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Bi= 0.01, G = 0, yc = −4 and ỹc = −5. Initially, temperature inside
the rectangle is set to be body temperature. . . . . . . . . . . . . 22
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ABSTRACT

The human tear film is a multilayer thin film that spreads on the ocular surface.

It is essential for clear vision and eye health. This thesis studies dynamics of the human

tear film using methods of mathematical modeling and scientific computing. The

underlying goal of this work is to theoretically explain phenomena that are observed

in vivo, to provide predictions that are yet to be verified by any experiments, and to

develop computational approaches to solve the model equations. In this thesis, we

formulate three mathematical models that emphasize various physical aspects of tear

film dynamics, as well as the associated thermal and osmolarity (the concentration of

ions in the tear film) dynamics. We also conduct preliminary numerical study of a

hybrid time stepping scheme that is used for solving a coupled system of tear film and

osmolarity.

In Chapter 2, we present a model for tear film dynamics and cooling during

the interblink period that includes heat transfer from the interior of the eye. The tear

film in this model is on a one dimensional domain that is oriented vertically through

the center of the cornea, with stationary ends corresponding to the eyelid margins.

Lubrication theory is used to derive an equation for the thickness of the film; the

nonlinear partial differential equation for the thickness is solved subject to either a fixed

temperature at the substrate or with heat diffusion from within two different model

rectangular domains. The model domains are simplified geometries that represent the

anterior eye and that may include the cornea and some aqueous humor; one model

domain is asymptotically thin (thin substrate) and the other has finite thickness (thick

substrate). The thick substrate case captures temperature decreases that are observed

in vivo, while the thin substrate and fixed temperature models do not. Parameters to

reproduce observed temperature decreases are found.
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We then focus on studying the dynamics of tear film on a 2D eye-shaped do-

main. In Chapter 3, we derive a mathematical model that couples osmolarity (treated

as a single solute) and fluid dynamics within the tear film on a 2D eye-shaped domain.

The model includes the physical effects of evaporation, surface tension, viscosity, oc-

ular surface wettability, osmolarity, osmosis and tear fluid supply and drainage. The

mathematical model has a time-dependent flux boundary condition that models the

cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped

domain. We present the computed results of our model in the two subsequent chapters.

In Chapter 4, we focus on the tear film dynamics part of our model. The

results from the numerical simulations are compared with experiments. This model

captures the flow around the meniscus and other dynamic features of human tear film

observed in vivo. Osmolarity is a key variable in understanding dry eye symptoms and

disease. Therefore, we study the interaction between tear film motion and osmolarity

dynamics in Chapter 5. The results of the numerical simulations show good agreement

with existing 1D models for both tear film and osmolarity dynamics and provide new

insight about the osmolarity distribution over the ocular surface during the interblink.

Our numerical results are obtained by solving the nonlinear model PDEs us-

ing the Overture computational framework. In Chapter 6, we discuss the numerical

methods that are used to solve the 2D models. We also report preliminary numerical

studies for the hybrid time-stepping scheme that we choose specifically for the weakly

coupled system of the tear film and osmolarity dynamics. We construct test problems

with known exact solutions from simplification of the osmolarity equation to study the

numerical properties of this method. The test problem is solved on a circular domain

with several mesh refinements to study the error convergence, and is also solved on the

eye-shaped domain that is used for the model simulation.

xiv



Chapter 1

INTRODUCTION

The human eye is an exquisitely sensitive system, but many aspects of the

mechanisms of the eye remain a mystery. For example, the structure and function of

the tear film, a very thin layer of liquid film that is spread on the ocular surface by

blink, are far from being understood [47]. The tear film is essential for clear vision and

eye health. It helps to protect the ocular surface with moisture, to transport waste

away, and to provide a smooth optical surface [45]. A properly functioning tear film

maintains a critical balance between tear secretion and loss within each blink cycle.

Malfunction or deficiency of the tear film causes a collection of problems that are

believed to comprise dry eye syndrome (DES) [62]. DES symptoms include, but are not

limited to, blurred vision, burning, foreign body sensation, tearing and inflammation of

the ocular surface. Studies up to 2007 estimate that there are 4.91 million Americans

suffering from DES [7]. The ocular surface community is interested in understanding

the function of the tear film [47] as well as the interaction of tear film dynamics and

the connection between tear film volume, evaporation and break up with DES [7].

Commonly, the tear film is described as a thin liquid film with multiple layers.

At the anterior interface with air is an oily lipid layer that decreases the surface tension

and retards evaporation, both of which help retain a smooth well-functioning tear film

[93]. The aqueous layer is posterior to the lipid layer and consists mostly of water [46].

At the ocular surface, there is a region with transmembrane mucins protruding from

the cells in the corneal or conjunctival epithelia. This forest of glycosolated mucins,

called the glycocalyx, has been referred to as the mucus layer in the past. It is generally

agreed that the presence of the hydrophilic glycocalyx on the healthy ocular surface

prevents the tear film from dewetting [18, 36, 38]. The overall thickness of the tear

1



film is a few microns [53], while the average thickness of the lipid layer is on the order

of 50 to 100nm [93, 55] and the thickness of the glycocalyx is a few tenths of a micron

[38]. This structure is rapidly reformed, on the order of one second, after each blink in

a properly-functioning tear film.

The tear film is redistributed near the eyelid margins by surface tension. The

curvature generated by the meniscus creates a low pressure which draws in fluid from

surrounding areas, creating locally thin regions near the meniscus. When fluorescein is

used to visualize tear film thickness, this locally thin region near the lids is dark, and

has been called the “black line.” The black line is typically thought to be a barrier

between the meniscus at the lid margins and the rest of the tear film [82, 83]. Finally,

though the healthy ocular surface is wettable, the tear film may still rupture; the

term “break up” is used in the ocular science community for this phenomenon. The

surface tension of the tear/air interface, the wettability of the ocular surface, and the

osmolarity are among the effects that we include in this thesis.

The aqueous part of tear fluid is supplied from the lacrimal gland near the

temporal canthus, and the excess is drained through the puncta near the nasal canthus.

Mishima et al. [84] estimated the total tear volume and the rate of influx from the

lacrimal gland, as well as the time for the entire volume of tear fluid to be replaced

(tear turnover rate); Zhu and Chauhan [126] reviewed experiments on tear drainage

and developed a mathematical model for drainage rates of the aqueous component

through the puncta. Doane [28] proposed the mechanism of tear drainage in vivo

whereby tear fluid is drained into the canaliculi through the puncta during the opening

interblink phase. The drainage stops when the pressure equalizes in the canaliculi.

Water lost from the tear film due to evaporation into air is an important process as

well [86, 113, 52].

The supply and drainage of tear fluid affects the distribution and flow of the

tear film. A number of methods have been used to visualize and/or measure tear film

thickness and flow, including interferometry [29, 53, 54], optical coherence tomography

[121] fluorescence imaging [41, 58] and many others. We mention only a small number
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here that are relevant for our discussion of tear fluid flow over the exposed ocular

surface in Chapters 3 and 4 of this thesis. Maurice [81] inserted lamp black particles

(a.k.a., very fine soot) into the tear film and watched their trajectories with a slit

lamp. He observed that the particle paths in the upper meniscus near the temporal

canthus diverge, with some particles proceeding toward the nasal canthus via the upper

meniscus and others going around the outer canthus before proceeding toward the nasal

canthus via the lower meniscus. (To our knowledge, no images from this experiment

exist.) We use the term “hydraulic connectivity” as shorthand for this splitting of flow

connecting the menisci. A similar pattern of the tear film was observed by Harrison

et al. [41] using fluorescein to visualize the tear film thickness. In this experiment,

concentrated sodium fluorescein is instilled in the eye. Shining blue light on the eye

causes the fluorescein to glow green; the fluorescence allows one to visualize the tear film

[61]. The concentration in their experiments was such that, if evaporation occurs, the

concentration of fluorescein increases and the intensity of the fluorescence decreases; if

fresh tear fluid enters the tear film, the concentration decreases and fluorescent intensity

increases [123, 91, 13]. Harrison et al. [41] visualized the entry of fresh tear fluid into

the meniscus near the outer canthus, where the tear film was observed to brighten.

Subsequently, this bright region split and fluid moved toward the nasal canthus along

both the upper and lower lids via the menisci. The fluorescence could thus visualize

hydraulic connectivity in the flow of tears. Similar experiments in King-Smith et al.

[58] and Li et al. [67] visualized flow by using fluorescein instilled by drops in the

tear film, and the mathematical model developed by Li et al. [67] exhibited hydraulic

connectivity in a very similar way to the experimental results.

A variety of mathematical models have incorporated various important effects of

tear film dynamics, as recently reviewed by Braun [11]. The most common assumptions

for these models are a Newtonian tear fluid and a flat cornea [10, 16]. Tear film models

are often formulated on a one-dimensional (1D) domain oriented vertically through the

center of the cornea with stationary ends corresponding to the eyelid margins. We refer

to models on this kind of domain as 1D models. Surface tension, viscosity, gravity and
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evaporation are often incorporated into 1D models [125, 104, 83, 12]. Winter et al.

[124] improved previous evaporation models by including a conjoining pressure from

van der Waals forces that approximated the wettable corneal surface. Incorporating

heat transfer from the underlying eye, Li and Braun [66] resolved a discrepancy of the

tear film surface temperature between predictions of existing evaporation models and

in vivo measurements. This study forms Chapter 2 of this thesis.

Recently, studies of 1D models that bring together the interblink period and a

moving end that represents the upper lid have appeared. Jones et al. [49, 48] developed

models for tear film formation and relaxation that were unified in this way; one end

of the domain moved to model the upper lid motion during the opening phase of the

blink, then remained stationary for the subsequent relaxation during the interblink.

Braun and King-Smith [14] modeled eyelid motion for blink cycles by moving one end

of the domain sinusoidally and they computed solutions for multiple complete blink

cycles. Heryudono et al. [43] followed their study with a more realistic lid motion and

specified a flux boundary condition; good agreement on tear film thickness between

experiments and simulations was found [43]. Deng et al. [27, 26] extended the model

of Li and Braun [66] to include upper lid motion (blink) and heat transfer from the

underlying eye to explain observed ocular surface temperature measurements and to

give new transient temperature results inside the eye. Bruna and Breward [20] studied

a model that added a dynamic lipid layer to an underlying aqueous layer with an

insoluble surfactant at the lipid/aqueous interface (representing polar lipids). They

computed dynamic results for the model and found various useful limits for it.

In recent years, several authors have incorporated osmolarity dynamics into tear

film models. Braun [11] gave a model for a spatially uniform film that was very similar

to the one first suggested by King-Smith et al. [57]. The original model was a single

ordinary differential equation for the tear film thickness that included evaporation from

the tear/air interface at a constant rate and osmotic flow from the tear/cornea interface

that was proportional to the osmolarity increase above the isotonic value. The latter

assumption simplifies the tear/cornea interface to a semi-permeable boundary that
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allows water but not solutes to pass. Braun [11] found that the model predicted equi-

libration of the tear film thickness at values greater than the height of the glycocalyx

for sufficiently large permeability of the tear/cornea interface. Braun also found that

the osmolarity could become quite large as the tear film thinned for small permeability

values, as much as 10 times the isotonic value under some conditions. The model given

in Braun [11] included van der Waals forces that stopped thinning at the purported

height of the glycocalix which allowed the model to be used at zero permeability at the

tear/cornea interface. Similar conclusions about the osmolarity during thinning were

found there.

These models were extended to include a specified evaporation profile that varied

in space by King-Smith and coworkers [59]. The evaporation profile was Gaussian with

a peak value that could be specified larger than the surrounding constant rate. The

local thinning caused by locally increased evaporation led to increased osmolarity in

the break up region, which could be several times larger than the isotonic value. A

modified evaporation distribution was created by Peng et al. [96] that had two parts.

One part used an immobile lipid layer with specified thickness and fixed resistance to

diffusion through it by water. The other part was a resistance to transport in the air

outside the tear film; this second resistance included convective and diffusive transport

in the air. They also found that the osmolarity was elevated in this model for tear film

break up.

Zubkov et al. [127] developed a model describing the spatial distribution of tear

film osmolarity that incorporates both fluid and solute (osmolarity) dynamics, evapo-

ration, blinking and vertical saccadic eyelid motion. They found that both osmolarity

was increased in the black line region and that measurements of the solute concentra-

tions within the lower meniscus need not reflect those elsewhere in the tear film. This

model gave results over a line oriented vertically through the center of the cornea, and

thus gave information about the osmolarity over more of the ocular surface than the

models mentioned above.

In Chapter 3, 4 and 5, we study dynamics of the fluid motion and osmolarity on
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an eye-shaped domain. To our knowledge, Maki et al. [72, 73] were the first to extend

models of fluid dynamics in the tear film to a geometry that approximated the exposed

ocular surface. They formulated a relaxation model on a stationary 2D eye-shaped

domain that was approximated from a digital photo of an eye. They specified tear

film thickness and pressure boundary conditions [72] or flux boundary conditions [73].

Their simulations recovered features seen in 1D models such as formation of the black

line, and captured some experimental observations of the tear film dynamics around

the lid margins. Maki et al. [73] simplified the in vivo mechanisms and imposed a

flux boundary condition having only spatial dependence (specifying the location of the

lacrimal gland and the puncta holes) in the tear film relaxation model. Under some

conditions, they were able to recover hydraulic connectivity as seen experimentally

and described above. Li et al. [67] improved the model, by adding evaporation and a

wettable ocular surface, as well as a time-dependent boundary condition that approx-

imated the in- and out-flow of the aqueous layer of the tear film. This study forms

Chapter 4 of this thesis.

The outline of this dissertation is as follows. In Chapter 2, we present a new

tear film model that incorporates cooling from within the eye. After that, we shift our

interests to tear film models on a 2D eye-shaped domain. We present the assumption

and derivation of a tear film model that couples the osmolarity dynamics in Chapter

3. To our knowledge, this is the first such model that includes the osmolarity in a

two-dimensional tear film model. In the following two chapters, we focus on the results

predicted by the model. In Chapter 4, we present the tear fluid results and compare

them with experimental data. In Chapter 5, we focus on osmolarity, and its interaction

with fluid flow in the tear film. Detailed description of the numerical methods, together

with a preliminary test problem that demonstrates the numerical accuracy, is given in

Chapter 6. Finally, we conclude our study in Chapter 7.
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Chapter 2

A MODEL FOR THE HUMAN TEAR FILM WITH HEATING FROM
WITHIN THE EYE

2.1 Introduction

Models of tear film that fix the temperature of the substrate predict that the

temperature of the tear film surface increases slightly after a blink [12, 124]; however,

ocular surface temperature (OST) measurements show that cooling occurs, typically

about 1 or 2 ◦C (discussed below). In this Chapter, we focus on the fluid dynamics

of the tear film during the interblink and how it is affected by heat transfer beneath

the tear film. We aim to determine a minimal amount of modeling of heat transfer

from beneath the tear film that will recover the observed cooling of the surface of the

tear film. We examine three different models for the heat distribution beneath the

tear film and compare the results from the different models with each other and with

experimental data. The heat transfer beneath the tear film is treated by either fixing

the temperature at the corneal surface or by diffusion of heat into the cornea and

aqueous humor. In all cases, convection inside the eye is neglected. The treatments of

heat transfer used here are inspired by the models of Ajaev and Homsy [3, 2, 1, 106].

We find that incorporating heat transfer in a sufficiently thick region under the tear

film causes the tear film surface to cool a comparable amount to that observed in vivo.

Measurement of the OST has been reviewed recently [98]; a brief description

follows. Contact measurement techniques have a long history, but they have inherent

sources of error [31, 101, 32]. Non-contact temperature measurement of OST using

infrared thermometry was pioneered by Mapstone [75, 74, 76]; this approach appears to

be the most successful method for determining the temperature of the anterior surface
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of the tear film. This method has been used to measure anterior surface temperatures

for both precorneal [30, 24, 50] and prelens [99] tear films.

Of particular interest are the results of Efron et al. [30] because of the quan-

titative reporting and interpretation of their results. They found that the average

minimum temperature of the cornea, based on 21 subjects, was slightly inferior to the

geometric center of the cornea (GCC). They speculated that this was because the lid

margins heat the eye and the GCC is superior to the geometric center of the palpebral

fissure. The temperature of the GCC after a blink was found to be 34.3 ± 0.7◦C on

average. The temperature contours were elliptical, and Efron et al. speculated that

this was due to the shape of the lid margins. The horizontal temperature variation

was fit well with a parabola. The temperature increased as the location moved toward

the periphery of the cornea, and toward the lid margins; the temperature of the limbus

was 0.45◦C higher than at the GCC. An earlier study [4] found that this temperature

difference was 0.6◦C.

Efron et al. [30] also measured the rate of cooling of the ocular surface; they

found a rate of 0.033 ± 0.024◦C/s of the first 15s after a blink. They also found

that if a subject had a slower rate of cooling and that if the OST stabilized then a

subject was more likely to be able to refrain from blinking for an extended period.

The data from their experiments suggested that the corneal temperature could vary by

0.78◦C on average for each subject, and we will find that including this temperature

variation is necessary for understanding ocular surface temperature variation for thin

film modeling. Kamao et al. [50] found less cooling for controls and similar cooling for

dry eyes.

Craig et al. [24] used ocular thermography, a variety of tear physiology tests

and measurement of evaporation rates in both control and dry eye subjects in order

to correlate physiological factors in dry eye with OST and evaporation from the tear

film. They found that there was an increased rate of evaporation in dry eye, as found

in a number of previous studies [100, 77, 79]. They found an average evaporation rate

of 1.9×10−9g/cm2/s in controls (healthy eyes) and 4.1×10−8g/cm2/s in dry eyes; this
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factor of 20 increase in evaporation rate is a relatively large factor over the controls,

and smaller than typical measurements [78]. Dry eye subjects were found to have

significantly lower GCC temperatures than the controls, and this could be attributed

to increased evaporation. Also, the rate of cooling in the cornea was significantly higher

in dry eyes, which may be caused by increased evaporation as well. Notably, Craig et

al. [24] did not find any correlation between reduced non-invasive break up time (time

to first rupture) and evaporation. Two studies have found that evaporation can be

reduced in dry eye [34, 87], but these authors point out that their subjects are aqueous

deficient dry eyes, and Craig et al. [24] speculate that this may be responsible for the

reduced evaporation rate.

Scott [103, 102] developed finite element (FE) models of heat transfer in the eye

that were intended to help decide whether radiative heating lead to cataracts in glass

blowers. In the first paper, a detailed axisymmetric FE model of heat transfer within

the eye and to the external environment beyond the anterior of the eye was studied.

Scott found that the results were sensitive to the variability in three parameters: the

evaporation rate from the anterior of the eye, the heat lost due to convection from the

anterior of the eye, and the blood temperature in the eye. Scott [102] then incorporated

radiative heating from the extreme environment of furnaces used in glass-blowing to

the effects within the eye. Other finite element models of heat transfer in the eye have

been developed [89, 90]; they computed steady state temperature distributions and

found OST values within experimental ranges.

Steady-state finite element models with conductive and convective heat transfer

in the aqueous humor have been developed in two [44, 94] and three [51] dimensions

with similar conclusions. The coolest temperature on the anterior surface was located

below the GCC, as in experiment [30] and the overall heat transfer through the anterior

chamber is not significantly affected by the distorted temperature field. Approximate

analytical models have been developed as well [21, 33]. Siggers and Ethier [105] review

flow in the aqueous humor.

In this Chapter we study three domains for heat transfer beneath the tear film
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during the interblink: no substrate, a thin substrate or a thick substrate. Our objective

is to evaluate which case can capture the experimentally determined temperature drops

on the ocular surface. The last two cases simplify the geometry of the eye to a rectangle,

but this simplification seems to be sufficient to capture the desired dynamics. The

models are developed in the next section. We then discuss numerical approaches and

show results for test cases in Section 2.3. Tear film results are given in Section 2.5;

discussion and conclusions follow.

