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ABSTRACT

Liquid drop dynamics on solid surfaces play an important role both in nature and

engineered applications. The prediction of drop spreading and/or sliding motions has far-

reaching implications in many fields of application, including microfluidics, phase change

applications, or coating technology. Modeling liquid drop spreading, sliding, deformation,

and detachment is an active area of research, involving contact line motion, wetting, and

interfacial effects.

Many analytical models have been established to predict and analyze thin liquid film

and droplet dynamics. However, these models are valid only for predefined geometries

and do not accurately account for gravitational and interfacial effects. Numerical models

have proven to be more effective tools for predicting single-phase and two-phase flows, as

they can take into account complex geometries and many physical effects such as grav-

ity, surface tension, and interfacial forces in the vicinity of moving contact lines. One of

the widely used numerical approaches to simulate two-phase flows is the Volume of Fluid

(VOF) method, a front-capturing, mass-conserving Eulerian scheme. However, it requires

small time-marching steps, as a result of the explicit treatment of the surface tension term.

Furthermore, the VOF approach is based on a fixed background computational mesh, which

makes it challenging to track the free-surface of a fluid due to its high geometric complex-

ity and time-evolving nature. In addition to the VOF method, level-set Eulerian methods

can also be used to enhance tracking of the air-water interface by using larger time steps.

Furthermore, these methods are not considered mass conserving for free surface hydrody-

namics problems. An alternative approach to computing two-phase flows implicitly is the

Lagrangian method. Its advantage stems from its ability to accurately track fluid interfaces,

its implicit treatment of surface tension, thus allowing large time steps, and finally its ability

to conserve mass. Its main disadvantage is due to the requirement of remeshing the entire
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computational domain after each time step to avoid mesh degradation, thereby increasing the

computational cost. By combining the advantages of both the Eulerian and the Lagrangian

methods, it is possible to develop a powerful scheme, known as the Eulerian-Lagrangian

scheme. It is found to be effective for the accurate tracking of the gas-liquid interface and

to account for the changes in material properties, such as viscosity, density, and surface ten-

sion. It also properly deals with the jump discontinuity of pressure across the interface, and

it allows for the use of a large time step when compared to the pure Eulerian approach.

This dissertation presents a multidimensional numerical model based on one of the

most recent Lagrangian frameworks, namely the Particle Finite Element Method (PFEM), for

the prediction of the spreading and sliding motion of liquid drops (single-phase). The model

includes the effect of the physical dissipative force acting at the solid-liquid interface, and

of a retention force that acts in the vicinity of the drop’s moving contact line. The proposed

model is validated by using experimental data, covering a wide range of applications, drop

size, and physical properties. Our numerical results are found to be mesh-independent and

in very good agreement with experiments.

An embedded two-phase flow is also considered in this work. Examples of two-phase

flow can be found in many applications of natural and industrial importance. Of particular

interest in this work are two-phase flows which involve drops, and for which surface tension

and partial wetting are key factors to predict their spatiotemporal evolution. As a relevant

engineering example, we consider the dynamics of drops injected into the channels of Proton

Exchange Membrane Fuel Cells (PEMFCs) which act as conduits for the fuel cell reactants

(such as air). We developed a two-phase flow model in 2D and 3D configurations, and

we devised an Eulerian-PFEM scheme to accurately predict the motion of drops under a

variety of conditions. In particular, we studied the effect of substrate wettability and drop-

to-channel height ratio on the spatio-temporal evolution of the water drop, thereby providing

some insight into possible improvements in fuel cell design.
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Chapter 1

MOTIVATION AND BACKGROUND

Drop dynamics modeling is an active area of research in the computational fluid

dynamics (CFD) community due to its relevance in natural phenomena and its increasing role

in advanced industrial applications. For instance, the spreading, sliding or rolling motion of

water drops plays an important role in sustaining the life of certain plants and insects [106].

The hydrophobicity of some plant leaves, such as the lotus leaves, causes water droplets

to be repelled from their surfaces. Thus, it facilitates contaminant particle removal and,

in turn, endows the leaf its self-cleaning ability [92, 111]. In contrast, the hydrophilicity

of stipagrostis sabulicola leaves guides water droplets down towards the roots of the plant

(Fig. 1.1(a)) [33, 73, 183]. Some species of beetles depend on surface wettability either

directly or indirectly [33, 106, 169]. For example, water drops are formed on hydrophilic

bumps of a desert beetle, and slides on hydrophobic channels towards its mouth (Fig. 1.1(b)).

Scientists have taken advantage of such natural wetting phenomena to manufacture surfaces

with custom-made wetting properties [27]. In the field of biomedical engineering, the study

of the wetting and sliding properties of blood and plasma drops contributes to improve the

design of biomedical devices against blood contaminated surfaces [21, 154]. In the field

of energy conversion, liquid drops on hydrophobic substrates is found to be functional and

efficient for self-cleaning applications, such as on solar panels [93, 210]. Understanding the

detachment and subsequent sliding of water drops formed within the gas diffusion layer plays

a major role in improving water management of proton exchange membrane (PEM) fuel

cells [15, 115, 187, 189, 197, 249]. In the field of micro- and nano-fabrication, controlling the

surface wettability is found to be essential for implementing adhesion and traction in micro

electro mechanical systems (MEMS), microfluidic devices, and robotic tactile sensors [79,
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(a)

(b)

Figure 1.1: Examples of water drops and surfaces with different wettabilities in the natural
world (a) water drops travel through hydrophilic leaves downward towards the roots [33, 73,
183] and (b) water drops are formed on hydrophilic bumps and slides down on hydrophobic
channels towards the mouth of a desert beetle, reproduced from [33, 169].

105, 128, 191, 209]. Other important applications involve coating formulation and surface

texturing [76, 230, 243].

In these applications, characterized by dominant capillary forces, the liquid phase is

found in contact with solid substrates which can be omniphobic, omniphilic, or chemically

heterogeneous [193]. The dynamic behavior of liquid drops depends on their interaction with

solids and the corresponding substrate wettabilities. The goal of this dissertation is to develop

numerical models for drop dynamics which can reliably predict drop motion, such as drop

detachment, spreading or sliding, in a wide range of conditions. This work takes advantage

of the recent progress in numerical modeling based on a Eulerian-Lagrangian framework

developed in references [114, 187]. In the case of spreading and sliding, the model will

be validated by using experimental data found in the published literature. In the case of

drop injection in channels, the model will be validated by using available experimental data

obtained by the UC Berkeley and U Alberta Energy Systems Design Laboratory (ESDL)

research groups. Our ultimate goal is to obtain accurate, physical, and mesh-independent
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Figure 1.2: Example of surface wettability effects on blood drops, using two different tita-
nium (Ti) base substrates: superhydrophobic (SHP) Ti and pure Ti foil. A blood drop rolls
off the superhydrophobic substrate, leaving no stains. A blood drop slides down the pure Ti
foil, leaving behind a blood. Figure is reproduced from reference [137].

results applicable to a wide variety of critical engineering applications.

1.1 Physical phenomena and modeling challenges

The action of interfacial forces at the vapor-liquid and liquid-solid interfaces plays

a fundamental role in all drop dynamical phenomena. Three crucial phenomena must be

studied in detail when considering drop dynamics: i) surface tension and partial wetting, ii)

drop spreading, and iii) drop sliding.

1.1.1 Surface tension and partial wetting

Surface tension plays an important role in biology and ecosystems. For instance, it

enables water striders to walk on the surface of water. It prevents sea water from evaporat-

ing into the atmosphere and, thus, preserves the ecosystem [58, 214]. Furthermore, surface

tension is critical to the enhancement of the oil recovery process [130]. It is also critical in

pharmaceutical manufacturing and drug delivery, such as tablet polymers coating, drug sol-

ubility, and drug stability [38, 177]. Surface tension is found to be of paramount significance

to improve pharmaceutical drug manufacturing and processing, whereby drug bioavailability,

digestibility, adsorption, and dissolution, depend on the surface tension of the drug formula-

tion [20]. Other important applications can be found in surfactants and coating formulation.

To achieve the maximum possible painted surface area, the interfacial tension between the
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paint and the coated substrate must dominate the surface tension between the paint and the

vapor interface. To do so, surfactants are commonly added to liquid coatings to control their

surface tension [58, 190, 230].

The concept of surface tension finds its origin with the work of Young in 1805 who

first developed the well-known Young equation. This equation was then studied by Laplace,

and now takes the form of Equation (1.1.1), known as Young-Laplace equation: [82, 170].

pα − pβ = γκ (1.1.1)

where, in the context of the liquid-vapor interface of a static drop, pα is the pressure inside

the drop, pβ is the pressure outside the drop, γ is the surface tension (N/m), and κ is the

mean curvature of the liquid surface.

For a spherical drop, Young–Laplace equation indicates that the internal pressure is

greater than the external pressure (see Fig. 1.3.a). Surface tension can be interpreted physi-

cally in terms of inter-molecular forces, as it is caused by the attractive van der Waals forces

of cohesion between liquid molecules, thereby minimizing the free energy by decreasing the

interfacial area [23, 109]. Surface tension is also associated to partial wetting phenomena of

a liquid phase on a solid surface. Partial wetting can be interpreted as a solid-liquid-vapor in-

teraction. Wettability of the substrate by the liquid at rest can be characterized by the notion

of equilibrium contact angle. To relate this physical quantity to the liquid surface tension,

one method consists of balancing the interfacial forces acting on the contact line of the liquid

with the substrate (also known as the triple line). When normalized to a unit length, these

forces are the interfacial tensions between the three phases (solid/liquid/gas). By project-

ing the equilibrium forces on the solid plane, one obtains Young’s relation (see Fig. 1.3.b)

[88, 245, 246]:

γlvcosθe = γsv− γsl (1.1.2)

where γsl , γlv, and γsv are solid liquid, liquid-vapor, and solid-vapor interfacial tensions,
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(a)

(b)

Figure 1.3: Representation of (a)Young-Laplace equation, reproduced from [170] and (b)
wetting of surfaces, reproduced from [246].

and where θe is the equilibrium contact angle. The contact angle θe is a measure of sur-

face wettability, i.e., wettability of the surface by the liquid. Due to the topographical and

chemical heterogeneity of the substrate, there is no unique equilibrium contact angle on real

surfaces [84, 208]. The term “omniphilic” indicates high wettability conditions, when the

equilibrium contact angle is less than 90°. In contrast, the term “omniphobic” indicates low

wettability conditions, i.e., when θe > 90° [24, 40]. For water/substrate pairs, the terms

“hydrophilic” and “hydrophobic” are commonly used instead of “omniphilic” and “omni-

phobic”, respectively.

1.1.2 Drop spreading

The first step in understanding drop dynamics is to study and predict its spreading

behavior. Drop spreading is fundamentally tied to two dynamic interfacial phenomena,

namely, contact line motion and free-surface deformation. It is caused by the capillary ac-

tion, whereby the adhesive force between the liquid and the substrate dominates the cohesive

5



force between the liquid molecules [7, 28].

For drops in contact with a solid substrate, Young’s stress is induced at the contact

line as the drop spreads [37]. Young’s stress is a force per unit length, which relates the

dynamic contact angle to the tension force acting at the contact line [178]. This leads to

a special slip regime where the contact line velocity evolves proportionally to the dynamic

contact angle [178]. The Navier-Stokes equations are incompatible with the no-slip condi-

tion at the substrate and, therefore, lead to a singularity at the contact line [77]. This leads

to nonphysical velocity evolution and energy dissipation known as “Huh and Scriven’s para-

dox” [30, 37, 71, 104, 202]. For drops and thin films on hydrophilic surfaces, lubrication

approximation theory can be used as a valid simplified and cost-efficient numerical model

to regularize the contact line singularity with the concepts of disjoining pressure and pre-

cursor films [77]. However, this theory is not valid for hydrophobic surfaces. Thus, more

sophisticated models are needed to analyze drop dynamics (drop deformation, pinning, and

spreading) in the case of hydrophobic substrates. For both hydrophobic and hydrophilic sub-

strates, the contact line singularity can be relieved by introducing i) a slip zone at the contact

line, that accounts for the normal and tangential stresses, and the capillary action at the con-

tact line, and ii) a slip zone away from the contact line, that accounts for shear and viscous

stresses acting within the solid-liquid interfacial region [37, 143, 178, 227].

Previous work has shown that moving-grid models are well-suited to drop model-

ing [114, 115, 186, 187]. However, these models do not adequately allow contact line mo-

tions, which are fundamental to drop dynamics. One of the objectives of this dissertation is

to address this deficiency.

1.1.3 Drop sliding

Drop sliding under the effect of gravity or other physical forcing is commonly ob-

served in both the natural and industrial world. Due to its important role in countless ap-

plications, its numerical simulation is an active area of research [94, 129, 243, 244]. The

prediction of the drop dynamic characteristics is important for various fields of applica-

tion [138, 220]. For instance, the velocity reached by water drops sliding down the channels
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of cooling towers is an important factor to predict the optimal heat exchange between water

and ambient air [126, 144]. Understanding the detachment and subsequent sliding of water

drops formed within the gas diffusion layer plays a major role in addressing the thermal and

water managements of PEMFCs [15, 115, 187, 189, 197, 249].

A liquid drop on an inclined surface can roll, slide, or remain pinned [218, 231, 237].

A pinned drop remains attached to the substrate as long as the plane is tilted below a threshold

inclination angle [16, 34, 69, 75, 80, 81, 166, 231, 242]. Upon crossing this threshold,

a sudden depinning occurs, and the drop is observed to move according to three possible

modes: a sliding mode, rolling mode, or a transition mode between sliding and rolling [60,

75, 218, 237]. The omniphobicity of the surface is an important factor that controls the

mode of motion [24, 25, 218, 233]. Sliding motion can be observed either on omniphilic

surfaces, commonly found in nature [67, 238], or on omniphobic surfaces. Rolling motion is

observed as the shape of the drop approaches that of a sphere on a superomniphobic substrate

[60, 133, 218]. For a water drop, pearl-shaped drops can be observed for a superhydrophobic

substrate if the advancing contact angle is found to approach 180° [60].

