
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3144668, IEEE
Transactions on Geoscience and Remote Sensing

1 

Abstract—When an early warning radar installed in a 

spaceborne platform works in a down-looking mode to detect a 

low-altitude flying target, the severely broadened main-lobe 

clutter cannot be ignored, which will cause the deterioration of 

moving target detection capability. To deal with this problem, a 

space-time adaptive processing (STAP) technique is proposed for 

effective clutter suppression based on the spatial-temporal 2-D 

joint filtering. However, the full-dimensional optimal STAP 

encounters the challenges of high computational complexity and 

large training sample requirement. Therefore, the 

dimension-reduced STAP technique becomes necessary. This 

paper proposes a novel dimension-reduced STAP algorithm based 

on spatial-temporal 2-D sliding window processing. Firstly, 

several sets of spatial-temporal data are obtained by using 

spatial-temporal 2-D sliding window. Then, for each set of data, 

the 2-D discrete Fourier transform is performed to transform the 

echo data into angle-Doppler domain. Finally, the jointly adaptive 

processing is performed to realize the clutter suppression. 

Compared with the conventional STAP algorithms, the 

improvements of this method over the existing methods are: 1) the 

proposed method requires fewer training samples due to the 2-D 

localization processing; and 2) the proposed method can obtain 

the better clutter suppression performance with a lower 

computational complexity. The feasibility and effectiveness of the 

proposed algorithm are verified by both simulated and 

real-measured multichannel surveillance radar data. 

Index Terms—Space-time adaptive processing (STAP), 

dimension-reduced STAP, clutter suppression, early warning 

surveillance radar. 

I. INTRODUCTION

arly warning surveillance radars possess the capabilities of

wide range, high revisit frequency, and all-weather moving

target detection, localization, tracking, and identification. They 

have attracted much attention in recent decades [1], [2]. The 
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traditional ground-based and shipborne monitoring radars are 

inevitably limited by the earth curvature and the terrain 

occlusion, exhibiting the limited detection range. Compared to 

long-range surveillance radar installed on a static or 

slow-moving platform, spaceborne radar systems have higher 

maneuverability and wider detection range in virtue of the 

advantage of platform height, and have been widely applied in 

military reconnaissance, traffic monitoring, and meteorological 

monitoring [3]-[6]. However, when a warning radar installed 

on a spaceborne platform works in a down-looking mode, the 

severe broadening of main-lobe clutter under the 

dual-modulations of transmitting and receiving antenna 

patterns will occur due to the Doppler center shifts of different 

ground scatter points relative to the high-speed platform motion. 

Therefore, robust clutter suppression processing is a key 

procedure in moving target detection. 

For the conventional ground-based and ship-borne radar 

systems, the received clutter returns are mainly concentrated in 

the zero-frequency region. Therefore, according to Doppler 

difference between a moving target and clutter signal, the 

clutter cancellation can be effectively achieved by using the 

pulse cancellation techniques in a single-channel radar 

configuration [1]. In addition, the Doppler filter bank and 

adaptive moving target detection (AMTD) technique can 

further improve the clutter suppression performance in 

complex clutter environment [7]. However, for the spaceborne 

radars, the high-speed platform motion will cause the Doppler 

spectrums of different clutter components severely broadening, 

significantly decreasing the moving target output 

signal-to-clutter-plus-noise ratio (SCNR), especially for a 

slow-moving target [8], [9]. In this case, it is difficult to 

suppress the broadened clutter by only exploiting the temporal 

information [10]. To address this issue, the space-time adaptive 

processing (STAP) technique has been developed, which 

utilizes the joint temporal-spatial information to achieve 

effective clutter suppression based on 2-D adaptive filter 

processing [11]. However, the full-dimensional optimal STAP 

suffers from the challenges of high computational complexity 

and huge requirement of independent and identically 

distributed (i.i.d.) training samples, which may be unrealistic in 

practical applications, especially in a relatively inhomogeneous 

scene [12]-[15]. Therefore, in order to reduce the 

computational complexity and requirement of a large number 

of i.i.d. samples, dimension-reduced STAP and rank-reduced 

STAP are developed in the last decades [16], [17]. 
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Rank-reduced STAP adaptively constructs the 

spatial-temporal filter by exploiting the echo signal property. 

Klemm [18] has concluded that the clutter rank is 

approximately the sum of the numbers of transmitted pulses 

and spatial channels. In addition, to suppress the clutter 

effectively, the required degree of freedom of STAP should 

only be a little higher than the clutter rank, and thus the 

reduction of effective training sample demand by using the 

rank-reduced STAP techniques becomes possible. Haimovich 

[19] has proposed an eigencanceler based on 

eigendecomposition, where the clutter covariance matrix is 

reconstructed by selecting the eigenvectors corresponding to 

large eigenvalues. Goldstein et al. [20], [21] have proposed the 

cross-spectral metric (CSM) method to realize the clutter 

covariance matrix reconstruction based on the cross-spectral 

value criterion. To further reduce the computational complexity, 

the multistage Wiener filter (MWF) approach is proposed in 

[22] by decomposing the Wiener filtering process. However,

the performance of rank-reduced STAP algorithms usually

depends on the degree of freedom of clutter, which is difficult

to be accurately estimated in the case of some nonideal system

errors, restricting their applications in the practical engineering

[16].

Different from the rank-reduced STAP algorithms, the 

dimension-reduced STAP algorithms decrease the system 

dimension through some kinds of linear transformations, which 

can effectively reduce the computational complexity and 

training sample demand in the transform domain [23]. Typical 

dimension-reduced STAP algorithms can be mainly divided 

into two kinds: time-space cascaded adaptive processing 

algorithms and joint dimension-reduced adaptive processing 

algorithms. 

The time-space cascaded adaptive processing algorithms 

realize the dimension reduction in the time domain by temporal 

filtering and then implement the adaptive processing in spatial 

domain. A typical algorithm is to apply the Doppler filtering to 

decrease the clutter degree of freedom, and then the spatial 

adaptive processing is implemented to enhance the target 

output SCNR [24], [25]; however, due to the lack of auxiliary 

channels, it may exhibit a poor clutter suppression performance 

in the main-lobe clutter region. To solve this problem, DiPietro 

[25] has proposed the extended factored approach (EFA) to

improve the clutter suppression performance by jointly using

adjacent Doppler channels as auxiliary channels. Brennan et al.

[26] have proposed the filter-then-adapt (F$A) algorithm to

provide additional degrees of freedom via adding delayed taps,

improving the subsequent clutter suppression performance. To

further decrease the computing source consuming, Brown et al.

[27] have proposed the ΣΔ-STAP by utilizing only the sum and

difference channels; however, its low spatial degree of freedom

is obtained at the sacrifice of the clutter suppression

performance.

Joint dimension-reduced adaptive processing algorithms 

transform the radar echo data in the space-time domain into the 

angle-Doppler domain through 2-D discrete Fourier transform 

(DFT), realizing the dimension reduction both in time domain 

and space domain. The auxiliary channel receiver (ACR) 

technique has been proposed by Klemm [28], which selects the 

auxiliary channels along the clutter ridge in the space-time 

spectrum. However, this method requires the precise system 

parameters as a priori information. In addition, the clutter 

suppression performance depends on the number and selected 

positions of auxiliary channels, which may be easily influenced 

by the radar system errors. Wang et al. [29] have proposed the 

joint domain localized (JDL) algorithm to improve the clutter 

suppression performance via selecting the auxiliary channels 

around the target channel in the form of a rectangular window. 

To further improve the computational efficiency, the 

space-time multiple-beam (STMB) algorithm has been 

proposed by Wang et al. [30], [31], which effectively reduces 

the system dimension by selecting the auxiliary channels with a 

cross shape. 