2.2 Formulation

A sketch illustrating the model is shown in Figure 2.1; primes indicate dimen-

sional variables. The acceleration due to gravity g is in the positive x′ direction and

x’

y’

Cornea and aqueous
 humor temperature 
T’=T’

c
(x’,y’,t’)

−L’ L’

y’
c

Evaporation 
& Heat Loss

Tear film thickness
y’=h’(x’,t’)

d’

g
Upper lid

Heat diffusion

Body temperature T’=T’
B

T’=T’
B

T’=T’
B

Lower lid

Figure 2.1: Coordinate system for tear film model with heat transfer from the cornea
(and aqueous humor).

the velocity components of tear film are denoted by (u′, v′). Only the dynamics of a

post-blink tear film are studied here, so both ends of the film, representing the eyelid

margins, are fixed at the positions corresponding to a fully open eye. The upper lid

is fixed at x′ = −L′ and lower lid is at x′ = L′. Since the characteristic tear film

thickness is much smaller than the radius of curvature of the cornea, there is no no-

ticeable effect on the fluid motion due to the corneal curvature. Our model neglects
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the curvature of the ocular surface, following many other studies; this assumption is

justified in Braun et al. [16].

The tear film is located along the y′ = 0 edge of a rectangle that models the

cornea and aqueous humor. The rectangle occupies −L′ < x′ < L′ and y′c < y′ < 0,

where y′c is a location within the aqueous humor. The model is studied for the cases

in which the rectangular substrate is either thick or thin, as well as the case with no

substrate (fixed temperature) underneath the tear film [124]. We present the derivation

for the thick substrate case here and simplify it to the other two cases.

The tear film is modeled as an incompressible Newtonian fluid with constant

density ρ, dynamic viscosity µ, specific heat cp and thermal conductivity k. In ad-

dition, energy conservation governs the temperature distribution in the tear film. In

the rectangular region underneath the tear film, we consider only heat diffusion; the

small effect of fluid motion on heat transport [44] justifies this assumption. Applying

continuity of temperature and heat flux at the boundary between the tear film and

the cornea connects these two domains. The other three edges of the rectangle are

prescribed to be body temperature T ′B = 37◦C.

We scale lengths with the half width of an open eye, L′ = 5 × 10−3m, in the

x′ direction, and the characteristic tear film thickness d′ = 5 × 10−6m in the positive

y′ direction. A different length scale is applied in the negative y′ direction, since

the corneal thickness is L′c = 500 × 10−6m and a typical tear film thickness is 2.5–

5×10−6m. The aqueous humor thickness is about 3 or 4 × 10−3m. This suggests L′c

as the length scale in the negative y′ direction for the thick substrate case, and ỹ

denotes the dimensionless variable in the substrate to distinguish the scale difference.

To nondimensionalize the model, the following dimensionless variables are introduced:

x′ = L′x, h′ = d′h, u′ = U0u, v
′ =

d′U0

L′
v, t′ =

L′

U0

t,

p′ =
µU0

L′ε2
p, T =

T ′ − T ′s
T ′B − T ′s

, J ′ =
k

d′Lm

(T ′B − T ′s)J,

y′ = d′y (if y′ ≥ 0), y′ = L′cỹ (if y′ < 0).
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Here U0 scales the velocity, T ′s is the saturation temperature and Lm represents the

latent heat of vaporization per unit mass. The small parameter ε = d′/L′ � 1 arises

indicating the separation of scales in the thin tear film. Applying lubrication theory

gives the following leading order approximation. Unless otherwise noted, parameters

appear in the formulations of all the models presented in the thesis are defined and

given values in Appendix A. The nondimensional parameters are listed in Table A.1

with the dimensional parameters used in those expression given in Table A.2.

In the tear film, the flow on 0 ≤ y ≤ h(x, t) is governed by mass conservation:

∂xu+ ∂yv = 0, (2.1)

and momentum conservation in each direction:

− ∂xp+ ∂2
yu+G = 0, and ∂yp = 0. (2.2)

The Stokes number G is the ratio of gravitational to viscous forces and is defined in

Table A.1 as are all subsequent nondimensional parameters. Energy conservation is

given by

∂2
yT = 0. (2.3)

At the free surface, y = h(x, t), the mass balance and normal stress balance

conditions hold:

EJ = v − u∂xh− ∂th, (2.4)

and

p− pv = −S∂2
xh− A/h3. (2.5)

Here E represents the size of the evaporative contribution to the surface motion, S is

the ratio of surface tension to viscous forces, pv is the scaled vapor pressure, and A

represents the nondimensional Hamaker constant in the standard van der Waals force
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given nondimensionally by Π = A/h3. In addition, the dimensionless energy balance

is given by

J + ∂yT + Bi(T − T∞) = 0. (2.6)

Bi is the Biot number indicating the ratio of convection from the surface of the tear

film over conduction inside the film. T∞ is the nondimensional far field temperature;

we choose T∞ = 0 meaning it is the same as the saturation temperature T ′s = 27◦C

dimensionally. We assume that the free surface is occupied by a strong surfactant

(polar lipids in the eye) that renders the surface tangentially immobile [125, 104, 12].

The nondimensional form of the tangential immobility condition is

u = 0. (2.7)

The thermal Marangoni effect is neglected in the model under the assumption that

lipid layer solutal Marangoni effect plays a dominant part. This is reasonable because

observations [95] show that tears move rapidly upward over the cornea after a blink be-

cause of surfactant concentration gradients and while temperature change is small. The

constitutive relation for the evaporative mass flux J gives another boundary condition

at the free surface, namely

K̄J = δ(p− pv) + T, (2.8)

with K̄ the nonequilibrium parameter that sets the evaporative mass flux and δ relates

the pressure difference at the free surface to the evaporation rate.

At the interface between the tear film and the cornea, y = 0, we require no slip

as well as continuity of temperature and heat flux. These have the dimensionless forms

u = v = 0, T = Tc, and k̃(L′c/d
′)∂yT = ∂ỹTc. (2.9)

A model region representing the cornea and aqueous humor is the rectangular region

ỹc ≤ ỹ ≤ 0,−1 ≤ x ≤ 1. In this region, heat only diffuses and is governed by:

∂tTc = PT

[(
L′c
L′

)2

∂2
xTc + ∂2

ỹTc

]
, (2.10)

Tc(x, ỹc, t) = Tc(±1, ỹ, t) = 1. (2.11)
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Here Tc denotes the temperature inside the rectangle and k̃ = k/kc is the ratio of

thermal conductivities (tear film over cornea).

A PDE for the tear film thickness, coupled with a heat diffusion equation, is

derived by solving for the temperature fields in both the tear film and the cornea; the

system to be solved in the thick substrate case is then

∂th+ EJ + ∂xq = 0, − 1 < x < 1, t > 0 (2.12)

q = h3

12
[∂x (S∂2

xh+ Ah−3) +G] , (2.13)

J =
T0+BiT∞h

1+Bih
− δ(S∂2

xh+ Ah−3)

K̄ + h
1+Bih

, (2.14)

where T0 = T (x, 0, t), and in the rectangle beneath the film,

∂tTc = PT

[(
L′
c

L′

)2

∂2
xTc + ∂2

ỹTc

]
, |x| < 1, ỹc < ỹ < 0 (2.15)

Tc(−1, ỹ, t) = Tc(1, ỹ, t) = Tc(x, ỹc, t) = 1, (2.16)

d′

L′
c
∂ỹTc(x, 0, t) + k̃ J+Bi(T0−T∞)

1+Bih
= 0. (2.17)

If we assume y′c � 1, i.e. we have the thin substrate case, and apply d′ as

the length scale for the negative y′ direction as well, the PDE system (2.12)–(2.17) is

reduced to a single PDE for the tear film thickness, namely,

∂th+ EJ + ∂xq = 0, − 1 < x < 1, t > 0 (2.18)

with q being exactly the same as (2.13) and the mass flux term J showing as below.

J =
1− δ(S∂2

xh+ Ah−3)− Bi(1−T∞)(h−k̃yc)

1+Bi(h−k̃yc)

K̄ + h−k̃yc
1+Bi(h−k̃yc)

(2.19)

Furthermore, we may set y′c = 0 in (2.19) and recover the PDE for the case with

no substrate as in Winter et al. [124] (when Bi= 0).
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A feature of this model is that evaporation shuts off when the tear film thickness

thins to an equilibrium value denoted by heq. Approximation of heq is found from

equations (2.18) and (2.19) by seting J = 0 and neglecting the spacial derivatives.

∂th = 0 then follows. With Bi= 0, J = 0 implies 1− δAh−3 = 0. Thus,

heq = (δA)1/3. (2.20)

For all these three cases, we assume the tear film thickness is fixed at the ends

and there is no flux coming from the boundaries. Hence, we impose the following

boundary conditions:

h(±1, t) = h0, q(±1, t) = 0 (2.21)

The initial condition that approximates the post-blink geometry of a tear film is spec-

ified as

h(x, 0) = 1 + (h0 − 1)x2m. (2.22)

We assume an even function for a symmetric initial tear film distribution. Larger values

of m specify tear distributions with less fluid in the menisci. Two assumed initial

profiles of the temperature field in the rectangle are studied for the thick substrate

case. We begin with the uniformly distributed initial temperature profile assumption,

Tc(x, ỹ, 0) = 1, (2.23)

and then turn to the non-uniformly temperature assumption which gives better agree-

ment with the experimental data,

Tc(x, ỹ, 0) = 1 +
1− Tmin

ỹ2
c

(ỹ − ỹc)2(x2 − 1), (2.24)

where Tmin is the initial temperature at the GCC, to simulate the experimental obser-

vation by Efron et al. [30].

2.3 Numerical Methods

We investigated three different methods to compute solutions to the problems

[71]; they are: (i) the reformulated ordinary differential equation approach (RODE);

15



(ii) the finite-difference-based differential algebraic equation approach (DAE/fd); and

(iii) the spectral-method-based DAE method (DAE/sp) to solve the model numerically.

All three methods use a method of lines with discretized spatial derivatives, with the

resulting ODEs or DAEs for the dependent variables on the grid points solved using

ode15s in Matlab (The MathWorks, Inc, Natick, MA). The methods were tested on

a model problem; the results and a comparison are given in Section 2.4. Results for

the tear film models in Section 2.5 are obtained from both the DAE/fd and DAE/sp

methods.

2.3.1 RODE Method

Similar to the ODE method, centered finite difference scheme is used to approxi-

mate the spatial derivatives. The RODE method computes the flux q as an intermediate

step and then it is differentiated to update h rather than compute ∂xxxxh directly [71].

Therefore, unlike the direct ODE method, which requires the introduction of fictitious

points and applying a finite difference approximation of ∂xq to enforce the flux bound-

ary condition q(±1, t) = 0, RODE method uses the exact value of the flux at both ends

thus provides more accuracy from the boundaries.

2.3.2 DAE/fd Method

In the DAE method, we reduce the order of derivatives to be evaluated numer-

ically by rewriting the PDE as a semi-explicit DAE of index-1 with the pressure p as

a new dependent variable [73],

p(x, t) ≡ −(S∂2
xh+ Ah−3). (2.25)

The thin film equations in the thick substrate case then become (2.12) along with

q = h3

12
(−∂xp+G) , (2.26)

J =
T0+BiT∞h

1+Bih
+ δp

K̄ + h
1+Bih

. (2.27)
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The DAE system now has ∂2
xh and ∂2

xp being the highest order derivatives, but it has

an additional unknown. When we use centered finite difference to approximate all

spatial derivatives in the DAE system and use a DAE solver on the resulting system,

we call that the DAE/fd method.

2.3.3 DAE/sp Method

In this approach, rather than implement second order finite difference approxi-

mation, the DAE/sp method uses a Chebyshev spectral collocation method to discretize

all spatial derivatives [22, 115]. The grid points are the second-kind Chebyshev points

defined as

xi = cos

(
πj

N

)
, j = 0, 1, . . . , N.

This method has better convergence rates for smooth functions and thus requires fewer

grid points than finite-difference-based methods to achieve comparable or better accu-

racy.

2.4 Test Problem

To test and compare the accuracy of these methods, we formulated a test prob-

lem similar to the thin substrate tear film PDE with all the tear film parameter values

shown in Table A.1. For simplicity, Bi= G = 0 in this appendix.

2.4.1 Problem Setup

In the test problem, we create a PDE of the form

∂th+ EJ + ∂xq = g(x, t) (2.28)

with a space and time dependent forcing term g(x, t) such that it has the exact solution

H(x, t) =
1

1 + (t/t0)2
+

[
h0 −

1

1 + (t/t0)2

]
x2m, (2.29)
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where q and J are the same as equations (2.13) and (2.19) but with Bi= 0 and G = 0.

Initial and boundary conditions are specified as

h(x, 0) = 1 + (h0 − 1)x2m

h(±1, t) = h0

q(±1, t) = ±h
3
0

12

[
(2m− 1)(2m− 2)S − 3Ah−4

0

]
2m(h0 − 1)

The exact solution (2.29) is chosen to mimic the meniscus and center parts of the tear

film. A plot of the exact solution is given in Figure 2.2.
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Figure 2.2: Plot of the exact solution H(x, t) in (2.29) with h0 = 25, t0 = 2, yc = −4
and m = 4.

2.4.2 Test Problem Results

As shown in Figure 2.2, parameters used in the test problem are h0 = 25, t0 = 2,

yc = −4 and m = 4, along with the values of E, S, δ, K̄ and k̃ being given by TABLE

A.1. The number of grid points for the two finite difference based methods varied from

1024 to 4096. Demonstration of second order convergence for these two methods can

be seen from the first plot of Figure 2.3. The DAE/fd method performs better than

the RODE method. The DAE/sp method shows much better error as shown in the
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second plot of Figure 2.3; that plot is for a relative and absolute tolerances of 10−10

in the DAE solver. As the number of grid points in the computation is increased, the

maximum absolute error decreases; the linear decrease on a semilog plot is comparable

to the error derivatives of exponential functions (e.g., Section 6 of Trefethen [115]).

The spectral method requires significantly fewer grid points to achieve good accuracy,

so the solution is fast even though the Chebyshev differentiation matrices we use are

dense.
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Figure 2.3: Convergence of three methods

To better understand how the error is distributed along the x−axis, we plotted

the absolute error of various methods at time t = 7 in Figure 2.4. We used two scales

to present the results because the accuracy of DEA/sp method is better than that of

the other two methods. Due to the menisci at both ends, all the three methods have
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their maximum error near the ends of the domain in the menisci. The DAE/fd method

is about 10 times more accurate than the RODE method.

In addition, as is seen in Figure 2.5, the error of all the methods is accumulating

as time increases. 4096 grid points for RODE & DAE/fd methods and 128 grid points

for the DAE/sp method were used in the computation to generate Figure 2.4 and 2.5.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

E
rr

o
r 

o
f 

R
O

D
E

 &
 D

A
E

/f
d

x

Absolute Error at t=7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2
x 10

−7

E
rr

o
r 

o
f 

D
A

E
/s

p

DAE/fd

RODE

DAE/sp
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According to the results from the test problem, DAE/sp is the most accurate

method among the three and it also suitable for larger values of h0, i.e steeper menisci.
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However, the code for the DAE/fd methods fails if we raise h0 to be greater than 35

and the error of RODE fails for h0 = 30.

2.5 Tear Film Results

We now turn to solving the tear film problem. We set h0 = 25 at the boundary

and m = 8 for the initial condition. All the other parameters are specified as Table

A.1 unless otherwise noted.

To begin, we let Bi= 0.01 and G = 0 for all three substrate cases to compare

results for the tear film surface temperature at the center of the domain (x = 0) with

experimental GCC temperature measurements. When used to refer to the computed

results, GCC will denote the temperature at x = 0. Let Th denote the dimensionless

temperature at the surface of the tear film and ∆Th(0, t) is the relative GCC temper-

ature change during the computation, which is defined as

∆Th(0, t) =
Th(0, t)− Th(0, 0)

Teq − Th(0, 0)
.

Here Teq denotes the steady-state GCC temperature at the tear film surface that occurs

when h = heq (equation (2.20)); it was derived by neglecting the x derivatives in the

equations. The approximation works well at x = 0 and it is given by

Teq = − Bi(1− T∞)

1 + Bi(heq − k̃yc)
heq + 1 +

Bi(1− T∞)k̃yc

1 + Bi(heq − k̃yc)

with yc = 0 for the no substrate case and yc = −4 for the thin one. Figure 2.6 shows

computed GCC temperature for the various cases. From Figure 2.6(a), we observe an

increase for the GCC temperature if the no substrate or thin substrate model was used.

The relative temperature change shows this, though the magnitude of the change is

small, on the order of 10−4 to 10−3. We use ∆Th(0, t) instead of Th(0, t) for the no

substrate and thin substrate cases to make the changes visible in the plot. The depth

of the rectangular substrate for the thin substrate case here is yc = −4, which is

20× 10−6m dimensionally. If we consider the thick substrate case, we allow cooling to

happen through the cornea and part of aqueous humor; for the figure we used ỹc = −5,

21



0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

t
∆

T
h
(0

,t
)

(a) No substrate and thin substrate

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

t

T
h
(0

,t
)

(b) Thick substrate

No Substrate

Thin Substrate

Figure 2.6: Temperature of the free surface at x = 0 for various cases with Bi=
0.01, G = 0, yc = −4 and ỹc = −5. Initially, temperature inside the rectangle is set to
be body temperature.

which is 2.5×10−3m dimensionally. For the thick substrate case, Figure 2.6(b) shows a

decreasing GCC temperature as a function of time. We found that the thick substrate

model would generally show a decreasing temperature at GCC, while the other two

models did not.

Efron et al. [30] measured the rate of cooling at GCC and found that a repre-

sentative cooling rate was 0.033 ± 0.024◦Cs−1 for the first 15s after a blink. If we fix

the cornea at body temperature or allow heat diffusion within only a thin part of the

cornea (i.e., the no substrate and the thin substrate cases), then the models actually

predict a slight increase of the GCC temperature. Unless the heat diffusion is allowed

deeply enough into the aqueous humor, the model cannot predict a noticeable decrease

for the film surface temperature at GCC.
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Figure 2.7: Temperature Profile for Tc(x, ỹ, 0) = 1,Bi= 0,G = 0.

Because the cooling at GCC can be captured only by the thick substrate model,

we focused on that case with ỹc = −5 and then varied the Biot number Bi to study its

effects on the temperature distribution and tear film evaporation. Figure 2.7 shows the

temperature distribution at several times in the first t = 40 (seconds) with Bi= G = 0.

The temperature decreases along y = 0 (the base of the tear film) and into the rectangle

as time increases; the other edges of the domain stay at T = 1, supplying heat which

is then lost through the tear film. Significant cooling into the substrate beneath the

tear film occurs, and the minimum temperature is at the origin. The tear film surface

temperature is very close to the temperature at y = 0 away from the ends of the

domain. After 40s, the temperature has decreased well into the rectangle.

The dynamics of the tear film thickness and the corresponding evaporative flux

J are shown in Figure 2.8. Since G = 0, both h and J are symmetric; only half of

the domain is shown here. The formation of the black line [82] near x = 0.8 is clearly

seen in Figure 2.8(a). The black line refers to localized thin region of the film near

the menisci. The film thickness reaches heq after about t = 30, which we interpret to

mean that the film has ruptured (“break up” in the eye literature). The corresponding

evaporative mass flux is given in Figure 2.8(b). At heq, the evaporation rate is zero

23



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x

h
(x

,t
)

(a) h

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

x

J
(x

,t
)

(b) J

t=10t=0 t=60t=30

t=0
t=30

t=60

t=10

Figure 2.8: Tear film thickness h(x, t) and evaporative mass flux J(x, t) at several times
with Bi= G = 0.

because of the balance between van der Waals conjoining pressure and tendency to

evaporate water from heating of the film [1]; evaporation decreases rapidly as the film

thickness approaches heq. The minimum values of h and J are shown in Figure 2.9. The

correlation between the approach to heq and evaporation shutting off is clearly seen.

As is seen in Figure 2.9, after 30 seconds, when the tear film reaches the equilibrium

thickness heq = (δA)1/3, the evaporative mass flux vanishes.
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Figure 2.9: min(h) and min(J) as a function of time for Bi= G = 0.
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The Biot number characterizes relative sizes of the resistance of heat transfer

inside and outside the surface of the tear film in air. It has a strong influence on film

evaporation and hence has a significant effect on tear film temperature. The tear film

thickness and the corresponding evaporative mass flux at the GCC with Bi varying

from 0 to 0.1 are plotted in Figure 2.10. The GCC tear film thickness decreases fastest

and has the largest evaporative mass flux with Bi= 0. Figure 2.10 clearly shows that

increasing the value of Biot number reduces the evaporation rate.
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Figure 2.10: h(x, t) and J(x, t) for several values of Bi.