When a liquid drop is deposited on a solid flat substrate, it spreads towards its static,

equilibrium, configuration [208]. As the substrate is slowly inclined, the drop starts to de-

form and lean toward the downward direction, until the advancing edge of the drop moves

before its receding edge [80, 151]. To model the effect of surface forces acting on the contact

line, an empirical “retention force” can be devised. This force is experimentally known to

be a function of i) the surface tension force, ii) the aspect ratio of the drop footprint, and iii)

the contact angle hysteresis [80].

In the context of sliding liquid drops, the contact angle hysteresis is an important

physical phenomenon. It is a physical property of the liquid in contact with a solid surface

and, therefore, independent of the tilting angle. Both advancing and receding edges of a

sliding liquid drop demonstrate different levels of interfacial free energies, corresponding

to corresponding changes in the interfacial areas [84]. The advancing and receding contact

angles are defined as the largest and lowest contact angles, respectively, in the total free

energy range [1, 84]. The value of the contact angle hysteresis is defined as the difference
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in the advancing and receding contact angles, which represents the total activation energy

required to move the contact line of a sliding liquid drop [84].

The retention force balances both the gravitational and capillary forces acting at the

contact line and, thus, opposes the motion of the liquid drop [84]. The gravitational force

is dominant as the substrate reaches a threshold inclination angle, forcing the drop to move

towards its direction. Despite the large body of work in this field, there is a critical need for

accurate prediction of drop sliding dynamics in wide range of conditions [142].

1.2 Embedded two-phase flow

A flow in which two physical states of a substance, or different substances such as

water and air, are simultaneously present is known as a two-phase flow [109]. Interfacial

phenomena play an important role in two-phase flows, especially when the liquid volume

becomes smaller in size, as in drops, rivulets, and thin films, for which surface tension effects

become dominant [224, 225].

Two-phase flows are critical in various important applications. For example, two-

phase flows are present in i) renewable and non-conventional energy sources, such as in fuel

cells, ii) heat transfer systems, such as in cooling towers [62], iii) additive manufacturing

technologies, such as in inkjet printing [95], iv) the enhancement of the oil recovery process

[130]. In the following sections, we describe a few engineering applications and the related

technical questions.

1.2.1 Polymer electrolyte membrane fuel cells

Fuel cells are electrochemical devices that transfer the chemical potential energy of a

fuel into electrical energy [205]. Electrochemical reaction of an oxidizing agent, commonly

oxygen, with hydrogen fuel takes place inside fuel cells to generate electrical current and

heat [116]. Fuel cells encompass a wide variety of designs, with operating temperatures

from -40C° to 1000C° [112]. Hence, fuel cells are promising energy conversion devices, as

alternatives to conventional energy system. Compared to other types of fuel cells, polymer

electrolyte membrane fuel cells (PEMFCs) deliver high-power density [205]. The principal
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components of PEMFCs are i) electrolyte membrane across which the hydrogen protons

travel, ii) catalyst layers, iii) the gas diffusion layers (GDL), iv) bipolar plate with structured

gas channels. Figure 1.5 illustrates the main components and processes of the PEMFC [13].

In PEMFC, hydrogen is channeled to the anode, while oxidant is channeled to the

cathode. A catalyst, usually platinum, is used to enhance both the hydrogen oxidation reac-

tion occurring at the anode and the oxygen reduction reaction at the cathode. At the anode,

hydrogen is split into protons (positive hydrogen ions) and electrons. The protons pass to the

cathode through the polymer electrolyte membrane, while the electrons travel to the cath-

ode along an external circuit, thereby creating the electrical current. At the cathode protons,

electrons and oxygen react to generate water and heat. The formed water must flow out of

the channel to avoid blockage and performance deterioration.

Despite their advantages, key challenges remain for their wide-scale adoption, such

as their durability and high cost compared to conventional energy devices [205, 229]. For

instance, the cost analysis of 80 kW-net automotive PEMFC-based, projected to a volume of

half a million units/year, is shown in Fig. 1.4 [145, 211].

Figure 1.4: Cost analysis for automotive PEMFC systems [145, 211].
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Figure 1.5: Schematic representation of the main components and processes of the PEMFC.
Figure is reproduced from [13].
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(a) Liquid water generation in PEMFCs [232]

(b) Types of flow encountered in PEMFC cathode channel
[41]

(c) Water drop forma-
tion in the membrane,
diffusion through the
gas diffusion layer, and
emerging into the gas
flow channel [187]

(d) Two-phase flow, embedded,
modeling zone [112, 116]

Figure 1.6: Example of two-phase flow applications in PEMFCs.

11



One of the issues facing PEMFCs is the water management within the gas chan-

nels (Fig. 1.6). Under high current density conditions, water vapor condenses in the GDLs.

Fuel cell flooding blocks the gas channel causing shortage of reactants at the reaction side

and, thus, a decrease of the current density. Therefore, the GDL is commonly treated with

hydrophobic agents, such as Polytetrafluoroethylene (PTFE), to facilitate the removal of ex-

cessive water condensation. Nevertheless, fuel cell dry-out is not recommended as the mem-

brane requires a hydrated environment to maintain proton conductivity. This problem can

be studied by conducting numerical simulations to serve as predicting tools, and to provide

design guidelines for optimal operating conditions.

Though we restrict our numerical model to isothermal conditions, it could readily be

extended to include additional effects relevant to other two-phase flow applications. This

includes, but is not limited to, evaporative cooling in wet cooling towers, piezoelectric inkjet

printing, and oil and gas processing.

1.2.2 Evaporative cooling in wet cooling towers

Wet cooling towers (Fig. 1.7) are designed to utilize the ambient air temperature to

cool down streams of process water [144]. However, water is lost extensively during this

cooling process, mainly due to evaporation. As an example of a typical cooling tower plant

in the southern area of Brazil, 1000 m3/h of water is evaporated and lost for cooling of a

volume of 50,000 m3/h from 42C° to 27C° [144]. Accordingly, two-phase flow analyses

based on reliable numerical models to simulate drop, rivulet, or thin film dynamics under

thermal conditions can serve to identify optimal operating conditions of cooling towers, so

as to minimize water loss.

Wet cooling towers efficiencies depend on fill efficiencies [127], where the maxi-

mum contact between the two phases takes place. Fig. 1.8 is a representation of the fill zone.

Proper fill design requires sufficient liquid surface area to maximize the convection process.

However, the pressure drop along the channel should be minimized. In addition, the fill ma-

terial should be selected to have good wettability and durability. Hence, a reliable simulation

tool is required to test and recommend an optimal fill design [36].
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Figure 1.7: Schematic diagram of a cooling tower [35].

(a) (b)

Figure 1.8: Fill zones: (a) two-phase flow inside the fill zone, reproduced from [36] and (b)
fill arrangements inside the cooling tower, reproduced from [35].

1.2.3 Piezoelectric inkjet printing

Piezoelectric, drop-on-demand, inkjet printing technology involves both two-phase

flow and free-surface evolution phenomena (see Fig. 1.9) [235]. It is one of several advanced

additive manufacturing technologies, that belongs to the class of material extrusion/jetting

methods. Due to its biocompatibility and geometric design flexibility, printing technology

has demonstrated high potential and capabilities in different fields of applications such as

MEMS, fuel cells, and biomedical engineering [150, 161]. Furthermore, inkjet printing
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Figure 1.9: Schematic diagram of a piezoelectric inkjet printer, reproduced from [235].

technology can be implemented at elevated temperature and, thus, it can be implemented

for viscous polymer dispensing applications [95].

The main issues in piezoelectric inkjet printing are avoiding nozzle clogging [101,

167] and maintaining high printing resolution and stability [122]. Fluid viscosity, inertia,

and surface tension are the critical parameters controlling jetting and printing [59]. By con-

trolling these parameters, our proposed model can help in predicting the optimal drop size,

orifice size, and ink-substrate compatibility. Therefore, orifice clogging may be avoided

while guaranteeing high printing resolution.

1.2.4 Oil and gas processing

Two-phase flow phenomenon is relevant to nearly every step of the oil-gas processing.

It starts in gas-oil separation plants, where natural gas and water are separated from crude

oil [3]. Crude oil is then dehydrated, de-salted, and sent to refineries for further processing.

In refineries, crude oil is sent to fractional distillation columns and turned into usable

products such as gasoline and diesel (see Fig. 1.10). During the fractional distillation process,

crude oil is piped through a steam-heated column. Heat boils off hydrocarbons and turned

them into vapor. Accordingly, vapor rises the distillation column. Vapor condenses to liquid

drops and films as it cools down. Condensed liquids are collected and turned into products.

The final products are transported through pipelines for storage, usage, and shipping.
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During transportation process, pressure drop across pipelines causes liquid products

to evaporate. High pressure drop results in flow instability within the pipe and, therefore, in-

troduces severe mechanical vibrations. Fittings (vent valves) must be connected throughout

the piping system to vent excess vapor to minimize the pressure drop [3, 9].

A reliable two-phase flow model may improve both the productivity and efficiency of

the oil and gas industry. For instance, variation of both i) the physical properties of both fluids

and ii) the two-phase flow parameters (velocity, and pressure) can control both the density

and temperature of the liquid/gas mixture [3, 9]. Furthermore, identifying the optimal design

of the pipeline network can avoid high pressure drop across the pipelines and, thus, maintain

their integrity.

1.3 Numerical modeling

The dynamic simulation of drops, in single or two-phase flow, typically encounters

several challenges when faced with surface tension and moving contact line phenomena:

i) the accurate detection of the gas-liquid interface [113, 227, 234], ii) the tracking of the

changes of material properties (such as viscosity and density), iii) the proper accounting of

the pressure jump discontinuity across the free-surface [115, 186], iv) the identification of the

interaction forces between liquids and substrates [29, 178, 226, 248], and v) the guarantee of

mesh-independent solutions [12, 37, 221, 239].

Modeling approaches can be categorized as either numerical or analytical. Analytical

approaches utilize balance equations and predefined boundary conditions [50, 116]. With

respect to drop dynamics, for which surface tension is dominant, analytical approaches lack

continuity in tracking the interface and in conserving the fluid properties. Relative errors

between the analytical prediction and the experimental values can exceed 30% under high

deformation [113]. Alternatively, numerical approaches can be developed to overcome these

difficulties.

Two commonly used numerical approaches have been developed for drop dynamics

to address moving deformable interfaces and moving contact lines: the Eulerian approach

and the Lagrangian approach. [113, 115] (see Fig. 1.11).
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Figure 1.10: Schematic diagram of a fractional distillation, reproduced from [3].
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(a) (b)

(c) (d)

Figure 1.11: Schematic representations of a) an Eulerian, front capturing, volume of fluid
approach [90], b) an Eulerian, front capturing, level set approach: red color curve is the
zero level set [6], c) an Eulerian, front tracking technique [110], and d) a Lagrangian ap-
proach [113].
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The Eulerian approach is a fixed mesh numerical method, which is ideal for handling

large deformations. However, the discretization of advective terms is a challenge, whenever

one is dealing with small deformation and interface tracking. This may lead to interfacial

diffusion, smearing of the interface, and the need for larger computational time steps [213].

Two methods are generally utilized for the treatment of the gas-liquid interface: front cap-

turing method and front tracking method [113, 186].

Front capturing techniques use scalar functions to define the interface. Two com-

monly used techniques are the volume of fluid (VOF) and the level set (LS) methods [113,

175, 181, 203]. The VOF method (Fig. 1.11(a)) is based on adding an additional term to the

mass and momentum equations, which is the continuous fraction function CK . This leads to

a convection equation governing the interface volume fraction. The quantity CK takes values

between zero and one: it will take the value of zero for nodes outside the fluid K, the value

of one for nodes inside the fluid, and values between zero and one at the interface [112]. Dif-

ficulties facing the method of VOF are the existence of a jump discontinuity of the volume

fraction function at the interface, and the appearance of artificial diffusion at the interface

[115, 186, 187].

An alternative to VOF is the LS method (Fig. 1.11(b)), which represents another front

capturing technique. In this method, the interface is represented by the zero level set of a

smooth scalar function φ(x). The position of the interface is defined implicitly by the nodal

values of the function φ(x), such that positive values nodes are inside the fluid domain, and

negative values nodes are outside the fluid domain [112]. Difficulties encountered by the

LS method are a consequence of the fact that it does not always accurately estimates the

interface curvature, and that it does not guarantee mass conservation [89, 187].

The front tracking Eulerian scheme (Fig. 1.11(c)) is an alternative to the front captur-

ing methods. This method uses Lagrangian markers to account for the interface explicitly.

The velocity at the interface is evaluated and interpolated using the Eulerian mesh. Ac-

cordingly, remeshing is required at the boundary for tracking and updating these interface

markers, leading to high computational cost [112, 171].

A second common methodology is based on a Lagrangian scheme (Fig. 1.11(d)). In
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this approach, moving meshes are used for computing the domain, and moving boundary

meshes for the interfaces are created [153]. There exist two main advantages of the La-

grangian approach: (i) its ability to track the interfaces accurately at smaller time steps, and

(ii) the generation of symmetric matrices representing the convective terms within the dis-

cretized system of equations [112, 153]. One main disadvantage of the purely Lagrangian

method is the necessity of remeshing the computational domain after each time step in order

to avoid mesh degradation, thereby increasing the computational cost [17].