Motivated by the previous works, a novel 

dimension-reduced STAP algorithm is proposed in this paper. 

In the proposed algorithm, the spatial-temporal 2-D sliding 

window is applied to obtain multiple spatial-temporal echo data 

sets; then the echo data are transformed into the angle-Doppler 

domain by using 2-D DFT; finally, the localized adaptive 

processing is performed to enhance the target output SCNR. 

Compared with the full-dimensional optimal STAP, the 

proposed algorithm greatly reduces the computational load in 

real-time processing and the difficulty in obtaining enough i.i.d. 

training samples. Compared with the conventional time-space 

cascaded adaptive processing algorithms and the rank-reduced 

STAP algorithms, the proposed algorithm requires lower 

system dimension and fewer training samples while exhibiting 

good clutter suppression performance. Compared with the 

conventional joint dimension-reduced adaptive processing 

algorithms, the proposed algorithm obtains a better clutter 

suppression performance while maintaining a relatively low 

computational complexity. Both simulated and real-measured 

multi-channel radar data are utilized to illustrate the 

effectiveness of the proposed algorithm. 

The rest of this paper is organized as follows. In Section II, 

the detailed signal model for a multi-channel spaceborne early 

warning radar (SEWR) system is established. Section III 

introduces the proposed clutter suppression algorithm and gives 

analysis including the choice of sliding window and the 

computational complexity. Section IV presents some simulated 

and real-measured radar data processing results and gives 

discussions and comparisons to validate the proposed algorithm. 

Finally, some conclusions are drawn in Section V. 

II. RECEIVING SIGNAL MODEL

Assume that the side-looking SEWR system has N  spatial 

channels uniformly distributed along the azimuth dimension, as 

shown in Fig. 1, where an arbitrary ground scatter 
,r iP is 

considered in an O-XYZ Cartesian coordinate, with X-axis 

denoting the radar motion trajectory with an along-track 

velocity of 
pv , Y-axis corresponding to the range coordinate, 

and Z-axis satisfying the left-hand coordinate rule with the 

platform height denoted by H . In Fig. 1, Td denotes the

distance between the transmitting channel center and the first 

receiving channel center, and  1 nd n d , ( 2,3, ,n N ),

corresponds to the physical baseline between the n th receiving 

channel center and the first receiving channel center, with d  
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being the physical distance between two adjacent channels. For 

a random ground scatter point 
,r iP , the angles  r and i

denote, respectively, the elevation angle and azimuth angle 

with respect to the radar antenna array, and  0 cos  rR H

refers to the initial slant range. 

pv

H
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i
x

y

z

……
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Rx

Tx

Td2d
1Nd 

Nd

Receiver positions
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Fig. 1. 3-D geometric relationship between the spaceborne multi-channel radar 

platform and a ground static scatter point. 

For a SEWR system, the whole antenna aperture will usually 

be adopted to transmit the radar signal in order to increase the 

radar power-aperture product [32]-[35], thus improving the 

weak moving target detection performance. It is different from 

the typical multi-channel high-resolution wide-swath (HRWS) 

synthetic aperture radar (SAR) imaging system [36]-[39] or 

SAR ground moving target indication (SAR-GMTI) system 

[40]-[44]. Then according to Fig. 1, the two-way slant range of 

,r iP  with respect to the nth receiving channel, denoted by 

 , ,n r i mR t , is given by
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  (1) 

where mt denotes the azimuth slow-time variable. By using the 

second-order Taylor series expansion,  , ,n r i mR t  in (1) can be 

approximately expressed as 

 
 
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 (2) 

Suppose that a linear frequency modulated (LFM) signal is 

adopted as the baseband waveform, i.e., 

     2exp exp 2 c

p

t
p t rect j t j f t

T
 

 
  

 
 

  (3) 

where  rect  is a rectangle window and equals to 1 for

0.5  , and 0, otherwise. The other symbols t , pT ,  , and 

cf denote the fast-time variable, pulse duration, chirp rate, and 

carrier frequency of transmitting radar waveform, respectively. 

Assuming that the radar returns of the range ring with 

range r on the ground are composed of DN clutter patches 

with different Doppler centers. Then, after applying the 

range compression, the received baseband signal with 

respect to the nth receiving channel can be noted as 

   
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

(4) 

where B  denotes the transmitting signal bandwidth, c refers 

to the speed of light,   corresponds to the signal 

wavelength, and ,r i  is the synthetic transmitting-receiving 

two-way antenna pattern related to the i th clutter patch, 

where the receiving azimuth pattern exhibits the large 

main-lobe width because of the spatial channel division. 

Based on the radar equation [45], the range-compressed 

signal amplitude, denoted by ,r iA , is 

 

0 2

, ,

, 3 4

,4

av T R n r i gr a PRT

r i

r i s

P G G BT
A

R L

   


  (5) 

where avP denotes the transmitting average power, TG

denotes the transmitting antenna gain, ,R nG  is the receiving 

antenna gain of the nth spatial sub-channel, 0

, r i
 corresponds 

to the backscatter coefficient of the i th clutter patch, 

2 cos gr rc B  denotes the range resolution projected 

along the ground ( r refers to the grazing angle), a

denotes the azimuth resolution, PRTT  is the pulse repetition 

time (PRT), and sL is the radar system loss, which is the 

sum of some energy loss terms, such as transmitting link 

loss, atmospheric propagation loss, ionospheric loss, 

sampling loss, etc. It should be noted that, different from the 

signal-to-noise ratio (SNR) of a moving target, the clutter 

power after range-azimuth compression has no relationship 

with the integration time because the short observation time 

will lead to the coarse azimuth resolution. 

In practice, due to the coverage rate restriction in a wide 

searching mode, the beam dwell time of a SEWR system is 

usually provided as 10~50 ms level [32]-[35], [46]; then 

clutter range migration can be ignored during the relatively 

short observation time, and the last two terms in (4) can be 

approximately compensated by using the known radar 
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system parameters, with the chirp-compensated signal given 

by 

   
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

(6) 

Obviously, it can be observed from (6) that the temporal and 

spatial vectors of scatter ,r iP are, respectively, expressed as 

  , , , ,exp 2 0,1, , 1
T

t r i PRT a r ia j T f K     (7) 

  , . , ,exp 2 0,1, , 1
T

s r i s r ia j f d N          (8) 

where “T” denotes the transpose operation, K is the pulse 

number, , ,

2
sin cos

p

a r i r i

v
f  


  represents the Doppler 

frequency of this scatter, and , ,

sin cosr i

s r if
 


 corresponds

to the spatial frequency. 

Based on (7) and (8), the clutter temporal-spatial vector can 

be written as 

, , , , , .t s r i t r i s r ia a a           (9) 

where “ ” denotes the Kronecker product. 

Fig. 2. Sketch map of range ambiguity. 

In addition, in order to provide the large-scale area of clean 

zone with the MTI mode, especially for the air moving target 

detection mode, the pulse repetition frequency (PRF) of 

transmitting radar signal is relatively high in order to enlarge 

the clean zone and avoid the repetitive target detection blind. 

Then, the range ambiguity may easily appear when the 

main-lobe beam of SEWR points to the far distance. 

At this time, the clutter returns in a given range bin are 

composed of multiple range ambiguity components, and rns in 

(6) should be modified as
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  (10) 

where , ,l r iA , , ,l r i , 
,l r

, and 
,l i denote, respectively, the

signal amplitude in the range-compressed domain, synthetic 

transmitting-receiving antenna pattern, elevation angle, and 

azimuth angle of the lth range ambiguity component, as shown 

in Fig. 2. In addition, the Doppler center ambiguity is 

considered in (10) because Doppler center frequencies of 

different clutter patches with different cone angles have been 

automatically folded into the baseband frequency of 

2 ~ 2PRF PRF . 

