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Visual statistical learning describes the unintentional extraction of statistical 

regularities from visual environments across time or space, and is typically studied 

using novel stimuli (e.g., symbols unfamiliar to participants). Additionally, 

familiarization procedures in experiments that have explored visual statistical 

learning tend to be passive or require only basic vigilance from participants. The 

natural visual world, however, is rich with a variety of complex visual stimuli, and 

we experience that world in the presence of goal-driven behavior including overt 

learning of other kinds. The present dissertation examines how visual statistical 

learning responds to such contextual factors. Chapter 2 finds that visual statistical 

learning is sometimes influenced by natural and artificial categories in the 

presence (and absence) of explicit learning about artificial categories. Chapter 3 

examines the impacts of categories on visual statistical learning in the presence of 

systematic visual similarity manipulations, and also considers how visual 

similarity might be modulated by statistical learning. Chapter 4 focuses on how 

different familiarization tasks may influence the behavioral and neural correlates 

of visual statistical learning using brain imaging (fMRI). Together, the results from 

these experiments demonstrate that visual statistical learning is often altered 
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depending on contextual factors that would be expected to fluctuate in everyday 

contexts.  
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INTRODUCTION 

Learning is oftentimes thought of as an effortful process. For example, students 

may study to learn content before an exam, a person may recite a new acquaintance’s 

name a few times to make sure they’ve learned it well enough not to forget, or a child 

will learn to balance a bike through repeated attempts at remaining upright. However, 

there are also many instances where learning is not an effortful or intentional process 

(it is ‘incidental’): a road closure may force an individual to expand their spatial 

memory for the city they live in, or an individual may learn a stranger’s name after 

hearing somebody else refer to that stranger by name. As we consider the complexity 

and mass of information we regularly engage with, and the various contexts in which 

we encounter that information along with our own specific goals as we navigate our 

world, many other examples of incidental learning are evident. The varieties of 

incidental learning are not fully known, and their role in cognition is still poorly 

understood, but laboratory examples of incidental learning have led to progress in 

cataloguing and understanding these phenomena. The present proposal focuses on a 

specific form of incidental learning that is involved in extracting regularities from the 

environment: statistical learning. 

Chapter 1 
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1.1 Incidental Learning 

 

Anecdotal examples of incidental learning, where learning can occur without 

putting forth intention and effort to learn, are plentiful. For instance, people who drive 

may not always study the location they parked their car at the supermarket in an effort 

to remember later, but rather may rely upon an incidentally formed memory when they 

return to their vehicle. Although this ability may be taken for granted (e.g., failing to 

causally remember if you turned off the stove can have serious consequences), typical 

functioning for most people depends on the ability to passively process vast amounts 

of information on a day-to-day basis. Insight into exactly what types of information 

people can learn in this manner and how they accomplish this is the subject of intense 

scientific interest.  

One early example scrutinizing an ability to incidentally learn (and 

subsequently benefit from) come from the work of Nissen and Bullemer (1987). In a 

serial reaction time task, participants viewed stimuli that appeared in four potential 

locations on a computer screen, and produced a speeded response based on the 

location of their appearance. Unbeknownst to participants, the stimuli could appear in 

a pre-determined sequence multiple times. As participants incidentally learned the 

sequence, reaction times decreased for stimuli within the later parts of the sequence. 

This pattern was observed for both neurotypical participants, some of whom could 

explicitly recall the sequence of stimuli at the end of the experiment when asked, as 
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well as participants with anterograde amnesia associated with Korsakoff’s syndrome 

who could not explicitly recall the sequence.  

Additional insight into how we may benefit from incidental learning comes from 

Chun and Jiang (1998), where participants viewed visual search displays in which they 

had to identify a target within a set of distractors. Importantly, the configurations of 

targets and distractors (i.e., the relative locations of distractors and the target location) 

could repeat in some of the trials. Experimenters did not inform subjects about this 

repetition, but participants were able to incidentally learn these regularities and 

respond faster on subsequent trials; a phenomenon known as contextual cueing. 

Considering our understanding that we are faster to search and respond to familiar 

real-world contexts (e.g., from Biederman and colleagues (1982) work, a fire hydrant 

is easier located in a street scene than a living room scene), contextual cuing explains 

one way in which we may learn and adapt to processing visual scenes.  

These examples of incidental learning are useful, but they are contingent upon 

task demands. In other words, in the work discussed thus far, incidental learning can 

benefit the subject according to task demands. The indices of learning sequences from 

Nissen and Bullemer (1987), as well as the global contexts from Chun and Jiang 

(1998), were increased accuracy and decreasing reaction times in response to patterns. 

Since subjects are motivated by accuracy and time spent on task, improvements in 

such provide a feedback signal that can lead directly to benefits in task performance 

during acquisition. This leaves open the question of what forms of incidental learning 

might occur independently of task (if there is even a task), and how might we benefit 
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from such forms of incidental learning. To address these questions, we turn our 

discussion toward a phenomenon known as “statistical learning”, which was initially 

pursued scientifically as a potential solution to long-standing problems in language 

learning. However, the phenomena discovered by those efforts proved to be ubiquitous 

in sensory and cognitive systems, leading to an explosion of research that crossed 

domains of Psychology and Neuroscience. 

1.2 Statistical Learning 

 

Across languages, adult speakers display the ability to discriminate individual 

units of language, even though such units often do not correlate well with clear 

physical signals that differentiate them from neighboring signals. How, then, is it 

possible for babies to acquire language without pre-existing knowledge about how 

individual units are separated? Saffran and colleagues (1996) argued that infants must 

learn to identify meaningful acoustic cues that designate word boundaries, because 

even when word boundaries are acoustically ambiguous, infants appear to be able to 

segment fluent speech into sounds. They hypothesized this was possible via the 

extraction of statistical regularities within speech sounds. To test the viability of this 

hypothesis, they presented babies with a continuous speech stream comprised of four 

three-syllable nonsense words (e.g., bidaku, padoti, golabu, etc.). These four words 

were presented in randomized order for two minutes, with no identifiable separation 

between words (e.g., bidakupodotigolabubitaku…). After this familiarization phase 

where babies were expected to learn the statistical regularities within the stream, 
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Saffran and colleagues created foil words comprised of the first two syllables of one 

target word combined with the last syllable of another target word. For example, if 

“bidaku” and “padoti” were words in the original stream, associated foils would be 

“padoku” and “bidati”. Babies displayed shorter durations of fixation (listening) for 

the target words as compared to the foil words. Since babies show preference for novel 

information, the reduced listening time given to target triplets suggests that 

information about the sequential statistics of syllables had been learned. 

This sort of learning may be critical for early language development, but similar 

evidence of statistical learning has been replicated in an adult population (Saffran et 

al., 1999). The abstraction of statistical regularities from spoken sounds at any age 

suggests that making sense of a complex auditory world may require the adaptation 

afforded by constant learning throughout the lifespan. An important question raised by 

this work was whether such learning was constrained to auditory stimuli, or whether it 

could occur in other sensory modalities or even at a higher, cognitive level that 

abstracted away from the sensory stimulus.  

 Fiser and Aslin (2001) were first to demonstrate evidence of statistical learning in 

the visual domain, by presenting participants with static displays of shapes within a 

grid (see Figure 1). Covertly structured pairs appeared regularly within the display; 

participants were not aware of the structured pairs while engaged with the task. 

Participants were only instructed to pay attention to the continuous stream of displays. 
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Figure 1. from Fiser and Aslin (2001) A) Structured pairs that appeared during the 

exposure phase. B) A sample display, of which there were 144 that 

subjects passively viewed during the familiarization phase, containing the 

structured pair “A-B”. 

 

 

Participants viewed 144 displays with the embedded structured pairs, after 

which they were given a two alternative forced choice test task. Within the test, 
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participants were shown one of the structured pairs and one non-base pair (see Figure 

2) and were asked to choose the pair that appeared “more familiar”. In Experiment 1, 

the non-base pairs were constructed from shapes that were not presented as a 

structured pair both by identity and spatial location. In Experiment 2, however, non-

base pair shapes had appeared in the tested cells of the grid during the familiarization 

phase equally as often as the structured pairs. This manipulation in the second 

experiment allowed for spatial frequency to be controlled while the non-base pairs 

were only constructed of shapes that had never appeared together. 

Figure 2 from Fiser and Aslin (2001). A) Example of a test-phase presentation of one 

base-pair and one nonbase-pair for Experiments 1 and 2. B) Participants’ 

accuracy in reporting the pairs that had previously occurred (Experiment 

1) even when the spatial frequency of the shapes was held consistent 

(Experiment 2). 
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Despite matched joint probabilities of the non-base pairs and some of the 

structured pairs during familiarization, Fiser and Aslin (2001) found that participants 

still identified the structured pairs as more familiar over the frequency matched non-

base pairs (Figure 2). These experiments suggest that humans are also able to 

automatically extract higher-order statistics from visual scenes.  

 Extending their findings from spatial visual statistical learning, Fiser and 

Aslin (2002) found evidence of temporal learning using higher-order temporal 

structures. In their experiment, participants watched a movie that presented 12 shapes 

covertly grouped into four triplets (Figure 3). While still unaware of the grouping, 

participants were again asked to simply passively view the presentation of the shapes.  

Figure 3 from Fiser and Aslin (2002). The 12 basic shapes participants were exposed 

to were grouped into triplets without participants’ knowledge. 
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The movie displayed to participants showed a single shape at a time appearing 

from behind a vertical occluder from one side and returned behind the occluder on the 

other side (Figure 4). Each shape was on screen for one second and each triplet of 

shapes appeared a total 96 times in semirandom order to avoid triplet repetitions.  

 

Figure 4 from Fiser and Aslin (2002). A movie was shown to participants to display a 

continuous stream of shapes. Unbeknownst to participants, shapes always 

appeared in their respective triplets and triplets were pseudorandomized 

to prevent triplet repeats. During presentation, any one shape was on 

screen for one second before being replaced by the next shape. 

After familiarization, participants were again given a two-alternative forced 

choice task in which they had to choose the triplet that was more familiar. In the test 

task, they chose between a base triplet (from the presentation phase) and a nonbase 

triplet (constructed from characters that were not learned to be predictive of one 
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another from the movie). Each triplet was displayed in the same context of the movie 

with one character appearing after another. Participants correctly chose the base triplet 

over the foil triplet with overall accuracy at 95%, unequivocally displaying an ability 

to learn temporal-order regularities in a visual context and in an unsupervised fashion. 

The findings from this study along with that of Fiser and Aslin (2001) suggest that, 

depending on the context in which statistical regularities are presented, participants 

can incidentally learn contingencies in both spatial and temporal domains. 

1.3 Utility of Visual Statistical Learning 

 

Thus far, we have considered visual statistical learning as a laboratory 

phenomenon indexed by subsequent recognition. What potential ecological usefulness 

could the visual system derive from such learning? Clues to the answer to this 

question could be found by considering what other systems may be supported by such 

stimulus-stimulus associations. Previously, we have discussed the application of 

auditory statistical learning to provide insight into how infants may segment speech 

patterns into meaningful and separable representations that serve as a basis for 

language (Romberg & Saffran, 2010; Saffran et al., 1996). Given the focus of the 

present dissertation on statistical learning in the visual domain, we must also consider 

similar applications of statistical learning to visual input. In other words, when we 

discuss visual statistical learning as something that “makes sense” of our visual world, 

what exactly do we mean? 
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Not unlike the ambiguity of auditory boundaries within a stream of speech 

sounds, like that used by Saffran and colleagues (1996), different pieces of visual 

information can also be challenging to distinguish. Typically, the parsing of different 

objects in a visual scene is thought to rely heavily on visual boundary information 

(Peterson, 1994; Riesenhuber & Poggio, 1999; Zhou et al., 2000) which is often 

contingent upon luminance contours (Kellman et al., 1983; Palmer et al., 1994; 

Spelke, 1990). But even then, there are plenty of cases where, with these low-level 

perceptual cues, we may fail to extract some object representations (Kellman & 

Shipley, 1991). Rather than focus on other visual features predictive of successful 

extractions of object representations from visual scenes, Lengyel and colleagues 

(2021) argue that consistent statistical properties within a scene underlie the formation 

of object representations.  

