lowest CV 2
T. Because

〈T〉 is assumed to be fixed, minimizing CV 2
T is equivalent to minimizing 〈T2〉. Thus,

the problem mathematically corresponds to a constraint optimization problem: find

transcription rates k0, k1, · · · , kθ−1 that minimize 〈T2〉 for a fixed 〈T〉. We first con-

sider a stable protein whose half-life is much longer than the event timescale, and

hence, degradation can be ignored (γ = 0).

4.3.1 Optimal Feedback for a Stable Protein

When the protein of interest does not decay (γ = 0), the expressions for the

FPT moments take much simpler forms

〈T〉 =
1

k0

+
1

b

θ−1∑
i=0

1

ki
, (4.19a)

〈
T2
〉

=
2

b2

(
τ0

bk0

+
θ−1∑
i=0

τi
ki

)
, τi :=

b

ki
+

θ−1∑
j=i

1

kj
. (4.19b)

Note that in (4.19a) the contribution of k0 (transcription rate when there is no protein)

differs from the other transcription rates ki, i ∈ {1, 2, · · · , θ − 1}. For instance, when

the event threshold is large compared to the mean burst size (θ � b), then the term
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1/k0 can be ignored and 〈T〉 ≈
∑θ−1

i=0 1/bki. In contrast, if the burst size is large

(b� θ) then 〈T〉 ≈ 1/k0, as a single burst event starting from zero protein molecules

is sufficient for threshold crossing. Similar observation for different contributions of k0

can be made about (4.19b).

It turns out that, for these simplified formulas, the problem of minimizing 〈T2〉

given 〈T〉 can be solved analytically using the method of Lagrange multipliers (see Ap-

pendix B). The optimal transcription rates are given by

k0 =
1 + b

1 + 2b

2b+ θ

b 〈T〉
, ki =

1 + 2b

1 + b
k0, 1 ≤ i ≤ θ − 1, (4.20)

and all rates are equal to each other except for k0. Intuitively, the difference for k0

comes from the fact that it contributes differently to the FPT moments as compared

to other rates. Note that for a small mean burst size (b � 1), k0 = ki, whereas

k0 = ki/2 for a sufficiently large b. Despite this slight deviation in k0, for the purposes

of practical implementation, the optimal feedback strategy in this case is to have a

constant transcription rate (i.e., no feedback in protein expression).

We tested the above result for a more complex stochastic gene expression model

that explicitly includes mRNA dynamics via Monte Carlo simulations (Fig. 4.5). For

ease of implementation, the feedbacks are assumed to be linear

ki = c1 + c2i, i ∈ {0, 1, . . .} (4.21)

where c2 = 0 represents a no feedback, and c2 > 0 (c2 < 0) denotes a positive (neg-

ative) feedback. In agreement with (4.20), a no-feedback strategy outperforms nega-

tive/positive feedbacks in terms of minimizing noise in FPT around a given mean event

time. The qualitative shape of trajectories in Fig. 4.5 is determined by the feedback

strategy employed, with no feedback resulting in linear time evolution of protein levels.

This provides an intriguing geometric interpretation of our results – an approximate

linear path from zero protein molecules at t = 0 to θ molecules at time 〈T〉 provides

the highest precision in timing. Next, we discuss the optimal feedback strategy when

protein degradation is taken into consideration.
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4.3.2 Optimal Feedback for an Unstable Protein

Now consider the scenario where protein degradation cannot be ignored over

the event timescale (γ 6= 0). Unfortunately, the expressions of the FPT moments are

too convoluted for the optimization problem to be solved analytically, and the effect

of different feedbacks is needed to be investigated numerically.

We implement the feedbacks using physiologically-relevant Hill functions, where

the transcription rates for a negative feedback mechanism take the following form

ki =
kmax

1 + (ci)H
, i ∈ {0, 1, . . .}. (4.22)

Here H denotes the Hill coefficient, kmax corresponds to the maximum transcription

rate, and c characterizes the negative feedback strength with c = 0 representing no

feedback [184,185]. Similarly, a positive feedback is assumed to take the form

ki = kmax

(
r + (1− r) (ci)H

1 + (ci)H

)
= kmax

r + (ci)H

1 + (ci)H
. (4.23)

Note that an additional parameter r ∈ (0, 1), referred to as the basal strength is in-

troduced in (4.23). This is to ensure that the transcription rate in protein absence

k0 = kmaxr > 0, and this is necessary to prevent protein levels from getting stuck at

zero molecules.

To find the optimal feedback mechanism, our strategy is as follows: for given r

andH, choose a certain feedback strength c in (4.22)/(4.23), appropriately tune kmax for

the desired mean event timing, and explore the corresponding noise in FPT as measured

by its coefficient of variation squared CV 2
T. Counter-intuitively, results show that for

a given value of γ, a negative feedback loop in gene expression has the highest CV 2
T,

and its performance deteriorates with increasing feedback strength (Fig. 4.6 (Top)).

In contrast, CV 2
T first decreases with increasing strength of the positive feedback, and

then increases after an optimal feedback strength is crossed (Fig. 4.6 (Top)). Thus,

when the protein is not stable, precision in timing is attained by having a positive

feedback in protein synthesis with an intermediate strength.

We next explore how the minimal achievable noise in event timing, for a fixed

〈T〉, varies with the protein decay rate γ. Our analysis shows that for a given basal
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strength r, the minimum CV 2
T obtained via positive feedback increases monotonically

with γ, and CV 2
T → 1 as γ becomes large (Fig. 4.6 (Bottom)). A couple of interesting

observations can be made from Fig. 4.6 (Bottom): i) The difference in CV 2
T for optimal

feedback and no feedback is indistinguishable when the protein is stable (γ = 0) or

highly unstable (γ →∞); ii) For a range of intermediate protein half-lives, the optimal

feedback strategy provides better reduction of CV 2
T , as compared to no feedback regu-

lation (which also corresponds to minimum CV 2
T obtained via a negative feedback); iii)

Lowering the basal strength r results in better performance in terms of noise suppres-

sion; and iv) A linear feedback based on (4.21) outperforms feedbacks based on Hill

functions, and provides significantly lower levels of CV 2
T for high protein decay rates.

Why is positive feedback the optimal control strategy for ensuring precision in

event timing? One way to understand this result is to consider the linear feedback

form (4.21), in which case the mean protein levels evolve according to the following

ordinary differential equation

dx(t)

dt
= b(c1 + c2x)− γx, x(0) = 0. (4.24)

Recall the geometric argument presented in Fig. 4.5, where an approximately linear

path for the protein to reach the prescribed threshold in a given time provides the

highest precision in event timing. While no feedback (c2 = 0), and negative feedback

(c2 < 0) in (4.24) will create nonlinear protein trajectories, choosing a positive value

c2 ≈ γ/b results in linear x(t), and hence minimal noise in event timing. Indeed, our

detailed stochastic analysis shows that the optimal feedback strength that minimizes

CV 2
T in the stochastic model is qualitatively similar to c2 ≈ γ/b.