After performing the Fourier transform on (10) with respect 

to tm, one has 

   

 

 

2

1

, , , , 0

1

, ,

, ,

0

, , , ,

2
sinc

2
sinc sin cos

sin cos4
exp

2 2

m

D

rn n a t rn n m

L N

azi l r i l r i

l L i

p

PRT a l r l i

l r l i T nPRT

S r d f s r d t

B
G A r R

c

v
KT f

d dlcTj
R



 


 



 

   

 
    

 

  
   

   

   
     

   

 

F

(11) 

where 
mt

F  denotes the azimuth Fourier transform operation,

aziG is the azimuth compression gain, and af corresponds to

the Doppler frequency. It can be clearly seen from (11) that 

Doppler localization operation has significantly decreased the 

clutter’s degree of freedom, and Doppler frequency af keeps 

one-to-one correspondence with the spatial cone angle, which 

is beneficial to the subsequent clutter suppression. In addition, 

the large azimuth antenna size is usually present in a SEWR 

system in order to improve the minimum detectable velocity 

(MDV) performance of an air moving target, and then relative

to range ambiguity, Doppler center ambiguity influences

corresponding to the ground scatters with the large spatial cone

angles can be ignored due to the azimuth deeply weighting.

For the same reason, after performing the Fourier transform 

along spatial domain, the clutter signal in the angle-Doppler 

domain is given in (12) 
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where 
ndF denotes the Fourier transform operation with respect 

to nd and sf denotes the spatial frequency, and spatG

represents the compression gain along spatial dimension. 

Clearly, from (12), one can see that, the clutter components will 

be distributed as an oblique trajectory in the angle-Doppler 

plane, where the more number of transmitting pulses and 

spatial channels, the more concentrated the clutter distribution 

is. In addition, for a moving target with a fixed Doppler and 

spatial angle, it can be represented as a point in s af f plane,

and this property provides the solution to filter the troubled 

clutter based on the 2-D dimension-reduced processing. 

III. PROPOSED ALGORITHM DESCRIPTION

Due to the high-speed motion of a spaceborne platform, the 

broadened clutter will severely mask the moving targets, 

especially for slow-speed and weak targets. In addition, due to 

the wide-scan requirements with respect to the wide-scale 

scene of interest, the real-time processing in a SEWR system 

becomes necessary; thus, the effective and efficient clutter 

suppression technique is the key factor to accomplish the 

moving target detection and tracking in a SEWR system. In the 

following, let us first briefly introduce the traditional clutter 

suppression algorithms in a multi-channel radar configuration.  

A. Traditional STAP Algorithm

1) Optimal STAP

By exploiting the 2-D temporal and spatial coupling property

of clutter signal, the full-dimensional optimal STAP can 

effectively suppress the main-lobe clutter components based on 

the 2-D adaptive filtering processing with the retention of 

moving target signal, i.e., 

min

s.t . 1

H

opt cn opt

H

opt target

w R w

w a




  
      (13) 

where “H” denotes the conjugate transpose operation, optw

denotes the clutter suppression weight vector, cnR is the 

covariance matrix constructed by clutter and noise components, 

which can be obtained based on the i.i.d. samples along range 

dimension. targeta  is the target temporal-spatial steering vector 

with the form of 

  
  

,

,

exp 2 0,1, , 1

exp 2 0,1, , 1





   

   

T

target PRT a target

T

s target

a j T f K

j d f N
   (14) 

where 
,a targetf  and 

,s targetf  denote the Doppler frequency and 

the spatial frequency of this moving target, respectively. 

Usually, for a SEWR system, 
,s targetf  can be preset according to 

the elevation and azimuth angles of radar beam center position. 

It is because that the observed target with weak radar 

reflectivity can be effectively captured by the radar main-lobe 

in an early warning radar system with the large antenna 

aperture, which is different from the spatial mismatch 

processing in a multi-channel SAR-GMTI system.  

By using the Lagrange multiplier method, the optimal clutter 

suppression weight vector in (13), also referred to the Capon 

weight estimation, can be calculated as 
1

1






cn target

opt H

target cn target

R a
w

a R a
     (15) 

Considering that the size of clutter covariance matrix in (13) 

and (15) is NK NK , the computational complexity of the 

full-dimensional optimal STAP will rapidly increase with the 

increase of pulse number and spatial channel number, which is 

impracticable in engineering applications due to the strict 

requirements of real-time processing in a SEWR system. 

Additionally, the large clutter degree of freedom indicates that 

more i.i.d. training samples are required in order to realize the 

accurate estimation of full-dimensional covariance matrix, 

which may not be easily achieved because the ground clutter 

patch within a wide main-lobe beam footprint may exhibit 

inhomogeneity [29], [31]. Therefore, the dimension-reduced 

STAP techniques are crucial to the practical engineering 

applications in a multi-channel SEWR system.  

2) Filter-then-Adapt Algorithm

The filter-then-adapt algorithm in [26] is a typical

dimension-reduced STAP algorithm, which effectively 

decreases the clutter degree of freedom by implementing the 

clutter Doppler localization operation. To improve the clutter 

suppression performance, the time-domain degree of freedom 

is added via the pulse delay operation, and thus multiple sets of 

temporal-spatial echoes can be obtained. After Doppler 

localization processing, the clutter suppression can be finally 

accomplished via the joint adaptive processing in the 

post-Doppler domain, as shown in Fig. 3. In addition, the 

influence of spectrum leakage caused by DFT is mitigated due 

to the fact that the signal components with different Doppler 

frequencies are differentiated when the time-domain sliding 

window is applied, further improving the clutter suppression 

performance. 
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Fig. 3. Processing architecture of F$A algorithm.
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Assuming that the size of the time-domain window sliding is 

3, and then the size of clutter covariance matrix reduces into 

3 3N N , in contrast to NK NK  by using the 

full-dimensional STAP technique; thus its computational 

complexity is considerably decreased and the requirement of 

i.i.d. samples is dropped to 6N . Although the time-domain

degree of freedom is effectively added without increasing the

integration time, the computational burden is still relatively

high, especially for a large antenna array with more azimuth

spatial channels [46], which may be detrimental for the

real-time processing in a warning surveillance radar system

with high requirement of coverage rate.

B. Proposed Algorithm

As aforementioned, the joint dimension-reduced adaptive

processing algorithms achieve low computational complexity 

via 2-D angle-Doppler localization processing. However, after 

performing the 2-D DFT, the clutter components will be 

broadened in the angle-Doppler domain due to the signal 

truncation as shown in (12), leading to the spectrum leakage. 

Obviously, the side-lobe signal leakage from the other clutter 

regions will increase the degree of freedom of the current 

clutter component, causing the clutter suppression performance 

degradation. It should be noted that the 2-D weighted DFT is 

difficult to achieve ideal performance due to the fact that the 

weighted DFT will cause the main-lobe broadening, especially 

for the spatial angle domain because the number of spatial 

receiving channels is usually less than the number of 

transmitting pulses. To solve this problem, the sliding window 

can be utilized to differentiate the components with different 

Doppler and spatial frequencies, benefitting to the subsequent 

adaptive clutter filtering. 

In the following, the proposed algorithm is introduced, 

which extends the time-domain sliding window to the 

spatial-temporal 2-D sliding window, and transforms the 

range-compressed data into the angle-Doppler domain. 

Suppose that the spatial-temporal echo data contains N  spatial 

receiving channels and K  temporal pulses, and the data 

corresponding to the r th range ring, the n th receiving channel, 

and the k th pulse is denoted as , ,r n kx . Suppose that the times 

of space-domain window slide and time-domain window slide 

are P  and Q , respectively. Therefore, the spatial-temporal 

data matrix corresponding to the p th space-domain sliding 

window (1 p P ) and the q th time-domain sliding window 

( 1 q Q ) is composed of the data in the p th to 

  thN P p  receiving channels and the q th to 

  thK Q q  pulses, as shown in Fig. 4.