The Lattice Boltzmann method (LBM) is another simulation scheme developed in

computational fluid dynamics. LBM considers a collection of particles as a single unit,

governed by classical kinetic theory at the mesoscopic level. It is based on streaming and

collision mechanisms of particles, utilizing square grids in 2D or cubical lattices in 3D.

LBM uses the lattice Boltzmann equation to represent the particles in terms of distribution

functions, where only a single variable is unknown at any given time. Accordingly, the

velocity and pressure fields are represented by the momentum of these distribution functions

[48]. LBM is easier to implement than numerical schemes based on Navier-Stokes equations.

Yet, accurate tracking of the macroscopic fluid properties, such as viscosity and surface

tension coefficient, remains a key challenge for the LBM approach, especially when curved

grids and refining are essential [48, 112].

Another method is the Particle Finite Element Method (PFEM). PFEM is a combina-

tion of the finite element method and the particle method, where a set of particles represent

the Lagrangian domain [153]. These particles follow the Lagrangian fluid movement us-

ing the Delaunay triangulation technique, whereby the physical properties of the domain are

transported with the particle motion [61, 163]. The work presented in this dissertation is

based on the PFEM approach. Our novel and significant contribution to this scheme is to

accurately account for dynamic interfacial and wetting phenomena. This had yet to be done

properly. Further details regarding the PFEM are introduced in the following section.
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1.4 The Particle Finite Element Method (PFEM)

The Particle Finite Element Method (PFEM) is an active field of research in the area

of numerical analysis and scientific computation [55]. It was introduced in the last two

decades by Oñate et al. [163] and Idelsohn et al. [107]. The motivation behind the develop-

ment of this advanced scheme was to predict the breaking waves and splashing behavior of

fluid flows with free-surfaces, where large deformation of the interface is expected [107].

The PFEM has proven to be an effective and robust numerical technique for sim-

ulating complex applications in engineering. It is a powerful numerical tool for handling

problems with evolving domains and large topological deformation [55]. For instance, ap-

plications involving change of phase, such as melting objects in fires, have been success-

fully simulated by the PFEM [185]. Furthermore, the PFEM is commonly used to solve

fluid–structure interaction problems, such as in dam-break tests [55].

The PFEM merges the FEM with the particle method. It solves the governing equa-

tions of the Lagrangian domain by the standard Galerkin formulation of the FEM. Conse-

quently, the convective term in the continuum and/or thermal equations vanishes, and there-

fore the non-linearity of the system of equations is eliminated or reduced [19]. In the PFEM,

the nodes of the finite element mesh are represented by particles. Each particle stores the

mathematical information and physical quantities assigned to it. The particle moves in the

domain following its force and velocity fields. At each time step, the domain boundaries

are reconstructed (re-meshed) using the Delaunay triangulation/tetrahedralization algorithm

and the alpha shape method [55, 107, 185]. Thus, no artificial diffusion is added by the

PFEM scheme [115]. Typical steps of the PFEM scheme are demonstrated in Fig. 1.12 [55].

Appendix A provides additional information on both the Delaunay triangulation/tetrahedral-

ization and the alpha shape method.

The application of a PFEM model has proven to be particularly advantageous when

dealing with drop dynamics and surface tension-dominated problems. It allows to accurately

track the evolution of the liquid domain boundary, without introducing enrichment shape

functions or smearing the surface tension via continuous force approach [107, 163]. A two-

phase incompressible fluid flow model based on the PFEM has also been developed to study
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(a) (b)

(c) (d)

(e)

Figure 1.12: Steps of the PFEM scheme: a) starting with an initial configuration of mesh
nodes, i.e., particles where mathematical information and physical quantities are stored, b)
generating mesh connectivity by Delaunay triangulation, c) recovering domain boundaries
by the alpha shape method, d) updating the mesh after computations and, accordingly, e)
updating the mesh nodes position. Figures are reproduced from [55].
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problems with surface tension-dominated interfacial flows, such as water transport in fuel

cell gas channels [186]. The Lagrangian PFEM scheme is used to model the liquid phase,

whereas the gas phase is solved using the fixed grid Eulerian approach. However, partial

wetting phenomena, including both liquid spreading and sliding dynamics, have never been

considered in any of the previous PFEM-based models, which is one of the main objectives

of this dissertation.

1.5 Goals and implementation methodology

The primary goal of this dissertation is to develop 2D and 3D PFEM single-phase

hydrodynamic drop models, with the ability to accurately predict the spatio-temporal evolu-

tion of both spreading and sliding liquid drops on smooth surfaces. Single-phase dynamic

models are then extended to embedded two-phase flow, more specifically to simulate the

motion of drops injected into and pressure driven out of channels. Throughout these studies,

the numerical results obtained by these models are systematically validated by experiments

obtained either in the published literature or by collaborating research groups.

Numerical models are implemented using the Updated Lagrangian Fluid (ULF) ap-

plication within Kratos Multi-Physics [182], a C++ object oriented finite element open-

source framework [57]. Results are obtained using a Linux operating system with an Intel®

Core(TM) i7-8750H CPU @ 2.20GHz, 12 processors, and 32 GB RAM.

1.6 Dissertation outline

The two-dimensional numerical model for drop spreading dynamics is described in

chapter 2. This chapter considers the spontaneous spreading of liquid drops driven by cap-

illary forces. We introduce boundary conditions that alleviate the contact line singularity.

Our proposed model is equipped with i) an effective slip boundary condition that balances

the induced Young’s stress at the contact line, and ii) a solid-liquid slip boundary condi-

tion that accounts for the viscous dissipation along the solid-liquid interface. Mesh size and

time step criteria are derived in accordance with the capillary action at the contact line. The

governing equations are discretized using the PFEM scheme. Mesh dependence study is
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performed, whereby the spatio-temporal evolution obtained by the proposed boundary con-

ditions is compared with alternate choices of boundary conditions commonly found in the

literature. Our drop spreading model is validated using experimental data retrieved from the

literature. The model is further validated using sessile-drop injection data provided by the

UC Berkeley and U Alberta ESDL research groups.

In chapter 3, we extend the spreading model proposed in chapter 2 to liquid drop slid-

ing down an incline. The model includes the effect of the retention force associated with the

aspect ratio of the drop footprint (represented by a shape factor parameter), surface tension

force, and contact angle hysteresis. The extended model is validated experimentally using

seven different scenarios of sliding drops down on inclined substrates. For these cases, we

study the effects of i) both the physical parameters and volume of the liquid drops and ii) both

the omniphilicity and angle of inclination of substrates. Parametric studies are performed on

each case to demonstrate the effect of the shape factor parameter on the development of a

physical sliding drop dynamics model.

The 2D model does not predict out-of-plane geometric variations since it does not

account for out-of-plane forces. Thus, our proposed 2D single-phase drop dynamics model

is extended to 3D in chapter 4. To properly account for their geometrical effect, we first

consider the simulation of the equilibrium of viscous liquid drops. We compare the nu-

merical configuration obtained by both the 2D and 3D models with the experimental data

obtained from the literature. Moreover, we validate our proposed 3D model experimentally

using different liquid drop spreading and sliding scenarios presented in chapters 2 and 3,

respectively.

The single-phase drop dynamics models presented in chapters 2-4 are extended to

embedded two-phase flows. Different detachment modes of liquid drops are investigated

under the effect of external gas flow. Chapter 5 demonstrates the success of the Eulerian-

PFEM two-phase flow formulation. The main advantage of the Eulerian-PFEM scheme is its

ability to track the liquid-gas interface while reducing the computational cost. This chapter

introduces the governing equations and boundary conditions of the proposed Eulerian-PFEM

approach, followed by the discretization techniques and coupling strategies. We first validate
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the Eulerian scheme, both in 2D and 3D, by using the approximate analytical solution for

estimating the pressure drop inside two different channels. Then, we validate the model

using experimental data collected by the UC Berkeley and U Alberta ESDL research groups.

This task aims to predict the dynamic behavior of water drops inside fuel cell channels of

varying wettability. Drop motions are studied at various airflow rates and drop-to-channel

height ratios. The effects of both i) surface hydrophobicity and ii) drop-to-channel height

ratio on the spatio-temporal evolution of the water drop are demonstrated.

Chapter 6 concludes this dissertation and highlights its main achievements. It also

suggests a number of promising areas for future work.
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Chapter 2

A TWO-DIMENSIONAL NUMERICAL MODEL FOR DROP SPREADING
DYNAMICS

2.1 Introduction

Liquid drop spreading is the natural phenomenon to occur when a spherical drop

comes into contact with a flat wettable surface [28, 68]. It is crucially important in industrial

and advanced surface engineering applications such as plant treatment, pesticide deposition,

spray cooling, paints, anti-corrosive coating, lubrication, MEMS, microfluidics, and inkjet

printing technologies [68, 134, 135].

Physically, two main regimes are observed for a spreading liquid drop: an initial in-

ertial regime, followed by slow viscous regime [68, 141]. The initial rapid spreading regime

is caused by the capillary-driven action, i.e., when the adhesion force between the liquid and

substrate strongly dominates the cohesive forces between the liquid molecules [28, 141]. The

viscous spreading regime, however, is caused by the viscous dissipation of fluid, i.e., when

the liquid viscous forces balance the contact line capillary forces [68, 216].

Mathematically, the moving contact line paradox of infinite energy dissipation (see

Sec. 1.1.2) must be resolved for both regimes of liquid drop spreading [30, 37, 71, 104, 202,

208]. To do so, the Navier-stokes equation must be equipped with an effective boundary

condition at the contact line. Consequently, the main challenges in the numerical modeling

of drop spreading on solid substrates are i) regularizing the contact line singularity [12, 37,

143, 178], and ii) tracking the corresponding free-surface deformation. Jarauta et al. [114]

developed a numerical model based on the PFEM that can accurately track the free-surface

evolution. However, resolving the contact line singularity remains a challenge, which we

address in this chapter.

25



The simplest attempt to resolve the singularity at the contact line consists in applying

a static contact angle condition where the direction of the vector normal to the liquid-air

surface at the contact line is constant and related to the equilibrium contact angle for the

substrate at hand [49, 219, 250]. However, this approach cannot account for drop pinning,

and therefore, cannot predict the dynamics of spreading drops. A dynamic contact angle

condition is actually needed to account for the liquid drop spreading phenomenon [114,

115]. The most basic dynamic contact line condition imposes a slip boundary condition,

i.e., a contact line velocity normal to the substrate is zero, when a critical contact angle is

reached [226]. This condition implies that no energy is dissipated as the contact line moves

on the solid substrate, and that the velocity of the contact line is unbounded, which is in

contradiction with experimental observations [200].

Various boundary conditions have been proposed to alleviate the singularity at the

contact line. Huh and Scriven [104] introduced a Navier-slip condition to account for a vis-

cous dissipation along the solid-liquid interface as a function of the shear stress. Hocking

proposed a surface roughness condition in terms of a shear flow along a corrugated sur-

face [99]. Alternatively, Frumkin [83], Derjaguin [64], Hervet and De Gennes [97], and

Eres et al. [77] included the concepts of precursor film and disjoining pressure in order to

model the effect of both short-range and long-range surface interactions. Blake introduced

a molecular-kinetic model that treats the contact line movement in terms of molecular ad-

sorption and desorption densities at the substrate [96]. Furthermore, Van et al. [223] devised

empirical, power-law, models that relate the dynamic contact angle to the capillary num-

ber [32, 117, 199]. Recently, several authors have proposed a combination of the mecha-

nisms described above to alleviate the contact line singularity [178, 200].

Lubrication models, which use the disjoining pressure theory to resolve the contact

line singularity, have been developed to predict the evolution of thin films and drops while

taking into account the effect of surface forces [77, 196]. However, these models are limited

to small contact angles, and face great numerical difficulties to resolve the length scales

below which surface forces are effective. In this work, we consider a macroscopic dissipative

force model which takes into account the capillary and viscous forces, both acting along
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the contact line [75, 81, 84, 141], as well as the viscous dissipation along the solid-liquid

interface [104, 173].

Here, we will discuss in further detail the theories behind two commonly used bound-

ary conditions for modeling the hydrodynamic Navier-Stokes equations, which are i) the dis-

joining pressure theory and ii) the dissipative force and viscous dissipation models.

2.1.1 Disjoining pressure model

A common approach to relieve the moving contact line singularity is by taking into

account the disjoining pressure which is a measure of the surface forces [208]. The term

“disjoining pressure” is indicative of a repulsion phenomenon between phase boundaries.

The term is also used for attraction between boundaries, for which “conjoining pressure”

would be more appropriate.

The disjoining pressure appears at the contact line due to the influence of the surface

forces on the liquid boundary layers (see Fig. 2.1) [208]. The main components of the

disjoining pressure are i) the molecular/dispersion component, which is the van der Waals

component, ii) the electrostatic component caused by the electrical double layer formation,

and iii) the structural component caused by the liquid and solid interactions. Most disjoining

pressure models found in the literature are simplified. They do not take into account the

actual values of the disjoining pressure components, which are experimentally found to be

in the realm of nano-mechanics [208].

The inadequacy of considering the FEM approach in modeling the disjoining pressure

theory is commonly overlooked in the literature. The value of the flat equilibrium liquid

film in front of the drop (region 4 in Fig. 2.1) is critical to obtain the exact value of the

balancing forces at the contact line. The thickness of this thin film is experimentally found

to be less than 10−7 m [208]. Thus, the FEM, which is the numerical technique used in this

dissertation, is not adequate for modeling such small length-scale effects (see Fig. 2.2) [222].
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Figure 2.1: Liquid profile in the vicinity of the apparent contact line: (1) bulk liquid, (2) liq-
uid–air and liquid–solid interfaces, (3) region where surface forces boundary layers overlap,
and (4) region of thin equilibrium film. The disjoining pressure is the dominating mechanism
at regions (3) and (4). Figure is reproduced from [208].

