
CODE APERTURE IMAGING FROM THE VISIBLE TO X-RAY

by

Edgar Eduardo Salazar

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Spring 2022

c© 2022 Edgar Eduardo Salazar
All Rights Reserved



CODE APERTURE IMAGING FROM THE VISIBLE TO X-RAY

by

Edgar Eduardo Salazar

Approved:
Jamie Phillips, Ph.D.
Chair of Electrical and Computer Engineering

Approved:
Levi T. Thompson, Ph.D.
Dean of the College of Engineering

Approved:
Louis F. Rossi, Ph.D.
Vice Provost for Graduate and Professional Education and
Dean of the Graduate College



I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Gonzalo Arce, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Michael Piovoso, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Javier Garcia-Frias, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Kenneth Barner, Ph.D.
Member of dissertation committee



I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Alejandro Parada-Mayorga, Ph.D.
Member of dissertation committee



ACKNOWLEDGMENTS

I would like to thank Dr. Gonzalo Arce for giving me the opportunity to work

with him on my PhD. His guidance has always been appreciated. I also want to

recognize the fundamental role of Dr. Alejandro Parada in my PhD; his advise helped

me succeed during my studies. My sincere gratitude to Dr. Michael Piovoso, whose

passion for teaching inspired me to follow a path in academia. I also want to express

my gratitude to Dr. Javier Garcia-Frias and Dr. Kenneth Barner, for serving on my

PhD committee; their feedback and ideas have been invaluable.

This journey would have not been possible without the help and support of my

ECE colleagues and all the guys at the computational imaging and data science group;

our formal and informal discussions were of great help in shaping my ideas.

To my mother and my brother in Colombia, I want to say thanks; they were

always there no matter the circumstances. To my extended family in Bolivia, many

thanks; your constant support during this time was comforting.

To my beloved wife, Yara, the love of my life, whose courage inspires me every

day, and to my beautiful daughter, Noita, the owner of my heart, whose smile makes

me feel like the luckiest man on earth. I just want to say that everything I am and will

be, is because and thanks to you.

Finally, to my Father, Alfonso: I remember you every day.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Compressive spectral imaging . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Compton backscattering imaging . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.0.1 Conferences . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.0.2 Journals . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 THE SPATIAL SPECTRAL COMPRESSIVE SPECTRAL
IMAGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 SSCSI sensing phenomena . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 SSCSI spatial and spectral resolution limits . . . . . . . . . . . . . . 11

2.3.1 Rewriting the continuous model . . . . . . . . . . . . . . . . . 11
2.3.2 Spatial resolution limits . . . . . . . . . . . . . . . . . . . . . 13

2.3.2.1 Stretched coded aperture pitch size smaller than
detector pitch size: ∆c

1−s ≤ ∆d . . . . . . . . . . . . . 13

vi



2.3.2.2 Stretched coded aperture pitch size greater than
detector pitch size: ∆c

1−s > ∆d . . . . . . . . . . . . . 17

2.3.3 Spectral resolution limits . . . . . . . . . . . . . . . . . . . . . 17

2.3.3.1 Stretched coded aperture pitch size smaller than
detector pitch size: ∆c

1−s ≤ ∆d . . . . . . . . . . . . . 19
2.3.3.2 Stretched coded aperture pitch size greater than

detector pitch size: ∆c

1−s > ∆d . . . . . . . . . . . . . 20
2.3.3.3 Number of resolvable spectral bands . . . . . . . . . 21
2.3.3.4 Coding process between adjacent bands . . . . . . . 21

2.3.4 Fusing the spatial and spectral resolution analysis . . . . . . . 21
2.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.6 Exact coded aperture shearing . . . . . . . . . . . . . . . . . . 25

2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Matrix forward model . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Simulation conditions . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2.1 SSCSI detector and coded aperture dimensions . . . 26
2.4.2.2 CASSI and Colored-CASSI . . . . . . . . . . . . . . 28
2.4.2.3 Criterion of comparison . . . . . . . . . . . . . . . . 28
2.4.2.4 Sparsifying basis and iterative algorithm . . . . . . . 28
2.4.2.5 Simulation results . . . . . . . . . . . . . . . . . . . 29

2.4.3 Spatially and spectrally super-resolved scenes . . . . . . . . . 29

2.4.3.1 Spatial super-resolution . . . . . . . . . . . . . . . . 29
2.4.3.2 Spectral super-resolution . . . . . . . . . . . . . . . . 32

2.4.4 SSCSI performance at different values of s . . . . . . . . . . . 33

2.5 Experimental reconstructions . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Spectral resolution analysis . . . . . . . . . . . . . . . . . . . 34
2.5.2 Experimental datacube reconstruction . . . . . . . . . . . . . 36
2.5.3 SSCSI experimental limitations . . . . . . . . . . . . . . . . . 37

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 CODED APERTURE OPTIMIZATION IN THE SPATIAL

vii



SPECTRAL COMPRESSIVE SPECTRAL IMAGER . . . . . . . 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Rewriting the discrete measurements model . . . . . . . . . . . . . . 42
3.3 Coded aperture optimization . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 The minimization problem . . . . . . . . . . . . . . . . . . . . 43
3.3.2 ATA as a function of t . . . . . . . . . . . . . . . . . . . . . . 44
3.3.3 Minimizing the off-diagonal elements . . . . . . . . . . . . . . 45
3.3.4 On-diagonal elements of ATA . . . . . . . . . . . . . . . . . . 46
3.3.5 The cost minimization problem . . . . . . . . . . . . . . . . . 47
3.3.6 Separating the ON pixels through the y axis . . . . . . . . . . 48

3.4 Algorithm implementation . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Spectral content of coded apertures . . . . . . . . . . . . . . . . . . . 50

3.5.1 Axially Averaged Power Spectral Density . . . . . . . . . . . . 50

3.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1 Convergence and complexity of the algorithm . . . . . . . . . 56
3.6.2 Noisy system . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.3 Performance for different hyperspectral scenes . . . . . . . . . 58
3.6.4 Performance of the optimal patterns for bigger datacubes . . . 58
3.6.5 Optimal codes structure . . . . . . . . . . . . . . . . . . . . . 61

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 COMPRESSIVE X-RAYS COMPTON BACKSCATTERING
IMAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 The Compton phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 New inverse problem approaches . . . . . . . . . . . . . . . . . . . . . 68
4.4 Compressive X-rays Compton backscattering imaging . . . . . . . . . 69

4.4.1 Discrete model . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1.1 Mono-energetic assumption . . . . . . . . . . . . . . 70

viii



4.4.1.2 Poly-energetic assumption . . . . . . . . . . . . . . . 72

4.4.2 Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 GATE experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 X-rays source . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Coded aperture . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5.3 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.4 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.5 Capturing and reconstruction process . . . . . . . . . . . . . . 76
4.5.6 Air and surrounding scattering reduction . . . . . . . . . . . . 77
4.5.7 Ground-truth capturing process . . . . . . . . . . . . . . . . . 77

4.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.1 Increasing the resolution . . . . . . . . . . . . . . . . . . . . . 78
4.6.2 Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Dose analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.8 CXBI for human inspection . . . . . . . . . . . . . . . . . . . . . . . 83
4.9 Experimental demonstration . . . . . . . . . . . . . . . . . . . . . . . 86
4.10 Conclusions and ideas to further explore . . . . . . . . . . . . . . . . 88

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendix

A CALCULATION OF THE W PARAMETERS IMPLEMENTED
IN THE SSCSI DISCRETE MEASUREMENTS MODEL . . . . . 100

B CALCULATION OF THE SYNTHETIC CODED APERTURES
IMPLEMENTED IN THE SSCSI DISCRETE MEASUREMENTS
MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C APPENDIX A: CALCULATION OF SUB-INDEXES
IMPLEMENTED IN EQ. (3.13) . . . . . . . . . . . . . . . . . . . . . 104

D EXPERIMENTAL DATA FOR CXBI . . . . . . . . . . . . . . . . . 105
E PERMISSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

ix



LIST OF TABLES

2.1 SSCSI spatial resolution limits. . . . . . . . . . . . . . . . . . . . . 24

2.2 SSCSI spectral resolution limits. An upper bound of ∆λ = ∆c

sα
that

encompasses all the cases was defined to simplify the analysis. . . 24

2.3 Proposed discrete measurements models. . . . . . . . . . . . . . . 24

2.4 Theoretical and experimental spectral resolution for different s
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Computational complexity of Algorithm 1, in terms of the total
number of iterations IT, number of captured snapshots Q, and size of
the datacube N ×N × L. . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Mean number of photons arriving at the detectors for one single
measurement for the three different targets in Figs. 4.5, 4.6, and 4.7. 82

4.2 Absorbed dose per pixel in one snapshot, number of photons arriving
at a pixel in one snapshot, and area of the pixel, for different coded
aperture pitch sizes, and a source activity of 5.12nA. The mass
absorption coefficient values can be seen in Fig. 4.10-left . . . . . . 83

x



LIST OF FIGURES

1.1 Coded Aperture Snapshot Spectral Imaging hardware components.
Three main components can be mentioned: the coded aperture, the
spectral disperser (prism), and the gray-scale sensor. . . . . . . . . 3

1.2 Flying spot architecture. An X-ray cone beam source passes through
a fan beam collimator and then through a chopper wheel which acts
as rotating pencil beam collimator; this allows the body to be
vertically scanned. In order to fully scan the body, a horizontal
displacement must exist. . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Ray tracing diagram for (a) SSCSI, where the coded aperture is
placed between the spectral plane and the sensor and (b) Single
Disperser CASSI, where the coded aperture is located before the
spectral dispersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Ray propagation of the spectral scene onto the spectral plane and
into the sensor. Here, g(x, y) is the continuous model representation
of the information captured at the sensor. The elements
(m = 0, n = 0) and (m = 2, n = 0) of the detector array are pointed
out for clarification purposes. . . . . . . . . . . . . . . . . . . . . . 9

2.3 (a) Coding at the spectral plane (s = 1), and the coded field at the
detector. (b) Coding at 0 < s < 1 and the coded field at the detector.
(c) Coding when the coded aperture is located at the detector (s = 0). 10

2.4 Original hyperspectral scene (RGB-mapping), and coded
measurements captured at the sensor for 3 different values of s. As s
increases, the stretching of the coded aperture pixels is more
notorious; when s = 0, no stretching is present. . . . . . . . . . . . 11

2.5 Left: single wavelength scene assumed to determine the spatial
resolution limits in SSCSI. Right: infinitesimally small spatial point
containing all the wavelengths, assumed to determine the spectral
resolution limits in SSCSI. . . . . . . . . . . . . . . . . . . . . . . 12

xi



2.6 Left: Original Coded aperture at a given position s and projection of
the coded aperture onto the sensor. Here ∆c

1−s ≤ ∆d. The red squares
represent the sensor elements (0, 0), (0, 1), (1, 0) and (1, 1). As
depicted, a coded aperture pixel of size ∆c ×∆c is mapped into a
∆c

1−s ×∆c rectangle on the detector. Right: Front view of the sensor
element (0,0) and illustration of the W parameters of Eq. (2.11). The
W parameters represent the percentage of a coded aperture pixel
impinging on a given detector element. Notice, for example, that one
of the portions of t2,0 impinges on the (1, 0)th sensor element; this
portion is represented by W1,2 (see appendix A for full explanation). 15

2.7 Overlapping area in the y axis of the two rectangular functions given
in Eq. (2.8), for a given n. Here, it is assumed that the ratio ∆d/∆c

is an integer greater than or equal to 1. Notice that n′l∆c = n∆d and
(n′r + 1)∆c = (n+ 1)∆d. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Overlapping area in the x axis of the two rectangular functions in Eq.

(2.8), for a given m. Notice that
m′l∆c−sαλo

1−s ≤ m∆d ≤
(m′l+1)∆c−sαλo

1−s

and m′r∆c−sαλo
1−s ≤ (m+ 1)∆d ≤ (m′r+1)∆c−sαλo

1−s . . . . . . . . . . . . . . 16

2.9 Left: Coded aperture at a given position s and projection of the
coded aperture onto the sensor. Here ∆c

1−s > ∆d. The red squares
represent the sensor elements (0, 0), (0, 1), (1, 0) and (1, 1). As
depicted, a coded aperture pixel of size ∆c ×∆c is mapped into a
∆c

1−s ×∆c rectangle on the detector. Right: Effective coded aperture t̂

impinging in the (1, 0)th sensor element. Notice, in the green circled
region, that the variable p1 indicates the area of the sensor occupied
by t0,3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 Graphical explanation to calculate the spectral resolution of the
SSCSI, when ∆c

1−s ≤ ∆d. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 Graphical explanation to calculate the spectral resolution of the
SSCSI, when ∆c

1−s > ∆d. . . . . . . . . . . . . . . . . . . . . . . . . 20

xii



2.12 Top: Coding process, at a given s, for two adjacent and resolvable
bands λmin and λ1 = λmin + ∆c

sα
, when ∆c/(1− s) ≤ ∆d. Bottom:

Coding process, at a given s, for two adjacent and resolvable bands
λmin and λ1 = λmin + ∆c

sα
, when ∆c/(1− s) > ∆d. Notice that, in both

cases λmin impinges on the leftmost side of the coded aperture. The
dispersion between λ1 and λmin is equal to sα(λ1 − λmin) = ∆c. This
means they are coded by the same coded aperture but shifted by one
column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 Top left: Original sheared coded aperture when ∆c/(1− s) ≤ ∆d.
Top right: Original sheared coded aperture when ∆c/(1− s) > ∆d.
Bottom left: First order approximation when ∆c/(1− s) ≤ ∆d.
Bottom right: First order approximation when ∆c/(1− s) > ∆d.
Notice how the spectral band [λ1, λ2] is coded by the same pattern
that codes the hyperspectral scene at λ1. . . . . . . . . . . . . . . . 26

2.14 Left: Sensing matrix H(q), for a single shot and a Nx ×Ny single
wavelength datacube. Top-left: when ∆c

1−s ≤ ∆d. Bottom-left: when
∆c

1−s > ∆d. Each row represents a sensor element and each column
represents a datacube element. Right: Sensing matrix for two shots
and a two wavelengths datacube, where ∆c = ∆d, s = 0.18 and β = 1.
The dashed red horizontal line separates the two different shots, q = 1
and q = 2. The size of the implemented sensor and coded aperture is
8× 8. The dashed red circles and red arrow indicate the dispersion
process between bands. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.15 Left: PSNR of the reconstruction as a function of the number of shots
for the SSCSI, s ≈ 0.1, CASSI, Colored-CASSI with 4 filters and
Ideal Colored-CASSI. All the reconstructions were done assuming
∆c = ∆d. Right: RGB profiles of the original and recovered
datacubes. Top-left: Original scene. Top-right: SSCSI reconstruction,
s ≈ 0.1. Bottom-left: Colored-CASSI with 4 filters reconstruction.
Bottom-right: CASSI reconstruction. The simulations were done
assuming Q = 3 snapshots and ∆c = ∆d. The dashed red circle
indicates the area to be zoomed in Fig. 2.16. . . . . . . . . . . . . . 30

2.16 Left: zoomed portion of the RGB profiles indicated by the dashed red
circle in Fig. 2.15. Right: Spectral signatures for pixels T1 and T2. T1

and T2 are specified in Fig. 2.15. . . . . . . . . . . . . . . . . . . . 30

xiii



2.17 Top left: RGB profile of the super-resolved 233× 256× 24 datacube,
with s ≈ 0.1, ∆c = ∆d/2, and CR = 0.68. Top right: Zoomed portion
of the datacube. Bottom left: RGB profile of the non-super-resolved
datacube, with s ≈ 0.1 and ∆c = ∆d. Bottom right: Zoomed portion
of the datacube indicated by the dashed red circles. . . . . . . . . . 31

2.18 Left: PSNR of the super-resolved datacube as a function of the
compression ratio, with s ≈ 0.1 and ∆c = ∆d/2. Right: Recovered
spectral signature of T3, for the super-resolved datacube and
CR = 0.68. T3 is specified in Fig. 2.17. . . . . . . . . . . . . . . . . 31

2.19 Left: Synthetic spectral signature created to evaluate the influence of
the parameter s on the spectral resolution. Right: Recovered
synthetic spectral signature for different values of the parameter s
and a compression ratio of CR = 0.2. The variable |r| indicates the
absolute value of the correlation coefficient between the original and
the reconstructed signatures. . . . . . . . . . . . . . . . . . . . . . . 32

2.20 Original and reconstructed RGB profiles for 3 different coded
aperture positions, Q = 6 snapshots and ∆c = ∆d. The codes exhibit
Boolean structure. The optimal PSNR occurs at s = 0.02, while at
s ≈ 0 the SSCSI does not recover spectral information. . . . . . . . 33

2.21 Left: PSNR of the reconstructed 256× 256× 24 hyperspectral scene
as a function of the coded aperture position s, for Q = 6 and Q = 12
snapshots. The codes exhibit Boolean structure. Right: Recovered
signature for pixel T4 and different values of s. The zoomed portion
emphasizes the difference between the signatures and how the
spectral details are lost for s < 0.1. T4 is specified in Fig. 2.20. . . 34

2.22 SSCSI experimental set up. 6 main components are distinguished. A.
TAMRON AF 70-300mm objective lens. B. 300 grooves/mm
transmissive diffraction grating. C. 4f system composed of two 75mm,
2” lenses. D. Coded aperture. E. Relay system composed of a 35mm,
1” lens. F. StingrayTM 640× 480 CCD monochrome camera with
9.9µm pitch size. As depicted, the 4f system allows more flexibility
when displacing the coded aperture. Notice that the optical arm is
bent according to the diffraction grating angle. . . . . . . . . . . . . 35

2.23 Experimental calculation of the spectral resolution. Top: effective
coded aperture for two consecutive bands. Bottom: Comparison of ith

effective coded aperture row elements for the two consecutive bands. 36

xiv



2.24 RGB profiles of the reference scene and the reconstructed datacubes
for three different values of s and two complementary shots. s ≈ 0,
s = 0.004, and s = 0.0078. . . . . . . . . . . . . . . . . . . . . . . 37

2.25 Reference and reconstructed spectral bands for three different values
of s and two complementary shots. From top to bottom: Reference,
s ≈ 0, s = 0.004, and s = 0.0078. . . . . . . . . . . . . . . . . . . . 38

2.26 Original and reconstructed spectral signatures for pixels T5, T6, and
T7 and three different values of s, s ≈ 0, s = 0.004, and s = 0.0078.
T5, T6, and T7 are specified in Fig. 2.24. . . . . . . . . . . . . . . . 38

3.1 Structure of the matrix H for Q = 2 snapshots, L = 2 spectral bands
and s = 0.25. Notice that 〈hi,hj〉 6= 0 if i and j are separated by a
integer multiple of N2, or j =

(
k −

⌊
i−1
N2

⌋)
N2 + i. . . . . . . . . . 45

3.2 Ω filter implemented to penalize the closeness of the ON pixels, on
the optimal coded apertures. . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Illustration of the computation of the power spectral density Pf , for a
16× 16 pattern, using R = 4 subregions, φ1, φ2, φ3 and φ4. The coded
aperture is first divided into the subregions; then, the normalized
Power Spectral Density is individually calculated for the subregions.
Pf is then defined as the average of the Power Spectral Densities. . 53

3.4 Illustration of the computation of Axially Averaged Power Spectral
Density over the rows and the columns, for a given 32× 32 Pf . . . 53

3.5 Top and Middle: PSNR and RMS of the reconstructed scenes as a
function of the number of captured snapshots for a 128× 128× 6
scene and s = 0.046 (left), a 128× 128× 12 scene and s = 0.093
(middle), and a 128× 128× 24 scene and s = 0.1875 (right). Bottom:
Original and reconstructed signatures for pixels T1 (left), T2 (middle)
and T3 (right) specified in Fig. 3.6. . . . . . . . . . . . . . . . . . . 54

3.6 RGB-mapping of the original and reconstructed datacubes using
random, Boolean and optimized patterns. Top: s = 0.046, two
snapshots and a 128× 128× 6 datacube. Middle: s = 0.093, two
snapshots and a 128× 128× 12 datacube. Bottom: s = 0.1875, four
snapshots and a 128× 128× 24 datacube. . . . . . . . . . . . . . . 55

xv



3.7 Convergence of the objective function, given by Eq. (3.17), for
s = 0.093, eight snapshots, and a 128× 128× 12 recovered datacube
(blue lines), and for s = 0.1875, eight snapshots and a 128× 128× 24
recovered datacube (red lines). The algorithm was run 100 times; the
lines represent each execution. When s = 0.093, 73 out of the 100
executions reach seven iterations; 27 out of 100 executions reach six
iterations. When s = 0.1875, 18 out of the 100 executions reach eight
iterations; 82 out of 100 executions reach seven iterations. . . . . . 56