 To test this, participants first engaged in a spatial visual statistical learning task 

similar to Fiser and Aslin (2001) for participants to incidentally learn “visual chunks” 

of information. Most compellingly in their second experiment, they used a well-

established object-based attention paradigm (Figure 5), which has previously been 

used to highlight how attention may benefit from a cue appearing within an object as 

compared to between objects. Thus, in a speeded response task where participants had 

to find a target after being exposed to a cue, Lengyel and colleagues (2021) were able 

to provide evidence of “chunk-based attention” that followed a pattern similar to the 

traditional “object-based attention” findings.  
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Figure 5 from Lengyel and colleagues (2021). a. The chunk-based attention task where 

“chunks” represented visually learned regularities. b. The traditional 

object-based attention task. 
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Taken together, the findings of Lengyel and colleagues (2021) provide insight 

into how visual information can be segmented into object-like “chunks” formed 

through visual statistical learning that does not rely on the presence of clear visual 

boundaries. This is comparable to Saffran and colleagues (1996) who highlighted 

infants’ ability to segment fluent speech that also lacked clear auditory boundaries. 

Both of these cases are useful in considering how statistical learning benefits us in our 

ability to “make sense” of the world in different modalities. However, in considering 

the ways in which visual statistical learning is applicable to our day-to-day 

functioning, we are rarely exposed to statistical regularities in a context that demands 

passive observation (like that used in Lengyel and colleagues’ passive viewing task). 

We oftentimes move through different environments with different goals in mind, and 

these multiple contexts we encounter throughout the day rarely present opportunities 

to receive visual information without some goal or task in mind. Thus, it is also 

worthwhile reviewing literature that identifies how such contextual influences can 

influence visual statistical learning. 

1.4 Task Influences on Visual Statistical Learning 

 

Evidence of statistical learning extending into the visual domain provides a basis 

from which we can consider how the human cognitive system is able to automatically 

and incidentally learn from everyday visual experiences. However, it is important to 

investigate how such learning responds to variations in task, stimulus attributes, and 
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other manipulations of context during familiarization, to better understand its potential 

impact on everyday cognition. For example, human visual performance is known to be 

highly limited in certain ways – access to working memory and other higher cognitive 

functions faces a bottleneck in the form of selective attention (Akyürek et al., 2007).  

Do humans learn any statistical regularity they are exposed to, or is learning 

constrained to the objects of selective attention? Turk-Browne and colleagues (2005) 

found evidence that visual statistical learning is modulated by selective attention. 

Using the same basic shapes from Fiser and Aslin (2001, 2002), participants viewed 

an interleaved stream of red and green shapes. They were told to monitor only one 

color for immediate repeats of a shape, while statistical structure was covertly present 

in the stream (see Figure 5 below from Turk-Browne and colleagues (2005).  

 

Figure 6 from Turk-Browne and colleagues (2005). Participants viewed a stream of 

images and were instructed to monitor one of two colors for immediate 

repeats. Regularities appeared within-color during the stream of images. 
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Turk-Browne and colleagues (2005) found that only regularities within the 

attended color were learned at above-chance levels. Thus, visual statistical learning 

requires some level of attentional selection to extract regularities; incidental learning 

of this kind does not appear to occur for ignored information. These findings provide 

useful insight about how contextual effects on attentional state (such as those driven 

by task demands) can influence visual statistical learning, and are echoed by other 

works that use the same basic shapes as Fiser and Aslin (2001, 2002) to investigate 

attention-related influences on learning (J. Zhao et al., 2013; Jiaying Zhao et al., 

2011). 

 The use of basic shape stimuli in the previously discussed works allowed 

researchers to gain important insights into visual statistical learning while carefully 

controlling for extraneous influences. However, if our aim is to expand our 

understanding about how visual statistical learning may operate on everyday visual 

experiences, there appear to be many ways we can build from these foundational 

works. Specifically, we may consider how variations in learning contexts or prior 

experience with stimuli may shape learning. Prior work has found evidence of 

statistical learning using semantically rich stimuli (Brady & Oliva, 2008), and we can 

look to more recent work for insight into how visual statistical learning may operate 

over a combination of existing knowledge and task demands. 

 Faces and scenes are commonly encountered visual stimuli that are naturally 

complex (in comparison to basic shapes) and possess relatively rich semantic and 

categorical information. Vickery et al. (2018) explored how varying tasks demands 
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may influence visual statistical learning. Their final experiment characterizes the 

importance of both pre-existing knowledge for stimuli (i.e., prior experience with 

faces and scenes) and the impact of task on visual statistical learning. Participants 

viewed a stream of male/female faces and indoor/outdoor scenes. Half of participants 

were assigned to a “jiggle” group and were tasked with pressing spacebar whenever an 

image jiggled back and forth. The other half of participants were assigned to a 

categorization group and were required to make a button press with one hand for male 

faces/outdoor scenes and a button press with the other hand to female faces/indoor 

scenes. Unbeknownst to participants, 32 images were organized into 16 pairs which 

allowed for four different pair types (see Figure 7a for a full visualization). Thus, both 

groups viewed the same stream of images (and occasional jiggle) but were given two 

different tasks.  
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Figure 7 from Vickery and colleagues (2018). a) For the categorization group, pairs of 

images constituted four conditions dictated by same or different task (i.e., 

same or different category), and by same or different response (i.e., 

response made with the same hand or different hand). b) Example stream 

with images in pairs highlighted with a color border (participants did not 

see a color border). Only the second image of a pair could be predicted, 

and the magnitude of the predictive value between pairs was 

hypothesized to be modulated by the amount of task/response 

information shared between those images. c) Example of a recognition 

test trial at the end of the experiment. 

 Participants in the detection group displayed above-chance and roughly equal 

learning across conditions (Figure 8), while the categorization group displayed a larger 

effect of recognition for StSr pairs over all other pairs. Additionally, the only other 
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condition to display above-chance recognition in the categorization group was DtSr 

pairs, which the authors took as evidence of response similarity acting as either a 

learning impetus of same-response pairs or a learning inhibitor for different response 

pairs. This work presents strong behavioral evidence that task demands influence 

visual statistical learning as well as how learning may be modulated by task-related or 

stimulus-related contingencies. 

 

 

Figure 8 from Experiment 4 of Vickery et al. (2018). Equal above-chance learning is 

observed for the detection group, while the categorization group 

displayed greatest learning for Same-Task (i.e., same category) Same-

Response pairs, above chance learning for Different-Task (i.e., different 

category) Same-Response pairs, and no significant learning for Same-

Task Different Response pairs or Different-Task Different-Response 

pairs. 

However, the introduction of complex stimuli such as faces and scenes does 

not leave the interpretation of the results unequivocal; how are the effects observed 

from Vickery and colleagues (2018) influenced by categorization as opposed to the 
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simple fact that two face images or two scene images are more visually similar than 

across-category combinations, on average? Would such category-driven effects be 

sustained if participants were not explicitly making category-related decisions during 

familiarization? Does drawing attention to categories evoke similar or dissimilar 

mechanisms of learning and representation, as opposed to tasks that do not draw 

attention to categories? The present proposal seeks to gain insight into some of these 

questions using behavioral and neuroimaging methods. Therefore, it is also important 

to discuss a handful of fMRI studies that shed light on activity in brain areas that 

correlate with task demands or category-related influences on visual statistical 

learning. 

1.5 Neural Correlates of Visual Statistical Learning 

 

Thus far, we have discussed work that focuses on how task demands and 

categorizable stimuli may influence visual statistical learning, but there are still open 

questions about how exactly these influences impact learning. Some of these questions 

may be best answered with neuroimaging, but we must first consider typical findings 

associated with statistical learning and categorization. Turk-Browne and colleagues 

(2009) used fMRI while participants responded to whether basic shapes presented to 

them “jiggled” back and forth, obscuring the fact that on some runs the shapes were 

covertly structured into triplets while other runs contained no statistical structure. 

During structured streams, and consistent with other types of associative learning and 

memory, greater activity was observed in the medial temporal lobe (MTL) and 
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striatum. Secondly, these results were partially supported by later work conducted by 

Turk-Browne and colleagues (2010), who investigated the neural underpinnings of 

visual statistical learning while participants engaged in a face/scene categorization 

task. Their study, which utilized event-related fMRI, required participants to respond 

to a stream of face and scene images while lying inside the scanner. The stream of 

images either appeared as a singleton (an unpaired face or scene image), or in a scene-

face or face-scene pair (Figure 9), pseudorandomized to preserve pairs across runs. 

While viewing singletons and the first image of pairs, greater activity was observed in 

the right anterior hippocampus, which the authors argue may be related to a unique 

role of perceptual anticipation (but no activity in the medial temporal lobe by the same 

standards). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 from Turk-Browne et al. (2010). The event-related design that included 

singletons and pairs of face-scene or scene-face stimuli. 
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Although the pairs used by Turk-Browne and colleagues (2010) did not contain 

any same-category pairs like those found in Vickery and colleagues (2018), the 

authors did find some interesting category-specific effects. In particular, bilateral 

activity in the parahippocampal place area (PPA) appeared to uniquely discern both 

faces and scenes that appeared either as a singleton, as the first image of a pair, or as 

the second image of a pair (Figure 10). This highlights an important interaction in 

category related activity and visual statistical learning; activity in the PPA is able to 

predict both the category of the upcoming stimulus and the amount of statistical 

information bound to that stimuli.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 from Turk-Browne et al. (2010). Differential activity in the PPA 

distinguishes the category of image being viewed as well as the position 

in a statistical or non-statistical representation. 
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These works by Turk-Browne and colleagues (2009, 2010) highlight some 

fundamental insights into how we may consider future research into task demands that 

influence statistical learning. Vickery and colleagues (2018) explored how 

categorization of naturalistic stimuli may influence visual statistical learning, but no 

neuroimaging work has sought to uncover task-specific impacts while also controlling 

for some of the potentially confounding variables touched on previously (e.g., visual 

similarity between items of the same category). Additionally, and in anticipation of 

task-related influences on visual statistical learning, it is worthwhile considering the 

unique insights provided by Schapiro and colleagues (2012) and how patterns of 

activity within the hippocampus specifically are altered by visual statistical learning.  

Schapiro and colleagues (2012) exposed participants to a 40-minute sequence 

of colorful fractals (Figure 11A, bottom) while being scanned using fMRI. During this 

exposure phase, participants were given a cover task where they had to respond to 

infrequent greyscale fractals. Similar to other statistical learning tasks, this cover task 

served to obscure the underlying structure of the fractals within the stream (Figure 

11A, top); each fractal could be followed by the same fractal each occurrence, 

designating a “strong pair”, or could be followed by the same fractal 1/3 of the time 

designating a “weak pair”. Participants were also exposed to the fractal images in 

completely random order once at the beginning of this phase and once at the end of 

this phase. Finally, rather than attempting to test participants immediately after the 

final run where pair structure was disrupted, a separate behavioral study was 

conducted where the final block of familiarization (which possessed pair structure) 
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was immediately followed by a test task that indicated participants had successfully 

learned the strong pairs better than the weak pairs. 

Figure 11B displays some findings from Schapiro and colleagues (2012). 

Patterns of activity were extracted from each ROI and for each fractal image and 

correlated to produce the example correlation matrices (before learning appearing 

above, and after learning appearing below). Fractal images that constituted strong 

pairs predicted a significant correlation in activity in the hippocampus after learning 

had taken place. In other words, activity associated with the 1st image of a pair was 

correlated with activity associated with the 2nd image of a pair before and after 

learning took place (these correlation matrices were also computed for weak pairs and 

shuffled pairs, respectively). The pattern correlation between strong pairs of fractals 

was increased across the entire hippocampus using ROIs focused on the subiculum, 

CA1, and CA2/CA3/dentate gyrus (and also included the perirhinal cortex). 
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Figure 11 from Schapiro et al. (2012). (A) Strong pairs and weak pairs used. (B) 

Pattern similarity for each fractal before and after familiarization. 

Interestingly, this pattern was not observed for any other condition other than 

strong pairs (i.e., weak pairs or shuffled pairs), and the authors acknowledge the 

learned “strong” pairs as object representations formed by the statistical learning of 

temporal regularities. These insights have contributed to our understanding of the 
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multiple learning systems at work within the hippocampus (McClelland et al., 1995), 

and with respect to the present dissertation’s focus on multiple forms of learning, this 

work has also provided a basis upon which researchers have been able to model 

separate anatomical pathways within the hippocampus that are thought to be involved 

in different types of learning (Schapiro et al., 2012). This work will be considered 

further in Chapter 5, with our attention now shifting toward the multiple types of 

learning and stimulus features that could potentially influence visual statistical 

learning. 