2.1.2 Dissipative and viscous force models

To achieve a physically relevant contact line velocity, several authors alleviate the

contact line singularity by devising dissipative force models. Spelt [204] proposed a linearly

dependent contact angle condition that is a function of the sign of the contact line velocity.

Manservisi and Scardovelli [143] added a dissipative, resistive force applied to the contact

line as a function of the capillary number. Buscaglia and Ausas [37] presented a variational

formulation of a surface tension model that included a dissipative force acting on the contact

line. In their formulation, the value of the dissipative force was inversely proportional to

the contact line velocity. However, their model did not account for contact line pinning,

which often takes place on rough substrates. In addition to the dissipative force condition,

Ren and E [178] observed that the normal stress inside the solid-liquid interface exhibits a

large jump across the contact line, which varies linearly with its velocity, and hence should

be balanced and considered as an additional boundary condition. Moreover, Venkatesan et

al. [226] observed that the tangential stress at the contact line is proportional to its tangential

velocity, which was included as an additional term in their numerical formulation.

Obtaining a mesh-independent solution is an additional modeling challenge. Several

authors have studied the dependence of the numerical solution of wetting phenomena on the

mesh size. In reference [143], Manservisi and Scardovelli studied the spreading behavior of
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Figure 2.2: Categories of commonly used modeling methods, and their corresponding length
and time scales. Figure is reproduced from [222].
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drops by utilizing the Lagrangian front tracking approach, and concluded that adding the dis-

sipative energy term reduces the spreading rate until a nearly no-slip condition is achieved.

Afkhami et al. [12] conducted a numerical study using the volume-of-fluid (VOF) method

to analyze the dependence of the dynamic contact angle evolution on the mesh size. They

observed that this dependence could be reduced by relating the dynamic contact angle to the

capillary number and to the mesh size. More recently, Buscaglia and Ausas [37] introduced

a variational formulation and analyzed the effect of adding a dissipativeforce as a constant

value on the mesh dependency of the solution. They concluded that increasing the dissipa-

tive force term leads to a mesh-independent solution. In addition, Venkatesan et al. [226]

used an Arbitrary Lagrangian-Eulerian (ALE) finite element formulation and introduced a

slip coefficient in the Navier-slip term that is a function of the mesh size, Weber number, and

Reynolds number. They managed to alleviate spurious mesh dependency. However, they

observed that the proposed relation did not work properly for hydrophobic surfaces.

In this chapter, we propose a drop spreading model using an updated Lagrangian

framework to solve for the governing equations within the liquid domain. The curvature of

the liquid surface is tracked accurately using a deforming boundary mesh. Dissipative and

viscous forces are included in the formulation to alleviate the singularity at the solid-liquid

interface. The chapter is organized as follows. Sections 2.2-2.5 describe the physical model,

governing equations, and boundary conditions for the proposed PFEM-based model in the

context of drop spreading dynamics. Special attention is given to the boundary conditions

applied at the solid-liquid interface including the contact line. The FEM discretization and

solving strategies are discussed in Sec. 2.6, followed by the mesh size and time step criteria

in Sec. 2.7. Numerical results are shown in Sec. 2.8, including a detailed analysis of the

manner in which a dissipative force can produce a mesh-independent solution. In Sec. 2.9,

the model is validated by comparing numerical results for drop spreading on hydrophilic and

hydrophobic surfaces with experimental data. The model is further validated using available

drop injection experimental data provided by the UC Berkeley and U Alberta Energy Sys-

tems Design Laboratory groups. The main concepts, figures, and outcomes of this chapters
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are reproduced from [Elaf Mahrous, Alex Jarauta, Thomas Chan, Pavel Ryzhakov, Adam Z

Weber, R Valéry Roy, and Marc Secanell. A particle finite element-based model for droplet

spreading analysis. Physics of Fluids, 32(4):042106, 2020.], with the permission of AIP

Publishing (See Appendix H for more information about the publisher’s permission).

2.2 Physical model and governing equations

In order to predict the spreading rate of the drop on the solid substrate and track the

corresponding contact angle evolution, a dissipative force at the contact line is included in

the formulation in addition to the Navier-slip boundary conditions at the solid–liquid inter-

face. The inclusion of these boundary conditions makes it possible to account for the induced

Young’s stress at the contact line and for the viscous dissipation along the solid–liquid inter-

facial region.

Let us consider a domain Ω which represents a liquid drop in contact with a solid

substrate, as shown in Fig. 2.3. The boundary of the domain is split into three regions

∂Ω = ΓI ∪ΓS∪∂Γ. The part of the domain boundary corresponding to the liquid in contact

with a substrate, excluding the contact line, is designated as ΓS. The contact line is denoted

by ∂Γ. The rest of the boundary of the liquid phase is denoted by ΓI , which corresponds to

the drop’s free-surface. For two-dimensional problems, the contact line reduces to two triple

points. The drop is assumed to be surrounded by its saturated liquid-vapor phase [58]. It is

assumed that the velocity of the vapor is negligible, i.e., it exerts no mechanical action upon

the drop and thus the drop can be analyzed as an isolated entity.

The equations expressing momentum and mass conservation for an incompressible

Newtonian fluid are as follows:

∇ ·v = 0 on Ω (2.2.1)

ρ
Dv
Dt
−∇ ·σ = ρg on Ω (2.2.2)
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Figure 2.3: Schematic representation of the considered Lagrangian domain at the continuum
level.

where v is the velocity vector, ρ is the fluid density, t is time, D
Dt represents the material

derivative, g is the gravitational acceleration, and σ is the Cauchy stress tensor governed by:

σ =−pI+µ(∇v+∇
Tv) (2.2.3)

where p is the pressure, µ is the dynamic viscosity, and I is the identity tensor. Substituting

eq. 2.2.3 into 2.2.2 yields:

ρ
Dv
Dt
−∇ ·µ(∇v+∇

Tv)+∇p = ρg on Ω (2.2.4)

In the Lagrangian approach, we use the material derivative to find the evolution of

the velocity field. The dynamic viscosity µ and the volumetric mass density ρ are assumed

to be constant parameters.

2.3 Boundary conditions at the liquid-vapor interface ΓI

At the interface ΓI , a Cauchy stress boundary condition in the normal direction of the stress

is applied corresponding to the surface tension force:

fΓI
= σn= γκn at ΓI (2.3.1)
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where fΓI
is the surface tension force, n is the unit normal to surface ΓI , γ is the surface

tension coefficient, and κ is the mean curvature. Decomposing eq. 2.3.1 into normal and

tangential components yields:

n · (σn) = γκ at ΓI (2.3.2)

and

t · (σn) = 0 at ΓI (2.3.3)

where t is the unit tangent to surface ΓI . Assuming a stationary exterior fluid and substituting

eq. 2.2.3 into eq. 2.3.2 yields:

p−µn · ([∇v+∇
Tv] ·n) = γκ at ΓI (2.3.4)

2.4 Curvature in 2D

The curvature equation for 2D analysis is defined as follows [112, 114]:

κ = ∇s ·n=
∥∥∥dn

ds

∥∥∥ (2.4.1)

where ∇s is the surface gradient operator and dn
ds is the rate of change of the normal direction.

Using Fig. 2.4, we define the following quantities:

r1 the vector starting at node (I - 1 ) and ending at node (I), r2 the vector starting at node (I)

and ending at node (I + 1), and the unit vector r̂k is defined by:

r̂k =
rk

‖rk‖
(2.4.2)
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The curvature is approximated using the norm of vector (r̂1− r̂2 ) over the polyline segment

connecting these nodes, i.e (node (I + 1 ) node - (I - 1 )) as follows:

κ =
‖r̂1− r̂2‖
‖r1‖+‖r2‖

(2.4.3)

2.5 Forces at the solid-liquid interface

At the solid-liquid interface excluding the contact line, ΓS, the applied boundary

condition corresponds to the shear stresses in order to account for viscous dissipation. It is

obtained by projecting the Cauchy stress tensor on the normal direction of ΓS [37, 178]:

fΓS
= σ · ey =−βΓsv at ΓS (2.5.1)

where fΓS
and βΓs are the dissipative force and the slip coefficient applied at the solid-liquid

interface, respectively, and v is the slip velocity of the fluid on the solid-liquid interface.

A variety of models have been proposed in the literature for the slip coefficient, βΓs , at the

solid-liquid interface such as, Navier-slip condition (βs) [159, 178, 226, 227], prescribed slip

profile condition [178], and a constant slip coefficient that depends on the grid size [37]. The

Navier-slip model is considered in this work, as it accounts for the shear rates and viscous

dissipation along the solid-liquid interface during drop deformation [12, 178, 226, 227].

Figure 2.4: Changes in directions in discrete boundary [112, 114].
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At the contact line, an effective slip boundary condition is applied corresponding to

the total dissipative force, including the contribution of i) the capillary effect (ζ ), ii) normal

stress coefficient (βn), and iii) Navier-slip coefficient (βs), and is proportional to the velocity

of the contact line [37, 178, 226, 227]:

f∂Γ =−β∂Γv at ∂Γ (2.5.2)

where f∂Γ is the dissipative force applied at the contact line, β∂Γ is the effective slip coeffi-

cient at the contact line, and v is the slip velocity of the fluid at the contact line.

The details on the dissipative force applied at the contact line and the solid-liquid

interface are presented next.

2.5.1 Forces acting at the contact line, ∂Γ

Let us consider a steady drop in contact with a flat surface forming a static contact

angle θe (Fig. 2.5). Under this condition, the equilibrium is expressed as the balance of the

liquid surface tension (γlv, or simply denoted by γ), solid surface energy (γsv), and interfacial

tension (γsl). When normalized to a unit length, these forces are the interfacial tensions

between the three phases (solid/liquid/vapor). By projecting the equilibrium forces on the

solid plane, one obtains the well-known Young’s equation [245, 246]:

γlv cosθe = γsv− γsl (2.5.3)

The contact line velocity that corresponds to this equilibrium state is v = 0. In this

case, the boundary condition applied to the contact line is the following: if the contact angle

is within a given range of values, i.e., θ ∈ [θmin,θmax], the contact line is fixed. A fixed

contact line is usually referred to as a pinned contact line. The values of minimum and

maximum contact angle to achieve contact line pinning, which depend on both the liquid

and the substrate, are determined experimentally [115, 193].
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Figure 2.5: Schematic representation of the forces acting on a contact line of a sessile drop.

As the drop starts to spread, eq. (2.5.3) does not hold any longer and therefore a slip

boundary condition is applied for the velocity at the contact line ∂Γ [115, 116]:

v · ey = 0 (2.5.4)

This condition, however, results in an unrealistic contact angle evolution because the

velocity of the contact line is not restricted by the physical viscous dissipation at the solid-

liquid interface, leading to a non-physical spreading of the moving contact line. Instead,

according to [37, 178], the velocity of the contact line can be related to the Young’s stress

acting on it:

u ∝ γ (cosθe− cosθd) (2.5.5)

where u is the tangential component of the velocity vector at the contact line, i.e., u = v · ex,

and θd is the dynamic contact angle. The proportionality coefficient between the contact line

velocity and Young’s stress is the effective slip boundary condition defined as follows [178]:

β∂Γu = γ(cosθe− cosθd) (2.5.6)

where β∂Γ is the effective slip coefficient, and is defined as [12, 22, 30, 37, 143, 178, 226,

227, 245]:

β∂Γ = ζ +βS|∂Γ+βn (2.5.7)

where ζ is the dynamic capillary effect coefficient, βS|∂Γ is the Navier-slip coefficient, and
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βn is the normal stress coefficient.

The capillary effect coefficient is expressed as follows [37, 143]:

ζ =
γ

u
R(Ca) (2.5.8)

where R(Ca) is a function of the capillary number calculated from the contact line veloc-

ity [143]. In several experimental studies, expressions for R(Ca) were obtained by fitting

empirical data. Among these studies, the models proposed by Jiang [117], Bracke [32], and

Seeberg are commonly used [199]. The numerical and dynamic contact angle simulations

in reference [223] concluded that Jiang’s model was able to predict higher capillary flow

velocities among these three empirical models. For capillary-driven spreading drop, the con-

tact line velocity is of the order of an impact velocity of a drop [28, 200]; therefore, Jiang’s

expression is used in this work, i.e., [117]:

R(Ca) = (cosθe +1) tanh
(

4.96Ca0.702
)

(2.5.9)

where θe is the static contact angle, and Ca = uµ/γ is the capillary number calculated using

the contact line velocity. Thus, the coefficient ζ in eq. (2.5.8) is expressed as follows:

ζ =
γ

u
(cosθe +1) tanh

(
4.96Ca0.702

)
(2.5.10)

The Navier-slip coefficient, βS|∂Γ in eq. (2.5.7), is a function of the shear stress, and

it is calculated using [12, 178, 226, 227]:

βS|∂Γ=
1
u

µ∇(v · ex) · ey (2.5.11)

In addition, larger jump in normal stresses is introduced across the contact line as

its velocity increases [178]. The normal stress jump across the contact line is balanced by
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including the coefficient βn, which is expressed as follows [178]:

βn =
1
u

µ∇(v · ex) · ex (2.5.12)

where u is the tangential component of the velocity vector at the contact line, i.e., u = v · ex.

After considering the contributions of the capillary effects, the Navier-slip as well as

the normal stresses in eq. (2.5.7), the coefficient β∂Γ is used to obtain the total dissipative

force and to apply the boundary condition defined by eq. (2.5.2).