3.8 PSNR of the reconstructed datacube for two levels of SNR, 30dB
and 50dB. Left: s = 0.093 and the datacube has dimensions of
128× 128× 12. Right: s = 0.1875 and the datacube has dimensions
of 128× 128× 24. In both cases, the obtained curves are compared to
the noiseless scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 RGB-mapping of the 128× 128× 24 original and recovered
datacubes, using random, Boolean and the optimized coded aperture
patterns, three snapshots and s = 0.1875. Top: Beads datacube.
Bottom: Flowers datacube. . . . . . . . . . . . . . . . . . . . . . . 59

3.10 PSNR and RMS of the recovered 128× 128× 24 datacubes, with
s = 0.1875, as a function of the captured snapshots, using random,
Boolean and optimized patterns, for Beads datacube (top) and
Flowers datacube (bottom). . . . . . . . . . . . . . . . . . . . . . 60

3.11 Recovered spectral signatures for pixels T4 and T5, specified in Fig.
3.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 Left: RGB-mapping of the original and reconstructed 256× 256× 24
datacubes, using random, Boolean and the optimized codes. Here,
s = 0.093 and eight snapshots were captured. Right: Spectral RMS
for all the pixels of the reconstructed scenes. . . . . . . . . . . . . . 61

3.13 Top-left: Boolean pattern, for 5 snapshots. Top-right: Optimized
pattern for 5 snapshots, when s = 0.046. Bottom-left: Boolean
pattern, for 10 snapshots. Bottom-middle: Optimized pattern for 10
snapshots, when s = 0.093. Bottom-right: Optimized pattern for 10
snapshots, when s = 0.1875. Note how the ON pixels are separated as
much as possible from each other over the rows in the zoomed version
of the optimal coded aperture; at the same time, several clusters of
ON pixels are present over the rows in the final patterns as s
increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xvi



3.14 Axially Averaged Power Spectral Density of the boolean and
optimized codes for s = 0.046, s = 0.093 and s = 0.1875. Here, the
patterns were divided into R = 16 subregions. Left: AAPSD over the
rows. Notice that as s increases, the spectral content of the pattern
can be found in low to middle frequencies. Right: AAPSD over the
columns. Here the spectral content of the optimal patterns shows less
power at low frequencies. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Left: Cross section involved in the Compton scattering phenomenon.
Right: dσ

dΩ
as a function of θ, for three different incident photon

energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Left: Flying spot architecture. An X-rays cone-beam source passes
through a fan beam collimator and posteriorly through a chopper
wheel which acts as rotating pencil-beam collimator; this allows the
body to be vertically scanned. In order to fully scan the body, it must
translate horizontally. Right: The proposed compressive Compton
X-rays backscattering imaging (CXBI). The structured light arrives
to the body under inspection, conducting a random sampling over the
field of view, while the coded aperture continuously moves. The
system can also be conceived as a static coded aperture with a
moving body, which is more practical. . . . . . . . . . . . . . . . . 70

4.3 Graphical description of the discretization model. Left: 3D view of
the CXBI and the scattering region of pixel (5,7). The region is a
cube with dimensions N1 ×N1 × k, where k is the depth up to which
95% of the single scattering events occur. Middle: Top view of the
CXBI; the photon (multi-color arrow) arrives and it is scattered with
angle θ (red arrow). The minimum scattering angle is ω5,7 (green
dashed line) and the maximum scattered angle is π. Right: Front
view of one of the detectors in CXBI. ψ is the angle between a middle
point between the detectors, P , and a spatial position (x,y) on such
detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Top: CXBI forward model for two captured snapshots. Each row in
A represents the row-wise pattern for a captured snapshot. Bottom:
Sensing matrix for 10 captured snapshots and a 16× 16 scene. The
zoomed portion allows to see the movement of the rows patterns
which is related to the physical translation of the mask. . . . . . . . 75

xvii



4.5 Ground-truth and reconstructed 32× 32 images using 12.5% and 25%
as compression ratio, and a code transmittance of 1% per snapshot.
The ADMM was implemented using BM3D and FFDNET in the
denoising stage. The SSIM and PSNR for every scenario can be
observed in the bottom-right and top-right of the figures respectively. 79

4.6 Ground-truth and reconstructed 32× 32 images using 12.5% and 25%
as compression ratio, and a code transmittance of 10% per snapshot.
The ADMM was implemented using BM3D and FFDNET in the
denoising stage. The SSIM and PSNR for every scenario can be
observed in the bottom-right and top-right of the figures respectively. 79

4.7 Ground-truth and reconstructed 32× 32 images using 12.5% and 25%
as compression ratio, and a code transmittance of 50% per snapshot.
The ADMM was implemented using BM3D and FFDNET in the
denoising stage. The SSIM and PSNR for every scenario can be
observed in the bottom-right and top-right of the figures respectively. 80

4.8 Ground-truth and reconstructed 32× 32 images using 12.5% and 25%
as compression ratio, for three different levels of source radiation:
1.28nA, 2.56nA, and 5.12nA. The two denoisers (BM3D and
FFDNET) were implemented in the reconstructions. The code
transmittance is fixed to 10%. . . . . . . . . . . . . . . . . . . . . 81

4.9 Ground-truth and reconstructed 64× 64 images using 12.5% as
compression ratio (left and middle) and its equivalent reconstructed
32× 32 images, using an activity of 5.12nA. Notice that, although fine
details might be recovered when decreasing the coded aperture pitch
size, due to the fact that the same radiation distributes over a bigger
quantity of pixels, the final obtained contrast abruptly decreases. . 81

4.10 Left: Mass absorption coefficient µen,m in cm2/kg as a function of
incoming photons energies in MeV . Right: Ground-truth and
reconstructed scenes for different levels of absorbed dose (top of each
figure). The compression ratio remains fixed at 12.5%, and the dose is
controlled with the transmittance per captured snapshot. The SSIM
and PSNR for each scenario can be seen in the bottom left and right
respectively. The BM3D is used in the denoising stage. . . . . . . . 84

xviii



4.11 Top: SSIM and PSNR for different code transmittances per shot as a
function of the compression ratio. From left to right: 0.1%, 1%, and
10% transmittance. Bottom: SSIM and PSNR for different
compression ratios as a function of the code transmittance. From left
to right: 3.125%, 6.25%, and 12.5% compression ratio. The BM3D
was implemented as denoiser. . . . . . . . . . . . . . . . . . . . . . 85

4.12 Left: Contrast against the background CTR of the firearm as a
function of the transmittance per snapshot for a fixed compression
ratio of 12.5%. Top-right: Ground-truth and reconstructed scenes for
three different transmittances per snapshot, with a fixed compression
ratio of 12.5%. Bottom-right: Zooming portion of the fire-arm and its
CTR (bottom-right). The BM3D was implemented as denoiser. . . 86

4.13 CXBI test-bed implementation. Five different hardware components
can be observed. 1: Micro CT X-rays source. 2- Lead Collimator with
a 1.6cm× 1.6cm window. 3- Tungsten-based coded aperture with
pitch size of 0.5mm× 0.5mm. 4- Water cube target. 5- Dual energy
detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.14 Left: Original captured pattern for a given snapshot. Middle:
grouping of 7× 7 pixels in the detector. Right: Binarized coded
aperture used to assemble the sensing matrix. . . . . . . . . . . . . 88

4.15 Left: forward projection of the target; the deep-gray area represents
the target. Right: reconstructed scene of the water target using the
CXBI experimental test-bed implementation. . . . . . . . . . . . . 89

4.16 Proposed CXBI implementation using two-dimensional detectors. . 90

4.17 Use of Compton Backscattered photons to determine the depth
(already studied in the literature). We propose to extend CXBI for
depth estimation based on this principle. . . . . . . . . . . . . . . . 90

A.1 Graphical explanation to calculate W parameters implemented in Eq.
2.11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.1 Graphical explanation to calculate the variable pm in Eq. 2.13. . . . 102

D.1 Left: First 4 patterns captured in the CXBI calibration process.
Right: Binary version of the patterns. . . . . . . . . . . . . . . . . 105

xix



D.2 Left: Measurements vector y with no target. Middle: Measurements
vector y with target. Right: Subtraction of vectors to reduce the air
and surroundings scattering. This vector is divided by 1× 103 for
convergence purposes of the reconstruction algorithm. . . . . . . . . 106

xx



ABSTRACT

Inverse problems have become a topic of broad interest in science and engineer-

ing, given that only incomplete data might be available as a consequence of hardware

limitations that can be intentionally or unintentionally created. Spectral image acqui-

sition has been positively favored from inverse problems, such that conventional sensing

methods present limitations linked to the time required to fully acquire a hyperspectral

scene. By implementing an optical device that accounts for pseudo-random compressed

sampling, also known as coded aperture, inverse problems algorithms may be run and

a fully hyperspectral scene is reconstructed from few 2-dimensional projections.

The Coded Aperture Snapshot Spectral Imager (CASSI), represents the first at-

tempt to experimentally validate the recovery of spectral information from incomplete

data. Although results in terms of spatial and spectral quality are remarkable, CASSI

possesses limitations which inherently affect the reconstructed datacubes. One of them,

is the fact that a spectrally dispersed image must arrive at the detector in order to

estimate the spectral information. The Spatial Spectral Compressive Spectral Imager

(SSCSI) was proposed as an alternative to overcome, from the hardware point of view,

the many drawbacks of CASSI. Nevertheless, when first proposed, the resolution limits

of the SSCSI were unknown, nor was a discrete sensing model well understood. This

dissertation deeply analyses the physics and mathematics of the coding and informa-

tion capturing process in SSCSI. A strong theoretical analysis of the continuous model

is developed, and the proposed hypothesis is validated through a test-bed implemen-

tation. As it was done for CASSI and other compressive spectral imagers (CSI), the

optimization of the implemented coding patterns was further explored, based on the

developed sensing model. The Restricted Isometry Property, a sensing matrix metric

xxi



widely utilized in Compressive Sampling, was adapted to the SSCSI framework. Re-

sults show that the optimal codes must exhibit certain structure that can be explained

using the blue-green noise patterns.

This work then further explores coded aperture imagers in the X-rays regime,

where we focus on Compton backscatter X-rays sensing, a commonly used technique to

identify low atomic number and organic materials. Unlike traditional X-ray backscatter

imaging devices, the proposed work avoids pencil-beam X-rays illumination. Instead,

we adopt cone-beam coded illumination to capture the information parallel-wise. The

proposed architecture, coined Compressive X-rays Compton Backscattering Imager, is

analyzed in detail, and a discrete measurements model is proposed and tested in sim-

ulations using Geant4 Application for Tomographic Emission (GATE), under realistic

conditions for several types of targets.
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Chapter 1

INTRODUCTION

Coded aperture imaging is not a new technique. It was first proposed by Dicke

in [1], in the context of γ-rays, as an alternative to increase the Signal-to-Noise Ratio

(SNR) of the captured images while preserving the angular resolution of a pinhole

camera. In the context of imaging inverse problems, coded apertures are used to

control the modulation of the information prior to the sensing stage, such that the

vectorized scene x ∈ Rn can be recovered from the vector of measurements g ∈ Rm,

defined as follows:

g = Hx + ε, (1.1)

where ε is the intrinsic signal independent noise of the capturing process, and H ∈ Rm×n

is the sensing matrix that models the physics of the sensing and coding process in the

imager. Given that m < n, this is considered and ill-conditioned problem. Different

approaches have been explored to solve Eq. (1.1). One of the first proposed was

through the Modified Uniformly Redundant Arrays patterns (MURA) [2], which are

specifically designed such that ĤMURA ×HMURA ≈ I, where HMURA and ĤMURA are

the MURA and complementary MURA sensing matrices, and I ∈ R ∈ n× n is the

identity matrix. Other approaches find x as the solution of an optimization problem

as follows:

x̂ = min
x
||g −Hx||22 + τR(x), (1.2)

where the first element of the equation is known as the conformity term, which restricts

the solution to be in accordance with the measured data, while the second element
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represents prior knowledge of the scene to be recovered; the variable τ controls the

influence of such prior knowledge in the final solution of the optimization problem. A

commonly used assumption is data sparsity on a given domain, such that Eq. (1.2)

can be rewritten as shown below:

π̂ = min
π
||g −HΨπ||22 + τ ||π||1, (1.3)

where x = Ψπ, and Ψ is a transformation basis that allows the scene to be represented

using a sparse vector π with few non-zero coefficients This concept represents the core

of Compressive Sensing [3].

1.1 Compressive spectral imaging

Hyperspectral Imaging is a technique where spatial and spectral information

from a scene are simultaneously registered. It has applications in several areas, such as

medical imaging [4], remote sensing [5], artwork conservation [6], and food quality [7],

among others. Conventional acquisition methods, such as push-broom or whisk-broom,

although well-defined techniques, have several disadvantages, such as the needed time

to run the scanning process, or the massive amount of data to be stored[8]. The Coded

Aperture Snapshot Spectral Imager (CASSI), proposed by Wagadarikar et. al. [9],

represents the first real attempt to couple inverse problems and compressive sensing to

spectral imaging. Unlike the aforementioned methods, CASSI allows the acquisition

of a full spectral scene through few coded 2-dimensional measurements together with

the solution of Eq. (1.2). Figure 1.1 [10] shows the main components of CASSI. From

its advent, the performance of CASSI has been optimized through several hardware

modifications. One of the first ones was proposed by Wu. et. al. [11], where the basic

lithographic mask was replaced by a programmable Digital Micromirror Device (DMD)

in order to easily implement and change the patterns. Arguello and Arce [12], replaced

the blocking-unblocking coded aperture masks with pixelated optical filters such that

the coding process was enriched; this architecture, known as Colored-CASSI, represents
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Figure 1.1: Coded Aperture Snapshot Spectral Imaging hardware components. Three
main components can be mentioned: the coded aperture, the spectral
disperser (prism), and the gray-scale sensor.

a major improvement in the final quality of the reconstruction results. Rueda et. al.

introduced the concept of Higher Order Discretization Model, where the spectral dis-

persion of the scene was seen as singly-independent shearing for each voxel component

[13], such that the sensing model resembles the actual physics and light propagation.

Other improvements on CASSI and CSI include the use of different sources of side in-

formation in the sensing stage [14, 15] and the location of a colored filter mask on top

of the sensor [16]. Lin et. al. [17] proposed the Spatial Spectral Compressive Spectral

Imager (SSCSI), as an alternative to the Dual-Disperser CASSI [18]. In the SSCSI, the

spatial-spectral coding of the scene is enriched by tuning the coded aperture position

inside the imager, while the scene arrives totally in-focus at the sensor. Improvements

in terms of quality of the scene are considerable. Nevertheless, a theoretical analysis of

the SSCSI in terms of spatial and spectral resolution is not available in the literature.

This limits the real applications of SSCSI, such that a discrete measurements model

that considers the real quantized data has not yet been proposed.
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1.2 Compton backscattering imaging

Compton Backscattering imaging (CBI) is a technique widely implemented to

detect low atomic and organic materials in a given body. It is implemented for under-

vehicle and airport luggage inspection and screening of buildings, among other uses

[19, 20, 21]. CBI is considered a single-side technique, given that source and detector

are located on the same side of the setup. The state-of-the-art acquisition technology

for CBI can be classified into two different approaches [22]. In the first one, the

information is acquired through a pixel-by-pixel scanning, using the so-called flying

spot technique, which consists of a fan beam collimator and a chopper wheel whose

rotation accounts for the scanning in one axis, while the relative movement between

the source and the body accounts for the scanning in the remaining axis. Figure 1.2

shows the basic functionality of this method. In the second approach, the body is fully

bathed by a cone beam and the backscattered photons are focused on a 2-dimensional

detector using proper optical imagery, such as the lobster eye [23], a coded aperture

[24], or Fresnel plates [25]. Two main factors are crucial in CBI and any ionizing

radiation-based human scanning. The first one is the radiation dose, as accumulated

exposure over years might cause malignant mutations that can lead to certain types of

cancer [26, 27]; the second one is the time of acquisition, given that security checkpoints

always intend to detect hazardous objects in real time. Although compressive sensing

and inverse problems algorithms have been used as a tool to solve similar problems in

different contexts such as CSI, CBI has not yet been conceived through this framework.

1.3 Motivation

The increasing interest of coded aperture imaging in inverse problems has led to

the continuous improvement of reconstruction algorithms as well as the implemented

hardware. Today, CSI is a well-established research area that is rapidly advancing in

terms of final image quality with less sensed data, and most of the proposed cameras

in the literature depend on different types of coding techniques to randomly sample
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Figure 1.2: Flying spot architecture. An X-ray cone beam source passes through
a fan beam collimator and then through a chopper wheel which acts as
rotating pencil beam collimator; this allows the body to be vertically
scanned. In order to fully scan the body, a horizontal displacement must
exist.

the data. This dissertation is motivated by the need to understand the role of the

coded aperture in two different scenarios; the first one is CSI, and in particular the

case of SSCSI. A rigorous analysis of the spatial and spectral resolution limits is done in

theory and experiments, to then formulate a closed expression of the captured discrete

measurements. Subsequently, and using this model, an optimization of the SSCSI

coding patterns is proposed.

The second scenario is CBI; here, the CBI sensing process is done through coded

illumination, and the image is recovered through inverse problems algorithms. Given

that this is the first work of its kind, a discrete measurements model is proposed and

tested in simulations and experiments to evaluate its viability.

1.4 Dissertation organization

This dissertation is organized in three different parts. In the first part, a detailed

analysis of the SSCSI resolution limits is done, and a discrete measurements model is

proposed. In the second part, the optimization of the SSCSI coded aperture patterns
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is developed. Finally, the third part focuses on CBI seen through an inverse problem

framework.

1.5 Research contributions

The research contributions in terms of publications are itemized below and clas-

sified in conferences and journals.

1.5.0.1 Conferences

• E. Salazar A. Parada, and G. R. Arce. Spectral zooming in SSCSI compressive
spectral imagers. Computational Optical Sensing and Imaging. Optical Society
of America, 2018.

• E. Salazar, A. Parada, and G. R. Arce. Spatial super-resolution reconstruction
via SSCSI compressive spectral imagers. Computational Optical Sensing and
Imaging. Optical Society of America, 2018.

• E. Salazar, and G. R. Arce. Optimal coding patterns in spatial spectral compres-
sive spectral imagers. Propagation Through and Characterization of Atmospheric
and Oceanic Phenomena. Optical Society of America, 2019.

• E. Salazar and G. R. Arce. On the Move Compton Backscattering Scanning.
SPIE-Defense and Commercial Sensing. 2022 (Invited paper).

1.5.0.2 Journals

• E. Salazar, A. Parada, and G. R. Arce. Spectral zooming and resolution limits
of spatial spectral compressive spectral imagers. IEEE Transactions on Compu-
tational Imaging 5.2 (2019): 165-179.

• E. Salazar, and G. R. Arce. Coded aperture optimization in spatial spectral
compressive spectral imagers. IEEE Transactions on Computational Imaging 6
(2020): 764-777.