1.6 Visual Statistical Learning, Category Learning, and Similarity 

 

 

Both Vickery and colleagues (2018) and Turk-Browne and colleagues (2010) 

provide insightful work into how prior knowledge and tasks generally influence visual 

statistical learning. However, these works also leave open several important avenues 

of research that can lead to a much more complete understanding about the interaction 

of context and visual statistical learning. For example, Vickery and colleagues found 

that differences in learning pair types depended on participants’ instructions (respond 

to a jiggle or actively categorize the stimuli). Those differences found during 

categorization suggest the greatest learning for same-task same-response pairs (e.g., 

two face images paired together that require the same response), but as mentioned 

previously, couldn’t it also be argued that two faces or two scenes share a great deal of 

visual similarity? How much of this effect is due to stimuli belonging to the same 
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group of a well-learned category, and how much of it is due to the two images of a 

pair sharing a great deal of low-level visual features? This distinction has yet to be 

made. 

As discussed previously, statistical learning is evident from infancy (Aslin et al., 

1998), consistently engaged in processing visual stimuli in adulthood (Otsuka et al., 

2013; Turk-Browne et al., 2005; Vickery et al., 2018), but it also continues to be 

apparent into late adulthood (Campbell et al., 2012). Despite the apparently lifelong 

utility of this learning phenomenon, the literature thus far has somewhat neglected 

how other kinds of experiences encountered throughout a lifetime may modulate 

visual statistical learning. Categories seem to play an important role in visual 

statistical learning, as evidenced by the work of Vickery and colleagues (2018) and 

Turk-Browne and colleagues (2010), but several fundamental questions remain if we 

aim to grasp how category learning and visual statistical learning interact. For this 

reason, it is critical to first consider the similarities and differences between visual 

statistical learning and category learning. 

Not unlike visual statistical learning, category learning plays an important role in 

processing the massive amounts of stimuli we are faced with on day-to-day basis, and 

in gaining a means to generalize from specific learning episodes to different 

circumstances. Category learning may be described as our ability to group things (e.g., 

stimuli) based on some shared feature or attribute. This is also thought to be essential 

for survival in several different ways (e.g., is this something that is good or bad to 

eat?) and is most often studied in the lab in contexts where participants are directed to 
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learn, feedback is provided to participants, and learning goals are made explicitly clear 

(Ashby & Maddox, 2005). This is in stark contrast to statistical learning, in which 1) 

all information about statistical regularities may be hidden and 2) unlike other forms 

of incidental learning (Chun & Jiang, 1998; Nissen & Bullemer, 1987), even when 

participants are engaged in a task irrelevant to statistical regularities, statistical 

learning will extract those regularities. 

Additionally, while visual statistical learning may be considered a form of 

associative learning, research into category learning is diverse and may extend beyond 

simple grouping of stimuli and apply more broadly to concept formation (Ashby & 

Maddox, 2005; Richler & Palmeri, 2014). Critically, category learning is often studied 

in the context of distances within continuous similarity spaces (Shepard, 1987), with 

boundaries imposed on similarity spaces, or based on resemblance in terms of the 

presence of various discrete characteristics (Tversky, 1977). Consider Figure 12 from 

Richler and Palmeri (2014) for an example of stimuli used in visual category learning 

tasks. Perceptual differences in these categorization tasks can vary on few dimensions, 

(b) providing an example of two-dimensional stimuli varying in shape, size, and 

shading only, or multiple dimensions like (f) where a three dimensional “greeble” can 

also vary in body/appendage shape.  
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Figure 12 from Richler and Palmeri (2014). Eight examples of object sets used in 

visual category learning experiments varying in many or few dimensions. 

While perceptual categorization operates systematically over multiple visual 

features and dimensions, categories can also be abstract or “ad hoc” (Barsalou, 1983). 

For example, “things that need to be donated to charity” or “stuff that I will take to the 
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library today” are both concept-driven categories that are subjectively applied to 

stimuli that possess any number of visual features.  

Categorization is an invaluable tool by which we may organize and make sense of 

the world on a moment-to-moment basis. It enables us to generalize properties from 

one instance to another, to achieve invariance with respect to feature variation that 

does not impact categorical membership, and to track collections bound together by 

common goals, origins, and hidden properties. In recognizing this, we may be able to 

ask how both category learning, or more specifically, perceptual category learning and 

all the goal-directed effort that goes into it, may work in tandem with visual statistical 

learning.  

Apart from the handful of studies previously discussed, statistical learning is 

typically studied using novel stimuli that do not fall into obvious previously learned 

categories, or do not have an obvious arrangement in a feature space. Additionally, 

visual statistical learning has been discussed as being unique from other types of 

incidental learning; extracting regularities from a visual environment can occur even 

when it does not benefit the observer. This leaves open an important question: how 

might statistical learning be altered as a function of categorical knowledge? If 

categorization and statistical learning both play critical roles in cognitively organizing 

the visual world, it stands to reason that an incidental learning process like visual 

statistical learning may be modulated by explicit and/or pre-existing knowledge, such 

as category information. More so, considering how categories are so often defined by 

distinct visual features, but visual features have traditionally been controlled in the 
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statistical learning literature, how might stimulus-level visual differences interact with 

statistical learning? With an understanding of the previously reviewed works that used 

visually distinct categorizable stimuli in a statistical learning context, scrutinizing 

these interactions will require refined control over the information shared between 

structured representations, as well as control over the specific context by which this 

information is presented. To begin, it is worthwhile raising several questions 

considering the aforementioned research that focuses on influences on visual statistical 

learning. 

First, how much of the effect of category on visual statistical learning has to do 

with the act of categorizing stimuli into one group or another, and how much of it has 

to do with a lifetime of experience we have with features that constitute stimuli such 

as faces and scenes? Likewise, how much of the enhanced learning for same category 

pairs, as observed in Vickery et al. (2018) is due to the perceptual similarity shared 

between the stimuli within a pair? How might perceptual-driven categories drive 

statistical learning, or how might statistical learning inversely impact perceptual 

similarity? Finally, if context influences visual statistical learning, how much of the 

prior neuroimaging work are supported by a scenario where the neural correlates of 

learning are compared between differing tasks?  

1.7 Overview of the Present Dissertation 

 

The present dissertation puts forth a set of experiments that systematically 

controlled for prior knowledge, perceptual similarity, and effects elicited by task. In 
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Chapter 2, a series of experiments are presented to disentangle task-related influences 

of visual statistical learning from visual similarity between images of the same natural 

category group (e.g., better learning for face-face pairs cannot yet be determined to be 

due to the visual similarities shared between two faces or the fact that the two images 

fall within the same pre-learned “face” category). This was accomplished by 

controlling for prior knowledge by having participants learn arbitrary category groups 

while diminishing similarity-driven differences across stimuli through the use of 

fractal images that are visually unique from one another but do not easily fall into 

perceptual categories like faces and scenes. Chapter 3 used basic shape stimuli 

designed to be visually similar or dissimilar to determine the role of perceptual 

similarity in visual statistical learning while probing any inverse impact of statistical 

learning on perceptual judgements. Finally, Chapter 4 adopted methods from Chapter 

2 to control for prior knowledge and visual similarity but uses fMRI to attempt to 

scrutinize the neural correlates of potential task-related differences in visual statistical 

learning with a multi-task within-subjects design.  
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MODULATION OF STATISTICAL LEARNING BY NATURAL AND 

ARTIFICIAL CATEGORIES 

2.1 Experiment 1 

 

The work of Vickery and colleagues (2018) provide substantial evidence that 

task demands and contexts may influence visual statistical learning. Same-category 

pairs (e.g., face-face or scene-scene pairs) were learned significantly better than 

different-category pairs (e.g., face-scene or scene-face pairs). However, while 

category membership is often dictated by visual similarity, it remains to be seen how 

much of this effect on visual statistical learning is due to stimuli being members of a 

well-learned category group and how much is due to the fact that these stimuli can 

share a great deal of low-level visual information. We designed a paradigm in which 

visual stimuli do not fall into previously learned natural category groupings. 

Participants must explicitly learn category group information for each image within a 

task designed to promote visual statistical learning. In other words, participants are 

engaged in a simple rule-based learning task where an arbitrary category grouping for 

each image must be learned. This experiment seeks to answer two important 

questions. First, in a task where participants must effortfully memorize arbitrary 

category group information, will incidental learning (i.e., visual statistical learning) 

persist? To date, there is no evidence suggesting visual statistical learning may occur 

Chapter 2 
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simultaneously with effortful explicit learning. Secondly, will learned arbitrary 

category groupings modulate visual statistical learning similarly to natural category 

groupings (e.g., faces and scenes) with which participants have a lifetime of 

experience? If visual statistical learning persists in a task dominated by explicit 

learning, and if newly learned category groupings impact learning similar to 

previously learned natural category groupings, we may expect better learning for 

same-category pairs as compared to different-category pairs similar to that of Vickery 

and colleagues (2018). 

2.1.1 Participants 

 

A total of 30 University of Delaware Students participated in the study for 

partial completion of general course requirements.  

2.1.2 Materials and Procedure 

 

Stimuli consisted of 32 fractal images that were covertly placed into 16 pairs. 

Half of the images were randomly assigned to one category group (a “z” category 

which required a z response on the keyboard) and the remaining half were randomly 

assigned to the other category group (an “m” category which required an m response 

on the keyboard). Examples of fractal images and groupings are displayed in Figure 

13. The 16 pairs of images consisted of 8 same-category pairs (e.g., both images 

within the pair belonged to the “z” category) and 8 different-category pairs (e.g., one 

image within the pair belonged to the “m” category while the other image belonged to 
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the “z” category). Once in pairs, each image was presented onscreen for 1 second and 

participants were required to respond before the image disappeared. Feedback was 

provided in the form of a green fixation circle for correct responses that remained on 

screen for 1 second. If incorrect, participants were presented with a red fixation circle 

for 1.5 seconds. All images appeared in their respective pairs, and to further obfuscate 

participant awareness of the structure of the images, pairs were pseudo-randomized 

such no pair could immediately repeat or repeat with a single intervening pair (Figure 

13). Participants viewed each pair four times per block with six total blocks of 

training. After this initial familiarization phase, participants completed a surprise test 

phase identical to that of Vickery and colleagues (2018), wherein each pair was 

presented temporally along with a foil comprised of two images that did not appear 

together. The order of the target/foil two alternative forced choice test was 

counterbalanced, and participants made their selection for all pair options before the 

experiment was concluded. 
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Figure 13. A) Example stimuli and pairings for Experiment 1. B) Example sequence of 

stimulus presentation during familiarization for Experiment 1. 

2.1.3 Results 

 

Learning for categories was significantly above chance by the end of block one 

t(29)=2.08, p = .046, Cohen’s d = 0.38) and remained above chance for the remaining 

blocks (all p < .001). During the test phase, overall visual statistical learning was 

observed significantly above chance (t(29) = 4.42, p < .001, Cohen’s d = 0.81). 

Learning for both different-category pairs (t(29) = 2.19, p = .037, Cohen’s d = 0.38) 
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and same-category pairs (t(29) = 5.1, p < .001, Cohen’s d = 0.93) was evident at 

above-chance levels. A comparison of conditions revealed that same-category pairs 

were learned significantly better than different category pairs t(29)=2.173, p = .011, 

Cohen’s d = 0.5). 

 

Figure 14. Preliminary data for Experiment 1. a) Mean category learning accuracy by 

block. b) Mean accuracy of recalling the target pairs during the test phase, broken 

down by same-category and different-category pairs. 
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2.1.4 Discussion 

 

Overall, visual statistical learning was evident even in the presence of an explicit 

category-learning task. In other words, visual statistical learning persisted despite the 

cover task involving explicit, goal-directed learning of category information that was 

irrelevant to the regularities embedded within the stream. Additionally, learning the 

arbitrary category associated with each image while being exposed to statistical 

regularities also produced a difference in learning depending on learned category 

membership. Same-category pairs of images were better learned than different-

category pairs of images, suggesting an interaction between visual statistical learning 

and arbitrary category learning. Together, these results suggest that newly learned 

category information for stimuli that do not already possess category information (but 

are still visually complex) influences statistical learning in such a way that shared 

category information leads to the greatest amount of learning for statistical 

regularities. 