2.5.2 Forces acting at the solid-liquid interface away from the contact line, ΓS

When a viscous fluid is in contact with a solid substrate, the velocity of the fluid at the

fluid-solid interface is equal to the velocity of the solid. If the solid is at rest, a no-slip bound-

ary condition is applied in this region. In wetting problems, however, the no-slip condition

contradicts the physical dissipation phenomena on the solid-liquid interfacial regime. It has

been observed that introducing a Navier-slip boundary condition on drop spreading problem

partially resolves this contradiction, and also reduces the mesh-dependency of the numerical

solution [12, 37, 178, 226, 227]. Therefore, at the solid-liquid interface, ΓS, the Navier-slip

boundary condition is applied in the present work, according to eq. (2.5.1). Accordingly, the

slip coefficient βΓs at the solid-liquid interface ΓS is expressed as follows:

βΓs = βs =
1
u

µ∇(v · ex) · ey (2.5.13)

where u is the tangential component of the velocity vector at the solid-liquid interface.

Eq. (2.5.13) is used in combination with eq. (2.5.1) to apply the boundary condition at the

solid-liquid interface.

2.6 Discretization technique

The numerical method adopted in this dissertation is introduced in this section. First,

a brief introduction of the Finite Element method (FEM) will be introduced. Then, the

discretization technique and solving strategy will be exposed.
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2.6.1 Introduction to the finite element method

The finite element method (FEM) can be traced back to the middle of the twentieth

century [254]. It is a numerical method to generate approximate solutions of partial differ-

ential equations (PDE) [254]. The FEM procedure typically starts with the development of

a weak formulation of the PDE by introducing a family of test functions. The solution to

the newly generated problem is found by using a local approximation function for the test

functions, such as Lagrange linear functions. Hence, a physical domain is discretized into

finite elements associated with approximation functions, and solved by one global system of

equations. The main advantage of FEM over other computational methods is its ability to

handle high complexities of the geometrical domain [185].

The most common FEM method is the Galerkin, weighted residual, FEM where the

test function belongs to the solution approximation function space [185, 254]. The Galerkin

method has been proven to be a reliable tool in structural dynamics applications, exhibiting

optimal convergence rates, since it produces a symmetric, positive-definite system of linear

equations. Hence, excellent agreement is obtained between the exact and the approximate

solution [185].

The FEM is faced with two main challenges when dealing with fluid dynamic appli-

cations: (i) the treatment of the convective terms, and (ii) the pressure instability [66, 185].

The presence of the convective term, which reflects the material deformation concerning a

fixed Eulerian domain, will produce a non-symmetric linear system, which can lead to a di-

vergence of the velocity field [66, 185]. The second issue arises due to the incompressibility

of the fluid, which can lead to instabilities in the pressure field [66, 185]. To resolve these

two issues, stabilization techniques have been established. The concept behind the stabiliza-

tion techniques is to improve the system behavior by modifying the weak form, ensuring the

consistency of the problem to be solved [53, 66, 185].
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2.6.2 Discretized governing equations

Let Ω ⊂ Rn, where n ∈ {2,3}. Also, let L 2(Ω) represent the Hilbert space of a

square integrable scalar function over Ω equipped with inner product and the norm defined

by [112, 114, 116, 186, 187]:

(u,v) =
∫

Ω

uvdΩ (2.6.1)

and,

‖u‖L 2= (u,u)
1
2 (2.6.2)

The function and its derivative are assumed to be square integrable. This will be in the

Sobolev space denoted by H k(Ω), which is the space where both the function and its deriva-

tive up to k order are square integrable (more information about Sobolev spaces can be found

in references [11, 66]). Since L 2(Ω) = H 0(Ω), the L 2(Ω) space is a Sobolev space. Also,

H 1(Ω) is defined as follows:

H 1(Ω) = {u ∈L 2(Ω) | ∂u
∂xi
∈L 2(Ω), i = 1, ...,n} (2.6.3)

This definition can be extended for vector functions, such as the velocity field, by defin-

ing H k(Ω) as the space of vector functions v such that each of its components belongs to

H 1(Ω).

To start the discretization of eq. 2.2.4 and eq. 2.2.1, the Galerkin variational formulation is

obtained by multiplying these two equations by a test function, and by integrating over the

domain. Two sets of test functions will be used. The first set will satisfy the homogeneous

boundary condition, that is:

V = H 1
0(Ω) = {v ∈H 1(Ω) | v = 0 on ΓD} (2.6.4)
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where ΓD is the Dirichlet portion of the boundary Γ [66]. The second set will satisfy the

non-homogeneous boundary conditions, as follows:

S = H 1
0(Ω) = {v ∈H 1(Ω) | v = v̄ on ΓD} (2.6.5)

The weak form of the problem will then be defined as follows: Find v ∈S | ∀w ∈ V ,

and ∀q ∈L 2 such that:

∫
Ω

(
ρ

Dv
Dt
·w−w · (∇ ·σ)

)
dΩ =

∫
Ω

ρg ·wdΩ (2.6.6)

and:

∫
Ω

q∇ ·vdΩ = 0 (2.6.7)

Using the divergence theorem, letting F =w ·σ, and noting that
∫

Ω
∇ ·FdΩ =

∫
Γ

F ·ndΓ

we obtain:

∫
w · (∇ ·σ)dΩ =

∫
w ·σndΓ−

∫
σ : ∇wdΩ

Upon integrating by parts and applying the divergence theorem, this leads to

∫
Ω

(
ρ

Dv
Dt
·w+µ(∇v+∇

Tv) : ∇w− p∇ ·w
)

dΩ =
∫

Ω

ρg ·wdΩ+
∫

Γ

w ·σndΓ (2.6.8)

Therefore, the variational formulation takes the following expression:

∫
Ω

(
ρ

Dv
Dt
·w+µ(∇v+∇

Tv) : ∇w− p∇ ·w
)

dΩ =∫
Ω

ρg ·wdΩ+
∫

ΓI

γκn ·wdΓI +
∫

∂Γ

β∂Γun ·wd∂Γ+
∫

ΓS

βΓsun ·wdΓS

(2.6.9)
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∫
Ω

q∇ ·vdΩ = 0 (2.6.10)

Next, to find the interpolation functions according to the standard FEM procedure, we con-

sider the partition of domain Ω into elements Ωe such that:

Ω≈Ωh =
nelement⋃

e=1

Ωe (2.6.11)

where nelement is the total number of elements. Three-nodes triangular elements will be

used for two dimensional solutions. Four nodes tetrahedral elements will be used for three

dimensional solutions.

The interpolation functions for the velocity and pressure are represented as follows:

vi(x, t)≈ vh
i (x, t) = ΣJ=1NJ(x)vJ

i (t) = NTvi (2.6.12)

p(x, t)≈ ph(x, t) = ΣJ=1NJ(x)pJ(t) = NT p (2.6.13)

where NJ(x) represents the vector of interpolation function,

vJ
i and pJ represent the nodal values for the ith component of the velocity field and pressure

field.

Here, both the velocity and pressure are approximated using linear Lagrange functions to

reduce the size of the computational problem, i.e., number of total elements, leading to low

computational cost [66, 112, 132]. Note that the pressure field must be of the same interpo-

lation degree as the velocity field.

Combining these equations leads to the following discrete form

M ˙̄v+µLv̄+Gp̄ = F̄ + F̄st + F̄∂Γ + F̄ΓS (2.6.14)
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and

Dv̄ = 0 (2.6.15)

where M is the mass matrix, L is the Laplacian matrix, G is the Gradient matrix, F̄ is the

body force vector, F̄st is the Surface Tension force vector, D is the divergence matrix,v and

p̄ are the velocity and pressure, respectively. The matrices are assembled from the elemental

contributions as follows:

Mab = ρ

∫
ΩX

NaNb dΩX = ρ

∫
Ω

NaNbJ(X) dΩ (2.6.16)

Lab =
∫

ΩX

∂Na

∂Xi

∂Nb

∂Xi
ΩX =

∫
Ω

∂Na

∂xi

∂Nb

∂xi
J(X) dΩ (2.6.17)

Gab
i =−

∫
ΩX

∂Na

∂Xi
NbdΩX =−

∫
Ω

∂Na

∂xi
NbJ(X) dΩ (2.6.18)

f a
i = ρ

∫
ΩX

NagidΩX = ρ

∫
Ω

NagiJ(X) dΩ (2.6.19)

Dab
i =

∫
ΩX

Na ∂Nb

∂Xi
dΩX =

∫
Ω

Na ∂Nb

∂xi
J(X) dΩ (2.6.20)

f a
st,i =−

∫
ΓI,X

γκNanidΓX =−
∫

ΓI

γκNaniJΓ(X) dΓ (2.6.21)

f a
∂Γ,i =−

∫
∂ΓX

β∂ΓuiNad∂ΓX =−
∫

∂Γ

β∂ΓuiNaJΓ(X) d∂Γ (2.6.22)

f a
ΓS,i =−

∫
ΓS,X

βΓSuiNadΓX =−
∫

ΓS

βΓSuiNaJΓ(X) dΓ (2.6.23)

where Na represents the standard finite element shape function at node a, and the index i

is used for the spatial components. The present model is based on the Updated Lagrangian

Formulation (ULF), and therefore the integration domains, ΩX, correspond to the updated

configuration. The transformation between the reference configuration, Ω, and the updated

one is performed using the Jacobians J(X) and JΓ(X).
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A standard Backward Eulerian time-marching scheme is used as follows:

vn+1−vn

∆t
= v̇n+1 (2.6.24)

However, we will be using a Newmark-Bossak time-marching scheme. This scheme is use-

ful for non-linear problems. It takes the following form:

v̄n+1 =
ζ

β

(
ūn+1−ūn

δ t

)
−
(

ζ

β
−1
)
v̄n− δ t

2

(
ζ

β
−2
)

ān

and

ān+1 =
ūn+1−ūn

βδ t2 − 1
βδ t v̄n− 1−2β

2β
ān

where ζ = 1
2 −αβ , and β = (1−αβ )2

4 , and also with αβ > 0.

Accordingly, the temporal and spatial discretization process of the governing equations

yields the following final equations:

M
v̄n+1− v̄n

∆t
+µLv̄n+1 +Gp̄n+1 = F̄ + F̄st + F̄∂Γ + F̄ΓS (2.6.25)

Dv̄n+1 = 0 (2.6.26)

where v̄n and p̄n are the velocity and pressure at time tn.

The system of equations eqs. 2.6.25 and 2.6.26 is solved using the monolithic approach.

2.6.3 Monolithic approach

The monolithic strategy [112, 114, 116, 186, 187], also known as the coupled ap-

proach, consists of solving both velocity and pressure fields simultaneously. Numerical

instabilities will arise whenever the inf-sup condition, also known as the Ladyzhenskaya
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Babuska Brezzi (LBB) condition, is not fulfilled. In this dissertation, the Algebraic Sub-

Grid Scales (ASGS) method is used to enhance numerical stability. The main advantage of

ASGS is to maintain the symmetry of the linear systems of equations.

Stabilization is achieved by adding the following term to the left-hand side of equa-

tions 2.6.25 and 2.6.26:

ne

∑
e=1

∫
Ωe

τ[F−L (vh)]
T L ∗(wh)dΩ (2.6.27)

where L (vh) is the time-dependent residual, which takes the expression

L (vh) =

 ρ
∂vh
∂ t −µ∇ · (∇vh +∇Tvh)+∇ph

∇ ·vh

=

 ρ
∂vh
∂ t +∇ph

∇ ·vh

 (2.6.28)

The Laplacian term, ∇ · (∇vh +∇Tvh), in the previous equation above vanishes, since linear

interpolation functions are used for the spatial discretization.

Using the Backward Euler time scheme, the time dependent residual will be:

L (vh) =

 ρ
vn+1−vn

∆t +∇pn+1

∇ ·vn+1

 (2.6.29)

where L ∗ is the adjoint of operator L , given by [112, 185]:

L ∗(wh) =

 −µ
a
wh−∇qh

−∇ ·wh

=

 −∇qh

−∇ ·wh

 (2.6.30)

where ν is the kinematic viscosity. Hence, we find the resulting stabilizing term as follows:

∫
Ωe

τ1∇qh

(
ρ
vn+1−vn

∆t
+∇pn+1−f

)
dΩ+

∫
Ωe

τ2(∇ ·wh)(∇ ·vn+1)dΩ (2.6.31)
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The term pre-multiplying qh will be added to the continuity equation. Likewise, the term

pre-multiplying wh will be added to the momentum equation. Upon expanding the previous

equation and using interpolation functions, we find:

∫
Ωe

ρ

∆t
τ1

∂Na

∂xi
NbdΩ+

∫
Ωe

τ1
∂Na

∂xi

∂Nb

∂xi
dΩ−∫

Ωe

ρgi
∂Na

∂xi
(

ρ

∆t
Na +Na)dΩ+

∫
Ωe

τ2
∂Na

∂xi

∂Nb

∂xi
dΩ (2.6.32)

where τ1 is the first algorithmic stabilization parameter given by:

τ1 =
1

2‖v̄‖
h + 4ν

h2

(2.6.33)

and τ2 is the second algorithmic stabilization parameter given by:

τ2 =
h2

τ1
(2.6.34)

where h is the element size. Hence, the stabilized governing equations now become as

follows:

(
M

1
∆t

+µL+SK

)
v̄n+1 +Gp̄n+1 = F̄ + F̄st + F̄∂Γ + F̄ΓS +M

v̄n

∆t
(2.6.35)

(D+SD)v̄n+1 +SL p̄n+1 = F̄q (2.6.36)

where,

Sab
K =

∫
Ω

τ2
∂Na

∂xi

∂Nb

∂xi
J(X) dΩ (2.6.37)
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Sab
D =

∫
Ω

ρ

∆t
τ1

∂Na

∂xi
NbJ(X) dΩ (2.6.38)

Sab
L =

∫
Ω

τ1
∂Na

∂xi

∂Nb

∂xi
J(X) dΩ (2.6.39)

f a
q =

∫
Ω

ρgi
∂Na

∂xi
(

ρ

∆t
Na +Na)J(X) dΩ (2.6.40)

where SL is the Laplacian stabilization matrix.

