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Analysis of drop spreading and sliding on solid substrates is critical for many industrial applications, such as microflu-
idic devices, cooling towers, and fuel cells. A new three-dimensional model is proposed for droplet dynamics. Its
numerical solution is obtained by the particle finite element method, based on an updated Lagrangian framework to
accurately track the deformation of the droplet. The model hinges on boundary conditions at the solid-liquid interface
to account for viscous dissipation and retention forces. These conditions are essential to obtain mesh-independent
solutions and a realistic spatio-temporal evolution of the droplet deformation. Several numerical simulations are
performed to assess the performance of the model for spreading and sliding drops, and results are compared to experi-
mental data found in the literature. Good agreement is obtained with the available data. Simulations performed in two
dimensions show striking discrepancies with the experimental data, thus demonstrating the need for three-dimensional
simulations.
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I. INTRODUCTION

There are numerous computational studies in the literature
for modeling droplet dynamics1–4. The number of publica-
tions continues to increase every year due to the relevance
of this field in countless industrial applications5–7, e.g., water
transport in fuel cell porous media8–11 and gas channels12,13,
air-water heat exchange in cooling towers14,15, blood drop dy-
namics within biomedical devices16,17, and self-cleaning ap-
plications, such as on solar panels18,19.

The driving forces in the above-mentioned applications
are capillary effects, gravity, and, in some of the applica-
tions, the drag force exerted by an external airflow. From a
modeling perspective, numerical models for droplet dynam-
ics are confronted with several challenges: air-water interface
tracking20,21, characterization of the interfacial solid-liquid
forces22,23, regularization of the contact line singularity24–26,
mesh-independence of the solution24,25,27,28, and time step re-
ductions due to the propagation of capillary waves2,20.

Most drop dynamics models found in the literature are
based on simplifying assumptions based on quasi-static or
axisymmetric conditions29–31. In the majority of real-life ap-
plications, however, drops experience large asymmetric de-
formations under the effect of gravity and/or external shear
flow20,32,33. Such simplifications are not acceptable for such
physical conditions as i) liquid drop injection, ii) liquid drop
sliding, or iii) two-phase flow, which are of interest in this
work.

Many models found in the literature have been proposed
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for the regularization of the contact line singularity. Mod-
els based on the lubrication theory have low computational
cost34, but are limited to small contact angles. Other numer-
ical models have been presented to include hydrophobic ef-
fects, however the contact angle condition is based on a static
contact angle value35–37, which is physically unacceptable in
most dynamic conditions. This can be addressed by models
which include a dynamic contact angle condition2,12, along
with a slip boundary condition imposed at the moving con-
tact line. This leads to non-physical results due to the absence
of energy dissipation at the contact line. This issue was re-
solved by several models that include a dissipative force term
at the solid-liquid interface25,38–40, and still produce mesh-
independent solutions41. A novel formulation based on a
moving mesh is proposed in ref.41, with the advantage of ac-
curate tracking of the evolution of the liquid domain bound-
ary. However, the model is limited to two-dimensional anal-
ysis. A model for contact line dynamics using a combination
of hydrodynamics and molecular kinetic theory in a three-
dimensional enriched finite element/level set framework has
been recently proposed by Hashemi et al.11,42. More details
on the modeling challenges of wetting phenomena can be
found in43.

The sliding of droplets on solid substrates due to the ac-
tion of gravity or external gas flow has also been consid-
ered in the past. Some analytical models have been pro-
posed44,45, however they rely on simplifying assumptions.
For instance, the model of ElSherbini and Jacobi44 does
not consider hydrophobic surfaces with advancing contact
angles larger than 115◦. Several numerical models have
been developed to predict contact line pinning and drop
motion employing the level set (LS) method46, the volume
of fluid-continuous surface force (VOF-CSF) approach47,
or the Arbitrary Lagrangian–Eulerian (ALE) formulation48.
However, all the above-mentioned models are limited to
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two-dimensional analysis, thus ignoring out-of-plane forces.
Moreover, these models lack a thorough experimental valida-
tion.

An alternative approach based on the particle finite element
method (PFEM) has been recently developed by the authors,
thus far limited to two dimensions in Cartesian coordinates26.
Two-dimensional droplet models cannot adequately produce
axisymmetric drop in Cartesian coordinates, and replicate the
full shape of sliding drops. Therefore, in order to success-
fully predict their temporal evolution, geometric characteris-
tics, such the mean curvature, the contact line perimeter, and
the solid-liquid interfacial area, had to be normalized in our
previously proposed 2D model26,41. This article aims at ex-
tending our 2D drop dynamics model to 3D in order to rem-
edy the issues discussed above. In addition to predicting the
actual geometric characteristics of the drop, the model should
also estimate the temporal evolution of both its spreading rate
and its dynamic contact angle. Likewise, the model should
be capable of providing the steady-state velocity of a sliding
drop.

The main advantage of PFEM is its inherent ability to ac-
curately track the air-water interface, without experiencing
numerical diffusion and the need of interface reconstruction
methods. Furthermore, the numerical model is fully implicit
in space and time, thus allowing for the use of large time
steps. These two advantages are critical for simulations of
wetting phenomena2.

The proposed 3D PFEM-based model extends our two pre-
viously published studies26,41 by developing an algorithm: a)
to accurately track the contact line, b) to calculate the contact
angle and its the normal/tangential vectors, which are neces-
sary to impose the boundary conditions, and c) to create or
delete nodes at the contact line and the liquid-solid interface
to avoid mesh deterioration. Experimental data in the litera-
ture is leveraged to validate the model and assess the discrep-
ancies between the two- and three-dimensional treatments of
droplets. The paper is organized as follows: Section II de-
scribes the mathematical model governing drop spreading,
with attention given to the dissipative forces acting on the
solid-liquid interface. This section also introduces the 3D
sliding model under the effect of gravity, and describes its
numerical implementation. Section III includes several nu-
merical examples, as well as the experimental validation for
the 3D spreading and sliding models under a wide variety of
fluid properties, drop sizes, and physicochemical conditions.