• E. Salazar, and G. R. Arce. X-ray Compton Backscattering Imaging via Struc-
tured Light. Accepted for publication in Optics Express.
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Chapter 2

THE SPATIAL SPECTRAL COMPRESSIVE SPECTRAL IMAGER

2.1 Introduction

CSI allows the acquisition of 3-dimensional data (2 spatial dimensions, one spec-

tral dimension), through 2-dimensional random projections. The CASSI relies on three

basic hardware components; the first one is the coded aperture, which modulates the

information; the second one is the prism, which introduces spectral dispersion to the

scene; and the last one is the 2-dimensional gray-scale sensor, which captures the coded

light (see Fig. 1.1). Although CASSI offers remarkable results in terms of spatial and

spectral quality, it is well known that it has several drawbacks, such as the previously

mentioned dispersion that impairs the final spatial quality. The Spatial Spectral Com-

pressive Spectral Imager, proposed by Lin et. al. [17] arose as a feasible hardware

solution and it is now included in the state-of-the-art CSI architectures [28]. Unlike

CASSI, in the SSCSI, the scene arriving at the sensor is not required to be spectrally

dispersed, while the coding process is controlled through positioning the coded aper-

ture at a given distance with respect to the sensor. This can be clearly seen in Fig. 2.1,

where the ray-tracing diagram of both the SSCSI and CASSI are depicted. Although

widely accepted, the SSCSI does not possess any formal analysis and no technical de-

tails of the sensing process are available in the literature; this is a fundamental step

for future SSCSI research and commercial purposes. That is why in this chapter, a

detailed analysis of the SSCSI resolution limits is developed, as a function of the coded

aperture and detector physical dimensions, the coded aperture position with respect

to the sensor, and the dispersion process introduced by the diffraction grating. To that

end, this chapter is organized as follows: in Section II, the SSCSI sensing phenomena is
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Figure 2.1: Ray tracing diagram for (a) SSCSI, where the coded aperture is placed be-
tween the spectral plane and the sensor and (b) Single Disperser CASSI,
where the coded aperture is located before the spectral dispersion.

analyzed; in Section III, the spatial and spectral resolution are established, and several

discrete measurements models are proposed; in Section IV, simulations are run and the

proposed models are compared against conventional and Colored-CASSI; in Section V,

experimental measurements are shown; finally, this chapter concludes with a section

highlighting the main contributions to this research topic.

2.2 SSCSI sensing phenomena

The SSCSI optical architecture depicted in Fig. 2.1(a), makes use of an objective

lens to locate an image of the scene directly on the diffraction grating, where the

spectral dispersion takes place. The relay lens is then used to get an in-focus image

onto the sensor. Figure 2.2 depicts the ray propagation of the scene into the sensor.

Notice in Fig. 2.2 that there exists a physical position where all rays from a same

wavelength converge to a single line creating a rainbow; this is known as the spectral

plane, and it is extensively studied by Mohan et. al. in [29]. The width of that spectral

8



plane, R1, is given by the following expression

R1 =
bd

b+ d
θ, (2.1)

where b is the distance between the grating and the relay lens and d is the distance

between the spectral plane and the sensor (see Fig. 2.1(a)). The variable θ is the

grating dispersion angle.

Figure 2.2: Ray propagation of the spectral scene onto the spectral plane and into
the sensor. Here, g(x, y) is the continuous model representation of the
information captured at the sensor. The elements (m = 0, n = 0) and
(m = 2, n = 0) of the detector array are pointed out for clarification
purposes.

The coding process happening at the SSCSI is strongly influenced by the coded

aperture position with respect to the sensor; this is quantified through the normalized

variable s = dc/d (see Fig. 2.1), where s = 0 when the coded aperture is located on

top of the sensor, and s = 1 when it is on the spectral plane. As depicted in Fig. 2.3,

when s = 1, each resolvable spectral band is coded by a different column of the coded

aperture, and a stretched version (elongated over the horizontal axis) of the pattern

is seen at the sensor; as the mask moves towards the sensor, each spectral band is

coded by a bigger portion of the coded aperture, and the stretching factor decreases.

When s = 0, all spectral bands are coded by exactly the same portion of the coded

aperture, and no stretching is observed at the detector. The gray-scale measurements
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Figure 2.3: (a) Coding at the spectral plane (s = 1), and the coded field at the
detector. (b) Coding at 0 < s < 1 and the coded field at the detector.
(c) Coding when the coded aperture is located at the detector (s = 0).

for different values of s can be seen in Fig. 2.4. The SSCSI sensing phenomena is

described through the following expression:

g(x, y) =

∫
Λ

T (x(1− s) + sαλ, y)f(x, y, λ)dλ, (2.2)

where g(x, y) is the continuous model representation of the information captured at

the sensor (see Fig. 2.2), T (x, y) is the coded aperture function, f(x, y, λ) is the

continuous representation of the hyperspectral scene, α is a parameter that indicates

the position of a given wavelength on the spectral plane, and Λ is the spectral range

of interest, typically going from 400nm to 700nm. Notice how the variable s appears

in the argument of the coded aperture function, indicating the influence of the mask

position into the coding of the information. Given that the sensor is composed of a

discrete array of elements, a discretization process of Eq. (2.2) is a crucial step in
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Figure 2.4: Original hyperspectral scene (RGB-mapping), and coded measurements
captured at the sensor for 3 different values of s. As s increases, the
stretching of the coded aperture pixels is more notorious; when s = 0, no
stretching is present.

understanding the physical phenomena in terms of the real captured information; this

will be done in the following sections of the chapter.

2.3 SSCSI spatial and spectral resolution limits

This section explains in detail the developed analysis to determine the SSCSI

spatial and spectral resolution limits. The analysis has been decoupled into two inde-

pendent problems by assuming a single wavelength scene and a infinitesimally small

spatial point, as seen in Fig. 2.5.

2.3.1 Rewriting the continuous model

Consider the (m,n)th pixel detector, where 0 ≤ m,n ≤ Nd − 1 are integer and

unitless values, and Nd×Nd are the dimensions of the sensor array. The captured data
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Figure 2.5: Left: single wavelength scene assumed to determine the spatial resolution
limits in SSCSI. Right: infinitesimally small spatial point containing all
the wavelengths, assumed to determine the spectral resolution limits in
SSCSI.

on (m,n) can be written as follows

gm,n =

∫
x

∫
y

∫
Λ

T (x(1−s)+sαλ, y)f(x, y, λ)×rect

(
x

∆d

−m, y
∆d

− n
)
dλdydx, (2.3)

where ∆d is the pitch size of a single detector element and rect(x) is a rectangular

function defined as follows

rect(x, y) =

 1 If 0 ≤ x, y ≤ 1

0 otherwise.
(2.4)

Likewise, the coded aperture can be written as

T (x, y) =
∑
m′

∑
n′

tm′,n′rect

(
x

∆c

−m′, y
∆c

− n′
)
, (2.5)

where tm′,n′ ∈ {0, 1} ∀ (m′, n′), 0 ≤ m′, n′ ≤ Nc−1, and Nc×Nc are the dimensions of

the coded aperture mask. The variable ∆c is the pitch size of the coded aperture. In this

dissertation, the coded aperture full width is assumed to be the same as the detector

full width, or Nc∆c = Nd∆d. Moreover, the detector and the mask are assumed to be

totally aligned with respect to each other. Replacing (2.5) into (2.3) leads to

gm,n =

∫
x

∫
y

∫
Λ

∑
m′

∑
n′

tm′,n′ × f(x, y, λ)rect

(
x

∆d

−m, y
∆d

− n
)

× rect

(
x(1− s) + sαλ

∆c

−m′, y
∆c

− n′
)
dλdydx. (2.6)
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Notice that the rectangular functions representing the detector and coded aperture

elements have dimensions of ∆d ×∆d and ∆c

1−s ×∆c respectively.

2.3.2 Spatial resolution limits

As mentioned before, to determine the minimum attainable spatial resolution,

a single wavelength scene f(x, y, λo)δ(λ − λo) is assumed, such that the absence of

spectral information simplifies the analysis; here δ(λ − λo) is a Dirac delta function

located at λo. By doing that, Eq. (2.6) can be written as follows:

gm,n =

∫
x

∫
y

∫
Λ

∑
m′

∑
n′

tm′,n′ × f(x, y, λo)rect

(
x

∆d

−m, y
∆d

− n
)

× rect

(
x(1− s) + sαλ

∆c

−m′, y
∆c

− n′
)
δ(λ− λo)dλdydx. (2.7)

By solving the integral over dλ, Eq. (2.7) can be rewritten as

gm,n =

∫
x

∫
y

∑
m′

∑
n′

tm′,n′ × f(x, y, λo)rect

(
x

∆d

−m, y
∆d

− n
)

× rect

(
x(1− s) + sαλo

∆c

−m′, y
∆c

− n′
)
dydx. (2.8)

The minimum spatially resolvable feature, given by Eq. (2.8) can be determined by

establishing the intersecting region of the coded aperture and detector rectangular

functions, which is going to depend on the mask pixel stretching, as explained below.

2.3.2.1 Stretched coded aperture pitch size smaller than detector pitch

size: ∆c

1−s ≤ ∆d

In the first scenario, it is assumed that the stretched coded aperture pixel length

does not exceed the detector pitch size. Figure 2.6-left shows the projection of the

pattern onto the sensor for this case. By using the same principle proposed for CASSI

[30, 31], the minimum attainable spatial resolution is defined by ∆c

1−s × ∆c, which

implies that several spatial pixels of the scene will be registered by a single detector

13



pixel; this allows the recovery of spatially super-resolved datacubes. To model the

sensing process, the overlapping region between detector and coded aperture pixels

must be defined. Let (m′l, n
′
l) and (m′r, n

′
r) be the upper-leftmost and lower-rightmost

coded aperture elements impinging on the (m,n)th detector element. The overlapping

of the two rectangular functions in Eq. (2.8) can be seen in Figs. 2.7 and 2.8. From

Fig. 2.7, it can be inferred that for the overlap to exist on the y axis, the following

condition must hold

n
∆d

∆c

≤ n′ ≤ (n+ 1)
∆d

∆c

− 1, (2.9)

where the limits in the last inequality come from solving n′l∆c = n∆d and (n′r+1)∆c =

(n + 1)∆d for n′l and n′r respectively. Likewise, it can be shown based on Fig. 2.8,

that for the two rectangular functions in Eq. (2.8) to overlap in the x axis, the next

condition must hold⌊
(m)∆d(1− s) + sαλo

∆c

⌋
≤ m′ ≤

⌊
(m+ 1)∆d(1− s) + sαλo

∆c

⌋
, (2.10)

where b·c is the floor operator. The limits in the last inequality come from solving

m′l∆c−sαλo
1−s ≤ m∆d ≤

(m′l+1)∆c−sαλo
1−s and m′r∆c−sαλo

1−s ≤ (m + 1)∆d ≤ (m′r+1)∆c−sαλo
1−s for

m′l and m′r respectively and considering that m′l and m′r are integer indexes. Given

that the minimum resolvable spatial feature is of dimensions ∆c

(1−s) ×∆c, the captured

information in the (m,n)th detector element, gm,n, can be represented as

gm,n =

m′r∑
m′=m′l

(n+1)
∆d
∆c
−1∑

n′=n
∆d
∆c

Wm,m′ × tm′,n′ × fm′,n′,λo , (2.11)

where m′l and m′r are the limits of the expression in Eq. (2.10) and the variable f is the

datacube representation of the hyperspectral scene, being fm′,n′,λo the information of

the datacube at position (m′, n′) and spectral band λo; fm′,n′,λo is obtained by applying

the integral operators in Eq. (2.8). Notice that the spatial dimensions of f , using a

Nd × Nd sensor array, are defined as
⌈
Nd

∆d

∆c/(1−s)

⌉
× Nd

∆d

∆c
, where d·e is the ceiling

operator. The parameter Wm,m′ is the fraction of the coded aperture element tm′,n′

14



impinging on the (m,n)th detector element, and it is defined as follows (see appendix

A for full derivation),

Wm,m′ =



(m′+1)∆c−sαλo
1−s −(m)∆d

∆c/(1−s) If m
′
= m

′

l

(m+1)∆d−m
′∆c−sαλo

1−s
∆c/(1−s) If m

′
= m

′
r

1 If m
′

l < m
′
< m

′
r

0 otherwise.

(2.12)

Figure 2.6: Left: Original Coded aperture at a given position s and projection of

the coded aperture onto the sensor. Here ∆c

1−s ≤ ∆d. The red squares

represent the sensor elements (0, 0), (0, 1), (1, 0) and (1, 1). As depicted,

a coded aperture pixel of size ∆c×∆c is mapped into a ∆c

1−s×∆c rectangle

on the detector. Right: Front view of the sensor element (0,0) and illus-

tration of the W parameters of Eq. (2.11). The W parameters represent

the percentage of a coded aperture pixel impinging on a given detector

element. Notice, for example, that one of the portions of t2,0 impinges

on the (1, 0)th sensor element; this portion is represented by W1,2 (see

appendix A for full explanation).
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Δ
𝑐

Δ
𝑐

Figure 2.7: Overlapping area in the y axis of the two rectangular functions given

in Eq. (2.8), for a given n. Here, it is assumed that the ratio ∆d/∆c

is an integer greater than or equal to 1. Notice that n′l∆c = n∆d and

(n′r + 1)∆c = (n+ 1)∆d.

𝜆
𝑜

𝜆
𝑜

Figure 2.8: Overlapping area in the x axis of the two rectangular functions in Eq.

(2.8), for a given m. Notice that
m′l∆c−sαλo

1−s ≤ m∆d ≤
(m′l+1)∆c−sαλo

1−s and

m′r∆c−sαλo
1−s ≤ (m+ 1)∆d ≤ (m′r+1)∆c−sαλo

1−s .
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2.3.2.2 Stretched coded aperture pitch size greater than detector pitch

size: ∆c

1−s > ∆d

The projection of the coded aperture into the detector for this scenario can

be seen in Fig. 2.9-left. Unlike the previous scenario, here the spatial resolution is

limited by the detector pitch size and defined as ∆d × ∆c. Again, a coded aperture-

detector mismatch is present, and in order to model this particular phenomenon, a

synthetic gray-scale pattern is created through the combination of the pixels affecting

the same region, as illustrated by the green circle in Fig. 2.9. Given the (m′, n′)th

coded aperture pixel and the (m,n)th detector element, the two rectangular functions

in Eq. (2.8) intersect each other if n′ falls within the interval specified in Eq. (2.9) and

m′ =
⌊

(m)∆d(1−s)+sαλo
∆c

⌋
+ 1 (see appendix B). Taking into account that the minimum

spatially resolvable feature is of dimensions ∆d × ∆c, the captured information in a

particular sensor element, gm,n, can be written as follows

gm,n =

(n+1)
∆d
∆c
−1∑

n′=n
∆d
∆c

(tm′−1,n′ × pm + tm′,n′ × (1− pm))× fm,n′,λo , (2.13)

where fm,n′,λo is obtained by applying the integral operators in Eq. (2.8). Notice that

the spatial dimensions of f , using anNd×Nd sensor array, are defined asNd×Nd
∆d

∆c
. The

expression t̃m,n′ = tm′−1,n′×pm+tm′,n′×(1−pm) represents the effective coded aperture,

where pm indicates the percentage occupied by tm′−1,n′ on the (m,n)th detector element

and is defined as follows (see appendix B for full derivation),

pm =

 1 If (m+ 1)∆d ≤ m′∆c−sαλo
(1−s)

m′∆c−sαλo
(1−s) −(m)∆d

∆d
If (m+ 1)∆d >

m′∆c−sαλo
(1−s) .

(2.14)

With the spatial resolution limits defined, it is now proceeded to calculate the SSCSI

spectral resolution limits.

2.3.3 Spectral resolution limits

As previously mentioned, the SSCSI spectral resolution must be calculated as-

suming an infinitesimally small spatial point containing all the wavelengths f(x, y, λ)δ(x−
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Figure 2.9: Left: Coded aperture at a given position s and projection of the coded
aperture onto the sensor. Here ∆c

1−s > ∆d. The red squares represent
the sensor elements (0, 0), (0, 1), (1, 0) and (1, 1). As depicted, a coded
aperture pixel of size ∆c × ∆c is mapped into a ∆c

1−s × ∆c rectangle on

the detector. Right: Effective coded aperture t̂ impinging in the (1, 0)th

sensor element. Notice, in the green circled region, that the variable p1

indicates the area of the sensor occupied by t0,3.

xo, y−yo), where δ(x−xo, y−yo) represents a Dirac function located at the point (xo, yo).

With this assumption, Equation (2.6) can be rewritten as follows

gm,n =

∫
x

∫
y

∫
Λ

∑
m′

∑
n′

tm′,n′ × f(xo, yo, λ)rect

(
x

∆d

−m, y
∆d

− n
)

× rect

(
x(1− s) + sαλ

∆c

−m′, y
∆c

− n′
)
× δ(x− xo, y − yo)dλdydx. (2.15)

By solving the integral over dxdy, Equation (2.15) can be rewritten as

gm,n =

∫
Λ

∑
m′

∑
n′

tm′,n′ × f(xo, yo, λ)rect

(
xo
∆d

−m, yo
∆d

− n
)

× rect

(
xo(1− s) + sαλ

∆c

−m′, yo
∆c

− n′
)
dλ. (2.16)

The attainable spectral resolution is found by defining the region where the two rect-

angular functions in the last equation intersect each other. This ensures the integral

will not equal zero. The analysis was again divided in two cases as elaborated next.
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2.3.3.1 Stretched coded aperture pitch size smaller than detector pitch

size: ∆c

1−s ≤ ∆d

Figure 2.10 shows the overlapping of the two rectangular functions in Eq.

(2.16), when ∆c

1−s ≤ ∆d; three different regions can be noted. When the overlap-

ping region is the gray area, m∆d ≤ (m′1+1)∆c−sαλ
1−s and m∆d ≥ m′1∆c−sαλ

1−s or, in other

words,
m′1∆c−m∆d(1−s)

sα
≤ λ ≤ (m′1+1)∆c−m∆d(1−s)

sα
. This interval has an extension of

∆λ = ∆c

sα
. When the overlapping region is the yellow one, (m + 1)∆d ≤ (m′2+2)∆c−sαλ

1−s

and (m + 1)∆d ≥ (m′2+1)∆c−sαλ
1−s or, in other words,

(m′2+1)∆c−(m+1)∆d(1−s)
sα

≤ λ ≤
(m′2+2)∆c−(m+1)∆d(1−s)

sα
. This interval has also an extension of ∆λ = ∆c

sα
. Likewise,

when the overlapping region is the green area, m∆d ≤ m′2∆c−sαλ
1−s and (m + 1)∆d ≥

(m′2+1)∆c−sαλ
1−s , or equivalently

(m′2+1)∆c−(m+1)∆d(1−s)
sα

≤ λ ≤ m′2∆c−m∆d(1−s)
sα

, which has an

extension of ∆λ = ∆d(1−s)−∆c

sα
. Let the ratio ∆d/∆c = C, where C is an integer greater

than 1. In order to make ∆c

sα
> ∆d(1−s)−∆c

sα
, one can prove that s > 1− 2

C
. For C = 2,

the inequality ∆c

sα
> ∆d(1−s)−∆c

sα
holds for s > 0. Therefore, ∆λ = ∆c

sα
can be taken as

an upper bound of the spectral resolution. When C > 2, ∆c

sα
< ∆d(1−s)−∆c

sα
for certain

values of s, and ∆λ = ∆c

sα
represents the exact spectral resolution given by the SSCSI.

𝑥𝑜

𝑥𝑜

𝑚2
′ + 2 Δ𝑐 − 𝑠𝛼𝜆

1 − 𝑠

Figure 2.10: Graphical explanation to calculate the spectral resolution of the SSCSI,

when ∆c

1−s ≤ ∆d.
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2.3.3.2 Stretched coded aperture pitch size greater than detector pitch

size: ∆c

1−s > ∆d

Figure 2.11 shows the overlapping of the two rectangular functions, when ∆c

1−s >

∆d; two cases must be analyzed. In the first one, the gray area partially occupies the

sensor element, which implies that m∆d ≤ (m′+1)∆c−sαλ
1−s and (m+ 1)∆d ≥ (m′+1)∆c−sαλ

1−s

or, in other words, (m′+1)∆c−(m+1)∆d(1−s)
sα

≤ λ ≤ (m′+1)∆c−(m)∆d(1−s)
sα

, whose extension

is equal to ∆λ = ∆d(1−s)
sα

. In the second case, the gray area fully occupies the sensor

element, which means that m∆d ≥ (m′)∆c−sαλ
1−s and (m+ 1)∆d ≤ (m′+1)∆c−sαλ

1−s , or equiv-

alently (m′)∆c−(m)∆d(1−s)
sα

≤ λ ≤ (m′+1)∆c−(m+1)∆d(1−s)
sα

; this interval has an extension of

∆λ = ∆c−∆d(1−s)
sα

. Notice that, since ∆c

1−s > ∆d,
∆c

sα
> ∆d(1−s)

sα
and ∆c

sα
> ∆c−∆d(1−s)

sα
.

Therefore, ∆c

sα
can be taken as an upper bound of the spectral resolution.