 

2.2 Experiment 2 

 

Experiment 1 provided supporting evidence replicating that of (Vickery et al., 

2018); pairs comprised of the same category group were learned better than pairs 

comprised of different category groups, even after controlling for well-learned and 

naturally occurring category groupings such as faces or scenes. Experiment 2 was 

designed to take a step back toward that of Vickery and colleagues while using 
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arbitrary category groupings to avoid artificially drawing participants’ attention to 

stimulus-level attributes. In other words, we replaced our fractal image set with faces 

and scenes but continued to assign stimuli to arbitrary category groupings. With this 

design we aimed to provide converging evidence to that expected from Experiment 1 

(i.e., better learning for same category pairs) while also exploring the impact of 

category groupings that have already been learned (e.g., faces and scenes). If the task 

calls for explicit learning of novel category groupings, and the stimuli consist of 

images that already fit into pre-learned category groupings that consistently share 

perceptual similarity with other pre-learned group members, we expected an additive 

effect wherein image pairs consisting of congruent arbitrary and natural category 

groupings will be incidentally learned better than all other conditions. Additionally, 

we hypothesized that learning for pairs will decrease as the shared category group 

information is partially reduced (e.g., for congruent/incongruent arbitrary/natural pair 

mixtures) and reduced the most for pairs where no category group information is 

shared between the items of a pair. Thus, we did not anticipate the presence of any 

interaction wherein same natural category information led to increased learning for 

different arbitrary category information but not same arbitrary category information, 

or vice versa for arbitrary category information driving differential learning for natural 

category pairings.  
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2.2.1 Participants 

 

A total of 30 University of Delaware Students participated in the study for 

partial completion of general course requirements.  

2.2.2 Materials and Procedure 

 

Stimuli again consisted of 32 images that were covertly placed into 16 pairs. 

Half of the images were randomly assigned to one category group (a “z” category 

which require a z response on the keyboard) and the remaining half were randomly 

assigned to the other category group (an “m” category requiring an m response on the 

keyboard). In lieu of fractal images, 16 face images and 16 scene images were used. 

Faces appeared as all male or all female (to avoid unintentional inter-gender 

categorization) and scenes appeared as all indoor or all outdoor. Gender and scene 

location were counterbalanced between participants. Examples of scene and face 

images and groupings are displayed in Figure 15. The 16 pairs of images consisted of 

8 same-category pairs (e.g., both images within the pair belonged to the “z” category) 

and 8 different-category pairs (e.g., one image within the pair belonged to the “m” 

category while the other image belonged to the “z” category). Overall, there was an 

equal number of face/scene and category “z”/“m” members within each condition. 

Once in pairs, each image was presented onscreen for 1 second and participants were 

required to respond before the image disappeared. Feedback was provided in the form 

of a green fixation circle for correct responses that remained on screen for 1 second. If 

incorrect, participants were presented with a red fixation circle for 1.5 seconds. All 
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images appeared in their respective pairs, and to further obfuscate participant 

awareness of the structure of the images, pairs were again pseudo-randomized such 

that no pair could immediately repeat or repeat with a single intervening pair 

(consistent with Experiment 1, Figure 13) Participants viewed each pair four times per 

block with six total blocks of training. After this initial familiarization phase, 

participants completed a surprise test phase identical to that of Experiment 1. 

 

Figure 15. Four pair types from Experiment 2, presented primarily using face stimuli. 

An equal number of face and scene stimuli were used (i.e., there was a same-natural 

pair consisting of two scenes, etc.). 

2.2.3 Results 

 

Learning for categories was not above chance by the end of block one (t(29) = 

-0.545, p = .59, Cohen’s d = -0.01) but quickly reached above chance levels by block 

two (t(29) = 7.29, p < .001, Cohen’s d = 1.33) and remained above chance for the 

remaining blocks (all p < .001). A 2 (same/different natural category) x 2 

(same/different arbitrary category) repeated measures ANOVA revealed a main effect 
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of natural category (F(1, 29)=6.97, p = .013, 𝜂𝑝
2 = .19), and a main effect of arbitrary 

category (F(1, 29)=17.65, p < .001 , 𝜂𝑝
2 = .38). In both cases, same-pairs were learned 

better than different-pairs, but no significant interaction was observed F(1, 29)=0.07, p 

= .8, 𝜂𝑝
2  = .002). Four Bonferroni corrected t-tests against chance revealed non-

significant learning for different-natural different-arbitrary pairs t(29)=2.23, p = .033, 

Cohen’s d = 0.41) but significant learning in all other conditions (same-natural same-

arbitrary, t(29)=8.89, p < .001, Cohen’s d = 1.62, same-natural different-arbitrary, 

t(29)=4.44, p < .001, Cohen’s d = 0.81, different-natural same-arbitrary, t(29)=5.08, p 

< .001, Cohen’s d = 0.93. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Preliminary data suggest greatest learning for pairs that shared the 

maximum amount of category group information. Pairs that only share 

one category group dimension show decreased learning, with the least 

amount of learning for pairs that share no category group membership. 
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2.2.4 Discussion 

 

Similar to Experiment 1, visual statistical learning was observed overall in 

Experiment 2. The impact of arbitrary category was replicated with same arbitrary 

category pairs learned better than different arbitrary category pairs. Additionally, we 

observed an impact of natural category membership despite natural categories being 

wholly irrelevant to the task. Similar to the pattern observed for arbitrary category 

pairs, same natural category pairs were learned better than different natural category 

pairs. However, there was no interaction between arbitrary and natural category 

membership. This suggests the total information shared between two images may 

predict how well a visual statistical representation is learned, and that this information 

can be both novel (as in the case with the arbitrary categories) and preexisting (i.e., 

natural face/scene categories).  

2.3 Experiment 3A 

 

Experiment 1 and Experiment 2 both investigated the impact of category 

information shared between items of a statistical representation. However, we cannot 

say with certainty that arbitrary category information is comparable to natural category 

information in terms of being like a stimulus-level influence that is driven by 

perceptual similarly, at least in terms of its influence on visual statistical learning. 

Thus far, arbitrary categories have been learned during the presentation of statistical 

regularities. This unequivocally has tied arbitrary category information to task 
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demands; participants were required to actively learn category information while, at 

the same time, incidentally learning statistical information. Given evidence from 

Experiment 2 that natural categories (which possess naturally occurring visual features 

that contribute to category discrimination, unlike the fractal images) are able to impact 

statistical learning without a task that requires participants to use the natural category 

information, it would be prudent to ensure this pattern is maintained with the use of 

artificial categories by temporally separating category learning from visual statistical 

learning. To examine this, we first trained participants to learn arbitrary category 

information in the absence of statistical regularity. Then, participants were exposed to 

statistical regularities in the context of a jitter-detection task. Figure 17 provides a 

visualization of this procedure. 

2.3.1 Participants 

 

A total of 30 University of Delaware Students participated in the study for 

partial completion of general course requirements.  

2.3.2 Materials and Procedure 

 

Similar to Experiment 1, stimuli consisted of 16 fractal images that were 

covertly placed into 8 pairs after the categorization phase was complete. Half of the 

images were randomly assigned to one category group (a “z” category which require a 

z response on the keyboard) and the remaining half were randomly assigned to the 

other category group (an “m” category requiring an m response in the keyboard). The 
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8 pairs of images consisted of 4 same-category pairs (e.g., both images within the pair 

belonged to the “z” category) and 4 different-category pairs (e.g., one image within 

the pair belonged to the “m” category while the other image belonged to the “z” 

category). Images were not organized into pairs during the initial categorization phase 

where participants learned the arbitrary category for each image. Each image within 

the categorization phase was presented onscreen for 1 second and participants were 

required to respond before the image disappeared. Feedback was provided in the form 

of a green fixation circle for correct responses that remains on screen for 1 second. If 

incorrect, participants were presented with a red fixation circle for 1.5 seconds.  To 

equate Experiment 3 with Experiments 1 and 2 in terms of stimulus exposure, 

participants viewed each fractal image four times per block with three total blocks of 

training. The remaining three blocks of training were reserved for the familiarization 

phase where participants would be exposed to statistical regularities. This would 

match the amount of time participants encountered each stimulus to Experiment 1 

while allowing participants to learn categories or statistical contingencies by using less 

stimuli overall (16 images as opposed to 32 images).  

After this training phase, participants began the familiarization phase where all 

images were organized into pairs. Pairs were pseudo-randomized such no pair can 

immediately repeat or repeat with a single intervening pair. While participants viewed 

the images, they were required to respond to jitter events (a slight back-and-forth 

movement of an image) by pressing the spacebar, and the timing of stimulus 

presentation and feedback was consistent with the training phase (Figure 17). This 
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jitter detection task was modeled after that which was used in Vickery and colleagues 

(2018). Participants again viewed each pair four times per block with three total 

blocks of training. After the familiarization phase, participants completed the same 

surprise test task identical to that used in Experiment 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. After category learning, participants were exposed to regularities within the 

context of a jitter detection task. Participants watched images go by and 

pressed spacebar whenever an image quickly moved left and right. 
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2.3.3 Results 

 

Overall, learning for categories was significant by the end of the category-

learning phase (t(29) =7.32, p < .001, Cohen’s d = 1.34) and participants had 

performed well when detecting jitter events (proportion of hits, M = 0.85, SD = 0.27). 

Evidence from the test phase, however, suggested that neither same-category pairs 

(t(29)=-0.152, p = .88, Cohen’s d = -0.03) nor different-category pairs (t(29) = -0.289, 

p = .78, Cohen’s d = -0.05) were learned at above-chance levels (Figure 18). There 

was also no observed difference in learning of same-category pairs and different-

category pairs (t(29)=0.127, p = .033, Cohen’s d = 0.41). 

 

 

 

 

 

 

 

 

 

 

Figure 18. Test data from Experiment 3A.  
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2.3.4 Discussion 

 

Overall, statistical learning was not evident in Experiment 3A. Despite the fact 

that participants viewed stimuli the same amount of times as in Experiment 1, and that 

we reduced the overall number of pairs from 16 down to 8 (because the 6 blocks of 

training were now split to allow for 3 blocks of category learning sequentially 

preceding 3 blocks of statistical learning), we failed to observe a pattern even remotely 

similar to Experiment 1. There are several possibilities worth considering about why 

this turned out to be the case. 

 First, and directly relating to the impetus driving Experiment 3, this could 

suggest that novel information (i.e., arbitrary category) does not impact visual 

statistical learning unless it is intrinsically task-relevant when visual statistical 

learning is occurring. However, this seems unlikely given the complete absence of 

evidence for visual statistical learning. Experiment 1 provided evidence that statistical 

learning can occur at the same time as explicit learning of category information, but 

the separation of explicit learning should not entirely eliminate visual statistical 

learning in Experiment 3. One plausible explanation would point toward our unique 

decision to use multiple tasks in a within-subjects design.  

 In Experiment 3, we used an arbitrary categorization task (that did not possess 

statistical regularities) followed by a jitter detection task (that did possessed statistical 

regularities). Our jitter detection task was modeled after Vickery and colleagues’ 

(2018) detection task. In their fourth experiment, they examined the impact of task on 

visual statistical learning. As discussed previously, they used a categorization task and 
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a jitter detection task, but their design was between subjects; one group from Vickery 

and colleague’s experiment engaged in categorization while the other engaged in jitter 

detection. This is in stark contrast to Experiment 3, where participants first engaged in 

an arbitrary categorization task before being exposed to regularities within the jitter 

detection task. With the category learning task demanding that participants learn 

through trial and error (they begin the first block at chance accuracy due to the random 

assignment of arbitrary category), it is likely we had exhausted participants’ 

willingness to consider the stimuli they were viewing in the experiment in the context 

of the jitter-detection task which is, by comparison to the arbitrary categorization task, 

effortless to perform well in (i.e., they only need to be set for jitter-related motion, 

they do not need to consider the content of each image). Given that one of the original 

statistical learning paradigms by Fiser and Aslin (2002) only required participants to 

passively view stimuli (and no task was present that required a response), it seems 

possible that our within-subjects design maybe have discouraged statistical learning by 

only introducing statistical regularities after participants had engaged in a cognitively 

challenging task. However, results may unexpectedly contribute to our understanding 

about inconsistencies in the visual statistical learning literature (Musz et al., 2015). We 

will speculate more on this in Chapter 5.  