II. PHYSICAL MODEL

A. Governing equations

Let Ω represent a liquid drop in contact with a solid sub-
strate, as shown in Fig. 1. The boundary of the domain is
divided into three regions ∂Ω = ΓI ∪ΓS ∪ ∂Γ. ΓS represents
the domain boundary corresponding to the liquid in contact
with the substrate, excluding the contact line, ΓI corresponds
to the drop’s free-surface, and ∂Γ represents the contact line.

The governing equations for the liquid phase are the mo-
mentum and mass conservation equations. The fluid is as-

FIG. 1. Schematic representation of the 3D Lagrangian domain.

sumed to be incompressible and Newtonian. Accordingly, the
governing equations are expressed as follows2,20:

ρ
Dv
Dt
−µ∇ · (∇v+∇

T (v))+∇p = ρg on Ω (1)

∇ ·v = 0 on Ω (2)

where ρ is the fluid density, Dv
Dt = ∂v

∂ t +v ·∇v is the total ma-
terial derivative, v is velocity, t is time, µ is the fluid dynamic
viscosity, p is pressure, and g is the gravitational accelera-
tion. Note that the Lagrangian formulation is adopted and,
thus, the nonlinear convective term is absent in the numerical
treatment of Eq. (1)49.

B. Boundary conditions at the free-surface ΓI

At the free-surface, ΓI , a Cauchy stress boundary condition
in the normal direction is applied corresponding to the surface
tension force:

fΓI
= σn = γκHn at ΓI (3)

where fΓI
is the surface tension force, σ is the Cauchy stress

tensor, n is the outer unit normal to ΓI (see Fig. 1), γ is the
surface tension coefficient, and κH is the mean curvature of
the free-surface. The Cauchy stress tensor σ is expressed as:

σ =−pI+µ(∇v+∇
Tv) (4)

According to eq. (3), the normal stress is balanced by the
surface tension force20,50,51. Decomposing eq. (3) into nor-
mal and tangential components yields:

n · (σn) = γκH at ΓI (5)

and

eθ · (σn) = 0 at ΓI (6)

where eθ represents any unit vector tangent to surface ΓI
(Fig. 1). Assuming a stationary exterior fluid and substitut-
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ing eq. (4) into eq. (5) yields:

p−µn · ([∇v+∇
Tv]n) = γκH at ΓI (7)

µeθ · ([∇v+∇
Tv]n) = 0 at ΓI (8)

Note that the viscous stress term projected on the normal
direction in Eq. (7) can be neglected12.

C. Forces acting on the contact line, ∂Γ

At the contact line, an effective slip boundary condition
is applied in terms of an effective slip coefficient which ac-
counts for i) the capillary effect (ζ ), ii) normal stress coeffi-
cient (βn), and iii) Navier-slip coefficient (βs). This effective
slip boundary condition is defined in terms of a dissipative
force f∂Γ applied to the contact line, and is proportional to
the velocity of the contact line25,40,52,53 as follows:

f∂Γ =−β∂Γv at ∂Γ (9)

where β∂Γ is the effective slip coefficient at the contact line,
and v is the slip velocity of the fluid at the contact line.

As the drop starts to move, the velocity of the contact line
can be related to the Young’s stress acting on it as follows:

v ·encl ∝ γ (cosθe− cosθd) (10)

where θe is the static contact angle, θd is the dynamic contact
angle, and encl is the unit normal vector at the point Pcl of
the contact line, see Fig. 1. The proportionality coefficient
between the contact line velocity and Young’s stress is the
effective slip boundary condition defined as follows40:

β∂Γ(v ·encl ) = γ(cosθe− cosθd) (11)

where β∂Γ is the effective slip coefficient, and is defined
as24,25,39,40,52–56:

β∂Γ = ζ +βS|∂Γ +βn (12)

where ζ is the capillary effect coefficient (see reference41 for
more details), βS|∂Γ is the Navier-slip coefficient, and βn is
the normal stress coefficient. They are expressed, according
to Jiang’s model41,57, as follows:

ζ =
γ

v ·encl

(cosθe +1) tanh
(

4.96Ca0.702
)

(13)

βS|∂Γ =
1

v ·encl

µ∇(v ·encl ) ·ez (14)

βn =
1

v ·encl

µ∇(v ·encl ) ·encl (15)

By accounting for the contributions of the capillary effects,
the Navier-slip as well as the normal stresses in eq. (12), the
coefficient β∂Γ is used to obtain the total dissipative force and
to apply the boundary condition defined by eq. (9).

As the drop starts to slide, the effect of a retention force
acting on the contact line must be included. The magnitude
of this retention force is known to be a function of i) the drop
size, ii) the aspect ratio of the wetting perimeter, iii) the sur-
face tension coefficient, and iv) the contact angle hysteresis,
as follows44,48,58–61:

Fretention = γka(cosθR− cosθA) (16)

where k is a function of the aspect ratio of the drop footprint,
a is the wetting radius of the liquid drop, θR is the receding
contact angle, and θA is the advancing contact angle. The
parameters θA and θR are the maximum and minimum contact
angles along the contact line, respectively41,62. For a liquid
drop sliding under the effect of gravity, the retention force
opposes the effect of the gravitational force.