𝑥𝑜

𝑥𝑜

Figure 2.11: Graphical explanation to calculate the spectral resolution of the SSCSI,

when ∆c

1−s > ∆d.
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2.3.3.3 Number of resolvable spectral bands

With ∆λ = ∆c

sα
defined as an upper bound for the spectral resolution that

encompasses all the scenarios, the number of resolvable spectral bands can be defined

as follows,

L =

⌈
sα (λmax − λmin)

∆c

⌉
, (2.17)

where Λ = λmax − λmin is the spectral range of interest. The term sα (λmax − λmin)

indicates the spectral dispersion of the scene at a given position s. When the coded

aperture and the detector width are the same (Nc∆c = Nd∆d), the last expression can

be rewritten as follows

L =

⌈
s

Nd

∆c/∆d

β

⌉
, (2.18)

where β = α(λmax−λmin)/Nc∆c is the ratio between the spectral plane length and the

coded aperture width.

2.3.3.4 Coding process between adjacent bands

Let λk = λmin + k∆c

sα
and λk+1 = λmin + (k + 1)∆c

sα
be two resolvable spectral

bands such that λk+1 − λk = ∆c

sα
. The physical separation between these bands when

arriving at the coded aperture plane is equal to sα (λk+1 − λk) = ∆c, which means

that the two adjacent bands will be coded by the same coded aperture, but shifted by

one column. A graphical explanation of the coding process in adjacent bands can be

seen in Fig. 2.12.

2.3.4 Fusing the spatial and spectral resolution analysis

The spectral resolution limits must now be incorporated into the discrete mea-

surements models given by Eqs. (2.11) and (2.13) and take into consideration the

shifted-by-one-column coding process between adjacent bands. The final discrete mea-

surements model when ∆c

1−s ≤ ∆d can be rewritten as follows:
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𝜆1

𝜆1

Figure 2.12: Top: Coding process, at a given s, for two adjacent and resolvable
bands λmin and λ1 = λmin + ∆c

sα
, when ∆c/(1 − s) ≤ ∆d. Bottom:

Coding process, at a given s, for two adjacent and resolvable bands
λmin and λ1 = λmin + ∆c

sα
, when ∆c/(1− s) > ∆d. Notice that, in both

cases λmin impinges on the leftmost side of the coded aperture. The
dispersion between λ1 and λmin is equal to sα(λ1 − λmin) = ∆c. This
means they are coded by the same coded aperture but shifted by one
column.

gm,n =

m′r∑
m′=m′l

(n+1)
∆d
∆c
−1∑

n′=n
∆d
∆c

L−1∑
k=0

Wm,m′tm′+k,n′fm′,n′,k, (2.19)

where m′l =
⌊

(m)∆d(1−s)+sαλmin
∆c

⌋
, m′r =

⌊
(m+1)∆d(1−s)+sαλmin

∆c

⌋
and Wm,m′ is defined in

Eq. (2.12) (for λo = λmin). The kth spectral band is defined here as the interval

[λmin + ∆c

sα
k, λmin + ∆c

sα
(k + 1)]; the shifting by one column between adjacent bands
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can be seen in the “ + k” term on the coded aperture array t. The dimensions of the

recovered datacube are given by⌈
Nd

∆d

∆c/(1− s)

⌉
×Nd

∆d

∆c

× L, (2.20)

where L is given in Eqs. (2.17) and (2.18). As an example, take the sensor element

(0, 0) in Fig. 2.12-top; the captured information in that element related to the spectral

band [λmin, λmin + ∆c

sα
] will be given by

g0,0 =
2∑

m′=0

3∑
n′=0

W0,m′tm′,n′fm′,n′,0. (2.21)

Likewise, the captured information for the spectral band [λmin + ∆c

sα
, λmin + 2∆c

sα
] will

be given by

g0,0 =
2∑

m′=0

3∑
n′=0

W0,m′tm′+1,n′fm′,n′,1. (2.22)

In this particular case, W0,0 = 1 and W0,1 = 1. On the other side, the final discrete

measurements model when ∆c

1−s > ∆d can be seen below:

gm,n =

(n+1)
∆d
∆c
−1∑

n′=n
∆d
∆c

L−1∑
k=0

(tm′+k−1,n′ × pm + tm′+k,n′ × (1− pm)) fm,n′,k, (2.23)

where the kth spectral band is defined as the interval [λmin + ∆c

sα
k, λmin + ∆c

sα
(k + 1)],

m′ =
⌊

(m)∆d(1−s)+sαλmin
∆c

⌋
+ 1 and pm is as defined in Eq. (2.14) (for λo = λmin). The

shifting by one column between adjacent bands can be seen in the “ + k” term on the

coded aperture array t. The dimensions of the recovered datacube are given by

Nd ×Nd
∆d

∆c

× L, (2.24)
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where L is given in Eqs. (2.17) and (2.18). As an example, take the sensor element

(1, 0) in Fig. 2.12-bottom. The captured information in that element related to the

spectral band [λmin, λmin + ∆c

sα
] will be given by

g1,0 =
3∑

n′=0

(t0,n′ × p1 + t1,n′ × (1− p1)) f1,n′,0. (2.25)

Likewise, the captured information for the spectral band [λmin + ∆c

sα
, λmin + 2∆c

sα
] will

be given by

g1,0 =
3∑

n′=0

(t1,n′ × p1 + t2,n′ × (1− p1)) f1,n′,1. (2.26)

2.3.5 Summary

The summary of the spatial and spectral resolution limits and the discrete mea-

surements models are provided in Tables 2.1, 2.2 and 2.3.

Table 2.1: SSCSI spatial resolution limits.

∆c

(1−s) ≤ ∆d
∆c

(1−s) > ∆d

Spatial resolution ∆c

(1−s) ×∆c ∆d ×∆c

Table 2.2: SSCSI spectral resolution limits. An upper bound of ∆λ = ∆c

sα
that en-

compasses all the cases was defined to simplify the analysis.
∆c

(1−s) ≤ ∆d
∆c

(1−s) > ∆d

Spectral resolution ∆c

sα
, ∆d(1−s)−∆c

sα
∆d(1−s)

sα
, ∆c−∆d(1−s)

sα

Table 2.3: Proposed discrete measurements models.

∆c

(1−s) ≤ ∆d gm,n =
∑m′r

m′=m′l

∑(n+1)
∆d
∆c
−1

n′=n
∆d
∆c

∑L−1
k=0 Wm,m′tm′+k,n′fm′,n′,k

∆c

(1−s) > ∆d gm,n =
∑(n+1)

∆d
∆c
−1

n′=n
∆d
∆c

∑L−1
k=0 (tm′+k−1,n′ × pm + tm′+k,n′ × (1− pm)) fm,n′,k
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2.3.6 Exact coded aperture shearing

The proposed models are an approximation which do not account for the exact

projection of the coded aperture into the sensor. To understand this in detail, one

must recall Eq. (2.6), which characterizes the SSCSI sensing process. By analyzing

the x dimension of the coded aperture rectangular function in this expression, given by

x(1−s)+sαλ
∆c

−m′, one can obtain Fig. 2.13-top, that depicts the actual sheared pattern

in the x − λ plane. The dashed black lines in the figure represent the limits of the

mth detector, while the dashed red lines are the spectral divisions every ∆λ = ∆c

sα
. The

connection between the exact shearing and the proposed models in Eqs. (2.19) and

(2.23) can be seen in Fig. 2.13-bottom. As depicted, the spectral range (λ1 − λ2) is

uniformly coded as λ1. Hence, the proposed discretization model must be considered

a first order approximation.

2.4 Simulations

2.4.1 Matrix forward model

The SSCSI sensing process can be described using matrix-vector multiplication

notation, as follows:

g(q) = H(q)Ψπ q = 1, 2, ..., Q, (2.27)

where Q is the number of captured shots and g(q) are the vectorized measurements of

length N2
d . The variable π is a sparse vector representation of the datacube f in a basis

Ψ. If the datacube to be recovered has dimensions Nx × Ny × L, then the length of

π is NxNyL. The diagonal-structured matrix H(q) performs the coding process of the

datacube; its dimensions are N2
d ×NxNyL. For a multishot approach (several captured

snapshots with different patterns), the sensing process can be written as

g = HΨπ, (2.28)

where H =
[
H(1)T ,H(2)T , . . . ,H(Q)T

]T
is a diagonal-structured matrix with dimensions

QN2
d × NxNyL, and g =

[
g(1)T ,g(2)T , . . . ,g(Q)T

]T
is a vector of length QN2

d . The
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Figure 2.13: Top left: Original sheared coded aperture when ∆c/(1 − s) ≤ ∆d.
Top right: Original sheared coded aperture when ∆c/(1 − s) > ∆d.
Bottom left: First order approximation when ∆c/(1−s) ≤ ∆d. Bottom
right: First order approximation when ∆c/(1 − s) > ∆d. Notice how
the spectral band [λ1, λ2] is coded by the same pattern that codes the
hyperspectral scene at λ1.

structure of the matrix H for a single shot and a single wavelength, for ∆c/(1−s) ≤ ∆d

and ∆c/(1− s) > ∆d can be seen in Fig. 2.14-left. The structure of H for Q = 2 and

L = 2 can be seen in Fig. 2.14-right.

2.4.2 Simulation conditions

2.4.2.1 SSCSI detector and coded aperture dimensions

The recovery of a hyperspectral image composed of 24 bands is simulated as-

suming a detector size of Nd ×Nd, where Nd = 256. The coded aperture and detector

pitch sizes are assumed to be the same; given that ∆c = ∆d, ∆c/(1 − s) ≥ ∆d for

any value of s; Eq. (2.23) therefore applies. Assuming that β = 1, which means that

the coded aperture width and spectral plane length are the same, s ≈ 0.1 in order to
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Figure 2.14: Left: Sensing matrix H(q), for a single shot and a Nx × Ny single
wavelength datacube. Top-left: when ∆c

1−s ≤ ∆d. Bottom-left: when
∆c

1−s > ∆d. Each row represents a sensor element and each column rep-
resents a datacube element. Right: Sensing matrix for two shots and a
two wavelengths datacube, where ∆c = ∆d, s = 0.18 and β = 1. The
dashed red horizontal line separates the two different shots, q = 1 and
q = 2. The size of the implemented sensor and coded aperture is 8× 8.
The dashed red circles and red arrow indicate the dispersion process
between bands.

recover the 24 bands (Eq. (2.18)). The final dimensions of the recovered datacube,

according to Eq. (2.24), will be equal to 256 × 256 × 24. The coded aperture pat-

terns were generated such that complementarity among shots is preserved, where the

complementarity is defined as

Q∑
q=1

tqm,n = 1 ∀ m,n. (2.29)

To avoid trivial patterns (all-ones, all-zeros), the transmittance of every pattern is

inversely proportional to the number of capture snapshots, where the transmittance

is defined as the ratio between the number of ones and the total number of pixels in

the pattern. This structure is called Boolean, and it has been proven to enhance the

quality of the reconstructions [32].
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2.4.2.2 CASSI and Colored-CASSI

Two state-of-the-art architectures were simulated to test the SSCSI perfor-

mance, the CASSI and the Colored-CASSI. The CASSI coding patterns were generated

using the Boolean structure defined in Eq. (2.29). The colored CASSI was simulated

using two different coding principles; in the first one, no limit on the number of optical

filters was imposed; the complementary condition for this case is defined as:

Q∑
q=1

tqm,n,k = 1 ∀ m,n, k. (2.30)

This imager is called Ideal Colored-CASSI. The second Colored-CASSI coding principle

was simulated using four different predefined optical filters: Low-pass, High-pass, Band-

pass, and Band-stop. The optical filters were chosen such that the following condition

holds

Q∑
q=1

tqm,n,k ≥ 1 ∀ m,n, k. (2.31)

2.4.2.3 Criterion of comparison

The criterion used to compare the performance of the imager was the Peak-

Signal-to-Noise-Ratio (PSNR), a common metric implemented in hyperspectral imag-

ing, defined as

20 log10

(
maxI

MSE1/2

)
, (2.32)

where maxI is the maximum possible value of the image and MSE is the mean squared

error with respect to the ground-truth.

2.4.2.4 Sparsifying basis and iterative algorithm

The hyperspectral image was recovered by solving the optimization problem in

Eq. (1.2) using the Gradient Projection for Sparse Reconstruction Algorithm (GPSR)

[33]. The sparsity basis was chosen as Ψ = ΨDCT ⊗ΨW , where ΨW is the 2D Wavelet
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Symlet 8 basis, ΨDCT is the Discrete Cosine basis and ⊗ is the Kronecker product [34];

this representation basis has been already used for other imagers such as CASSI [14].

The value of τ in Eq. (1.2) was chosen such that an optimal PSNR is reached.

2.4.2.5 Simulation results

Figure 2.15-left shows the PSNR of the reconstructed scene for the different im-

agers as a function of the number of captured shots. The SSCSI outperforms conven-

tional CASSI and Colored-CASSI with 4 filters, while exhibiting similar performance to

the ideal Colored-CASSI. The RGB profiles of the ground-truth and the reconstructed

hyperspectral scenes for Q = 3 snapshots can be seen in Fig. 2.15-right. The final

spatial quality given by the SSCSI can be inferred from the figures; this can be seen as

well in the zoomed portion of the scenes, shown in Fig. 2.16-left. The reconstructed

spectral signatures for two different pixels T1 and T2 can also be seen in Fig. 2.16-right.

As depicted, the SSCSI, the Ideal Colored-CASSI, and the Colored-CASSI with 4 filter

throw spectrally accurate results.

2.4.3 Spatially and spectrally super-resolved scenes

2.4.3.1 Spatial super-resolution

As previously mentioned, if the condition ∆c/(1−s) ≤ ∆d holds, it is possible to

recover a spatially super-resolved hyperspectral scene, with dimensions specified by Eq.

(2.20), and following the model given by Eq. (2.19). This scenario was simulated by

defining ∆c = ∆d/2, and a detector size ofNd×Nd withNd = 128; to recover 24 spectral

bands, and assuming that β = 1, the coded aperture must be located at s ≈ 0.1. With

all the defined parameters, a spectral scene with dimensions of 233× 256× 24 can be

recovered from the captured measurements. Reconstruction results for a compression

ratio of CR = 0.68, where the compression ratio is defined as CR =
QN2

d

NxNyL
, can be

seen in Fig. 2.17-top, while the equivalent low-resolution scene of 128× 128 × 24 can

be seen in Fig. 2.17-bottom; notice how, in the zoomed portion, the spatial details are

clearly defined in the super-resolved case. The PSNR of the recovered super-resolved
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Figure 2.15: Left: PSNR of the reconstruction as a function of the number of shots
for the SSCSI, s ≈ 0.1, CASSI, Colored-CASSI with 4 filters and Ideal
Colored-CASSI. All the reconstructions were done assuming ∆c = ∆d.
Right: RGB profiles of the original and recovered datacubes. Top-left:
Original scene. Top-right: SSCSI reconstruction, s ≈ 0.1. Bottom-
left: Colored-CASSI with 4 filters reconstruction. Bottom-right: CASSI
reconstruction. The simulations were done assuming Q = 3 snapshots
and ∆c = ∆d. The dashed red circle indicates the area to be zoomed in
Fig. 2.16.

Figure 2.16: Left: zoomed portion of the RGB profiles indicated by the dashed red
circle in Fig. 2.15. Right: Spectral signatures for pixels T1 and T2. T1

and T2 are specified in Fig. 2.15.
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Figure 2.17: Top left: RGB profile of the super-resolved 233 × 256 × 24 datacube,
with s ≈ 0.1, ∆c = ∆d/2, and CR = 0.68. Top right: Zoomed portion
of the datacube. Bottom left: RGB profile of the non-super-resolved
datacube, with s ≈ 0.1 and ∆c = ∆d. Bottom right: Zoomed portion
of the datacube indicated by the dashed red circles.

𝑇3

Figure 2.18: Left: PSNR of the super-resolved datacube as a function of the com-
pression ratio, with s ≈ 0.1 and ∆c = ∆d/2. Right: Recovered spectral
signature of T3, for the super-resolved datacube and CR = 0.68. T3 is
specified in Fig. 2.17.

scene for different compression ratios can be seen in Fig .2.18-left, while the recovered

spectral signature for pixel T3 can be seen in Fig. 2.18-right.
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2.4.3.2 Spectral super-resolution

Unlike CASSI, the resolution limits on SSCSI can be modified by simply moving

the coded aperture on the imager. The number of spectral bands is directly propor-

tional to s, as seen in Eq. (2.18), reaching a maximum when s = 1. In other words, a

spectral zooming operation can be done by displacing the mask towards the spectral

plane. To test that, a spectral signature with strong peaks, synthetically generated, was

randomly located in the original datacube, and the reconstructions were performed,

assuming that β = 1, ∆c = ∆d, and the compression ratio was defined as CR = 0.2.

Notice in Fig. 2.19 that as s increases, the peaks on the spectral signature are clearer;

this is quantified by the absolute value of the correlation |r|, between original and

reconstructed synthetic signatures, which can also be seen in Fig. 2.19.

Figure 2.19: Left: Synthetic spectral signature created to evaluate the influence of

the parameter s on the spectral resolution. Right: Recovered synthetic

spectral signature for different values of the parameter s and a compres-

sion ratio of CR = 0.2. The variable |r| indicates the absolute value

of the correlation coefficient between the original and the reconstructed

signatures.
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2.4.4 SSCSI performance at different values of s

The SSCSI performance is extremely dependent on s; both the spatial and

spectral resolution are defined by this parameter; thus, the final quality of the recovered

scene is also affected by s. In order to test that, recovery of the same hyperspectral

scene of size 256×256×24 was attempted with a value of s smaller than that indicated

by Eq. (2.18), (s ≈ 0.1), when ∆c = ∆d and β = 1. Results can be seen in Fig. 2.20;

as depicted, when s ≈ 0, colors on the scene are not distinguishable. The PSNR

of the reconstructed scene as a function of s can be seen in Fig, 2.21-left, while the

reconstructed signature for pixel T4 can be seen in Fig. 2.21-right; notice that as s

approaches to 0.1, the spectral details are better reconstructed (see zoomed portion of

the spectral signature).

Figure 2.20: Original and reconstructed RGB profiles for 3 different coded aperture

positions, Q = 6 snapshots and ∆c = ∆d. The codes exhibit Boolean

structure. The optimal PSNR occurs at s = 0.02, while at s ≈ 0 the

SSCSI does not recover spectral information.
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𝑇4

Figure 2.21: Left: PSNR of the reconstructed 256 × 256 × 24 hyperspectral scene

as a function of the coded aperture position s, for Q = 6 and Q = 12

snapshots. The codes exhibit Boolean structure. Right: Recovered

signature for pixel T4 and different values of s. The zoomed portion

emphasizes the difference between the signatures and how the spectral

details are lost for s < 0.1. T4 is specified in Fig. 2.20.

2.5 Experimental reconstructions

The SSCSI was mounted in an optical table following the indications given by

Lin et. al. in the supplementary material for [17]. The experimental setup can be seen

in Fig. 2.22. The objective lens, TAMRON-AF 70-300mm, images the scene onto the

300 grooves/mm transmissive diffraction grating; after that, the optical path bends

according to the diffraction angle, and the diffracted light passes through a 4-F system

composed of two 75mm, 2” lenses. The 4F system creates an image plane prior to the

sensor, allowing access to coded aperture positions close to s = 0. Then, the light is

coded using a lithography-fabricated coded aperture, and that coded information is

imaged into a CCD monochrome scientific camera using a 35mm, 1” lens.

2.5.1 Spectral resolution analysis

The theoretical spectral resolution of the SSCSI can be calculated by determin-

ing the value of β in the laboratory; it was found that the spectral plane composed
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Figure 2.22: SSCSI experimental set up. 6 main components are distinguished. A.
TAMRON AF 70-300mm objective lens. B. 300 grooves/mm transmis-
sive diffraction grating. C. 4f system composed of two 75mm, 2” lenses.
D. Coded aperture. E. Relay system composed of a 35mm, 1” lens. F.
StingrayTM 640×480 CCD monochrome camera with 9.9µm pitch size.
As depicted, the 4f system allows more flexibility when displacing the
coded aperture. Notice that the optical arm is bent according to the
diffraction grating angle.

of frequencies from 480nm to 620nm has a length three times bigger than the imple-

mented coded aperture width; therefore, β ≈ 3; this was determined by locating a

white board on the spectral plane and measuring the physical distance between 480nm

and 620nm. The number of resolvable bands, assuming ∆c = ∆d and Nd = 256, is

equal, according to Eq. (2.18), to L = d256sβe. The experimental spectral resolution,

on the other hand, was determined using the criterion depicted in Fig. 2.23; two adja-

cent spectral bands will be resolvable if the projected coded aperture onto the sensor

for the bands are shifted by one column. This can be tested by comparing a randomly

selected row of the patterns. Table 2.4 shows the experimental and theoretical spectral

resolution for different values of s.
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Figure 2.23: Experimental calculation of the spectral resolution. Top: effective coded
aperture for two consecutive bands. Bottom: Comparison of ith effective
coded aperture row elements for the two consecutive bands.