,1,1 ,1,2 ,1,

,2,1 ,2,2 ,2,

, , , , 1 , ,

, 1, , 1, 1 , 1,

, , , , 1 , ,

, ,1 , ,2 , ,

  

     
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 
 
 
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 
 
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r r r K
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r N r N r N K

x x x

x x x

x x x

x x x

x x x

x x x

Fig. 4. Sketch map of spatial-temporal 2-D sliding window.

The data matrix corresponding to the p th space-domain 

sliding window and the q th time-domain sliding window can 

be expressed as 

, , , , 1 , ,

, 1, , 1, 1 , 1,

, ,

, , , , 1 , ,

  

     

        

 
 
 
 
 
 

r p q r p q r p K Q q

r p q r p q r p K Q q

r p q

r N P p q r N P p q r N P p K Q q

x x x

x x x
X

x x x

 (16) 

After performing the 2-D DFT, the spatial-temporal data in 

(16) is transformed into the angle-Doppler domain, realizing

the dimension reduction both in space domain and time domain.

Suppose that the position to be detected is located at the 'u th

angle gate ( 1 ' 1   u N P ) and the 'v th Doppler gate

( 1 ' 1   v K Q ). Let  ' 1 2   u u N P , and 

 ' 1 2   v v K Q . Then the relationship between u and sf , 

v and af can be, respectively, expressed as 

   1 , 1s PRT au N P d f v K Q T f          (17) 

Then, the echo signal in the angle-Doppler domain is  

 

 , ,

, ,

0 0

1, 1

,
exp 2

1 1

r p q
K QN P

r p q

n k

X n k

y u v un vk
j

N P K Q




 

  
 

    
     

      

 

(18) 

where  , , 1, 1 r p qX n k  means the element at the (n+1)th row 

and the (k+1)th column. 

Assume that 2-D sliding window is performed M  times in a 

specific mode ( M PQ ) (the architecture of sliding window 

trajectory is discussed in Section III-C). The symbols p  and q  

corresponding to the m th spatial-temporal 2-D sliding window 

are denoted as mp and mq , respectively. Then the data vector 

of the r th range ring in this sliding window mode is noted as 
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 

 

1 1, ,

, ,

, ,

,

,
M M

r p q

r u v

r p q

y u v

Y

y u v

 
 

  
 
 

   (19) 

The dimension-reduced clutter and noise covariance matrix 

can be expressed as 

, , , , , ,

1

1ˆ



 
Y

i i

N
H

cn u v r u v r u v

iY

R Y Y
N

(20) 

where YN is the number of training samples along range

dimension, and ir denotes the index of range ring 

corresponding to the i th training sample. 

Then, the clutter suppression weight vector can be calculated 

via the following cost function: 

, , , ,

, , ,

ˆmin

s. t . 1






 

 

H

u v cn u v u v

H

u v target u v

w R w

w a
   (21) 

where , ,target u va  denotes the target steering vector, i.e. 

   

   

   

, ,

2 1 , 2 1 ,

1 , 1 ,

1 1

1

exp 2 2
1

exp 2 2

1

exp 2 2
1 1

target u v

s target PRT a target

M s target M PRT a target

M M

a

j p p df j q q T f

j p p df j q q T f

p p u q q v
j j

N P K Q

 

 

 

 
 

     
  
 
      

 
 
 
 
 

   
       

(22) 

It should be noted that different from the traditional STAP 

algorithms, only one angle-Doppler channel is exploited for 

each set of data obtained by 2-D sliding window, and thus, the 

target steering vector of each set of data is 1. The total target 

steering vector , ,target u va  only contains the spatial-temporal 

phase difference between these sets of data, which can be 

obtained from the relationship between the echo signal 

corresponding to the 1st 2-D sliding window and that 

corresponding to the m th 2-D sliding window, i.e. 

   

   

 

, 2D ,

,1 1

1

, , , ,

, , exp 2

exp 2

rn m s a rn m n m

rn s a m sa

m PRT a

S r f f s r d t

S r f f j p p df

j q q T f





   

   

   

F

 (23) 

where ,rn ms  and ,rn mS  denote the echo signals corresponding to 

the mth 2-D sliding window in the space-time domain and in the 

angle-Doppler domain, respectively, and 2 DF represents the

2-D Fourier transform operation.

In addition, it can be observed from (22) and (23) that, the

clutter components with different spatial frequencies and 

Doppler frequencies will exhibit different steering vectors from 

the target steering vector , ,target u va . Therefore, the leakage 

component effects can be alleviated since the spatial-temporal 

vector mismatch with respect to the leakage clutter components 

occurs, and then the adaptive clutter filtering in (21) can 

effectively suppress the leakage components, improving the 

clutter cancelation robustness under the low angle-Doppler 

resolution case. The processing architecture of the proposed

algorithm is shown in Fig. 5. 
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Fig. 5. Processing architecture of the proposed algorithm.

The clutter suppression weight vector can be, then, obtained 

as 
1

, , , ,

, H 1

, , , , , ,

ˆ

ˆ






cn u v target u v

u v

target u v cn u v target u v

R a
w

a R a
  (24) 

According to (18)~(20), (22), and (24), the clutter 

suppression weight vector of each detected position can be 

calculated, and the clutter suppression result can be finally 

given by 

H

, , , , ,r u v u v r u vz w Y    (25) 

By traversing the Doppler channels to be detected, the 

detection results with respect to each target radial velocity can 

be obtained, realizing the moving target detection. The 

relationship between the target spatial frequency and the target 

spatial angles can be noted as , sin cos  s target target targetf , 

where target  and target  denote the target elevation angle and 

azimuth angle with respect to the radar antenna array, 
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respectively. Obviously, when the radar main beam works in a 

side-looking mode, i.e. 90  target , one has , 0s targetf . 

Space-time echo data
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2-D DFT
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Clutter suppression
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Doppler

Angle

Doppler
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Fig. 6. Flow chart of the proposed algorithm.

The flow chart of the proposed algorithm is shown in Fig. 6, 

and the procedures of the proposed algorithm are mainly 

summarized in Table 1. 

Table 1 Procedures of the proposed algorithm 

Step 1) Obtain M  sets of spatial-temporal data by sliding the spatial-temporal 

2-D sliding window for M  times.

Step 2) Transform these M  sets of spatial-temporal data into the

angle-Doppler domain by using 2-D DFT.

Initialize the current angle-Doppler gate as the 
0u th angle gate and the 

0v th 

Doppler gate. 

Repeat 

Step 3) Construct the data vector and estimate the clutter covariance matrix 

based on the range i.i.d training samples. 

Step 4) Calculate the clutter suppression weight vector and obtain the clutter 

suppression result. 

Step 5) Process the next angle-Doppler gate. 

Until all the angle-Doppler gates to be detected are processed. 

Output the processing results. 

Remark: According to the principle of the proposed method, 

it is apparent that, when 1P  and 1Q , the proposed method 

reduces into the simple 2-D DFT based angle-Doppler domain 

method, which is computationally efficient at the sacrifice of 

clutter spatial filtering performance (see the processing results 

in Section IV-B). When P N  and 1Q , the proposed 

method reduces to a well-known post-Doppler method named 

factored-STAP [25] since the DFT processing along spatial 

domain is invalid. When P N  and 3Q , the proposed 

method reduces to the famous F$A method [26] since multiple 

sets of temporal-spatial data are applied to realize the jointly 

adaptive processing. In addition, when P N  and Q K , the 

proposed method is the same as that of the whole-dimensional 

STAP. Therefore, the 2-D DFT based STAP algorithm, the 

factored-STAP algorithm, the F$A algorithm, and the 

whole-dimensional STAP algorithm are the special cases of the 

proposed method. It should be noted that when the target spatial 

steering vector mismatch is present in (24), the proposed 

method will suffer from the target detection performance 

degradation, which is analyzed in Appendix. 