The effect of the retention force is added to eqs. (9)-(15).
Accordingly, for the case of sliding liquid drop, an additional
coefficient β∂Γ is defined as follows:

β∂Γ = ζ +βn +βS +βretention (17)

The coefficient βretention accounts for the effect of the reten-
tion force and it is given by:

βretention =
γka
v ·encl

(cosθR− cosθA) (18)

D. Forces acting on the solid-liquid interface away from the
contact line, ΓS

At the solid-liquid interface excluding the contact line, ΓS,
the applied boundary condition is obtained by projecting the
Cauchy stress tensor on the normal direction of ΓS

25,40:

fΓS
= σ ·ez =−βΓsv at ΓS (19)

where fΓS
and βΓs are the dissipative force and the slip coef-

ficient applied at the solid-liquid interface, respectively, and
v is the slip velocity of the fluid on the solid-liquid inter-
face. The Navier-slip model is considered in this work, and it
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corresponds to the viscous dissipation along the solid-liquid
interface as the drop deforms24,40,52,53. Therefore, the slip
coefficient βΓs at the solid-liquid interface ΓS is obtained as
follows:

βΓs = βs =
1

v ·encl

µ∇(v ·encl ) ·ez (20)

Eq. (20) is used in combination with eq. (19) to apply the
boundary condition at the solid-liquid interface.

E. Mesh size and time step criteria

1. Droplet spreading

As the drop spreads, capillary waves are generated at the
contact line and propagate from ∂Γ towards ΓI

63,64. Numer-
ically, the mesh size at the contact line is restricted by the
wavelength of the capillary wave propagation. The values of
the mesh size, h, and the time step, ∆t, are estimated as fol-
lows41:

h =
γ

2ρv2
max

(21)

and

∆tcap ≤
√

2
π

γ

4ρ|v3
max|

(22)

where v is the magnitude of the slip velocity of the fluid on the
solid-liquid interface, i.e. v =‖v‖, and vmax is the magnitude
of the maximum slip velocity of the liquid at the contact line.

2. Droplet sliding

The adopted mesh size, h, is estimated as a function of the
wetting radius, a, as follows26:

h∼ a
10

(23)

Our previous numerical work on drop spreading demon-
strated that the implementation of the proposed model results
in physically and quantitatively acceptable behavior.

The constraint for choosing the time step is derived by
guaranteeing the range of applicability of Jiang’s model, that
is 0 <Ca≤ 0.03. The time step criterion is calculated based
on the Weber number (We) defined as65:

We =
ρRv2

max

γ
(24)

where R is the radius of the drop. The time step can be calcu-
lated as follows:

∆t ≤



√
2
π

γ

4ρ|v3
max|

for We≥ 1

CFL
|vmax|

h + 2µ

h2

for We < 1
(25)

where CFL is the Courant-Friedrichs-Lewy number. The
range of CFL is practically found to be between 0.5 and 0.9.
In 3D, the computations become unwieldy for smaller mesh
sizes and time steps. Thus, for free-surface problems, i.e.,
We < 1, we will take advantage of the following time step
criteria devised by Sussman and Ohta66:

∆tcrit ≤

√
(ρL +ρg)h3

γ(2π)3 (26)

F. Discretized governing equations

The particle finite element method (PFEM)49,67–71 is used
in the present work to discretize eqs. (1) and (2) in space.
The PFEM adopts the updated Lagrangian description of the
governing equations. The fluid domain is discretized by a
standard finite element mesh. The nodes can be interpreted
as immaterial particles that move according to their veloc-
ity. At each computational step, the domain deforms. Thus,
in order to avoid excessive mesh degradation, re-meshing is
performed at each time step using Delaunay triangulation.
For droplet dynamics problems, the re-meshing procedure en-
sures that the domain boundaries are reconstructed in accor-
dance with the new nodal positions obtained on the velocity
field and time step. Linear interpolation functions for both
velocity and pressure are used over tetrahedral elements. In
the present implementation, the discretization in time is per-
formed using the Backward Difference Formula of second-
order (BDF2)72. This method is an unconditionally stable
time integration scheme with second-order accuracy. How-
ever, for the sake of clarity, it is expressed here using the
Backward-Euler scheme49. Given a known v̄n and p̄n at
time tn (overbarred letters represent quantities obtained after
space discretization), the values of these variables at time tn+1
are obtained by solving the following governing equations in
their residual form:

r̄m = F̄+ F̄st + F̄∂Γ + F̄ΓS −
(

M
v̄n+1− v̄n

∆t
+µLv̄n+1 +Gp̄n+1

)
(27)

r̄c = Dv̄n+1 (28)

where the nonlinear dependence on the unknown configura-
tion, Xn+1, is dealt with by using a Newton method. ∆t is
the time step; M, L, G, and D are the mass, Laplacian, gra-
dient, and divergence matrices, respectively; and F̄, F̄st , F̄∂Γ,
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and F̄ΓS are the vectors of the external forces, the surface ten-
sion force, the dissipative force acting on the contact line, and
the dissipative force acting on the solid-liquid interface away
from the contact line, respectively. These vectors are eval-
uated at time step tn+1. Local cell matrices and vectors are
defined in A.

Eqs. (27) and (28) are then linearized, and the system is
solved iteratively. The resulting linearized system of govern-
ing equations reads:(

M 1
∆t +µL+Hst G

D 0

)(
δ v̄
δ p̄

)
=

(
r̄m
r̄c

)
(29)

where Hst originates from the linearization of the surface ten-
sion force term, F̄st . This term is responsible for the im-
plicit treatment of the surface tension, and it allows for the
use of large time steps. The derivation of this term, as well
as the stabilization terms, can be found in reference2. The
linear velocity-pressure elements used in our model do not
fulfill the compatibility condition73 and therefore pressure
must be stabilized. In this work, the algebraic sub-grid scales
(ASGS)74–76 stabilization technique is used (see reference2

for details). Once the system in eq. (29) has been solved for
δ v̄ and δ p̄, the primary variables are updated according to
v̄k+1

n+1 = v̄
k
n+1+δ v̄ and p̄k+1

n+1 = p̄k
n+1+δ p̄, where k is the non-

linear iteration index, until convergence is achieved. As a fi-
nal step, the nodal position in the moving mesh is updated ac-
cording to the employed time integration scheme. In case of
Backward Euler integration, this yields Xk+1

n+1 = Xn+∆t v̄k+1
n+1.