We took advantage of this Biot number dependence to find that Bi=0.0009 best

simulates experimental results [30]. In addition, to further improve agreement with the

experimental data from Efron et al. [30], we used the nonuniform initial condition for

Tc given by equation (2.24). This was motivated by the observation that temperatures

of the GCC were not at body temperature, but were lower. The initial condition
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(2.24) mimics that experimental fact as well as the tendency for the temperature to

increase from the GCC towards the periphery of the eye. Figure 2.11 shows how the

distribution of the temperature in the rectangular region evolves for the first 40 seconds

after a blink. Significant cooling occurs in the substrate beneath the tear film once

again, and the minimum temperature is at the origin. Tmin = 0.75 corresponds to

the initial corneal temperature 34.5◦C; here G = 0. However, we can see from Figure

2.11 that the temperature profile remains unchanged after 20 seconds for this initial

condition. Similar observations were made by Efron et al. [30], “Inspection suggests

a decrease in temperature during the inital 15 to 20s after the blink for all subjects

followed by stabilization of temperature in those subjects who were able to maintain

eye opening for longer periods.”
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Figure 2.11: Results for the nonuniform temperature initial condition (2.24) with Bi=
0.0009 and G = 0.

Our model predicts tear film thickness and its evaporative mass flux with Bi =

0.0009 and initial condition (2.24) for the first 60s after a blink as shown in Figure 2.12.

Evidence of the black line formation and subsequent film rupture at around x = 0.8

can be clearly seen. Furthermore, the minimum value of h at each time is tracked to

produce Figure 2.13.
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Figure 2.12: Tear film thickness h and evaporative mass flux J .

We now consider G = 0.05 as listed in Table A.1. Gravity drives tear film flow

in the positive x−direction in the model; this effect is shown in Figure 2.14(a). A black

line in this case forms more readily at the upper part of the tear film, and break up

only occurs near x = −0.8 which corresponds to being near the upper lid when gravity

is active. Downward flow toward x = 1 prevents the lower black line from thinning

to heq as it does at the upper end. In addition, since evaporation shuts off where tear

film thickness reaches equilibrium level heq, J → 0 only near x = −0.8 where break up

occurs; this is shown in Figure 2.14(b). The shut off of evaporation in the upper black

line occurs after about t = 60 (one minute dimensionally) in this case.

The thick substrate model has captured several aspects of tear film dynamics;

a direct comparison of the model with experiment is given by Figure 2.15. Selected

experimental data from Figure 3 in Reference [30] was estimated graphically and plot-

ted in Figure 2.15(a). Computed results for the GCC temperature for Bi= 0.0009 and

G = 0.04 are also shown. Efron et al. [30] concluded, from the right eyes of 21 subjects,

that GCC temperature starts at 34.3 ± 0.7◦C on average with a mean cooling rate of
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0.033 ± 0.024◦C over the initial 15s. Calculating results from the model predicts the

average cooling rate to be 0.058◦Cs−1 for the first 15s if the initial GCC temperature

is set to 34.5◦C.

The model is promising for simulating the tear film thinning rate. Nichols et al.

[92] found the mean rate of thinning of the tear film in vivo to (6.32±7.00)×10−8ms−1

(or 3.79± 4.20µm/min). The average initial thickness in their work was 3.98µm with

standard deviation 1.06µm. Our computed results for the GCC tear film thickness

are shown in Figure 2.15(b). The model gives a thinning rate of 4.42 × 10−8ms−1

(2.65µm/min) for the initial 15s. This value is well within the experimental range.

Some outlying cases were observed in the experiments [30], however, showing

that GCC temperature drops faster than the average and abruptly stopped due to

blinking. The GCC temperature doesn’t seem to equilibrate in these cases. In addition,

observations from King-Smith [92] indicate the rates of tear film thinning ranged from

2 µm/min to 20µm/min with some relatively rare cases far from the average. All

the aforementioned results are based on the parameters listed in Table A.1. There,

the non-equilibrium coefficient K and the corresponding dimensionless parameter K̄

were derived to recover the average thinning rate 4µm/min. To see what the model

predicts for the rare cases, we changed the assumptions to determine the values for K

and K̄. The results are plotted in Figure 2.16, where the GCC temperature dynamics
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Figure 2.14: h(x, t) and J(x, t) for several times with Bi= 0.0009 and G = 0.05.

for thinning rates of 4, 12 and 20µm/min are shown. Temperature drops significantly

faster during the initial 20s for the larger thinning rates, but it bounces back to reach

a steady state value once heq is reached and evaporation stops. If x derivatives are

neglected, the steady-state temperature at the film surface is found to be

Th(0, t)→
1
ỹc
− k̃ L′

cBi
d′(1+Biheq)

T∞
1
ỹc
− k̃ L′

cBi
d′(1+Biheq)

≈ 0.655. (2.30)

The numerical values is that for Bi=0.0009, G = 0 and apart from K̄ all other values

are as given in Table A.1; note that this equilibrium temperature is independent of
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K̄ however. The numerical results agree well with the approximate equilibrium tem-

perature. In experiment, blinks interrupted the temperature dynamics, so we don’t

know what would happen if these subjects were to keep their eyes open long enough.

Experiments with subjects that are determined to keep their eyes open may be able to

verify or disprove the predicted equilibrium temperature.

Scott’s axisymmetric FE model [103] of heat transfer in the eye yielded an

equilibrium temperature of 33.25◦C using her control parameters. Ng and Ooi’s 2D

[89] and 3D [90] FE models found mean values of maximum surface temperature of

the cornea to be 33.64 and 34.48◦C , respectively. The model in this paper predicts

the GCC temperature equilibrate to 33.55◦C. Our results are comparable to 2D FE
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models.

2.6 Conclusion

The model we present in this Chapter includes a rectangular domain underneath

the tear film that simulates the cornea and part of the aqueous humor. We allow heat

diffusion inside this model rectangle to improve the existing models on predicting the

thermal dynamics of the tear film. By varying the depth of the rectangle from 0 to

2.5×10−3m, we found that cooling for deep enough into the eye, the model could recover

the experimental data for temperature at the tear film and the ocular surface cooling

with evaporation and heat loss; without a thick substrate, the tear film temperature

actually increases slightly.

Varying the Biot number in the model reveals the important role it plays in tear

film evaporation. Large Bi implies heat has another route to leave the tear film besides

evaporation, and so evaporation slows down with increasing Bi (pictured in Figure

2.10). Hence, we could adjust the value of Bi number to control the evaporation rate

and we chose Bi= 0.0009 to match experimental data.
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To summarize, we present a tear film dynamics model that has improved dy-

namics for the temperature at its surface in this Chapter. This improvement comes

from including heat diffusion in both the tear film and the eye beneath it. Allowing

cooling to penetrate deep enough into the eye eventually captures the right thermal

behavior as well as thinning rates in the experimentally measured range.
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Chapter 3

MODELING TEAR FILM AND OSMOLARITY DYNAMICS ON AN
EYE SHAPED DOMAIN

3.1 Introduction

The purpose of the model we develop in this Chapter is to compute the dynamics

of fluid motion and osmolarity of the tear film on an eye-shaped domain. Osmolarity

is the concentration of ions in solution. Given a 1M concentration of NaCl solution,

each molecule of salt dissociates into two ions, and the osmolarity is then 2M. (Here

M denotes molar concentration, which is moles per liter of solvent.) For a brief intro-

duction to the mathematical models for the osmolarity and tear film dynamics, see the

review by Braun [11] or the paper by Zubkov et al. [127].

The osmolarity is an important variable to include in tear film modeling because

it is thought to be critical in the onset and subsequent development of dry eye syndrome

(DES). We summarize a discussion of the role of osmolarity on the ocular surface from

Baudouin et al. [8] here. According to Tietz [111], in healthy blood the osmolarity is

in the range 285-295 Osm/m3 (also denoted mOsm/L or mOsM). In the healthy tear

film, there is homeostasis with the blood in the range 296-302 Osm/m3 [63, 114, 117].

In DES, the lacrimal system is unable to maintain this homeostasis and osmolarity

values in the meniscus rise to 316-360 Osm/m3 [114, 35, 109], and may rise to even

higher values over the cornea. Using in vivo experiment and sensory feedback, Liu

et al. [69] estimated peak values of 800-900 Osm/m3. Similar or higher values were

computed from mathematical models of tear film break up in King-Smith et al. [59]

and Peng et al. [96]. These estimated osmolarity in break up are easily enough to

cause discomfort [69]. Though we don’t include localized evaporation to induce break

up, we find thinning induces localized increases in osmolarity that are also significant.
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We use a mathematical model to compute osmolarity over the entire exposed ocular

surface subject to the assumptions stated in the Formulation section §3.2.

The method of tear sample collection and measurement is important. To our

knowledge, osmolarity measurements in humans have been from samples in the infe-

rior meniscus or the lower fornix. The lower fornix has a lower osmolarity than the

meniscus [85], and samples from the meniscus are most commonly used today. Gilbard

et al. [35] summarized the use of prior measurement techniques that used pipettes or

capillary tubes to collect tear samples. Older methods may have used pipettes that

took too large a sample compared to the tear film total volume, and could induce reflex

tearing. In the exquisitely sensitive eye, this is a significant concern that could dilute

or otherwise change the chemistry of the tear sample. Some capillary techniques are

difficult to use, and the method of Gilbard et al. [35] appeared to be easier to use; we

note that the paper does not indicate where in the inferior meniscus the measurement

was taken. Subsequent to sample collection, older techniques relied on freezing point

depression to determine the osmolarity of the sample to about 1% error. More recently,

a calibrated resistance measurement using the TearLab device allows rapid determi-

nation of osmolarity with an error for in vitro samples of about 1-2% error [63, 110].

In the approach, a sensor is touch to the meniscus at the temporal canthus, and the

result is returned in less than a minute after the sample is taken. The latter approach

is much more convenient for clinical use.

The level of effectiveness of osmolarity measurement to diagnose dry eye and

to measure progression of the disease is still a matter of debate; for recent viewpoints,

see for example, Lemp et al. [63]; Amparo et al. [6, 5]; Pepose et al. [97]; Sullivan

[108]. We found the summary by Baudouin et al. [8] in their sections III and IV to be

informative. We do not aim to settle the debate here, but to supply context for the

measurements in the form of a quantitative prediction of the osmolarity over the entire

exposed ocular surface to aid interpretation.

In this Chapter, we formulate a tear film dynamics model on a 2D eye-shaped

domain that incorporates osmolarity transport and osmosis from the tear/eye interface.
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In an effort to mimic some effects of blinks on a stationary boundary, we specify the

normal component of the flux at the boundary with both time and space dependence

(flux cycle). The time-dependent flux boundary condition is formulated according to

Doane’s mechanism for tear drainage [28] and the tear drainage model of Zhu and

Chauhan [126], but with simplification regarding blinking: there is no lid motion.

The permeability of the ocular surface will be either constant over the whole surface,

or a space-dependent function with lower permeability over the cornea and higher

permeability over the conjunctiva. The model will lose water via evaporation to the

air, gain water from the ocular surface, and, via the flux boundary condition, will have

water supplied as from the lacrimal gland and removed as from the puncta.

3.2 Formulation

In this section, we present a mathematical model that incorporates osmolarity

and fluid dynamics into a tear film model on a 2D eye shaped domain as shown in Figure

3.1. In Figure 3.1, (u′, v′, w′) are the velocity components in the coordinate directions

(x′, y′, z′); z′ is directed out of the page and primed variables are dimensional. g′ is

gravity which is specified in the negative y′ direction.

The boundary curves of the eye-shaped domain are approximated from a digital

photo by four polynomials. Two are parabolas in x′ and two are ninth-degree polynomi-

als in y′, and C4 continuity is imposed where they join (indicated by dots) [72, 73, 67].

s′ is the arc length of the boundary starting at the joint of the nasal canthus and upper

lid, and is traversed in the counterclockwise direction as s′ increases. The unit vectors

tangential and normal to the boundary curves are given by t′b and n′b, respectively.

z′ = h′(x′, y′, t′) denotes the free surface of tear film and t′ is the time.

We assume that the tear fluid is incompressible and Newtonian with constant

density ρ, viscosity µ, specific heat cp, and thermal conductivity k. We also assume

the ocular surface is flat due to the fact that the characteristic thickness of the human

tear film is much less than the radius of curvature of the ocular globe [10, 16]. The

governing equations for the tear film thickness h′ and the osmolarity c′ are derived from
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Figure 3.1: The coordinate system and eye-shaped domain. The z′ direction points
out of the page.

the incompressible Navier-Stokes and convection-diffusion equations, respectively. The

two equations are coupled by the osmotic flux, that is, the fluid that flows from the

ocular surface at z′ = 0 into the tear film driven by the osmolarity difference between

the tear film and the cornea [65]. In the model, water is lost to the air, treated as a

passive gas outside the tear film (z′ > h′), and water is supplied due to the subsequent

increased osmolarity via this osmotic flux.

To be specific, we show detailed derivation of the model system below. The

nondimensional parameters that arise are defined and given values in Appendix A and

in Table A.1. The dimensional parameters are given in Table A.2.

3.2.1 Model Derivation

Inside the tear fluid, we model the tear film fluid with the incompressible Navier-

Stokes equations and energy conservation equation, and model the osmolarity dynamics
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with convection-diffusion equation. Namely, in 0 < z′ < h′(x′, y′, t′):

ρ (∂t′u
′ + u′ · ∇u′) = −∇p′ + µ∆u′ − ρgj, (3.1)

ρcp(∂t′T
′ + u′ · ∇T ′) = k∆T ′, (3.2)

∇ · u′ = 0, (3.3)

∂tc
′ +∇ · (c′u′) = Dc∆c

′. (3.4)

Here c′ is the volumetric concentration of osmotically active physiological salts in the

aqueous layer. Typically, it is the ion concentration from these salts that contribute

to osmosis and we interpret c′ this way. It is measured in units of Osm/m3. Dc is the

diffusion coefficient of osmolarity. (i, j,k) are the standard basis vectors.

At the free surface, z′ = h′, we have the equations to balance fluid mass and

energy:

J ′ = ρ(u′ − u′I) · n′, (3.5)

LmJ
′ + kn′ · ∇T ′ = 0. (3.6)

Here u′I = ∂′th
′k is the interfacial velocity and n′ is the normal vector to the tear film

surface. The difference between ∂′th
′ and w′ at the free surface is due to evaporation.

We also assume tangential immobility and we balance normal stress with the conjoining

pressure under consideration:

u′ · t′1 = u′ · t′2 = 0, (3.7)

− p′v − n′ ·T′ · n′ = σ∇ · n′ − Π′. (3.8)

Here t′1 and t′2 are a pair of orthogonal tangential vectors of the tear film surface,

T′ = −p′I + µ(∇u′ + ∇u′T ) is the Newtonian stress tensor, and Π′ = A∗/h′3 is the

conjoining pressure. Finally, we relate the interfacial temperature to the mass flux and

pressure jump by the nonequilibrium condition, and we impose a no-flux condition for

the osmolarity,

KJ ′ = α(p′ − p′v) + T ′ − T ′s, (3.9)

(u′ − u′I)c
′ · n′ = Dc∇c′ · n′. (3.10)
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Since we model the evaporative mass flux J ′ as

J ′ = ρ(u′ − u′I) · n′,

the no-flux condition for osmolarity at the free surface becomes

Dc∇c′ · n′ =
c′J ′

ρ
.

At the cornea-tear film interface, z′ = 0′, in addition to the specification of no-

slip conditions and the prescription of body temperature, we allow water to go through

the ocular surface by osmosis, but keep the ions in the tear film from penetrating the

ocular surface, thus we have

u′ = v′ = 0, (3.11)

T ′ = T ′B, (3.12)

w′ = P ′c(c
′ − c′0), (3.13)

w′c′ = Dc∂
′
zc
′. (3.14)

Here c′0 = 302 Osm/m3 is the isotonic concentration, which is used to scale c′.

The following scales are used to non-dimensionalize the equations:

x′ = L′x, y′ = L′y, z′ = d′z, h′ = d′h, c′ = c′0c̄, u
′ = U0u, v

′ = U0v, t
′ =

L′

U0

t,

w′ =
d′U0

L′
w, p′ =

µU0

L′ε2
p, T =

T ′ − T ′s
T ′B − T ′s

, J ′ =
k

d′Lm

(T ′B − T ′s)J.

Here ε = d′/L′ � 1 indicates the separation of length scales. After non-dimensionalization,

we have,

in 0 < z < h(x, y, t),

ε2Re (∂tu+ u∂xu+ v∂yu+ w∂zu) = −∂xp+
(
ε2∂2

xu+ ε2∂2
yu+ ∂2

zu
)
,

ε2Re (∂tv + u∂xv + v∂yv + w∂zv) = −∂yp+
(
ε2∂2

xv + ε2∂2
yv + ∂2

zv
)
−G,

ε4Re (∂tw + u∂xw + v∂yw + w∂zw) = −∂zp+ ε2
(
ε2∂2

xw + ε2∂2
yw + ∂2

zw
)
,

ε2RePr (∂tT + u∂xT + v∂yT + w∂zT ) = ε2
(
∂2
xT + ∂2

yT
)

+ ∂2
zT,

∂xu+ ∂yv + ∂zw = 0,

ε2Pec (∂tc̄+ u∂xc̄+ v∂y c̄+ w∂z c̄) = ε2∂2
xc̄+ ε2∂2

y c̄+ ∂2
z c̄,
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at z = h(x, y, t),

EJ =
−u∂xh− v∂yh+ w − ∂th√

1 + ε2 (∂xh)2 + ε2 (∂yh)2
,

J +
−ε2∂xh∂xT − ε2∂yh∂yT + ∂zT√

1 + ε2 (∂xh)2 + ε2 (∂yh)2
= 0,

v + ε2w∂yh√
1 + ε2 (∂yh)2

=
u+ ε2w∂xh√
1 + ε2 (∂xh)2

= 0,

p− pv −
2ε2
[
ε2
(
∂2
xh∂xu+ ∂2

yh∂yv + ∂xh∂yh(∂yu+ ∂xv)− ∂xh∂xw − ∂yh∂yw
)
+ ∂zw − ∂xh∂zu− ∂yh∂zv

]√
1 + ε2 (∂xh)

2 + ε2 (∂yh)
2

= −S

∂x
 ∂xh√

1 + ε2 (∂xh)
2 + ε2 (∂yh)

2

+ ∂y

 ∂yh√
1 + ε2 (∂xh)

2 + ε2 (∂yh)
2

− A

h3
,

K̄J = δ (p− pv) + T,

−ε2∂xh∂xc̄− ε2∂yh∂y c̄+ ∂z c̄ = EPecε
2c̄J

√
1 + ε2 (∂xh)2 + ε2 (∂yh)2,

at z = 0,

u = v = 0, T = 1,

w = Pc(c̄− 1),

ε2Pecwc̄ = ∂z c̄.

Lubrication theory exploits the small value of ε, which is the ratio of the tear film

thickness to the length scale along the tear film. E characterizes the evaporative con-

tribution to the surface motion, δ measures the pressure influence to evaporation, S is

the ratio of surface tension to viscous forces, A is the Hamaker constant in nondimen-

sional form related to the unretarded van der Waals force, G is the ratio of gravity to

the viscous force, K̄ represents the non-equilibrium parameter that sets the evapora-

tive mass flux, Pec is the Péclet number for the osmolarity describing the competition

between convection and diffusion, and Pc = P tissvwc
′
0/(εU0) is the nondimensional per-

meability of the ocular surface. The tissue permeability P tiss will take on different

values as described in Section 3.2.2.
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We estimate the size of the non-dimensional parameters:

ε =
d′

L′
= 1× 10−3, Re =

U0L
′

µ/ρ
≈ 19.23, Pr =

cpµ

k
≈ 8.01,

where Re is the Reynolds number and Pr is the Prandtl number. Terms involving the

following parameters are regarded as small:

ε2 = 1× 10−6, ε2Re ≈ 1.92× 10−5, ε2RePr ≈ 1.54× 10−4.

Applying lubrication theory by neglecting all the small terms for the fluid equations,
we then have the following leading order approximations.