Table 2.4: Theoretical and experimental spectral resolution for different s parameters.

s ∆λ, Theoretical (nm) ∆λ, Experimental (nm)

0.004 43 40

0.0078 22 28

0.011 16 20

2.5.2 Experimental datacube reconstruction

A hyperspectral scene was reconstructed using the SSCSI and two snapshots.

The implemented coding patterns exhibit a Boolean structure and have a pixel pitch

size of ∆c = 19.4µm. In the calibration process, the sensing matrix H was assembled

by locating a white board as a scene and then capturing the coding pattern per each

spectral band to be recovered; this has to be done for the two captured snapshots.
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Figure 2.24: RGB profiles of the reference scene and the reconstructed datacubes
for three different values of s and two complementary shots. s ≈ 0,
s = 0.004, and s = 0.0078.

After that, each pattern is located in its respective diagonal of H. Once the calibra-

tion is done, the white board is replaced by the target. Then, the scene is properly

illuminated and the coded scene is captured for each shot, to then assemble the mea-

surements vector. Then, the reconstruction algorithm is run. The RGB-mapping of

the reconstructed spectral scene for different values of s can be seen in Fig. 2.24. As

depicted, as s increases, the spectral information becomes more noticeable; this can

also be seen in Figs. 2.25 and 2.26. Nevertheless, as s increases, some artifacts start

to appear in the reconstruction; this will be discussed in the next subsection.

2.5.3 SSCSI experimental limitations

All the presented discrete measurements models rely on the assumption that the

aperture of the objective lens is infinitesimally small; this is an ideal case that cannot be

replicated in experiments for several reasons. First, the light throughput of the system

is extremely affected by the aperture of the objective lens. In addition, the minimum

resolvable spatial feature of any optical system is determined by the diffraction limit,

which is proportional to the lens aperture. In experiments, the aperture must have

a finite length; this finite aperture introduces blurring and artifacts into the final
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Figure 2.25: Reference and reconstructed spectral bands for three different values of
s and two complementary shots. From top to bottom: Reference, s ≈ 0,
s = 0.004, and s = 0.0078.

𝑇5

Figure 2.26: Original and reconstructed spectral signatures for pixels T5, T6, and T7

and three different values of s, s ≈ 0, s = 0.004, and s = 0.0078. T5,
T6, and T7 are specified in Fig. 2.24.
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reconstruction, which are directly proportional to the value of s. Other limitation in

SSCSI comes from the spectral plane length; as found in the experiments, the spectral

plane length is three times bigger than the coded aperture width, which leads the

extreme wavelengths (blue and red), to impinge out of the mask and be discarded.

That is why the range of interest was adjusted in the experiment to [480nm− 620nm]

.

2.6 Conclusions

In this chapter, a rigorous analysis of the SSCSI spatial and spectral resolution

limits is proposed and developed. It was found that the minimum attainable feature

in space and spectrum depend on parameters such as the dispersion introduced by the

grating, the coded aperture and detector pixel pitch sizes, and the coded aperture posi-

tion with respect to the sensor. Based on these parameters, two discrete measurements

models were defined. In the first one, when ∆c/(1−s) ≤ ∆d, a spatially super-resolved

scene can be recovered from a low resolution sensor. The minimum recoverable spatial

feature is defined by the region ∆c/(1−s)×∆c, and the discrete measurements model is

defined by Eq. (2.19), where the auxiliary variable Wm,m′ accounts for the mismatching

between detector and code aperture. In the second one, when ∆c/(1 − s) > ∆d, the

minimum recoverable spectral feature is defined by ∆d×∆c; therefore, it is possible to

recover a spatially super-resolved scene in one dimension. The discrete measurements

model is given by Eq.(2.23), where the variable p is used to create a synthetic gray-scale

coded aperture.

An upper-bound of the SSCSI spectral resolution was defined in theory and

experiments as ∆c/sα; hence, a zooming operation over the spectral domain can be

done in SSCSI by moving the coded aperture towards the spectral plane, reaching a

maximum of resolvable bands when s = 1 (spectral plane).

The SSCSI was mounted and tested in experiments to test the spectral resolution

dependency on s. In this process, several issues, which were not considered in the

theoretical model, were found, such as the dependency of the SSCSI performance on
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the size of the objective lens aperture, the reduced spectral range coming from the

extreme wavelengths impinging out of the coded aperture, and the low light throughput

of the system.

This is the first research work that fully characterizes the SSCSI in theory

and experiments, and, as a result, two conference papers with preliminary results in

Computational Optics, Sensing and Imaging (Salazar et. al. [35, 36]), and one journal

paper in IEEE transactions on Computational Imaging (Salazar et. al. [37]) were

published (see attached disclaimer for copyright issues). In the next chapter, and based

on the proposed model, an optimization framework to find the best coding pattern is

proposed and developed.

All the data and software for this chapter are available in [38].
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Chapter 3

CODED APERTURE OPTIMIZATION IN THE SPATIAL SPECTRAL
COMPRESSIVE SPECTRAL IMAGER

3.1 Introduction

The coding process in Compressive Spectral Imagers is an essential step di-

rectly influencing the final quality of the recovered information. Although fully random

patterns offer good results[39], several efforts have been made to optimize the coded

aperture structure for CASSI and Colored-CASSI, taking into account the physics

and discretization of the sensing process. One of the first criteria used to determine

the sensing matrix quality was the Restricted Isometry Property (RIP) [40], which is

defined as follows

(1− δS)||π||22 ≤ ||Aπ||22 ≤ (1 + δS)||π||22, (3.1)

where A is the sensing matrix and δS is the Restricted Isometry Constant (RIC).

Minimizing δS leads to better reconstructions. A closed definition of δS is given by

δS = max
ρ⊂[N2L],|ρ|≤S

||AT
ρAρ − I||2, (3.2)

where [N2L] := [1, 2, . . . N2L], |ρ| is the cardinality of ρ, I is the identity matrix and

Aρ is a N2Q × |ρ| matrix, with |ρ| columns of A, indexed by ρ. The RIP has been

extensively used to find optimal patterns in CASSI; Wagadarikar [41] defined the nec-

essary conditions on the coding patterns for the CASSI sensing matrix to satisfy the

RIP; Correa et al. in [42] used the RIP property to find the optimal patterns for

CASSI, and their interdependency among shots. Other RIP-based coded aperture op-

timization algorithms were proposed in [43, 44, 45]. Recently, with the increasing of
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computational resources, several deep and machine learning-based attempts at finding

the optimal patterns for CASSI have been made [46, 47]. In [46], for example, Wang et.

al. proposed the Hyperreconnect architecture, where through a Convolutional Neural

Network, coding process and reconstruction are jointly optimized. In this chapter, an

optimization framework for coded aperture patterns in SSCSI is proposed and devel-

oped; this method is based on an upper-bound of the RIP and, unlike deep learning

techniques, the results are scene independent and merely based on the physics of the

sensing process. This chapter is divided as follows: in Section II, the discrete mea-

surements model is rewritten for the special case when ∆d = ∆c; in Section III, the

cost function implemented in the optimization is developed in detail; in Section IV, the

algorithm to find the optimal coded apertures is explained; in Section V, a new spectral

statistics called Axially Averaged Power Spectral Density, implemented to characterize

the spectral content of the patterns, is proposed and explained; in Section VI, the

performance of the optimal coded apertures is tested against conventional patterns;

finally, this chapter discusses the conclusions and highlights of this research line.

3.2 Rewriting the discrete measurements model

The proposed optimization algorithm in this chapter is developed for the par-

ticular case when the coded aperture and detector pitch sizes are the same, that is

∆c = ∆d = ∆; with this assumption, m′ in Eq. (2.23) can be written as m′ =⌊
m(1− s) + sαλmin

∆

⌋
+ 1, while the variable pm can be rewritten as

pm =

 1 If (m+ 1)∆ ≤ m′∆−sαλmin
(1−s)

m′∆−sαλmin
∆(1−s) −m If (m+ 1)∆ > m′∆−sαλmin

(1−s) .
(3.3)

If αλmin is assumed to be zero, that is, if λmin impinges on the leftmost side of the

coded aperture, m′ = bm(1− s)c+ 1, and Eq. (2.23) can be rewritten as follows

gm,n =
L−1∑
k=0

(
tbm(1−s)c+k,n × pm + tbm(1−s)c+1+k,n × (1− pm)

)
fm,n,k, (3.4)
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where pm, given in (3.3), is redefined as

pm =

 1 If m+ 1 ≤ bm(1−s)c+1
(1−s)

bm(1−s)c+1
1−s −m If m+ 1 > bm(1−s)c+1

(1−s) .
(3.5)

The number of resolvable spectral bands given by Eq. (2.18) can be rewritten as

L = dsβNe . (3.6)

3.3 Coded aperture optimization

The SSCSI sensing matrix is defined as A = HΨ, where H is the forward model

matrix fully described in the last chapter, and Ψ is the basis implemented to sparsify

the data. This matrix determines how accurate the reconstructed scenes will be in

terms of spatial and spectral quality; therefore, careful design of A must be developed

as elaborated next.

3.3.1 The minimization problem

Finding the optimal coded aperture patterns using the RIP is equivalent to

minimizing δs given by Eq. (3.2); however, this problem can be NP-hard [48]; hence

an upper-bound of δs must be established as follows:

δs ≤ ||ATA− I||F , (3.7)

where || · ||F is the Frobenius norm of a matrix. This approximation has already been

used for code design in Computed Tomography [49, 50]. Finding the SSCSI optimal

patterns through the minimization of δs, is a problem that can be written as follows:

min
H
||ATA− I||2F

subject to H ∈ CN,L,Q, (3.8)
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where CN,L,Q represents the set of matrices for the SSCSI system, reconstructing a

N × N × L datacube, from Q measured snapshots with a N × N detector. This last

optimization problem can be reformulated as follows

min
H

N2L∑
b,c=1,b 6=c

|
(
ATA

)
b,c
|2

subject to: H ∈ CN,L,Q(
ATA

)
b,b

= 1 ∀ b ∈ [1, . . . N2L], (3.9)

where
(
ATA

)
b,c

= 〈A(:, b),A(:, c)〉 is the (b, c)th element of ATA, and 〈·〉 represents

the inner product operation. Finding the optimal matrix H, and the corresponding

coded aperture pattern requires first an extensive analysis of the structure of H, as

shown next.

3.3.2 ATA as a function of t

Given that A = HΨ,
(
ATA

)
b,c

= 〈A(:, b),A(:, c)〉 can be rewritten as follows

[51]: (
ATA

)
b,c

=
N2L∑
i,j=1

〈hi,hj〉ψi(b)ψj(c), (3.10)

where H = [h1,h2, . . .hN2L] and Ψ = [ψ1,ψ2, . . .ψN2L]. The term 〈hi,hj〉, is different

from zero, if and only if i and j are separated by an integer multiple of N2, or j =(
k −

⌊
i−1
N2

⌋)
N2 + i, where k = [0, 1, . . . L−1]. This comes from analyzing the structure

of H, as depicted in Fig. 3.1. Eq. (3.10) can be rewritten as follows

(
ATA

)
b,c

=
N2L∑
i=1

L−1∑
k=0

〈
hi,h(k−b i−1

N2 c)N2+i

〉
×ψi(b)ψ(k−b i−1

N2 c)N2+i(c). (3.11)

Likewise, the vector hi can be expressed as hi = [t̂mi,ni,`i,1, t̂mi,ni,`i,2, . . . , t̂mi,ni,`i,Q]T ,

where t̂mi,ni,`i,q = tbmi(1−s)c+`i,ni,q × pmi + tbmi(1−s)c+1+`i,ni,q × (1− pmi), pmi is defined

in Eq. (3.5), and tm,n,q is the pixel of the coded aperture pattern located at (m,n) and

shot q. The variables mi, ni and `i can be defined in terms of i, as mi =
⌊
i−1
N

⌋
−
⌊
i−1
N2

⌋
N ,
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ni = mod(i−1, N) and `i =
⌊
i−1
N2

⌋
. It can be proven that, when j =

(
k −

⌊
i−1
N2

⌋)
N2 +i,

mj = mi, nj = ni and `j = k (see appendix C). Taking into account the above

relationships, the term
〈
hi,h(k−b i−1

N2 c)N2+i

〉
can be written as

〈
hi,h(k−b i−1

N2 c)N2+i

〉
=

Q∑
q=1

t̂mi,ni,`i,qt̂mi,ni,k,q. (3.12)

Replacing Eq. (3.12) into Eq. (3.11) leads to

(
ATA

)
b,c

=
N2L∑
i=1

L−1∑
k=0

Q∑
q=1

t̂mi,ni,`i,q t̂mi,ni,k,q ×ψi(b)ψ(k−`i)N2+i(c). (3.13)

Figure 3.1: Structure of the matrix H for Q = 2 snapshots, L = 2 spectral bands and
s = 0.25. Notice that 〈hi,hj〉 6= 0 if i and j are separated by a integer
multiple of N2, or j =

(
k −

⌊
i−1
N2

⌋)
N2 + i.

3.3.3 Minimizing the off-diagonal elements

In order to minimize the term
∑N2L

b,c=1,b 6=c |
(
ATA

)
b,c
|2 in Eq. (3.9), one can

consider the term
∑Q

q=1 t̂mi,ni,`i,qt̂mi,ni,k,q ×ψi(b)ψ(k−`i)N2+i(c), from Eq. (3.13) as the

45



one to be minimized. Given that ψi(b)ψ(k−`i)N2+i(c) are fixed quantities dictated by the

sparsifying basis, the problem is reduced to analyzing the term
∑Q

q=1 t̂mi,ni,`i,qt̂mi,ni,k,q.

Notice that the variable k can take values from 0 to L − 1; this means that, when

searching for the minimum of
∑Q

q=1 t̂mi,ni,`i,qt̂mi,ni,k,q, one needs to consider the coded

aperture elements on a neighborhood of length L, over a given row of the coded aperture

ni, independently for each snapshot. Intuitively, this minimization problem can be seen

as separating the coded aperture pixels that are set to one, as much as possible, over

a row of the pattern. A similar constraint also appears when the sensing matrix of

CASSI is analyzed [42, 44].

3.3.4 On-diagonal elements of ATA

For b = c, Eq. (3.13) can be rewritten as the summation of two terms

(
ATA

)
b,b

=
N2L∑
i=1

Q∑
q=1

(
t̂mi,ni,`i,q

)2 ×ψi(b)
2 +

N2L∑
i=1

L−1∑
k=0
k 6=`i

Q∑
q=1

t̂mi,ni,`i,qt̂mi,ni,k,q ×ψi(b)ψ(k−`i)N2+i(b). (3.14)

Notice that the second term in Eq. (3.14) will tend to zero as a consequence of

minimizing t̂mi,ni,`i,qt̂mi,ni,k,q, which was mentioned in the last subsection. Hence, to

reach the condition
(
ATA

)
b,b

= 1, one must find a set of coded aperture patterns

such that
∑N2L

i=1

∑Q
q=1

(
t̂mi,ni,`i,q

)2 × ψi(b)
2 ≈ 1. Let

∑Q
q=1

(
t̂mi,ni,`i,q

)2
be a con-

stant number C for any value of mi, ni, and `i; this leads to rewriting the expression∑N2L
i=1

∑Q
q=1

(
t̂mi,ni,`i,q

)2×ψi(b)
2, as C

∑N2L
i=1 ψi(b)

2. Given that the basis Ψ is usually

chosen to be an orthonormal matrix,
∑N2L

i=1 ψi(b)
2 = 1, and C

∑N2L
i=1 ψi(b)

2 = C. The

analysis above affirma that, if one guarantees that
∑Q

q=1

(
t̂mi,ni,`i,q

)2
= 1, or ||hi||22 = 1,

the term
(
ATA

)
b,b

would be equal to 1. The condition
∑Q

q=1

(
t̂mi,ni,`i,q

)2
= 1 holds,

if t̂mi,ni,`i,q = 1 for q = qo and t̂mi,ni,`i,q = 0 for q 6= qo. In order to set t̂mi,ni,`i,q =

tbmi(1−s)c+`i,ni,q × pmi + tbmi(1−s)c+1+`i,ni,q × (1 − pmi) to 0, the elements of the coded

aperture tbmi(1−s)c+`i,ni,q and tbmi(1−s)c+1+`i,ni,q must both be set to 0. Likewise, to set
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t̂mi,ni,`i,qo to 1, tbmi(1−s)c+`i,ni,qo and tbmi(1−s)c+1+`i,ni,qo must both be set to 1. This

means that two different constraints must be considered to make
(
ATA

)
b,b

equal to 1;

the first is the complementarity condition among the captured snapshots, which can be

expressed as
∑Q

q=1 tm,n,q = 1 ∀ m,n. The second is a clustering condition that makes

two consecutive elements of the coded aperture, tbmi(1−s)c+`i,ni,qo and tbmi(1−s)c+1+`i,ni,qo ,

over the row ni, to be 1.

3.3.5 The cost minimization problem

In order to find the optimal codes to satisfy the previously mentioned conditions,

the following cost function is proposed

topt = min
t

N2L∑
i=1

L−1∑
k=0
k 6=`i

〈
hi,h(k−`i)N2+i

〉2
+ c1

N2L∑
i=1

∣∣||hi||22 − 1
∣∣2


subject to:
∑Q

q=1 tm,n,q = 1 ∀ m,n. (3.15)

By using Eq. (3.12), the last expression can be rewritten as follows

topt = min
t

N2L∑
i=1

L−1∑
k=0
k 6=`i

(
Q∑
q=1

t̂mi,ni,`i,qt̂mi,ni,k,q

)2

+ c1

N2L∑
i=1

∣∣∣∣∣
Q∑
q=1

(
t̂mi,ni,`i,q

)2 − 1

∣∣∣∣∣
2


subject to:
∑Q

q=1 tm,n,q = 1 ∀ m,n. (3.16)

The first term is related to the minimization of the off-diagonal elements, while the

second term is related to the constraint
(
ATA

)
b,b

= 1 ∀ b ∈ [1, . . . , N2L]. The variable

c1 defines the influence of this constraint on the minimization problem, and must be

experimentally tuned to get optimal reconstructions, taking values between 1 to 70.

The complementarity condition is imposed by the constraint
∑Q

q=1 tm,n,q = 1 ∀ m,n.

Notice that Eq. (3.16) represents a relaxed version of the optimization problem given

by Eq. (3.9) that avoids the explicit calculation of the sparsifying basis, since this

requires a high computational effort [50].
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3.3.6 Separating the ON pixels through the y axis

The separation of the coded aperture pixels that are set to one over the different

columns has been proven to strongly influence the quality of the final recovered scene on

different compressive spectral imagers, such as CASSI [42, 44]. Correa et al. [42] proved

that separating the ON pixels over the columns may decrease the coherence of the

sensing matrix, and therefore, enhance the reconstructions. Besides, since the SSCSI

bases its functionality on the location of the coded aperture in an out-of-focus position,

separating the ON pixels prevents the spatial-spectral from overlapping. Therefore, a

new condition must be added to Eq. (3.16), as follows,

topt = min
t

N2L∑
i=1

L−1∑
k=0
k 6=`i

(
Q∑
q=1

t̂mi,ni,`i,qt̂mi,ni,k,q

)2

+c1

N2L∑
i=1

∣∣∣∣∣
Q∑
q=1

(
t̂mi,ni,`i,q

)2 − 1

∣∣∣∣∣
2

+
∑
m,n,q

Ωm,n � t̃q


subject to:

∑Q
q=1 tm,n,q = 1 ∀ m,n, (3.17)

where Ωm,n is 2L−1×2L−1 filter that penalizes the closeness between coded aperture

elements set to one, in all directions, t̃q is a portion of the qth coded aperture with size

2L − 1 × 2L − 1, centered in m,n, and � represents the element-wise multiplication

between Ωm,n and t̃, and the posterior summation of the resultant elements. The

entries of Ω are defined as follows

Ωm,n(a1, a2) =

 0 if a1, a2 = m,n

1√
(a1−m)2+(a2−n)2

otherwise.
(3.18)

Notice that, as a1, a2 are further from m,n, the magnitude of the coefficients of Ωm,n

decreases. The spatial size of Ωm,n and t̃ might be less than 2L−1×2L−1, if m,n are

close to 0 or N − 1. Figure 3.2 shows the structure of Ω and the process to calculate

Ω � t̃q. A similar filtering process, taking into account the frequency response of the
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human eye, was already proposed by Rueda et al. in [52] for Colored-CASSI using a

time-of-flight sensor.