4.4 Biological Implications and Discussion

Biological timers are ubiquitous at different levels of abstraction in biology [186].

At single-cell level, timers are used to determine when to respond to an internal or ex-

ternal cue, or commit to a certain cell fate, etc. As the timers are usually implemented

via expression of a regulatory protein up to a certain threshold, the inherent stochas-

ticity of gene expression leads to noise in the measured time. We have systematically
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investigated ingredients essential for precision in timing of biochemical events at the

level of single cells. Our approach relies on modeling event timing as the first-passage

time for a stochastically expressed protein to cross a threshold level. This framework

was used to uncover optimal strategies for synthesizing the protein that ensures a given

mean time to event triggering (threshold crossing), with minimal fluctuations around

the mean. The key insights can be summarized as: (i) The characteristics of event

timing is mostly dictated by how the event threshold and the steady-state protein level

are placed with respect to each other. (ii) If the protein half-life is much longer than

the timescale of the event, the highest precision in event timing is attained by having

no feedback, i.e., expressing the protein at a constant rate (Fig. 4.5); (iii) If the protein

half-life is comparable or shorter than the timescale of the event, then positive feedback

provides the lowest noise in event timing. Moreover, the minimum achievable noise in

timing increases with the protein decay rate γ and approaches CV 2
T = 1 as γ → ∞

(Fig. 4.6).

How robust are these findings to alternative noise sources and key modeling

assumptions? For example, the model only considers noise from low-copy number

fluctuation in gene product levels, and ignores any form of “extrinsic noise” that arises

from cell-to-cell differences in gene expression machinery [187, 188]. To incorporate

such extrinsic noise, we alter the transcription rate to kiζ, where ζ is drawn from an a

priori probability distribution at the start of gene expression (t = 0), and remains fixed

till the threshold is reached. Interestingly, the optimal feedback derived in (4.20) does

not change even after adding extrinsic noise to the transcription rate (see appendix B).

Another important model aspect is geometrically distributed protein burst size,

which results from the assumption of exponentially distributed mRNA lifetimes. We

have also explored the scenario of perfect memory in the mRNA degradation process,

which results in a mRNA lifetime distribution given by the delta function. In this case,

the protein burst size is Poisson and the optimal feedback strategy is fairly close to

having no feedback for a stable protein (Fig. 4.7).

Next, we discuss the biological implications of our findings in the context of
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phage λ’s lysis times, i.e., the time taken by the virus to destroy infected bacterial

cells.

4.4.1 Connecting Theoretical Insights to λ Lysis Times

Phage λ has recently emerged as a simple model system for studying event

timing at the level of single cells [45, 169]. After infecting E. coli, λ expresses a pro-

tein, holin, which accumulates in the inner membrane. When holin reaches a critical

threshold concentration, it undergoes a structural transformation, forming holes in the

membrane [170]. Subsequently the cell lysis and phage progeny are released into the

surrounding medium. Since hole formation and cell rupture are nearly simultaneous,

lysis timing depends on de novo expression and accumulation of holin in the cell mem-

brane up to a critical threshold [170]. Data reveals precision in the timing of lysis –

individual cells infected by a single virus lyse on average at 65 mins, with a standard

deviation of 3.5 mins, implying a coefficient of variation of ≈ 5%. Such precision is

expected given the existence of an optimal lysis time [189–192]. Intuitively, if λ lysis

is early then there are no viral progeny. In contrast, if λ lysis is late then the infected

cell could die before lysis is effected, trapping the virus with it.

The threshold for lysis is reported to be a few thousand holin molecules [193].

Moreover, the holin mean burst size (average number of holins produced in a single

mRNA lifetime) is estimated as b ≈ 1−3 [193]. Based on our FPT moment calculations

in (4.13), such a small protein burst size relative to the event threshold will yield a

tight distribution of lysis times. Interestingly, (4.13) provides insights for engineering

mutant λ that lyse, on average, at the same time as the wild type, but with much higher

noise. This could be done by lowering the threshold θ for lysis through mutations in

the holin amino acid sequence [169], and also reducing the holin mRNA transcription

rate k or mean protein burst size b by reducing the translation rate so as to keep the

same mean lysis time. Notably, the holin proteins are long-lived and do not degrade

over relevant timescales [194], therefore λ’s lysis system with no known feedback in
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holin expression provides better suppression of lysis-time fluctuation compared to any

feedback regulated system.

4.4.2 Additional Mechanism for Noise Buffering

The surprising ineffectiveness of feedback control motivates the need for other

mechanisms to buffer noise in event timing. Intriguingly, λ uses feedforward control

to regulate the timing of lysis which is implemented through two proteins with oppos-

ing functions: holin and antiholin [195, 196]. In the wild-type virus both proteins are

expressed in a 2:1 ratio (for every two holins there is one antiholin) from the same

mRNA through a dual start motif. Antiholin binds to holin and prevents holin from

participating in hole formation, creating an incoherent feedforward circuit. Synthesis

of antiholin leads to a lower burst size for active holin molecules, and increases the

threshold for the total number of holins needed for lysis – both factors functioning to

lower the noise in event timing. Consistent with this prediction, variants of λ lacking

antiholin are experimentally observed to exhibit much higher intercellular variation in

lysis times as compared to the wild-type virus [169, 171]. Succinctly put, λ encodes

several regulatory mechanisms (low holin burst size; no feedback regulation; feedfor-

ward control) to ensure that single infected cells lyse at an optimal time, despite the

stochastic expression of lysis proteins.
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Figure 4.4: Relative positions of event threshold and steady state protein level deter-
mine FPT statistics. [A] . The Normalized mean FPT and the noise in
FPT are plotted as the steady state protein level is increased by keeping
the translation mean burst size, b, fixed and varying the relative tran-
scription frequency, k/γ. [B] The Normalized mean FPT and the noise in
FPT are plotted as the steady state protein level is increased by keeping
k/γ fixed and varying b. [C] . Increasing the event threshold for a fixed
steady-state protein level results in an increase in the normalized FPT
mean and a U-shape curve for the FPT noise. [D] . The minimum noise
obtained by selecting the optimal event threshold initially decreases by
increase in both k/γ and b, but is less sensitive to changes in b for high
steady-state level.

