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When two sufficiently different stimuli are presented to each eye, perception 

alternates between them. Known as binocular rivalry, it is an example where visual 

consciousness needs to resolve a competition. Here, I aimed at investigating the neural 

mechanism behind this phenomenon, focusing on the contribution of the two visual 

pathways. Magnocellular (M) and Parvocellular (P) pathways are two information 

processing streams whose functions have been informative to explain many visual 

phenomena and clinical disorders. In the lateral geniculate nucleus (LGN), the M and 

P neurons are disjoint in a layered structure, receiving input from a single eye. Using 

magnetic resonance imaging (MRI), my goal was to identify the M and P layers in the 

LGN and examine the rivalry-related eye-specific responses within these layers. Series 

of techniques and analyses revealed that quantitative MRI is promising to identify the 

M and P layers in the LGN while functional MRI with monocular eye stimulation 

results in a clustered eye-specific structure and is not useful to separate the eye-

specific regions into M and P sections. However, unsupervised approximation of the 

data with non-negative matrix factorization provided more consistent eye-specific 

structure than the generalized linear model. In the investigation of binocular rivalry, 

achromatic gratings induced rivalry that was represented in the eye-specific layers, 

and overall rivalry magnitude was similar in the M and P sections. These results 

highlight the importance of design and analysis in the functional imaging of the LGN 

layers and contributes to the binocular rivalry literature by showing the perceptual 

resolution in the LGN with achromatic stimuli and within M and P sections. 

ABSTRACT 
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IDENTIFYING THE LAYERS OF HUMAN LATERAL GENICULATE 
NUCLEUS USING MAGNETIC RESONANCE IMAGING 

1.1 Introduction 

The lateral geniculate nucleus (LGN) is the visual relay in the thalamus (Nassi 

& Callaway, 2009; Skalicky, 2016). It receives projections from retinal ganglion cells, 

projects primarily to the primary visual cortex (V1), and also receives massive 

feedback from V1. The LGN has a laminar structure, with typically six monocular 

layers in humans, receiving input alternatingly from the contralateral or ipsilateral eye 

(Figure 1.1a). The four dorsal layers contain parvocellular (P) neurons while the two 

ventral layers contain magnocellular (M) neurons (Figure 1.1b), receiving input from 

the midget and parasol ganglion cells in the retina respectively. The M and P neurons 

in LGN differ in their functional roles (Maunsell, 1992; Merigan & Maunsell, 1993). 

The M neurons are specialized to encode coarse and transient visual characteristics, 

such as luminance (Shapley & Perry, 1986) and temporal frequency (Derrington & 

Lennie, 1984), while the P neurons are able to encode detailed and sustained 

characteristics such as color and form (Livingstone & Hubel, 1988).  

Chapter 1 
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Figure 1.1: The Structure of Lateral Geniculate Nucleus. M = Magnocellular, P = 
Parvocellular, C = Contralateral, I = Ipsilateral. Tracings were generated 
based on Andrews et al., (1997). 

The M and P pathways are of considerable interest for their roles in the 

mechanisms of visual perception and consciousness (Breitmeyer, 2014; Denison & 

Silver, 2012; Milner, 2012) and in clinical disorders such as dyslexia (Stein, 2001; 

Stein & Walsh, 1997) and schizophrenia (e.g., Butler & Javitt, 2005; Schechter et al., 

2003). Studying these pathways independently, however, has been challenging due to 

the intermixing of the two pathways starting in V1 (Aleci & Belcastro, 2016; Merigan 

& Maunsell, 1993). In the LGN, the M and P neurons are completely segregated in 

separate layers, but the small size of the LGN, with layers on the order of 1 mm thick, 

approaches the resolution limits of human neuroimaging. Previous MRI attempts have 

identified the layers at the group level and/or using a group-level criteria such as for 

the proportion of the M and P sections in LGN (Denison et al., 2014; Oishi et al., 

2020; Zhang et al., 2015), but this does not enable the measurement of the properties 

of the M and P layers in individuals. Further, previous studies, such as Denison et al. 

(2014), Qian et al. (2020), and Zhang et al. (2015) attempted to identify the M and P 

layers with fMRI using visual stimuli tuned to the M or P neurons. However, 

DeSimone and Schneider (2019) showed that the hilum region of the LGN, a vascular 

region rich with blood vessels and nerves, had larger responses across the range of 
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stimuli. They found that any method based only on the response amplitudes without 

proper normalization would be likely to mistake the hilum for the M layers. 

My aim was to be able to identify the M and P layers of the LGN in individual 

subjects using anatomical and/or functional procedures that did not rely upon their 

differences in functional response properties. Using fMRI, I aimed at identifying the 

contralateral layers of LGN, while leaving the bordering ipsilateral layers out (Figure 

1.1a). Previously, Haynes et al. (2005) used monocular visual stimulation to separate 

the left eye and right eye signals but did not identify the M and P divisions. Qian et al. 

(2020) visually stimulated each eye with a dichoptic presentation and identified two 

clusters instead of layers, a lateral contralateral cluster and a medial ipsilateral cluster.  

I sought to compare the fMRI results to structural methods. Recent 

developments in qMRI allow for measuring the microstructure of tissues (Lutti et al., 

2014; Mezer et al., 2013) that can differentiate the M and P regions. The morphology 

of the M and P neurons in LGN differ with the P neurons having small bodies and thin 

axons and the M neurons having large cell bodies and thick axons. The cell density is 

therefore higher in the P layers (Hassler, 1966) and there is greater myelination in the 

P compared to the M layers (Pistorio et al., 2006). Müller-Axt et al. (2021) used a 7T 

MRI scanner and observed shorter T1 relaxation for the P region than the M region in 

LGN (also Oishi et al., 2020). I sought to replicate this technique at 3T. 

1.2 Methods 

1.2.1 Participants 

The protocols for this study, together with the protocols for Chapter 3, were 

approved by the University of Delaware Institutional Review Board (see Appendices). 
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Three healthy participants (1 male and 2 female, age range = 28–33 years) were 

recruited and provided informed consent. They were compensated at a $20/hour rate 

for their participation. All participants reported normal or corrected-to-normal vision. 

1.2.2 MRI Procedures and Processing 

Each participant was scanned on seven different days (four structural scanning 

sessions and three functional) for approximately 90 min each day. MRI data were 

acquired on a 3T Siemens Magnetom Prisma MRI scanner with a 64-channel head 

coil. We used FSL software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) to process all 

the MRI data unless otherwise noted.  

1.2.2.1 T1-weighted MRI 

At the beginning of each scanning session, we acquired a 3D MPRAGE 

sequence (0.7 mm isotropic voxels, repetition time (TR) = 2080 ms, echo time (TE) = 

4.64 ms, inversion time (TI) = 1050 ms, flip angle (α) = 9°, field of view (FoV) = 210 

mm, phase-encoding acceleration factor = 2, scan time approximately 6 min). All 

subsequent scans were aligned to the T1-weighted image of each subject’s first session 

and analyzed in their native space. 

1.2.2.2 Quantitative MRI (qMRI) 

qMRI data were acquired with a 3D MP2RAGE sequence (0.7 mm isotropic 

voxels, TR = 5000 ms, TE = 3.6 ms, Partial Fourier in slice = 6/8, approximately 16 

min acquisition time). The sequence had two inversion times and two flip angles (TI1 

= 900 ms, TI2 = 2750 ms, α1 = 3°, α2 = 5°), enabling the calculation of the T1 

relaxation time, i.e., qT1 map. Seventeen scans were acquired for each participant 
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during four sessions on different days, during which participants watched a movie of 

their choice. 

The MP2RAGE sequence simultaneously acquired the T1-weighted (GRETI1) 

and proton density weighted (GRETI2) image volumes. The uniform T1-weighted 

image volume was obtained from the real component of the normalized complex ratio 

from the two acquired image volumes. This process amplifies the noise in the uniform 

T1-weighted image; the numeric instability in background noise was suppressed by 

introducing a constant real number (beta) to the uniform T1-weighted image volume 

(O’Brien et al., 2014). We computed qT1 maps, a measurement of the T1 relaxation 

constant for each voxel, using the MP2RAGE toolbox 

(https://github.com/benoitberanger/mp2rage) in SPM 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in MATLAB. qT1 maps were 

computed for each of the 17 scans for each participant. 

To create LGN masks, I used the 17 qT1 maps, 16 of which were aligned to 

the first one and averaged. The average qT1 map for each subject was then resampled 

to double the resolution (0.35 mm isotropic voxels), with a sinc interpolation. Using 

this upsampled qT1 map, I manually masked each LGN for each participant (Figure 

1.3a). The upsampled qT1 map and LGN mask were then aligned to their initial T1 

image. 

To identify the M and P sections, the average qT1 map for each participant was 

masked for their left and right LGN (Figure 1.3b) and analyzed separately. As there 

should be M and P parts differing in their qT1 value within the LGN (Müller-Axt et 

al., 2021), I first fit each qT1 map to a mixture of two Gaussians. Figure 1.4a displays 

the histograms of qT1 maps with the fitted Gaussians. Next, I calculated the fraction 
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of M voxels to the right of the distribution, for a given qT1 value as the separation 

point (dark blue line in Figure 1.4a). Specifically, I multiplied the proportion of each 

component with the cumulative distribution function of the fitted Gaussian and took 

the ratio of this result for the component with the smaller proportion (i.e., the M 

component) to the sum of the results for both components. Then, I determined a cut-

off qT1 value (dashed line in Figure 1.4a) as where this fraction was 0.5, indicating 

that at least 50% of the identified M set at this cut-off is M voxels. I decided to be 

lenient on this threshold because the M voxels had more variable qT1 values and were 

underestimated in the mixture Gaussian model. For example, when post-mortem LGN 

were analyzed, Müller-Axt et al. (2021) found less flat Gaussian fits for M with a 

similar analysis. 

1.2.2.3 Functional MRI (fMRI) 

fMRI data were acquired over the whole brain with a multi-band EPI sequence 

with 84 interleaved transversal slices at 1.5 mm isotropic voxel resolution (TR = 1500 

ms, TE = 39 ms; α = 75°; FoV= 192 mm, bandwidth = 1562 Hz/Px, phase encoding = 

A → P), and a slice acceleration factor of 6. 