The solution algorithm is further illustrated in B.

G. Numerical implementation

1. Mesh enhancements in 3D

One of the main challenges to extend our previous two-
dimensional models26,41 to three dimensions is the treatment
of the discretized geometry. In the PFEM scheme, the initial
configuration of the domain consists of mesh nodes which
are treated as particles. Mathematical information and phys-
ical quantities are assigned to each node. The finite element
mesh is generated and connected by a Delaunay triangula-
tion/tetrahedralization77,78. Mesh connectivity is the main
role of the Delaunay triangulation/tetrahedralization. How-
ever, it does not recover the domain boundaries. To do
so, the alpha shape technique is implemented in our PFEM
scheme79. The alpha shape technique is a key ingredient to
determine the boundary in problems involving free surface
flows.

For wetting problems, an accurate representation of the
contact line and the liquid/solid interface is paramount for
the correct application of the boundary conditions. There-
fore, nodes may have to be added or deleted depending on
the problem. Let us consider a droplet in contact with a hy-
drophobic surface, with an initial geometry in the form of a
cube or prism (see Fig. 5). Since the substrate is hydropho-
bic, the nodes at the contact line will move inwards in or-
der to fulfill the contact angle condition. However, the nodes

that are in contact with the solid substrate (marked in red in
Fig. 2) but do not belong to the contact line might have a
zero velocity. Thus, when nodes at the contact line approach
these static nodes, the elements may become distorted. In or-
der to avoid this problem, a new routine is implemented in
the re-meshing function that deletes a static node located at
a distance to a contact line node smaller than 0.5h, where h
is the initial mesh size (more details about PFEM criterion
for nodal addition/removal can be found in reference78). This
can be observed, for example, in Fig. 2, where a static node
is deleted after the contact line nodes are at a distance which
is below a certain threshold value.

(a) (b)

FIG. 2. Node deletion for problems where contact line nodes ap-
proach other nodes at the liquid/solid interface (view from below,
nodes at the liquid/solid interface are noted in red, which are con-
tained in the xy-plane in Fig. 1): (a) before deleting a node, and (b)
after deleting a node.

The opposite situation occurs with droplets in contact with
hydrophilic substrates. In this case, the nodes at the contact
line move outwards. Therefore, if two nodes of the contact
line are located at a distance from a static node greater than
2h, where h is the initial mesh size, a new node is inserted in
the considered face. Figure 3 shows the resulting mesh after
inserting a node in an element’s face.

(a) (b)

FIG. 3. Node addition for problems where contact line nodes move
away from other nodes at the liquid/solid interface (view from be-
low, nodes at the liquid/solid interface are noted in red, which are
contained in the xy-plane in Fig. 1): (a) before adding a node, and
(b) after adding a node.

An additional problematic situation observed in droplets
in contact with hydrophilic substrates is when the distance
between two nodes of the contact line is greater than some
threshold value. In this case, a new node is inserted in the
segment between these two nodes. Once the computational
mesh is created, the normal vector at the contact line nodes
and the contact angle are obtained. Fig. 4 shows the resulting
mesh after inserting a node in an element’s segment.
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(a) (b)

FIG. 4. Node addition at the contact line where two contact line
nodes move away from each other (view from above, nodes at the
liquid/solid interface are noted in red, which are contained in the xy-
plane in Fig. 1, and nodes in blue represent the liquid/gas interface):
(a) before adding a node, and (b) after adding a node.

TABLE I. Input parameters used in the solver for monolithic scheme

Parameter Value
Newton solver max number of iterations 500
Linear solver iterative tolerance 10−6

Linear solver max number of iterations 5000

2. Implementation and numerical details

Table I shows the input parameters used in the model.
Implementation is done using the updated Lagrangian fluid
(ULF) application within Kratos Multi-Physics, a C++
object-oriented finite element open source framework80. The
discretization in time is performed using the Backward Dif-
ference Formula of second-order (BDF2)72. A quasi-Newton
method is used to solve Eqs. (27) and (28). The resulting
system of equations is solved using the bi-conjugate gradient
stabilized method (BiCGStab). This method is known for its
ability to solve non-symmetric matrices with improved rate
of convergence and low computational cost when compared
to other iterative methods, such as conjugate gradient squared
(CGS), bi-conjugate gradient (BiCG) or generalized method
of minimum residuals (GMRES)81.

Results are obtained using a Linux operating system with
an Intel® CoreTM i7-8750H CPU @ 2.20GHz, 12 processors,
and 32 GB RAM. Depending on the droplet size, simulations
took between 1 and 4 hours.

III. RESULTS AND DISCUSSION

A. Droplet spreading

1. Spreading of arbitrary-shaped droplets

The effects of adding a dissipative force on a moving con-
tact line are assessed in this example. The spreading motion
is simulated for different initial arbitrarily-shaped drops. This
example demonstrates the success of our 3D drop dynamics
model in i) regularizing the contact line singularity, ii) track-
ing the deformed boundaries, and iii) reaching the equilib-
rium configuration. The domain initial configuration is set to
be a prismatic (nominal) drop of height H = 0.02 cm and of

two different cross-sections: (a) a square of side length 0.05
cm, and b) a triangle of 0.05 cm per side. The considered
substrates are (i) a kapton-coated surface with static contact
angle value of 75 degrees82 (hydrophilic), and (ii) a polyte-
trafluoroethylene (PTFE)-coated surface with static contact
angle of 108 degrees83 (hydrophobic).

FIG. 5. Initial and steady-state configurations for sessile drops start-
ing with two different prismatic initial configurations.