C. Sliding Window Modes

In this section, the sliding window modes are discussed.

Suppose that the times of space-domain window sliding and 

time-domain window sliding are P  and Q , respectively, and 

P Q sets of spatial-temporal data can be obtained (see Fig. 4). 

Two modes of window sliding will be defined in the following.

Mode 1: Utilize the whole P Q  sets of spatial-temporal data 

to realize the joint data processing, i.e.,  M P Q . For 

simplicity, suppose that 3 P Q , and the sketch map of this 

sliding window mode is shown in Fig. 7. The dimension of 

covariance matrix becomes PQ PQ , and the proposed 

algorithm in this mode is defined as , ,2 DSW P Q  for simplicity. 
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Fig. 7. Sketch map of 
,3,32DSW .

Then the data vector corresponding to the r th range ring can 

be expressed as 

 

 
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r

r Q

r

r u v

r Q

r P

r P Q

y u v

y u v

y u v

Y
y u v

y u v

y u v

 (26) 

Mode 2: Assume that 1  M P Q . For simplicity, 

suppose that 3 P Q , and the sketch map of sliding window 

mode is shown in Fig. 8. The dimension of covariance matrix is 

   1 1    P Q P Q now, and the proposed algorithm in 

this mode is defined as , ,2 DSW P Q . 
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Fig. 8. Sketch map of 
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.

The data vector corresponding to the r th range ring in this 

mode can be expressed as 
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   (27) 

where     denotes the rounding down operation.

The clutter suppression performance corresponding to these 

two sliding window modes will be analyzed in Section IV. 

D. Computational Complexity Analysis

In this section, we compare the computational complexity of

the proposed algorithm with some typical STAP algorithms, 

such as full-dimensional optimal STAP [11], factored approach 

(FA) [25], order-2 EFA [25], F$A [26], JDL [29], STMB [31], 

and ΣΔ-STAP [27]. For these STAP based algorithms, the main 

time-consuming computations include the Fourier transform, 

covariance matrix estimation, clutter suppression weight vector 

calculation, and clutter suppression. Suppose that the numbers 

of pulses, spatial channels, and range training samples are 

denoted by K , N , and YN , respectively. For the JDL 

algorithm, assume that the size of localized processing region is 

3 3 . For the STMB algorithm, the number of spatial auxiliary 

channels and the number of temporal auxiliary channels are 

chosen as 2 and 2, respectively. And for the proposed algorithm, 

,3,32 DSW  is taken as an example (see the sketch map in Fig. 

8). The detailed computational costs of these algorithms are 

listed in Table 2, where it is clearly observed that although the 

optimal STAP possesses the optimal clutter suppression quality 

at the case of enough i.i.d. samples, it is extremely 

time-consuming. After implementing the Doppler localization, 

the FA, order-2 EFA, and F$A algorithms have the moderate 

computational complexities. Compared to the above algorithms, 

the JDL, the STMB, and the proposed algorithm are 

computationally efficient because these algorithms usually 

exhibit lower clutter degree of freedom after performing the 

clutter localization along both temporal and spatial dimensions. 

Table 2 Computational costs of typical STAP algorithms 

Data domain 

transformation 

Covariance 

matrix 

estimation 

Clutter 

suppression 

weight 

vector 

calculation 

Clutter 

suppression 

Optimal 

STAP 
/  

2

YNK N
 

 

3

2

3



NK

NK K
  YNK N K
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2log
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YN NK
K
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YN N K
3
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3



N K

N K
YNN K

Order-2 

EFA 2log
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YN NK
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 
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3 YN N K  

 

3

2

3 3

3

N K

N K
3 YNN K
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3
log

2

YN NK
K

 
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3 YN N K  

 
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2

3 3

3

N K

N K
3 YNN K
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log
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3
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2
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Y
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N NK
N

N K
K

29 YN K
3

2
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



K

K
9 YN K
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2
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log
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2


Y
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N NK
N

N K
K

25 YN K
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



K

K
5 YN K

ΣΔ-STAP 2logYN K K 26 YN K

3

2

3 6
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



K

K
6 YN K
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log
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
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Suppose that the number of training samples is 200. After 

1000 Monte Carlo simulations, the curves of the computational 

load and the simulated running time varying with the numbers 

of pulses and spatial channels are shown in Fig. 9 and Fig. 10, 

respectively, where N  is set as 16 in Fig. 9(a) and Fig. 10(a), 

K  is set as 90 in Fig. 9(b) and Fig. 10(b) (The processor of our 

computer is: Intel Core i7-9750H CPU at 2.6 GHz, and the 

RAM is 8 GB). From the figures, it is observed that the 

computational load of the order-2 EFA is close to that of F$A 

algorithm with three taps. In addition, the computational loads 

of the JDL, the STMB, the ΣΔ-STAP, and the proposed 

algorithm are lower than those of the other algorithms, which is 

beneficial for real-time processing in a SEWR system. 

Furthermore, the proposed algorithm exhibits better clutter 

suppression performance than those of JDL, STMB and 

ΣΔ-STAP algorithms, which will be analyzed in Section IV. As 

a conclusion, the proposed algorithm can achieve a well 

balance with the consideration of computational complexity 

and clutter suppression performance. 

0196-2892 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Accepted Manuscript 
Version of record at: : https://doi.org/10.1109/TGRS.2022.314



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3144668, IEEE
Transactions on Geoscience and Remote Sensing

10 

(a)  (b) 

Fig. 9. Computational load curves of the proposed algorithm and typical STAP algorithms. (a) Computational load curves varying with the number of pulses. (b) 

Computational load curves varying with the number of spatial channels. 

(a)  (b) 

Fig. 10. Running time curves of the proposed algorithm and typical STAP algorithms. (a) Running time curves varying with the number of pulses. (b) Running time 

curves varying with the number of spatial channels. 

IV. SIMULATED AND REAL-MEASURED DATA ANALYSIS

A. Simulation Results

In this section, the clutter suppression performance of the

proposed algorithm is analyzed according to the simulation 

results. In this simulation, the L-band SEWR works in a 

side-looking mode, and the radar system parameters refer to the 

American large L-band space-based radar (LLSBR) project in 

[46], as listed in Table 3 and Table 4. In addition, the desert 

terrain is chosen as the observation scene, which is modeled by 

the Morchin model [47] with the consideration of the Rayleigh 

distribution. The target parameters are shown in Table 5. 

Table 3 Radar system parameters 

Platform height 508 km 

Radar frequency 1.26 GHz 

Range bandwidth 3 MHz 

Range sampling frequency 3.6 MHz 

Receiver noise bandwidth 3.6 MHz 

Pulse repetition frequency 3000 Hz 

Number of pulses in a CPI 90 

Elevation angle of beam center 45° 

Azimuth angle of beam center 90° 

Average transmitting power 4 kW 

Number of spatial receiving channels 16 

Channel amplitude error 0.5 dB (3σ) 

Channel phase error 5° (3σ) 

Noise factor 2 dB 

System loss 11 dB 

Table 4 Antenna parameters 

Antenna installation angle 45° 

Azimuth antenna size 50 m 

Elevation antenna size 2 m 

Transmitting antenna gain 42.1 dB 

Receiving antenna gain 42.1 dB 

Transmitting azimuth and elevation weighting 
-13 dB/-13 dB

(rectangle weighting) 

Receiving azimuth and elevation weighting 
-40 dB/-20 dB

(Chebyshev weighting) 