This system of equations is nonlinear and will be solved by the Newton-Raphson method.

First, we rearrange the equation in residual form:

r̄m = F̄ + F̄st + F̄∂Γ + F̄ΓS−M
v̄n+1− v̄n

∆t
+(µL+SK)v̄n+1−Gp̄n+1 = 0 (2.6.41)

r̄c = F̄q− (D+SD)v̄n+1−SL p̄n+1 = 0 (2.6.42)

Then, the Taylor series of the residual gives:

0 =
( r̄m

r̄c

)
+
( dr̄m

v̄i
dr̄m
p̄i

dr̄c
v̄i

dr̄c
p̄i

)( dv̄

d p̄

)
+O(dv̄,d p̄)2 (2.6.43)

where index i represents the level of iteration of the Newton-Raphson scheme, dv̄ = v̄i+1
n+1 -

v̄i
n+1, and d p̄ = p̄i+1

n+1 - p̄i
n+1.

Finally, upon finding the derivative and neglecting the second order and higher terms of
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equation, we find

( r̄m(v̄
i, p̄i)

r̄c(v̄
i, p̄i)

)
=
( dv̄

d p̄

)( M 1
∆t +µL+SK +HST G

D+SD SL

)
(2.6.44)

Here, HST is the matrix representing linearizing the linearized surface tension term, that sta-

bilizes the time step restrictions.

The velocity, pressure, and displacement/position are updated as follows:

v̄i+1
n+1 = v̄

i
n+1 +dv̄n+1, and, p̄i+1

n+1 = p̄i
n+1 +d p̄n+1, and , X̄ i+1

n+1 = X̄n +∆t · v̄i+1
n+1 (2.6.45)

Once the convergence is achieved, the final mesh position is evaluated in terms of the veloc-

ity, v̄n+1 as follows:

X̄n+1 = X̄n +∆t · v̄n+1 (2.6.46)

The viscous stress implementations, both in 2D and 3D, are presented in Appendix B.

2.6.4 Solution algorithm

Given a known configuration Xn, velocity v̄n, and pressure p̄n, at time tn, the proce-

dure for obtaining the values of these variables at the next time step tn+1 is summarized in

Algorithm 1. A complete general algorithm, including a two-phase flow model, can be found

in reference [186].

2.7 Mesh size and time step criteria

Even though a substantial effort has been invested in developing robust and efficient

numerical models for contact line dynamics of sessile drops, a physically accurate and mesh-

independent model does not currently exist to the best of our knowledge.
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Algorithm 1: Simulation algorithm of the liquid phase problem using a
PFEM formulation.

1 for t = tn+1 do
2 Current configuration is the known configuration, such that: Xk

n+1 = Xn;
3 for nonlinear iteration k do
4 Obtain curvature at Xk

n+1;
5 Update discrete operators in eqs. (2.6.16)-(2.6.20);
6 Compute f a

st,i, f a
∂Γ,i, and f a

ΓS,i using eq. (2.6.21), eq. (2.6.22), and
eq. (2.6.23), respectively;

7 Solve system of equations for liquid phase, eq. (2.6.44);
8 Update both velocity and pressure, such that: v̄k+1

n+1 = v̄
k
n+1 +δ v̄ and

p̄k+1
n+1 = p̄k

n+1 +δ p̄, respectively;
9 Update configuration, such that: Xk+1

n+1 = Xk
n+1 +∆t ·dv̄;

10 Remesh;
11 end
12 Xn+1 = Xn +∆t · v̄n+1;
13 end

As the drop spreads, capillary waves are generated at the contact line and move to-

ward the free-surface, i.e., from ∂Γ towards ΓI [46, 123]. For a spreading drop, the maximum

spreading velocity is of the order of the drop impact velocity [200, 228]. At this velocity,

Yuriko et al. [180] concluded that the capillary wave is observed when We > 1, where the

Weber number defined as:

We =
ρRu2

max
γ

(2.7.1)

where ρ is the liquid density, R is the drop radius, and umax is the maximum value of the

tangential component of the velocity vector at the contact line. The latter value, umax, can

be estimated experimentally, and it is known to depend on both the fluid and the substrate

[136, 180, 200, 228]. In this dissertation, different values of umax are used based on the

experimental scenarios illustrated in Section 2.9.

Yuriko et al. [180] also observed that the capillary wavelength, λ , corresponding to
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the contact line capillary propagation is estimated by:

λ =
γ

ρu2
max

(2.7.2)

Numerically, the mesh size at the contact line is restricted by the wavelength of the

capillary wave propagation, and its maximum value h can be estimated to be [63]:

h =
λ

2
(2.7.3)

Substituting eq. (2.7.2) into eq. (2.7.3) yields:

h =
γ

2ρu2
max

(2.7.4)

Moreover, the wave velocity corresponding to the dominant capillary wavelength is

calculated as [70, 136]:

c =

√
2πγ

ρλ
(2.7.5)

where c is the wave velocity. The critical time step corresponding to this capillary wave,

∆tcap, can also be estimated as [63]:

∆tcap =
1

2 f
≤ h

c
(2.7.6)

where f is the maximum frequency in s−1 corresponding to the capillary wave propagation

at the contact line. Substituting eq. (2.7.5) and eq. (4.2.24) into eq. (2.7.6) yields:

∆tcap ≤
√

2
π

γ

4ρ|u3
max|

(2.7.7)

2.8 Mesh dependence study

This section illustrates the effects of enriching the drop model by including the dis-

sipative forces at both the solid-liquid interface and at the contact line. The impact of this
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enrichment upon drop spreading, contact angle evolution, and of the mesh dependency of

the solution is analyzed.

Following the experimental settings of Buscaglia and Ausas [37], the geometry con-

sidered here is a sessile drop with an initial radius of 0.125 mm, an initial contact angle

of 90°, and a static contact angle of θe = 45° (see Fig. 2.6). The driving forces acting on

the drop are due to surface tension and gravity. Fluid density, viscosity and surface tension

coefficient are set to ρ = 1000 kg m−3, µ = 8.90× 10−4 kg m−1 s−1, γ = 0.072 N m−1,

respectively, in order to represent a water drop. Initial pressure in the liquid is set to p0 = 0

Pa.

For this study, the maximum spreading velocity at the initial stage, i.e., t < 0.25 ms,

is assumed, based on experimental analysis, to be umax ∼ 2.5 m· s−1. This data corresponds

to a water drop of ∼ 2×10−4 m radius spreading on Triethoxysilybutraldehyde with a static

contact angle of 43° [28]. Therefore, this gives the estimations λ ∼ 1.165×10−5 m, c∼ 6.27

m· s−1, h ∼ 5.8× 10−6 m, and ∆t = 4.6× 10−7 s from eq. (2.7.2), eq. (2.7.5), eq. (4.2.24),

and eq. (2.7.7).

Six cases are analyzed to illustrate the effect of the slip coefficient parameters at the

contact line and at the solid-liquid interface excluding the contact line, β∂Γ and βΓS , as shown

in table 2.1:

Figure 2.6: Initial and steady-state configuration for a sessile drop starting with an initial
contact angle angle of 90°, and evolving with a spreading displacement of r.

Figure 2.7 shows the predicted spreading displacement defined as r in Fig. 2.6, and

contact angle evolution when no dissipative forces are applied. To compare the general

spreading behavior with Buscaglia and Ausas results [37], a time step of ∆t = 2× 10−7 s
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Case number β∂Γ βΓS

Case 0 0 0

Case 1 0 1×10−5 Pa·s

Case 2 0 1×10−3 Pa·s

Case 3 1×10−3 Pa·s 1×10−3 Pa·s

Case 4 0 βs, using eq. (2.5.13)

Case 5 ζ , using eq. (2.5.10) 0

Case 6 ζ +βs +βn, using eqs. (2.5.10)–(2.5.12) βs using eq. (2.5.13)

Table 2.1: Analyzing different slip coefficient parameters at the contact line and at the solid-
liquid interface excluding the contact line, β∂Γ and βΓS .

is used. Four different mesh sizes were adopted in order to study the solution sensitivity to

mesh size, prior to adding the proposed boundary conditions (i.e., eq. (2.5.1) and eq. (2.5.2)),

as follows: i) h = 1.25×10−5 m with 340 elements, ii) h = 9.6×10−6 m with 598 elements,

iii) h = 6.8× 10−6 m with 1205 elements, and iv) h = 5× 10−6 m with 2206 elements.

Parameter h represents the minimum distance between the nodes of a triangular mesh. As

observed by Buscaglia and Ausas [37], when no dissipative force boundary conditions are

applied, the solution is mesh-dependent, and the contact angle evolution is highly oscillatory.

The coarsest and the finest meshes, i.e., h = 1.25×10−5 m and h = 5×10−6 m, are

considered for further study. These are displayed in Fig. 2.8. For each mesh size, the six

above-mentioned sets of dissipative forces and slip conditions were included.

Figure 2.9 shows spreading displacement and contact angle evolution for coarse mesh

simulations. The absence of the dissipative term (ζ ), normal stress coefficient (βn), or the
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(a)

(b)

Figure 2.7: Evolution of (a) spreading displacement and (b) contact angle, for β∂Γ = 0 and
βΓS = 0; case 0 in table 2.1, using different mesh sizes.

(a) (b)

Figure 2.8: Initial configuration of a sessile drop with a starting contact angle of 90°: a)
coarse mesh of 1.25×10−5 m and b) fine mesh of 5×10−6 m.
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(a)

(b)

(c)

(d)

Figure 2.9: Evolution of spreading displacement for constant β∂Γ and βΓS (a) and using
eq. (2.5.7) and (2.5.13) (b). Contact angle evolution for constant β∂Γ and βΓS (c), and using
eq. (2.5.7) and (2.5.13) (d), see table 2.1. Mesh size of h = 1.25×10−5 m (coarse mesh).

54



Navier-slip coefficient (βs) causes an oscillatory spreading behavior and contact angle evo-

lution (Fig. 2.9(a), Fig. 2.9(c)). Experimental results [28, 200, 228] do not show this oscilla-

tory behavior for a fluid on hydrophilic substrates. Therefore, these spurious oscillations are

hypothesized to be due to the numerical scheme [37, 143]. The initial non-physical spread-

ing evolution causes the contact line to exceed its equilibrium contact angle, i.e., θd < 45°.

Hence, the contact line retracts toward its equilibrium state again. The contact line spreads

back and forward in a manner proportional to the induced Young’s stress (eq. (2.5.5)) until

its effect vanishes and the drop reaches its equilibrium condition.

The first two cases show that increasing the constant value of the Navier-slip coef-

ficient at the solid-liquid interface, βΓS , does not guarantee a physical spreading evolution.

Adding a constant slip coefficient at the contact line, i.e., case 3, reduces the contact an-

gle and spreading rate oscillatory behavior, and increases the convergence rate. Yet, these

constant values do not produce physical contact angle and spreading evolution rates.

Adding the Navier-slip condition on ΓS (eq. (2.5.13), case 4) reduces the contact line

singularity and enhances the convergence rate towards the equilibrium condition (Fig. 2.9(b)

and Fig. 2.9(d)). However, the contact angle continues to behave in a non-physical manner

due to the absence of the dynamic capillary term (ζ ).

Adding the dynamic capillary term alone, case 5, at the contact line (eq. (2.5.10))

results in unstable contact angle evolution and spreading rate (Fig. 2.9(b) and Fig. 2.9(d)).

This is interpreted by the absence of the physical viscous dissipation and stress balance terms

acting on the solid-liquid interface, including the contact line.

Adding the dissipative force terms at the contact line and at the solid-liquid inter-

face (β∂Γ and βΓS , respectively) using eq. (2.5.7), and (2.5.13) enhances the overall behavior

of both contact angle and contact line evolution (Fig. 2.9(b) and Fig. 2.9(d)). The contact

line reaches its equilibrium state after 0.0006 s, i.e ≈ 85% faster than without resorting to

the proposed boundary conditions; the non-physical oscillatory spreading behavior vanishes.

Furthermore, case 6 in Fig. 2.9(b) shows two physical regimes. The first regime is the iner-

tial regime, 0 < t < 4×10−4 s, where the drop spreads at a rate proportional to the induced

Young’s stress. The second regime is the viscous regime, t > 4×10−4 s, where the viscous
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dissipation is dominating as the drop reaches its equilibrium contact angle [28, 47, 200, 228].

The proposed boundary conditions at the solid-liquid interface are critical to achiev-

ing physically acceptable drop spreading solutions with the use of coarse meshes. Results for

the refined mesh, i.e., h = 5×10−6 m, are displayed in Fig. 2.10. In the absence of the dissi-

pative term, normal stress coefficient, and Navier-slip coefficient, a smoother spreading dis-

placement evolution is achieved, compared to the coarser mesh (Fig. 2.10(a) and Fig. 2.9(a)).

Furthermore, the equilibrium state is reached after 0.0012 s. However, a non-physical os-

cillatory contact angle temporal evolution with low amplitudes is observed in Fig. 2.10(c).