2.4 Experiment 3B 

 

Given the unexpected failure to produce any evidence of visual statistical 

learning in Experiment 3A, Experiment 3B was included to investigate the original 
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question posed in Experiment 3A while attempting to avoid the within-subject cross-

task pitfalls we speculate to have driven the results of Experiment 3A. We have done 

this in two ways. First, we have moderately increased the overall amount of training 

participants receive. If we continue to see a lack of evidence of visual statistical 

learning, we will be able to say with greater certainty that it was not due to a lack of 

opportunity to extract the regularities presented within the experiment. Second, we 

have changed the jitter-detection task to a one-back task. We have previously 

speculated that part of the reason why visual statistical learning was not observed in 

Experiment 3A was due to participants’ being influenced to consider each image as 

shallowly as possible (i.e., attending to motion cues only) after being exhausted by the 

categorization task (Himberger et al., 2019). Given the limited training and the fact 

that statistical regularities only came after the categorization task (i.e., we do not flip 

between blocks of categorization and blocks of regularity familiarization training), 

changing the jitter detection task to a 1-back task encourages participants to keep a 

previous stimulus in mind and consider how it matches the stimulus presented on any 

given trial. In other words, participants cannot merely be “set” for motion to more 

easily complete the task. 

 If, with the present set of alterations to our design, we continue to observe a 

complete lack of evidence for visual statistical learning, it may suggest that visual 

statistical learning is a form of incidental learning that may not occur as efficiently as 

it would if not immediately following an explicit learning task. In other words, if 

visual statistical learning is combined with explicit learning like in Experiments 1 and 
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2, or if participants have an opportunity to switch back and forth between blocks 

involving some explicit learning task (which has yet to be explored), visual statistical 

learning may persist, but a single instance immediately following explicit learning 

may temporarily inhibit this particular form of incidental learning. We considered this 

scenario to be unlikely, but possible.  

 A more likely possibility is that the use of a demanding categorization task 

preceding a relatively passive jitter-detection task influences participants to engage in 

the experiment in a way that is different from a scenario where they only receive the 

jitter-detection task. Again, previous evidence of visual statistical learning was 

observed using only a jitter-detection task(Vickery et al., 2018), or even no task at all 

other than to passively watch the images go by (Fiser & Aslin, 2002). Changing the 

task used to familiarize participants with statistical regularities to one that encourages 

consideration of the features within the image should preserve an opportunity for 

visual statistical learning to occur. 

2.4.1 Participants 

 

A total of 81 online Mturk participants completed the study. A priori cutoffs 

were established such that participants who failed to respond correctly to a minimum 

of 70% of the categorization trails in the final block and/or respond correctly to a 

minimum of 70% of n-back events were excluded from analyses. This left us with a 

total of 54 participants. 
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2.4.2 Materials and Procedure 

 

Similar to Experiment 3A, stimuli consisted of 16 fractal images that were 

covertly placed into 8 pairs after the categorization phase was complete. Half of the 

images were randomly assigned to one category group (a “z” category which require a 

z response on the keyboard) and the remaining half were randomly assigned to the 

other category group (an “m” category requiring an m response in the keyboard). The 

8 pairs of images consisted of 4 same-category pairs (e.g., both images within the pair 

belonged to the “z” category) and 4 different-category pairs (e.g., one image within 

the pair belonged to the “m” category while the other image belonged to the “z” 

category). Images were not organized into pairs during the initial categorization phase 

where participants learned the arbitrary category for each image. Each image within 

the categorization phase was presented onscreen for 1.5 seconds and participants were 

required to respond before the end of 2 seconds after stimulus onset. Responses 

immediately terminated the trial. Feedback was provided in the form of a green 

“Correct!” for correct responses that remained on screen for 0.5 seconds. If incorrect, 

participants were presented with a red “Incorrect, the answer was [correct answer 

appeared]” for 1.5 seconds. Non-responses were also given feedback in the form of a 

message informing them that their response was too slow, with a 1.5 second delay. 

Each image appeared 4 times per block, and participants completed 5 blocks of 

categorization training before moving on to the 1-back familiarization task. 

When participants began the familiarization phase, all images were organized 

into pairs. Pairs were pseudo-randomized such that no pair could immediately repeat 
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(ABAB, for pair AB) nor could two back-to-back pairs repeat in sequence 

(ABCDABCD, for pairs AB and CD). While participants viewed the images, they 

were required to respond to the presence or absence of one-back events by pressing 

the “n” key on the keyboard (indicating a non-repeat) or by pressing the “m” key on 

the keyboard (indicating a repeat/one-back event), and the timing of stimulus 

presentation and feedback was consistent with the categorization phase (except that 

responses did not terminate trials, and correct responses were not given feedback – 

only false alarms and misses were given feedback). Each image appeared 4 times per 

block (not counting 1-back events), and participants completed 5 blocks of the 1-back 

familiarization phase before beginning the test task, which was identical to that used in 

Experiment 1. One-back events only occurred for the 2nd item in each pair, and 

occurred for each such item once in each familiarization block. 

2.4.3 Results 

 

Participants had reliably learned the categories for each stimulus by the final 

block (t(53) = 35.6, p < .001, Cohen’s d = 4.84). During the one-back training, 

participants reliably detected the majority of one-back events (for proportion of hits, M 

= 0.87 SD = 0.07) while making relatively few false alarms (for proportion of false 

alarms, M = 0.01, SD = 0.01). Same-category pairs (t(53) = 4.29, p < .001, Cohen’s d 

= 0.583) were learned at above-chance levels but different-category pairs were not 

(t(53) = 1.32, p = .191, Cohen’s d = 0.18). There was also a significant difference in 
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learning of same-category pairs and different-category pairs (t(53) = 2.07, p = .043, 

Cohen’s d = 0.282, Figure 19). 

 

 

 

 
 

Figure 19. Test data from Experiment 3B. 
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evident. Supporting our initial findings, same-category pairs were learned better than 

different-category pairs. Interestingly, only same-category pairs were learned at 

above-chance levels. Whether this is due to some of our earlier concerns about the 

familiarization phase following a challenging trial-and-error category learning phase, 

or due to our now successful attempt at separating category learning from visual 

statistical learning while replicating Experiments 1 and 2, remains to be seen. What we 

can conclude, however, is that we are still able to view evidence of category 

membership impacting visual statistical learning by temporally separating novel 

category learning from visual statistical learning. Although task demands clearly have 

an impact on what is visually statistically learned, the present findings suggest that it is 

the category information, rather than some combination of category information the 

task demands imposed during category learning, that may impact visual statistical 

learning. 
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PERCEPTUAL SIMILARITY AND VISUAL STATISTICAL LEARNING 

3.1 Experiment 4 

 

Experiments 1 through 3 were designed to scrutinize the role of stimulus 

similarity and examine how pre-existing category group information or task may 

influence visual statistical learning. This left open an important question: how do 

perceptually similar or dissimilar stimuli dictate what is visually statistically learned? 

Stimuli that are perceptually similar, albeit incidentally learned, may be bound 

together more easily during visual statistical learning. After all, perceptual similarity 

can serve as a driving force in the learning of natural category groupings, even from 

early ages (Bomba & Siqueland, 1983; Quinn, 1987; Strauss, 1979; Younger & 

Gotlieb, 1988).  In other words, perhaps in the absence of semantic or naturally 

occurring category group information, perceptually similar pairs will be learned better 

than perceptually dissimilar pairs in a visual statistical learning task.  

Experiment 4 used a categorization task that was additionally driven by 

carefully controlled perceptual differences in basic shapes devoid of the high-level 

information faces and scenes possess. In other words, participants learned perceptual 

category groupings that were designed to be specifically driven by perceptual 

similarity (using shapes designed to be visually continuous, see Figure 20), and 

Chapter 3 
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eventually engaged in a statistical learning task while categorizing the stimuli into 

their respective perceptual groups. With a lack of any immediately clear visual 

boundary between shapes (in contrast to the obvious differences between a face and a 

scene), participants effortfully had to learn perceptual category groups. As the 

perceptual category boundary arbitrarily and randomly splits stimuli into two groups, 

participants were actively engaged in learning perceptual category groupings that 

obfuscated the underlying statistical structure of the images.  

We hypothesized the greatest learning for same-category perceptually similar 

pairs with a stepwise decrease for every pair that does not share either categorical 

information, perceptual similarity, or both. In other words, same-category perceptually 

similar pairs may be learned best, different-category perceptually dissimilar pairs 

would be learned the least, and same-category perceptually different/different category 

perceptually similar pairs would fall somewhere in-between.  

3.1.1 Participants 

 

A total of 30 University of Delaware Students participated in the study for 

partial completion of general course requirements.  

3.1.2 Materials and Procedure 

 

Stimuli consisted of 360 basic shape images that lie on a continuum (Li et al., 

2020). The visual continuum of stimuli was randomly be divided in half (Figure 20), 

which designated the two category groupings. Participants first engaged in a category 
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group training task that does not possess any regularity information. A single stimulus 

appeared on screen and participants had three seconds to press one of two buttons to 

indicate which category group the stimulus belongs in. No time penalty was imposed 

on participants for incorrect responses like in Experiments 1 through 3. Every 50 

trials, participants were informed of their average accuracy for the last 50 trials. They 

continued to engage in this training task until 10 minutes have passed or until they 

reach 90% accuracy within the previous 50 trials. 

 

Figure 20. Basic shape stimuli continuum used in Experiment 4. The dotted line 

represents the category group boundary. Perceptually similar pairs within 

(highlighted in yellow) and between categories (blue) were matched in 

terms of similarity, as were perceptually dissimilar pairs within (green) 

and between (orange) categories. All shapes appeared in black for 

participants. 
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After the initial category group training, participants engaged in the same task 

at a faster pace (they had up to 2 seconds to respond to the stimulus, down from 3 

seconds) and with all images covertly presented in pairs. A total of 16 images were 

used: 8 were from one category and 8 were from the other category. Eight pairs were 

created constituting four different pair conditions: perceptually similar same category 

pairs, perceptually dissimilar same category pairs, perceptually similar different 

category pairs, and perceptually dissimilar different category pairs. Each stimulus 

appeared on screen for one second with an intervening blank inter-trial interval that 

lasted for one second. Altogether, participants had two seconds to respond accurately 

before the next image appeared. If participants were inaccurate, they were presented 

with an additional screen for one second that informed them they were incorrect/too 

slow in responding. Each block of this training included 96 trials with a total of 6 

blocks. After the second training task was complete, participants engaged in a two 

alternative forced choice task similar to those used in Experiments 1 through 3. 

3.1.3 Results 

 

Category learning was evident within the initial category group training (t(29) 

= 27.5, p < .001, Cohen’s d = 5.01) and persisted throughout the second phase of 

category training that included statistical regularities (t(29) = 51.7, p < .001, Cohen’s d 

= 9.44). For the test phase, a 2 (same/different arbitrary category) x 2 (perceptually 

similar/dissimilar) repeated measures ANOVA revealed a main effect of arbitrary 

category (F(1, 29) = 5.76, p = .023, 𝜂𝑝
2 = .17), a main effect of perceptual similarity 
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(F(1, 29) = 6.1, p < .02 , 𝜂𝑝
2 = .17), with a  interaction observed between perceptual 

similarity and arbitrary category (F(1, 29) = 5.97, p = .02 , 𝜂𝑝
2 = .171). Four 

Bonferroni corrected t-tests against chance revealed significant learning across all four 

conditions (same-category similar pairs, t(29) = 3.03, p = .005, Cohen’s d = 0.55, 

same-category dissimilar pairs, t(29) = 3.13, p = .004, Cohen’s d = 0.57, different-

category similar pairs, t(29) = 8.14, p < .001, Cohen’s d = 1.49, different-category 

dissimilar pairs, t(29) = 4.69, p < .001, Cohen’s d = 0.86). 

 

 

Figure 21. Test data from Experiment 4 
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3.1.4 Discussion 

 

While visual statistical learning was evident overall as well as within each 

condition, results from Experiment 4 suggest that perceptually similar pairs of items 

from different categories are learned better than all other conditions. Why would this 

pattern emerge, rather than the pattern we hypothesized where a benefit for same-

category/perceptually similar pairs would be observed (just as same natural/arbitrary 

categories contributed to visual statistical learning in Chapter 2)? One potential 

explanation would again call into consideration the impact of the task demands driving 

participant behavior during learning.  

 In Experiment 3, we argued that statistical learning may only occur when 

participants are effortfully engaging in the task. Thus, among other explanations, we 

primarily argue that we failed to observe statistical learning when statistical 

regularities were introduced after a cognitively demanding categorization task was 

completed and a simple jitter-detection task was introduced. Although the results from 

Experiment 4 were unexpected, they may serve to support this explanation. In other 

words, perhaps the pattern of data observed here are best characterized as resulting 

from a design that required differing amounts of engagement from participants 

between conditions (i.e., some trial conditions were easier for participants than others).  