In 0 < z < h(x, y, t):

0 = −∂xp+ ∂2
zu, (3.15)

0 = −∂yp+ ∂2
zv −G, (3.16)

0 = −∂zp, (3.17)

0 = ∂2
zT, (3.18)

∂xu+ ∂yv + ∂zw = 0. (3.19)

For the osmolarity, we expand c̄(x, y, z, t) as

c̄ = c̄0 + ε2c̄1 +O(ε4).

So the leading order equation is

∂z c̄0 = 0, (3.20)

which implies c̄0 is independent of z, i.e. c̄0 = c̄0(x, y, t). We proceed to the next
order so as to find an equation for c̄0, and we obtain

∂2
z c̄1 = Pec [∂tc̄0 + (u∂xc̄0 + v∂y c̄0)]− ∂2

xc̄0 − ∂2
y c̄0. (3.21)

At z = h(x, y, t):

EJ = −u∂xh− v∂yh+ w − ∂th, (3.22)

J + ∂zT = 0, (3.23)

u = v = 0, (3.24)

p− pv = −S
(
∂2
xh+ ∂2

yh
)
− A

h3
, (3.25)

K̄J = δ (p− pv) + T, (3.26)

∂z c̄1 = EPecc̄0J +∇h · ∇c̄0. (3.27)

For convenience, we use ∇ = (∂x, ∂y) and ∆ = (∂2
x + ∂2

y) to represent the differ-
ential operators applied on h and c̄0 since both are independent on z.
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At z = 0:

u = v = 0, (3.28)

T = 1, (3.29)

w = Pc(c̄0 − 1), (3.30)

∂z c̄1 = PecPc(c̄0 − 1)c̄0. (3.31)

For the tear film, we first integrate Equation (3.19) with respect to z from 0 to

h and obtain

w(x, y, h, t) = w(x, y, 0, t)−
∫ h

0

(∂xu(x, y, z, t) + ∂yv(x, y, z, t)) dz. (3.32)

After substituting Equation (3.32) into boundary condition (3.22), we have

at z = h : EJ = −u∂xh− v∂yh+ w(x, y, 0, t)−
∫ h

0

(∂xu+ ∂yv) dz − ∂th. (3.33)

Utilizing the Leibniz integral rule, we can simplify Equation (3.33) as

∂th+ EJ +

(
∂x

∫ h

0

u dz + ∂y

∫ h

0

v dz

)
− w(x, y, 0, t) = 0. (3.34)

Further manipulation together with boundary condition (3.30) yield

∂th+ EJ +∇ ·
(∫ h

0

u dz,

∫ h

0

v dz

)
− Pc(c̄0 − 1) = 0.

Here ∇ = (∂x, ∂y) is the gradient operator. If we denote the fluid flux at any cross

section as

Q =

(∫ h

0

u dz,

∫ h

0

v dz

)
,

we then get

∂th+ EJ +∇ ·Q− Pc(c̄0 − 1) = 0.

We now turn to solve for Q and J in terms of h so as to find a PDE for h(x, y, t).

From Equation (3.17), we know that p is independent of z, i.e., p = p(x, y, t). So we

integrate Equations (3.15) and (3.16) with respect to z twice and obtain

u =
1

2
∂xpz

2 + b1z + b2, v =
1

2
(∂yp+G) z2 + c1z + c2.
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From boundary conditions (3.24) and (3.28), we solve for b1, b2, c1 and c2, and therefore,

we have

u =
1

2
∂xpz

2 − 1

2
∂xphz, v =

1

2
(∂yp+G) z2 − 1

2
(∂yp+G)hz.

Furthermore,

Q =

(∫ h

0

u dz,

∫ h

0

v dz

)
=

(
− 1

12
∂xph

3,− 1

12
(∂yp+G)h3

)
= − 1

12
h3∇(p+Gy).

In addition, from Equation (3.25), we know

∇(p+Gy) = −∇(S∆h+
A

h3
−Gy),

hence, we have derived the equation for Q in terms of h:

Q =
h3

12
∇
(
S∆h+ Ah−3 −Gy

)
.

In order to solve for J , we integrate Equation (3.19), and then we obtain

T (x, y, z, t) = a1(x, y, t)z + a2(x, y, t).

Boundary conditions (3.23) & (3.29) imply

T (x, y, z, t) = −Jz + 1.

According to boundary conditions (3.25) & (3.26), we have

K̄J = δ

(
−S∆h− A

h3

)
− Jh+ 1.

Solving for J , we then obtain

J =
1− δ (S∆h+ Ah−3)

K̄ + h
.

Thus, after solving for the velocity and temperature fields, integrate the mass conser-

vation equation and use the kinematic condition, we arrive at a PDE for h(x, y, t):

∂th+ EJ +∇ ·Q− Pc(c̄0 − 1) = 0,
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with

J =
1− δ (S∆h+ Ah−3)

K̄ + h
and Q =

h3

12
∇
(
S∆h+ Ah−3 −Gy

)
.

For the osmolarity, we integrate Equation (3.21) with respect to z from 0 to h.

Noting that c̄0 = c̄0(x, y, t), we then have

∂z c̄1(x, y, h, t)− ∂z c̄1(x, y, 0, t) = Pec [h∂tc̄0 +∇c̄0 ·Q]− h∆c̄0.

According to the boundary conditions (3.27) and (3.31), we derive a PDE for c̄0(x, y, t):

Pec [h∂tc̄0 +∇c̄0 ·Q]− h∆c̄0 = EPecc̄0J +∇h · ∇c̄0 − PecPc(c̄0 − 1)c̄0.

For convenience, we use c in the equations instead of c̄0. Therefore, we have derived a

system of PDEs for the dimensionless variables h(x, y, t) and c(x, y, t):

∂th+ EJ +∇ ·Q− Pc(c− 1) = 0, (3.35)

h∂tc+∇c ·Q = EcJ +
1

Pec
∇ · (h∇c)− Pc(c− 1)c. (3.36)

The evaporative mass flux J is given by

J =
1− δ (S∆h+ Ah−3)

K̄ + h
,

and the fluid flux Q across any cross-section of the film is given by

Q =
h3

12
∇
(
S∆h+ Ah−3 −Gy

)
.

The nondimensional parameters that arise are defined and given values in the following

section and in Table A.1. The dimensional parameters used in those expression are

given in Table A.2.

For numerical purposes, we rewrite the model equations (3.35) & (3.36) by

introducing the pressure p(x, y, t) as a new dependent variable:

∂th+ E
1 + δp

K̄ + h
+∇ ·

[
−h

3

12
∇ (p+Gy)

]
− Pc(c− 1) = 0, (3.37)

p+ S∆h+ Ah−3 = 0, (3.38)

h∂tc+∇c ·
[
−h

3

12
∇ (p+Gy)

]
= Ec

1 + δp

K̄ + h
+

1

Pec
∇ · (h∇c)− Pc(c− 1)c. (3.39)
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3.2.2 Permeability of the ocular surface

The ocular surface is believed to be permeable, and the induced osmotic flow

helps to arrest tear film thinning and hence ameliorate osmolarity elevation [11]. In

addition, the tissue permeability for water is not a constant over the ocular surface;

the conjunctiva is normally more permeable than the cornea [25]. King-Smith and

coworkers proposed values for the tissue permeability of the ocular surface, that is,

12.0µm/s for the cornea and 55.4µm/s for the conjunctiva [59, 19]. We use these

values to determine the dimensionless permeability Pc in the model as follows: we first

define the corneal region as a unit circle with the center Xc = (0.05, 0.225) in the

domain shown in Figure 3.1, and the variable permeability at any position X = (x, y)

is then defined as

Pc(x, y) =
Pconj − Pcorn

2
tanh

(
|X−Xc| − 1

0.05

)
+
Pconj + Pcorn

2
. (3.40)

Here Pconj = 0.06 is the dimensionless permeability of conjunctiva , Pcorn = 0.013 is the

dimensionless permeability of cornea, and |X −Xc| is the distance between points X

and Xc. Figure 3.2 plots the distribution of the variable permeability on the eye-shaped

domain.

Figure 3.2: Variable permeability distribution over the ocular surface.

3.2.3 Boundary conditions

Along the boundary of the eye-shaped domain (denoted as ∂Ω), we prescribe

the constant tear film thickness

h|∂Ω = h0. (3.41)
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We set h0 = 13 in the computation because this choice is in the range of experimental

measurement (48 – 66µm or 9.6 – 13.2 nondimensionally) from [37]. In addition, we

specify the normal component of the fluid flux,

Q · nb = Qlg(s, t) +Qp(s, t), (3.42)

according to the mechanism of [28] for tear supply and drainage, and the tear drainage

model of [126], but with simplification regarding blinking. This fluid flux boundary

condition mimics some effects of blinking by providing a time-dependent influx through

the lacrimal gland and efflux through the puncta. Specifically, the lacrimal gland supply

is specified as on at the beginning of a flux cycle, and the punctal drainage follows one

time unit later. Both the supply and drainage start to shut off at t = 5. The duration

of a complete flux cycle in the model is ∆tbc = 10. In Figure 3.3, we show a sequence of

images of the fluid flux boundary condition (3.42) within a flux cycle. At t = 0 (Figure

3.3a), there is zero fluid flux on the boundary. At t = 0.5, we see the lacrimal gland

supply is fully on while the drainage does not yet start in Figure 3.3b; the drainage

begins at t = 1. In Figure 3.3c, both supply at the lacrimal gland and drainage at the

two puncta holes remain fully on. Then, the fluid flux turns off at t = 5 and remains

zero until the end of a flux cycle (t=10) as shown in Figure 3.3d. The influx and efflux

are balanced in each flux cycle. To be specific, we define

Qlg(s, t) = flg(t)Q̂ls(s), Qp(s, t) = fp(t)Q̂p(s) (3.43)

in the time-dependent fluid flux BC (3.42). The formulations of flg(t), fp(t), Q̂lg(s),

and Q̂p(s) are listed below:

flg(t) =



1
2

[
cos
(
π
2
t−tlg,on

∆tlg
− π

2

)
+ 1
]
, if |t− tlg,on| ≤ ∆tlg;

1, if tlg,on + ∆tlg ≤ t ≤ tlg,off −∆tlg;

1
2

[
cos
(
π
2
t−tlg,off

∆tlg
+ π

2

)
+ 1
]
, if |t− tlg,off | ≤ ∆tlg;

0, otherwise.

(3.44)
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fp(t) =



1
2

[
cos
(
π
2
t−tp,on

∆tp
− π

2

)
+ 1
]
, if |t− tp,on| ≤ ∆tp;

1, if tp,on + ∆tp ≤ t ≤ tp,off −∆tp;

1
2

[
cos
(
π
2
t−tp,off

∆tp
+ π

2

)
+ 1
]
, if |t− tp,off | ≤ ∆tp;

0, otherwise.

(3.45)

Q̂lg(s) =



0, if s < slg,on −∆slg;

− 1
2 Q̂0lg

[
cos
(
π
2
s−slg,on

∆slg
− π

2

)
+ 1
]
, if |s− slg,on| ≤ ∆slg;

−Q̂0lg, if slg,on + ∆slg ≤ s ≤ slg,off −∆slg;

− 1
2 Q̂0lg

[
cos
(
π
2
s−slg,off

∆slg
+ π

2

)
+ 1
]
, if |s− slg,off | ≤ ∆slg;

0, otherwise.

(3.46)

Q̂p(s) =



0, if s < sp,lo −∆sp;

− Q̂0p

2 (1− pout)
[
cos
(
π
s−sp,lo

∆sp
− π

)
− 1
]
, if |s− sp,lo| ≤ ∆sp;

0, if sp,lo + ∆sp ≤ s ≤ sp,up −∆sp;

− Q̂0p

2 (pout)
[
cos
(
π
s−sp,up

∆sp
− π

)
− 1
]
, if |s− sp,up| ≤ ∆sp;

0, otherwise.

(3.47)

For the osmolarity c(x, y, t), we consider two boundary conditions in this paper.

Case (i) is the Dirichlet boundary condition

c|∂Ω = 1; (3.48)

case (ii) is the homogeneous Neumann boundary condition

∇c · nb|∂Ω = 0. (3.49)

3.2.4 Initial Condition

The initial condition h(x, y, 0) is specified based on a numerically smoothed

version of the function

h(x, y, 0) = 1 + (h0 − 1)e−min(dist((x,y),∂Ω))/x0 , (3.50)
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Table 3.1: Parameters appearing in the flux boundary condition.

Parameter Description Value
tlg,on On time for lacrimal gland supply 0.2
tlg,off Off time for lacrimal gland supply 5.2
∆tlg Transition time of lacrimal gland supply 0.2
tp,on On time for punctal drainage 1.05
tp,off Off time for punctal drainage 5.05
∆tp Transition time of punctal drainage 0.05
QmT Estimated steady supply from lacrimal gland 0.08

Q̂0lg Height of lacrimal gland peak 0.4

Q̂0p Height of punctal drainage peak 4
∆tbc Flux cycle time 10
slg,on On-ramp location for lacrimal gland peak 4.2
slg,off Off-ramp location for lacrimal gland peak 4.6
∆slg On-ramp and off-ramp width of lacrimal peak 0.2
pout Fraction of drainage from upper punctum 0.5
sp,lo Lower punctal drainage peak location 11.16
sp,up Upper punctal drainage peak location 11.76
∆sp Punctal drainage peak width 0.05
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Figure 3.3: Time sequences of fluid flux boundary condition during one flux cycle.
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(a) Initial tear film thickness. The upper end of the maroon color indicates tear film thickness
h ≥ 3.

(b) Initial pressure distribution.

Figure 3.4: Smoothed initial conditions for h and p.
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where x0 = 0.06 and dist (X, ∂Ω) is the distance between a point with position vector

X and a point on the boundary ∂Ω [72, 73]. It specifies a dimensional initial volume

of about 1.805µl. This value is well within the experimental measurements by [80],

who found the volume of exposed tear fluid to be 2.23 ± 2.5µl. The initial pressure

p(x, y, 0) is calculated from equation (3.38) accordingly [67]. Figure 3.4 shows the

initial thickness h and pressure p that are implemented in the numerical simulations.

For the initial osmolarity, we assume the salt-ions are well mixed and of the isosmotic

physiological salt concentration (302 Osm/m3, or 1 dimensionlessly) at the beginning,

thereby specifying

c(x, y, 0) = 1. (3.51)

3.3 Conclusion

In this Chapter, we show detailed formulation of a mathematical model that

couples osmolarity dynamics within human tear film on an eye-shaped domain. This

model includes the physical effects of evaporation, surface tension, viscosity, ocular

surface wettability, osmolarity, osmosis and tear fluid supply and drainage. Results

of the model are given in the following chapters. In Chapter 4, we focus on studying

the fluid dynamics of tear film; we hope to capture the tear fluid flow over the entire

exposed ocular surface . In Chapter 5, the interaction between tear fluid and osmolarity

dynamics is investigated by solving the complete model introduced in this Chapter.
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Chapter 4

TEAR FILM DYNAMICS WITH EVAPORATION, WETTING AND
TIME-DEPENDENT FLUX BOUNDARY CONDITION ON AN

EYE-SHAPED DOMAIN

4.1 Introduction

In this chapter, we focus on the tear film part of the model derived in Chapter

3 by ignoring the osmolarity component. That is, we solve for h(x, y, t) and p(x, y, t)

from the following model equations:

∂th+ E
1 + δp

K̄ + h
+∇ ·

[
−h

3

12
∇ (p+Gy)

]
= 0, (4.1)

p+ S∆h+ Ah−3 = 0, (4.2)

subject to boundary conditions (3.41) & (3.42) and initial conditions shown in Figure

3.4. We investigate how much of the observed in vivo tear film dynamics can be

recovered using only a flux cycle and by compensating for evaporative water losses

with extra influx but no actual blinks. The tear film results show that our model

captures the fluid flow around the meniscus and other dynamic features of human tear

film that is in agreement with previous models and in vivo observations.

We begin by describing the experiment in Section 4.2 and present a brief de-

scription of the numerical methods used for the simulation in Section 4.3. Detailed

results of simulations and comparison with experiments are discussed in Section 4.4.

Conclusion is followed in Section 4.5.

4.2 Experiment

We briefly describe the fluorescence imaging method used for visualizing tear

film dynamics [91, 58, 13] here. This established method was used to produce original
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Figure 4.1: Sequence of tear film images of the experiment after a blink. The first
image is 5.5s after a blink; the next three images are, respectively, 9.5s, 10.17s and
10.83s after that blink. The final image is after a blink that began less than a second
after the sequence shown. Gravity is oriented downward in the panels.

images in this work. Video recordings were made from subjects, including normal and

dry eyes, for a 60 second period after instillation of 1µl of 5% (sodium) fluorescein.

Subjects were instructed to blink about 1 second after the start of the recording and

try to hold their eyes open for the remainder of the recording. The subjects’ eyes were

illuminated with blue light and a blocking interference filter was used to reduce the

response to reflected illumination light. This allowed a better detection of the fluores-

cence of the tear film. The horizontal illumination width was 15 mm, thus including

the cornea and part of the conjunctiva. The research protocol was approved by an

Institutional Review Board in accordance with the Declaration of Helsinki. Informed

consent was obtained from each subject at study enrollment.

In Figure 4.1, we show some images from the video recording of one subject. The

first frame shows the tear film at 5.5 seconds after a blink; this image is representative

of the first 9 s after the blink. There is a region of slightly brighter tear film around the

lid margins; this is the meniscus. At 5.5 seconds after the blink, within the meniscus

and just above the outer canthus (right side), part of the meniscus is slighlty brighter;
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it is labeled “lacrimal gland” to indicate the location of input of tear fluid to the tear

film from the lacrimal gland. This part of the tear fluid brightens because fresh tear,

comprising primarily water, is entering the exposed tear film due to reflex tearing.

At 9.5s (right panel, top row), the bright region has grown, showing where fresh tears

have penetrated the tear film. The next two panels (10.17s and 10.83s) show the bright

region growing around the outer canthus and along both the upper and lower menisci.

The bright region is indicating where fresh tear fluid has entered the tear film and

lowered the concentration of fluorescein [123, 91, 13]. In the final panel, the subject

had blinked in less than 1 s after the last panel, and fresh tear fluid has mixed with

the existing tear fluid, diluted it, and made the entire exposed tear film glow. This

supply of fluid without blinking is often called reflex tearing (e.g., [60, 71]). Li et al.

[67] includes a movie in the supplementary material showing the complete observation.

There is some variation in the experimental results. For example, in [41], tear

fluid traveled faster along the lower eyelid while our experiment shows the opposite.

Maurice [81] didn’t report the fluid velocity in the menisci. The relative amount of flow

along the upper or lower meniscus under general conditions remains an open question.

In the Results section 4.4, we will compare our thin film model with the visual-

ization of tear fluid entering the tear film.

4.3 Numerical Methods

We briefly describe the numerical methods used to solve the model system (Eq.

(4.1) & (4.2)) here. The detailed discussion about the numerical methods is found in

Chapter 6 and in Maki’s dissertation [70]. The domain is discretized using a compos-

ite overlapping grid, which is a collection of logically rectangular curvilinear compo-

nent grids that overlap where they meet, and cover the whole domain. We use four

boundary-fitting components grids to approximate the boundary, and a background

Cartesian grid to cover the rest of the domain. We produce the boundary-fitting grids

by extending the normals to the boundary. However, owing to the large curvature at the

two canthi, the distance we can extend in the normal direction is limited, otherwise the

52



normal lines would intersect inside the boundary-fitting grids. In order to offer enough

resolution for the meniscus, we increase the number of grids for the background Carte-

sian grid. Solutions on the different grids are coupled by interpolation. The domain

and the associated grids [72, 73, 67] are created with the grid generation capabilities of

the Overture computational framework [23, 42] (http://www.overtureframework.org.

Primary developer and contact: W. D. Henshaw, henshw@rpi.edu). The computational

grid used to generate tear film results in Section 4.4 is shown in Figure 4.2.

Figure 4.2: Computational grid on the eye-shaped domain.

We solve the system (4.1) & (4.2) by the method of lines. The spatial deriva-

tives are approximated using the second-order accurate finite difference methods for

curvilinear and Cartesian grids from Overture, which leads to a system of index-1

differential algebraic equations (DAE). The DAE system is advanced using a variable

step size backward differentiation formula (BDF) with fixed leading coefficient that

was added to Overture [17, 72, 73]. Finally, we solve the resulting nonlinear system

using Newton’s method.