A more refined mesh leads to a lower nodal velocity and slip length coefficient, lβ , at the

vicinity of the contact line compared to a coarse mesh [179, 226]. Accordingly, a higher slip

coefficient, βs, is imposed in the Navier-slip formulation, such that [12, 37]:

βs =
µ

lβ
(2.8.1)

where µ is the fluid dynamic viscosity. On the one hand, the use of more refined mesh results

in a smoother contact angle evolution and spreading behavior. On the other hand, the oscilla-

tory behavior of the contact angle evolution is due to the missing dissipative force term that

controls the contact angle evolution as a function of the dynamic capillary effect. Adding

the capillary effect, ζ , at contact line, case 5 and case 6, results in smooth physical transition

between the inertial and viscous regimes for both spreading displacement and contact angle

evolution.

The contact angle evolution and spreading rate for both mesh sizes are compared

before and after applying the complete set of proposed boundary conditions at the solid-

liquid interface and contact line are shown in Fig. 2.11. Results obtained without imposing

the dissipative force boundary conditions are grid dependent and display large, non-physical

oscillations. In contrast, the results obtained with the numerical solver with the proposed
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(a)

(b)

(c)

(d)

Figure 2.10: Evolution of spreading displacement for constant β∂Γ and βΓS (a) and using
eq. (2.5.7) and (2.5.13) (b). Contact angle evolution for constant β∂Γ and βΓS (c), and using
eq. (2.5.7) and (2.5.13) (d), see table 2.1. Mesh size of h = 5×10−6 m (fine mesh).
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boundary conditions are grid independent and nearly free of oscillations with a smooth phys-

ical transition between both the inertial regime, 0 < t < 2×10−4 s, and the viscous regime,

t > 5× 10−4 s. A small contraction of the contact line is observed in Fig. 2.11(a). The

accompanied dewetting may be due to a spurious numerical artifact, although this particular

phenomenon has been identified in drop spreading and drop impact experiments [28, 228].

These results demonstrate that the proposed boundary conditions enhance the stability of the

contact line motion and achieve a mesh-independent solution with larger element sizes.

2.9 Experimental validation

In order to assess the validity of the proposed numerical model, we compare in this

section experimental and numerical results of several studies available in the literature in-

volving spreading of fluids on flat smooth surfaces with a variety of equilibrium contact

angles. Specifically, the following cases are studied:

• Case #1: spreading of a water drop on a hydrophobic substrate, i.e., Triethoxysilane,

(with equilibrium contact angle of 117.0°) [28].

• Case #2: spreading of a squalane (C30H62) drop on a silica substrate (with equilibrium

contact angle of 38.8°) [200].

• Cases #3 and #4: spreading of water on teflon (hydrophobic) and kapton (hydrophillic)

substrates (with equilibrium contact angles of 108° [165] and 75° [74], respectively).

2.9.1 Case #1: spreading of a water drop on a hydrophobic triethoxysilane substrate

The proposed model is used to simulate the sessile water drop deposition experiments

performed by Bird et al. [28]. In this study, a drop was placed on the Triethoxysilane sub-

strate through a needle. The drop contacts the substrate at a diameter of 1 mm, and allowed

to spread spontaneously over the substrate until equilibrium was reached, i.e., θ = θe = 117°.

Spreading displacement (r) was measured over time during the initial time of wetting.

In order to reproduce this experiment numerically, a drop is placed on the substrate

with an initial radius R = 5×10−4 m, contact angle of 180°, and liquid pressure of p0 = 0 Pa
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(a)

(b)

(c)

Figure 2.11: Mesh-independent results for (a) spreading displacement evolution, (b) contact
angle temporal evolution, and (c) contact line velocity evolution, using our proposed bound-
ary conditions and for two different triangular mesh sizes of h = 1.25× 10−5 m (coarse
mesh) and h = 5×10−6 m (fine mesh).
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(Fig. 2.12). Then, the drop is allowed to deform until equilibrium is achieved, i.e., θe = 117°.

Fluid density, viscosity and surface tension coefficient are set to ρ = 1000 kg m−3, µ =

8.90×10−4 kg m−1 s−1, γ = 0.072 N m−1, respectively. Assuming that the capillary waves

at the contact line are dominant and umax of the order ∼ 1 m s−1 [28], two simulations were

performed using the boundary conditions of eq. (2.5.7) and (2.5.13), two element sizes, i.e.,

h = 4×10−5 m with 1085 elements, and h = 8×10−5 m with 282 elements, as displayed in

Fig. 2.13, and a time-step size of 10−7 s.

Figure 2.12: Initial and steady-state configuration for the sessile drop starting with an initial
contact angle ≈ 180°, and evolving with a spreading displacement of r.

Figure 2.13: Two different mesh sizes, h = 8×10−5 m and h = 4×10−5 m, representing the
initial-stage of 0.001 m diameter drop.

Fig. 2.14 shows the spreading profile within the first millisecond when the initial cap-

illary wave propagation is dominating at the contact line and moving toward the free-surface.

The profile obtained numerically is in good agreement with the experimental profile [28].
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(a) Water drop of a radius 0.82 ± 0.01 mm [28].

(b) Water drop of a radius 0.5 mm.

Figure 2.14: Case #1: water drop spreading on Triethoxysilane, for 0 < t ≤ 1.2 ms, with a
dominant capillary wave propagation at the contact line (a) experimentally, (reproduced with
permission from J. Phys. Rev. Lett. 100, 234501 (2008). Copyright 2008 American Physical
Society), and (b) numerically.
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Fig. 2.15 shows the spreading displacement, and spreading rate evolution observed exper-

imentally and predicted numerically using the two meshes. Experimental and numerical

results are in very good agreement, and the two meshes provide very similar results, i.e., the

numerical results are mesh-independent. The initial contact line velocity reaches 1 m s−1,

which corresponds to the predicted velocity regime for an impact or spreading drop starting

from rest [200, 228]. Fig. 2.14 and Fig. 2.15 show that the numerical model is able to cap-

ture the early spreading regime, t < 0.1 ms where the spreading rate is independent of the

wettability of the substrate [28, 45, 54]. Furthermore, the inertial regime characterized by

the capillary waves [47, 65] is captured numerically. This can be verified based on the tran-

sition time interval, Tt , formula between the inertial dominated regime, Ti, and the viscous

dominated regime, Tv, i.e., Ti < Tt < Tv, such that [26, 47, 54]:

(
ρR3

γ

)0.5
< Tt <

(
ρR3

γ

)0.5(ργR
µ2

)0.125
(2.9.1)

where Tt is the transition time interval between the inertial and the viscous regimes, ρ is the

fluid density, R is the initial drop radius, γ is the surface tension coefficient, and µ is the

dynamic viscosity. Eq. (2.9.1) implies that the inertial regime for a water drop of radius 0.5

mm is in the range of Ti < 1.3 ms, after which the transition regime takes place. Finally,

Fig. 2.14 shows that the spreading regime depends on the initial drop radius, i.e., the smaller

the drop initial radius the faster the transition from inertial to viscous regimes, in agreement

with eq. (2.9.1).

2.9.2 Case #2: spreading of a squalane (C30 H62 ) drop on a silica substrate

In this section, the numerical model is used to reproduce the experimental results

obtained by Seveno et al. [200] where squalane is allowed to spread over a silica substrate.

The static contact angle of squalane on silica is 38.8°.

To reproduce this experiment numerically, the same initial and boundary conditions

are used as in the previous case, as shown in Fig. 2.12. The initial drop diameter is 0.0018

m and the physical properties of the fluid are ρ = 810 kg m−3, µ = 0.0314 kg m−1 s−1, and

γ = 0.0311 N m−1. The expected spreading rate is of the order 10−1 m s−1 [200]. Assuming
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(a)

(b)

Figure 2.15: Case #1: water drop spreading rate on Triethoxysilane: (a) spreading dis-
placement evolution (numerically vs. experimentally) and (b) contact line velocity evolution
(numerically vs. experimentally).
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umax = 0.5 m s−1, the capillary wavelength and corresponding mesh sizes are obtained by

eq. (2.7.2) and eq. (4.2.24) as λ = 1.5× 10−4 m and h = 7.510−5 m with 1014 elements,

respectively. Also, since We > 1 as per eq. (3.4.2), the capillary wave propagation should

be expected from numerical model. The time step is chosen as ∆t = 10−7 s, according to

eq. (2.7.7) covering the range of contact line velocities of the order 10−1 m s−1.

Fig. 2.16 shows the contact angle evolution versus the contact line velocity, followed

by the contact angle evolution versus time. The numerically predicted contact line velocity

evolution is in agreement with measured experimental data (see Fig. 2.16(a)) and is propor-

tional to the temporal evolution of the contact angle (Fig. 2.16(b)). Furthermore, the initial

squalane drop velocity on silica is of the order of ∼ 0.1 m s−1 (Fig. 2.16(a)) as indicated

by Seveno et al. [200]. Both numerical and experimental results show that the contact line

spreading is initially dominated by inertial effects, followed by a reduction of the contact line

velocity, where viscous effects dominate. This observation is in agreement with eq. (2.9.1),

where the transition time interval between the inertial and the viscous regimes is predicted

as, 4.3 ×10−3 s < Tt < 6.4 ×10−3 s. In this time interval, the contact angle value varies

between approximately 150°. and 125°. (Fig. 2.16(b)). Therefore, the numerical oscillatory

behavior in this region, as shown in Fig. 2.16(a), is hypothesized to be due to the transition

between the inertial and the viscous regimes.

2.9.3 Cases #3 and #4: injection of water drops on teflon (hydrophobic) and kapton

(hydrophillic) substrates

To further validate the proposed model, water injection experiments on hydrophillic

(kapton, static contact angle of 75° [74]) and hydrophobic (PTFE, static contact angle of

108° [165]) substrates were performed by the UC Berkeley and U Alberta Energy Systems

Design Laboratory groups. In the experiment, water was injected from a small conduit of

6× 10−4 m diameter in the substrate using a peristaltic pump at two constant flow rates,

i.e., 5 µL/s and 10 µL/s. Three experiments were performed: i) water injection at a rate

of Q = 5 µL/s on kapton surface, ii) water injection at a rate of Q = 5 µL/s on PTFE, and

iii) water injection at a rate of Q = 10 µL/s on PTFE. The injection profile is displayed in
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(a)

(b)

Figure 2.16: Case #2: Squalane drop on silica: (a) contact angle evolution vs. contact line
velocity (numerical vs. experimental), and (b) contact angle evolution vs. time (numerical
vs. experimental).
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Figure 2.17: Fuel cell channel and injection simulation: Illustration of the experimental
setup. Reference: T. Chan. Validation of a Semi-Analytical Model for drop Dynamics in a
PEMFC. Berkeley Lab.

Fig. 2.20. Two cameras, positioned perpendicular to each other, were used to capture the

injection process as shown in Fig. 2.17. The spreading displacement were extracted from

the recorded videos using built-in tracking feature of ImageJ [195], where the spreading

regimes were identified by tracking the contact line every 0.2 second. The contact angle

measurements were extracted using the “B-Spline Snake” feature of the drop-analysis plugin

of ImageJ [206]. “B-Spline Snake” feature measures the contact angle locally following

a concept of polynomial fit. Therefore, an error of ±2.5° was taken into account when

measuring the contact angle, as shown in Fig. 2.18(b) and Fig. 2.19(b).

In order to perform the numerical simulations, initial drop configurations of volume

≈ 0.04 and ≈ 0.2 µL and initial contact angle of 75° and 108° for kapton and PTFE, re-

spectively, are selected. Fluid density, viscosity and surface tension coefficient are set to

ρ = 1000 kg m−3, µ = 8.90× 10−4 kg m−1 s−1, γ = 0.072 N m−1. Initial pressure in the

liquid is set to p0 = 0 Pa. Considering 2D simulations, the injection rates are normalized

from 3D to 2D. Our numerical results show that using a scale shape factor of π provides

reliable results. The injection rates were of the order of micro seconds; hence, the average

spreading rate for this experiment was of the order 10−3 m s−1, as shown in Fig. 2.18(a)
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and Fig. 2.19(a), which yields We < 1. Accordingly, the capillary effect at the moving con-

tact line is neglected compared to the dominant surface tension force. The time step and

mesh size used for these simulations are chosen as ∆t = 3× 10−3 s and h = 1.5× 10−4 m,

respectively.

2.9.3.1 Kapton

Fig. 2.18 shows the experimental and numerical results. Experimentally, the data

was collected using videos instead of high speed capturing cameras, therefore, the spreading

rate and contact angle evolution could not be tracked accurately at the initial stage, i.e., for

t < 0.1 s. Accordingly, a jump in the spreading radius and contact angle evolution was

observed experimentally at the initial stage. Similarly, the initial injection rate causes an

initial jump as well for the spreading radius for t < 0.1 s.

It was observed experimentally and numerically that the spreading rate decreased as

the drop volume increased. Furthermore, the contact angle evolution displayed oscillations,

both experimentally and numerically, and an average increase of ∼15°. This behavior of the

contact angle evolution is interpreted in term of the work of adhesion. In general, the work of

adhesion increases as the hydrophobicity of the surface decreases [192]. Accordingly, higher

energy is required to detach or separate a liquid from hydrophilic surfaces due to the strong

bonding between the liquid and the substrate [192]. During the initial stage of the injection

process, this work of adhesion partially withstands the effect of the induced Young’s stress as

the drop spreads towards its equilibrium contact angle. Hence, the contact angle increases as

the injection process starts, i.e., from 75° to ∼90°, as shown in Fig. 2.18(b). The maximum

errors between the experimental data and the numerical results for both spreading rate and

contact angle temporal evolution are estimated to be about 10%, as shown in Fig. 2.18(a).