The driving forces acting on the drop are those of surface
tension and gravity directed normal to the substrate. Fluid
density, viscosity and surface tension coefficient are set to
ρ = 1000 kg m−3, µ = 8.90× 10−4 kg m−1 s−1, γ = 0.072
N m−1, respectively, representative of a water drop. Initial
pressure in the liquid is set to p0 = 0 Pa. The domains of
the squared-prismatic and triangular-prismatic droplets are
meshed using tetrahedral elements of sizes 0.003 cm and
0.002 cm, respectively, and a time step size of≈ 1×10−6 sec-
onds is used. The predicted drop geometry at various times
during the simulation is shown in Figure (6).

In both configurations, the steady-state solution is achieved
in less than 4 ms. The solution is considered steady-state
when the average contact line velocity is zero. Table II shows
the obtained value of the contact angle for each configuration
and substrate, where θave is the node-averaged contact angle.
It can be observed that in all cases, the computed relative er-
ror was less than 7% for kapton, and 3% for PTFE.

The simulated drops evolved in accordance with the pro-
posed mathematical model and boundary conditions pre-
sented in Sec. II, until they successfully reached their equilib-
rium configurations. Our numerical results converged to the
equilibrium configuration of a smooth spheroidal drop with
the prescribed static contact angle, regardless of the initial
shape.

2. Equilibrium configuration for viscous drops on a smooth
surface

Replicating the exact shape of a drop is the ultimate goal
of a spreading simulation. In this section, the equilibrium
configuration of a viscous drop is examined both in 2D and
3D. We aim at reproducing the experimental work by Abol-
ghasemibizaki et al.84 for viscous glycerol drops on smooth
polyethylene terephthalate glycol (PETG) surface.

Two drop sizes of 1.1 and 2.15 mm radii, i.e., 5.6 and
41.6µL respectively, are considered. The gravitational field
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(a) t =0 s (b) t =1.5 ms (c) t =5 ms

(d) t =0 s (e) t =1.5 ms (f) t =5 ms

(g) t =0 s (h) t =1.5 ms (i) t =3.99 ms

(j) t =0 s (k) t =1.5 ms (l) t =7.5 ms

FIG. 6. Spreading evolution for two different initial geometries, on
two different substrates: (a)-(c) water droplet of an initial squared-
prismatic configuration spreading on kapton substrate, (d)-(f) wa-
ter droplet of an initial squared-prismatic configuration spreading
on PTFE substrate, (g)-(i) water droplet of an initial triangular-
prismatic configuration spreading on kapton substrate, and (j)-(l)
water droplet of an initial triangular-prismatic configuration spread-
ing on PTFE substrate.

TABLE II. Contact angles values obtained numerically (θave) for
water drops on kapton and PTFE substrates, and the corresponding
error with respect to the prescribed equilibrium angle θe.

Configuration Substrate θave, (deg) Error (|θave−θe|) / θe, (%)

Square
kapton 79.9 6.5

PTFE 105.0 2.8

Triangle
kapton 79.3 5.7

PTFE 104.5 3.2

acts normal to the flat substrate. The drop is lowered from its
center by a value of δ , forming a wetting radius of a (shown
in Fig. 7) due to its own weight. At equilibrium, the center of

FIG. 7. schematic representation of the initial configuration (dashed
line) and the equilibrium configuration (solid line) of a viscous liq-
uid drop84.

TABLE III. Dimensions of glycerine drops at equilibrium configu-
ration.

Initial radius δ , eq. (30) δ , numerically (2D) Difference in δ , numerically (3D) Difference in

R, (mm) (mm) (mm) δ (2D), % (mm) δ (3D), %

1.1 0.25 0.2 20.0% 0.23 8.0%

2.15 1.9 1.1 42.1% 1.5 21.1%

mass displacement, δ , is estimated as84:

δ ≈ ρgR3/γ (30)

The simulations are performed using the physical proper-
ties of glycerol on PETG substrate, θe =169.1°. Fluid density,
viscosity and surface tension coefficient are set to ρ = 1261
kg m−3, µ = 1.076 kg m−1 s−1, γ = 0.0646 N m−1, respec-
tively. The mesh sizes are chosen to be 0.15 and 0.3 mm
for the 5.6µL and 41.6µL drops, respectively. The capillary
waves at the moving contact line are neglected compared to
the dominant surface tension force. Hence, the time step is
chosen based on the implicit criteria devised by Jarauta et
al.2 as ∆t ≈ 5×10−3 s.

Figure 8 show the equilibrium configuration of each drop.
Figure 8(f) shows a transparent view, indicating both the
distribution and the total number of particles (∼2,808 mesh
nodes) for the 2.15 mm radius drop. The mesh is refined at
the contact line and, thus, crude meshing is avoided.

In both cases, i.e., for 1.1 mm and 2.15 mm radii drops,
the drop profiles in 3D are found to be in better agreement
with the experimental profiles than in 2D. The corresponding
change in δ is shown in Table III for each drop size. As in-
dicated by eq. (30), the value of δ increases as the drop size
increases. The error between numerical and experimental val-
ues of δ increases as the weight of the drop increases. The
3D model, however, provides more reliable results than the
2D model, especially for larger drops. This is hypothesized
to be due to the limitation of 2D simulations in Cartesian co-
ordinates to properly replicate the full shape of the drop.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Equilibrium configuration for a 1.35 mm-radius (left) and
2.3 mm-radius (right) glycerol drop on smooth PETG surfaces ob-
served (a)-(b) experimentally, (reproduced from 84, with the permis-
sion of AIP Publishing), (c)-(d) numerically in 2D, and (e)-(f) nu-
merically in 3D.

3. Water drop spreading on a hydrophobic substrate

In this numerical study, we simulate the sessile water drop
deposition experiments performed by Bird et al.85. In their
study, a drop was placed on the triethoxysilane substrate
through a needle. The drop contacts the substrate at a di-
ameter of 1.64 mm, and was allowed to spread spontaneously
over the substrate until equilibrium was reached, i.e., until the
value θ = θe = 117° is reached. Spreading displacement (a)
was measured over the time of spreading.