1.2.2.3.1 LGN localizer 

For each of ten 5-min scans, participants were instructed to fixate on the dot at 

the screen center. As shown in Figure 1.2a, a 5 s fixation screen was followed by the 

16 s visual stimulus, that alternated between left and right hemifields always with a 5 s 

blank in between alternations. The initial hemifield was counterbalanced across 

blocks. Stimuli were presented on a 32-inch LCD BOLDscreen with a 60 Hz refresh 

rate and 1920×1080 resolution. The stimuli were prepared and presented in MATLAB 
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using Psychophysics Toolbox (Brainard, 1997) on a Windows computer. The visual 

stimulus was a black and white checkerboard, hemifield radius of 8.5°, flicking at 4 

Hz on a neutral gray background. The fixation point was drawn within a central gap of 

0.25° in radius. 

 

Figure 1.2: Timeline of Localizer fMRI Tasks. a) LGN localizer with visual 
hemifield stimulation. b) Monocular eye localizer: each eye was 
stimulated alternately with the other eye closed. c) Dichoptic eye 
localizer: each eye was stimulated alternately with the other eye viewing 
a neutral gray blank screen. 

1.2.2.3.2 Monocular Eye Localizer 

For each of ten 5-min blocks (nine blocks for S2), participants were instructed 

to fixate on the central dot on the screen, and close one eye at a time when cued. A 

blank fixation screen was presented for 5 s followed by the instruction: the letter L 

(respectively, R) on the left (right) side of the central dot and a black square on the 

right (left) to indicate that the left (right) eye should be open and the right (left) eye 

closed (Figure 1.2b). After 1 s, the full-field 4 Hz flickering checkerboard (17° 
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diameter, 0.5° central gap) appeared for 15 s while the instruction remained in the 

central gap. The eye open conditions alternated regularly in a 5-minute block, with the 

order counterbalanced across different blocks. The software and the materials to 

prepare and present the stimuli was the same as those for the LGN localizer stimuli 

(see the previous Section 1.2.2.3.1). 

1.2.2.3.3 Dichoptic Eye Localizer 

Participants wore circularly polarized paper glasses, and stimuli were 

presented with a ProPixx (VPixx, Inc.) projector at 120 Hz refresh rate, 1920×1080 

resolution, and a synchronized circularly polarizing filter in front of the projector lens, 

which allowed for dichoptic viewing at 60 Hz. As Figure 1.2c illustrates, the timeline 

of this task was the same as that of the LGN localizer, but with a full-field visual 

stimulus shown either to the left eye or to the right eye while the other eye was shown 

the neutral gray fixation screen. The flickering checkerboard stimulus was the same as 

in the monocular eye localizer task, except 12.5° in diameter, due to the different 

screen size. The stimuli were prepared using the DataPixx toolbox and Psychophysics 

toolbox in MATLAB, running on a Linux computer. 

1.2.2.3.4 Data Processing 

To pre-process the functional data, I applied motion correction using 

MCFLIRT, intensity normalization and high-pass temporal filtering. For the LGN 

localizer only, the data were spatially smoothed with a 2.5 mm FWHM kernel. We 

used the fsl_motion_outliers command to find the motion outlier volumes, thresholded 

at the 75th percentile + 1.5 times the interquartile range. 
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The data were analyzed with a generalized linear model (GLM) with two 

explanatory variables (EVs) for each experiment: left (LH) and right hemifield (RH) 

for the LGN localizer and left (LE) and right eye (RE) for the two eye localizer 

experiments. Also, a confound variable was added to the model for the motion outlier 

volumes. All the possible contrasts were computed between the two main EVs. The 

significance threshold for the LGN localizer was corrected for multiple comparisons 

using cluster correction whereas no correction was applied for the eye localizer tasks, 

as they were analyzed in the LGN region of interest defined by the localizer scans. 

Finally, I conducted a fixed-effects analysis for each participant to combine the 

multiple scanning runs from each task separately and in combination across tasks. 

Before analyzing the eye-specific signals, I first adjusted the LGN masks based 

on the LGN localizer results. For each subject, I looked at the whole brain activity for 

LH vs RH and RH vs LH to find the right and the left LGN respectively. I outlined the 

LGN on the significant activity, using the LGN mask created from the anatomical qT1 

map as an anchor in slice selection and border decision (Figure 1.3c). The reason for 

doing so was to make sure that I selected the area activated by the visual stimulus. 

To identify the eye dominance signals in each LGN, the functional data from 

the monocular and the dichoptic eye localizer tasks were analyzed. For each voxel in 

the functionally adjusted LGN, I determined its ocular preference based on the t-score 

for the LE vs RE contrast, which was the measure of ocular preference that has been 

used in the literature (Haynes et al., 2005; Qian et al., 2020). A positive t-score 

indicated stronger LE response for the voxel whereas a negative value indicated 

stronger RE response. 
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1.3 Results 

1.3.1 LGN volume 

We calculated the LGN volume for each participant by using the LGN masks 

created from the anatomical qT1 map (Figure 1.3b). The left LGN was measured as 

138.2, 132.4, and 131.0 mm3 for each of three subjects and was smaller than their right 

LGN, measured as 147.2, 149.6, and 132.4 mm3 respectively. We also calculated the 

LGN volumes using the LGN masks that were adjusted for the significant visual 

activity (Figure 1.3c). These functionally adjusted LGN masks resulted in volumes of 

125.9, 124.9, and 116.6 mm3 for the left LGN and 154.0. 114.9, 130.3 mm3 for the 

right LGN, for each subject respectively. These volumes are smaller than the volumes 

that were calculated from the anatomically defined LGN, except for S1’s right LGN. 

These volumes are within the range of 91 to 157 mm3 that had been reported in a 

histology study (Andrews et al., 1997). 
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Figure 1.3: Masks for Lateral Geniculate Nucleus (LGN). For each participant in 
separate rows, a) the average qT1 map of a coronal slice, contrast and 
brightness of the images were adjusted for this illustration, b) the color-
coded qT1 maps within each LGN, c) LGN localizer results showing the 
significant functional activity for the contralateral visual hemifield 
compared to the ipsilateral hemifield (LH: left hemifield, RH: right 
hemifield), which is used to adjust the LGN masks for visual activity 
(white outline). 

1.3.2 M and P Layer Segmentation with qMRI 

The qT1 results for the M and P subdivisions were anatomically reliable. First, 

as can be seen in the histograms in Figure 1.4a, the P voxels had shorter T1 relaxation 

than the M voxels, p < .001 for all LGN, suggesting more myelination in the P layers. 

This result is in line with Müller-Axt et al.’s (2021) who also found shorter qT1 for the 

P segment using a 7T scanner, pointing out more myelination in the P compared to the 

M segment. Also, as can be seen in Figures 1.3b and 1.4b, there was a gradient change 

in qT1 activity from P to M layers. P voxels that had a qT1 value closer to the 

threshold (dashed line in Figure 1.4a) were also spatially closer to the M set. This 

gradient nature of qT1 map within LGN was consistent across all slices for all 

subjects. More importantly, the M and P subdivisions spatially complied with the 

anatomical locations. As evident in Figure 1.4b, the M voxels occupied the 
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ventromedial layers while the P voxels occupied the dorsolateral layers of LGN for all 

subjects. Last, the identified M voxels made up 11.7%, 15.8%, and 16.0% of the left 

LGN and 18.9%, 17.0%, and 16.6% of the right LGN for each subject respectively. 

These proportions are similar to what had been reported in histology studies (Andrews 

et al., 1997; Selemon & Begovic ́, 2007). All these results suggest that the M and P 

segmentation based on the qT1 values in LGN is anatomically consistent in their 

proportions, myelinations, and spatial locations within LGN. 

 

Figure 1.4: qMRI Results for Each Participant. a) Histograms of voxels for each 
LGN. The x-axis is the qT1 values, the left y-axis is the voxel probability 
density function, and the right y-axis is the fraction of M voxels to the 
right of the distribution for a given cut-off value which is plotted with the 
dark blue line. Yellow and blue lines show the Gaussian fits for M and P 
resulting from a two-component mixture model of the data, as detailed in 
Section 2.2.2.1. b) qT1 maps color-coded within the M and P, separated 
based on the cut-off indicated by the dashed line in a. 
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1.3.3 Eye-specific Layer Segmentation with fMRI 

The results of the monocular and dichoptic tasks, as well as a statistical 

combination of the two tasks, are shown in Figure 1.5. Figure 1.5a color codes the 

voxels as responding to the contralateral (cool colors) and ipsilateral (warm colors) 

stimuli for each LGN, when calculated based on the sign of the t-score for LE vs RE 

contrast. Figure 1.5b shows only the voxels that exhibited a significantly different 

response between the eyes. The monocular task resulted in a stronger ocular 

preference compared to the dichoptic task. This result can be seen in Figure 1.5a in the 

combined results for the two tasks (third row for each subject) which appeared more 

similar to the monocular condition for each particular subject (first row). Accordingly, 

the dichoptic task significantly activated fewer voxels (Figure 1.5b). Thus, the eye 

signals were stronger in LGN when the other eye was closed instead of being open and 

presented with a blank screen. The contribution from the non-stimulated eye on the 

signals for the stimulated eye differed between tasks. 

There was a RE dominance evident in both tasks, as seen in Figure 1.5a and 

1.5b, there were more ipsilateral voxels in the right LGN (red) while more 

contralateral voxels were identified for the left LGN (blue). Also, the RE bias is 

evident in Figure 1.5c, which shows the scatterplots of the t-scores of each voxel for 

RE and LE conditions separately. The black lines in Figure 1.5c indicate equal t-

scores, i.e., no ocular preference. Thus, the more numerous voxels that fall above the 

black line were classified as RE and the fewer voxels below as LE. The exceptions to 

this RE bias were observed in the monocular task in S1’s left LGN, which had more 

voxels preferring the LE, and in S3’s left LGN, which had equal number of RE and 

LE voxels. On average, the percentage of RE voxels to the LGN was 56.5% for the 



 14 

left LGN and 65% for the right LGN with the dichoptic task whereas it was 44.5% for 

the left LGN and 64.3% for the right LGN with the monocular task.  
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Figure 1.5: Eye-specific Activity for Each Participant. For the monocular eye 
localizer, participants closed one eye at a time. For the dichoptic eye 
localizer, one eye was shown with blank while the other eye was visually 
stimulated. a) The ocular preference was calculated based on the t values 
for Left Eye – Right Eye in the eye localizer analysis. b) The voxels 
showing significant ocular preference for Left Eye – Right Eye contrast. 
c) Scatterplots of the t values for Left Eye (x-axis) and Right Eye (y-axis) 
for each task. The black lines are the lines of equality indicating no 
ocular preference for the voxel. 
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Figure 1.6 displays the correlations for each voxel between the ocular 

preferences with different tasks, i.e., t-score for LE – RE. The correlation between the 

tasks was significant for five out of six LGN, p’s ≤ .001. All the significant 

correlations increased when we used only the voxels that were significant in their 

ocular preference in the combined analysis of the two tasks (the third row for each 

subject in Figure 1.5b), as indicated by the red dots and the corresponding red line in 

Figure 1.6. The LGN that did not show significant correlation (S2 right LGN) also 

failed to show significant voxels. 