Table 5 Target parameters 

Range gate number Radar cross section Radial velocity 

Target 1 500 20 m2 20 m/s 

Target 2 600 20 m2 50 m/s 

Target 3 700 20 m2 100 m/s 

Fig. 11~Fig. 13 show the range-Doppler spectrum, the 

averaged Doppler spectrum, and the power spectrum of the 

simulated clutter scene. From Fig. 11, it can be seen that, due to 

the high-speed motion of radar platform, the clutter Doppler 

spectrum broadens severely, where the main-lobe clutter width 

is calculated as 265 Hz, which is close to the theoretical value 

of 282 Hz according to the radar system parameters listed in 

Table 3 and Table 4. After performing the amplitude averaging 

on Fig. 11 along range dimension, the shape of the 

range-averaged clutter power shown in Fig. 12 is modulated by 

the transmitting and receiving two-way antenna patterns, where 

the first pair of side-lobe levels are about 13.2 dB lower than 
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the main-lobe clutter level, indicating that the contribution of 

receiving antenna pattern is much smaller than that of 

transmitting one since the received antenna panel is divided 

into 16 sub-channels along azimuth. That is to say, when a 

moving target is close to the main-lobe clutter regions or the 

neighbor side-lobe clutter regions, the two-way antenna pattern 

weighting may not be sufficient to decrease the clutter power, 

i.e., the moving target signal should compete with the strong

clutter components with a preset detection threshold,

significantly degrading the moving target output SCNR.

Therefore, in order to improve the SEWR detection

performance, the effective clutter suppression becomes

necessary. From the space-time power spectrum in Fig. 13, the

multi-channel clutter is represented as an oblique line in the

2-D angle-Doppler plane, indicating that the efficient and

effective clutter filtering in the angle-Doppler domain becomes

possible.

Fig. 11. Range-Doppler spectrum of the simulated clutter. 

Fig. 12. Averaged Doppler spectrum of the simulated clutter. 

Fig. 13. Space-time power spectrum of the simulated clutter.
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(c)                                                                                                                               (d) 

Fig. 14. Processing results by using the non-adaptively spatial synthesizing technique with respect to these 16 spatial sub-channels. (a) Range-Doppler spectrum. (b) 

1-D slice with respect to the 500th range gate. (c) 1-D Doppler slice figure with respect to the 600th range gate. (d) 1-D slice with respect to the 700th range gate.

Fig. 14 shows the non-adaptively spatial synthesizing results 

with respect to these 16-channel radar data, including the 

range-Doppler spectrum and the Doppler slice figures 

associated with the 500th, 600th, and 700th range gates. 

Obviously, due to the platform high-speed motion, the clutter 

suppression performance is not satisfied and the slow-moving 

targets cannot be effectively detected in the main-lobe clutter 

region, although the side-lobe clutter level is suppressed by the 

transmitting and receiving two-way antenna patterns. Therefore, 

for the moving target detection in a SEWR system, only 

applying the deeply weighting technique on receiving antenna 

pattern (the transmitting antenna pattern usually involves the 

uniform weight in order to improve the transmitting power of a 

SERW system) to realize the weak target detection may be 

invalid in the case of the broadened main-lobe clutter, which 

means that the application of STAP technique is necessary for 

the moving target detection in a SERW system. 

After using the proposed 2DSW+,3,3 algorithm, the 

range-Doppler spectrum and the 1-D Doppler slice figures of 

the 500th, 600th, and 700th range gates are shown in Fig. 15(a) 

~ Fig. 15(d), respectively. From the figures, it can be clearly

observed that, most of the main-lobe clutter components are 

suppressed effectively, and these three moving targets can be 

effectively detected, with the output SNRs listed in Table 6. 

The statistical output SNRs are close to the ideal ones 

calculated according to the parameters in Table 3~Table 5, 

indicating that the target output power is effectively retained. It 

should be noted that the output SNRs of target 2 and target 3 are 

slightly lower than the ideal ones due to the picket fence effect. 

In addition, the clutter component in the radar beam center 

position is also retained in order to keep the target output power 

as much as possible, which is different from the spatial 

mismatch processing in a multichannel SAR-GMTI system. 

Table 6 Target output SNRs and ideal SNRs 

Targets Output SNR Ideal SNR 

Target 1 25.6 dB 26.0 dB 

Target 2 23.3 dB 25.9 dB 

Target 3 23.2 dB 25.7 dB 
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(c)        (d) 

Fig. 15. Processing results by using the proposed 
,3,32DSW

algorithm. (a) Range-Doppler spectrum. (b) 1-D Doppler slice figure of the 500th range gate. (c) 1-D 

Doppler slice figure of the 600th range gate. (d) 1-D Doppler slice figure of the 700th range gate. 

B. Detection Performance Analysis

In this section, the clutter suppression performances of

different STAP algorithms will be comparatively analyzed 

according to the simulated data with the same parameters as 

those listed in Table 3 and Table 4. The clutter suppression 

performance is evaluated by applying the SCNR as the 

evaluating indicator. 

1) Comparisons of Different Sliding Window Modes

Fig. 16 shows the target output SCNR curves by using the

2DSW□,3,3 and 2DSW+,3,3, where Fig. 16(b) is the local enlarged 

figure of Fig. 16(a). The average output SCNRs for target radial 

velocities of 20~50 m/s (regarded as slow-moving target) and 

50~170 m/s (regarded as medium- and fast-moving target) are 

listed in Table 7. From Fig. 16 and Table 7, it can be seen that, 

the target detection performance of 2DSW+,3,3 is approximately 

the same as that of 2DSW□,3,3 (the output SCNR difference 

between these two algorithms is lower than 0.2 dB). However, 

compared with 2DSW□,3,3, the covariance matrix dimension of 

2DSW+,3,3 decreases from 9×9 to 5×5, indicating that the 

second sliding window mode may be more suitable for the 

real-time processing in a SEWR system. 

(a)      (b) 

Fig. 16. Output SCNR curves by using the proposed 
,3,32DSW  and 

,3,32DSW
. (a) Output SCNR curves. (b) Local enlarged figure of Fig. 16(a). 

Table 7 Output SCNRs 

Methods 
Average SCNR for a 

slow-moving target 

Average SCNR for a medium- 

and fast-moving target 

,3,32DSW 23.96 dB 25.46 dB 

,3,32DSW 23.79 dB 25.41 dB 

Fig. 17 shows the SCNR curves by using 2DSW+,5,5, 

2DSW+,5,3, 2DSW+,3,5, 2DSW+,3,3, and 2DSW+,1,1. It can be 

observed from Fig. 17 that, the 2DSW+,1,1 algorithm without 

applying the spatial-temporal 2-D sliding window, exhibits an 

unacceptable clutter filtering performance, indicating the 

advantage of the proposed 2-D sliding window based STAP 

method. In addition, the influence of the window sliding times 

on the clutter suppression performance is relatively small, and 

the increase of spatial and temporal window sliding times will 

slightly improve the target detection performance for a 

slow-moving target, as listed in Table 8. As for a medium- or 

fast-moving target, the target output SCNRs are approximately 

the same with the increase of window sliding times. However, 

with the increasing of the value of time-domain sliding times Q, 

the computational load is increased. As a result, the 2DSW+,3,3 

algorithm usually provides the adequate performance for the 

general case, and the 2DSW+,5,3 algorithm can be chosen when 

the spatial receiving channels are enough (i.e. more than 5 
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spatial receiving channels are required to accomplish the spatial window sliding processing). 

(a)           (b) 

Fig. 17. Output SCNR curves by using 
,5,52DSW

, 
,5,32DSW

, 
,3,52DSW

, 
,3,32DSW

, and 
,1,12DSW

. (a) Output SCNR curves. (b) Local enlarged figure of 

Fig. 17(a).