73



Figure 4.5: For a stable protein, no feedback provides the lowest noise in event timing
for a fixed mean FPT. Protein trajectories obtained using the Stochastic
Simulation Algorithm (SSA) for a stochastic gene expression model with
positive feedback (left), no feedback (middle), negative feedback (right)
[3]. The threshold for event timing is assumed to be 500 protein molecules
and feedback is implement by assuming linear form of transcription rates
as ki = c1 + c2i, The value of c2 is taken as 0.05 min−1 for positive
feedback and −0.05 min−1 for negative feedback. For each feedback,
the parameter c1 is taken such that the mean FPT is kept constant (40
minutes). The mRNA half-life is assumed to be 2.7 min, and proteins
are translated from mRNAs at a rate 0.5 min−1, which corresponds to a
mean burst size of b = 2. Histograms on the top represent distribution
of FPT from 10, 000 Monte Carlo simulations.
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Figure 4.6: For an unstable protein, positive feedback provides the lowest noise in
event timing for a fixed mean FPT. Top: Noise in timing (CV 2

T) as a
function of the feedback strength c for different control strategies. The
value of kmax is changed in (4.22)/ (4.23) so as to keep 〈T〉 = 40 mins
fixed. The performance of the negative feedback worsens with increasing
feedback strength. In contrast, positive feedback with an optimal value of
c provides the highest precision in event timing. Other parameters used
are γ = 0.05 min−1, θ = 500 molecules, H = 1, b = 2, and for positive
feedback r = 0.05. Bottom: The minimum value of CV 2

T obtained via
positive feedback increases monotonically with the protein degradation
rate. A smaller basal promoter strength r = 0.01 in (4.23) gives better
noise suppression than a larger value r = 0.05. For comparison purposes,
CV 2

T obtained without any feedback (c = 0), and a linear feedback with c1

and c2 in (4.21) chosen so at minimize CV 2
T for a given 〈T〉 = 40 mins are

also shown. The parameters values used are θ = 500 molecules, H = 1,
and b = 2.
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Figure 4.7: Optimal feedback strategy for Poisson distributed burst size. The opti-
mal transcription rates obtained via numerical optimization for different
values of mean burst size are shown. The event threshold is assumed to
be 10 molecules, and the mean FPT is constrained to be 10 minutes.
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Chapter 5

A MECHANISTIC FRAMEWORK FOR BACTERIAL CELL DIVISION
TIMING

One common theme underlying life across all organisms is recurring cycles of

growth of a cell, and its subsequent division into two viable progenies. How an isogenic

population of proliferating cells maintains a narrow distribution of cell size, a property

known as cell size homeostasis, has been extensively studied, e.g., see [4, 154–157] and

references therein. From a phenomenological standpoint, recent single-cell experiments

have shown that several microorganisms achieve homeostasis via what is called an

adder principle: on average, a cell adds a constant size between birth and division

regardless of its size at birth [4, 197–200]. Interestingly, the size accumulated between

birth to division also has remarkable statistical properties: (1) not only the mean but

its distribution itself is independent of cell size at birth for a given growth condition;

(2) its distributions in different growth conditions collapse upon each other if scaled by

their respective mean values [4]. An unresolved central issue of interest is to explore

the biophysical mechanisms underpinning the adder form of cell size control.

One biophysical mechanism proposed in this regard assumes a protein acting

as time-keeper between one division to next [199, 201–203]. This protein’s production

is started right after birth of a cell, and its production rate is proportional to instan-

taneous volume (size) of the cell which grows exponentially until division. The cell

divides when the protein accrues up to a prescribed level after which the protein is

assumed to degrade instantaneously (Fig. 5.1(a)). Along the same lines, it has also

been proposed that the protein keeps time between subsequent occurrences of some

event in the cell cycle other than division [82,204–206]. While it has been shown that

this simple mechanism can lead to the adder principle of cell size control in the mean

77



sense [82, 203], it remains to be seen whether the stochastic properties can also be

explained by it.

A plausible source of stochasticity is the noise in expression of the time-keeper

protein wherein randomness in transcription and translation, coupled with low copy

number of species, results in significant cell-to-cell variation in protein levels [6,7,207–

209]. As a consequence, the protein count attains a given threshold at different times

in different cells, leading to variability in cell division timing (Fig. 5.1(b)). We apply

the first-passage time framework to model cell division time, and consequently quantify

the volume added between birth to division (Fig. 5.1(b),(c),(d)). Consistent with data

from [4], the model predicts that whereas the mean cell-division time decreases as

cell size at birth increases, the noise in cell-division time increases with increment in

newborn cell size. Our results further show that distribution of the added volume

is independent of the newborn cell size [4]. We also show that distributions of the

added volume, and cell division time have scale-invariant forms: they collapse upon

rescaling with their respective means in different growth conditions [4, 210]. Lastly,

we discuss implications of these findings in identification of the time-keeper protein

and also deliberate upon various modifications to the proposed model that result in

deviations from the adder principle.

5.1 Model description

Considering a cell with volume at birth V0, its volume at a time t after birth is

given by

V (t) = V0 exp(αt), (5.1)

where α represents the cell growth rate. The time-keeper protein is assumed to be

produced at a time dependent rate r(t) = kmV (t), where km is a proportionality

constant representing the transcription rate of protein in concentration sense. We

consider gene expression in the translation burst limit: each mRNA molecule degrades
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Figure 5.1: A molecular mechanism that explains adder principle. (a) A rod-shaped
growing cell starts synthesizing a protein right after its birth. The pro-
duction rate of the protein scales with the size (volume) of the cell. When
the protein’s copy number attains a certain level, the cell divides and the
protein is degraded. (b) The stochastic evolution of the protein is shown
for cells of three different sizes at birth. Each cell divides when the pro-
tein’s level achieves a specific threshold. The distribution of FPT gener-
ated via 1000 realizations of the process for each newborn cell volume is
shown above the three corresponding trajectories. The FPT distribution
depends upon the newborn cell size: on average the protein in a smaller
cell takes more time to reach the threshold as compared to the protein
in a larger cell. (c) The time evolution of size is shown for cells of dif-
ferent initial volume. The size is assumed to grow exponentially until
the protein in the top figure reaches a critical threshold. The division is
assumed to take place then. (d) The size added to the initial size when
the division event takes place is shown for cells of different volume. The
distribution of the added size is independent of the initial size of the cell,
thus reproducing an adder model.
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instantaneously after producing a burst of protein molecules [180–182,211–213]. Thus,

the protein synthesis is given by the following biochemical reaction:

Gene
r(t)−−→ Gene+Bi × Protein. (5.2)

In this setup, the burst arrival rate (transcription rate) scaling with the cell volume

is an essential component of maintaining concentration homeostasis. Indeed such a

dependency of transcription rate on cell volume has been observed in mammalian

cells [214]. The variable Bi denotes the size of ith protein burst which, for each i ∈

{1, 2, 3, · · · }, is independently drawn from an arbitrary positive-valued distribution. It

essentially represents the number of protein molecules synthesized in a single mRNA

lifetime and typically follows a geometric distribution [178,211–213,215,216].