The method achieves good accuracy on test problems with exact solutions using

this domain and gridding approach [70, 73]. We provide additional numerical evidence

in Section 4.4 verifying that the method also performs well on the current problem.
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4.4 Results

4.4.1 Tear Film Dynamics

In this section, we present and compare computed results of Equations (4.1) &

(4.2) for various parameter settings: (i) E = 0 & G = 0, (ii) E 6= 0 & G = 0, and

(iii) E 6= 0 & G 6= 0. Recall that E helps characterize the evaporation rate and G

characterizes the effect of gravity. We switch these effects on and off in order to study

the individual effects of time-dependent flux boundary condition (3.42), evaporation

and their combined effects on tear film dynamics. We shall later modify the lacrimal

gland supply function Qlg(s, t) so that the net amount of fluid provided by the flux

boundary condition compensates for the evaporative loss during a flux cycle.

We first show results for E = G = 0. This case was studied by Maki et al. [73] for

a time-independent flux BC and with no van der Waals forces. Here the flux BCs (3.42)

are time dependent and the substrate under the film is wettable. Computed thickness

contours are shown in Figure 4.3. As observed previously in many tear film papers,

the relatively thick film at the boundary induces positive curvature, which lowers the

pressure and sucks fluid into the meniscus; near the meniscus a local minimum forms

that is called the “black line” in the eye literature. The name comes from the dark

band that appears near the bright meniscus when using fluorescence imaging. (In our

figures, it is colored dark blue from the low end of the color bar.) The mechanism

was illustrated by McDonald and Brubaker [82] using milk and a paper clip, and has

been recovered by all of the papers that have the ends modeling the lids. In the two-

dimensional domain, the additional features that appear are the canthi, which induce

a second direction of curvature, creating an even lower pressure that attracts fluid

toward themselves. The especially thin black line creates a boundary that separates

the interior of the tear film from the meniscus; this occurs because h is small and the

flux Q is proportional to h3. The interior is sometimes referred to a “perched” tear

film [83]. The redistribution of fluid due to surface tension also causes a small ridge

to form on the interior side of the black line. The thickness of the film in the interior

is roughly constant. In the meniscus, the tear film thickens near the region of influx
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Figure 4.3: Contours of tear film thickness with E = 0 and G = 0. The maroon band
around the boundary shows thickness greater than or equal to 3.

from lacrimal gland (right side, above temporal canthus), and narrows in the region of

efflux by the puncta (left side, nasal canthus). The new fluid is unable to penetrate

into the interior under these conditions. More extreme influx conditions [126], such as

the reflex tearing that arises when cutting an onion or from crying, may overcome the

barrier created by the black line and cause fluid to reach the interior without blinking

[71].

Contour plots for the pressure corresponding to E = G = 0 are shown in Fig-

ure 4.4 at two different times. The highest pressures occur in the interior, particularly

under the ridge near the black line, and near the input from the lacrimal gland. The

meniscus pressure is always lower than the interior in this computation, and this lower

pressure pulls fluid into the meniscus. But within the meniscus, there is a pressure

gradient that drives flow away from the input region of the lacrimal gland and ulti-

mately toward the lowest-pressure region by the puncta and nasal canthus. The plots

in Figure 4.4 illustrate the mechanisms for the flow that forms the black line, and for
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Figure 4.4: Pressure distribution for E = G = 0 with time-dependent flux boundary
conditions and a wettable substrate.

the flow around the meniscus that we refer to as hydraulic connectivity. We show the

pressure at t = 4 to illustrate how the time-dependent flux BC influences the pressure

distribution when both lacrimal gland influx and puncta efflux are fully functioning;

the latter contributes to the very low pressure seen in the neighborhood of the nasal

canthus. Then we plot p at the end of the first flux cycle (t = 10) when the flux BC

is zero all around the boundary. The pressures near the temporal and nasal canthi are

less extreme at this time because of the surface tension driven relaxation that occurs

in the meniscus when the boundary fluxes are zero. We can also plot the direction and

magnitude of the volumetric flux inside the film; representation results are shown in

the next case. We discuss the flux in general in the cases with evaporation, which we

turn to next.

Figure 4.5 shows the evolution of the tear film thickness with evaporation. The

first column shows results for the case E 6= 0 & G = 0, and the second column for

E 6= 0 & G 6= 0. We first focus on G = 0. The presence of the meniscus again creates

a pressure difference between the interior and the meniscus, which drives the tear fluid

from the interior towards the boundary, resulting in the black line separating the two.

The lower pressure in the meniscus can be clearly seen in the pressure distribution

plots; the plots for this case are quite similar to those in Figure 4.4, but the specific

plots for these parameters are shown in Figure 4.6. We find the global minimum in the
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Figure 4.5: Contour plots of the tear film thickness without gravity (left column) and
with gravity (right column). The maroon band around the boundary shows thickness
greater than or equal to 3.

thickness occurring near the nasal canthus, in a manner similar to the last case. With

evaporation, however, the tear film thins in the interior throughout the computation

which is visualized by the continual darkening of the interior. As seen in Figure 4.5, the
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Figure 4.6: Pressure distribution for E 6= 0 and G = 0.

minimum thickness is smaller than that in Figure 4.3. Our model is consistent with

the expected contribution of evaporation to tear film thinning of the interior region

between blinks and with the experimental studies of Kimball et al. [52], Nichols et al.

[91] and others. The capillary-driven tangential flow only explains the thinning of tear

film near the meniscus, i.e., the formation of black line; it has little to do with the

thinning of tear film in the interior region [83, 56].

The flux boundary condition (3.42) imposed on our model enforces time-dependent

influx from the lacrimal gland and efflux though the two punctal holes on the nasal

side. The influx pumps fluid into the meniscus above the the temporal canthus, while

the efflux drains fluid out near the nasal canthus. We plot the direction field of the

flux Q over contours of its magnitude in Figure 4.7. The lengths of the arrows are

normalized to unity, thus showing the directions only, and we use the shading to in-

dicate the magnitude of the flux vector: the darker the background, the smaller the

flux. In particular white indicates a flux greater than 10−2; dark gray is less than

10−3. Finally, there are far fewer arrows than the computational grids for clarity. The

arrows in Figure 4.7 illustrate the effect of the boundary flux at t = 4. The computed

flux is consistent with the maroon band becoming wider near the lacrimal gland with

increasing time and narrower near the nasal canthus in Figure 4.5. Additionally, the

flux boundary condition changes the curvature of the meniscus causing the pressure

gradient that drives the fluid flow in the meniscus (Figure 4.6).

58



Figure 4.7: The flux direction field plotted over the contours of the
norm of the flux at t = 4 with E 6= 0 and G = 0. (Far fewer arrows
than the computational grid points are shown for clarity. All the arrows
in this plot start at different locations.)

The second plot of Figure 4.6 is the pressure at the end of the first flux cycle

(t = 10). For most of the interior region, the pressure gradient is approximately zero,

and there is little motion there; correspondingly, Figure 4.8 for the flux at t = 10 is

basically dark in the interior, i.e., with ||Q|| < 10−2. Relatively fast (||Q|| ≥ 10−2) fluid

movement occurs near the boundary in the meniscus, splitting at the lacrimal gland

input and traveling around the menisci toward the puncta and nasal canthus. Thus,

Figure 4.8 illustrates the hydraulic connectivity observed by Maurice [81], Harrison et

al. [41] and our experiment described in Section 4.2, and as computed in some cases

by Maki et al. [73]

When the flux through the boundary is off (no flux anywhere), hydraulic connec-

tivity makes the fluid move towards the nasal canthus, makes the meniscus wider, and

lowers the pressure difference between the canthi. However, when the punctal drainage

is on for the next flux cycle, the meniscus near the nasal canthus gets narrower again.

In the model, we assume a flux cycle to be 10 time units. The time-dependent flux

boundary condition (3.42) is specified as non-zero for the first 5 time units of each flux
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Figure 4.8: The flux direction field at the end of first flux cycle. E 6= 0
and G = 0. (Far fewer arrows than the computational grids are shown
for clarity. All the arrows in this plot start at different locations.)

cycle and zero for 5 < t < 10. The on-off transition time is very short (c.f. Table 3.1).

Once the boundary flux turns off, tear fluid starts to collect at the nasal canthus due

to the low pressure caused by the relatively large curvature of the film surface there.

Thus, we see the maroon band near the nasal canthus is wider at the end of each flux

cycle in Figure 4.5 (t = 10 and t = 20). The pressure at the nasal canthus starts to

increase and this prevents a steep pressure gradient that would eventually cause the

simulation with time independent, nonzero boundary fluxes to stop [73]. In general,

as Maki et al. [73] speculated in their paper, the time-dependent boundary condition

helps avoid large interior pressure gradients by having the punctal drainage active for

a short time.

We now turn to the the case with gravity active, E 6= 0 and G 6= 0. Gravity

redistributes the tear film from the top to the bottom of the domain and may be

another important effect on tear film dynamics, e.g., if the tear film is thick enough

[12, 71]. The right column of Figure 4.5 illustrates the tear film thickness withG = 0.05.

Similar to prior results, the black line develops rapidly and is persistent. However, due

to the gravitational effect, the maroon band representing the lower meniscus widens
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Figure 4.9: The flux direction field at the end of first flux cycle with
E 6= 0 and G = 0.05. (Far fewer arrows than the computational grids
are shown for clarity. All the arrows in this plot start at different
locations.)

significantly in this computation; this means more tear fluid is collected at the bottom.

Tracking the same time sequence of plots with or without gravity, we see that a bulge of

new tear fluid supplied by the lacrimal gland is being driven downwards. It penetrates

through the black line and then exits the interior to the lower meniscus, but only near

the temporal canthus. The direction of the fluid motion at the end of first cycle (t = 10)

can be seen in Figure 4.9. All the arrows in the inner dark region are pointing toward

the lower eyelid for that slow flow. The light area intruding inside the dark region

shows the relatively fast movement of the bulge of fluid. The pressure plots at t = 4

and 10 are shown as Figure 4.10. Other than a slight pressure gradient from top to

bottom in these figures, the plots are similar to the other pressure plots shown.

The existence of black line once formed is persistent for all the cases in Figure

4.3 and Figure 4.5. Even though, with the presence of gravity, the influx bulge breaks

through the black line near the lacrimal gland and temporal canthus, it does not move

into the interior and does not help to ameliorate the thinning process of the interior

region.
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Figure 4.10: Pressure distribution for E 6= 0 and G 6= 0.

4.4.2 Volume Conservation

Now that we have visualized some results for the model, we now turn to some

integrated (global) quantities to illustrate that the method is working consistently. The

accuracy of the numerical method has been tested by Maki et al. [73] by formulating a

test problem with known exact solution on a domain comprising a rectangle with a cir-

cular hole cut out. Refinement of the grids yielded convincing numerical evidence of a

second order convergence rate in the space variables, consistent with theoretical expec-

tation. In addition, they conducted tests on the eye-shaped domain and achieved good

accuracy as well. In both cases, mass conservation was a reasonably good indicator

of the error. To give an indication that the numerics also work well for this problem,

we verify conservation of mass, or in our case volume since the density is constant.

The volume of the tear film at all time equals the initial volume minus the amount of

evaporation loss and the amount of the net flux from the boundary condition:

V (t) = V (0)− e(t)− F (t), (4.3)

where e(t) and F (t) are the volume of tear film that evaporates away and the net flux

through the boundary, respectively. Expressions for these can be found by integrating

(4.1) with respect to space and time:

V (t)− V (0) + E

∫ t

0

∫
Ω

JdAdτ︸ ︷︷ ︸
e(t)

+

∫ t

0

∫
∂Ω

Q · nbdsdτ︸ ︷︷ ︸
F (t)

= 0. (4.4)
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Here Ω is the (eye-shaped) domain of the computation, and the integration in space is

over this domain. To verify if the numerical results conserve the fluid volume as stated

in equation (4.3), we plot V (t) and V (0)− e(t)− F (t) for various cases.

Time Err(t) Percentage of V (0)
1 0.0181 0.1253%
5 0.0353 0.2442%
10 0.0456 0.3159%
20 0.0582 0.4030%

Table 4.1: No flux boundary condition and no evaporation.

First, we neglect evaporation and use a no-flux boundary condition, i.e., e(t) =

F (t) = 0. In this case, the difference between V (t) and V (0) increase with time, but

remains small. The error in volume conservation is defined as Err(t) = |V (0)− V (t)|

and is listed in Table 4.1. The error in volume conservation remains well below 1% for

all the times considered.

Second, we check volume conservation for those cases for which we imposed

the time-dependent flux boundary condition (3.42) with or without evaporation. The

results are plotted in Figure 4.11. The error in the volume conservation at the end of

the first flux cycle (t = 10) is 0.0585 for E = 0, and 0.0574 for E 6= 0. These represent

an error in volume conservation of less than 1%. Overall, the method appears to work

well for the model with evaporation and time-dependent flux boundary condition.

4.4.3 Recovering the Thinning Rate

We obtain the non-dimensional evaporation rate theoretically by differentiating

e(t), the volume of tear film that evaporates. Equation (4.4) yields

d

dt
e(t) = E

∫
Ω

J(x, y, t)dA.

Figure 4.12 shows the evaporation rates vs. time for various cases. The evaporation

rate is nearly constant for the first 20 time units. We denote the constant as Qe ≈ 0.078
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Figure 4.11: Results for the time-dependent flux boundary condition.

(notice that the scale of the coordinate of Figure 4.12 ranges from only 0.077 to 0.0784

). Dimensionally, our model predicts the evaporation rate to be 0.58µl/min.

The model recovers the tear film thinning rate that we used to set the evap-

oration parameters, providing a consistency check on the computations. Nichols et

al. [92] have found that the mean rate of thinning of the pre-corneal tear film is

3.79 ± 4.20µm/min. In our model, the area of the eye-shaped domain is about 5.934,

i.e. 148.34mm2 dimensionally. If the calculated evaporation rate is divided by area of

the domain, we obtain an average thinning rate of the tear film of 3.91µm/min. That

matches our assumed average thinning rate, 4µm/min.

4.4.4 Compensation of Evaporation Loss

For the previous results, the influx and efflux from the time-dependent flux

boundary condition (3.42) are balanced over a flux cycle. However, this may not be
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Figure 4.12: Evaporation rate
d

dt
e(t) of various cases.

what happens in the eye. New tear fluid is supplied from the lacrimal gland to offset

tear film loss, and then tear film is recovered to its initial state from evaporation

and any redistribution due to surface tension and gravity after each blink. Hence, we

attempt to modify the flux boundary condition to compensate for the evaporation loss.

To the original balanced flux boundary condition, we add Q̃lg(s) to provide additional

time-independent tear supply through the lacrimal gland at a rate of Qe, the same as

the model predicted evaporation rate, as formulated in Equation (4.5):

Q · nb = Qlg(s, t) +Qp(s, t) + Q̃lg(s). (4.5)

Here Qlg(s, t) and Qp(s, t) are given by Equation (3.43)–(3.47), and Q̃lg(s) is formulated

as

Q̃lg(s) =



0, if s < slg,on −∆slg;

− 1
2 Q̃0lg

[
cos
(
π
2
s−slg,on

∆slg
− π

2

)
+ 1
]
, if |s− slg,on| ≤ ∆slg;

−Q̃0lg, if slg,on + ∆slg ≤ s ≤ slg,off −∆slg;

− 1
2 Q̃0lg

[
cos
(
π
2
s−slg,off

∆slg
+ π

2

)
+ 1
]
, if |s− slg,off | ≤ ∆slg;

0, otherwise,

(4.6)

with

Q̃0lg =
Qe

slg,off − slg,on
.
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Figure 4.13: Contours of tear film thickness with flux compensating the evaporation
loss and G = 0.

The simulation with flux boundary condition specified as Equation (4.5) is useful

for understanding tear film dynamics. We make an attempt to understand the natural

tear film dynamics by adjusting the conditions in the computations. In Figure 4.13

(cf. Video 3), similar patterns to the cases with a balanced flux boundary condition

are observed in the tear film thickness. A black line emerges early in time near the

meniscus and persists throughout the flux cycles. The tear film in the interior keeps

thinning as a result of evaporation. More fluid is collected in the meniscus, especially

near the lacrimal gland, because of the influx. However, the larger amount of fluid

there still can not penetrate past the black line into the interior [83]. We can not fully

restore the tear film to close to its initial uniformly thick distribution in the interior by

merely providing more fluid through the lacrimal gland. The blink, with its attendant

lid motion, is indispensable to evenly spread the new tear fluid collected in the meniscus

into the inner region separated by the black line.
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4.4.5 Comparison with Experiment

4.4.5.1 Evaporation

It is important to put our computed evaporation rate in context with measured

values over the last few decades for comparison. A number of researchers, as reviewed

by Tomlinson et al. [113], have measured the evaporation rate with both direct fluid-

capture techniques (that measures the fluid loss from the ocular surface) and indirect

interferometric technique (that measures the tear film thinning). Results of the direct

mass measurements were reported in different units, such as g/cm2/sec and µl/min. In

order to compare all these results, Tomlinson et al. [113] converted the different units

by assuming the density of tear fluid to be that of water (103kg/m3) and the area of

the ocular surface to be 167mm2. The evaporation rates reported by Nichols et al. [92]

and Tomlinson et al. [113] have a discrepancy when they are converted to the same

units. Kimball et al. [52] speculate that the origin of the difference is that most of the

measurements reviewed by Tomlinson et al. [113] were conducted using a preocular

chambers. The air flow over the tear film surface is restricted by the chambers, which

retards evaporation. The evaporative parameter of the model is estimated based on

the assumption of room temperature and free air conditions. The evaporation rate

(0.58µl/min) predicted by our model agrees well with that measured by Nichols et al.

[92] using interferometric technique in a free air condition, and close to the results of

Liu et al. [68] (0.40± 0.14µl/min), which was measured using the ventilated-chamber

method, even though it is about 4 times larger than the average evaporation rate of

those reported from direct measures of fluid mass loss [113].

4.4.5.2 Hydraulic Connectivity

In Figure 4.1, we showed experimental results from an interblink where reflex

tearing caused new tear fluid to enter the exposed tear film and flow along the menisci.

From that same sequence we show a different time, and compare it with our computed

results. Figure 4.14 (cf. the supplementary videos in Li et al. [67]) shows this com-

parison at one time, and reveals that our model captures some of the details of the
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Figure 4.14: Comparison with experiment.

development of hydraulic connectivity correctly. In Figure 4.14b, the arrows indicate

the direction of the fluid flow and shading represents the magnitude of the flux as

before. Along the upper eyelid, all the arrows are pointing towards the nasal side,

and the fluid moves relatively fast. Along the lower eyelid, near the lacrimal gland,

the arrows in the light background push the dark region towards the nasal side, which
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means the new tear provided by the boundary condition is pushing its way towards

the nasal canthus. These trends agree with the frame shown in Figure 4.14a. More

detailed comparison can be problematic, however; the volume of the exposed tear film

and the volume flux of fluid into it are unknown and difficult to measure.

Our model provides a global prediction about the fluid motion in the eye-shaped

domain: all the fluid in the meniscus is traveling towards the nasal canthus. The motion

of the dimmed part of the fluid in the experimental image is yet to be measured by

any experiments to our knowledge.

4.5 Conclusion

We present a tear film dynamics model on an eye-shaped domain that includes

capillarity, gravity, evaporation, ocular surface wettability and time-dependent flux

boundary conditions. We significantly extended existing tear film models, providing

new insights about tear film dynamics. The inclusion of ocular surface wettability in

the model prevents the tear film from reaching zero thickness in the computations, but

includes break up as reaching a small nonzero equilibrium thickness, which enables us

to conduct numerical simulations for longer times. Our model also captures new details

about tear flows in the meniscus, which is beyond the reach of one-dimensional models.

We also described experiments using fluorescein that visualized tear film thickness

changes, and indirectly, the supply of fresh tear fluid and where the more diluted fluid

moves.

The time-dependent flux boundary condition that captures some effects of blinks

is formulated based on eye researchers’ descriptions [28] and other studies about the

tear supply and drainage mechanisms [81, 41]. We began by balancing the influx and

efflux through the lacrimal gland and puncta in the boundary condition. The model

captures some key physics of the tear film dynamics observed by ocular scientists,

such as the emergence of black line, evaporation, and hydraulic connectivity. Then,

we modified the lacrimal supply to compensate the evaporation loss in an attempt to

restore the tear film structure to its initial thick state in the interior. In the model, tear
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fluid supplied from the the lacrimal gland is unable to relieve the evaporation thinning

in the interior region with the presence of black line. A blink is well necessary to evenly

spread the new tear fluid.