Table 8 Output SCNRs 

Methods 
Average SCNR for a 

slow-moving target 

Average SCNR for a medium- 

and fast-moving target 

,5,52DSW 24.37 dB 25.23 dB 

,5,32DSW 24.19 dB 25.24 dB 

,3,52DSW 23.90 dB 25.40 dB 

,3,32DSW 23.79 dB 25.41 dB 

,1,12DSW 21.04 dB 23.80 dB 

2) Comparisons of Different STAP Algorithms

In this section, the clutter suppression performances of

2DSW+,5,3, F$A [26], order-2 EFA [25], JDL3×3 [29], STMB2+4 

[31], ΣΔ-STAP [27], eigencanceler [19], and optimal STAP [11] 

are compared via evaluating the target output SCNR. Firstly, 

the influence of clutter-to-noise ratio (CNR) on the clutter 

suppression performance of these STAP algorithms is analyzed 

in the following. 

a) Influence of CNR

Fig. 18 shows the SCNR curves by using 2DSW+,5,3, F$A,

order-2 EFA, JDL3×3, STMB2+4, ΣΔ-STAP, eigencanceler, and 

optimal STAP where the desert terrain (a relatively low CNR) 

is chosen as the observation scene. It should be noted that the 

available training samples are not enough for the optimal STAP 

to utilize the full space-time aperture. Therefore, the space-time 

aperture is reduced when the optimal STAP is applied. Clearly, 

it can be observed that the performances of 2DSW+,5,3, F$A, 

order-2 EFA, eigencanceler, and optimal STAP are relatively 

robust, while the performances of JDL3×3, STMB2+4, and 

ΣΔ-STAP are influenced by the clutter side-lobe to a certain 

extent. The performance of ΣΔ-STAP deteriorates obviously 

due to the lack of spatial freedom, as listed in Table 9. For the 

optimal STAP, the performance degrades when the provided 

i.i.d. training samples are not enough. In addition, the

covariance matrix dimension of 2DSW+,5,3 is 7×7, while the

covariance matrix dimensions of the other algorithms applied

in this simulation are 48×48 (F$A), 48×48 (order-2 EFA), 9×9

(JDL3×3), 7×7 (STMB2+4), and 6×6 (ΣΔ-STAP), respectively.

As for the eigencanceler, an eigen-decomposition processing

should be performed on a covariance matrix with the

dimensions of 1440×1440, indicating its high computational

load. As a result, the proposed algorithm can achieve a good

balance between the clutter suppression performance and the

computational complexity.

(a)   (b) 
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Fig. 18. Output SCNR curves by using the 
,5,32DSW

, F$A, order-2 EFA, 
3 3JDL 

, 
2 4STMB 

, ΣΔ-STAP, eigencanceler, and optimal STAP. (a) Output SCNR 

curves. (b) Local enlarged figure of Fig. 18(a). 

Table 9 Output SCNRs 

Methods 
Average SCNR for a 

slow-moving target 

Average SCNR for a medium- 

and fast-moving target 

,5,32DSW 24.19 dB 25.24 dB 

F$A 25.42 dB 25.90 dB 

Order-2 EFA 23.97 dB 24.57 dB 

3 3JDL  23.75 dB 24.16 dB 

2 4STMB  23.25 dB 24.51 dB 

ΣΔ-STAP 20.04 dB 23.70 dB 

Eigencanceler 25.78 dB 26.18 dB 

Optimal STAP 24.37 dB 24.86 dB 

Fig. 19 shows the SCNR curves by using 2DSW+,5,3, F$A, 

order-2 EFA, 3 3JDL  , STMB2+4, ΣΔ-STAP, eigencanceler, and 

optimal STAP, where the hill terrain (a relatively high CNR) is 

chosen as the observation scene. And Table 10 provides the 

average SCNRs of these algorithms. From the figures and table, 

it can be seen that the proposed 2DSW+,5,3 algorithm still has a 

good clutter suppression performance in this high CNR scene, 

while the performances of STMB2+4 and ΣΔ-STAP degrade 

significantly due to their limited clutter suppression capabilities. 

Therefore, the proposed algorithm exhibits the robustness to the 

different observed scene types. 

(a)           (b) 

Fig. 19. Output SCNR curves by using the 
,5,32DSW

, F$A, order-2 EFA, 
3 3JDL 

, 
2 4STMB 

, ΣΔ-STAP, eigencanceler, and optimal STAP. (a) Output SCNR 

curves. (b) Local enlarged figure of Fig. 19(a). 

Table 10 Output SCNRs 

Average SCNR for 

slow-moving target 

Average SCNR for medium- 

and fast-moving target 

,5,32DSW 23.87 dB 25.16 dB 

F$A 25.26 dB 25.89 dB 

Order-2 EFA 23.80 dB 24.25 dB 

3 3JDL  23.47 dB 23.39 dB 

2 4STMB  21.48 dB 22.95 dB 

ΣΔ-STAP 15.73 dB 21.54 dB 

Eigencanceler 25.42 dB 26.00 dB 

Optimal STAP 24.00 dB 24.73 dB 

b) Influence of the Number of Spatial Channels

Fig. 20. SCNRs varying with the number of channels after using 
,5,32DSW

, 

F$A, order-2 EFA, 
3 3JDL 

, 
2 4STMB 

, ΣΔ-STAP, eigencanceler, and optimal 

STAP.

Suppose that the target radial velocity is 50 m/s. Fig. 20 

shows the output SCNR curves by using 2DSW+,5,3, F$A, 

order-2 EFA, 3 3JDL  , 2 4STMB  , ΣΔ-STAP, eigencanceler, 

and optimal STAP. It can be observed that with the increase of 

spatial receiving channels, the target output SCNR increases 

due to the fact that the more the spatial receiving channels, the 

larger the target SNR as well as the better the clutter 

suppression performance. In addition, the SCNR variation 

tendencies of these algorithms are similar, due to the fact that 

all these algorithms are affected by the number of spatial 

receiving channels. 

C. Real-Measured Radar Data Analysis

Table 11 Airborne radar system parameters 

Radar frequency 2.3 GHz 

Number of pulses in a CPI 100 

Number of spatial receiving channels 5 

In this section, the clutter suppression performance of the 

proposed algorithm and the other typical dimension-reduced 

STAP algorithms will be comparatively analyzed according to 

a set of real-measured multi-channel radar data, which was 

recorded by an airborne surveillance radar system, with the 

system parameters listed in Table 11.  
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3) Comparison of Different STAP Algorithms

Fig. 21(a) and Fig. 21(b) show the range-Doppler spectrum

and power spectrum of this real-measured radar data, 

respectively. From the figures, we can see that the clutter 

spectrum is significantly broadened due to the platform motion, 

causing the moving target difficult to be detected; thus, the 

effective clutter suppression is necessary for the moving target 

detection in this real-measured airborne data. 

(a)                                                                                                            (b) 

Fig. 21. Multichannel real-measured data processing. (a) Range-Doppler spectrum of the real-measured airborne data. (b) Power spectrum of the real-measured 

clutter.

By applying the generalized inner product non-homogeneity 

detection (GIP NHD) [48]-[50] to realize the training sample 

selection, Fig. 22 shows the clutter suppression results by using 

the proposed ,3,32 DSW  algorithm, from which it can be 

observed that most of the main-lobe clutter components is 

effectively filtered by using the proposed algorithm and a 

moving target can be well detected by applying the constant 

false alarm rate (CFAR) technique. 

(a) (b)

Fig. 22. Range-Doppler spectrum by applying the proposed 
,3,32DSW

 algorithm. (a) Range-Doppler spectrum. (b) Mesh figure of range-Doppler spectrum.