Note that the protein count x(t) is a sum of independent and identically dis-

tributed protein bursts

x(t) =
n∑
i=i

Bi, 〈Bi〉 := b, (5.3)

where n is the number of bursts arrived (transcription events) in time interval [0, t].

This protein acts as a time-keeper between two division events: it starts to get produced

right after birth, the cell divides when the protein level x(t) crosses a threshold θ, and

the protein degrades thereafter. We would like to mention that though the model

described here is for gene expression, it can be used to model any process involving

accumulation of molecules wherein the production rate scales with the volume. A

general distribution for Bi allows a wider range of processes to be covered. The scope

can be further widened by considering the parameter km to be a function of the growth

rate α [217,218].

5.2 Cell Division Time as a First–Passage Time Problem

We model cell division as the time at which the protein level x(t) reaches a

certain threshold θ. We use a first-passage time (FPT ) framework to model cell division

which can be mathematically put as

T := inf {t : x(t) ≥ θ|x(0) = 0} . (5.4)
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Note that as expected, T depends upon the cell volume at birth V0 since x(t) is

produced at a volume dependent rate. Therefore T above is a conditional random

variable assuming a given V0. However, we have deliberately left out any reference to

it for notation convenience.

To determine the distribution of T, we first find the distribution of the minimum

number of burst (transcription) events N required for x(t) to reach the threshold θ.

Since x(t) can only increase, distribution of N is related with that of burst size as

P (N ≤ n) = P

(
n∑
i=1

Bi ≥ θ

)
. (5.5)

As a specific yet physiologically relevant example, when the burst size distribution is

considered to be geometric, the probability mass function of N denoted as ρN(n) is

given by

ρN(n) := P (N = n) =

(
n+ θ − 2

n− 1

)(
1

b+ 1

)n−1(
b

b+ 1

)θ
, (5.6)

where b represents the mean (or expected value) of burst size Bi [171].

Having determined N, T is same as the time at which the Nth burst event occurs.

Let Tn, n = 1, 2, 3, · · · represent the time at which nth burst event takes place, then the

probability density function of T, denoted by ρT(t), can be obtained by conditioning

arguments:

P (T ∈ (t, t+ dt)|N = n) := ρT(t|N = n)dt = ρTn(t)dt (5.7)

=⇒ ρT(t) =
∞∑
n=1

ρTn (t) ρN(n). (5.8)

Here ρTn(t) represents the probability density function of Tn which is governed by the

underlying burst arrival process. In our case, the transcription (burst arrival) rate

is time dependent which implies that the burst arrival process is an inhomogeneous

Poisson process. The probability density function of the arrival times is given by the

following expression [219,220]

ρTn(t) =
(R(t))n−1

(m− 1)!
r(t) exp(−R(t)). (5.9)
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Figure 5.2: The division time decreases as the cell size at birth increases. The division
time (mean FPT) given a newborn volume is computed numerically for
each value of initial cell volume V0. The protein production is assumed
in geometric bursts and the parameters assumed are: km = 1 per minute,
θ = 100 molecules, b = 3 molecules, α = 0.03 per minute.

The transcription or burst arrival rate r(t) is referred to as the intensity function of the

corresponding inhomogeneous Poisson process. Also, R(t) is the mean value function

of the inhomogeneous poisson process

R(t) :=

∫ t

0

r(s)ds =
kmV0

α

(
eαt − 1

)
. (5.10)

Using (5.9) in (5.8), the expression for the probability density function of FPT

for a cell of given volume V0 at birth becomes

ρT(t) =
∞∑
n=1

(R(t))n−1

(n− 1)!
r(t) exp(−R(t))ρN(n). (5.11)

The FPT distribution in (5.11) qualitatively emulates the experimental observations

by [4] that the mean cell division time decreases as the cell size at birth is increased

(Fig. 5.2). This is intuitively expected as a cell with large size at birth will have a

higher transcription rate as compared to a cell with small size. Hence, on average, the

time taken by the protein to reach the prescribed threshold is smaller in the larger

cell. The model also predicts that the noise (quantified using coefficient of variation

squared, CV 2) in the cell division time increases as new born cell volume is increased
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Figure 5.3: The noise in the cell division time increases with initial volume. Left :
The noise in division time (CV 2 of FPT ) increases as the cell volume
at birth V0 is increased. Using the expression of the first-passage time
in (5.11), the noise (CV 2) is numerically computed for different values
of the newborn cell volume. The parameters used for the model are
km = 1 (1/min), θ = 100 (molecules), α = 0.03 (1/min), and geometric
distribution of the burst size B with mean b = 3 (molecules). Right : The
prediction from the model is validated using the experimental data from
[4]. Using bootstrapping, a statistically significant (p-value=0.00023)
increase in the noise is observed from smaller initial volume to a larger
initial volume.

(see Fig. 5.3 (left)). This prediction is consistent with data from [4], as shown on

right part of Fig. 5.3 . The noise behavior can be explained by observing that on

average a cell with smaller volume at birth takes more time for division. Therefore the

fluctuations are time averaged, leading to a smaller noise in division time as compared

to that of a cell with larger volume at birth.

5.3 Distribution of the Volume Added Between Divisions

In the previous section, we determined the distribution of the division time for

a cell of given initial volume V0. Combining this with the fact that volume of the cell

grows exponentially in time, we can obtain the distribution of the volume added to V0.

More precisely, the volume added from birth to division (denoted by ∆) is given as

∆ = V0

(
eαT − 1

)
. (5.12)
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The distribution of FPT given in (5.11) can be used to find the distribution of ∆ as

follows.