In order to reproduce this experiment, a drop is placed on
the substrate with an initial radius R= 0.82 mm, contact angle
nearly equal to 180°, and liquid pressure of p0 = 0 Pa. The
drop is allowed to deform until equilibrium is achieved, i.e.,
θe = 117°. Fluid density, viscosity and surface tension coef-
ficient are set to ρ = 1000 kg m−3, µ = 8.90×10−4 kg m−1

s−1, γ = 0.072 N m−1, respectively. The time step and mesh
size are chosen to be h = 8×10−5 m and 10−7 s, respectively.

Fig. 9 and Table IV show that the experimental and nu-
merical profiles are in very good agreement. In addition, the
time evolution of the spreading radius is found to replicate
the experimental data. Initial deviation between the numeri-
cal and experimental data is observed due to the difference in
the initial drop configuration and spreading conditions, i.e., a
drop with a spherical configuration was relaxed experimen-
tally while it was attached to a needle.

Our numerical results of the spreading radius evolution can
be further compared with a scaling law obtained experimen-

(a)

(b)

FIG. 9. Water drop of radius 0.82 mm spreading on triethoxysilane,
for 0 < t ≤ 1.2 ms, with a dominant capillary wave propagation at
the contact line (a) experimentally85, (reproduced with permission
from J. Phys. Rev. Lett. 100, 234501 (2008). Copyright 2008
American Physical Society), and (b) numerically.

TABLE IV. Comparison between numerical and experimental
spreading evolution for a water drop of 0.82 radius spreading on
a triethoxysilane substrate (based on Fig. 9).

Time, Experimental spreading diameter (2a), Numerical spreading diameter (2a), Error in 2a,

(ms) (mm) (mm) (%)

0.4 0.705 0.77 9.2 %

0.8 0.82 0.9 9.75 %

1.2 0.9 0.93 3.3 %

tally. Bird et al.85 showed that the spreading radius evolution,
r(t), of a water drop deposited on a triethoxysilane substrate
scales to the following power law (see reference 85 for de-
tails):

r(t) = 0.7R(t/τ)0.3 (31)

where τ = (ρR3/γ)1/2. The predicted spreading radius using
the scaling law (Eq. (31)) and the numerical model (Fig. 9)
are shown in Table V. Both results are found to be in good
agreement, with an average error of less than 10%.

The inertial regime characterized by the capillary waves
can be predicted using the scaling laws 86–88:

(
ρR3

γ

)0.5

< Tt <

(
ρR3

γ

)0.5(
ργR
µ2

)0.125

(32)
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TABLE V. Comparison between scaled (Eq. 3185) and numeri-
cal (Fig. 9) spreading evolution for a water drop of radius 0.8 mm
spreading on a triethoxysilane substrate.

Time Spreading radius, Eq. (31), Numerical spreading radius Difference

(ms) (mm) (mm) (%)

0.8 0.4 0.45 12.5 %

1.2 0.45 0.465 3.3 %

2.3 0.54 0.55 1.9 %

5 0.69 0.7 1.5 %

6.3 0.736 0.74 0.5 %

where Tt is the transition time elapsed between the inertial and
viscous regimes. Eq. (32) implies that the inertial regime, Ti,
for a water droplet of radius 0.8 mm is in the range of Ti < 2.7
ms. The scaled inertial regime is found to be in agreement
with Fig. 9, both experimentally85 and numerically. Inertial-
dominated regime, viscous-dominated regime, and transition
time interval of different spreading liquid drops were sim-
ulated using the PFEM scheme and verified with published
experimental studies in our previous work41.

B. Droplet sliding

Three different experimental scenarios obtained from the
published literature are examined to validate the proposed
sliding drop model for a variety of liquid and substrate prop-
erties. We examine only the steady-state profiles due to the
lack of experimental data during the unsteady initial drop
motion, which typically lasts a few milliseconds. Our pro-
posed three-dimensional model is further compared with two-
dimensional PFEM numerical results published in26.

1. Drop on an omniphilic substrate

We examine the sliding experiment performed by Kim et
al.60 for an ethylene glycol drop sliding on an inclined poly-
carbonate substrate. The drop of volume 29.2 µL slides over
the substrate until it reaches its steady-state velocity. An in-
clination angle of α = 20° is considered. The steady-state
velocities were found experimentally to be 1.557× 10−3 m
s−160.

The simulation is performed using the physical properties
for case #1 of Table VI. The wetting radius is a = 0.00283
m (see Fig. 13 in C). Thus, the mesh size and time step are
calculated to be h = 4× 10−4 m and ∆t ≈ 1× 10−6 s. The
Weber number is found to be < 1 for the given steady-state
velocity, i.e., 1.557× 10−3 m s−160. Hence, we are able to
utilize eq. (26). Therefore, the time step used here is ∆t ≈
8×10−5 s.

TABLE VI. Physical properties of the sliding liquid drops for dif-
ferent liquid/solid pairs.

ρ µ γ θe Volume α k

Case # Liquid Substrate (kg.m−1) (Pa.s) (N.m−1) (°) (µL) (°)

160 ethylene glycol polycarbonate 1114 0.0209 0.0484 70.2 29.2 20 1.41

246 water PTFE 997 0.00089 0.0728 120 7.5 60 1.35

389 PEG smooth glass 1080 0.285 0.0533 34.0 100 27 2.0

(a) (b)

(c) (d)

(e)

FIG. 10. Case #1: sliding profiles for EG drop on an omniphilic
polycarbonate substrate: (a) initial configuration, (b) initial configu-
ration, side view, (c) steady-state configuration, (d) steady-state con-
figuration, side view, and (e) steady-state velocity profile.