Figure 3.2: Ω filter implemented to penalize the closeness of the ON pixels, on the
optimal coded apertures.

3.4 Algorithm implementation

Algorithm 1 shows the steps used to attain optimal coded aperture patterns,

guided by Eq. (3.17). The initial coded aperture exhibits a complementary structure

(line 1), where again, the term complementary is defined as having just one coded

aperture pixel set to 1 at each spatial position of the ensemble of patterns. Besides,

the ON pixels in each coded aperture are inversely proportional to the number of

captured snapshots. These types of patterns are also referred to as Boolean [32]. The

algorithm starts by calculating the value of the cost function given in Eq. (3.17) (line

2). Then, a random walk over the coded aperture elements is done (line 4). For each

coded aperture pixel position, the algorithm evaluates the effect of setting to 1 the pixel

on a given snapshot, on the cost function (lines 7, 8, 9 and 10). This approach was

already explored for colored CASSI [44]. The function Find(r1, r2) finds the indexes of

i that are affected by tr1,r2. This is done in order to simplify the number of operations

in the calculation of the cost function (line 10). After going over all the snapshots, the

values of q for which the cost function reaches a minimum, are determined; from those

values of q, the algorithm randomly picks one and sets that pixel to 1, while the others

are set to 0 (lines 12 and 13). This last constraint forces the complementary condition
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to hold in any case. The objective function is again calculated (line 15) and the stop

criteria (ε > εo) is evaluated to determine whether the algorithm continues or not. In

this paper, εo is assumed to be 0.1% of the initial value of the cost function.

3.5 Spectral content of coded apertures

The optimal coding structures for CASSI and Colored-CASSI have been shown

in theory and experiments to exhibit a pseudo-random structure known as blue noise

[42, 53, 54, 55]. Ulichney [56] defined a blue noise pattern as one where the white

pixels are distributed as homogeneously as possible through the mask; therefore, the

spectral content of such pattern is entirely composed of high frequency components.

Green noise, which will be used here to characterize the SSCSI optimal patterns, was

first defined by Lau et. al. [57, 58, 59], as a pattern where clusters of minority pixels

are homogeneously distributed over the mask. It is called green noise because its

spectral content shows components on middle frequencies. To characterize the different

patterns, it is possible to use either spatial or spectral statistics. These metrics describe

the distribution of the minority pixels over the pattern. In this dissertation, a spectral

statistic called Axially Averaged Power Spectral Density, (AAPSD), is proposed in

order to marginally characterize the patterns over the rows and the columns of the

coded aperture.

3.5.1 Axially Averaged Power Spectral Density

Let t be a coded aperture array, and DFT be the 2-dimensional Fourier Trans-

form. The power spectral density of that pattern can be defined as follows

Pf =
1

R

R∑
i=1

|DFT (φi)|2

E(φi)
, (3.19)

where R represents the number of subregions in which the coded aperture is divided,

DFT (φi) is the 2D-Fourier Transform of the subregion φi, and E(φi) is the energy of

that subregion, which is on the denominator to obtain a normalized spectrum. Notice

that the dimensions of φi will be equal to N√
R
× N√

R
, and therefore the final dimensions
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Algorithm 1: Implemented algorithm to find the optimal coded aper-
tures for SSCSI.

Input : s,N ,c1

Output: topt
1 t← Boolean(N,Q)

2 Fold =
N2L∑
i=1

L−1∑
k=0
k 6=`i

(∑Q
q=1 t̂mi,ni,`i,qt̂mi,ni,k,q

)2

+ c1

N2L∑
i=1

∣∣∣∑Q
q=1

(
t̂mi,ni,`i,q

)2 − 1
∣∣∣2 +

∑
m,n,q Ωm,n � t̃q while ε > εo do

3 R← 2DRandomWalk(N,N)
4 for r1, r2 ∈ R do

5 t̂ = t
6 for q=1:Q do

7 t̂r1,r2,1:Q = 0

8 t̂r1,r2,q = 1
9 I = Find(r1, r2)

10 F̂ (q) =
∑
i∈I

L−1∑
k=0
k 6=`i

(∑Q
q=1 t̂mi,ni,`i,qt̂mi,ni,k,q

)2

+

c1

∑
i∈I

∣∣∣∑Q
q=1

(
t̂mi,ni,`i,q

)2 − 1
∣∣∣2 + Ωr1,r2 � t̃q

11 end
12 tr1,r2,1:Q = 0
13 tr1,r2,rand(min(F̂ )) = 1

14 end

15 Fnew =
N2L∑
i=1

L−1∑
k=0
k 6=`i

(∑Q
q=1 t̂mi,ni,`i,q t̂mi,ni,k,q

)2

+

c1

N2L∑
i=1

∣∣∣∑Q
q=1

(
t̂mi,ni,`i,q

)2 − 1
∣∣∣2 +

∑
m,n,q Ωm,n � t̃q

16 ε = |Fnew − Fold|
17 Fold = Fnew
18 end
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of Pf will be equal to N√
R
× N√

R
. This Power Spectral Density estimator is called

Bartlett’s Method [60], which relies on dividing the original pattern into subregions

called periodograms. The Axially Averaged Power Spectral Density over the rows is

defined as follows

AAPSDx =

√
R

N

N√
R∑

m=1

Pf (m, :). (3.20)

The final summation is divided by N√
R

, in order to take the average over the rows.

Likewise, the Axially Averaged Power Spectral Density over the columns is defined as

follows:

AAPSDy =

√
R

N

N√
R∑

n=1

Pf (:, n). (3.21)

Figure 3.3 shows the process of calculating the power spectral density Pf for a 16× 16

coded aperture using R = 4 subregions. Figure 3.4 illustrates the calculation of the

Axially Averaged Power Spectral Density over the rows and the columns for a given

32× 32 power spectral density Pf .

3.6 Simulation results

The proposed algorithm was run to find the SSCSI optimal patterns, assuming

a scene of spatial size 128×128, and three independent scenarios, where s = 0.046, s =

0.093, and s = 0.1875; according to Eq. (3.6), the number of recoverable spectral bands

for each scenario is 6, 12 and 24, when β is assumed to be 1. The optimal patterns were

compared against the Boolean and random coded apertures. As previously mentioned,

the Boolean coded aperture patterns hold the condition
∑Q

q=1 tm,n,q = 1 ∀ m,n; at the

same time, the transmittance for each pattern is approximately 1/Q. Unlike optimal

coded apertures, Boolean coded apertures are randomly generated without considering

the structure of the sensing matrix A. The random coded apertures are generated

such that the transmittance for every pattern is equal to 0.5, with no constraint about

complementarity. Two criteria of comparison were implemented; the first one is the

Peak Signal-to-Noise-Ratio (PSNR), defined in Eq. (2.32). The second criterion is the
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Figure 3.3: Illustration of the computation of the power spectral density Pf , for a
16 × 16 pattern, using R = 4 subregions, φ1, φ2, φ3 and φ4. The coded
aperture is first divided into the subregions; then, the normalized Power
Spectral Density is individually calculated for the subregions. Pf is then
defined as the average of the Power Spectral Densities.

Figure 3.4: Illustration of the computation of Axially Averaged Power Spectral Den-
sity over the rows and the columns, for a given 32× 32 Pf .
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Figure 3.5: Top and Middle: PSNR and RMS of the reconstructed scenes as a
function of the number of captured snapshots for a 128 × 128 × 6 scene
and s = 0.046 (left), a 128× 128× 12 scene and s = 0.093 (middle), and
a 128 × 128 × 24 scene and s = 0.1875 (right). Bottom: Original and
reconstructed signatures for pixels T1 (left), T2 (middle) and T3 (right)
specified in Fig. 3.6.

Averaged Spectral Root Mean Squared Error (RMS), defined as the average RMS of

the spectral responses for every single pixel on the scene. As in the previous chapter,

the GPSR algorithm [33] is implemented to iteratively solve Eq. (1.2), by tuning τ

to obtain optimal reconstruction results. Figure 3.5 shows the reconstructed spectral

signatures for different pixels and the PSNR and RMS of the recovered scene as a

function of the captured snapshots, while Figure 3.6 shows the RGB-mapping of the

original and reconstructed scenes using the different pattern structures. As depicted,

the optimized patterns overcome the performance of the random and Boolean coded

apertures.
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Figure 3.6: RGB-mapping of the original and reconstructed datacubes using random,
Boolean and optimized patterns. Top: s = 0.046, two snapshots and
a 128 × 128 × 6 datacube. Middle: s = 0.093, two snapshots and a
128 × 128 × 12 datacube. Bottom: s = 0.1875, four snapshots and a
128× 128× 24 datacube.
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3.6.1 Convergence and complexity of the algorithm

In order to test the convergence of the proposed algorithm, 100 independent

executions were run for two different scenarios; s = 0.093 and eight snapshots, and

s = 0.1875 and eight snapshots. The convergence of the objective function for the

previously mentioned scenarios can be seen in Fig. 3.7. In both scenarios, the objective

function is minimized as the number of iterations increases. In terms of computational

complexity of the proposed algorithm, Eq. (3.17) entails a computational complexity

of O(N2L2), while the calculation of F̂ (q) (line 10 in Algorithm 1) has a computational

complexity of O(2L2), assuming that the set I = Find(r1, r2) has an extension of 2L.

Also, lines 1, 3, 5, 7, 8, 12, 13, 16 and 17 require a simple operation, O(1). The

computational complexity of Algorithm 1 can be seen in Table 3.1.

Figure 3.7: Convergence of the objective function, given by Eq. (3.17), for s = 0.093,
eight snapshots, and a 128 × 128 × 12 recovered datacube (blue lines),
and for s = 0.1875, eight snapshots and a 128 × 128 × 24 recovered
datacube (red lines). The algorithm was run 100 times; the lines represent
each execution. When s = 0.093, 73 out of the 100 executions reach
seven iterations; 27 out of 100 executions reach six iterations. When
s = 0.1875, 18 out of the 100 executions reach eight iterations; 82 out of
100 executions reach seven iterations.
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Table 3.1: Computational complexity of Algorithm 1, in terms of the total number of

iterations IT, number of captured snapshots Q, and size of the datacube

N ×N × L.

Lines Operation Complexity

2 Eq. (3.17) O(N2L2)

4 to 14 for loop over R, for loop over Q O(N2Q2L2)

15 Eq. (3.17) O(N2L2)

1 to 18 Full algorithm O(2N2L2(1 +Q)IT)

3.6.2 Noisy system

In order to test the robustness of the optimal codes against noise, the recon-

structions were run for two different levels of Signal to Noise Ratio (SNR), 30dB and

50dB. Here, the noise is assumed to be Additive White Gaussian (AWGN). The results

can be seen in Fig. 3.8. Notice that, when the system SNR is 30dB, the PSNR of the

reconstructed datacube starts to decrease compared to the noiseless scenario.

Figure 3.8: PSNR of the reconstructed datacube for two levels of SNR, 30dB and

50dB. Left: s = 0.093 and the datacube has dimensions of 128×128×12.

Right: s = 0.1875 and the datacube has dimensions of 128×128×24. In

both cases, the obtained curves are compared to the noiseless scenario.
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3.6.3 Performance for different hyperspectral scenes

In order to test the robustness of the optimal patterns, the reconstruction al-

gorithm was run for two different hyperspectral scenes that belong to the Computer

Vision Laboratory (CAVE) at Columbia University multispectral image database [61].

Figure 3.9 shows the RGB-mapping of the original and reconstructed 128 × 128 × 24

datacubes for 3 captured snapshots using random, Boolean and the optimized patterns;

here, s = 0.1875 in order to recover the 24 spectral bands, and assuming β = 1, in Eq.

(3.6). A comparison of the PSNR and RMS of the recovered scenes as a function

of the number of captured snapshots can be seen in Fig. 3.10; the recovered spectral

signatures for the pixels specified in Fig. 3.9, can be seen in Fig. 3.11.

3.6.4 Performance of the optimal patterns for bigger datacubes

The proposed algorithm was run to recover a 256 × 256 × 24 beads datacube.

This is done to evaluate the performance of the algorithm for bigger spectral scenes.

According to Eq. (3.6), assuming β = 1, to recover 24 spectral bands, s must be equal

to 0.093 if N = 256. Figure 3.12 shows the RGB-mapping of the original and recon-

structed scenes, using random, Boolean, and optimized patterns; here, eight snapshots

were captured. Notice that the reconstruction when using optimized codes shows better

results in PSNR and RMS. The spectral RMS for all the pixels of the reconstructed

scenes is also shown in Fig. 3.12; as it can be seen, the error in the reconstruction is

considerably reduced when using the optimized codes.
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Figure 3.9: RGB-mapping of the 128 × 128 × 24 original and recovered datacubes,
using random, Boolean and the optimized coded aperture patterns, three
snapshots and s = 0.1875. Top: Beads datacube. Bottom: Flowers
datacube.
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Figure 3.10: PSNR and RMS of the recovered 128 × 128 × 24 datacubes, with
s = 0.1875, as a function of the captured snapshots, using random,
Boolean and optimized patterns, for Beads datacube (top) and Flowers
datacube (bottom).

Figure 3.11: Recovered spectral signatures for pixels T4 and T5, specified in Fig. 3.9.
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Figure 3.12: Left: RGB-mapping of the original and reconstructed 256 × 256 × 24

datacubes, using random, Boolean and the optimized codes. Here, s =

0.093 and eight snapshots were captured. Right: Spectral RMS for all

the pixels of the reconstructed scenes.

3.6.5 Optimal codes structure

The structure of the Boolean and optimized patterns for the case of five snap-

shots and s = 0.046 can be seen in Fig. 3.13-top. Likewise, the Boolean and optimal

patterns for 10 snapshots, s = 0.093 and s = 0.1875, can be seen in Fig. 3.13-bottom.

Notice that, for a given row of the optimal patterns, the pixels that are set to one

are widely spread; this minimizes the off-diagonal elements of ATA; at the same time,

some clusters of the pixels that are set to one are present in the optimal patterns;

this is related to the condition of the on-diagonal elements of ATA. In addition, the

clusters become more noticeable as s increases. One explanation for this particular

behavior is that as s increases, the number of elements in H, that are different from

0 or 1, also increases; this forces the algorithm to cluster more elements in order to

reach the condition (ATA)b,b = 1 ∀b ∈ [0, 1]. As s decreases, on the other hand,
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the elements in H that are different from 0 or 1 become negligible. This forces the

algorithm to fully focus on the minimization of the off-diagonals elements of ATA.

The Axially Averaged Power Spectral Density over the rows (AAPSDx) and columns

(AAPSDy) of the optimal coded apertures for the three values of s can be seen in Fig.

3.14. Notice that for AAPSDx (see Fig. 3.14-left), when s = 0.046, all the spectral

content is located on the high frequencies. As s increases, the spectral content can be

found in low to middle frequencies. For AAPSDy (see Fig. 3.14-right), the spectral

content of the optimal codes shows less power in the low frequencies. The spectral

content of a regular Boolean pattern, on the other hand, is homogeneously spread all

over the spectrum.

3.7 Conclusion

In this chapter, an optimization framework for the SSCSI coded aperture pat-

terns is proposed and developed, based on the discrete measurements model previously

proposed in chapter 2. The optimal coded aperture patterns must exhibit the following

properties: first, the ON pixels must be separated as much as possible over the rows of

the pattern. This condition minimizes the values of the off-diagonal elements of ATA,

where A is the sensing matrix of the system. Secondly, some clusters of the ON pixels

over the rows must appear on the final optimal patterns. This condition ensures on-

diagonal elements of ATA are close to 1. Third, the patterns must be complementary

over the captured snapshots, where complementarity was defined as having just one

pixel set to ON at each spatial position of the ensemble of the patterns. The number of

clusters on the final optimal patterns depends on the parameter s having fewer clusters

as s is closer to zero. Using the Axially Averaged Power Spectral Density, a spectral

statistic first proposed here, it was found that the optimal coded apertures exhibit blue

noise characteristics over columns. The spectral content of the optimal patterns over

the rows depends on the parameter s, showing blue noise characteristics when s is close

to zero, and green noise characteristics as s increases. The obtained optimal patterns

were tested against the Boolean complementary and random patterns, showing better
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Figure 3.13: Top-left: Boolean pattern, for 5 snapshots. Top-right: Optimized pat-
tern for 5 snapshots, when s = 0.046. Bottom-left: Boolean pattern,
for 10 snapshots. Bottom-middle: Optimized pattern for 10 snapshots,
when s = 0.093. Bottom-right: Optimized pattern for 10 snapshots,
when s = 0.1875. Note how the ON pixels are separated as much as
possible from each other over the rows in the zoomed version of the
optimal coded aperture; at the same time, several clusters of ON pixels
are present over the rows in the final patterns as s increases.
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Figure 3.14: Axially Averaged Power Spectral Density of the boolean and optimized
codes for s = 0.046, s = 0.093 and s = 0.1875. Here, the patterns were
divided into R = 16 subregions. Left: AAPSD over the rows. Notice
that as s increases, the spectral content of the pattern can be found
in low to middle frequencies. Right: AAPSD over the columns. Here
the spectral content of the optimal patterns shows less power at low
frequencies.

performance than both of them for all the scenarios studied in this chapter (different

hyperspectral scenes, different number of captured snapshots, and different values of

s). The convergence and computational complexity of the proposed algorithm were

analyzed.

Given that this is the first paper to successfully find optimal patterns in SSCSI,

a conference paper in Computational Optics, Sensing and Imaging(Salazar et. al.

[62]), and a journal paper in IEEE transactions on Computational Imaging (Salazar

et. al.[63]), were published (see attached disclaimer for copyright issues). The work

developed in this and the last chapter have been used as the basis for further research

on SSCSI [64].

All the data and software for this chapter are available in [65].
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Chapter 4

COMPRESSIVE X-RAYS COMPTON BACKSCATTERING IMAGING

4.1 Introduction

This research will now focus its efforts in adapting the coded aperture imaging

principles previously defined for spectral imaging, to Compton Backscattering-based

scanners. Compton backscattering imaging (CBI) is a technique that uses ionizing

radiation in order to obtain information about the molecular composition of an object.

It captures the scattered photons after radiation collides with the target; therefore, it

is considered a single-sided technique that allows locating both the detector and target

on the same side of the setup. CBI finds applications in organic material identification

which are commonly encountered on explosives manufacturing, drugs, and contraband

in general. This concept has been successfully applied to, for example, under-vehicle

and airport luggage inspection and screening of buildings, among others [19, 20, 21].

Moreover, since the 9/11 terrorist attacks, CBI scanners have been applied to passenger

screening at airports on a daily basis[66]. CBI can be broadly classified into two groups:

pencil-beam and full-field illumination imaging [22]. The pencil-beam techniques rely

on a highly collimated X-ray source impinging on the body and one or two scintillators

used to capture the scattered photons. Most of the pencil-beam based scanners emulate

the flying spot scheme [67], which is composed of a fan-beam collimator together with

a rotating chopper wheel. In order to capture a full scene, the body under inspection

must move horizontally. The functioning principle of the pencil-beam CBI scanning

can be seen in Fig. 1.2. In full-field illumination techniques, the body is fully bathed by

an X-ray cone-beam, and the pixels are registered parallel-wise. Naturally, recovering

the wanted information is more challenging in this scenario. The captured photons
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are focused on a 2-dimensional sensor using either a coded aperture [24], X-rays optics

(lobster eye) [23], spatially selective filters [68], or Fresnel plates [25].