 

Figure 1.6: Scatterplots of Voxels’ Ocular Preference with the Eye Localizer Tasks. 
The red dots are the voxels whose ocular preference was significant in 
the combined analysis of the monocular and the dichoptic tasks. The 
solid lines show the correlation between the two tasks (black for all 
voxels and red for only the significant voxels. *p ≤ .002 
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To test the significance of the LE vs RE classification, based only on the sign 

of their t-scores and ignoring the magnitude, we conducted a chi-square analysis for 

each LGN on the resulting categorical variables (Table 3.1). The classification of the 

voxels matched between the two eye localizer tasks on only four of the six LGN, p’s < 

.001. These significant results were driven by the RE bias in the classification. A close 

inspection of the cross-tables in Table 1.1 indicated that there was more match 

between the RE voxels (the upper left cell for each subject’s each LGN) than between 

the LE voxels (the lower right cell) for the majority of the LGN. 

Table 1.1: Chi-square results for Left Eye (LE) and Right Eye (RE) categorization 

                                Number of voxels 𝝌2 p 

   left LGN right LGN left 
LGN 

right 
LGN 

left 
LGN 

right 
LGN 

   Dichoptic Task     
   RE LE RE LE     

S1 

Monocular 
Task 

RE 87 31 205 93 
11.3 27.7 < .001 < .001 

LE 138 111 65 86 

S2 
RE 115 72 123 56 

14.1 2.24 < .001 .13 
LE 74 103 95 61 

S3 
RE 100 70 218 60 

.97 37 .33 < .001 
LE 91 79 47 55 

 

 

Table 1.2 shows the chi-square results for the voxels showing significant 

ocular preference in the combined analysis of the two tasks. The RE bias was reduced 
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when only the significant voxels were classified and the classification with the two 

tasks significantly matched again for four out of six LGN, p’s < .001. 

Table  1.2: Chi-square results for Left Eye (LE) and Right Eye (RE) categorization 
for only the voxels that showed significant ocular preference in the 
combined GLM analysis. 

                                Number of voxels 𝝌2 p 

   left LGN right LGN left 
LGN 

right 
LGN 

left 
LGN 

right 
LGN 

   Dichoptic Task     
   RE LE RE LE     

S1 

Monocular 
Task 

RE 3 0 78 1 3.44 61.52 .064 < .001 
LE 3 5 22 35 

S2 
RE 25 0 13 - 48.59 - < .001 - 
LE 4 34 - - 

S3 
RE 73 32 152 12 18.95 118.41 < .001 < .001 
LE 91 79 47 55 

 

 

My goal in identifying the eye-specific layers was to segment the M and P 

layers. I tried to identify the contralateral layers positioned most ventrally or dorsally 

to find the contralateral M or P regions, respectively. The dorsal contralateral layer 

appeared robustly with either eye localizer task for all LGN using the signed 

classification (Figure 1.5a), and in four of six LGN using only the voxels activated 

significantly by the combination of both tasks (Figure 1.5b). However, the ventral 

contralateral layer did not appear reliably. The ventral contralateral layer could be 

identified in only two LGN in one or other of the tasks (Figure 1.5a), though the 
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successful task differed between the two LGN (monocular task for S1 left LGN and 

dichoptic task for S3 left LGN). Using only the significant voxels in the combined 

analysis (Figure 1.5b, third row for each subject), the ventral contralateral layer can 

only be identified for S3. Instead of reliable individual layers, we could identify a 

contralateral eye cluster located more dorsolateral and an ipsilateral eye cluster located 

more medioventral (Figure 1.5b). 

1.4 Discussion 

To segregate the M and P regions in human LGN, I used MRI methods that 

were not dependent on the stimulus characteristics, unlike the previous attempts 

(Denison et al., 2014; Zhang et al., 2015) that were confounded by the stronger 

activation of hilum of LGN (DeSimone & Schneider, 2019). Using qT1 (i.e., 

measuring the T1 relaxation time for each voxel), I successfully identified the M and P 

components of both LGN in all the subjects, which conformed to our anatomical 

expectations. However, attempting to identify the individual ipsi- or contralateral 

layers using fMRI was less successful. The identification of eye layers was more 

consistent with the monocular task than the dichoptic task. The P layers in the dorsal 

contralateral cluster could be readily identified, but the ventral contralateral layer was 

not consistently activated.  

qMRI, with a MP2RAGE sequence we used, has been shown to be more 

advantageous for subcortical structures. Aldusary et al. (2019) compared different T1 

sequences for LGN volume and found that MPRAGE imaging was more accurate 

compared to proton density imaging with a 3T scanner. Using the MP2RAGE 

sequence with two inversion times allowed me to calculate the T1 parameter for each 

voxel, which enhanced the segmentation of the whole LGN relative to an MPRAGE or 
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proton-density weighted sequence and also allowed the segmentation of the M and P 

divisions. The whole LGN volumes I found were consistent with post-mortem 

histology (Andrews et al., 1997) and with the structural MRI studies with a 3T scanner 

(proton density imaging in Giraldo-Chica et al., 2015; phase difference enhanced 

imaging in Kitajima et al., 2015; T1-weighted imaging in Wang et al., 2015). On the 

other hand, when defined functionally, previous studies reported much higher volumes 

of LGN (Denison et al., 2014; Kastner et al., 2004), likely as a result from the 

difficulty of segmenting the LGN from surrounding visually active regions such as the 

lateral and medial pulvinar.   

To segregate the M and P regions based on the qT1 maps, I followed a data-

driven approach. By fitting a two-component model to the qT1 data, the smaller 

proportion component was selected as M and the larger proportion component as P. 

The P component showed shorter T1 relaxation time (i.e., qT1) than the M component, 

indicating more myelination in the P layers. This is consistent with the other qMRI 

studies (Müller-Axt et al., 2021; Oishi et al., 2020) and with higher cell density and 

more myelination in the P compared to the M divisions (Hassler, 1966; Pistorio et al., 

2006). Previous studies used a fixed proportion as the criterion to segregate the M and 

P sections (Denison et al., 2014; Oishi et al., 2020), based on the histology findings 

that, on average, 20% of the LGN is M (Andrews et al., 1997; Selemon & Begovic ́, 

2007), but this approach, even if correct, would not allow the independent 

measurement of the M division properties. Individuals show great variation in the 

proportions of the subdivisions (Andrews et al., 1997; Müller-Axt et al., 2021), and 

indeed the participants in the current study had M divisions ranging from 12–19% of 

the LGN volume.  
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My investigation of the eye dominance signals did not yield consistent results 

with the monocular vs. dichoptic eye localizer tasks. The eye-specific signals were 

higher in amplitude with the monocular task than with the dichoptic task such that it 

was difficult to measure significant activation with the dichoptic task despite the same 

amount of data. This might indicate higher interference from the “non-stimulated” eye 

in the dichoptic presentation set-up. However, both tasks resulted in a right eye 

dominance in LGN, consisting of 57.6% of the LGN volume on average. The 

classification of the RE voxels was more consistent between the tasks than for the LE 

voxels. Previous studies identifying the eye preference of the voxels did not measure 

layer-like organization, nor did they compare different tasks (Haynes et al., 2005; Qian 

et al., 2020). I found that the dorsal contralateral layer, classified as P, could be 

reliably identified with both monocular and dichoptic tasks, whereas the ventral 

contralateral layer, which would be classified as M, could not be reliably activated 

with either task. Critically for the fMRI methods, the hilum region of LGN did not 

dominate the responses to eye-specific stimuli when the other eye was closed. 

However, the right eye bias did interfere with the ability to classify the eye-specific 

layers, and functionally identifying the eye-specific layers does not appear to be a 

promising approach to segmenting the M and P regions of the LGN. 

1.4.1 Conclusion 

The qT1 results in this study replicated Müller-Axt et al. (2021) using a 3T 

scanner. Moreover, I found consistent qT1 results within and between individual 

participants, whereas Müller-Axt et al. (2021) only showed group results. This is 

perhaps due to the much larger volume of data at 7T and due to their aim in creating 

an atlas in a standard space. Overall, my results demonstrate that the qMRI methods 
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are promising in finding LGN as well as in separating its M and P subdivisions while 

the functional identification of contralateral layers of M and P remains challenging. 
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COMPUTATIONAL ANALYSIS OF EYE-SPECIFIC SIGNALS IN HUMAN 
LATERAL GENICULATE NUCLEUS 

2.1 Introduction 

The availability of high refresh rate projectors allows their use in the functional 

magnetic resonance imaging (fMRI) design to present stereoscopic stimuli. This can 

be used to stimulate each eye separately and therefore valuable for vision research. For 

example, lateral geniculate nucleus (LGN), the relay station in the thalamus in visual 

processing, is composed of neurons receiving input from one eye only. The 

contralateral eye neurons and the ipsilateral eye neurons are both present in the LGN 

but organized in a layered structure (see Figure 1.1a). Identifying the eye-specific 

structure can be useful to understand the function of the LGN, as indicated for visual 

phenomena such as binocular rivalry (Haynes et al., 2005; also see Chapter 3) and for 

visual development impairments such as amblyopia (Hess et al., 2009). 

In Chapter 1, I aimed at separating the eye-specific layers in the lateral 

geniculate nucleus (LGN) with functional magnetic resonance imaging (fMRI). 

However, how the participants viewed the monocular visual stimulus mattered. The 

eye-specific structure in the LGN was not as consistent when the participants closed 

each eye alternately (i.e., monocular viewing) and when they kept their eyes open, but 

a blank screen and a stimulus was presented to each eye alternately (i.e., dichoptic 

viewing). This poses a problem because there has been research using these viewing 

conditions separately to identify the eye-specific regions in the LGN (Haynes et al., 

Chapter 2 
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2005; Qian et al., 2020). My goal, in this chapter, was to test the same data to see if 

similar eye-specific structures in the LGN can be achieved with the two different 

viewing conditions. 