Specifically, as participants were learning the category for each stimulus, the 

most challenging stimuli to correctly respond to would naturally appear at the category 

boundary. Based upon participants’ experience with the categories at any given time 

throughout the experiment, participants would have to more carefully scrutinize 
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stimuli at the category boundaries to determine which category it belonged to. 

Additionally, for those pairs that were perceptually similar but crossed category 

boundaries, participants would have to carefully consider which category each 

stimulus best fits to prevent mis-categorization. Thus, this increased engagement with 

stimuli appearing at the category boundaries, or pairs of stimuli that crossed the 

category boundaries, may have driven the observed higher rates of learning for 

different-category pairs (as the category boundary was responsible for the various 

levels of difficulty between trials and conditions). See Figure 22 for an example. This 

account holds additional credence when considering prior work that has shown how 

discriminability for stimuli between categories has been observed to be better 

compared to discriminability for stimuli within categories (Etcoff & Magee, 1992; 

Liberman et al., 1957), even if categories are learned during the course of an 

experiment (Goldstone, 1994; Goldstone et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Side-by-side example of how the category boundary dictates a need for 

increased discriminability for pairs that cross category boundaries.  
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3.2 Experiment 5 

 

Given categorization has a clear impact on perceptual discrimination ability, 

Experiment 5 is designed to explore the inverse question of Experiment 4: how might 

visual statistical learning shape perceptual similarity judgments? Using the similarity 

space from Experiment 4, we first created a series of pairs of stimuli that are matched 

in terms of visual similarity. Participants were then exposed to all of the stimuli used 

to create the pairs, but only half of the stimuli appeared in their respective pair while 

participants were exposed to a one-back task. The remaining stimuli did not appear as 

pairs but were rather shuffled into the trial sequence as singletons. This provided us 

with our two critical conditions that were matched on their similarity but differed in 

their capacity to elicit visual statistical learning: grouped (structured) pairs of stimuli 

can be visually statistically learned, and ungrouped (unstructured) pairs of stimuli that 

cannot be visually statistically learned  

Following the familiarization phase, we then asked participants to rate pairs of 

images on how similar or dissimilar they are using a 9-point scale. Importantly, the 

unstructured singletons were returned into their paired form so that participants could 

provide ratings for both grouped pairs and ungrouped pairs. If statistical associations 

influence the perceptual space, we may expect pairs learned during familiarization to 

appear perceptually more different compared to pairs that do not possess any statistical 

associations.   
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3.2.1 Participants 

 

A total of 30 University of Delaware Students participated in the study for 

partial completion of general course requirements.  

3.2.2 Materials and Procedure 

 

The materials used in for Experiment 5 are the same as that used in Experiment 

4, while the familiarization phase used a one-back detection task (Figure 23). Using 

the similarity space from Experiment 4, we created 8 pairs of stimuli matched by 

similarity between pairs. During familiarization, half of the images were shown 

grouped within their respective pairs. Figure 24 provides a visualization of pairings 

drawn from the similarity space. All images appeared 4 times per block and 

participants completed 4 blocks of familiarization.  

Following familiarization, participants began making similarity judgements on 

pairs of stimuli using a 9-point scale. Within this similarity judgment task, participants 

made similarity judgments on all 8 pairs of stimuli. Images of a pair appeared one 

after another with stimulus presentation timing matched to the familiarization phase 

(one second on, one second off). After each image is shown, participants entered their 

response on a scale from 1 (very similar) to 9 (not similar at all).  
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Figure 23. Example trial sequence for Experiment 5. Blue shapes represent grouped 

stimuli (pairs) that appeared together during familiarization. Participants 

pressed spacebar whenever a one-back event occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. A. Example pairings drawn from the similarity space. B. Grouped (paired) 

stimuli that appeared during familiarization. C. Ungrouped stimuli that 

only appeared as pairs during the test phase. Stimuli did not appear 

highlighted. 
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3.2.3 Results 

 

Although we did not set a priori cutoff criteria for Experiment 5, participants 

reliably detected the majority of 1-back events (for proportion of hits, M = 0.66 SD = 

0.17) while making relatively few false alarms (for proportion of false alarms, M = 

11.12, SD = 0.07). A comparison of similarity ratings for grouped (i.e., visually 

statistically learned) vs ungrouped dissimilar pairs yielded no observable differences 

(t(29) = 0.505, p = .62, Cohen’s d = 0.09). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Similarity rating data for Experiment 5. 
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3.2.4 Discussion 

 

 

Visual statistical learning does not appear to influence similarity ratings. 

Although we were unable to test for visual statistical learning because the similarity 

rating task explicitly revealed the presence of pairs, it is unlikely that pair learning 

failed to occur since the 1-back task typically elicits robust pair learning. Nevertheless, 

it is possible that pair learning failed to occur, thus a follow-up could address this by 

including more exposure and a pair testing stage in leu of a similarity judgement task 

for a matched group. 

Experiment 4 and Experiment 5 attempted to scrutinize ways in which visual 

statistical learning and perceptual similarity may interact by using basic shape stimuli. 

It may be worthwhile for future work to consider the use of more complex stimuli, not 

unlike those used in Experiments 1 through 3. If visual statistical learning does 

influence perceptual similarity judgements and Experiment 5 was unable to tap into 

this effect, it may have been because the simple shapes we used do not offer enough 

featural variety for visual statistical learning to interact with, or for participants to 

make reasonable similarity judgements on (i.e., any two of the most different stimuli 

from our set are simple shapes constructed from one continuous line).  
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NEURAL SIGNATURES OF VISUAL STATISTICAL LEARNING AS 

SHAPED BY TASK 

4.1 Experiment 6 

 

Experiments 1 and 2 illustrate that category training has a profound influence 

on patterns of visual statistical learning. Prior work (Vickery et al., 2019) also 

suggests that different tasks, such as simple detection tasks, do not lead to such 

patterns. These observations raise the question: does attention to categories evoke 

similar or distinct mechanisms of statistical learning? While it is difficult to access 

such distinctions, neuroimaging can help by suggesting whether different or similar 

neural consequences of learning in different contexts occurs. Experiment 6 is designed 

to examine neural correlates of visual statistical learning within subjects and between 

learning contexts. All participants completed the same experiment (except 

counterbalancing of the order of conditions between subjects) and were exposed to 

statistical regularities within two different learning contexts. Like Experiment 3, we 

examined the impact of the learning context in a separate, non-learning context. After 

learning is complete, participants were scanned using fMRI while engaged in a task 

that is not like either of the two previous tasks (they passively viewed images from the 

learning contexts) and were not actively learning new information. 

Chapter 4 
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A number of studies have used fMRI to explore differences in neural correlates 

relating to statistical learning, and while some evidence seems to replicate across 

studies, there are certainly some inconsistencies between studies that adopt different 

protocols (Turk-Browne et al., 2009, 2010), perhaps due to variations in the training 

paradigm. One clear path to clarifying these inconsistencies is to investigate the neural 

correlates of how different learning contexts influence visual statistical learning. Prior 

work has highlighted several cases where differing task demands lead to differences in 

visual statistical learning (Vickery et al., 2018; Turk-Browne et al 2005), as well as the 

evidence from the previous chapters. Using fMRI, Experiment 6 is designed to probe 

differences in incidental learning driven by different task demands. Using a within-

subjects design, participants engaged in a visual statistical learning paradigm by going 

through alternating blocks of two different tasks, providing two different learning 

contexts. 

In this experiment, all participants engaged in both a categorization task (Turk-

Browne et al., 2010; Vickery et al., 2018) and a 1-back task (Turk-Browne et al., 

2005) that were associated with both paired images and singleton images, unique to 

task context. Both tasks were exactly the same (i.e., repeat images also occurred 

during categorization), the only difference between the tasks are the instructions 

participants receive and how they respond to each image. Additionally, all images 

consisted of fractal images in order to control for prior natural category knowledge 

(i.e., instead of using faces and/or scenes). Participants were exposed to singletons and 

pairs in these two different contexts for approximately 1.5 hours before entering the 
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scanner. In order to examine effects arising from two distinct on-line task demands, all 

previously learned pairs and singletons were intermixed into a single event-related 

stream once participants enter the scanner. Participants were told to carefully focus in 

on and watch each image go by slowly, allowing for a neutral context unrelated to 

either of the learning contexts.  

If visual statistical learning shares a common neural underpinning across tasks, 

we may expect to see greater hippocampal activity for paired images learned during 

either task when compared to activity elicited by singleton images. If not, or 

additionally, we may expect to see some differences driven by the task. It may be 

possible for some brain regions associated with statistical learning (e.g., lateral 

occipital cortex or medial temporal lobe) to differentiate first, second, and singleton 

images learned during categorization, even when prior knowledge is controlled for 

(i.e., participants do not have experience with fractal images like they have experience 

with faces or scenes). Critically, our design focuses on the neural correlates of 

statistical learning after they have been learned (the reviewed works measured brain 

responses while task and learning was ongoing), and outside of their learned context 

(during a neutral passive viewing task).  

4.1.1 Participants 

 

20 participants were paid $20/hour for their time spent inside the scanner and 

$10/hour for their time spent outside of the scanner. Scanning typically lasted 1.5 

hours and non-scanning time typically lasted 2 hours. 
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4.1.2 Materials and Procedure 

 

A total of 96 fractal images were used. These fractals were split between two 

tasks: the categorization task and one-back task (Figure 26). For the categorization 

task, 32 of the 48 images were assigned into pairs consisting of 8 same-category pairs 

and 8 different-category pairs. The remaining 16 images served as singletons that were 

not paired with another image. For the 1-back task, 32 of the 48 images were assigned 

to pairs irrespective of category (because category was not present nor relevant in the 

one-back task). As with the categorization task, the remaining 16 images also served 

as singletons that were not paired with another image.  

 

 

Figure 26. Example sequence of stimuli presentation and required response for the 

categorization task (left) and the one-back task (right). 
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Participants completed a total of 6 runs of familiarization where they viewed 

all of the images a total of 18 times across both tasks. Each run consisted of 

interwoven blocks of each task such that each task flipped an equal number of times 

between runs (e.g., ABABAB). Whether the participant began with the categorization 

task (A) or the one-back task (B) was counterbalanced (i.e., half of participants 

experienced runs of BABABA). Each run contained a single repetition of all images 

assigned to that task. 

The categorization task was similar to that of Experiment 1; participants 

learned through trial and error which category each image belongs to. In order to 

equate responses between tasks, participants used the same keys to make responses in 

the one-back task. If the image was not a repeated image, they pressed one key. If the 

image was an immediately repeated image, they pressed the other key. Repeated 

images appeared in both tasks, such that each of the 96 images repeated once per run, 

divided amongst the 6 blocks.  

During scanning, participants passively viewed all 96 images one at a time in 

the scanner throughout each run, with a total of 4 runs. Pairs were maintained, but all 

pairs and singletons from both tasks were intermixed in a single run. Each image was 

displayed for 1 second with a variable 4-7 second inter-trial-interval consisting of a 

black screen and a small fixation circle. Participants were instructed to lay as still as 

possible and fixate on each image as it passed by, and an MRI compatible eye tracker 

was used to ensure participants do so. After scanning, participants were led to another 
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testing room where they were given a two alternative forced choice recognition test, 

the same used in Experiments 1 and 2.  

4.1.3 fMRI Data Acquisition 

 

Data were collected using a 3T Siemens Prisma system using a 64-channel 

head/neck coil. High resolution (0.7 mm isometric voxel) structural data used for 

registration was collected as a T1-weighted MPRAGE structural image. Functional 

scans were collected using T2 weighted Siemens Multiband sequences that acquired 

80 interleaved slices at an oblique axial orientation at 25° from the anterior 

commissure/posterior commissure line with a resolution of 2.0 mm x 2.0 mm x 2.0 

mm (TR= 1s, TE = 32 ms, flip angle 61°). Each run collected 628 volumes and lasted 

approximately 10 minutes. 

4.1.4 Behavioral Results 

 

During training, participants learned the categories for each stimulus by the 

final block(t(19) = 38.7, p < .001, Cohen’s d = 5.26) and correctly detected the 

majority of one-back events (for proportion of hits, M = 0.92 SD = 0.08) while making 

relatively few false alarms (for proportion of false alarms, M = 0.01, SD = 0.01). 