Evaporation is well captured by our model for comparison with well-controlled

laboratory experiments. The result yielded by the model is comparable to the mea-

surements conducted with the ventilated-chamber method or in the free air [68, 52],

though that rate is larger than the average evaporation rate measured using preocular

chambers [113].

Our results also reveal that the hydraulic connectivity is largely controlled by the

pressure gradient created by the flux though the lacrimal gland and puncta. The hy-

draulic connectivity is also aided by the shape of the lid margin, which causes low pres-

sure regions to form and draw fluid toward the canthi. The model correctly captures the

overall trend that tear fluid flows towards the nasal canthus along the upper and lower

eyelids from the temporal canthus as observed in vivo by various researchers. However,

due to the lack of experimental information about the flux through the lacrimal gland

and flow in the meniscus, we are unable to make quantitative comparisons about the

hydraulic connectivity with experimental results.
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Chapter 5

COMPUTED TEAR FILM AND OSMOLARITY DYNAMICS ON AN
EYE-SHAPED DOMAIN

5.1 Introduction

Incorporating osmolarity dynamics into the existing tear film model is of in-

terest. Osmolarity is essentially the salt ion concentration in the tear film. It is hy-

pothesized to cause the dry eye symptoms such as irritation and redness [7]. However,

the measurement of osmolarity is nearly always limited to the temporal canthus (e.g.,

Lemp et al. [63]). Measurements of the osmolarity in the meniscus provide little di-

rect information for the interior regions, though the variation measured near the outer

canthus is thought to be helpful in diagnosing dry eye. Therefore, theoretical studies

of the osmolarity in an eye-shaped domain may provide insight about the osmolarity

distribution over the ocular surface.

In this chapter, we compute the complete model equations (3.37) – (3.39) that

combine tear film flow, evaporation, osmolarity and osmosis on a 2D eye-shaped do-

main. To our knowledge, this is the first such model that incorporates the osmolarity

dynamics in a 2D tear film model. Our computational results predict the tear film

thickness and osmolarity dynamics simultaneously, revealing the interaction and cor-

relation between tear fluid and osmolarity. Most of all, our model adds significant

new results about the distribution of osmolarity over the exposed ocular surface. We

believe that these results will impact the understanding of osmolarity dynamics in the

tear film as well as the measurement of this important quantity.

We present results for the tear film thickness h(x, y, t) and the osmolarity

c(x, y, t) on the 2D eye-shaped domain (Figure 3.1) from numerically solving the model

system Eq. (3.37)–(3.39) formulated in Chapter 3. We vary the water permeability
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Pc and the thinning rate (evaporation) that sets the non-equilibrium parameter K̄ in

order to study their influence on the dynamics of tear film fluid and osmolarity. We

also explore two types of boundary condition for the osmolarity c(x, y, t): (i) Dirichlet,

given by (3.48), and (ii) homogeneous Neumann, given by (3.49).

5.2 Numerical Methods

We solve the equations (3.37)–(3.39) on the eye-shaped geometry (Figure 3.1) us-

ing the Overture computational framework (http://www.overtureframework.org. Pri-

mary developer and contact: W. D. Henshaw, henshw@rpi.edu), which is a collection

of C++ libraries for solving PDEs on complex domains [23, 42]. The corresponding

boundary conditions must be applied: (3.41), (3.42) and one of (3.48) or (3.49). Note

that the flux condition (3.42) is readily converted into a Neumann condition on p [43].

The initial conditions must be applied as well, using smoothed versions of (3.50) and

(3.38), as well as (3.51).

5.2.1 Computational Grid

Figure 5.1: Improved computational grid on the eye-shaped domain.

The tear film is relatively thin and flat in most of the interior of the exposed

ocular surface; the thickness increases rapidly near the eyelids, forming relatively steep

72



menisci around the boundary of the corresponding computational domain. In order

to solve the tear film model efficiently, we use five component grids whose union is

the computational grid. The component grids consist of one Cartesian background

grid that has grid lines aligned with the coordinate axes, and four boundary-fitted

grids near the boundary. The solution values are interpolated between grids where

they overlap. We generated a computational grid using the built-in capabilities of

the Overture computational framework. We extend the boundary fitting grids from

the boundary using transfinite interpolation (TFI), which is a generalized shearing

transformation that maps the unit square onto the region bounded by four curves

[23, 42]. Unlike grids based on extending normals from the boundary (Figure 4.2)

[72, 73, 67], we can extend the boundary-fitting grids as much as we want without

worrying about intersecting normal lines. This provides us with boundary-fitting grids

that are wide enough to cover the menisci of the tear film. In addition, we double the

grid spacing for the background Cartesian grid to reduce the number of grid points

compared to previous work [72, 73, 67]. The new grid, plotted in Figure 5.1, reduces

the total number of grid points by about 14% while achieving better overall accuracy

for test problems (the new grid has a total number of 235,018 grid points). Unless

otherwise noted, all the simulation results presented in this Chapter are computed

using the computational grid in Figure 5.1.

5.2.2 A Hybrid Time-Stepping Scheme

To solve the equations (3.37)–(3.39), we first discretize the spatial derivatives

using the second-order accurate finite difference method for curvilinear and Cartesian

grids from Overture. Since the model equations (3.37)–(3.39) are weakly coupled by

osmosis (terms involving Pc), we developed a hybrid time stepping scheme to solve the

coupled system: we first solve the equation (3.39) for c using a dynamic explicit Runge-

Kutta-Chebyshev (RKC) method [107]. Then we update the h and p equations (3.37)

and (3.38), and solve them using a variable step size BDF method with fixed leading

coefficient based on [17, 72, 73]. The resulting nonlinear system of the BDF method
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is solved using Newton’s iteration method. Solutions on different component grids are

coupled by interpolation. The RKC method is suitable for this problem because it has

an extended stability region with a stability bound that is quadratic in the number

of stages, and as an explicit method it is fast and easy to implement. We exploit

the nonlinear power method for an estimation of the largest eigenvalue of the spatially

discretized system from (3.39) for c, and we use the quadratic relation to determine the

number of stages needed for the RKC method. We have empirical criteria to determine

whether an approximation is accepted or not. The number of stages is updated at every

successful time step. More detailed description and preliminary tests of this method

appear in Chapter 6.

5.3 Results

5.3.1 Constant Nonzero Permeability

We begin by presenting results for the model with the same constant water per-

meability over the whole ocular surface; we use the corneal permeability corresponding

to Pc = 0.013 measured by [59, 19]. Figure 5.2 shows the contours of the simulation

results. The left column represents the tear film thickness, and the right column rep-

resents the osmolarity. We see the dark band (blue online) set inside of the boundary,

representing the so-called black line, emerges rapidly near to and inside of the menisci

in the left column. The black line develops due to capillary action resulting from the

positive curvature of the menisci generating a low pressure that sucks fluid into the

meniscus. A local minimum thus forms near the meniscus, and is referred to as the

black line. In addition, the canthi in the 2D eye-shaped domain induce a second di-

rection of curvature, creating an even lower pressure that attracts fluid. Therefore,

the tear film near the two canthi is often thinner than at other parts of the black line.

In this case, the global minimum is located near the nasal canthus, which is sharper

(more curved) than the temporal canthus. The formation of the global minimum is also

promoted by the efflux of fluid near the nasal canthus due to the boundary conditions

that mimic punctal drainage from this region. This also shows that both the thickness
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Figure 5.2: Contours of tear film thickness (left column) and osmolarity
(right column) with constant permeability of Pc = 0.013 all over the
exposed ocular surface and with Dirichlet boundary condition (3.48)
on the osmolarity. The thinning rate is 4µm/min.
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and osmolarity vary significantly away from the vertical line through the center of the

cornea. Note 1D models formulated along this line do not account for this variation.

The redistribution of fluid due to surface tension also causes a small ridge to form on

the interior side of the black line. This is seen as a light band (turquoise online) in the

left column of Figure 5.2. This light band is a ridge that has been seen in a number

of other studies [72, 73, 67]. The tear film thickness in the interior decreases steadily

throughout the computation because of evaporation; this is visualized by the continual

darkening of the interior in the contour plots.

The corresponding osmolarity contours are plotted in the right column of Figure

5.2. Generally, the osmolarity increases more where the tear film is thinner, such as

in the black line and canthi regions. This is in qualitative agreement with the results

of [127]; we return to a direct comparison with their 1D results for Pc = 0 in the next

section. The global maximum of osmolarity is in the nasal canthus that corresponds

to the location of thinnest tear film. In the osmolarity plots, we observe a bright band

indicating that a region of elevated osmolarity is forming near the developing black

line. Osmolarity in the interior continues to increase as a result of evaporation, and

the interior of the eye-shaped domain becomes brighter in the plots. In the region

where tear film forms a small ridge, a corresponding darker band is also present on the

interior side of the brighter band in the osmolarity plots.

The vertical cross-sectional plots (x = 0), shown in Figure 5.3, illustrate more

directly the correlation between the tear film thickness and osmolarity: the osmolarity

is roughly the reciprocal of the tear film thickness except in the black line and meniscus

regions. Furthermore, comparison between Figure 5.3 and Figure 5.5 for the zero

permeability case in the next section also reveals the effects of osmosis: the tear film

is slightly thicker while the osmolarity is obviously smaller for the constant nonzero

permeability case.
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Figure 5.3: Cross-sectional plots through the vertical line x = 0 with
Pc = 0.013 and Dirichlet boundary condition (3.48). The thinning rate
is 4µm/min and the upper eyelid is located on the positive side of the
y-axis.

5.3.2 Zero Permeability

Now we consider our model on an impermeable ocular surface, i.e. Pc = 0, so

as to reveal the effect of osmosis by comparing with the previous results in §5.3.1, and

we make comparisons with existing studies on 1D domains to show that our model

provides consistent predictions. In this case, no water is supplied in response to the

increased osmolarity that occurs when water evaporates from the tear film. Figure

5.4 shows the contours of both tear film thickness and osmolarity on the eye-shaped

domain at t = 25. It shows that both the thickness and osmolarity vary significantly

away from the vertical line through the center of the cornea. For example, the global

minimum of tear film thickness is located in the nasal canthus and is much smaller

than that in the cross-sectional plot. Furthermore, there is a spike in the osmolarity

contour with a global maximum as large as max(c) = 4.8031 in the nasal canthus.

These global extrema and their locations cannot be found via 1D models, and to our

knowledge are not available from clinical measurements either. From Figure 5.4, we

also see more elevated osmolarity at the black line region, and the lowest concentration

is located near the lacrimal gland as a result of the fresh tear supply. The tear film

dynamics predicted by this model are in agreement with previous results [67].

The effect of osmosis can readily be seen by comparing the extreme values of

different permeability cases. The extreme values of both h and c for several cases we
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considered in this chapter are listed in Table 5.1. For the constant nonzero permeability

case (Pc = 0.013), the minimum thickness (min(h) = 0.0454) is slightly larger than that

with zero permeability (min(h) = 0.0343) at t = 25. However, the peak of osmolarity

is significantly reduced by osmotic flows: max(c) = 1.7733 with constant permeability

and max(c) = 4.8031 with zero permeability at t = 25. Therefore, according to our

computation, we conclude that the presence of osmotic flux across the corneal surface

may protect the tear film from excessive hyperosmolarity which could cause damage

to the ocular surface and/or denaturation of tear film mucins and proteins [38].

Thinning rate: 4 µm/min 10 µm/min 20 µm/min

Pc = 0 Pc = 0.013 Pc(x, y) Pc(x, y) Pc(x, y)
min(h(x, y, 5)) 0.2043 0.2050 0.2070 0.1880 0.1557
min(h(x, y, 10)) 0.1072 0.1142 0.1294 0.1102 0.0931
min(h(x, y, 15)) 0.0819 0.0847 0.0899 0.0722 0.0506
min(h(x, y, 20)) 0.0716 0.0944 0.1118 0.0906 0.0471
min(h(x, y, 25)) 0.0343 0.0454 0.0492 0.0382 0.0268

max(c(x, y, 5)) 1.1135 1.1069 1.0873 1.2392 1.5629
max(c(x, y, 10)) 1.3925 1.3132 1.1722 1.5091 2.7505
max(c(x, y, 15)) 1.6975 1.4593 1.2673 1.9892 5.3456
max(c(x, y, 20)) 2.4841 1.6448 1.3852 2.6045 5.9684
max(c(x, y, 25)) 4.8031 1.7733 1.5124 3.1486 6.0538

Table 5.1: Extreme values for various cases. Pc(x, y) denotes the variable permeability
case and is given by Equation (3.40).

Zubkov et al. [127] studied a system that included both tear film and osmolarity

dynamics on a 1D domain with a moving end that mimicked blinks; their model assumes

that the ocular surface is impermeable. To compare with their model, we set Pc = 0

and show the cross-sectional plots through the vertical line x = 0; the results are in

Figure 5.5. The cross-sectional curves of our results on the 2D eye-shaped domain are

comparable to the 1D results of [127] during the interblink phase for both the tear

film thickness (Figure 5.5a) and the osmolarity distribution (Figure 5.5b), except that

the development of black line is slower and the maximum osmolarity is higher in our

results. The slower development of the black line in our results is due to the stationary
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Figure 5.4: Contours of tear film thickness (left) and osmolarity (right)
with Pc = 0 and Dirichlet boundary condition (3.48). The thinning
rate is 4µm/min.

domain, because the formation of black line begins during the opening phase according

to previous results on 1D blinking domains [49, 43, 14, 71, 127]. Nevertheless, the

behavior of the tear film thickness in our model is in line with many previous results

of 1D models with stationary ends [12, 124, 66]. The difference between the values of

osmolarity stemmed from the different assumptions of the thinning rate and our longer

time for computing the solution. The thinning rate in the model of [127] is assumed to

be 0.24µm/min, which is much smaller than most of the observations of [92] and our

choice of 4µm/min. Zubkov et al. have considered various evaporation rates to deduce

that evaporation increases osmolarity, and they computed results for only 5 seconds,

which explains the larger values of osmolarity we obtain as shown in Figure 5.5b.
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Figure 5.5: Cross-sectional plots through the vertical line x = 0 with
Pc = 0 and Dirichlet boundary condition (3.48). The thinning rate is
4µm/min and the upper eyelid is on the positive side of y-axis.
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5.3.3 Variable Permeability

In this section, we present simulated results by specifying the variable perme-

ability Pc(x, y) as defined in Equation (3.40). Figure 5.6 shows time sequences of the

contours for both tear film thickness (left column) and osmolarity distribution (right

column). Most of the dynamics of tear film thickness are similar to previous cases,

such as the development of black line and the continuously thinning in the interior as a

result of evaporation. However, due to the variable permeability of the ocular surface,

we observe different patterns of tear film thickness over the conjunctival region and the

corneal region in the left column of Figure 5.6. Since the cornea is less permeable, we

see in the thickness plots that the tear film is thinner in the corneal region; it appears

as a darker (blue) island in the center of the eye-shaped domain.

For the osmolarity distribution shown in the right column of Figure 5.6, several

new patterns are observed beyond the elevated osmolarity in the black line region and

the increasing of osmolarity due to evaporation. Because the cornea is less permeable

than the conjunctiva, less osmotic flow is expected through the cornea, and this ex-

pectation is clearly captured by the model. In the osmolarity contours in Figure 5.6,

we can clearly see a brighter disk in the region of cornea indicating higher osmolarity

there. Combining the effect of surface tension and evaporation, the osmolarity is even

larger in the black line region over the cornea, and the global maximum of osmolarity

is attained there. Comparing with the constant permeability case, both min(h) and

max(c) are slightly changed since, in the variable permeability case, we have a more

permeable conjunctiva.

In order to better observe the transition from conjunctiva to cornea, we plot the

horizontal cross-sectional plots (through the line y = 0.3 which is roughly across the

geometric center of the cornea (GCC)) in Figure 5.7. Because of the puncta drainage

and lacrimal gland supply specified by the time dependent fluid flux boundary condition

(3.42), the tear film thickness is much smaller for x < 0 in Figure 5.7a. A local minimum

of the tear film thickness, or black line, is still observed in the canthus regions due to

the curvature of the menisci. The abrupt change of permeability from conjunctiva
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Figure 5.6: Contours of tear film thickness (left column) and osmo-
larity (right column) with variable permeability (3.40) and Dirichlet
boundary condition (3.48). The thinning rate is 4µm/min.
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to cornea is reflected by the tear film thickness. In Figure 5.7a, we see a rapid drop

of tear film thickness around x = ±1 near the boundary of cornea. The transition

of permeability influences the osmolarity distribution even more dramatically. After

t = 10, the osmolarity in the cornea surpasses the osmolarity in the nasal canthus (the

location of global peak of osmolarity for the zero and constant permeability cases).
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Figure 5.7: Cross-sectional plots through the horizontal line y = 0.3
with variable permeability (3.40) and Dirichlet boundary condition
(3.48). Thinning rate is 4µm/min and the temporal canthus is located
at the positive side of x-axis.

5.3.3.1 Diffusion

Diffusion also plays a role in the osmolarity dynamics. In Figure 5.8, we plot the

diffusive term, −[∇· (h∇c)]/(hPec), in the c equation over the eye-shaped geometry to

investigate its influence on the whole model system. From Figure 5.8, we see that the

diffusion is non-negligible (indicated by the lighter colors for which the magnitude is

greater than 10−2) inside the black line regions; diffusion is actually of the same size

as advection in the black line regions at t = 20. Our direct plots of the diffusion term

on the eye-shaped domain confirm the results on a 1D domain of [127], who studied

diffusion by comparing computed results for models with and without diffusivity. Even

though the Pèclet number is large in the model system, diffusion helps to ameliorate

the high osmolarity level in the black line regions. Diffusion could affect the osmolarity

distribution similarly in local spots of break-up [96].
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Figure 5.8: The contribution of diffusion to osmolarity dynamics. Dif-
fusion is larger (magnitude greater than 10−2) in the lighter areas.

5.3.3.2 Movement of Fluid and Solutes

Figure 5.9 shows quiver plots of the fluid flux Q at time t = 1 and t = 20.

The normalized arrows in the plots show the directions only, and we use the shading

to indicate the magnitude of the flux vector: the darker the background, the smaller

the flux. In particular white indicates a flux greater than 10−2; dark gray is less than

10−3. At t = 1, the formation of black line dominates the movement of tear fluid. We

see from the first plot of Figure 5.9 that relatively fast flow (||Q|| ≥ 10−2) is observed

near the menisci, and all the arrows point toward the eye lids. This is because the

lower pressure created by the menisci attracts the nearby fluid, forming a locally thin

region. This thin region is the black line and corresponds to the dark blue band as
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we pointed out in the thickness contour plots previously. In the second plot of Figure

5.9, relatively fast fluid motion (||Q|| ≥ 10−2) still occurs in the menisci; however,

the arrows in the menisci show that the flow splits near the lacrimal gland and moves

towards the nasal canthus along the eye lids. This hydraulic connectivity is thought to

be caused by the pressure difference created by the time dependent influx and efflux

on the boundary. The pressure gradient in the menisci drives the fluid flows towards

the nasal side.

Li et al. [67] have studied tear flow over the eye-shaped geometry specifying

the same time dependent flux BC (3.42). They discovered that, after the development

of the black line, relatively fast fluid flow occurs in the menisci corresponding to the

experimentally observed hydraulic connectivity, while on the inner side of the black

line region, fluid flow is small. The model in this paper couples the fluid dynamics in

the tear film with the osmolarity and still captures hydraulic connectivity.