In previous research (Haynes et al., 2005; Qian et al., 2020) and in Chapter 1, 

the eye-specific data were analyzed with a generalized linear model (GLM) that 

contrasted the activity for the times of left eye (LE) vs right eye (RE) stimulation. The 

ocular preference of the voxels was determined based on the sign of the t-score for 

LE–RE  contrast, positive scores indicating a LE preference and negative scores 

indicating a RE preference. However, my investigation in Chapter 1 revealed that the 

monocular viewing results in stronger signal than the dichoptic viewing as suggested 

by the combined GLM for the two viewing conditions. Therefore, I sought for an 

alternative analysis to find the eye-specific structure in the LGN that were more 

reliable across the viewing conditions, when analyzed separately. Specifically, I 

utilized from an unsupervised method that captures the inherent structure in the data, 

without the need of specifying the LE and RE stimulation times unlike in GLM. 

2.1.1 Orthonormal Projective Non-negative Matrix Factorization (OPNMF) 

Non-negative matrix factorization (NMF) refers to an unsupervised technique 

that finds the inherent components that describe a non-negative data matrix (D. Lee & 

Seung, 2000). NMF is similar to other more commonly used unsupervised techniques, 

such as principal component analysis (PCA; Shlens, 2014a) and independent 

component analysis (ICA; Shlens, 2014b), in that all these methods approximate the 

data with a lower number of components based on the multivariate relations. Parts of 

the data are associated to different components in proportion to the associated 

coefficients. The main difference between NMF and the other methods is that the 
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NMF estimates for the components are non-negative: the coefficients can be zero, 

meaning that the particular part of the data does not belong to the component, or they 

can be positive, indicating the intensity at which the particular part of the data belongs 

to the component.  

Generally, NMF requires estimating both the coefficients and the components. 

An alternative is to use projective NMF (PNMF), which estimates only the 

components—the coefficients are the result of projecting the data onto the components 

(Yang & Oja, 2010). Here, I used the PNMF with the orthonormality constraint 

(OPNMF) which resembles to PCA such that the components are restricted to be 

orthonormal. Together with non-negativity, the orthogonality constraint ensures that 

the components are each sparse, providing an interpretable parts-based approximation. 

Like PCA, OPNMF attempts to minimize the sum of squared errors between the data 

and the component-based approximation. However, unlike PCA finding the optimal 

components is not guaranteed. Thus, the main benefit of OPNMF over PCA is that its 

estimates of the non-negative components are more interpretable (Sotiras et al., 2015; 

Türkmen, 2015). 

OPNMF has been used in the MRI research with the structural and diffusion 

tensor imaging data to find the covarying brain structures (e.g., Sotiras et al., 2015). It 

has been also demonstrated to be useful in identifying the microstructures in brain 

regions like hippocampus (R. Patel et al., 2020) or striatum (Robert et al., 2022). 

However, no study to date has employed OPNMF analysis on the fMRI data. Thus, 

this study also aimed to show the first use of OPNMF on a high dimensional event-

related functional data to identify a structure within a brain region. 
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2.2 Methods 

2.2.1 Data 

The data was what was obtained in Chapter 1 with the monocular and 

dichoptic eye localizers (see Section 1.2.2.3 for details). Separately for the three 

participants, the pre-processed time-series data (see Section 1.2.2.3.4) from each eye 

localizer scan was aligned to the participant’s native space (see Section 1.2.2.1) and 

masked for their left and right LGN (see Figure 1.3c). The first 6 s (i.e., 4 volumes) of 

each scan and the motion outlier volumes (see Section 1.2.2.3.4) were discarded. 

Then, the time series data from each scan were concatenated for the monocular and the 

dichoptic eye localizer tasks separately as well as in a combined fashion by 

concatenating their data, resulting in three datasets for each six LGN. The volumetric 

image was vectorized for each LGN so that the datasets included a D×N matrix where 

D was the number of voxels and N was the number of time samples. 

2.2.2 OPNMF analysis 

The datasets were analyzed in MATLAB using opnmf_mem.m code available 

at https://github.com/asotiras/brainparts. This code was developed by Sotiras et al. 

(2015), based on the original OPNMF described by (Yang & Oja, 2010), for the 

approximation of high-dimensional imaging data with K number of components. To 

alleviate the cost associated with the high dimensionality, the multiplicative update 

rule was modified by Sotiras et al. (2015), ensuring non-negative estimates while 

decreasing the energy to reach an optimum, by adopting a Non-Negative Double 

Singular Value Decomposition initialization strategy (Boutsidis & Gallopoulos, 2008). 

There could be maximum 50000 iterations until the convergence factor of 1×10-5 was 



 28 

reached. The non-negative estimates for each component were W, the weights for each 

voxel, and H, the coefficients for each time sample.  

First, OPNMF was employed on the data with the number of components, K, 

set to two which could account for the eye-specific signal and noise. For each voxel in 

the LGN, I took the difference between the estimated weights associated with each 

component. Since the estimates were non-negative, this calculation indicated the 

relative weight of the voxel in reflecting one component. However, it was also 

possible that the signals would be captured separately for each eye; therefore, I also 

employed the OPNMF analysis with three components so that the third component 

might capture the noise. Nevertheless, because OPNMF is an unsupervised method, 

what function the components would reflect could not be determined beforehand.  

2.3 Results 

2.3.1 2-component OPNMF 

When there were two components (K = 2), the OPNMF analysis estimated 

components that differed in their associated coefficients across all time samples, i.e., 

H1 > H2. The component with the higher coefficient was named as K1 and the other as 

K2, and the weights associated with these components can be seen in Figure 2.1a for 

each LGN. As clearly illustrated in the Figure 2.1a, the results were highly consistent 

between the two viewing conditions (the first vs the second row for each subject), 

especially for S1 and S3. The comparison with the GLM results in Figure 1.5a and 

Figure 1.5b (combined results in the third row for each subject) indicated that K1 

corresponded to dorsally located contralateral eye regions (cool colors) and K2 

corresponded to medially located ipsilateral eye regions (warm colors), for both left 
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and right LGN. Similar to the GLM results, the contralateral M layer, the most ventral 

layer in the LGN (see Figure 1.1), was not found with the 2-component OPNMF 

analysis. Last, the combined data from the two viewing conditions did not resemble to 

any of these results (the third row vs the first and the second row for each subject in 

Figure 2.1a), possibly the components included more noise due to the two viewing 

conditions. 
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Figure 2.1: OPNMF Results for Each LGN. For the monocular eye localizer, 
participants closed one eye at a time. For the dichoptic eye localizer, one 
eye was shown with blank while the other eye was visually stimulated. K: 
number of components for the OPNMF analysis, a) two components vs 
b) three components. W1: estimated weights for the component with the 
higher overall coefficient, W2: estimated weights for the component with 
the lower overall coefficient. W0: estimated weights for the component 
with the lowest overall coefficient when there were three components. 
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I also tested the correspondence between the data from the two viewing 

conditions in classifying the voxels into two components. Each voxel was categorized 

as K1 if W1 was estimated to be larger than W2 (cool colored voxels in Figure 2.1) or as 

K2 if it was smaller (warm colored voxels). Table 2.1 shows the chi-square results 

which were significant for all six LGN when the p values were not corrected for 

multiple comparisons for six LGN (see p’s in the table). A close look at the cross-

tables for each LGN revealed that there was a significant match between the two 

conditions in the categorization of voxels (upper left and lower right cells). However, 

the match was mostly for the K1 voxels which seemed to be the contralateral eye 

regions (Figure 2.1a). Still, the OPNMF results were more consistent across the 

monocular and the dichoptic viewing conditions than the GLM results (Table 2.1 vs 

Table 1.1). 

Table 2.1: Chi-square results for 2-component categorization (K1 and K2) 

                                Number of voxels 𝝌2 p 

   left LGN right LGN left 
LGN 

right 
LGN 

left 
LGN 

right 
LGN 

   Dichoptic Task     
   K1 K2 K1 K2     

S1 

Monocular 
Task 

K1 204 17 268 19 
166.24 214.16 < .001 < .001 

K2 40 106 44 118 

S2 
K1 190 97 182 87 

14.38 6.29 < .001 .01 
K2 68 9 55 11 

S3 
K1 198 54 231 38 

58.42 110.5 < .001 < .001 
K2 30 58 35 76 
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2.3.2 3-component OPNMF 

When the number of components was determined as three (K = 3), the OPNMF 

coefficient estimates were again different for the components across all the time series. 

One component (K3) had the lowest coefficient (i.e., H3 close to zero) while the other 

two components (K1 and K2) had coefficients more similar to each other than to K0’s. 

Figure 2.1b shows the LGN slices, color coded for the difference in the estimated 

weights for K1 and K2. The gray voxels are those whose estimated weight for K0 was 

larger than that for K1 and K2, or those who had equal weights for K1 and K2. The 

results in Figure 2.1b were highly consistent between the two viewing conditions (the 

first two rows for each subject), especially for S1 and S3. Like the 2-component 

OPNMF, the 3-component OPNMF found eye-specific structures where K1 

corresponded to dorsally located contralateral eye regions (cool colors) and K2 

corresponded to medially located ipsilateral eye regions (warm colors), for both left 

and right LGN. Similar to the GLM and the 2-component OPNMF results, the 

contralateral M layer did not appear. Last, even though the combined data of the two 

viewing conditions did not look as similar to the results with the separate analysis of 

the conditions (the third row vs the first and the second row for each subject in Figure 

2.1b), it lead to better structure estimate when analyzed with the 3-component 

OPNMF than with the 2-component OPNMF (the third row for each subject in Figure 

2.1a vs Figure 2.1b). 

I also tested the correspondence between the data from the two viewing 

conditions in classifying the voxels into three components. Each voxel was tagged as 

K3 if the estimated weight for the voxel was the highest for K3 (majority of the gray 

colored voxels in Figure 2.1b), as K1 if it was the highest for K1 (cool colored voxels), 
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or as K2 if it was the highest for K2 (warm colored voxels). The chi square results were 

highly significant for all the LGN, p’s < .001 even when Bonferroni corrected for six 

tests (see Table 2.2). An inspection of the cross-tables in Table 2.2 indicated that there 

was a significant match between the two conditions in the categorization of the voxels 

in each LGN (the diagonal from upper left to lower right). As was the case with the 2-

component analysis, the match was mostly for the K1 voxels (especially see S2); 

however, the numbers were reduced accounting for the third category of the K0 voxels 

(Table 2.1 vs Table 2.2 for the match between K1). 