During the test phase, pairs learned during categorization were recognized 

significantly above chance (t(19) = 5.35, p < .001, Cohen’s d = 1.2), but pairs learned 

during the one-back task were not (t(29) = 1.29, p = .289, Cohen’s d = 0.29). Overall, 

pairs learned during categorization were learned better than pairs learned during the 
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one-back task (t(19) = 2.43, p = .025, Cohen’s d = 0.542, Figure 27). Pair learning 

under categorization did not differ by function of pair combination (t(19) = -0.06, p = 

.954, Cohen’s d = -0.01), with learning for same-category pairs not differing from 

learning for different-category pairs (Figure 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Experiment 6 test phase results obtained after scanning. 
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Figure 28. Experiment 6 test phase results divided by category membership. 

4.1.5 Neuroimaging Results 

 

Data analyses was conducted using fMRIB Software Library (Jenkinson et al., 

2012) version 5.0.9, fMRI Expert Analysis Tool (FEAT) version 6.0 (get citation), and 

the AFNI software package (Cox, 1996). The high-resolution structural scan was skull 

stripped using BET (Smith, 2002) before being registered to a standard MNI152 2mm 
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template using a nonlinear 12 degrees of freedom normal search. Functional runs were 

first be de-obliqued using ANFI’s 3dWarp and then re-oriented to match the standard 

template using FSL’s fslreorient2std. MCFLIRT motion correction was applied along 

with a 5mm FWHM Gaussian kernel for smoothing. A high pass temporal filter was 

applied to remove low frequency artifacts.  

 For the first-level analysis, all runs from all participants were modeled using a 

standard GLM approach. A total of 10 explanatory variables (EVs) was used. For the 

following explanation of the EV’s used, the abbreviations stand as follows: One = first 

image of a pair, Two = second image of a pair, Cat = image learned during the 

categorization task, Nback = image learned during the 1-back task, Same = same 

category as it’s respective paired image, Dif = different category as it’s respective 

paired image, Sing = singleton. The 10 EVs used are as follows: One_Cat_Same, 

One_Cat_Dif, One_Nback_Same, One_Nback_Dif, Two_Cat_Same, Two_Cat_Dif, 

Two_Nback_Same, Two_Nback_Dif, Sing_Cat, Sing_Nback. All EVs were 

convolved using a double-gamma standard hemodynamic response function. At the 

first level, several contrasts were computed, and these contrasts were passed forward 

to higher level analyses. For the second level analysis, a fixed effects analysis was 

used to combine across the 4 passive viewing runs for each participant. The third level 

analysis combined runs across participants using a mixed effects analysis. The whole-

brain statistical maps resulting from this analysis were cluster corrected for multiple 

comparisons using FSL’s Randomise (Jenkinson et al., 2012), a nonparametric testing 

tool, using 5000 permutations and threshold free cluster enhancement (TFCE).  
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 As stated previously, we were interested in understanding if attention to 

categories evoke similar or distinct mechanisms of statistical learning. To probe for 

this, we compared structured items to singletons for both tasks. This includeded 

One_Cat > Sing_Cat and Two_Cat > Sing_Cat for categorization and One_Nback > 

Sing_Nback and Two_Nback > Sing_Nback for the 1-back task. If we had observed 

similar patterns of activity in these contrasts, it may have indicated general 

hippocampal activity for structured items (Turk-Browne et al., 2009). Unfortunately, 

none of our comparisons yielded significant results from these comparisons. 

Alternatively, within these contrasts, we speculated about how we may 

approach findings that suggests distinct mechanisms of statistical learning between 

tasks. For instance, a distinct pattern of activity between tasks could have manifested 

in the form of increased activity within medial temporal lobe and/or striatum for 

images learned during categorization compared to images learned during the 1-back 

task. This pattern may suggest that information shared between items of a pair from 

the categorization task engendered activity from areas relating to associative learning 

in a way that items learned in the 1-back task did not (i.e., a possible link to the 

behavioral effects observed from Chapter 2 of the proposal). In our design, this 

explanation was explorable with additional contrasts scrutinizing activity arising from 

same-category pairs or different-category pairs. These contrasts included 

One_Cat_Same > One_Cat_Different and Two_Cat_Same > Two_Cat_Different. In 

the case that increased medial temporal lobe/striatal activity was observed for same-

category images compared to different-category images, it may have suggested that 
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these associative learning areas predict the strength of statistical learning as a function 

of the sum total information shared between items of a pair (again, relating back to an 

interpretation of behavioral evidence from Chapter 2). However, the additional 

contrasts we included here also did not yield any significant differences. 

4.1.6 Discussion 

 

Behavioral results suggest that visual statistical learning was evident, but only 

for the categorization task. Although blocks of the categorization task and blocks of 

the one-back task were intermixed within and between runs, this pattern of results may 

still be due to the use of multiple tasks in a within-subjects design. In the context of 

the present experiment, participants were exposed to one task where they could only 

perform at chance levels before slowly learning categories over time, and a one-back 

task where performance easily reached ceiling within the first few trials. In fact, many 

participants expressed an unprompted verbal preference for the 1-back task 

(occasionally referring to it as the easy task).  

In order to actively learn the category membership of each image in the 

categorization task, participants were required to engage with stimuli in a way that 

encouraged studying the visual details of the image while trying to remember the 

category it belonged to. In contrast with the one-back task, no such effort was 

required; participants were only required to look for whether each image on screen 

was an immediate repetition of the previous image or not. We made a similar 

argument between Experiment 3A and 3B, although the major difference in 
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Experiment 6 is that visual statistical regularities were presented within both the 

categorization and the one-back task. While these visual statistical learning tasks were 

both used in the same within-subjects design, this may explain why statistical learning 

was evident for pairs learned during the categorization task but not pairs learned 

during the one-back task (and why participants spontaneously referred to them as the 

“hard task” and “easy task”, respectively). Along with the influence of task on 

statistical learning (Vickery et al., 2018) this supports the idea that visual statistical 

learning is not an entirely passive process (Baker et al., 2004). 

Additionally, within the category-learning task, there were no observable 

differences between learning for same-category pairs and different-category pairs. 

Unlike Experiment 1and 2 , the present experiment involved switching between tasks 

multiple times within a run, used 96 total images as opposed to the 32 images used in 

Experiment 1, and included the use of unpaired singleton images. In addition, four 

runs of the passive viewing task intervened between categorization exposure and the 

pair testing phase, which may have muted differences.  

 In sum, neuroimaging results from Experiment 6 were not as revealing as we 

had hoped, at least beyond what we have learned about the methodological 

considerations needed to compare tasks in a within-subjects design. Despite extensive 

familiarization with visual statistical regularities, and despite successfully observing 

some behavioral evidence of visual statistical learning (from the category learning 

task), our experiment may have been underpowered at the stage of the passive viewing 

task. There are several methodological decisions made that could have contributed to 
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this scenario (e.g., the use of singletons, the passive viewing that shuffled all pairs and 

singletons together, and an ambitiously large stimulus set). 
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SUMMARY AND CONCLUSION 

Incidental learning is reliably elicited in laboratory settings, even in very short-

term training episodes, implying that it is a ubiquitous phenomenon. How statistical 

learning – specifically visual statistical learning - operates in real-world scenarios 

remains open to scientific study. Some have argued that visual statistical learning 

provides an automatic and incidental means of constructing representations (Schapiro 

et al., 2012) , or even representations wherein statistical regularities are processed the 

same way as objects (Lengyel et al., 2021). However, most prior work as used 

unfamiliar stimuli about which nothing else is learnable except statistical regularity in 

the context of the experiment. Our work aimed to explore key features that we believe 

are important to how statistical learning might apply in naturalistic settings: new 

learning and prior knowledge for categories, perceptual similarities shared between 

stimuli, and the impact of task demands.  

 

5.1 Category Information Predicts Visual Statistical Learning 

 

Chapter 1 investigated the role of new category learning, old category memory, 

and simultaneous explicit learning on visual statistical learning. Experiment 1 assigned 

arbitrary categories to fractal images that did not possess any prior category 

Chapter 5 
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information and were not easily categorizable by visual features (i.e., the random 

assignment of fractal images to each group roughly equated average within-category 

similarity with between-category similarity). Additionally, participants were exposed 

to statistical regularities while simultaneously learning the category information, 

which to our knowledge, is the first attempt to investigate whether visual statistical 

learning can occur simultaneously with explicit learning. Participants both incidentally 

learned the statistical contingencies within the task as well as the explicit category 

information. Critically, the novel category information influenced statistical learning 

such that same-category pairs were learned better than different category pairs. 

 Reintroducing memory for category information (as well as similarity between 

stimuli), Experiment 2 used the same paradigm but replaced fractal images with faces 

and scenes. If category information had to be explicitly attended to while being 

exposed to statistical regularities, we would have only replicated Experiment 1 insofar 

as expecting a difference in learning for arbitrary category pairs. Instead, the prior 

knowledge for the categories (e.g., faces and scenes) continued to predict learning 

such that same-category information, whether it be newly learned arbitrary category 

information or memory for existing categories, predicted greater visual statistical 

learning. Although we could not disentangle visual similarity in Experiment 2 (e.g., 

two faces have a great deal of visual similarity in common regardless of category 

information), evidence from Experiment 1 suggests that category information can still 

drive these differences with visual similarity roughly average between newly learned 

categories.  
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 Finally, to ensure that visual statistical learning was being driven by category 

information disassociated from similarity, and not the immediate task demands 

associated with responding to arbitrary category information, Experiment 3A sought to 

separate novel category learning from visual statistical learning. We attempted to 

equate Experiment 3A with Experiments 1 and 2 by maintaining the overall time spent 

in the experiment through cutting training trials and pairs in half. We used a category 

learning task that presented the stimuli randomly (i.e., not in pairs) followed by a 

jitter-detection task that covertly familiarized participants with the pairs. To our 

surprise, we failed to observe any evidence of visual statistical learning. We conducted 

Experiment 3B using the same number of pairs but almost twice the number of 

exposures in both phases of the experiment and, critically, we used a one-back task in 

place the jitter-detection task to expose participants to statistical regularities.  

 We again found evidence of visual statistical learning in Experiment 3B, even 

though the category training was separated from pair exposure. We reasoned that 

participants were demotivated after the category learning task and only engaged with 

the jitter-detection task in Experiment 3A insofar as to detect and respond to motion. 

We compensated for this by increasing the trial count and using a one-back task in 

Experiment 3B. This speculation was, in part, motivated by prior work that had no 

trouble observing evidence of visual statistical learning using a jitter-detection task 

that did not follow a category learning task (Vickery et al., 2018), although the overall 

degree of learning observed in jitter-detection tasks is also relatively weak to begin 

with. Importantly, the evidence we found in Experiment 3B highlighted better learning 
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for same-category pairs as compared to different-category pairs, which did not reach 

above-chance levels of learning.  

 In light of the findings presented in Chapter 1, it is worthwhile considering the 

mechanisms underlying the influence of category information on visual statistical 

learning. Experiment 3B required participants to compare the previous stimulus with 

the stimulus viewed on the current trial, and we attribute this to our ability to 

successfully detect evidence of visual statistical learning after our jitter-detection task 

in Experiment 3A failed (along with an increase in trials). Prior work has recognized 

that individual working memory capacity may predict visual statistical learning 

(McCarter, 2021) and that working memory capacity may facilitate the processing of 

statistical regularities (Cashdollar et al., 2017). By this count, category information 

may be influencing visual statistical learning in several ways. 

 Based upon the work from Chapter 1, we hypothesized that the sum total 

information shared between items constituting a statistical representation predicts the 

strength of that representation. If visual statistical learning is relying on working 

memory, it could be the case that shared category information is contributing to the 

successful extraction of statistical regularity information. Additionally, category 

switching could be inducing a sort of event boundary, and memory for regularity 

information has been shown to be better for those items contained within such 

boundaries (DuBrow & Davachi, 2013, 2016). On the other hand, if working memory 

is maintaining some item on the current trial, as well as some temporally decayed item 

from the previous trial, it could be the case that category switching intensifies the 
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decay of the previous item. Thus, rather than same-category information facilitating 

working memory in the extraction of statistical regularities (or rather than considering 

this explanation alone in the context of our findings) different-category information 

could burden working memory which may lead to the creation of weaker statistical 

representations.  

 Finally, we have previously discussed the importance of the hippocampus to 

visual statistical learning (Schapiro et al., 2012) and how patterns of activity within the 

hippocampus become increasingly correlated as strong representations are built. 

Additional work has modeled the hippocampus to explore the ways in which different 

inputs (including regularity information) are extracted from the environment (Schapiro 

et al., 2017). One interesting route for future work would be to apply different 

category inputs to such a model and test our hypothesis about how shared information 

(or similarity between stimuli) drive increased learning between statistical 

representations. In this way, similarity could include conceptual similarity (like 

category information) or perceptual similarity (as explored in Chapter 3).  