The model equations (3.35) and (3.36) can be combined as a single PDE [96]:

∂t (ch) +∇ ·
(
cQ− h

Pec
∇c
)

= 0. (5.1)

Here ch represents the mass per unit area of the solute. From this equation, we see

that the solute would move with fluid flow, ∇ · (cQ), and would diffuse from higher

concentration to lower concentration ∇ · (−h∇c)/Pec. However, since we have a very

large Péclet number for the osmolarity, we expect the solute to move primarily with

the fluid flow. Figure 5.10 shows the contours of the change of the mass per area as

opposed to its initial condition: c(x, y, t)h(x, y, t) − c(x, y, 0)h(x, y, 0). Blue indicates

a decrease of mass, while red represents an increase at that location. The left plot

of Figure 5.10 shows the redistribution of the solute at t = 1. We see a decrease of

mass in the black line region and increase of mass in the menisci corresponding to the

formation of black line; it matches with fluid movement as shown in Figure 5.9. At

t = 20, the redistribution of mass (right plot of Figure 5.10) also matches the fluid

motion; the increase of solute mass corresponds to the influx from the lacrimal gland,

and subsequent flow around the meniscus. The decreases can be explained by the
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drainage that occurred at the puncta. Another interesting point we note from Figure

5.10 is that variable permeability does not have an effect on ch, because Equation (5.1)

does not depend on permeability at all. In general, solutes in the tear fluid move mostly

with the fluid flow. Throughout the time considered, the change of c(x, y, t)h(x, y, t) is

rather small in the interior, and thus the reciprocal relation between c and h generally

holds in the interior eye.

Figure 5.9: Fluid flux (Q) over contours of its magnitude with variable
permeability and thinning rate 4µm/min. (Far fewer arrows than the
computational grid points are shown for clarity. All the arrows in this
plot start at different locations.)
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Figure 5.10: Contour for c(x, y, t)h(x, y, t)−c(x, y, 0)h(x, y, 0) with vari-
able permeability and thinning rate 4µm/min.

Figure 5.11: Contours of tear film thickness (left column) and osmo-
larity (right column) with variable permeability (3.40) and Dirichlet
boundary condition (3.48). The thinning rate is 20µm/min.

5.3.4 Increased Evaporation Rate

The average thinning rate for the precorneal tear film (PCTF) measured by [92]

is 3.79±4.20µm/min, with the fastest observed PCTF thinning rate being 20µ/min. We

attempt to investigate how evaporation influences tear film and osmolarity dynamics

by adjusting the parameters that correspond to an increased thinning rate: 20µm/min.
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Figure 5.12: Cross-sectional plots through the horizontal line y = 0.3
with variable permeability (3.40) and Dirichlet boundary condition
(3.48). Thinning rate is 20µm/min and the temporal canthus locates
at the positive side of x-axis.

Figure 5.11 shows the contours of both h(x, y, t) and c(x, y, t) with parameters

specified such that the thinning rate for a flat film is 20µm/min and with variable per-

meability. Compared with the previous results for the normal thinning rate (4µm/min),

we observe the following effects deduced by elevated evaporation. In the thickness con-

tour plots, we observe that the black line forms more rapidly, the interior tear film

thickness decreases faster to a thinner level, the global minimum is smaller, and the

transition from conjunctiva to cornea is more obvious. The associated osmolarity con-

tours indicate that the osmolarity is more elevated with a larger global maximum value

than the previous 4µm/min case. Moreover, the osmolarity difference between cornea

and conjunctiva is more pronounced. In addition, we can see that tear film thins faster

with higher evaporation by comparing the extreme values listed in Table 5.1. We

deduce that evaporation increases osmolarity, confirming the 1D results of [127].

The horizontal cross-sectional plots shown in Figure 5.12 give another view of

the tear film thickness and osmolarity, as well as their correlation. Clearly, the tear

film becomes much thinner and osmolarity is much more elevated, especially over the

corneal region (roughly −1 ≤ x ≤ 1) than with the normal thinning rate (4µm/min)

case (Figure 5.7). The jump from cornea to conjunctiva is more obvious in both h and

c. Higher osmolarity induces a larger osmotic flux from the ocular surface. Even though
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the thinning rate is 5 times larger, the change in the film thickness and osmolarity are

less than a factor of 5 different than those in Figure 5.7 and Table 5.1.

5.3.5 Osmotic Flux
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(b) Thinning rate is 38µm/min

Figure 5.13: Competition between evaporative loss and osmotic flux
(volume/time)

A healthy eye is able to maintain a balance between tear loss and supply in

a blink cycle. In our model system, we impose time-dependent tear fluid supply and

drainage on the boundary that are balanced over a flux cycle (∆tbc = 10). Over the

ocular surface, water leaves the system by evaporation and is supplied by osmotic

flux. We now study how the osmotic flux responds to evaporation, and whether the

evaporative loss and osmotic flux reach a dynamic equilibrium over the entire eye.
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To evaluate the volumetric flux of evaporation and osmosis, we integrate the

PDE (3.35) over the eye-shaped domain Ω and find:

volumetric flux of evaporation: Fe(t) =

∫∫
Ω

EJ dA,

volumetric flux of osmosis: Fo(t) =

∫∫
Ω

Pc(c− 1) dA.

We plot Fe(t) and Fo(t) together in Figure 5.13 to investigate the competition between

evaporation and osmosis over the eye-shaped domain. Both plots in Figure 5.13 are

simulation results with variable permeability, but with different thinning rates. Note

that 38µm/min is the thinning rate of the bare water interface [96]. As is seen in

the plots, osmotic flux is induced immediately in the simulations. The osmotic flux

increases much faster with the higher thinning rate (38µm/min), and is seen to reach

an equilibrium after t = 15. The volumetric flux of evaporation stays almost constant

for the 20µm/min case, while a slight decrease is observed for the 38µm/min case.

Faster evaporation makes the tear film thin faster, and reach the equilibrium thickness

at more locations on the eye. The presence of van der Waals forces prevents the

tear film from completely dewetting the ocular surface, and evaporation is shut off

when and where a very thin equilibrium h is reached. This results in a decrease of

volumetric flux of evaporation over the entire eye. We believe that ultimately the

evaporation and osmosis would balance each other and the system would achieve a

dynamic equilibrium. However, we cannot verify this because the pressure gradient

inside the tear film, between the meniscus and the interior, becomes too steep for our

current numerical methods to accurately resolve after t = 25. Similar issues limited

the amount of time that could be computed in previous models as well [72, 73, 67].

We also doubt that the equilibrium between evaporation and osmosis can be observed

in experiments because, before the equilibrium is reached, reflex tearing and/or blinks

are more likely induced when the osmolarity level is high enough.
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5.3.6 Neumann Boundary Condition for the Osmolarity

We also consider the homogenous Neumann boundary condition (3.49) for our

system. It specifies no flux for osmolarity on the boundary; that is, solute cannot pass

through the boundary. The computed results with this Neumann boundary condition

(3.49) is rather similar to previous results using the Dirichlet boundary condition (3.48).

This is because there is a large amount of fluid in the menisci and the fluid interaction

between the menisci and interior is small due to the presence of black line separat-

ing them. Our numerical simulations using the Neumann boundary condition (3.49)

also confirm that there is negligible difference from the results of using the Dirichlet

boundary condition (3.48). Therefore, we do not include the results of the Neumann

condition in this paper. However, results of the Neumann boundary condition are

used to check the conservation of solute mass in our model system as an indication of

numerical accuracy.

Integration of Equation (5.1) over the domain Ω gives the rate of change of the

overall solute mass:

∂tM(t) +

∫∫
Ω

∇ ·
(
cQ− h

Pec
∇c
)
dA = 0.

Using the divergence theorem we obtain

∂tM(t) +

∮
∂Ω

(
cQ− h

Pec
∇c
)
· nb dS = 0, (5.2)

where M(t) =

∫∫
Ω

ch dA is the total mass of solute over the eye at time t. If we specify

zero flux boundary condition for the fluid,

Q · nb

∣∣∣
∂Ω

= 0 (5.3)

and homogenous Neumann boundary condition (3.49) for the osmolarity, then we con-

clude from Equation (5.2) that

M(t) = M(0),

that is, the solute mass is conserved over time. If our numerical simulation is reliable,

the difference of mass defined as ∆M(t) = |M(t) −M(0)|, where M(t) is computed
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Time ∆M(t) Percentage of M(0)
5 0.0345 0.2452%
10 0.0542 0.3756%
15 0.0689 0.4774%
20 0.0812 0.5625%
30 0.1012 0.7015%

Table 5.2: Conservation of mass with boundary conditions (5.3) & (3.49)

numerically, should remain small throughout the simulation, and the magnitude of

∆M(t) can be regarded as an indication of the performance of the underlying numerical

method as described in Section 5.2.

Table 5.2 lists both the absolute and relative changes of solute mass at various

time for the computation with zero fluid flux BC and homogeneous Neumann BC

for the osmolarity. The mass is not exactly conserved because numerical errors are

introduced at every time step, and they accumulate slowly with time. From Table 5.2,

we see that ∆M(t) increases with time, but the growth is not exponential, which can be

regarded as a numerical evidence that the method is stable. Moreover, the numerical

method we use is able to keep ∆M(t) very small throughout the computation; the

relative change of mass is below 1%.

5.4 Conclusion

The mathematical model in this Chapter combines tear film flow, evaporation,

osmolarity and osmosis on an eye-shaped domain representing the exposed ocular sur-

face. To our knowledge, this is the first such model that includes the osmolarity in

a two-dimensional tear film model. The results give information that we believe is

not available from human subjects or animal models of the tear film. We believe that

these results help give context to osmolarity measurements in vivo [9, 63]. The results

show that the location and value of the minimum tear film thickness and maximum

osmolarity are found to be sensitive to the permeability at the tear/eye surface.
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Measurements of tear film osmolarity in human subjects are made from the in-

ferior meniscus, or more commonly, the temporal canthus. These measurements have

been calibrated with respect to DES so that diagnosis of DES is possible with better

single-measurement specificity and sensitivity than other single signs or symptoms of

DES [35, 63, 108]. But how do those measurements relate to what is going on in the

dynamics of the rest of the tear film? For low evaporation rates of 1 micron/min or

less, our results are similar to those of Zubkov et al. [127], with modest increases of os-

molarity away from meniscus and particularly in the black line. For larger evaporation

rates and longer interblink times, such as those that may be encountered in clinical

experiments, our results indicate higher osmolarities. With variable permeability as

suggested by experimental measurement [59], we find that for 4µm/min thinning rates,

the peak value of the osmolarity increases 51% over the isotonic value, or about 457

Osm/m3. This is just at the edge of sensory detection according to the results of Liu

et al. [69], assuming that there is no neuropathy present that would reduce sensory

perception at the ocular surface. For 10 and 20 µm/min thinning rates, we obtain

maximum values of 951 and 1828 Osm/m3, respectively; these values are quite high

compared to what is mentioned for measurements reported in the literature, and would

certainly be felt by subjects with normal neural function [69]. For all of these cases,

the maximum occurs in the black line over the cornea. For the current model, there is

very little change in the osmolarity in the outer canthus, which would make it difficult

to use that location to deduce the different maxima in the osmolarity.

There are some limitations to the current study for linking the osmolarity mea-

sured in vivo with the computed results: (i) In our model, there is no lid motion to mix

the tear fluid as occurs in vivo. This may be a significant component to the variability

observed in vivo. (ii) Once the black line is formed in the computed results, there is

little exchange between the tear film in the interior with the meniscus. The supply and

drainage of tear fluid occurs in and affects primarily the meniscus, and this tends to

hold the meniscal values of the osmolarity close to the isotonic value. (iii) The volume

of tear fluid is probably large compared to DES subjects, and could affect the values of

92



osmolarity obtained. (iv) The model does not include break up per se, and there have

been results that suggest that the osmolarity could be quite high in these localized

regions (e.g. [69, 59, 15, 11, 96]). These points suggest possible fruitful directions for

future research. Additional directions would include an dynamic lipid layer that affects

the evaporation rate in a sensible way on the eye-shaped domain; possible models are

those of of Bruna and Breward [20] and Peng et al. [96].
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Chapter 6

NUMERICAL METHODS FOR COMPUTING TEAR FILM AND
OSMOLARITY DYNAMICS ON AN EYE-SHAPED DOMAIN

6.1 Introduction

In this chapter, we discuss in detail the numerical methods that are used to

compute the model system (3.37)–(3.39) on the eye-shaped domain (Figure 3.1). We

discretize the eye-shaped domain using composite overlapping grids (Figure 4.2 & Fig-

ure 5.1), which consist of four boundary fitting grids that approximate solutions near

the eye-shaped boundary and a background Cartesian grid covering the rest of the

domain. The spatial derivatives in the equations are approximated with a curvilinear

finite difference method. After discretization of the spatial variables, the model PDEs

become a system of differential algebraic equations (DAE) with respect to time, which

are then integrated using a hybrid time-stepping scheme that is developed based on the

idea of fractional-step (splitting) methods [64]. We developed this hybrid time-stepping

scheme with consideration of the stiffness of the DAE system. The DAEs resulted from

the discretization of Equations (3.37) & (3.38) are very stiff (by definition, DAEs are

infinitely stiff), so we want to use an implicit method to maintain stability of the

numerical solutions while keeping relatively larger time steps for computational effi-

ciency. The ODE system that is obtained from discretizing Equation (3.39) is of mild

stiffness. Therefore, it can be solved using a special explicit method that has a large

stability region. Additionally, we observed that the whole model system (3.37)–(3.39)

is only weakly coupled by osmosis (terms involving Pc). Thus, we are able to solve the

coupled system separately using an explicit Runge-Kuttta-Chebyshev (RKC) for the

mildly stiff equations and a Backward Differentiation Formula (BDF) method for the

extremely stiff equations. All the numerical simulations on 2D domains are conducted
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using Overture computational framework (http://www.overtureframework.org. Pri-

mary developer and contact: W. D. Henshaw, henshw@rpi.edu), which is a collection

of C++ libraries for solving PDEs on complex domains [23, 42].

We introduce the basic concepts of composite overlapping grid in Section 6.2,

the BDF method in Section 6.3, and the RKC method in Section 6.4, with an emphasis

on the RKC method. In Section 6.5, we focus on the implementation of the hybrid

method. A preliminary test problem is solved to demonstrate the numerical accuracy

in Section 6.6. Finally, we conclude our numerical study in Section 6.7.

6.2 Composite Overlapping Grid

The concept of composite overlapping grids and algorithms for generating them

were discussed by Chesshire and Henshaw [23]. We only give a brief introduction here

as background information for our numerical methods.

Figure 6.1: Composite overlapping grids on a unit disk.
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A composite overlapping grid consists of a set of logically rectangular curvilinear

component grids. The union of the component grids covers the computational domain,

and the component grids overlap where they meet. Grid functions defined on different

component grids are coupled by interpolation. One major advantage of composite

overlapping grids is its capability of generating computational grids on domains of

complicated geometry (e.g., the eye-shaped domain used in our models). We use Ogen

[42], the overlapping grid generator of Overture, to generate our computational grids.

For example, the grids shown in Figure 6.1 are created using Ogen. This is a composite

overlapping grid on a unit disk consisting of one component grid near the boundary and

one Cartesian component grid covering the rest of the disk. The two component grids

overlap where they meet; algorithms implemented in Ogen determine the overlapping

regions and interpolation procedures automatically. We use this grid, together with its

refinements, to solve test problems discussed in Section 6.6.

6.2.1 Discretization on Composite Overlapping Grids

To numerically solve PDEs on a composite overlapping grid, we discretize the

spatial derivatives first. Since each component grid is logically a rectangle (i.e., there

exists a smooth mapping of a rectangle onto the component grid), it is suitable to

approximate derivatives using finite difference methods on the rectangle with the given

mapping. To be specific, consider a PDE of u(x, y, t) on domain Ω ⊂ R2:

F
(
∂tu(x, y, t), ∂xu(x, y, t), ∂yu(x, y, t), u(x, y, t)

)
= 0, (x, y) ∈ Ω. (6.1)

The domain Ω is discretized by a composite overlapping grid:

G =
n⋃

k=1

Gk,

where Gk is a component grid. Each Gk discretizes a subdomain Ωk of Ω, together

with a mapping fk that maps a unit square [0, 1] × [0, 1] onto Ωk. On the subdomain

Ωk, we transform the PDE (6.1) into a PDE on the unit square:

F
(
∂tuk(r, s, t), ∂xuk(r, s, t), ∂yuk(r, s, t), uk(r, s, t)

)
= 0 for (r, s) ∈ [0, 1]× [0, 1] ,
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where (x, y) = fk(r, s) and uk(r, s, t) = u(fk(r, s), t). From the chain rule, we know that

∂xuk(r, s, t) = ∂ruk(r, s, t)∂xr + ∂suk(r, s, t)∂xs,

∂yuk(r, s, t) = ∂ruk(r, s, t)∂yr + ∂suk(r, s, t)∂ys.

The derivatives ∂xr, ∂yr, ∂xs, and ∂ys are calculated from the inverse of the given map-

ping fk. At a grid point (xi, yj), we denote the approximation of u(xi, yj, t) = uk(ri, sj, t)

by Ui,j(t). Thus, we can approximate the spatial derivatives using standard finite dif-

ference methods for rectangular grids. For example, the approximation of ∂ruk(ri, sj, t)

following the second order centered finite difference scheme is given by

∂ruk(ri, sj, t) ≈
Ui+1,j(t)− Ui−1,j(t)

2∆r
.

Overture provides the derivatives (∂xr, ∂yr, ∂xs, and ∂ys ) of the transformation

at grid points, and offers a wide range of methods to discretize the other derivatives on

the unit square domain [0, 1]× [0, 1]. Moreover, Overture uses interpolation to obtain

grid function values at points where component grids overlap. In this dissertation, we

use the second order centered finite difference scheme and second order interpolation

for all our calculations.

After discretizing the spatial derivatives, the PDE (6.1) becomes a system of

ODEs/DAEs for Ui,j(t). Therefore, we are also interested in time-stepping methods to

solve the system of equations for Ui,j(t).

6.3 BDF Method

In this section, we introduce the variable step size BDF method with fixed

leading coefficient; it is an implicit time-stepping method that is suitable for stiff

systems. This method is introduced in Chapter 5 of the book by Brenan et al. [17],

and is used by us to solve tear film model on the 2D eye-shaped domain in Chapter 4.

Maki et al. [72, 73] utilized this method for their simulations as well.
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The BDF method discussed here is for solving DAE system of index zero or one

of the following form:

F
(
t,u(t),u′(t)

)
= 0,

u(0) = u0,

u′(0) = u′0.

Here F,u(t),u0,u
′
0 are all vectors of dimension N . The idea of the BDF method is to

replace u′ at current time tn+1 with a backward differentiation formula and to solve the

resulting nonlinear equations for Un+1, where Un+1 is the numerical approximation of

u(tn+1). To be specific, suppose we know Un−i for i = 0, 1, . . . , k, where k is the order

of BDF method we plan to use, namely, we know the numerical approximations of u(t)

for the previous k + 1 times. An initial guess of the solution and its derivative at tn+1

is obtained from the predictor polynomial ωP
n+1(t), which is the polynomial determined

by interpolating the previous k + 1 solutions Un−i for i = 0, 1, . . . , k, i.e.,

ωP
n+1(tn−i) = Un−i, for i = 0, 1, . . . , k.

We then obtain the predicted values U0
n+1 and U ′0n+1 for u(tn+1) and u′(tn+1) by evalu-

ating ωP
n+1(t) and ω

′P
n+1(t) at tn+1. Thus, we have

U0
n+1 = ωP

n+1(tn+1), U ′0n+1 = ω
′P
n+1(tn+1).

To get the accepted approximation Un+1, we solve a corrector formula. We define a

corrector polynomial ωC
n+1(t) such that it interpolates the predictor polynomial at k

equal time steps behind tn+1 and Un+1 is the solution of the corrector polynomial at

tn+1, that is,

ωC
n+1(tn+1 − i∆tn+1) = ωP

n+1(tn+1 − i∆tn+1) for i = 1, . . . , k, (6.2)

ωC
n+1(tn+1) = Un+1. (6.3)

In addition, since Un+1 must satisfy the DAE at tn+1, we then have

F
(
tn+1,Un+1,U

′
n+1

)
= 0. (6.4)
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Differentiating Equation (6.2) at tn+1 yields

αs(Un+1 −U0
n+1) + ∆tn+1(U′n+1 −U′0n+1) = 0,

where

αs = −
k∑

j=1

1

j
.

We then solve for U′n+1 and substitute it into Equation (6.4) to obtain a nonlinear

equation of Un+1

F
(
tn+1,Un+1,U

′0
n+1 −

αs

∆tn+1

(Un+1 −U0
n+1)

)
= 0. (6.5)

The nonlinear equation (6.5) is solved using Newton’s iteration method. More de-

tails about the implementation, step size selection, and error analysis for the BDF

method alone can be found in Chapter 5 of Brenan et al. [17] and Chapter 6 of Maki’s

dissertation [70].