The performance of a CBI architecture is dependent on different extrinsic and

intrinsic factors. It has been shown that different levels of incident keV photons directly

influence the final contrast of the image [69]. At the same time, the number of scattered

photons turns out to be proportional to the thickness of the target, until it reaches

the so-called saturation thickness, as widely explained by Hosamani et al. in [20].

On the other hand, the type and size of the scintillating material implemented in the

conversion of high energy photons to visible light must be chosen in accordance with the

expected scattered energy and intensity; commercial scanners implemented in security

checkpoints are composed of sodium iodide(NaI) based crystals [66]; other scintillators

in the literature have been designed to enhance the final optical transmittance of the

system[70]. In this chapter, it is proposed a new architecture that allows the realization

of CBI using structured light, under the theory behind compressive sensing [3]; the

architecture is coined compressive X-Rays Compton backscattering imager (CXBI).

CXBI emulates a simultaneous acquisition of different pixels by means of a coded

aperture and a cone-beam X-rays source and separates such information through the

solution of an optimization inverse problem. The functionality of CXBI is tested here

with Montecarlo simulations, using the Geant4 Application for Tomographic Emission

(GATE), then an experimental test-bed is implemented in the laboratory.

The chapter is organized as follows: Section II raises the theoretical background

of the Compton phenomenon; Section III introduces the new inverse problems ap-

proaches; Section IV describes in detail the proposed CXBI including the forward and

discrete measurements model; Section V describes the GATE simulation conditions,

while Section VI shows the results; Section VII makes an analysis of the needed dose

in CXBI; Section VIII tests the reliability of CXBI for human inspection; Section

IX shows the details of the conducted experiments; and finally, Section X closes this

chapter with future steps and conclusions.
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4.2 The Compton phenomenon

Compton scattering occurs when a photon and a charged particle (electron at

rest) collide. This phenomenon is the predominant effect at low energies, together

with the photoelectric effect. Assume a photon moves with velocity vp and energy

Ep = hvp, where h is Plank’s constant; if the photon hits an electron at rest with

energy Eo = moc
2, with mo being the electron mass at rest and c the speed of light,

the photon will be scattered with energy Es given by the following expression [71]:

Es =
Ep

Ep
Eo

(1− cos(θ)) + 1
, (4.1)

where θ is the scattering angle of the photon. The expression in (4.1) is a direct result

of the law of conservation of momentum. According to the literature, a photon is said

to be backscattered if θ > π/2 [69]. Notice that when θ = π, the photon will be

expelled with approximately 70% of the incident energy. The probability of Compton

scattering events can be quantified using the differential scattering cross section, given

by the Klein-Nishina formula [72]:

dσ

dΩ
=
r2
e

2

(
1

1 + α (1− cos(θ))

)2(
a+ cos2(θ)

α2(1− cos(θ))2

1 + α(1− cos(θ)

)
, (4.2)

where a = Ep/Eo, re = 2.818 × 10−15m is the classical electron radius, dσ is the area

involved in the scattering process, and dΩ is an infinitesimally solid angle element,

subtended by the detector at the point of interest in the body. A graphical explanation

of the scattering cross-section can be seen in Fig. 4.1. When collisions do not occur on

the surface, but on a sub-surface level, the incoming as well as the scattered photons

have to travel back and forth through the body, which attenuates its intensity through

the Beer-Lambert law:

I = Ioe
−µx, (4.3)

where I is the intensity after the beam has traveled a distance x on the material, Io

is the incident intensity, and µ is the linear attenuation coefficient coming from the
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Figure 4.1: Left: Cross section involved in the Compton scattering phenomenon.
Right: dσ

dΩ
as a function of θ, for three different incident photon energies.

photoelectric effect and the Compton scattering. The possible attenuation due to pair

production has been omitted, as this phenomenon occurs for high energy photons close

to γ rays, which are out of the scope of this research.

4.3 New inverse problem approaches

In the last two chapters, the iterative algorithm GPSR was implemented due

to its good performance in CSI. However, several new approaches have been proposed,

and, with the advent of deep learning, neural networks start playing a fundamental

role in the reconstructions. One of the key advances in inverse problems was the called

Alternating Direction Method of Multipliers (ADMM) [73], which decouples Eq. (1.2)

into two independent optimization problems as follows:

xk+1 = min
x

1

2
||Hx− y||22 +

ρ

2
||x− zk + uk||22

zk+1 = D(xk+1 + uk, σ2 = λ/ρ),

uk+1 = uk + xk+1 − zk+1, (4.4)

where z and u are intermediate variables coming from the reformulation of the problem

using the Augmented Lagrangian Multipliers and D is a denoising operation; the so-

lution of the first line in the last algorithm can be easily calculated given that this is a
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second order expression with defined global minimum, while the denoiser can be trained

through deep learning techniques. This framework has been successfully adapted to

CSI [74]. Other advances in inverse problems include the unfolding algorithms [75],

deep convolutional autoenconders [76], recurrent neural networks [77] and generative

adversarial networks [78]. In the context of Compton scattering, the concept of inverse

problems has already been applied to recover a three-dimensional electron density map

by means of a mono-energetic source, an array of spectral detectors, and assuming

the signal dependent noise (Poisson) [79, 80]. Given that the forward model is not

easily invertible, iterative methods have been used to find the electron density map.

Moreover, the incompleteness of the data inherently arises from the energy resolution

of the system and the limited angular view. To the best of our knowledge, this work is

the first attempt to treat Compton Backscattering Imaging through inverse problems

and coded illumination.

4.4 Compressive X-rays Compton backscattering imaging

As mentioned in the introduction of this chapter, CBI can be executed using

either pencil-beam scanning or cone-beam illumination. Although the former delivers

high quality results, the need of scanning the scene pixel-wise might represent a draw-

back. This dissertation proposes a novel scanning technique, where a random parallel

acquisition of the scene pixels is done by means of coded illumination or structured

light. A similar approach was already proposed under different contexts, such as the

X-ray diffraction tomography [81, 82]. The proposed architecture can be seen in Fig.

4.2-right (the pencil-beam scanning architecture is shown in Fig. 4.2-left for compar-

ison). A cone-beam illuminates a predefined portion of the coding pattern. After

that, the structured light hits the body under inspection and the photons scattered by

Compton scattering are registered by two scintillating plates. The cone beam origin is

assumed to have a small focal spot, so that the penumbra effect is small [83]. As for

the energy characteristics of the source, this paper tests CXBI under a poly-energetic

X-rays source, given that mono-energetic sources are too costly for real applications.
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Figure 4.2: Left: Flying spot architecture. An X-rays cone-beam source passes
through a fan beam collimator and posteriorly through a chopper wheel
which acts as rotating pencil-beam collimator; this allows the body to
be vertically scanned. In order to fully scan the body, it must trans-
late horizontally. Right: The proposed compressive Compton X-rays
backscattering imaging (CXBI). The structured light arrives to the body
under inspection, conducting a random sampling over the field of view,
while the coded aperture continuously moves. The system can also be
conceived as a static coded aperture with a moving body, which is more
practical.

A well detailed experimental study of CBI under poly-energetic sources is developed in

[70]. After the structured light related to the pattern hits the body and the photons are

captured, the pattern moves one column so the coded aperture in the field of view (red

square) changes, and the captured pixels are overall different. The system can also be

conceived as an static coded aperture with a moving body. This sensing principle was

already implemented in the visible light regime, through the well known single pixel

camera [76, 77, 78, 84].

4.4.1 Discrete model

4.4.1.1 Mono-energetic assumption

Let Bi,j be the photon flux (number of photons per area per time) impinging

on the region or pixel (i, j) in the body under inspection. The number of scattered
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photons by action of the Compton phenomenon can be calculated as follows:

Pin =
(
Bi,jN

2
1 t
)
e−µx

dσT
dΩ

, (4.5)

where N1×N1 is the size of the pixel (i, j), t is the exposure time, x is the penetration

depth of the photons inside the body, e−µx is the attenuation experienced by the photon

flux in accordance to the Beer-Lambert law, and dσT
dΩ

is the total cross-section involved

in the scattering process, which is defined as:

dσT
dΩ

= N2
1dx

dσ

dΩ
PZ, (4.6)

where N1 × N1 × dx are the dimensions of the region where the Compton scattering

events occur, Z is the effective atomic number, P is the number of atoms per unit

volume, while dσ
dΩ

is given by Eq. (4.2). Notice that PZ is an indicator of the electron

density of the material involved in the interaction, a quantity that is intended to be

recovered in Compton Scattering Tomography [85]. As expected, dσT
dΩ

is inherently

material dependent. The total number of scattered photons can be defined as:

Ps =

∫
x

(
Bi,jN

2
1 t
)
e−µxN2

1

dσ

dΩ
PZdx. (4.7)

The variable x must be integrated from zero, where the body initiates, up to a depth

where 95% of the Compton scattering events occur [66]. Once the photons are scattered,

they travel back towards the detector, passing again through the body and following

a path of length `s with linear attenuation coefficient of µs; therefore, the intensity

is attenuated by e−µs`s . The variable ls can be written as a function of the photon

scattered angle θ as `s = x
cos(π−θ) . The number of captured photons by the two plates

can be written as follows:

Fi,j =

∫
ψ

∫ π

ωi,j

∫
x

(
Bi,jN

2
1 t
)
e−µxN2

1

dσ

dΩ
PZe−µs

x
cos(π−θ)dxdθdψ, (4.8)

where ωi,j is the minimum angle of the scattered photons captured by the detectors

which depends on the distance between the body under inspection and the detectors
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Figure 4.3: Graphical description of the discretization model. Left: 3D view of the
CXBI and the scattering region of pixel (5,7). The region is a cube
with dimensions N1 ×N1 × k, where k is the depth up to which 95% of
the single scattering events occur. Middle: Top view of the CXBI; the
photon (multi-color arrow) arrives and it is scattered with angle θ (red
arrow). The minimum scattering angle is ω5,7 (green dashed line) and the
maximum scattered angle is π. Right: Front view of one of the detectors
in CXBI. ψ is the angle between a middle point between the detectors,
P , and a spatial position (x,y) on such detectors.

and on the dimensions of the scintillating plates. The variable ψ accounts for the

different positions of the photons once they hit the detectors (see Fig. 4.3 for a better

understanding of the mentioned variables). A similar analysis for the case of the pencil-

beam scanner was developed by Cao [66].

4.4.1.2 Poly-energetic assumption

To extend Eq. (4.8) to the poly-energetic scenario, assume that the incoming

energy B
Ep
i,j is the photon flux per incident energy (or energy bin) at the region (i, j).

The number of scattered photons captured by the detectors can be written as follows:

Fi,j =
∑
Ep

τ(Ep)

∫
ψ

∫ π

ωi,j

∫
x

(
B
Ep
i,j N

2
1 t
)
e−µxN2

1

dσ

dΩ
PZe−µs

x
cos(π−θ)dxdθdψ, (4.9)
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where τ(Ep) is the estimated contribution of each energy bin, in percentage, to the

final number of captured backscattered photons. That is how, for example, for a

50kV p source filtered with a 1mm Aluminum window, 17% of the scattered photons

belong to the energy region 0 − 10keV , 41.3% to 10 − 20keV , 31% to 30 − 40keV

and 10.7% to the region 40 − 50keV [86]. Cao in [66] developed a similar analysis

that applies for the pencil-beam scanner. Notice that, although not explicit, several

variables of the argument in the last integral depend on Ep, such as the scattering

angle (see Eq. (4.1)), the followed path by the scattered photons ls, and consequently,

its linear attenuation coefficient µs.

4.4.2 Forward model

The CXBI sensing process will now be described by using a matrix-vector nota-

tion. Let T = [t1, t2, ..., tN+Q−1] be N ×N +Q−1 matrix containing the pattern to be

used during the capturing process in CXBI, where tm is the mth column. Here, N ×N

is the size of the projected pattern in every shot, and Q is the number of captured

measurements. The pattern corresponding to the qth snapshot can be isolated as

Cq = T ·Bq, (4.10)

where q ∈ [0, Q− 1] and Bq is defined as follows:

Bq = [0q×N ; IN×N ; 0Q−1−q×N ] , (4.11)

where 0q×N is a matrix full of zeros with dimensions q×N , IN×N is the identity matrix

and 0Q−1−q×N is a matrix full of zeros with dimensions Q − 1 − q × N . The forward

matrix A, with dimensions Q×N2 can be defined as:

A =
[
~C0, ~C1, · · · ~CQ−1

]T
, (4.12)
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where ~Cq is the vector-wise version of Cq. The captured information is therefore given

by the following equation

y = A · ~F, (4.13)

where ~F is the vector-wise version of F given in Eq. (4.9) with length N2, and y is

a column vector of length Q. Note that the formulated discretization model does not

consider Compton multiple scattering processes, Rayleigh phenomenon and unwanted

scattering processes coming from air and other bodies. Therefore, the real measure-

ments are corrupted by noise

y = A · ~F + ε. (4.14)

In this chapter, the source of noise is assumed to be independent from the acquired

signal; this will be properly justified in the simulations. A graphical description of the

ensemble of the matrix A can be seen in Fig. 4.4-top. An example of the sensing matrix

for 10 captured snapshots and a 16× 16 scene can be seen in Fig. 4.4-bottom. In this

case, A has dimensions of 10× 256. Notice in the zoomed portion how patterns relate

to each other by a movement that represents the physical translation of the mask, or

equivalently, the body.

4.5 GATE experiments

The proposed CXBI was mounted and tested using Geant4 Application for To-

mographic Emissions (GATE), which is a user-friendly software that allows simulation

of high energy physics experiments with conditions close to real life.

4.5.1 X-rays source

The Poly-energetic source was simulated using the Matlab tool SPEKTR [87].

The X-ray source was powered by a 120kV source and it was inherently filtrated by a

1.5mm aluminum window to be in accordance with standard of commercial scanners

[66, 88]. The source beam expansion is 17.5 degrees and it is located at position
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Figure 4.4: Top: CXBI forward model for two captured snapshots. Each row in
A represents the row-wise pattern for a captured snapshot. Bottom:
Sensing matrix for 10 captured snapshots and a 16 × 16 scene. The
zoomed portion allows to see the movement of the rows patterns which
is related to the physical translation of the mask.

(0,0,-15) cm. The activity of the source is set to 6.4× 108Bq, where 1Bq (Becquerel)

is defined as the generation of one photon per second. By multiplying 6.4 × 108 by

1.6 × 10−19 (charge of electron) and divide it by 0.02 (percentage of electrons in an

electron beam that generate X-rays [89, 90]), one obtains that the equivalent current

is 5.12nA.

4.5.2 Coded aperture

The coded aperture is conceived as a 32 × 32 random mask, with pitch size of

2mm× 2mm and depth of 2mm. The material of the coded aperture is Tungsten (W)

because this element possesses a high atomic number and is suitable to project the

pattern. The coded aperture is surrounded by a shielding wall (collimator) in order to

avoid unwanted photons from the source colliding with the target. The coded aperture
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is positioned at the origin (0,0,0).

4.5.3 Detectors

Two detectors were placed between the target and the coded aperture in order

to capture the backscattered photons after they collide on the body under inspection.

The dimensions of the detectors are 30cm× 50cm× 5cm and the scintillating material

is sodium iodide (NaI). The area was chosen so that the setup can be replicated in

the laboratory. The thickness was chosen in order to have a high conversion ratio [70].

The detectors were located at (25,0,20.5)cm and (-25,0,20.5)cm. This location was set

so that the plates are as close as possible to the target without being directly affected

by the radiation of the source. In GATE, the output parameters in the simulations are

known as singles. One single represents the aggregation of photon hits occurring at

the detector layer. This aggregation emulates the integration in electronic hardware.

For more details regarding the hits adding policies and more, please refer to GATE

documentation [91].

4.5.4 Target

The body under inspection is placed such that its front face is located at

(0,0,50)cm. The 2mm × 2mm pixel of the mask is seen as a 0.867cm × 0.867cm

square at the body. This means that the spatial size of the recovered scene is limited

to 27.7cm× 27.7cm, under proper conditions.

4.5.5 Capturing and reconstruction process

The capturing process is done snapshot by snapshot, and each snapshot takes

15.625ms. The coded aperture translates with a uniform speed of 128mm/s, such that

each 15.625ms a new column enters and other exits the field of view. The number of

singles per snapshot is extracted using ROOT and C++ to then concatenate the mea-

surements vector y. Five hundred and twelve shots were captured, which corresponds

to 50% of the total number of pixels. There is no need to add artificial noise to y given

that GATE emulates real experimental conditions. Only the photons arriving at the
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detector with an energy bigger than 10keV are taken into account when assembling y.

The matrix A is constructed according to the patterns in the snapshots, as depicted

in Fig. 4.4. Finally the reconstruction algorithm is run to find F.

4.5.6 Air and surrounding scattering reduction

Given that the photons interact with air and other bodies in the surroundings,

unwanted scattering effects add noise to the captured data. In order to reduce its

effects on the recovered image, the capturing process is run without target, such that

the resultant measurements are subtracted from the ones with body.

4.5.7 Ground-truth capturing process

CXBI is a new architecture first proposed here; therefore, there is not available

image database that fits the current needs of this research; hence the ground-truth

images must be self-captured using GATE. The ground-truth was captured by moving a

pencil-beam source pixel by pixel over the scene and then registering the backscattered

photons. The pencil-beam was emulated by reducing the beam expansion of the same

X-ray source to 0.4 degrees and it was located at (x, y, 25)cm, where x, y represents the

spatial location of a given pixel over the target. The activity of the source was reduced

to 5000 photons per second. The number 5000 was estimated as the mean number of

particles that pass through a 2mm× 2mm window during 15.625ms when the activity

is set to 6.4× 108Bq.

4.6 Simulation results

Three different targets were implemented in the simulations. The first target

was composed of four cubes of size 7cm × 7cm × 1cm, equidistantly located over the

origin. Two of them are composed of caffeine (C8H10N4O2, density 1.23g/cm3), and

the remaining ones are composed of HMX-Octogen (C8H8N8O8, density 1.91g/cm3);

HMX-Octogen is mainly used for plastic explosives [69]. The second target is composed

of the letters U and D, both made of Aluminum (Z=13, density 2.7g/cm3). The last

target was a human hand with a gold ring (Z=79, density 19.3g/cm3) located on the
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center finger. The density and composition of the hand is assumed to be close to that of

the water. Figures 4.5, 4.6, and 4.7 show the ground-truth image, and the reconstructed

images for code transmittances of 1%, 10%, and 50% per snapshot respectively; the

code transmittance is defined as the ratio between the non-blocking pixels and the

total number of pixels in the mask; in each figure, compression ratios of 12.5% and

25% are used, where the compression ratio is defined as the ratio between the number

of captured measurements (length of y) and the number of pixels on the scene (N2).

The chosen reconstruction algorithm was ADMM (Eq. (4.4)) with BM3D [92] and

FFDNET (pre-trained) [93] in the denoising stage with variables initialized at zero.

In order to decrease the correlation between adjacent masks, the patterns were chosen

equidistantly over the originally-captured 512 shots. That is, when using a length of

12.5%, patterns were chosen every other 4 (50/12.5). The standard deviation of the

noise in BM3D and FFDNET is chosen such that the best reconstruction is reached

(noise level is unknown). Two criteria of comparison with the ground-truth are used,

the structural similarity index (SSIM) and the Peak Signal-to-noise ratio (PSNR),

defined in Eq. (2.32). The obtained SSIM and PSNR for the different scenarios are

consigned in Fig. 4.5 (bottom-right and top-right respectively).

4.6.1 Increasing the resolution

Two main factors alter the resolution of the recovered images using CXBI. The

first is the radiation of the X-ray source; a considerable decrease in the source activity

makes the percentage of scattered photons too low to be distinguishable. Figure 4.8

shows the reconstructed UD target using 1.28nA, 2.56nA, and 5.12nA, with a coded

transmittance of 10% and a compression ratio of 12.5% and 25%. Notice that when

the radiation is not enough, details in the reconstruction are missed; this is reflected in

the SSIM and PSNR. The other factor that affects the final resolution is the pixel pitch

size of the coded aperture; a reduction of the mask pitch size allows for the recovery of

a scene with finer spatial details, as long as the radiation per pixel remains the same.

Figure 4.9 shows the reconstruction of the UD target when decreasing the pixel pitch
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Figure 4.5: Ground-truth and reconstructed 32× 32 images using 12.5% and 25% as
compression ratio, and a code transmittance of 1% per snapshot. The
ADMM was implemented using BM3D and FFDNET in the denoising
stage. The SSIM and PSNR for every scenario can be observed in the
bottom-right and top-right of the figures respectively.