The value of parameter k in the retention force term in
equation (16) is chosen by using experimental results for a
sliding ethylene glycol sliding drop. It is found to be 1.4159.
The numerical value of the steady-state velocity is found to
be 1.65× 10−3 m s−1. The error between the experimental
and numerical results is found to be ≈ 6%, as shown in the
first case of Table VII.

Results were also computed using the two-dimensional
analog of the problem using the same computational algo-
rithm. The retention force constant used was the one recom-
mended for the two-dimensional approximation in the liter-
ature, i.e., k

π

59. In this case, the error increases to 19.1% as
shown in Table VII.
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TABLE VII. Numerical vs. experimental steady-state velocities
(uss) in 2D and 3D.
nnn

Case #
Volume α k Experimental uss Numerical (3D) uss Error in uss Numerical (2D) uss Error in uss

(µL) (°) (3D) (m s−1) (m s−1) (%) (m s−1) (%)

1 29.2 20 1.4159 1.557E-3 1.65E-3 5.97 % 1.26E-3 19.1%

2 7.5 60 1.3559 0.12 0.105 12.5 % 0.11 8.3%

3 100 27 289 7.75E-4 8.1E-4 4.52 % 8.7E-4 12.3%

2. Water drop on a hydrophobic substrate

The second validation considers the experiments per-
formed by Annapragada et al.46. In this experiment, a water
drop of volume 7.5 µL slides on an inclined PTFE substrate.
Under equilibrium condition, the contact angle θe is 120°.
The drop is sliding on a tilted plate at an inclination angle
of 60°. The steady-state sliding velocity was experimentally
found to be 0.12 m s−1.

Using the physical properties for case #2 of Table VI,
the simulation is performed with corresponding mesh size of
h = 1.1× 10−4 m. The value of the parameter k was found
experimentally to be 1.3559. The limiting time step can be
predicted by assuming the steady-state sliding velocities, uss,
based on the experimental results found in46 to be 0.12 m s−1.
We is found to be ≤ 1 and, therefore, the time step used here
is ∆t ≈ 1×10−5 s (eq. 26).

The error between the experimental and numerical results
is found to be ≈ 12.5%, as shown in the second case of Ta-
ble VII. Physically, it has been observed that high contact
line velocity leads to higher capillary action65 and viscous
dissipation along the contact line. Due to the nature of the
PFEM, minor numerical fluctuations are expected when the
mesh nodes are added or deleted, as the domain undergoes
large deformation. Mesh addition/deletion is performed at
each time step as needed to avoid crude meshing and mesh
deterioration.

3. Viscous drop on an omniphilic smooth substrate

The last scenario aims to simulate the experimental steady-
state velocity obtained by Xu et al.89. In this experiment,
a polyethylene glycol (PEG) drop slides on an omniphilic
smooth glass, with contact angle θe = 34°. The volume of
the drop is 100 µL. The drop slides at an inclination angle of
α = 27°. The steady-state velocity was experimentally found
to be 7.75×10−4 m s−1. The value of k is chosen to be 2.089.

The simulation is performed using the physical properties
for case #3 of Table VI. Adaptive mesh size is used with an
initial grid size h = 9×10−4 m, and refined to h = 6×10−4

m near the boundaries. The time step is set to ∆t = 1×10−4

s.
The numerical value of the steady-state velocity is found to

be 8.1× 10−4 m s−1. As shown in Table VII, the difference
between the experimental and numerical results is 4.52%.

The steady-state sliding velocity obtained numerically is

(a) (b)

(c) (d)

(e)

FIG. 11. Case #2: sliding profiles for water drop sliding on PTFE
substrate: (a) initial configuration, (b) initial configuration, side
view, (c) steady-state configuration, (d) steady-state configuration,
side view, and (e) steady-state velocity profile.

(a) (b)

(c) (d)

(e)

FIG. 12. Case #3: sliding profiles for viscous Newtonian fluid on
an omniphilic smooth glass: (a) initial configuration, (b) initial con-
figuration, side view, (c) steady-state configuration, (d) steady-state
configuration, side view, and (e) steady-state velocity profile.
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found to be in very good agreement with the experiment (Ta-
ble VII). In 3D, compared to 2D, the accuracy of steady-state
sliding velocity increased for the case of viscous Newtonian
fluid. The 3D model demonstrates its ability to replicate the
full geometry of a sliding liquid drop and to account for the
out-of-plane forces.

IV. CONCLUSION

This article presents a new three-dimensional model for
liquid drop spreading and sliding. The model is an exten-
sion of two previously presented models for two-dimensional
analysis to account for the out-of-plane forces and replicate
the full shape of a moving droplet. The extension to three
dimensions required an algorithm to detect the contact line,
to perform accurate numerical evolution of the contact angle,
and to allow mesh enhancements at liquid-solid interface, in-
cluding the contact line. The model is based on the PFEM
and includes a Navier-slip boundary condition applied at the
liquid-solid interface, a dissipative force at the contact line
as a function of capillary effects and the stresses acting on
the contact line, as well as a retention force dependent on the
contact line deformation, surface tension force, and contact
angle hysteresis.

The numerical implementation of the model is first tested
on droplets of arbitrary initial shape, deposited on two dif-
ferent substrates. The final configuration proved to be inde-
pendent of the initial configuration, whereby the contact line
singularity was successfully regularized and the deformed
boundaries were accurately tracked. To test the validity
of the model for drop spreading, several simulations were
performed for a variety of liquids on hydrophobic and hy-
drophilic substrates. The results of the center of mass dis-
placements, δ , of spreading viscous liquid drops are com-
pared with experimental data available in the literature. The
simulations in 2D exhibit a discrepancy of 40% relative to the
experimental data, while the three-dimensional model yields
errors below 22%. Thus, the out-of-plane forces cannot be
neglected in drop spreading simulations. Numerical results of
the spreading rate of drops are also in good agreement with
the available experimental data.