P{∆ ≤ v} = Prob
{
V0

(
eαT − 1

)
≤ v
}

(5.13)

= Prob

{
T ≤ 1

α
ln

(
v

V0

+ 1

)}
(5.14)

=

∫ 1
α

ln
(
v
V0

+1
)

0

ρT(t)dt. (5.15)

Therefore the probability density function of ∆ is given by

ρ∆(v) =
d

dv
(P{∆ ≤ v}) (5.16)

=
d

dv

∫ 1
α

ln
(
v
V0

+1
)

0

ρT(t)dt (5.17)

=ρT|V0

(
1

α
ln

(
v

V0

+ 1

))
d

dv

(
1

α
ln

(
v

V0

+ 1

))
. (5.18)

Note that
d

dv

(
1

α
ln

(
v

V0

+ 1

))
=

1

α (V0 + v)
. Also

R

(
1

α
ln

(
v

V0

+ 1

))
=
kmv

α
, r

(
1

α
ln

(
v

V0

+ 1

))
= km (v + V0) . (5.19)

Hence we can write the probability density of ∆ as

ρ∆(v) =
1

α (V0 + v)

∞∑
n=1

(
kmv
α

)n−1

(n− 1)!
km (v + V0) exp

(
−kmv

α

)
ρN(n) (5.20)

=
∞∑
n=1

(
kmv
α

)n−1

(n− 1)!

km
α

exp

(
−kmv

α

)
ρN(n). (5.21)

Notice that this distribution is an Erlang distribution conditioned to the random vari-

able N.

One striking observation is that ρ∆(v) is independent of the initial volume V0

(see Fig. 5.1(d) for a depiction of this). This is in agreement with the experimental

observations that the distribution of the added volume does not depend on the size of

the cell at birth [4]. Further, we can also use the probability density function to find

moments of ∆. We will first discuss the expression of mean ∆, particularly emphasizing

its dependence on the growth rate. The higher order moments are taken up next.
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5.3.1 Mean of Added Volume

The distribution of ∆ given in (5.21) is an Erlang distribution conditioned on N ,

the minimum number of burst events required for protein level x(t) to cross a threshold

θ. The formula for 〈∆〉 can be written as

〈∆〉 =
α

km
〈N〉 =

α

km

(
θ

b
+ 1

)
, (5.22)

where the expression of 〈N〉 is obtained by assuming that protein is produced in ge-

ometric bursts with mean burst size b [171]. The formula in (5.22) shows that If km

is independent of growth rate α, the average volume added ∆ is a linear function of

α which is in agreement with experimental data on Pseudomonas aeruginosa [199].

Interestingly, it has been seen that ∆ can depend on α in several different ways. For

instance, Caulobacter crescentus exhibits an added volume independent of α whereas

this relationship is thought to be exponential in case of Escherichia coli [4, 198]. One

way by which our model can result in ∆ being independent of α could be consider-

ing km a linear function of α. Next we discuss an approach by which an exponential

dependency can be seen.

So far we have considered that the time-keeper protein observes time between

birth to division which, in principle, can be between other important events in the cell

cycle as well. Here we consider that the initiation of DNA replication takes place when

sufficient time-keeper protein has been accumulated per origin of replication [82, 204].

The corresponding division event is assumed to occur with a constant delay of T after

an initiation. The delay τd here is what is called “C+D” period whereby C represents

the time to replicate the DNA and D denotes the time between DNA replication and

division [221, 222]. In this formulation, the volume added between two consecutive

initiation events for each origin of replication is same as ∆ in our previous model.

Further, the average volume added between divisions associated with these initiations

(denoted by ∆∗) is related with ∆ as [206]

〈∆∗〉 ≈ 〈∆〉 eατd =
α

km

(
θ

b
+ 1

)
eατd . (5.23)
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When the parameter km is constant with respect to the growth rate α, the

expression in (5.23) suggests two different regimes of how ∆∗ depends upon α. For

small values of α, we have α exp(ατd) ≈ α, i.e., the mean added volume increases

linearly with the growth rate. In the regime where α is large, the exponential term

dominates giving rise to exponential dependence. This also means that if the growth

rate α is small, it is not possible to distinguish whether the underlying mechanism

accounts for volume added between two division events or two initiation events as the

data will show linear dependence of the average added volume with changes in α [199].

Notice that a pure exponential relationship between ∆∗ and α can also be obtained

by having km a linearly increasing function of α. For this particular case, the volume

accounted by each origin of replication ∆ will become invariant of the growth rate,

consistent with analysis by [206], and [223].

To sum up, how the volume added between birth to division depends upon

the growth rate differs between species. A variety of relationships can be obtained

depending upon how km varies with growth rate α, and whether the time-keeper protein

accounts for two division events or two other events in the cell cycle. We now go back

to discussing the higher order moments of the division to division model.

5.3.2 Higher Order Moments of Added Volume and Scale Invariance of

Distributions

We can use the distribution of ∆ to get insight into its higher order statistics

such as coefficient of variation squared (CV 2
∆), skewness (skew∆), etc. For example,

when the protein production is considered in geometric bursts, we have the following

CV 2
∆ =

b2 + 2bθ + θ

(b+ θ)2
, skew∆ =

2 (b3 + 3b2θ + 3bθ + θ)

(b2 + 2bθ + θ)3/2
. (5.24)

It can be noticed that skewness is a positive quantity, consistent with previous under-

standing [197]. Moreover, both CV 2 and skewness are independent of the growth rate

α. It turns out an even more general property is true: an appropriately scaled jth order

moment of ∆, i.e.,
〈
∆j
〉
/ 〈∆〉j is independent of α, notwithstanding the underlying
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distribution of burst size. This arises from the fact that the distribution of ∆ can be

written in the following form

ρ∆(v) =
1

〈∆〉
ρ∆

(
v

〈∆〉

)
, (5.25)

for any distribution of burst size. An important implication of above form of distribu-

tion of ∆ is the scale invariance property: the shape of the distribution across different

growth rates is essentially same, and a single parameter 〈∆〉 is sufficient to characterize

the distribution of ∆ [183]. Recent experimental data have also exhibited the scale

invariance property [4, 203,224].

Interestingly, the above invariance property is not limited to the distribution of

the added volume ∆. Ignoring the partitioning errors in the volume, it can be seen

that in steady-state the cell-size distribution at birth is approximately same as the

distribution of ∆ [4]. Also, the size at division is 2∆. Thus, the scale invariance of

∆ immediately implies scale invariance of the distributions of cell sizes at birth and

division [4]. Moreover, the distribution of the division time can also be determined

by unconditioning (5.11) with respect to the distribution of the initial volume V0. It

can be also seen that the distribution of the division time also has the scale invariance

property which is in agreement with the results in [210,225].

5.4 Biological Relevance and Discussion

It is now well understood that several prokaryotes employ an adder mechanism
to achieve cell size homeostasis wherein on average a constant volume is added between
birth to division [4,198–200]. In this work, we studied a molecular mechanism that can
result in the adder principle of cell size control. This mechanism considers a protein
sensing the volume added between birth to division or two other events in the cell
cycle [82,199,201–206,226]. Our work shows that in addition to the prior understanding
that this biophysical mechanism manifests as adder principle in the mean sense, it can
also explain the stochastic attributes of various quantities such as cell-division time,
size added between birth to division, etc. In particular, we get the following important
results:

• The distribution of volume added between birth to division is independent of the
cell volume at birth. This is consistent with observations by [4].
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• The distributions of key quantities such as the added volume, division time,
volume at birth, volume at division, etc. show the scale invariance property
[4, 183,210].