6.4 RKC Method

In this section, we introduce an explicit time-stepping method, Runge-Kutta-

Chebyshev (RKC) method. The RKC scheme we use was designed by van der Houwen

& Sommerijier [116] based on the three-term Chebyshev recursion,

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)− Tj−2(x), (6.6)

where Tj(x) is the Chebyshev polynomial of the first kind. The RKC method is an

s-stage Runge-Kutta (RK) method designed for the explicit integration of nonoscilla-

tory stiff systems of ODEs originating from spatial discretization of a parabolic PDE

(method of lines) [119]:

U′(t) = F(t,U(t)), U(0) = U0 ∈ Rm. (6.7)

There are many attractive features of the RKC method. The method possesses an

extended stability region: the length of the real stability interval β is proportional to

s2. Importantly, this method can be easily applied with arbitrary number of stages.
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Considering that the stability interval length β is proportional to the square of number

of stages, the RKC method is well-suited to solve some nonoscillatory stiff systems.

However, it is advised to use alternative methods (e.g., BDF method) if the system is

so stiff that it requires the number of stages far beyond 100 for the RKC method [107].

The designing principle of the RKC method is to construct formulas with regions

of absolute stability that are as large as possible, instead of constructing RK formulas to

achieve the highest order possible. A low order formula is appropriate since the spatial

discretization is only of modest accuracy (second order centered finite difference in our

applications). Because of this, RKC formulas are designed to be of order two [118, 107].

6.4.1 RKC Formulas
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Figure 6.2: Stability regions of various RK methods (the regions enclosed by the
curves).

The RKC formula are derived from a desired stability polynomial Rs(z), where

s is the number of stages. In the case of van der Houwen & Sommeijer [116], the

stability polynomial of the RKC method is set to be

Rs(z) = as + bsTs(w0 + w1z), (6.8)
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where

w0 = 1 +
ε

s2
, ε ≈ 0.15, w1 =

T ′s(w0)

T ′′s (w0)
, bs =

T ′′s (w0)

(T ′s(w0))2
, as = 1− bsTs(w0).

Figure 6.2 displays the stability regions of the RKC methods with stages s = 4 and

s = 10, as well as the stability region of RK4 method for comparison. The stability

region of the RKC method is a strip extended along the negative real axis. The length

of the stability strip β(s) is estimated as β(s) ≈ 0.65(s2 − 1) [120]. Details about the

selection of stability polynomial can be found in Chapter IV of the book by Hairer &

Wanner [40] and the review paper by Verwer [118].

van der Houwen & Sommerijier [116] constructed the RKC method in such a

way that all polynomials Rj(z) of the intermediate stages are defined by the three-term

Chebyshev recursion (6.6), and the selected stability polynomial Rs(z) (6.8) results at

the final stage s. Thus, van der Houwen & Sommerijier [116, 118] used

Rj(z) = aj + bjTj(w0 + w1z) for 0 ≤ j < s. (6.9)

Implementing the Chebyshev recursion (6.6) together with Rj(0) = 1 (the second order

condition), the following relations for Rj(z) are obtained,

R0(z) = 1, R1(z) = 1 + µ̃1z,

Rj(z) = (1− µj − νj) + µjRj−1(z) + νjRj−2(z) + µ̃jRj−1(z)z + γ̃jz,

where

µ̃1 = b1w1, µj =
2bjw0

bj−1

, νj =
−bj
bj−2

, µ̃j =
2bjw1

bj−1

, γ̃j = aj−1µ̃j, j = 2, . . . , s.

From the relations of Rj(z), one can readily deduce the explicit RKC method for the

general nonlinear problem (6.7). Let Yj denote the intermediate RK approximation.
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Then the scheme to integrate the ODE system (6.7) from tn to tn+1 reads,

Y0 = Un,

Y1 = Y0 + µ̃1τF0, (6.10)

Yj = (1− µj − νj)Y0 + µjYj−1 + νjYj−2 + µ̃jτFj−1 + γ̃jτF0, j = 2, . . . , s,

Un+1 = Ys.

Here τ = tn+1 − tn and Fj = F(tn + cjτ,Yj), where cj is the increment parameter.

According to Verwer et al. [119], cj is given by

c0 = 0, c1 = µ̃1, and cj = µjcj−1 + νjcj−2 + µ̃j + γ̃j for 2 ≤ j ≤ s.

6.4.2 Implementation of RKC Method

We implement the RKC formulas (6.10) dynamically following the procedures

discussed by Sommeijer et al. [107]. We estimate the stiffness of the current system by

evaluating the spectral radius of the Jacobian matrix of the system. Then we determine

the number of stages for the RKC integration based on the current time step and the

estimated spectral radius. We also adjust time steps according to the error estimations

and time step prediction strategy discussed below.

6.4.2.1 Local Error Estimation

Extensive testing for both linear and nonlinear problems confirms that the local

error of RKC methods can be regarded as independent of the number of stages (s ≥ 2)

for practical purposes [107, 119]. A good approximation of the leading term of the

local error expansion is

el(t) =
1

15
τ 3d

3u(tn)

dt3
. (6.11)

The approximation el(t) comes from replacing the stage-dependent constants by their

limiting values. Thanks to the simple form given in Equation (6.11), one can make an

asymptotically correct estimation [107]:

Estn+1 =
1

15
[12(Un −Un+1) + 6τ (F(Un) + F(Un+1))] .
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At each step, the estimated local error is controlled by specified tolerance,

Tol = atol + rtolUn+1.

Tol is a vector of the dimension m (the same as Un+1), atol and rtol are two specified

numbers for absolute and relative tolerances. Since all the numerical methods involved

are of order two, it is not advised to specify stringent tolerances. In our simulations,

atol = 10−4 and rtol = 10−5. For convenience, we use a single scalar absolute error

tolerance to decide whether a step is accepted or not. The scalar tolerance we use is

the weighted root mean square (RMS) norm:

||Estn+1||RMS = ||w−1Estn+1||2,

where

w =
1√
m

diag(Tol).

We accept the current step if ||Estn+1||RMS ≤ 1. Otherwise, we reject the solution and

redo the computation with adjusted step size.

6.4.2.2 Time Step Prediction

Following the studies in [122, 39, 107], we use the formula below to predict the

new step size,

τnew = min(10,max(0.1, fac))τ, (6.12)

where τ is the current step size in use and the factor is defined by

fac = 0.8

(
||Estn||1/(p+1)

||Estn+1||1/(p+1)

τn
τn−1

)
1

||Estn+1||1/(p+1)
.

Here p is the order of consistency (p = 2 in our case). New step size is predicted after

a successful step, and is resized after a rejection using the formula (6.12).

6.4.2.3 Number of RKC Stages

At each time step, we have a prediction of step size τnew from Equation (6.12),

and then we want to determine the number of stages to use for the RKC method such
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that the step size τnew is absolutely stable. We already knew from Section 6.4.1 that

the stability of an s-stage RKC methods is a strip extended in the negative real axis

with length estimated as β(s) ≈ 0.65(s2 − 1). To obtain absolute stability, we require

τnewσ(JF(Un)) ≤ 0.65(s2 − 1),

where JF(Un) is the Jacobian matrix of F(u) at tn and σ(JF(Un)) represents the

spectral radius of the matrix. Therefore, we choose

s = 1 + b
√

1.54τnewσ(JF(Un)) + 1c, (6.13)

where b·c is the floor function. In order to get an estimation of the stage number s

using Equation (6.13), we need to find the spectral radius (σ(JF(Un)) first. To do so,

we implement a nonlinear power method in our code to estimate the spectral radius

automatically at each successful step.

6.5 A Hybrid Time-Stepping Method

Data: Solution of the system at tn: hn, pn, cn

Result: Solution of the system at tn+1: hn+1, pn+1, cn+1

BDF solver predicts a step size: dt;
while Not Accepted do

tn+1 = tn + dt;
RKC solver integrates c equation from tn to tn+1 to get cn+1 (RKC
solver predicts its own step size τ to integrate from tn to tn+1);
Pass cn+1 into BDF solver and solve for hn+1,pn+1;
if Not Accepted then

resize dt;
else

Accepted;
end

end

Algorithm 1: Integration from tn to tn+1 using the hybrid time-stepping
method

In this section, we develop an hybrid time-stepping method based on the idea

of fractional-step method. This hybrid time-stepping method is suitable for a system
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consisting of weakly coupled systems of stiff and mildly stiff equations. This method

is specifically designed to efficiently solve the tear film and osmolarity system (3.37)–

(3.39).

The idea of our hybrid method is straightforward. We first solve the mildly

stiff equations using RKC method, and then we update the stiff equations and solve

them with BDF method. Suppose we have successfully solved the discretized system

of (3.37)–(3.39) at tn, we then want to solve it for the next time step. We describe the

detailed procedure of this hybrid method in Algorithm 1.

6.6 Test Problems

In this section, we formulate a test problem to investigate the numerical prop-

erties of our methods. We solve a test problem on composite overlapping grids using

the RKC method to study its performance. The test problem is formulated such that

it is similar to the osmolarity Equation (3.39) with the exact solution given by

C(x, y, t) = (1 + x+ x2 + x3 + y + y2 + y3)(1 + t+ t2). (6.14)

To be specific, the test problem is formulated as follows,

∂tc = −1

h
∇c ·

(
−h

3

12
∇p
)

+
1

Pech
∇ · (h∇c) + f(x, y, t), (6.15)

where

h = 1 + 2 exp
(
10(x2 + y2 − 1)

)
, p = −S∆h, (6.16)

and the forcing term f(x, y, t) is obtained by substituting the exact solution (6.14)

into the test problem (6.15). The specification of h (6.16) mimics the bowl shape

geometry of the tear film. Also noting that h is time independent and becomes a

variable coefficient in Equation (6.15). We solve the test problem on both the simplified

circular domain as shown Figure 6.1 and the eye-shaped domain. On the simplified

circular domain, we solve the test problem using the RKC method with several mesh

refinements. For each refinement, we double the resolution, i.e., the grid sizes ∆x and
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Refinement 0 Refinement 1 Refinement 2 Refinement 3 Refinement 4
Error e0=1.17e-5 e1= 1.64e-6 e2= 3.31e-7 e3= 5.70e-8 e4= 1.43e-8
Ratio e0/e1 = 7.13 e1/e2 = 4.95 e2/e3 = 5.80 e3/e4 = 3.98

Table 6.1: Errors of the test problem on the circular domain at t = 2.

∆y are reduced by half. We list the errors of the test problem solved on the composite

overlapping grid (Figure 6.1) and its refined grids in Table 6.1. The error in the table

is defined by

e(t) = ||c(x, y, t)− C(x, y, t)||2. (6.17)

From Table 6.1, we can see that the error ratios roughly converge to 4 as expected since

we use the second order finite difference method to discretize the spatial derivatives.

We also solve the test problem (6.15) on the eye-shaped domain using the com-

posite overlapping grid shown in Figure 5.1. Since this grid is not evenly spaced and is

more computationally intensive, we do not test refinements as we did for the simplified

circular domain. We only solve the test problem once and present the absolute error

to indicate numerical accuracy on the eye-shaped domain. Figure 6.3a and Figure 6.3b

show the numerical solution and error distribution on the eye-shaped domain, respec-

tively. The largest errors are located in the two canthi, the absolute error defined by

Equation (6.17) is 1.84e-5 at t = 2.

In short, the implementation of RKC method on composite overlapping grids is

very accurate. Moreover, we are also very confident about the accuracy of the numerical

solutions on the eye-shaped domain according to our test results.

6.7 Conclusion

In this chapter, we give a complete discrpition of the numerical methods we

implemented to compute the solutions of our models on the 2D eye-shaped domain. We

developed a hybrid time-stepping method based on the idea of fractional-step method.

This hybrid time-stepping method is specifically for solving the tear film-osmolarity

coupled system. The development of this method considers the numerical features of
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(a) Solution of the test problem

(b) Error distribution

Figure 6.3: Test problem on the eye-shaped domain

our model system, which consists of a mildly stiff system of ODEs that arise from the

discretization of the osmolarity equation and a very stiff system of DAEs that arise
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from the discretization of the film thickness and pressure PDEs. The hybrid time-

stepping method is a combination of RKC and BDF methods. The RKC method is an

efficient explicit method suitable for mildly stiff system of ODEs such as the discretized

osmolarity equations, while the BDF is a fully implicit method that efficiently solves a

very stiff system such as that from the tear film and pressure equations. We conducted

a preliminary numerical study by solving a test problem on a simple circular domain,

as well as the eye-shaped domain. Solution to the test problem provides numerical

evidence for the accuracy and stability of our methods.

There are limits of our current test problem in Section 6.6. In stead of solving

the h equation using BDF method, we specify h with a bowl-shaped function that

mimics the tear film geometry, and then we solve the mildly stiff convection-diffusion-

reaction equation 6.15 using RKC method. In the future, we want to formulate a

test problem that characterizes the numerical features of the film-osmolarity system

(3.37)–(3.39) and solve it using the hybrid time-stepping method discussed in Section

6.5 directly. In addition, we are also interested in conducting numerical analysis to get

some theoretical understandings of the hybrid time-stepping method.
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Chapter 7

CONCLUSION

In this dissertation, we have presented three mathematical models that focuses

on various aspects of human tear film dynamics and developed numerical methods to

compute the solutions of the model equations. Our results provide many new insights

about the human tear film dynamics, as well as the associated thermal and osmolarity

dynamics. The hybrid time-stepping method is worth further study as well.

In Chaper 2, we presented a mathematical model that incorporates the heat

transfer from within the cornea and part of the aqueous humor. To our knowledge,

this is the first model that couples heat transfer into the tear film dynamics model. We

considered three model domains for heat transfer underneath the tear film. The model

domains are simplified geometries that represent the anterior eye and that may include

the cornea and some aqueous humor; one model domain is asymptotically thin (thin

substrate) and the other has finite thickness (thick substrate). The thick substrate

case captures temperature decreases that are observed in vivo, while the thin substrate

and fixed temperature models do not. Also, this model captures the experimentally

measured thinning rate of tear film thickness. This modeling approach of incorporating

heat transfer into tear film has led to two more publications by Deng et al. on a domain

with moving end mimicking blinks [27, 26].

We then restricted our attention on modeling and computing tear film models

on a 2D eye-shaped domain. In Chapter 3, we formulated a model that couples the

tear film and osmolarity dynamics for the first time on a 2D eye-shaped domain. This

is the first such model that couples osmolarity dynamics with a 2D tear film model.

In addition, with the specification of a time-dependent flux boundary condition that

models the lacrimal gland supply and puncta drainage of the tear fluid, we were able
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to recover some effects of blinking on a stationary 2D eye-shaped domain. In the two

subsequent chapters, we conducted extensive analysis for our model predicted results

and made careful comparison with experimental and other theoretical studies.

In Chapter 4, we focused on the fluid dynamics part of the 2D model by neglect-

ing osmolarity dynamics. We found that the time-dependent flux boundary condition

captures some effects of blinks on a stationary domain and helps to establish the hy-

draulic connectivity as observed by many in vivo experiments. Our model also captures

new details about tear flows in the meniscus, beyond the reach of one-dimensional mod-

els. We also described experiments using fluorescein that visualized tear film thickness

changes, and indirectly, the supply of fresh tear fluid and where the more diluted fluid

moves. Moreover, this model captures the evaporation rate very well for comparison

with well-controlled laboratory experiments. The result yielded by the model is com-

parable to the measurements conducted with the ventilated-chamber method or in the

free air.

In Chapter 5, we solve the complete model derived in Chapter 3 to explore

the osmolarity dynamics and the interaction between tear film and osmolarity. The

results give information that we believe is not available from human subjects or animal

models of the tear film. We believe that these results help give context to osmolarity

measurements in vivo [9, 63]. The results show that the location and value of the

minimum tear film thickness and maximum osmolarity are found to be sensitive to

the permeability at the tear/eye surface, and provide a global view of the osmolarity

distribution on the entire exposed eye for the first time; to our knowledge, neither

experimental nor theoretical studies have information about the osmolarity distribution

on the entire exposed eye prior to our study.

In Chapter 6, we showed in detail the numerical methods we used and developed

a hybrid time-stepping methods specifically for the discretized tear film-osmolarity cou-

pled system. This hybrid time-stepping method is a fractional-step (splitting) method

[64] that applies an implicit BDF method and an explicit RKC method alternatively.

It is suitable for a system that is weakly coupled by stiff and mildly stiff equations, like
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the tear film model we derived in Chapter 3. In this chapter, we have also investigated

some numerical properties of our method by solving a preliminary test problem on a

disk, as well as on the the eye-shaped domain. Solutions to the test problem provide

numerical evidence that confirms the accuracy of our methods. This method is worth

further study. We plan to conduct a more thorough numerical analysis for this hybrid

method in the future.

7.1 Future Work

To conduct in vivo experiment, eye doctors often instill a solution with a cer-

tain concentration of fluorescein into the subject’s eyes for the purpose of visualization.

We would like to model the dynamics of fluorescein concentration by incorporating it

as another solute into our tear film and osmolarity dynamics model. We have some

preliminary results that predict the fluorescent intensity profile comparable to in vivo

experiments for the interior of the eye. However, in order to capture the fluorescent

intensity dynamics in the meniscus of the tear film, we need to improve the bound-

ary condition imposed for the fluorescein concentration, and some other unrealistic

model assumptions. For example, the volume of tear fluid is probably large in our

current model compared to DES subjects, and could affect the dynamics of fluorescein

concentration, especially in the meniscus.

There are some limitations to the current study for linking the osmolarity mea-

sured in vivo with the computed results. In our model, there is no lid motion to mix

the tear fluid as occurs in vivo. This may be a significant component to the variability

observed. The ultimate goal of our efforts is to model and simulate tear film dynamics

(including osmolarity and surfactant) on a blinking eye-shaped domain for complete

blinking cycles. To achieve this goal, we need to model the movement of the upper eye

lid and generate adaptive composite overlapping grids for an eye-shaped domain with

moving boundary. Moreover, we need to develop appropriate numerical methods that

would be able to accurately resolve even steeper menisci that occur when the eye is

not fully open.
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Appendix A

PARAMETERS

In the table, we use specific heat of lens instead of water for κc = kc/(ρcp). K

and K̄ are chosen to satisfy the experimentally measured thinning rate (4 µm/min

[92]) of the tear film thickness due to King-Smith et al. α and A∗ are recovered from

the nondimensional parameters in Winter et al [124]. Ajaev and Homsy[3] discuss α

and K.
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Parameter Expression Value

ε
d′

L′
1× 10−3

E
k(T ′B − T ′s)
d′LmερU0

118.3

S
σε3

µU0

6.92×10−6

K̄
kK

d′Lm

8.9×103

G
ρg(d′)2

µU0

0.05

δ
αµU0

ε2L′(T ′B − T ′s)
4.66

A
A∗

L′dµU0

2.14×10−6

Pec
U0L

′

Dc

9.62× 103

Pcorn
P tiss

cornvwc0

εU0

0.013

Pconj

P tiss
conjvwc0

εU0

0.06

Table A.1: Dimensionless Parameters. Values and descriptions of the
dimensional parameters appeared are given in Table A.2.
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Parameter Description Value Reference
µ Viscosity 1.3×10−3Pa·s [112]
σ Surface tension 0.045N·m−1 [88]
k Tear film thermal conductivity 0.68W·m−1·K−1 Water
ρ Density 103kg·m−3 Water
Lm Latent heat of vaporization 2.3×106J·kg−1 Water
T ′s Saturation temperature 27◦C Estimated
T ′B Body temperature 37◦C Estimated
g Gravitational acceleration 9.81m·s−2 Estimated
A∗ Hamaker constant 3.5×10−19Pa·m3 [124]
α Pressure coefficient for evaporation 3.6×10−2K·Pa−1 [124]
K Non-equilibrium coefficient 1.5×105K·m2·s·kg−1 Estimated
d′ Characteristic thickness 5× 10−6m [53]
L′ Half-width of palpebral fissure 5× 10−3m Estimated
U0 Characteristic speed 5× 10−3m/s [54]
P tiss

corn Tissue permeability of cornea 12.0µm/s [59]
P tiss

conj Tissue permeability of conjunctiva 55.4µm/s [59]
vw Molar volume of water 1.8× 10−5m3·mol−1 Water
Dc Diffusivity of osmolarity in water 2.6× 10−9m2/s [127]

Table A.2: Dimensional Parameters.
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