Table 2.2: Chi-square results for 3-component categorization (K1 and K2). * p < .001 

    Number of voxels 𝝌2 

   left LGN 
 

right LGN left LGN right 
LGN 

   Dichoptic Task   
 

Monocular 
Task 

 K1 K2 K3 K1 K2 K3    

S1 
K1 116 4 46 170 20 4  

195.53* 409.2* K2 1 81 36 8 97 30  
K3 54 16 13 17 16 87  

S2 
K1 118 66 73 165 56 34  

35.12* 61.02* K2 32 9 13 50 0 0  
K3 47 6 0 10 20 0  

S3 
K1 128 18 20 179 25 7  

121.27* 263.37* K2 39 50 16 30 49 10  
K3 12 18 39 10 12 58  
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2.4 Discussion 

This study indicated that the OPNMF analysis of the monocular and dichoptic 

eye localizer data is better at capturing the eye-specific structure in the LGN than the 

GLM analysis. The GLM results in Chapter 1 were reliable only when the two 

viewing conditions were combined in a higher-level GLM analysis which accounted 

for the difference in the signal amplitude between the two conditions. However, the 

OPNMF results here were highly consistent for the monocular and dichoptic viewing 

conditions when analyzed separately. 

When the data was approximated with 2-component OPNMF, the initial 

reasoning was that the two components would reflect the eye-specific signal and noise, 

but it was also possible that one component would reflect one eye’s signal while the 

other component reflects the other eye’s. However, the structure in the LGN suggested 

that the first component captured the contralateral eye signal while the second 

component captured the ipsilateral eye signal. In Chapter 1, the GLM lead to a RE bias 

in the LGN structure while the OPNMF here lead to a contralateral eye bias. Because 

of its orthogonality constraint, the contralateral eye signal (the first component) was 

stronger for LGN than the ipsilateral eye signal (the second component), indicated by 

the higher coefficients across the time series for the former. To see if noise could be 

separated from these two signals, I conducted 3-component OPNMF. Even though the 

OPNMF estimated more similar coefficients for the two components when a third one 

was added, the match between the categorization of the voxels still was dominated by 

the contralateral eye component.  

When interpreting the components found in the LGN, it should be noted that 

the various sources of information could have contributed to the components. For 
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example, the M and P layers of the LGN might have interfered with the with the eye 

signals (see Figure 1.1). In fact, this might be driving the lack of the contralateral M 

layer, with both the GLM and the OPNMF analysis. The contralateral eye signals in 

the P section might be dominating the structure found in the data, resulting in eye-

specific clusters instead of layers. Or the components might have also captured the 

anatomical differences such as the hilum region in the LGN or the blood vessel next to 

LGN (Abbie, 1933). The hilum is where the blood vessels enter the LGN from the 

medial parts. The hilar area has a functional role in the central vision and along the 

horizontal meridians in the visual field (Abbie, 1933) and exhibits higher amplitude 

fMRI response to a range of visual stimuli (DeSimone & Schneider, 2019).  

This third component in the OPNMF analysis appeared to have captured 

something other than the monocular eye signals, but it could be the hilar area (e.g., 

gray voxels for S3 in Figure 2.2) or the blood vessel (e.g., gray voxels for S1 right 

LGN or S2 left LGN), or the noise associated with respiration, pulse, and other motion 

during scanning (e.g., gray voxels in between the cool and the warm colored clusters). 

These findings suggest that OPNMF analysis can be improved with a greater number 

of components to account for different sources of information in the LGN. 

2.4.1 Conclusion 

The OPNMF analysis in this study was evidently more advantageous over the 

GLM in identifying the eye-specific structure in the LGN. I found consistent structures 

in the LGN with the data from the monocular and the dichoptic viewing conditions. 

Therefore, this study suggests OPNMF as a more reliable analysis of the eye-specific 

data in the LGN than what was used previously in the literature (Haynes et al., 2005; 

Qian et al., 2020). Also, although other variants of NMF have been used to uncover 
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brain networks indicated by the resting state functional data (e.g., Aggarwal & Gupta, 

2018; Li et al., 2018), no study to date has tested NMF on the event-related fMRI data. 

Here, I revealed that OPNMF is promising in identifying a functional structure in a 

brain area. 
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NEURAL DYNAMICS DURING BINOCULAR RIVALRY: INDICATIONS 
FROM HUMAN LATERAL GENICULATE NUCLEUS 

3.1 Introduction 

Our experience of the visual world is a single view even though the visual 

information is received by the two eyes. For a unified percept, there must be a 

combination of each eye’s output, requiring an interaction between the eyes. For 

example, we perceive a single object when it is positioned in the same coordinates of 

the physical world on our retinae with the same form, speed, and direction of motion. 

In other words, there is correspondence on each eye’s retinal map for the 

spatiotemporal characteristics of the same form, providing the inference for a unified 

perception of the individual object. Binocular rivalry refers to the failure of a unified 

perception due to the lack of such correspondence, resulting instead in a rivalrous 

perception (Blake, 1989). 

Binocular rivalry (BR) occurs when each eye is presented with a sufficiently 

different stimulus, resulting in a competition of these monocular stimuli for perception 

(Alais & Blake, 2015). It is an interesting phenomenon in that BR sets an example 

where visual consciousness fails to capture reality. Even though there are two pieces 

of visual information in the physical world, we cannot perceive them at the same time; 

instead, perception alternates between these stimuli. Thus, BR provides a mean to 

study the correlates of visual awareness in the brain (Blake et al., 2014; Rees, 2009; 

Tong, 2003); specifically, the correlates of the resolution of visual competition. 

Chapter 3 
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Figure 3.1 shows an example BR paradigm where the right eye is presented 

with a car image while the left eye with a house image using mirror stereoscope. 

These non-matching stimuli in the retinal position of the two eyes create a conflict 

because a location in the world cannot be occupied by a house and a car at the same 

time. To resolve this conflict, our perception typically alternates between these two 

stimuli. While one stimulus dominates the perception and is visible to consciousness, 

the other stimulus is being suppressed and consciously invisible. This goes back and 

forth between the two images at irregular intervals, as illustrated by an example 

participant response in the bottom part of Figure 3.1. However, if the stimuli are not 

matched evenly in terms of low-level features, or if they are too large or more 

ambiguous (e.g., low-contrast, low spatial frequency), then piecemeal rivalry or fusion 

occurs more often where perception is a mixture of both images in parts. 

 

Figure 3.1: Example Binocular Rivalry. The top part shows the monocular 
presentation of each image. The bottom part shows the fluctuation in 
perception across two monocular images irregularly over time (t). 
Adapted from “Binocular Rivalry and Perceptual Ambiguity” by D. Alais 
and R. Blake (2015) in J. Wagemans (Ed.), Oxford Handbook of 
Perceptual Organization, New York: Oxford University Press. 
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In this study, I aimed to investigate the neural mechanisms of BR, focusing on 

the two parallel streams of visual processing, i.e., magnocellular (M) and parvocellular 

(P) pathways, and their contribution to the resolution of competition, and thus to visual 

awareness, during binocular rivalry. Using magnetic resonance imaging (MRI), I 

examined the lateral geniculate nucleus (LGN), a part of thalamus in the brain that M 

and P neurons are disjoint in its layered structure (see Chapter 1 for details on LGN 

structure and its M and P parts). 

3.1.1 Neural Mechanisms of Binocular Rivalry 

The literature on the neural mechanisms of BR evolved around the question of 

whether the visual competition is resolved at sensory-level or higher-levels in the 

visual processing hierarchy. These views emerged from the debate between eye rivalry 

vs stimulus rivalry (e.g., Lee & Blake, 1999; Leopold & Logothetis, 1999). In the BR 

paradigm, it is not certain what is competing for visual awareness. The house and the 

car in Figure 3.1 are objects so that we might think that it is the stimulus 

representations that are competing, i.e., stimulus rivalry. Nevertheless, these stimuli 

are viewed by different eyes. Therefore, we can also think that it is the monocular 

representations that are competing, i.e., eye rivalry.  

A direct investigation of the stimulus vs eye rivalry was done by Blake and his 

colleagues (1980) by eliminating the correspondence between the stimulus and the eye 

with an eye-swapping procedure. They presented a horizontal grating to one eye and a 

vertical grating to the other eye. Participants’ task was to press and hold a key when 

they exclusively perceive the vertical grating and release it when they start to see the 

horizontal grating. In the critical reversal condition, the gratings were shut off for 4 ms 

upon the participant’s report of exclusive dominance and then reappeared in the 



 40 

opposite location. In other words, the gratings were swapped between the eyes, 

resulting in the dominant grating being presented to the eye that was “seeing” the 

suppressed grating and the suppressed grating being presented to the eye that was 

“seeing” the dominant grating. Importantly, this reversal condition resulted in a switch 

in the dominant stimulus. After the eye-swap, the view of the eye that was already 

dominant remained dominant which led to the perceptual report of the previously 

suppressed stimulus. This and other early behavioral studies (e.g., Blake & Fox, 1974; 

Fox & Check, 1966; Wade & Wenderoth, 1978; Wales & Fox, 1970) indicated that the 

competition was between each eye’s view, i.e., interocular competition or interocular 

conflict, rather than between the presented stimuli. 

Corresponding to the eye rivalry idea, advocates of the sensory-level 

explanations posit a critical role for mutual inhibition between the monocular neurons 

(Blake, 1989; Lehky, 1988; Tong, 2001; Wolfe, 1986), neurons that receive input from 

either the left eye or the right eye exclusively. All the neurons in LGN and some 

neurons in V1 receive such monocular input. Therefore, suggested models focus on 

these areas as the resolution site of conflict. In support for this, human studies 

demonstrated that V1 activity is highly correlated with the perception during BR 

(Haynes & Rees, 2005; S. H. Lee et al., 2005; Parkkonen et al., 2008; Polonsky et al., 

2000). Since V1 is composed of both monocular and binocular neurons, these studies 

do not give direct support for the monocular explanations of BR (but see Tong & 

Engel, 2001).  

LGN, however, is composed of monocular neurons only (see Chapter 1 for 

details). Two human studies found strong correlations between LGN activity and their 

participants’ percept during BR (Haynes et al., 2005; Wunderlich et al., 2005). Haynes 
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et al. (2005) showed that the dominant eye during rivalry was reflected in the fMRI 

activity in the LGN’s eye-specific regions. In addition, Wunderlich et al. (2005) 

demonstrated that fMRI activity in the LGN reflected the percept of the subject such 

that perceiving a high contrast grating increased the activity while perceiving a low-

contrast grating decreased it. Also, these activity dynamics were the same as when 

there were physical stimulus alternations without rivalry, indicating a fully resolved 

perception in LGN. However, the rivaling stimuli in these studies were colored 

gratings presented to either eye with no counterbalancing across eyes. Haynes et al. 