The sliding model is validated for three different experi-
mental conditions that are found in the literature, encompass-
ing a variety of viscous fluids and substrates, both hydrophilic
and hydrophobic. During the numerical simulations, the com-
putational mesh is adapted in the vicinity of the contact line,
where large deformations occur. Nodes are added/deleted at
each time step to avoid mesh deterioration. The steady-state
sliding velocity of the droplets obtained numerically is com-
pared with the available experimental data. Overall, the nu-
merical results show good agreement with the experimental
data, with relative errors for the predicted velocities between
4 and 12%. The same simulations repeated in 2D lead to a
20% increase in the errors in the simulated steady-state veloc-
ity. This proves again that the out-of-plane forces play an im-
portant role in drop sliding simulations and three-dimensional
simulations are required.

Our PFEM-based model for droplet spreading and sliding

in three dimensions is successfully validated. The model is
capable of capturing the spatio-temporal evolution of the con-
tact line for droplets with gravity as the driving force. How-
ever, the model is limited to a single phase and the possible ef-
fects of the surrounding gas phase are not taken into account.
The model is limited to the study of droplets on smooth sur-
faces. Future work will include two-phase flow and rolling
motion. Further validation of the numerical framework could
include 2D and 3D capillary rise studies, as well as spreading
on rough substrates such as pillar-arrayed surfaces90,91.
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Appendix A: Elemental contribution to matrix entries of the
3D Lagrangian model

Eqs. (27), (28), (19), and (9) are assembled using the local matri-
ces and vectors, with components defined as:

Mab = ρ

∫
ΩX

NaNb dΩX = ρ

∫
Ω

NaNbJ(X) dΩ (A1)

Lab =
∫

ΩX

∂Na

∂Xi

∂Nb

∂Xi
ΩX =

∫
Ω

∂Na

∂xi

∂Nb

∂xi
J(X) dΩ (A2)

Gab
i =−

∫
ΩX

∂Na

∂Xi
NbdΩX =−

∫
Ω

∂Na

∂xi
NbJ(X) dΩ (A3)

f a
i = ρ

∫
ΩX

NagidΩX = ρ

∫
Ω

NagiJ(X) dΩ (A4)

Dab
i =

∫
ΩX

Na ∂Nb

∂Xi
dΩX =

∫
Ω

Na ∂Nb

∂xi
J(X) dΩ (A5)

f a
st,i =−

∫
ΓI,X

γκNanidΓX =−
∫

ΓI

γκNaniJΓ(X) dΓ (A6)

f a
∂Γ,i =−

∫
∂ΓX

β∂Γv ·

(
v · (ex +ey)

)
i

Nad∂ΓX =

−
∫

∂Γ

β∂Γ

(
v · (ex +ey)

)
i

NaJΓ(X) d∂Γ (A7)

f a
ΓS,i =−

∫
ΓS,X

βΓs

(
v · (ex +ey)

)
i

NadΓX =

−
∫

ΓS

βΓs

(
v · (ex +ey)

)
i

NaJΓ(X) dΓ (A8)
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where Na represents the standard finite element shape function at
node a, and the index i is used for the spatial components. The
present model is based on the updated Lagrangian formulation
(ULF), and therefore the integration domains in eqs. (A1)-(A5), ΩX,
correspond to the updated configuration. The transformation be-
tween the reference configuration, Ω, and the updated one is per-
formed using the Jacobians J(X) and JΓ(X). Details on the deter-
mination of the mean curvature in three dimensions (κ in Eq. (A6))
can be found in reference2.

Appendix B: Solution algorithm of the 3D Lagrangian model

Given a known configuration Xn, velocity v̄n, and pressure p̄n, at
time tn, the procedure for obtaining the values of these variables at
the next time step tn+1 is summarized in Algorithm 1.

Algorithm 1. Simulation algorithm of the liquid phase problem us-
ing a PFEM formulation.

1: for t = tn+1 do
2: Current configuration is the known configuration,

such that: Xk
n+1 = Xn

3: for nonlinear iteration k do
4: Obtain curvature at Xk

n+1;
5: Update discrete operators;
6: Compute f a

st,i, f a
∂Γ,i, and f a

ΓS,i
;

7: Solve system of equations for liquid phase,
eq. (29);

8: Update both velocity and pressure, such that:
v̄k+1

n+1 = v̄
k
n+1 +δ v̄ and p̄k+1

n+1 = p̄k
n+1 +δ p̄, respectively

9: Update configuration, such that: Xk+1
n+1 = Xk

n+1 +
∆t ·δ v̄

10: Remesh;
11: end for
12: Xn+1 = Xn +∆t · v̄n+1
13: end for

Appendix C: Geometry of spherical drops

The equations which relate the volume and contact angle to the
geometrical parameters of a drop in contact with an omniphilic or an
omniphobic surface are presented here (see references62,92 for more
details). The initial shape of the drop is considered as i) a spherical
cap on an omniphilic substrate or ii) a spherical drop on an omni-
phobic substrate, as shown in Fig.13(a) and 13(b), respectively. This
assumption might produce up to 15% error when the gravitational
force is considered for a drop size of the order of 10 µL60.

i) Starting with a known liquid drop volume and equilibrium con-
tact angle condition of a spherical cap, the drop height (H), drop
radius (R), and wetting radius (a) are obtained using the following
equations:

R =

(
V

π

3 (2−3cosθ + cos3 θ)

) 1
3

(C1)

a = Rsinθ (C2)

H = R(1− cosθ) (C3)

(a)

(b)

FIG. 13. Geometrical parameters of a drop (a) on an omniphilic
substrate and (b) on an omniphobic substrate.

ii) Starting with a known liquid drop volume and equilibrium con-
tact angle condition, the geometrical parameters of a spherical drop
are obtained as follows:

R =

(
V

4π

3 −
π

3 (1+ cosθ)2(2− cosθ)

) 1
3

(C4)

H̄ =−Rcosθ (C5)
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