• The noise in division time increases with increase in cell size at birth, which was
validated from the available data from [4].

In addition, we also discussed how the volume added between birth and division changes

as the growth rate is varied. Our model produces a wide range of behaviors such as

linear, exponential or no dependency of the added volume on the growth rate. Next,

we discuss the implications of the findings of this paper.

5.4.1 Potential Candidates for the Time–Keeper Protein

Among many proteins involved in the process, prominent candidates for the

time-keeper are FtsZ and DnaA. More specifically if the constant volume addition

is considered between division to division, FtsZ is thought to act as the time-keeper

protein [227–230]. It has been proposed that the accumulation of FtsZ up to a critical

level is required for cell division [231–233]. Likewise, the protein DnaA is known to

regulate the timing of initiation of replication, if the constant volume is added between

two initiation events [230, 234, 235]. In this case, initiation is proposed to occur when

a critical number (around 20) of DnaA-ATP molecules are available [236]. While it is

not clear yet whether the production of DnaA or its conversion to DnaA-ATP is a rate

limiting step in the initiation process, the model presented here can account for both

cases as long as the conversion to DnaA-ATP happens at a volume dependent rate.

We can employ the closed-form expressions for the moments of ∆ developed in

this work to investigate roles of these candidate proteins. We illustrate this by consid-

ering geometrically distributed burst of proteins for which the expressions of mean and

coefficient of variation squared (CV 2) are given by (5.22) and (5.24) respectively. Thus,

increasing the threshold θ or decreasing the mean burst size of the time-keeper protein

b should result in decrease in the CV 2 of the added volume. A commensurate change

in km by making the promoter weak or stronger can be further used to ensure a fixed
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mean ∆. Experimentally, the mean burst size can be altered by changing the trans-

lation rate of the proteins using techniques such as mutations in the Shine-Dalgarno

sequence. Changing the threshold can be achieved by changing the protein sequence

which affects its function and thus leads to a different number of protein molecules

being required for division.

5.4.2 Deviations from the Adder Principle

Recently it has been proposed that cells employ a generalized version of the

adder principle wherein the volume added between divisions ∆ depends upon the cell

volume at birth V0 [237, 238]. Intuitively, mechanisms which would lead to a smaller

(longer) division time than the adder principle would result in a decrease (increase)

in ∆ as V0 is increased. There could be several ways to realize these deviations from

the adder principle in our model. For instance, if we consider that the time-keeper

protein does not degrade fully upon division and the remaining proteins are divided in

the daughter cells in proportion to their respective volumes at birth, the added volume

decreases as volume of daughter cell is increased. This is because if there are already

time-keeper proteins present in the cell at the time of its birth, the threshold will be

achieved earlier than the case when there were no proteins at birth. Another possible

way of getting such deviation could be if the mean burst size is an increasing function

of the cell volume which leads to a smaller time to reach the copy number threshold

of the protein. In contrast, ∆ being an increasing function of V0 can be obtained by

curbing the scaling of protein accumulation with the cell volume. One possibility is to

assume a transcription rate of the form r(t) = km
V (t)

V (t)+V
where the transcription rate

saturates with increase in volume. Alternatively, this effect could also be achieved by

considering that instead of cell division occurring upon achieving a constant volume

addition, its propensity increases as the added volume increases.
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[46] Fabian Fröhlich, Philipp Thomas, Atefeh Kazeroonian, Fabian J Theis, Ramon
Grima, and Jan Hasenauer. Inference for stochastic chemical kinetics using mo-
ment equations and system size expansion. PLoS Comput Biol, 12:e1005030,
2016.

[47] Brian Munsky, Zachary Fox, and Gregor Neuert. Integrating single-molecule
experiments and discrete stochastic models to understand heterogeneous gene
transcription dynamics. Methods, 85:12–21, 2015.

[48] P. Milner, C. Gillespie, and D. Wilkinson. Moment closure based parameter
inference of stochastic kinetic models. Statistics and Computing, pages 1–9, 2012.

[49] Christoph Zechner, Jakob Ruess, Peter Krenn, Serge Pelet, Matthias Peter, John
Lygeros, and Heinz Koeppl. Moment-based inference predicts bimodality in tran-
sient gene expression. Proceedings of the National Academy of Sciences, 109:8340–
8345, 2012.

93
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Appendix A

SEMIDEFINITENESS OF OUTER PRODUCTS AND MOMENT
MATRICES

A symmetric n× n matrix H is said to be positive semidefinite if

z>Hz ≥ 0 (A.1)

for any n× 1 vector z. Let H = ΓΓ> for a n× 1 vector Γ that consists of monomials

of x up to a certain order. We have

z>ΓΓ>z =
(
z>Γ

) (
z>Γ

)>
=
∥∥z>Γ

∥∥2 ≥ 0. (A.2)

Therefore, the outer product ΓΓ> is always positive semidefinite. Recall that the

moment matrix He is generated by taking expectation of the outer product ΓΓ>. Its

positive semidefiniteness can be proved as follows

z>
〈
ΓΓ>

〉
z =

〈(
z>Γ

) (
z>Γ

)>〉
=
〈∥∥z>Γ

∥∥2
〉
≥ 0. (A.3)

Same arguments can be used to prove semidefiniteness of the outer product hi(x)ΓΓ>

and the moment matrix Hoi obtained by taking expectation thereof.
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Appendix B

SUPPLEMENTARY DETAILS FOR CHAPTER 4

B.1 Some Properties of Matrix Λ

The matrix Λ is given by

Λ =



− bk0
b+1

γ · · · 0

bk0
(b+1)2

−
(
bk1
b+1

+ γ
)
· · · 0

...
...

...
...

bθ−2k0
(b+1)θ−1

bθ−3k1
(b+1)θ−2 · · · (θ − 1)γ

bθ−1k0
(b+1)θ

bθ−2k1
(b+1)θ−1 · · · −

(
bkθ−1

b+1
+ (θ − 1)γ

)


. (B.1)

In order to prove that Λ is a Hurwitz matrix, we show that the following two conditions
hold true [239, pp. 48–49]:

1. The diagonal elements aii < 0 for i = 1, 2, · · · , θ,

2. max
1≤j≤θ

θ∑
i=1
j 6=i

∣∣∣∣aijajj
∣∣∣∣ < 1.