 Together, these findings provide critical insights into how statistical learning 

may operate in the real world. Category information alone (albeit newly learned), as 

observed in Experiment 1, can influence statistical learning, as can well-established 

category learning that may be task-irrelevant, as in Experiment 2. Finally, even when 

newly learned category information immediately precedes exposure to statistical 

regularities, it can have a profound impact of what statistical representations are 

formed. Rarely would visual statistical learning in real-world contexts be separated 
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from our wealth of prior knowledge or our constantly changing goals on a moment-to-

moment basis, and the set of experiments from Chapter 1 highlight the incredible 

importance tasks and prior knowledge may have on visual statistical learning in a 

naturalistic setting.  

5.2 Perceptual Similarity Interacts with Task Demands but is Not Altered by 

Visual Statistical Learning 

 

Chapter 3 focused on investigating the relationship between visual statistical 

learning and perceptual similarity. Experiment 4 was designed to investigate the 

impact visual similarity has on visual statistical learning while controlling for the 

high-level visual information that accompanies complex visual stimuli such as faces 

and scenes. We used a continuum of basic shape stimuli (Li et al., 2020) that we 

divided into two categories. Using our arbitrary category learning paradigm as a cover 

task, we exposed participants to perceptually similar and perpetually dissimilar pairs 

of stimuli that were covertly structured into same-category and different-category 

pairs. Although we hypothesized a pattern of visual statistical learning similar to that 

found in Chapter 2, we instead uncovered a unique pattern that we speculate was 

engendered, in part, by task demands.  

 Different-category pairs appeared to be learned better than same-category 

pairs, particularly for different-category perceptually similar pairs. Why might this be 

the case? Our decision to define arbitrary categories by dividing a similarity space in 

half fundamentally changed the task; participants could now use perceptual similarity 
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to guide their learning of the categories. Thus, determination of category membership 

was hardest for items lying near the borders; different-category items necessarily lay 

closest to the boundaries, and different-category perceptually similar pairs presented 

the greatest challenge. This may have led to awareness of the contingency through 

noticing the difficulty and the similarity of two back-to-back items with different 

category identities.  

 Momentarily turning back to Experiment 3A, we explained our inability to 

observe evidence of visual statistical learning as being due to, in part, a lack of 

engagement with the jitter-detection task after being exhausted by the categorization 

task. Experiment 4, by contrast, demands the most effortful engagement for those pairs 

that require response switching, particularly for the different-category perceptual 

similar pairs where such subtle differences between stimuli introduced a great deal of 

ambiguity. If task demands from Experiment 3B (e.g., the switch from a jitter-

detection tasks to a one-back task) required participants to engage with stimuli on a 

deeper level (e.g., compare the current image with the previous image in a one-back 

task, as opposed to responding to any kind of motion from a jitter-detection task), 

similar demands for engagement can be found in Experiment 4 for those specific 

conditions where we observed the most learning. 

 These findings from Experiment 4 do not provide insight into how perceptual 

similarity alone may influence visual statistical learning, but they do provide very 

clear evidence that an interaction between perceptual similarity and task demands can 

predict which types of statistical regularities are extracted. Although we chose to use 
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basic shape stimuli to avoid visual complexity that was less controllable, the present 

experiment highlights how challenges relating to perceptual discriminability can drive 

visual statistical learning. Future work should examine less constrained feature spaces 

– even the most dissimilar shapes employed in Experiment 4 were still highly similar-

looking, compared to a large, diverse, multi-dimensional space that defines natural 

categories such as faces. The spectrum of basic shape stimuli was arguably less useful 

in Experiment 5, in which we considered the possibility of visual statistical learning 

altering perceptual similarity judgements.  

 Using the basic shape stimuli from Experiment 4, Experiment 5 first exposed 

participants to statistical regularities in a one-back task. Half of the stimuli were 

covertly organized into pairs, while the other half appeared randomly as singletons. 

After exposure, singletons were organized into pairs that were matched in terms of 

perceptual similarity with pairs that appeared during familiarization, and participants 

were asked to rate the two items within each pair based on how similar or dissimilar 

they appear to be. No differences were found between ratings of pairs that possessed 

statistical regularities (from the familiarization phase) and those that did not, which 

may suggest that visual statistical learning does not impact judgements of perceptual 

differences. However, there are a few limitations worth considering in this case. 

 First, Experiment 5 did not have a visual statistical learning test phase as the 

rest of the experiments did. This is because we could not reliably test for memory for 

pairs after revealing the presence and organization of pairs during our perceptual 

differences judgement task, as participants would have been directly shown which 
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pairs appeared during familiarization when completing their ratings between pairs 

after learning. It remains a possibility that participants did not learn the visual 

regularities during familiarization, which lead to no observable differences between 

pairs that appeared previously and pairs that did not. However, given the fact that we 

used a one-back task, which has been shown to lead to higher rates of visual statistical 

learning in prior work (Himberger et al., 2019) as well as Experiment 3B, this 

possibility seems unlikely. Rather, future work would benefit from reintroducing 

higher-levels of visual complexity that provide more context upon which perception 

and similarity judgements may operate, rather than the relatively anemic and feature-

constrained basic shape stimuli used in Chapter 3. 

 Together, the experiments from Chapter 3 provide important insight into how 

perceptual differences can interact with task demands to influence visual statistical 

learning (Experiment 4), while also guiding future investigations that may scrutinize 

how visual statistical learning alters perceptual similarity judgements (Experiment 5). 

As mentioned previously, we rarely encounter sets of stimuli for which we have little 

to no knowledge about. However, these efforts to parse the unique impact of 

perceptual similarity from category related information on visual statistical learning 

are critical to understanding how perceptual differences may interact with visual 

statistical learning. 
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5.3 Methodological Insights for Future Work 

 

The separating of category learning from visual statistical learning in Experiment 

3B replicated the category-related effects observed in Experiments 1 and 2, but 

different-category pairs were not learned at above-chance levels. This may be due to 

the separation of category learning from visual statistical learning, or it may be due to 

a task-related influence on participants that had to complete a category learning task 

before the one-back task that contained statistical regularities. We had speculated that 

the failure to observe evidence of visual statistical learning in Experiment 3A was due 

to participants engaging in a relatively easy jitter-detection task after being exhausted 

by a difficult category-learning task. This was in contrast to prior work which had no 

issue eliciting evidence of visual statistical learning using a jitter-detection task 

(Vickery et al., 2018) or even no task at all other than passive viewing (Fiser & Aslin, 

2002). 

 Likewise, Experiment 6 in Chapter 4 was designed to investigate the neural 

underpinnings of visual statistical learning across tasks. Initially, a within-subjects 

design wherein participants were exposed to separate statistical regularities across two 

different tasks seemed like a direct way to examine similarities or differences across 

tasks that may or may not be consistent with the literature. However, while the present 

dissertation was interested in task-related influences on visual statistical learning, we 

did not expect to discover that such influences would be powerful enough to impact 

learning across independent tasks. Along with the evidence of cross-task influences on 

participants’ ability to extract statistical regularities from Experiments 3A and 3B, 
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Experiment 6 provides critical insight for future work considering the use of multiple 

statistical learning tasks in a within-subjects design. 

 Despite the multiple independent opportunities to extract regularities from the 

tasks, participants were only able to reliably display evidence of visual statistical 

learning from the categorization task. We had hoped to create a scenario wherein both 

tasks would have elicited learning so that we may compare the neural correlates of 

such learning between tasks, but the unexpected discovery of these cross-task 

influences had made this impossible. Additionally, in retrospect, our design may have 

also suffered from including too many pairs for subjects to learn effectively during a 

single learning session. Recalling Experiment 3B, we failed to observe evidence of 

visual statistical learning for different-category pairs despite using half the number of 

pairs as in Experiment 1 (16 pairs down to 8), while maintaining nearly just as many 

presentations. Experiment 6 contained 32 pairs of stimuli, across two different tasks, 

and appeared within streams that contained non-structured singletons. Along with the 

unexpected powerful impact of cross-task influences on statistical learning, this design 

choice may also have contributed to our inability to detect meaningful neural activity 

between our critical contrasts. 

 Experiment 6 may have also suffered from a number of other issues that are 

difficult to specify or remediate. First, there were only four runs of the main passive-

viewing task in the scanner, which may have constituted too little within-subject 

power for detecting neural differences. The passive-viewing task, itself, may have 

interfered with previous learning, serving to nullify differences between same- and 
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different-category pairs. We chose to intermingle images from both the category 

learning and one-back learning tasks, and preserved pairwise contingencies. Any or all 

of these factors may have played against us, but it is difficult to say which ones are 

most important. Another important consideration is that it is possible that previous 

detection of differences were false alarms or otherwise rare successes, and that in 

general, fMRI studies of visual statistical learning are underpowered for the size of 

effects that should be expected. 

Taken together with Experiment 6, future work must use caution considering 

designs that use multiple statistical learning tasks within-subjects. Even with a 

reduction of the number of images covertly presented in pairs, visual statistical 

learning may be interrupted, as potentially evidenced in Experiment 3B. The use of a 

task that presents statistically structured pairs simultaneously with singletons should 

be considered carefully; the present dissertation does not provide insight into the 

impact singleton presence can have on learning, but no evidence to date suggests that 

it does not have an impact. A future iteration of Experiment 6 may benefit from the 

use of fewer pairs, elimination of singletons to control for any additional unknown 

influences, and the use of tasks that are better equated on difficulty and engagement 

(e.g., a categorization task and a two-back task, rather than a one-back task).  

5.4 Conclusion 

 

To our knowledge, we have provided the first evidence that the explicit 

learning of category information and the incidental learning of visual statistical 
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information can co-occur, and both novel category information and prior well-learned 

category information can impact visual statistical learning. Even when novel category 

learning is entirely separated from (i.e., immediately precedes) exposure to statistical 

regularities, such category information predicts what visual statistical information is 

learned. If visual statistical learning is a highly automatic form of incidental learning 

that is constantly extracting regularities from our environment, these findings shed 

light on how newly acquired as well as old, well-learned category information can 

predict what is learned. 

 We also found evidence that task demands and perceptual similarity may 

interact in such a way that predicts relatively better learning for certain regularities. 

We used our category-learning task while exposing participants to pairs of stimuli that 

were either visually similar or visually dissimilar and found a pattern of results that 

harshly contrasted with our earlier experiments; we argue that the visually ambiguous 

category boundaries drove participants to more effortfully engage with different-

category pairs than same-category pairs, which led to higher rates of learning for 

different-category pairs. If visual similarity drives visual statistical learning, our 

evidence suggests that subtle but important (i.e., category-defining) differences for 

which task demands force participants to prioritize predict greater learning for 

statistical contingencies. Additional work use may use this understanding investigate 

other ways perceptual similarity drives statistical learning, especially when 

considering the use of more complex stimuli, as our investigation into how visual 
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statistical learning may inversely alter perceptual similarity ratings yielded no 

differences. 

 Finally, along with the numerous influences of task demands on visual 

statistical learning, we found that exposure to statistical regularities across multiple, 

different contexts revealed uniquely different patterns of learning within subjects. 

Although our use of a one-back task was effective in eliciting statistical learning in 

earlier experiments with fewer instances of statistical regularities, simultaneous 

exposure to differing tasks (e.g., a category-learning task and a one-back task), each 

with their own set of statistical regularities, can introduce cross-task influences in such 

a way that we only observed evidence of learning in the category-learning task and not 

the one-back task. What is more clear than ever, as a result of the work put forth by 

the present dissertation, is that task influences are even more powerful and pervasive 

than previously believed.  

 Altogether, the present dissertation has provided evidence that visual statistical 

learning may be influenced by a number of factors that are present in day-to-day 

functioning. Newly learned category information can differentially predict which 

regularities are extracted from our environment, as well as long-standing prior 

knowledge about categories. As we navigate our world with whatever our present 

goals may be, perceptual similarity also interacts with visual statistical learning in a 

way that predicts what may be learned. Finally, how statistical regularities may or may 

not be extracted across multiple tasks, and what ultimately predicts successful 

learning, remains a potentially fruitful avenue for future research. The present 
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dissertation has revealed multiple ways prior knowledge, perceptual similarity, and 

task demands can operate on visual statistical learning. From this, many more paths 

may be open for investigation into how this unique form of incidental learning serves 

us in real world scenarios. 
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