After applying GIP NHD, Fig. 23 shows the clutter 

suppression results by using GIP NHD and ,3,32 DSW , F$A,

order-2 EFA, 3 3JDL  , 2 4STMB  , and ΣΔ-STAP algorithms, 

where Figs. 23(a), (c), (e), (g), (i), (k) are the 1-D Doppler slice 

figures of the clutter suppression results of the 118th range gate 

(i.e., the range gate where this moving target is located at), and 

Figs. 23(b), (d), (f), (h), (j), (l) are the 1-D range slice figures of 

the clutter suppression results of the 74th Doppler gate (i.e., the 

Doppler gate where the target is located at). It should be noted 

that both the full-dimensional optimal STAP and eigencanceler 

cannot effectively work due to the small number of training 

samples. From the figures, it can be seen that the target is 

effectively detected after applying the proposed algorithm and 

the other typical dimension-reduced STAP algorithms, while 

the proposed algorithm and F$A exhibit relatively high SCNRs, 

as listed in Table 12. Compared with F$A, the proposed 

algorithm has a relatively low computational complexity, 

indicating its application potential in practical engineering. 
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(a)    (b)  (c)

(d)   (e)  (f)

(g)   (h)  (i)

(j)  (k)  (l)

Fig. 23. 1-D slice figures by using the proposed algorithm and other typical STAP algorithms. (a) 1-D slice figure along Doppler dimension by using the
,3,32DSW

algorithm. (b) 1-D slice figure along range dimension by using the 
,3,32DSW

 algorithm. (c) 1-D slice figure along Doppler dimension by using the F$A algorithm. 

(d) 1-D slice figure along range dimension by using the F$A algorithm. (e) 1-D slice figure along Doppler dimension by using the order-2 EFA. (f) 1-D slice figure

along range dimension by using the order-2 EFA. (g) 1-D slice figure along Doppler dimension by using the 
3 3JDL 

algorithm. (h) 1-D slice figure along range 

dimension by using the 
3 3JDL 

algorithm. (i) 1-D slice figure along Doppler dimension by using the 
2 4STMB 

algorithm. (j) 1-D slice figure along range 

dimension by using the 
2 4STMB 

algorithm. (k) 1-D slice figure along Doppler dimension by using the ΣΔ-STAP algorithm. (l) 1-D slice figure along range 

dimension by using the ΣΔ-STAP algorithm. 
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Table 12 Output SCNRs 

Methods Output SCNR 

,3,32DSW 21.35 dB 

F$A 24.22 dB 

Order-2 EFA 20.89 dB 

3 3JDL  20.87 dB 

2 4STMB  13.51 dB 

ΣΔ-STAP 13.84 dB 

4) Influence of the Number of Training Samples

In this section, the influences of the number of training

samples on the moving target detection performance by using 

different STAP algorithms are compared. Suppose that only 25 

available range training samples around the moving target 

region in this real-measured radar data are applied. The clutter 

suppression results after using 2DSW+,3,3, F$A, order-2 EFA, 

3 3JDL  , STMB2+4, and ΣΔ-STAP algorithms are shown in Fig. 

24, where Figs. 24(a), (c), (e), (g), (i), (k) are the slice figures of 

the clutter suppression results of the 14th range gate (i.e., the 

range gate where the target is located at) along Doppler 

dimension, and Figs. 24(b), (d), (f), (h), (j), (l) are the slice 

figures of the clutter suppression results of the 74th Doppler 

gate (i.e., the Doppler gate where the target is located at) along 

range dimension. Table 13 lists the output SCNRs of this target 

by using these algorithms. From the figures, it is apparent that 

the target detection performance significantly degrades by 

using the order-2 EFA and F$A algorithms due to the limited 

training samples. In contrast, the other algorithms can still 

effectively detect the moving target due to their low 

requirement of the training samples. 

(a)    (b)  (c)

(d)   (e)  (f)

(g)   (h)  (i)
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(j)  (k)  (l) 

Fig. 24. Slice figures by using the proposed algorithm and other typical STAP algorithms. (a) Slice figure along Doppler dimension by using the 
,3,32DSW

algorithm. (b) Slice figure along range dimension by using the 
,3,32DSW

 algorithm. (c) Slice figure along Doppler dimension by using the F$A algorithm. (d) 

Slice figure along range dimension by using the F$A algorithm. (e) Slice figure along Doppler dimension by using the order-2 EFA. (f) Slice figure along range 

dimension by using the order-2 EFA. (g) Slice figure along Doppler dimension by using the 
3 3JDL 

algorithm. (h) Slice figure along range dimension by using the 

3 3JDL 
algorithm. (i) Slice figure along Doppler dimension by using the 

4 4STMB 
algorithm. (j) Slice figure along range dimension by using the 

4 4STMB 

algorithm. (k) Slice figure along Doppler dimension by using the ΣΔ-STAP algorithm. (l) Slice figure along range dimension by using the ΣΔ-STAP algorithm.

Table 13 Output SCNRs 

Methods Output SCNR 

,3,32DSW 16.27 dB 

F$A 9.86 dB 

Order-2 EFA 9.60 dB 

3 3JDL  15.23 dB 

2 4STMB  8.13 dB 

ΣΔ-STAP 15.31 dB 

V. CONCLUSION

In this paper, a novel dimension-reduced STAP algorithm 

based on spatial-temporal 2-D sliding window is proposed, 

where multiple sets of spatial-temporal data are provided by 

using the 2-D window sliding, and then the jointly adaptive 

processing in the angle-Doppler domain is implemented. The 

simulated and real-measured radar data processing results 

verify the clutter suppression performance of the proposed 

algorithm. As a result, the proposed algorithm can considerably 

decrease the system computational complexity and the i.i.d. 

training sample demand, while achieving a good clutter 

suppression performance, indicating the application potential in 

practical engineering. 

For a SEWR system, when the crab angle error caused by the 

Earth’s rotation effect may not be ignored, the range 

ambiguities from the substellar point regions and the elevation 

main-lobe regions will not only enhance the clutter power, but 

also destroy the i.i.d. distribution property of clutter returns, 

dramatically worsening the clutter spatial filtering performance. 

How to alleviate the range-ambiguous clutter influences by 

using the waveform design and pulse phase coding techniques 

in a SEWR system will be under our future investigation. 

APPENDIX 

Usually, the STAP based methods utilize the target steering 

vector to calculate the clutter suppression weight vector, so as 

to realize the clutter suppression and the moving target CFAR 

detection. Therefore, the STAP methods will be influenced by 

the target steering vector mismatch. In this appendix, the 

influences of target steering vector mismatch on the proposed 

algorithm and other conventional STAP algorithms are 

analyzed according to the simulation data processing results 

(refer to Table 3 and Table 4 for simulated system parameters). 

Suppose that the radial velocity of a moving target is 50 m/s, 

and the target spatial cone angle applied in STAP is set as 90°. 

Fig. 25 shows the output SCNR curves by using 2DSW+,5,3, 

F$A, order-2 EFA, JDL3×3, STMB2+4, ΣΔ-STAP, and 

eigencanceler when the target actual spatial cone angle is set as 

88°~92°. From the figure, it can be seen that all these STAP 

methods show similar SCNR downward tendency with the 

increase of spatial cone angle mismatch error, indicating that 

the influences of target steering vector mismatch on these 

methods are similar. 

Fig. 25. Output SCNR curves by using the 2DSW+,5,3, F$A, order-2 EFA, 

JDL3×3, STMB2+4, ΣΔ-STAP, and eigencanceler with different spatial cone 

angles of a moving target.

To deal with the harmful influences of target steering vector 

mismatch, the angle search in the spatial angle domain can be 

applied to improve the moving target detection performance, 

which will inevitably increase the computational complexity. 

Usually, if the SCNR loss caused by steering vector mismatch 

is tolerable, the search step of spatial cone angle can be 

relatively large. In the case of target steering vector mismatch, 

how to further decrease the computational complexity of the 

proposed method will be under our next investigation. 
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