The first requirement above is clearly satisfied as aii = − bki−1

b+1
− (i− 1)γ < 0. To check

whether the second requirement is satisfied, for any column j = 1, 2, · · · , θ we have

that

θ∑
i=1
j 6=i

∣∣∣∣aijajj
∣∣∣∣ =

(j − 1)γ
bkj−1

b+1
+ (j − 1)γ

+
bkj−1

b+ 1

θ∑
i=j+1

(
b
b+1

)i−j
bkj−1

b+1
+ (j − 1)γ

(B.2a)

=
(j − 1)γ

bkj−1

b+1
+ (j − 1)γ

+

bkj−1

b+1

(
1−

(
b
b+1

)θ−j)
bkj−1

b+1
+ (j − 1)γ

(B.2b)

=

bkj−1

b+1

(
1−

(
b
b+1

)θ−j)
+ (j − 1)γ

bkj−1

b+1
+ (j − 1)γ

< 1. (B.2c)

Thus, the matrix Λ is Hurwitz, i.e., the eigenvalues of Λ have negative real part.
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B.2 Optimal Feedback when Protein Does Not Degrade

As mentioned in the main text, our objective is to find optimal feedback strategy

that minimizes 〈T2〉 such that 〈T〉 is fixed. For calculation purposes, we will denote

this constraint as 〈T〉 = topt. Let ε represents the Lagrange’s multiplier, then we define

the following objective function

Π :=
〈
T2
〉

+ ε (〈T〉 − topt) . (B.3)

The optimization problem is solved in two steps. First, we determine the critical points.

Second, we find the critical point corresponding to a global minimum.

Determining the critical points requires the following system of equations to be

solved

∂ 〈T2〉
∂ki

= ε
∂ 〈T〉
∂ki

, 0 ≤ i ≤ θ − 1, (B.4a)

〈T〉 = topt. (B.4b)

The expressions of the first-two moments of FPT when protein does not degrade can

be obtained by substituting γ = 0 in the moment expressions. These are given by

〈T〉 =
1

k0

+
1

b

θ−1∑
i=0

1

ki
, (B.5a)

〈
T2
〉

=
2

b2

(
τ0

bk0

+
θ−1∑
i=0

τi
ki

)
, where τi :=

b

ki
+

θ−1∑
j=i

1

kj
. (B.5b)

The optimization problem in (B.4) requires calculation of the first order deriva-

tives of 〈T〉 and 〈T2〉. The derivatives of 〈T〉 with respect to ki’s are given by

∂ 〈T〉
∂k0

=
b+ 1

b

(
− 1

k2
0

)
;
∂ 〈T〉
∂ki

=
1

b

(
− 1

k2
i

)
, 1 ≤ i ≤ θ − 1. (B.6)

Similarly, the derivative of 〈T2〉 are

∂ 〈T2〉
∂k0

= 2

(
1

b

)2
(
−2 (b+ 1)2

k3
0

− b+ 1

k2
0

θ−1∑
j=1

1

kj

)
, (B.7a)

∂ 〈T2〉
∂ki

= 2

(
1

b

)2

b+ 1

k0

+
2 (b+ 1)

ki
+

θ−1∑
j=1
j 6=i

1

kj

(−1

k2
i

)
, 1 ≤ i ≤ θ − 1. (B.7b)
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Substituting these expressions and assuming k0 6= 0, ki 6= 0, the system of equations

to be solved becomes

2

b

(
2 (b+ 1)

k0

+
θ−1∑
j=1

1

kj

)
= ε, (B.8a)

2

b

b+ 1

k0

+
2 (b+ 1)

ki
+

θ−1∑
j=1
j 6=i

1

kj

 = ε, 1 ≤ i ≤ θ − 1, (B.8b)

1

b

(
b+ 1

k0

+
θ−1∑
j=1

1

kj

)
= topt. (B.8c)

Solution to these equations is given by

k0 =
(b+ 1)(2b+ θ)

(2b+ 1)btopt
(B.9a)

ki =
2b+ 1

b+ 1
k0 =

2b+ θ

btopt
, 1 ≤ i ≤ θ − 1, (B.9b)

ε =
2 (b+ 1) (4b+ θ + 1)

(2b+ 1) bk0

=
2topt(4b+ θ + 1)

2b+ θ
. (B.9c)

We have calculated the critical point for the optimization problem. However, it needs

to be checked whether its an minimum or maximum. For this purpose, we consider the

bordered Hessian as follows.

DΠ =



∂2Π
∂ε2

∂2Π
∂ε∂k0

∂2Π
∂ε∂k1

· · · ∂2Π
∂ε∂kθ−1

∂2Π
∂k0∂ε

∂2Π
∂k20

∂2Π
∂k0∂k1

· · · ∂2Π
∂k0∂kθ−1

∂2Π
∂k1∂ε

∂2Π
∂k1∂k0

∂2Π
∂k21

· · · ∂2Π
∂k1∂kθ−1

...
...

...
...

∂2Π
∂kθ−1∂ε

∂2Π
∂kθ−1∂k0

∂2Π
∂kθ−1∂k1

· · · ∂2Π
∂k2θ−1


. (B.10)

We will show that all the principal minors of this matrix are negative. To start with,

let us first determine the second order derivatives of 〈T〉.

∂2 〈T〉
∂k2

0

=
2 (b+ 1)

bk3
0

;
∂2 〈T〉
∂k2

i

=
2

bk3
i

, 1 ≤ i ≤ θ − 1;
∂2 〈T〉
∂ki∂kj

= 0, 0 ≤ i, j ≤ θ − 1, i 6= j.

(B.11)
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Similarly, the derivatives for 〈T2〉 are given by

∂2 〈T2〉
∂k2

0

= 2

(
1

b

)2
(

6 (b+ 1)2

k4
0

+
2 (b+ 1)

k3
0

θ−1∑
j=1

1

kj

)
, (B.12a)

∂2 〈T2〉
∂k2

i

= 2

(
1

b

)2
(

2 (b+ 1)

k0k3
i

+
6 (b+ 1)

k4
i

+
2

k3
i

θ−1∑
j=1

1

kj

)
, 1 ≤ i ≤ θ − 1, (B.12b)

∂2 〈T2〉
∂k0∂ki

=
∂2 〈T2〉
∂ki∂k0

= 2

(
1

b

)2
b+ 1

k2
0k

2
i

, 1 ≤ i ≤ θ − 1, (B.12c)

∂2 〈T2〉
∂ki∂kj

= 2

(
1

b

)2
1

k2
i k

2
j

, 1 ≤ i, j ≤ θ − 1, i 6= j. (B.12d)