Figure 4.6: Ground-truth and reconstructed 32× 32 images using 12.5% and 25% as
compression ratio, and a code transmittance of 10% per snapshot. The
ADMM was implemented using BM3D and FFDNET in the denoising
stage. The SSIM and PSNR for every scenario can be observed in the
bottom-right and top-right of the figures respectively.
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Figure 4.7: Ground-truth and reconstructed 32× 32 images using 12.5% and 25% as
compression ratio, and a code transmittance of 50% per snapshot. The
ADMM was implemented using BM3D and FFDNET in the denoising
stage. The SSIM and PSNR for every scenario can be observed in the
bottom-right and top-right of the figures respectively.

size to 1mm, using a current of 5.12nA, and the same images using a pixel pitch size

of 2mm and a current of 5.12nA; as depicted, finer details can be seen when using a

smaller pitch size; however, due to the fact that the same radiation distributes over a

bigger quantity of pixels, the final obtained contrast abruptly decreases.

4.6.2 Noise Analysis

In CBI, the capturing process is usually assumed to be corrupted by signal

dependent Poisson noise that models the inter-arrival time among photons. This is

true when the photon arriving at the sensor in a given time is less than 100 [94]. The

nature of the proposed CXBI, where there exists a parallel acquisition of pixels, allows

one to safely assume that the level of Poisson noise is negligible. To test that, the mean

number of photons arriving at the detectors is measured and consigned in table 4.1 for

the simulation results in Figs. 4.5, 4.6, and 4.7. Notice that the number of photons

arriving at the detector per captured snapshot is sufficient to safely neglect Poisson

noise, even for the smallest transmittance per snapshot.
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Figure 4.8: Ground-truth and reconstructed 32× 32 images using 12.5% and 25% as

compression ratio, for three different levels of source radiation: 1.28nA,

2.56nA, and 5.12nA. The two denoisers (BM3D and FFDNET) were

implemented in the reconstructions. The code transmittance is fixed to

10%.

Figure 4.9: Ground-truth and reconstructed 64 × 64 images using 12.5% as com-

pression ratio (left and middle) and its equivalent reconstructed 32× 32

images, using an activity of 5.12nA. Notice that, although fine details

might be recovered when decreasing the coded aperture pitch size, due

to the fact that the same radiation distributes over a bigger quantity of

pixels, the final obtained contrast abruptly decreases.
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Table 4.1: Mean number of photons arriving at the detectors for one single measure-

ment for the three different targets in Figs. 4.5, 4.6, and 4.7.

Mean number of photons arriving at the detectors

Transmittance per shot 1% 10% 50%

UD letters 1.3× 103 3.2× 103 1.27× 104

Squares 1.4× 103 4.5× 103 1.9× 104

Human hand 1.9× 103 8.7× 103 4× 104

4.7 Dose analysis

One of the key advantages of CBI is the level of radiation dose impinging on

the body under inspection. A short time acquisition makes the radiation exposure

negligible [68]. For example, the ZBV (Z Back-scanner Van) [21], which is a mobile

system that scans vehicles using a pencil-beam collimated mono-energetic source of

225keV, requires a radiation dose of 0.07 µSv (Sv → Siever) per inspection [68]. The

absorbed radiation for a given pixel (i, j) is defined as follows:

dose(Ep) =
∑
Ep

EpB
Ep
i,j N

2
1 tµen,m

N2
1

, (4.15)

where EpB
Ep
i,j N

2
1 t is the total impinging energy in Joules into the pixel (i, j), and µen,m is

the mass energy absorption coefficient given in cm2/kg. The final units of the absorbed

radiation are Grays(Gy) (Gy = J
kg

). Table 4.2 shows the estimated absorbed dose per

pixel in the body in one CXBI shot, in a muscle-skeleton phantom. The coded aperture

pitch size varies from 0.5mm to 4mm, while the activity of the source remains constant

at 5.12nA. The curve representing µen,m for a muscle skeleton phantom can be seen in

Fig. 4.10-left [95]. The number of photons per pixel in the body, and the area of such

pixel are also consigned in Table 4.2.
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Table 4.2: Absorbed dose per pixel in one snapshot, number of photons arriving at

a pixel in one snapshot, and area of the pixel, for different coded aper-

ture pitch sizes, and a source activity of 5.12nA. The mass absorption

coefficient values can be seen in Fig. 4.10-left

Pixel pitch size (mm) Absorbed dose (nGy) Number of photons Area (cm2)

0.5 30.9 401 0.05

1 10.9 1480 0.19

2 7.1 5286 0.75

4 4.4 23187 3

Figure 4.10-right shows the original and reconstructed human hand, using three

different levels of absorbed dose, 0.035 × 10−4Gy, 0.34 × 10−4Gy, and 1.70 × 10−4Gy

(top of each figure), and its respective SSIM (bottom-left), and PSNR (bottom-right);

the compression ratio remains fixed at 12.5%, and the dose is controlled with the

transmittance per captured snapshot. Notice that, in all cases, the absorbed dose is

less than the one needed to capture the ground truth. The main reason behind this is

the fact that a highly collimated pencil-beam is used to run the pixel-by-pixel scanning

(see section 4.5.7).

4.8 CXBI for human inspection

The proposed architecture can potentially be implemented to improve the speed

of scanning in critical checkpoints such as airports and homeland security borders. In

order to prove that, a human male of 5 feet tall with a suspected gun on him is

scanned using the conventional pencil-beam with activity of 3000Bq, to then synthet-

ically generate the CXBI measurements vector. The scanner dimensions are modified

to 30cm× 176cm× 5cm. To test the CXBI in a noiser environment, artificial Gaussian

noise with variance of σ2 = 10000 is added. The body composition and density are

assumed to be close to that of the water (ρ = 1g/cm3, 11.2% H, 88.8% O); as for the
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Figure 4.10: Left: Mass absorption coefficient µen,m in cm2/kg as a function of incom-
ing photons energies in MeV . Right: Ground-truth and reconstructed
scenes for different levels of absorbed dose (top of each figure). The
compression ratio remains fixed at 12.5%, and the dose is controlled
with the transmittance per captured snapshot. The SSIM and PSNR
for each scenario can be seen in the bottom left and right respectively.
The BM3D is used in the denoising stage.

gun, the material is assumed to be red brass, a common alloy implemented in firearm

manufacturing (ρ = 8.44g/cm3, 88% Cu, 10% Sn, 2% Zn). Figure 4.11-top shows the

SSIM and the PSNR curves, for different code transmittances per shot, 0.1%, 1%, and

10%, as a function of the compression ratio. Notice that, even for a 0.1% of code

transmittance, the algorithm shows good performance when the compression ratio is

sufficient enough. Figure 4.11-bottom shows the SSIM and PSNR for 3 different com-

pression ratios, 3.125%, 6.25% and 12.5%, as a function of the code transmittance per

shot. It is clearly seen that, after a certain point, increasing the transmittance does

not necessarily mean a better reconstruction in terms of SSIM and PSNR.
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Figure 4.11: Top: SSIM and PSNR for different code transmittances per shot as a

function of the compression ratio. From left to right: 0.1%, 1%, and

10% transmittance. Bottom: SSIM and PSNR for different compres-

sion ratios as a function of the code transmittance. From left to right:

3.125%, 6.25%, and 12.5% compression ratio. The BM3D was imple-

mented as denoiser.

Results for 3 different coded transmittances, 1%, 2.5% and 5%, and a compres-

sion ratio of 12.5% can be seen in Fig. 4.12. As it can be seen, the firearm located

in the body can be easily identified by a simple visual inspection; as stated in [66], in

order to quantify the detectability of the suspected gun, a contrast estimation must be

done; the contrast against the background is defined as follows:

CTR =

∣∣∣∣Nstr −Nbkg

Nbkg

∣∣∣∣ , (4.16)

where Nstr and Nbkg are the mean values of the pixels on the target area and back-

ground, respectively. Fig. 4.12 shows a 22× 22 pixel zoom over the image in the area
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Figure 4.12: Left: Contrast against the background CTR of the firearm as a function
of the transmittance per snapshot for a fixed compression ratio of 12.5%.
Top-right: Ground-truth and reconstructed scenes for three different
transmittances per snapshot, with a fixed compression ratio of 12.5%.
Bottom-right: Zooming portion of the fire-arm and its CTR (bottom-
right). The BM3D was implemented as denoiser.

where the firearm is placed, as well as the CTR for each reconstruction (bottom-right).

The background is assumed to be the human silhouette. The CTR as a function of

the code transmittance per snapshot can also be seen in Fig. 4.12. Notice how CTR

reaches a maximum when the transmittance is 10%.

4.9 Experimental demonstration

The CXBI was mounted in the Computational X-rays Imaging Laboratory at the

University of Delaware, using off-the-shell hardware components. Figure 4.13 shows

the test-bed implementation. A Thermo-fisher Micro CT X-ray source (PXS10) is

powered at 130kV, with a current of 110µA. Then, a lead collimator with a 1.6cm ×

1.6cm window is used in order to avoid unwanted scattering in the surroundings. The

collimated radiation hits a tungsten-based mask, with pixel pitch size of 0.5mm ×

0.5mm, and 50% transmittance, and then the coded radiation travels towards the

water target. Finally, an X-ray detector (CareView 560-RF-DE) is used to capture the

backscattered radiation. To assemble the sensing matrix A, the target is first removed,
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and the detector is located in the target place. Then, as the coded aperture moves

(using an automatized translational stage with speed of 0.8mm/s), each pattern that

will be used in the reconstruction is registered.

After all the patterns are registered (384 in total), the target is placed in its

original spot, and the detector moves backwards. Then, as the coded aperture moves,

the backscattered radiation for each of its patterns is captured. After that, the target

is removed, and the capturing process is repeated. This last step removes unwanted

radiation in the measurements (see section 4.5.6)).

To assemble the sensing matrix, the coded aperture patterns need to be bina-

rized. A grouping of 7×7 pixels is done, such that a coded aperture pitch size occupies

a region of 7 × 7 pixels at the detector when running the calibration process. After

that, a mean value that represents a single 7 × 7 region is taken; then, if that value

surpasses a threshold, the pixel is set to 1, and if not, to 0. The threshold is set to be

the mean value of all the grouped 7 × 7 regions. Figure 4.14 shows the original and

binarized coded aperture for a given snapshot.

On the other side, each of the elements of the measurements vector y is defined

by adding up all the pixel values of the detector measurements; this is because the

CareView 560-RF-DE is a 2-dimensional detector; however, CXBI is done through

a single pixel scintillator plate. Posteriorly, the measurements with no target are

subtracted from the measurements with target, as it was done in the simulations.

Then, the reconstruction algorithm is run. In order to avoid y having large values (the

quantization bits of the sensor are 16), this vector is divided by 1× 103 (see appendix

D for more details). Results for the water target can be seen in Fig. 4.15-right; a

projection of the target when the detector is located in the front part, is also shown as

reference.
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Figure 4.13: CXBI test-bed implementation. Five different hardware components

can be observed. 1: Micro CT X-rays source. 2- Lead Collimator with

a 1.6cm× 1.6cm window. 3- Tungsten-based coded aperture with pitch

size of 0.5mm×0.5mm. 4- Water cube target. 5- Dual energy detector.

Figure 4.14: Left: Original captured pattern for a given snapshot. Middle: grouping

of 7× 7 pixels in the detector. Right: Binarized coded aperture used to

assemble the sensing matrix.

4.10 Conclusions and ideas to further explore

This paper proposes the Compressive Compton X-rays Backscattering Imager

(CXBI) as an alternative to the state-of-the-art scanning techniques. A discrete mea-

surements model in accordance with a relativistic physics framework was proposed; this

model assumes that the captured photons coming from the Compton effect are singly
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Figure 4.15: Left: forward projection of the target; the deep-gray area represents the
target. Right: reconstructed scene of the water target using the CXBI
experimental test-bed implementation.

scattered. A forward measurements model, based on the single pixel imaging principle,

was developed; this model considers the movement of the coded aperture patterns, or

equivalently the movement of the body while the coded aperture remains fixed. A func-

tional CXBI experiment in GATE was programmed and tested for different conditions

and bodies (see Fig. 4.5); a method to create the ground-truth images was also pro-

posed and implemented. The viability of CXBI for human screening and the expected

dose per pixel was analyzed for several scenarios, obtaining a good contrast estimation

of the suspected body against the human silhouette. Finally, preliminary experimental

results using off-the-shell hardware components are shown. Future work should focus

on improving the experiments and reducing the needed dose to get accurate results.

Given the novelty of this work, a conference paper in SPIE-Defense and Com-

mercial Sensing will be published in April 2022, and a journal paper in Optics express

was submitted for publication and it is now under revision. All the data and software

for this chapter are available in [96].

As future work, we propose to explore the CXBI with a two-dimensional de-

tector. Given that the scintillator plates do not offer spatial information of the scene,

this is a suboptimal approach that can be improved as depicted in Fig. 4.16. Also, we

propose to extend the CXBI to estimate the depth; given that the cross-sectional area

involved in the scattering process depends on the relative position of the beam with
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respect to the detector, this can be used as a parameter to estimate the depth from

which singly scattered photons come, as depicted in Fig. 4.17 (see Dinca et al. [68]

and Asad et al. [97]).

Figure 4.16: Proposed CXBI implementation using two-dimensional detectors.

Figure 4.17: Use of Compton Backscattered photons to determine the depth (al-
ready studied in the literature). We propose to extend CXBI for depth
estimation based on this principle.
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Appendix A

CALCULATION OF THE W PARAMETERS IMPLEMENTED IN THE
SSCSI DISCRETE MEASUREMENTS MODEL

As mentioned in chapter 2 , Wm,m′ indicates the fraction of the coded aperture

tm′,n′ impinging on the sensor element (m,n). A graphical description of Wm,m′ can be

seen in Fig. A.1. As depicted, three cases can be distinguished:

re
ct

𝑥
1
−
𝑠

+
𝑠𝛼

𝜆
𝑜

Δ
𝑐

−
𝑚

𝑙′

re
ct

𝑥
1
−
𝑠

+
𝑠𝛼

𝜆
𝑜

Δ
𝑐

−
𝑚

𝑟′

Figure A.1: Graphical explanation to calculate W parameters implemented in Eq.
2.11.
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Gray Area

When located at the gray area, m′ = m′l, and Wm,m′l
can be calculated as

Wm,m′l
=

(m′l+1)∆c−sαλo
1−s − (m)∆d

∆c/(1− s)
. (A.1)

The term ∆c/(1 − s) is used as a normalization parameter that allows one to obtain

the percentage of tm′l,n′ measured by the sensor element (m,n).

Yellow Area

When located at the yellow area, m′ = m′r , and Wm,m′r can be calculated as

Wm,m′r =
(m+ 1)∆d − m′r∆c−sαλo

1−s

∆c/(1− s)
. (A.2)

Green Area

When located at the green area, m′l < m′ < m′r, and Wm,m′ can be calculated

as

Wm,m′ =
∆c/(1− s)
∆c/(1− s)

= 1 (A.3)

The fact Wm,m′ = 1 indicates that tm′,n′ is fully impinging on sensor element (m,n).

Equation (2.12) contains a general expression for Wm,m′ considering all the mentioned

cases. An example of how to calculate Wm,m′ can be done based on Fig. 2.6 right. In

that figure, W0,2 =
∆d− 2∆c

(1−s)
∆c/(1−s) , W1,2 =

3∆c
(1−s)−∆d

∆c/(1−s) and W0,1 = 1.
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Appendix B

CALCULATION OF THE SYNTHETIC CODED APERTURES
IMPLEMENTED IN THE SSCSI DISCRETE MEASUREMENTS

MODEL

The effective coded aperture t̃m,n′ in Eq. (2.13) is given by the expression

t̃m,n′ = tm′−1,n′ × pm + tm′,n′ × (1 − pm), where n′ is given by Eq. (2.9), m′ =⌊
(m)∆d(1−s)+sαλo

∆c

⌋
+ 1 and the parameter pm indicates the percentage of the (m,n)th

sensor element occupied by the (m′ − 1, n′)th coded aperture element. Figure B.1

contains a graphical explanation to calculate pm. Notice that, according to this figure,

m∆d ≤ m′∆c−sαλo
1−s ≤ (m+1)∆d, or equivalently m′ =

⌊
(m)∆d(1−s)+sαλo

∆c

⌋
+1 (considering

that m′ is an integer index).

𝜆
𝑜

𝜆
𝑜

𝑝𝑚 1 − 𝑝𝑚

Figure B.1: Graphical explanation to calculate the variable pm in Eq. 2.13.
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The portion of the (m,n)th sensor element occupied by tm′−1,n′ (gray area in

Fig. B.1) can be calculated as

pm =

m′∆c−sαλo
(1−s) − (m)∆d

∆d

, (B.1)

where the sensor pitch size ∆d appears in the denominator for normalization purposes.

If m′∆c−sαλo
1−s ≥ (m+1)∆d, tm′−1,n′ fully occupies the (m,n)th sensor element and there-

fore pm = 1. A general expression to calculate pm, including the two cases mentioned

can be seen in Eq. (2.14).
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Appendix C

APPENDIX A: CALCULATION OF SUB-INDEXES IMPLEMENTED
IN EQ. (3.13)

Let j =
(
k −

⌊
i−1
N2

⌋)
N2 + i, mi =

⌊
i−1
N

⌋
−
⌊
i−1
N2

⌋
N , ni = mod(i − 1, N and

`i =
⌊
i−1
N2

⌋
+ 1. In order to calculate an expression for mj, nj and `j, the expression

for j must be directly replaced into the expressions for mi, ni and ki, as follows:

mj =

⌊(
k −

⌊
i−1
N2

⌋)
N2 + i− 1

N

⌋
−

⌊(
k −

⌊
i−1
N2

⌋)
N2 + i− 1

N2

⌋
N

nj = mod

((
k −

⌊
i− 1

N2

⌋)
N2 + i− 1, N

)

`j =

⌊(
k −

⌊
i−1
N2

⌋)
N2 + i− 1

N2

⌋
. (C.1)

The last expression can be rewritten as follows

mj =

(
k −

⌊
i− 1

N2

⌋)
N +

⌊
i− 1

N

⌋
−
(
k −

⌊
i− 1

N2

⌋)
N −

⌊
i− 1

N2

⌋
N

nj = mod (i− 1, N)

`j = k −
⌊
i− 1

N2

⌋
+

⌊
i− 1

N2

⌋
. (C.2)

Therefore, mj = mi, nj = ni and `j = k. Notice that, if one needs to evaluate the

inner product of 〈hi,hj〉, one needs to take into account the coded aperture elements

over a given row of the pattern ni, on a neighborhood of length L.
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Appendix D

EXPERIMENTAL DATA FOR CXBI

This appendix shows the experimental data captured in the laboratory to prove

the functionality of the CXBI. All the available data can be found in [96]. Figure

D.1-left shows the first four captured patterns using the two-dimensional detector in

a forward position, while the binarized patterns after the thresholding can be seen in

Fig. D.1-right.

Figure D.1: Left: First 4 patterns captured in the CXBI calibration process. Right:

Binary version of the patterns.

The measurements vector y with target, no target, and the resultant vector

after the subtraction can be seen in Fig. D.2.
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Figure D.2: Left: Measurements vector y with no target. Middle: Measurements
vector y with target. Right: Subtraction of vectors to reduce the air and
surroundings scattering. This vector is divided by 1×103 for convergence
purposes of the reconstruction algorithm.
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2019 IEEE. Reprinted with permission of authors, Edgar Salazar, Alejandro
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2020 IEEE. Reprinted with permission of authors, Edgar Salazar, and Gonzalo
Arce. Some of the results were also published in Computational, Optics, Sensing
and Imaging (COSI), c© Optica 2019.

• Part of chapter 4 was published in SPIE-Defense and Commercial Sensing April-
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these papers for a fee or for commercial purposes, or modifications of the content
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for commercial purposes, and modification of the contents of the publication are pro-

hibited. For further information regarding SPIE copyright and licensing information

please refer to https://spie.org/publications/contact-spie-publications.

Some of the objects used in chapter 2 and 3 were not endorsed by the trade-

mark owners and they are used here to illustrate the quality of SSCSI reconstruc-
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