(2005) used red and blue orthogonal gratings, both rotating clockwise and were 

viewed through red/blue filtered glasses. Wunderlich et al. (2005) used red and green 

orthogonal gratings viewed through red/green filtered glasses. Color might be an 

important information for LGN; for example, red/green stimuli can be coded by a 

single channel through red/green opponent neurons. Thus, the suppressed and the 

dominant stimulus during BR can be represented by the same neurons. One aim of the 

current research was to extend these studies by investigating whether the eye-specific 

layers of LGN are correlated with the perception when the rivaling stimuli is not 

colored and not processed by a single channel.  

Corresponding to the stimulus rivalry idea, advocates of the higher-level 

explanations posit that it is the perceptual organization of the binocular display that 

has a crucial role in the resolution of rivalry, thus the stimulus representations in the 

extrastriate areas (further than V1), and this organization is switched by the regions 

that are primarily related to planning and attention along the frontoparietal network 

(Leopold & Logothetis, 1999; Logothetis et al., 1996). Mainly, psychophysical 

observations revealing the importance of stimuli coherence (Alais et al., 2000; Diaz-
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Caneja, 1928; Jiang et al., 2006, 2007; Kovács et al., 1996; Zhou et al., 2010) and 

attention (Brascamp & Blake, 2012; Dieter et al., 2016; Ooi & He, 1999; Zhang et al., 

2011) gave rise to these explanations. One of the most influential findings supporting 

stimulus rivalry was observed by Logothetis et al. (1996). They used an eye-swapping 

procedure with which the stimuli, the two orthogonal gratings, were swapped between 

the two eyes three times in a second. To mask this swap, the stimuli also flickered at 

18 Hz. Participants reported long durations of a dominant stimulus with this 

interocular switch (IOS) paradigm, similar to their reports with the conventional BR 

paradigm. A number of analyses further revealed that the characteristics of the 

perceptual alternations between the two gratings were similar with both paradigms. 

The slow perceptual alternations between the stimuli, even if they were continually 

swapping across eyes, indicated that what was dominant or suppressed during BR was 

the stimulus representations but not what the eye was presented with. Similar results 

with the IOS paradigm were demonstrated in the literature by other studies as well 

(Bhardwaj et al., 2008; Bhardwaj & O’Shea, 2012; Denison & Silver, 2012; V. Patel 

et al., 2015). However, the IOS paradigm does not solely result in slow perceptual 

alternations. Depending on the spatiotemporal characteristics of the stimuli, 

participants still report fast alternations as following the swaps between the eyes, 

indicating an eye level rivalry (e.g., Denison & Silver, 2012; Lee & Blake, 1999; 

Silver & Logothetis, 2007). 

This debate between eye vs stimulus rivalry is old and focused on where the 

neural site for rivalry is in the visual processing. This assumes a common mechanism 

for stimulus and eye rivalry (Andrews & Purves, 1997; Logothetis et al., 1996). 

However, the debate settled around hybrid models (Blake & Logothetis, 2002; 
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Freeman, 2005; Wilson, 2003; for a review see Tong et al., 2006), as there were 

evidence favoring both explanations in the brain depending on the stimuli and the 

paradigm. Hybrid models acknowledge the involvement of different regions along the 

neural hierarchy to play a role in the resolution of rivalry and propose that the type of 

stimuli or the way they are presented makes the difference in the recruitment of 

different brain regions. There is still mutual inhibition between monocular neurons, 

but there is also mutual inhibition between binocular neurons as well as mutual 

excitation and feedback connections from frontoparietal regions. These stages may not 

all be needed. For instance, interocular conflict between simple gratings in a 

conventional BR paradigm can be resolved at the monocular inhibition stage. 

However, when the suppression is not complete at the monocular level, such as with 

the fast flickering and eye-swapping stimulus in the IOS paradigm, the signal can be 

carried to the pattern selective binocular neurons that are present across multiple levels 

of visual hierarchy. In other words, the partial suppression of one eye’s input escapes 

the interocular competition at the monocular level, resulting in the competition 

between binocular neurons representing the swapping stimuli (e.g., Wilson, 2003). 

Consequently, the mutual inhibition is now between the patterns of stimuli represented 

by binocular neurons but not between the eyes’ view. In this debate of eye vs stimulus 

rivalry, the fact that the visual system operates in parallel streams, M and P pathways, 

has been disregarded (He et al., 2005).  

3.1.1.1 Binocular Rivalry and the Two Visual Pathways 

The two pathways in the visual system raises the possibility that different 

pathways may contribute differently to the resolution of perceptual competition during 

BR (He et al., 2005). BR is claimed to be a P pathway phenomenon based on 
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psychophysical observations (Carlson & He, 2000; He et al., 2005). The stimuli 

primarily processed by the P pathway result in stronger rivalry than the stimuli 

primarily processed by the M pathway. Stronger rivalry refers to more complete 

suppression as indicated by fewer number of perceptual alternations or less piecemeal 

rivalry. For example, high contrast stimuli (P-stimuli) are better rivaling stimuli with 

longer times of dominant perceptions (e.g., Levelt, 1965, 1967) while low contrast 

stimuli (M-stimuli) result in an interocular integration such as dichoptic plaid 

perception instead of rivalry (e.g., Burke et al., 1999). Or, when the stimuli differ in 

form or color which are associated with P pathway, they tend to rival but when they 

differ in temporal frequency which the M pathway is more sensitive to, they tend to 

fuse into each other (Carlson & He, 2000; O’Shea & Blake, 1986). However, no 

biases were observed from any pathways regarding spatial frequency with the BR 

paradigm (for review see He et al., 2005). Note that not all these studies had the aim to 

explore the two visual pathways and the hypothesis of BR as a P phenomenon. 

More direct investigation of the two pathways was carried by Denison and 

Silver (2012) to explain the mechanisms for eye and stimulus rivalry. They used the 

IOS rivalry paradigm where the two flickering orthogonal gratings were swapped 

across eyes in every 1/3 seconds. They compared rivaling stimuli at different flicker 

frequencies in how much they resulted in slow irregular alternations in perception, i.e., 

stimulus rivalry, vs fast regular alternations, i.e., eye rivalry. It is previously 

demonstrated that the stimuli flickering at a higher rate leads to more stimulus rivalry 

(S. H. Lee & Blake, 1999; Logothetis et al., 1996). In the first experiment, Denison 

and Silver (2012) observed this result for the gratings with higher spatial frequency 

(P); however, the gratings with lower spatial frequency (M) showed the opposite. In 
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their second experiment, they compared rivalry between red/green isoluminant 

gratings with rivalry between monochromatic gratings. Overall, participants 

experienced more stimulus rivalry with isoluminant stimuli (P) than monochromatic 

stimuli (M). In the third experiment, they introduced another condition where the 

stimuli did not flicker but had a short blank period, immediately before the swap 

between the eyes. The duration of the blank period was matched with the period of the 

different flicker rates; the higher frequencies corresponded to shorter blank periods 

and the lower frequencies corresponded to longer blank periods. The results showed 

that the higher flicker frequencies and the shorter blank periods decreased the amount 

of stimulus rivalry between low spatial frequency gratings (M) whereas high spatial 

frequency gratings (P) were not influenced from these manipulations. These findings 

indicated that the P-preferred stimuli integrates better to build coherent stimulus 

representations compared to the M-preferred stimuli in the IOS paradigm. In other 

words, the fast alternating eye rivalry in the IOS paradigm is associated with the M 

pathway while slow alternating stimulus rivalry is associated with the P pathway. The 

conclusion of Denison and Silver (2012) is consistent with slow sustained processing 

in the P pathway and fast transient processing in the M pathway, and with the 

conclusion that the exclusive perceptions during rivalry can be attained better with P 

stimuli than M stimuli (He et al., 2005). Nevertheless, no study to date has tested the 

M and P pathways involvement in the brain for visual resolution during rivalry. 

3.1.2 The Present Research 

The goal of this research was to provide a more direct test of the two 

hypotheses: 1) more contribution of the P pathway to the conventional BR and 2) to 

the slow alternations in the IOS rivalry. I conducted both the conventional BR 
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paradigm and the IOS paradigm with the same participants and rivaling stimuli, two 

identical achromatic gratings rotating in the opposite directions. Brain activity was 

measured using fMRI while the participants continuously reported which rotation they 

perceived at the time; clockwise, anticlockwise, or a mixture. To investigate the 

contribution of M and P pathways to visual resolution during rivalry, I aimed to take 

advantage of the disjoint M and P layers in the LGN, as identified in Chapter 1.  

Another goal was to replicate the results of Haynes et al. (2005) who found 

that the eye-specific regions of LGN reflected the perceived eye during rivalry. 

Importantly, by using the achromatic gratings as the rivaling stimuli, I eliminated the 

color confound that was present in their study. Also, they did not have a control 

condition in their design for rivalry whereas I included a replay control condition to 

compare the responses of eye-specific regions to the perceptual alternations induced 

by the rivaling stimuli vs by the physically alternating stimuli.  

3.2 Methods 

3.2.1 Participants 

The participants for this study were the same as in Chapter 1 (see Section 

1.2.1). Relevant to this part of the study, the participants were asked to apply the 

generic sighting tests to themselves and report their dominant eye. S1 and S2 reported 

right eye dominance in sighting while S3 reported left eye dominance. 

3.2.2 fMRI Procedures and Processing 

Each participant was scanned on three different days for maximum 90 min 

each day. T1-weighted image of each participant was acquired at the beginning of 

each session, with the same sequence described in Section 1.2.2.1. The T1-weighted 
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image of each subject from their first session was used to align all subsequent scans 

which were analyzed in this native space of each subject. The fMRI data were 

acquired with the same sequence as detailed in Section 1.2.2.3. 

3.2.2.1 Binocular Rivalry Experiments 

For the dichoptic viewing of the stimuli, the same apparatus for the dichoptic 

presentation in Chapter 1 was used in this study (see Section 1.2.2.3.3 for details). 

Participants held a response box on their right hand, their index and middle fingers 

located on the two buttons. In a session, there were approximately ten 5-minute fMRI 

scans. During these 5-minute blocks, the participant was instructed to fixate on the 

central dot in the display, around which they were shown with a rotating grating. They 

continuously reported the rotation they perceive using the response box. They pressed 

and held at least one of the two buttons: the button under their right index finger to 

indicate counterclockwise rotation, the button under their right middle finger to 

indicate clockwise rotation, or they pressed both buttons at the same time for their 

mixture perception. There were also six 5-s blank periods throughout a 5-minute 

block, the only time during a run that the participants did not press any button. These 

blank periods were pseudorandomly placed such that they did not appear in the first 

and the last 30 s of the block and there were at least 25 s of visual stimuli in between 

two consecutive blank periods. 