We can now determine the elements of the bordered Hessian matrix in equa-

tion (B.10) computed at the solution given by equations (B.9)

∂2Π

∂ε2
=
∂2 (〈T 2〉+ ε (〈T 〉 − topt))

∂ε2
= 0, (B.13a)

∂2Π

∂ε∂k0

=
∂2Π

∂k0∂ε
=
∂ 〈T 〉
∂k0

=
b+ 1

b

(
− 1

k2
0

)
. (B.13b)

∂2Π

∂ε∂ki
=

∂2Π

∂ki∂ε
=
∂ 〈T 〉
∂ki

=
1

b

(
− 1

k2
i

)
. (B.13c)

∂2Π

∂k2
0

=
∂2 (〈T 2〉+ ε (〈T 〉 − topt))

∂k2
0

=
4(b+ 1)2(10b+ 2θ + 3)

(2b+ 1)b2k0
4 (B.13d)

∂2Π

∂k2
i

=
∂2 (〈T 2〉+ ε (〈T 〉 − topt))

∂k2
i

=
4(b+ 1)4(9b+ 2θ + 4)

(2b+ 1)4b2k0
4 . (B.13e)

∂2Π

∂k0ki
=

∂2Π

∂kik0

=
∂2 (〈T 2〉+ ε (〈T 〉 − topt))

∂k0∂ki
= 2

(
1

b

)2
b+ 1

k2
0k

2
i

(B.13f)

∂2Π

∂kjki
=

∂2Π

∂kikj
=
∂2 (〈T 2〉+ ε (〈T 〉 − topt))

∂kj∂ki
= 2

(
1

b

)2
1

k2
jk

2
i

(B.13g)
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It can be noted elements of DΠ are from a set six quantities. Defining

q1 :=
b+ 1

b

(
− 1

k2
0

)
, q2 :=

1

b

(
− 1

k2
0

)
, (B.14a)

q3 :=
4(b+ 1)2(10b+ 2θ + 3)

(2b+ 1)b2k0
4 , q4 :=

2(b+ 1)3

(2b+ 1)2b2k0
4 , (B.14b)

q5 :=
4(b+ 1)4(9b+ 2θ + 4)

(2b+ 1)4b2k0
4 , q6 :=

2 (b+ 1)2

(2b+ 1)2 b2k4
0

(B.14c)

we can write DΠ as

DΠ =



0 q1 q2 · · · q2

q1 q3 q4 · · · q4

q2 q4 q5 · · · q6

...
...

...
. . .

...

q2 q4 q6 · · · q5


. (B.15)

Let us denote byM(n) the principal minor of the matrix DΠ of size n×n. It can
be easily seen thatM(1) = 0,M(2) = 0− q2

1 < 0 andM(3) = −q2
2q3 + 2q1q2q4− q2

1q5.
For 4 ≤ n ≤ θ, we perform the following two elementary operations on DΠ

• colr = colr − colr−1

• rowr = rowr − rowr−1

for r = n, n− 1, ..., 1. This yields

M(n) = 2(q5 − q6)M(n− 1)− (q5 − q6)2M(n− 2), 4 ≤ n ≤ θ. (B.16)

The solution to the above recursive equation is given by

M(n) = −(q5 − q6)n−3
(
(n− 2)

(
q2

2q3 − 2q1q2q4 + q2
1q6

)
+
(
q2

1q6 + q2
1q5

))
. (B.17)

It can be easily checked thatM(n) is negative because q5 > q6, q2
2q3−2q1q2q4+q2

1q6 > 0

and q2
1q6 + q2

1q5 > 0. This proves that the critical point indeed corresponds to a

minimum.

B.3 Optimal Feedback when Protein Does Not Degrade in Presence of

Extrinsic Noise

In this section, assuming that the protein does not degrade, we investigate how

the optimal regulation strategy deviates from a no feedback in presence of a static
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extrinsic noise. We consider that the extrinsic noise affects the transcription rate. To

this end, we assume that a factor ζ multiplies with the transcription rates resulting in

an effective transcription rate when x(t) = i to be kiζ.

We consider an extrinsic factor ζ with a positive-valued arbitrary distribution

ρζ(ζ). This factor is assumed to be static, i.e., it does not vary over the time scale

of the event of interest. Further we assume that it affects the transcription rates in a

multiplicative fashion. The first-passage time mean in this case can be written as

〈T|ζ = ζ〉 =
1

ζ

(
1

k0

+
1

b

θ−1∑
i=0

1

ki

)
=⇒ 〈T〉 =

〈
1

ζ

〉(
1

k0

+
1

b

θ−1∑
i=0

1

ki

)
. (B.18)

Likewise the second order moment can be written as

〈
T2
〉

=

〈
1

ζ2

〉
2

b2

(
τ0

bk0

+
θ−1∑
i=0

τi
ki

)
, τi :=

b

ki
+

θ−1∑
j=i

1

kj
. (B.19)

Solving the constrained optimization problem of minimizing 〈T2〉 constrained to 〈T〉 =

topt in this case simplifies to solving the following system of equations

〈
1/ζ2

〉
〈1/ζ〉

2

b

(
2 (b+ 1)

k0

+
θ−1∑
j=1

1

kj

)
= ε, (B.20a)

〈
1/ζ2

〉
〈1/ζ〉

2

b

b+ 1

k0

+
2 (b+ 1)

ki
+

θ−1∑
j=1
j 6=i

1

kj

 = ε, 1 ≤ i ≤ θ − 1, (B.20b)

〈
1

ζ

〉
1

b

(
b+ 1

k0

+
θ−1∑
j=1

1

kj

)
= topt, (B.20c)

where ε represents the Lagrange’s multiplier. Solution to these equations gives

k0 =
(b+ 1)(2b+ θ)

〈
1
ζ

〉
(2b+ 1)btopt

(B.21a)

ki =
2b+ 1

b+ 1
k0 =

(2b+ θ)
〈

1
ζ

〉
btopt

, 1 ≤ i ≤ θ − 1. (B.21b)
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Appendix C

DISCLAIMER

This thesis is based on the material that has either been published in peer-
reviewed publications [90,91,93–101] or is undergoing peer-review [92]. Below I provide
the list of papers for each chapter.

• Chapter 2: [90,91]

• Chapter 3: [91–94]

• Chapter 4: [95–100]

• Chapter 5: [101]

Except for [101] which is listed under the Creative Commons Attribution 4.0 Interna-

tional License, the respective publishers own the copyright of this material (IOP Pub-

lishing for [90], IEEE for [91,93,94,96–100], National Academy of Sciences for [95]). The

author is permitted to use the published material in this thesis with an understanding

that it is not used commercially.
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