A 5-minute block could be one of the three conditions: conventional rivalry, 

replay, or IOS rivalry (see Figure 3.2). The order of these three conditions in a session 

was fit to a Latin-Square design and the starting condition was counterbalanced 

between subjects. At the beginning of the first binocular rivalry session, while the T1-

weighted image of their brain was obtained, participants completed a practice 
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conventional rivalry block. Across all the binocular rivalry sessions, I aimed at 

collecting 10 blocks of scans for each of the three conditions. However, some blocks 

could not be used due to screen flip errors, resulting in glitches in the dichoptic 

presentation, and were mostly replaced at the end of the session, or at the beginning of 

the subject’s next session. In the analysis, there were nine rivalry and nine replay 

blocks for S2 and eight IOS rivalry blocks for S3, otherwise there were 10 blocks for 

each condition for each subject. 

 

Figure 3.2: The Stimulus Presentation for the Binocular Rivalry Conditions. Rivalry 
was the conventional binocular rivalry paradigm in which each eye is 
presented with a different stimulus, rotations counterbalanced across eyes 
in the actual experiment. Replay was the physical alternations of the 
stimuli matching with the perceptual reports of the observer during a 
previous rivalry condition. IOS Rivalry was the interocular switch 
paradigm in which the rivalry stimuli swap between the eyes in every few 
seconds, randomly chosen between 2.5-3.5 s. 

3.2.2.1.1 Rivalry 

The conventional rivalry condition, which will be referred as rivalry from now 

on, is illustrated in Figure 3.2. Each eye was presented with a grating, rotating as 
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opposed to each other. Each sinusoidal grating, rotating at ω = 1 cycles/second, was 

12° of visual angle in diameter, had spatial frequency of 4 cycles/degree, and shown at 

full contrast. Each was framed by a black circle, measuring 12.5° in diameter, and 

presented on a neutral gray background. The clockwise and counterclockwise gratings 

were counterbalanced between the eyes across rivalry blocks, the initial order also 

counterbalanced across subjects.  

3.2.2.1.2 Replay 

Replay was a control condition for the conventional rivalry. The participant’s 

reports from a previous rivalry block were used to mimic their perception. If it was the 

first block for replay, then the reports from the practice rivalry run were used. This 

was because of the Latin-square design for the order of the conditions where the first 

replay block was not always preceded by a conventional rivalry run. As illustrated in 

Figure 3.2, to mimic the subject’s clockwise perception in rivalry, the clockwise 

rotating grating was presented to the corresponding eye while the other eye was 

presented with the blank screen in replay. Similarly, if the participant reported 

counterclockwise rotation in rivalry, then the counterclockwise rotating grating was 

shown to the matching eye while the other eye was presented with the blank in replay. 

For the reports of mixture perception in rivalry, the two rotations, superimposed on 

each other at half transparency, were shown to both eyes in replay. The blank periods 

in replay were also kept the same as in the matching rivalry block.  

3.2.2.1.3 Interocular Switch Rivalry 

IOS rivalry was the same as rivalry except there was an interocular switch of 

the stimuli (see Figure 3.2). In the literature, IOS rivalry paradigms used stable 
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orthogonal gratings that were flickering at a high frequency (e.g., 18 Hz) and 

swapping across the eyes every three times in a second (e.g., Denison & Silver, 2012; 

Logothetis et al., 1996). For the current study, flickering the rotating stimuli hindered 

the perception of rotation drastically and thus giving rotation responses were 

confusing. In addition, rotation already adds a temporal property to the stimulus; 

therefore, the stimuli in IOS rivalry were not flickering. For the eye swap interval of 

the stimulus, there were a couple restrictions in the decision process. First, the swap 

interval had to be more than 1 s, the time for a 360° rotation, to perceive a stable 

rotation long enough to be able to respond. Second, the swap intervals had to be 

irregular because a fixed interval resulted in a dull plaid perception of rotations, 

always touching each other at the same point and rotating backwards at regular 

intervals. Therefore, the opposing gratings in IOS rivalry blocks swapped between the 

two eyes in every few seconds which was randomly chosen between 2.5 and 3.5 

seconds for each swap. 

3.2.2.2 Data Processing 

To pre-process the functional data from the binocular rivalry sessions, motion 

correction using MCFLIRT, intensity normalization, high-pass temporal filtering, and 

no spatial smoothing was applied. The motion outlier volumes were identified with the 

fsl_motion_outliers command, thresholded at the 75th percentile + 1.5 times the 

interquartile range.  

First, the fMRI data for each rivalry and replay block were analyzed with a 

GLM. Two EVs, LE perception and RE perception, were defined based on the 

participant’s perceptual reports. Mixture perceptions were included in both EVs. Also, 

the motion outlier volumes were added to the model as a confound variable. All the 
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possible contrasts were computed between the two main EVs. Finally, a fixed-effects 

analysis was conducted for each participant to combine all the rivalry and replay 

blocks, with all the possible contrasts between the rivalry and replay conditions.  

Second, for region-of-interest (ROI) analysis, the GLM results for rivalry–

replay contrast were inspected in the M and P sections of each LGN, identified by the 

qT1 analysis (see Section 1.3.2). The significance threshold was uncorrected for 

multiple comparisons of voxels as they were analyzed only in the LGN. In addition, 

using the B weights, a suppression index for each voxel was calculated. Collapsed 

across LE and RE, the difference in a voxel’s response to rivalry and to replay 

(rivalry–replay) was divided by the sum of its responses to both (rivalry+replay). An 

index around 0 indicates a successful suppression during perceptual alternations 

induced by rivalry, similar to those induced by physical alternations in replay. 

Finally, to inspect whether the perceptual alternations between the eyes were 

reflected in the eye-specific regions of LGN, a time series analysis was conducted for 

the rivalry and the replay conditions. The contralateral (CL) and the ipsilateral (IL) 

voxels were selected based on the GLM analysis of the eye localizer tasks (described 

in Section 1.2.2.3). I chose the voxels that responded to one eye significantly more 

than the other eye in the GLM analysis of both eye localizer tasks (see Figure 1.5b). 

This decision was due to the match between these voxels and the voxels that were 

identified based on the unsupervised analysis (see Section 2.3). Then, for each of the 

CL and IL eye voxels in each LGN, the preprocessed fMRI activity during rivalry and 

replay was converted to percent change from its average baseline activity. The 

baseline corresponded to the blank screens, but it was delayed by 6 s (i.e., 4 volumes 

with the 1.5 s TR) to account for the hemodynamic delay. The data was then 
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upsampled on the time dimension so that each time point represented 100 ms instead 

of 1.5 s. The difference in the percent fMRI signal for exclusive CL vs IL eye 

perceptions were analyzed for the time between 5 seconds before and 15 s after when 

the participant reported perceiving a single rotation. This analysis could not be carried 

separately for the contralateral M and the contralateral P layers because these layers 

could not be identified by the eye localizer tasks (see Chapter 1 and 2).  

There was no fMRI data processing for the IOS rivalry condition as it did not 

yield stimulus and eye rivalry (see Section 3.3.1 below). 

3.3 Results 

3.3.1 Perceptual Findings  

Perceptual reports from participants were analyzed for the distribution of 

perceptual resolution during rivalry, replay, and IOS. Based on the participants’ key 

press responses, the durations of exclusive perception on a single rotation, or on a 

single eye, were calculated and concatenated across all the blocks for each condition. 

Histograms of those perceptual durations can be found in Figure 3.3. As expected, and 

evident in the figure, rivalry and replay conditions resulted in similar perceptual 

reports; thus, only rivalry condition is reported in this section. The average exclusive 

perception was around 7 s across subjects, means ranging from 4.45 s to 8.81 s. The 

durations for the perceived clockwise vs counterclockwise rotations did not differ. 

However, the RE perceptions were longer than the LE perceptions for two out of three 

participants, t(257) = 4.12, pBonf < .001, d = .52 for S2 and t(292) = 4.23, pBonf < .001, 

d = .49 for S3. During the IOS rivalry condition, on the other hand, one of these 

subjects (S2) experienced longer LE perceptions instead, t(551) = 3.46, pBonf = .002, d 
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= .31, and the other subject (S3) experienced longer clockwise perceptions compared 

to the counterclockwise perceptions, t(272) = 2.43, pBonf = .047, d = .29 for S3. 
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Figure 3.3: Histograms for Perceptual Durations during Binocular Rivalry 
Experiments. CW: Clockwise rotation, -CW: Counterclockwise rotation, 
IOS: Interocular switch rivalry. Black lines reflect the mean duration. Bin 
interval is 1 s. 



 55 

As can be seen in the distributions in Figure 3.3, the perceptual reports 

demonstrated no stimulus rivalry in the IOS condition. Neither the number of 

occurrences (y-axis) nor the perceptual durations (the distribution and the black lines) 

were similar to the rivalry condition. In fact, the perception was failed to be resolved 

on a single rotation, or on a single eye, most of the time during IOS rivalry. This is 

illustrated in the pie charts for the number of eye swaps in Figure 3.4. Stimulus rivalry 

was calculated as the eye swaps that went unnoticed, indicated by the exclusive 

perception of a rotation by the time the swap had happened. Eye rivalry, on the other 

hand, was the eye swaps that were noticed, indicated by the initiation of an exclusive 

perception following the eye swap within 500 ms. As evident in Figure 3.4, there was 

neither eye rivalry nor stimulus rivalry, instead, the reported perception was mostly 

the mixture of the two rotations. Therefore, further analysis for IOS rivalry could not 

be carried for eye vs stimulus rivalry comparisons. 

 

Figure 3.4: Pie Charts for Eye Swaps During Interocular Switch Rivalry. S refers to 
stimulus rivalry and reflects the number of non-perceived eye swaps. E 
refers to eye rivalry and reflects the number of perceived eye swaps. 
Mixture is the number of eye swaps that happened while the participant 
reported mixture perception. 
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3.3.2 Rivalry in the M and P Regions of LGN 

The GLM results were examined within each LGN to see if there were 

differences in the overall activity during rivalry and replay blocks. First, rivalry and 

replay activated similar number of voxels within each LGN and their M and P regions, 

as indicated by the z-scores (see Figure 3.5a). There were small number of voxels that 

were significantly more active during rivalry (white voxels) or during replay (black 

voxels). As can be seen in Figure 3.5a, these significant voxels were spread evenly 

across the M (area below the red line) and P regions (area above the red line).  

Second, there was similar levels of overall suppression in each LGN, 

demonstrated by the suppression indices around 0 (see Figure 3.5b). I conducted a 

Bayesian one sample t-test for each LGN and for their M and P parts to see the 

likelihood of data favoring the null hypothesis (i.e., index not different than 0) over the 

alternative hypothesis (i.e., index different than 0). Bayesian factors favored the null 

hypothesis at least moderately across all LGN, BF01’s > 8 for LGN, BF01’s > 5.5 for 

P regions, and BF01’s > 5 for five out of six M regions. The only ROI that the 

Bayesian factor favored the alternative hypothesis was S2 right LGN’s M section, 

BF10 = 11.8. The suppression index was positive in this M section, indicating higher 

relative activation during rivalry and thus incomplete suppression (see Figure 3.5b). 

Last, a Bayesian independent samples t-test was employed on the indices to find how 

likely the data supports the alternative hypothesis that the suppression index is 

different in the M and P sections of the LGN over the null hypothesis. Bayesian 

factors revealed that the odds were moderately in favor of the null hypothesis, BF01’s 

> 3.5 for all LGN, indicating similar levels of suppression in the M and P sections. 
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Figure 3.5: GLM Results for Rivalry in the M and P Regions of LGN. a) Coronal 
slices of each LGN showing the z scores for rivalry vs replay contrast. 
Red line is where the M and P regions were separated at according to 
their qT1 values. *p < .05, uncorrected for multiple comparisons for 
voxels. b) Scatterplots of the M and P voxels, indicated by their qT1 
values on the x-axis, showing similar suppression for rivalry and replay. 
The suppression index on the y-axis was calculated by the B weights. For 
illustration purposes, the voxels with indices beyond 10 and -10 were 
fixed at 10 and -10 respectively. Black lines indicate the mean index 
values for M and P voxels, calculated without the range constraint on the 
suppression index. Error bars are the SEM. **p = .02, Bonferroni 
corrected for six LGN. 

3.3.3 Rivalry in the Eye-specific Regions of LGN 

The time series analysis of CL and IL voxels in each LGN are visualized in 

Figure 3.6 for exclusive CL and IL perceptions that lasted more than 6 s. This 

minimum limit on the perceptual duration was determined to make sure that the fMRI 

responses were stable enough. This value was around the average exclusive duration 

across subjects during rivalry (see Section 3.3.1 and Figure 3.3) and corresponded to 4 
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time points in our original data (with TR being 1.5 s). To compare the responses of CL 

and IL regions of LGN to perceptual resolution during rivalry and replay, the 

oscillations after time 0 were inspected to find when the CL eye voxels (blue line) and 

the IL eye voxels (red line) separated from each other, such that the former is positive 

on the y-axis while the latter is negative. This would indicate that the CL (IL, 

respectively) voxels showed increased activity following the perceptual resolution on 

the CL (IL) eye while showing suppressed activity following the perceptual resolution 

on the IL (CL) eye.  

As can be seen in Figure 3.6, rivalry and replay conditions did not yield similar 

results. The rivalry condition resulted in more separable oscillations of eye-specific 

voxels for three LGN, all of which were consistent in their eye-specific region analysis 

in the previous chapters (S1 right LGN, S3 left and right LGN). Focusing only on 

these LGN and only for the tendencies of the signals, the oscillations demonstrated 

signs of the exclusive perception a bit earlier and longer for the rivalry than the replay 

condition. The LGN that had few numbers of significant eye-specific voxels (S1 left 

LGN and S2 right LGN, see Figure 1.5b) showed more variance, as evident by the 

larger 95% confidence intervals (CIs) in Figure 3.6. 
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Figure 3.6: fMRI Activity around the Exclusive Eye Perceptions during Rivalry and 
Replay. The x-axis shows the time around when the exclusive perception 
started (time 0), indicated by the subject’s perceptual reports. The y-axis 
shows the difference in the percent fMRI signal for the contralateral eye 
perceptions vs ipsilateral eye perceptions. Error shades are 95% 
confidence intervals. *p < .05 
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3.4 Discussion 

I conducted the first neuroimaging study to directly test whether BR is 

associated with the P pathway more than the M pathway in the brain (Denison & 

Silver, 2012; He et al., 2005). By analyzing the overall fMRI activity of each 

participant’s LGN, I found similar responses in the disjoint M and P layers to 

perceptual alternations induced by rivalry vs replay, failing to support the hypothesis. 

To see whether perception during rivalry was reflected in the LGN, I examined the 

time series responses and found that the activity in the eye-specific regions 

represented the perceived eye during rivalry. As discussed in Chapters 1 and 2, the 

identification of the eye-specific structure in the LGN was found in clusters, not in 

layers so to separate into M and P; therefore, I could not compare the eye-specific 

rivalry responses in the M and P sections. Also, the IOS paradigm did not elicit 

enough perceptual resolution to be examined to test whether the stimulus rivalry is 

associated with the P and the eye rivalry is associated with the M pathway (Denison & 

Silver, 2012). 

The similar suppression during rivalry and replay for the M and P layers of 

LGN indicated no bias of the two visual pathways for perceptual alternations induced 

by rivalry. Instead, the distribution of rivalry and replay related activity in the LGN 

seems to show a structure that resembles to the retinotopic map in LGN representing 

the visual eccentricity (DeSimone et al., 2015; Schneider et al., 2004), such that the 

replay activated areas that corresponded to central field and the rivalry activated areas 

that corresponded to the surround field of the stimulus. One possible explanation could 

be the difference in the mixture perception induced by rivalry and replay. The large 

rivalry stimuli might have resulted in different center-surround rotations which were 

indicated as the mixture perception by the participants whereas the mixture of 
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rotations was homogeneous in the replay stimuli. However, I did not localize the 

retinotopic maps with an eccentricity manipulation in the visual stimulus; thus, this 

conclusion cannot be drawn with the current data. 

Consistent with the previous investigations of rivalry in the LGN (Haynes et 

al., 2005; Wunderlich et al., 2005), the perception was reflected in the LGN even 

though the color confound in the stimulus was eliminated in the present research. 

However, the eye-specific responses to the exclusive eye perceptions were not as 

pronounced or prolonged in my study compared to Haynes et al’s (2005). The stimuli 

in Haynes et al. (2005) were blue/red gratings that started rotating in the same 

direction orthogonally. It is possible that rivalry resolved better on one of the colors as 

the rotation in their study supported coherent and long perceptions (Blake et al., 2003) 

while motion opponency in our study prevented building coherent perceptions. 

Consistent with this, the average exclusive perception in this research was 3 s shorter 

than what they reported. However, it should be noted that Haynes et al. (2005) did not 

give an option to report mixture perception. Also, there was no control condition in 

Haynes et al.’s (2005) study to compare the eye-specific responses for perceptual and 

physical alternations. In this study, the control replay condition, nevertheless, was not 

a valid control for the time series activity. The eye-specific activity with the replay 

stimulus was not as clear as with the rivalry stimulus which could be driven by the 

motion adaptation and the resulting motion after-effects during replay. 

This study showed that, with the rotation-opponent achromatic gratings, the 

perception can be resolved on one rotation long enough to be analyzed for fMRI 

responses. There has been reports of longer perceptions of rotating rivalry stimuli, but 

these studies had more global rotations such as spirals or radial gratings (Carlson & 
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He, 2000; Malek et al., 2012; Nguyen et al., 2003). Also, I found a RE dominance 

during rivalry for two out of three participants, as indicated by the longer exclusive 

perceptions for the RE than the LE. These participants reported having different 

dominant eyes in the simple sighting tests. Correlations between the dominant eye in 

sighting and the dominant eye in perception during rivalry were reported before 

(Handa et al., 2004; Porac & Coren, 1978); yet, it has been also suggested that it is the 

sensory eye dominance that the binocular rivalry measures, which is not related to the 

sighting eye dominance (Dieter et al., 2017). The present study, with its small sample, 

supported the latter conclusion.  

When the rotating gratings swapped between the eyes in the IOS paradigm, 

there was no perceptual resolution on a grating, or on an eye. The previous research 

with IOS paradigm used orthogonal gratings that swapped between the eyes in a fast 

fashion while flickering rapidly to cover this eye swap and to result in more stimulus 

rivalry (e.g., Bhardwaj & O’Shea, 2012; Denison & Silver, 2012; S. H. Lee & Blake, 

1999; Logothetis et al., 1996; V. Patel et al., 2015; Silver & Logothetis, 2007). With a 

similar procedure and simple stimuli, Christiansen et al. (2017) found that the stimuli 

that differed only in color result in more stimulus rivalry than the stimuli that differed 

in luminance which did not produce perceptual alternations at all. Luminance is 

processed by the M neurons as is motion in the current study. This suggests that the 

M-stimuli might not be optimal for generating slow stimulus alternations (Denison & 

Silver, 2012; He et al., 2005). Nevertheless, the motion stimuli I used were more 

complex than their luminance stimuli and required more global processing, engaging 

both M and P neurons. There was the direction of rotation as well as the regular 

changes in the orientation of the sinusoidal gratings across the retinal images. Perhaps, 
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the rotations were interrupted by the eye swap too visibly for either eye, leading to the 

mixture of rotations dominating the perception instead of perceptual resolution. 

Previously, in their investigation of the complexity of the stimuli on perceptual 

resolution, Sandberg et al. (2011) used an eye-swapping procedure with the flickering 

stimuli as well as with a blank screen before each eye swap. They found perceptual 

resolutions on the eye which was not disrupted by the eye swaps between the complex 

stimuli (i.e., faces/houses) while the eye-swaps between simple stimuli (i.e., 

orthogonal gratings, not rotating) disrupted the perceptual alternations. However, this 

was the case even when they scrambled their complex stimuli, suggesting an 

importance for the overlaps at lower-level features. Thus, the rotating stimuli in the 

current study, changing the overlap in the retinal position more frequently, may not be 

optimal to resolve the binocular competition with the eye-swapping procedure. 

3.4.1 Conclusion 

Overall, this study demonstrated that the rotation-opponent rivalry stimuli 

could be used to inspect the LGN responses that were not dependent on color-

opponency. Even though the rivalry results for LGN were interpretable to conclude 

that the M and P activity were similarly suppressed and the activity changes in the 

eye-specific regions reflected the perceived changes during rivalry, caveats are 

suggested as the control replay condition could yield different perceptual experiences 

with large motion stimuli.  
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