2.9.3.2 PTFE

Figure 2.19 shows the spreading radius and contact angle evolution as a function of

time obtained experimentally and numerically. Experimental and numerical drop radius are

in excellent agreement at high injection flow rate, while at the lower flow rate the numerical
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(a)

(b)

Figure 2.18: Case #3: water-kapton injection analysis and comparison: (a), spreading dis-
placement evolution, and (b) contact angle evolution.
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results underpredict the spreading radius. The contact angle is nearly constant throughout

both the experiment and simulation, as opposed to the case of kapton where there was a

gradual increase in the contact angle. The average maximum errors of both injection rates

was about 10%. The contact angle evolution for both injection rates were in good agreement

as well, with a maximum variation of 3°, i.e., about 2.5% (Fig. 2.19(b)).

As in the case of kapton, an initial jump was observed experimentally and numerically

for the spreading radius for t < 20 ms. Moreover, it is observed that the spreading rate

decreased as the drop volume increased. However, in the case of PTFE, the sessile drop

showed higher spreading rate at the initial stage due to the reduced work of adhesion between

the liquid and substrate (hydrophobic substrate).

Fig. 2.20 shows a comparison between the experimental and simulated drop profiles

during injection. The model is capable of capturing the drop profiles during the early stages

of the process. After the drop has grown substantially, predicted profiles show some dis-

agreement with the experimental observations. It is hypothesized that the reason for the

discrepancy is the lack of three dimensional information. The current 2D model neglects

out-of-plane forces, which may play a significant role in determining the drop shape and

spreading rate [187].

2.10 Conclusion

A PFEM-based model for the simulation of drop spreading on solid substrates was

presented for a wide range of wettability conditions. The advantage of the PFEM scheme

for modeling drop spreading dynamics is depicted in Figs. 2.14 and 2.20, as it i) precisely

tracks the evolution of the boundaries in accordance with the force and velocity fields and ii)

reconnects the domain during deformation and/or expansion.

Appropriate dynamic boundary conditions at the solid-liquid interface and the contact

line were identified to provide physically meaningful results in drop spreading simulations.

A Navier-slip boundary condition is applied at the liquid-solid interface excluding the contact

line. At the contact line, an effective slip coefficient was introduced as a function of capillary

effects, and the balance of stresses acting on the vicinity of the contact line.
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(a)

(b)

Figure 2.19: Case #4: water-PTFE injection analysis and comparison: (a), spreading dis-
placement evolution, and (b) contact angle evolution.
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(a)

(b)

(c)

Figure 2.20: Initial and final sessile drop profiles, experimentally (in black color) vs numer-
ically (in blue color), for: (a) water injected at flow rate of 5 µL/s on kapton substrate, (b)
water injected at flow rate of 5 µL/s on PTFE substrate, and (c) water injected at flow rate of
10 µL/s on PTFE substrate.

71



The mesh size dependency of the solution was studied. First, the importance of the

capillary wave propagation phenomena, and its numerical consequences in choosing the

mesh size and time step were pointed out. Then, mesh-dependency studies were performed

to show that the proposed dynamic boundary conditions alleviate the mesh-dependency of

the solution.

The proposed drop spreading model was validated by comparison with experimental

results for a variety of liquids on hydrophobic and hydrophillic substrates. Spreading rates

and contact angle temporal evolution obtained numerically were in good agreement with the

experimental data. The model was able to capture the early spreading regime and the inertial

to viscous transition regimes.

The model was compared with micro sessile-drop injection experiments for water on

hydrophilic and hydrophobic substrates. The experimental and numerical results were again

in good agreement. A three-dimensional model must be developed to properly account the

geometrical effects of the spreading drop. This 3D model will be particularly important to

account for out-of-plane effect and non-planar geometries during spreading, injection and

other interfacial dynamic phenomena. This will be addressed Chapter 4.

72



Chapter 3

A TWO-DIMENSIONAL NUMERICAL MODEL FOR SLIDING MOTION OF
LIQUID DROPS

3.1 Introduction

In this chapter, we consider the dynamics of a sliding liquid drop under the effect of

gravity. The sliding of liquid drops on a tilted substrate is of relevance in both natural and

human-made applications. This includes, and is not limited to, biological and agricultural

systems [106], self-cleaning surfaces [240, 245] as in lotus leaves [100, 149], the field of

biomedical engineering [21, 154], advanced surface engineering as in coating formulation

and surface texturing [76, 230, 243], and non-conventional energy conversion devices as in

PEMFCs [113, 186] (see chapter 1 for more details).

The sliding motion of liquid drops shares some common features to their spreading

motion. Both phenomena involve: i) contact line movement, ii) the effect of the capillary

action on the contact line, and iii) the effect of gravitational forces normal to the substrate.

Thus, the main challenges in the mathematical and numerical modeling for sliding liquid

drops are similar to those of spreading liquid drops, i.e., regularizing the contact line sin-

gularity, predicting the contact line temporal evolution, and tracking the free-surface defor-

mation. However, additional effects must be accounted for during sliding, specifically, the

effect of the retention force acting in the vicinity of the contact line (see Sec. 1.1.3). This

chapter is an extension to chapter 2. It presents a numerical model based on the PFEM for

the prediction of the sliding motion of liquid drops by including the effect of a retention

force. The proposed model, limited to two-dimensional geometries, is validated by using

experimental data found in the published literature, covering a wide range of drop size and

physical properties.
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It has been experimentally demonstrated that this retention force can be expressed

in terms of the surface tension force, the aspect ratio of the drop footprint, and the contact

angle hysteresis [80]. The contact angle hysteresis is defined as the difference between the

advancing and the receding contact angles [80, 81, 84]. Initially, the retention force balances

the gravitational force [16, 34, 69, 75, 80, 81, 166, 242]. When this force reaches a critical

value, the drop begins to slide [80, 84].

Several authors have studied the drop depinning mechanism and detachment modes

under the effect of gravity and/or external gas flow. An overview of recent experimental

work can be found in [151, 231, 237]. Consequently, various analytical models have been

proposed to predict the modes of drop motion. For example, ElSherbini and Jacobi [75]

developed an analytical model that expresses the threshold angle as a function of the contact

angle hysteresis. Xie et al. [237] studied the motion of a sliding drop under the effect of

gravity and an impinging gas flow. The authors derived an analytical criterion for the onset of

drop motion in terms of the equilibrium contact angle. Recently, White and Schmucker [231]

proposed a depinning model for a liquid drop under the effect of both gravitational and wind

forces. Their model was validated using water drops on an aluminum substrate. They found

that the depinning phenomenon can be predicted in terms of the aspect ratio of the drop, the

threshold angle, and both the Weber and Bond numbers.

Numerical models have also been presented in the literature to predict the pinning

phenomenon and the different modes of drop motion. For instance, Park and Kang [168]

developed a numerical feedback deceleration model, based on a conservative level set ap-

proach, to predict the pinning mechanism in terms of the contact angle hysteresis. In their

model, the contact line is decelerated by controlling the contact angle, using an estimated

control coefficient as a function of time. The model successfully predicts different pinning

and contact angle evolution for hanging drops and drops impacting a dry solid substrate.

Thampi et al. [218] performed two-dimensional (2D) numerical simulations, using a hybrid

lattice Boltzmann algorithm and diffuse interface model, to predict the motion of a liquid

drop under the effect of gravity. They observed that the rolling angular speed is directly
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proportional to both the contact line velocity and the viscosity of the drop, and inversely pro-

portional to the wetting diameter. Annapragada et al. [16] developed a pseudo-Lagrangian

based model, using the volume of fluid-continuous surface force (VOF-CSF) approach, for

drop sliding analysis. They examined sliding water drops on hydrophobic polytetrafluo-

roethylene (PTFE) substrates by correlating the static contact angle with the contact angle

hysteresis and Bond number, and their 2D numerical results were found to be in good agree-

ment with experimental measurements. Yilbas et al. [242] proposed a 2D numerical model,

based on an Arbitrary Lagrangian–Eulerian (ALE) formulation, for predicting the rolling

dynamics of water drops on a hydrophobic substrate. Their model was validated using water

drops on hydrophobic solution-crystallized surface. They observed that the adhesion force

between the drop and the substrate increased as the wetting diameter increased. Thus, the

rotational speed increased as the drop size decreased. To the best of our knowledge, a nu-

merical, mesh-independent model for sliding drops has yet to be subjected to a rigorous

experimental validation process for a variety of experimental conditions.

To this end, we develop in this chapter a 2D Lagrangian PFEM scheme for the predic-

tion of the temporal evolution of sliding liquid drops under the effect of gravity. We extend

the dissipative force model first proposed in the previous chapter by including a retention

force acting on the drop contact line, and we then validate the extended model with exper-

imental data. This chapter is organized as follows: The governing equations and boundary

conditions for sliding liquid drops are described in Sec. 3.2, followed by a description of the

discretization strategy of the governing equations in Sec. 3.3. The mesh size and time step

criteria are discussed in Sec. 3.4. Finally, in Sec. 3.5, the model is validated by examining

six different experimental scenarios of sliding liquid drops for a variety of drop size, physi-

cal properties, and substrate wettabilities. The main concepts, figures, and outcomes of this

chapter are reproduced from [Elaf Mahrous, R Valéry Roy, Alex Jarauta, and Marc Secanell.

A two-dimensional numerical model for the sliding motion of liquid drops by the particle

finite element method. Physics of Fluids, 33(3):032117, 2021.], with the permission of AIP

Publishing (See Appendix H for more information about the publisher’s permission).
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Figure 3.1: Sketch of a drop sliding down an inclined plane.

3.2 Physical model

3.2.1 Governing equations

Let Ω, ΓI , ΓS and ∂Γ denote the domain occupied by the drop, its liquid-vapor in-

terface, its solid-liquid interface, and its contact line, respectively. In 2D, the contact line

is represented by two triple points (see Fig. 3.1). The equations expressing momentum and

mass conservation for an incompressible Newtonian fluid are as indicated in Sec. 2.2.

3.2.2 Boundary conditions

As a drop starts to move, Young’s stress is induced at the contact line ∂Γ. The contact

line velocity is assumed to be proportional to the induced Young’s stress [37, 141, 178]:

u ∝ γ (cosθe− cosθd) (3.2.1)

where u = v · ex is the tangential component of the velocity vector at the contact line, θe is

the equilibrium contact angle, and θd is the dynamic contact angle.

In the case of drop spreading on a flat substrate, the corresponding factor of propor-

tionality is modeled in terms of viscous and capillary forces acting at the contact line [37,
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141]. It was shown in the previous chapter that the inclusion of these forces as boundary con-

ditions is essential to alleviate the contact line singularity and to obtain mesh-independent

spatiotemporal evolution of spreading drops (see [141] for details). As the inclination of

the substrate is slowly increased, experiments show that the drop is acted upon by a force,

referred to as retention force, which impedes the motion. When this force reaches a critical

value, the drop begins to slide [80, 84].

3.2.2.1 Retention force

It has been shown experimentally that the retention force acting along the contact line

is a function of the drop size, the aspect ratio of the wetting perimeter, the surface tension

coefficient, and the contact angle hysteresis, as demonstrated by the following empirical

expression [34, 75, 80, 125, 241, 242]:

Fretention = kaγ(cosθR− cosθA) (3.2.2)

where k is a function of the aspect ratio of the drop footprint, a is the wetting radius of the

liquid drop before deformation, θR is the receding contact angle, and θA is the advancing

contact angle. In this chapter, the angles θA and θR are treated as dynamic angles which

evolve with time and reach steady state values. If we had the advancing and receding contact

angles, we would have been able to predict the onset of sliding.

The parameter k is a macroscopic material property. It is a reflection of surface forces

acting in the vicinity of the contact line [80, 84]. The constant k is commonly assumed to

take the value of (48/π3) [172, 241, 242] as devised by ElSherbini and Jacobi [75]. In

reality, the actual value of k differs from one liquid/substrate pair to another. It has been

reported that the value of k ranges from 4/π to π [34, 72, 75, 80, 81, 166], which can lead to

a large variation of the retention force. Accordingly, the accuracy of this force depends on

the experimental value of parameter k.
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For 2D simulations, eq. 3.2.2 is found in the literature to take the following expres-

sion [16, 69]:

Fretention(2D) = γ(cosθR− cosθA) (3.2.3)

The absence of the parameter k in eq. 3.2.3 is too restrictive [80, 81]. Our goal is

to replicate the 2D profile of a sliding drop by consideration of parameter k. The scale

shape factor k/π is adopted in this work, whereby the value k = 4/π corresponds to a drop

of a circular contact line [34, 80, 81]. Moreover, the value k = π [75] recovers eq. 3.2.3.

Consequently, the retention force acting at the contact line is expressed as follows:

Fretention(2D) =
k
π

γ(cosθR− cosθA) (4/π < k ≤ π) (3.2.4)

Our numerical results appear to support this scaling, by choosing k according to ex-

perimental conditions, as will be shown in Sec. 3.5.

3.2.2.2 Total dissipative force acting at the contact line ∂Γ

The total dissipative force acting at the contact line is expressed in terms of the in-

duced Young’s stress as follows [37, 141]:

f∂Γ =−γ(cosθe− cosθd) =−β∂Γu at ∂Γ (3.2.5)

where f∂Γ and β∂Γ are the total dissipative force per unit length and the effective slip coeffi-

cient, both acting at the contact line.

This boundary condition includes the contribution of i) the capillary force coefficient

(ζ ), ii) the normal viscous stress coefficient (βn), iii) the Navier-slip coefficient (βS), and iv)

and the retention force coefficient (βretention). Accordingly, the coefficient β∂Γ is defined as

follows:

β∂Γ = ζ +βn +βS +βretention (3.2.6)
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Coefficients ζ , βn and β are discussed in Sec 2.5.1. Coefficient βretention which ac-

counts for the effect of the retention force is given by:

βretention =
γk
uπ

(cosθR− cosθA) (3.2.7)

3.2.2.3 Forces acting at the solid-liquid interface away from the contact line, ΓS

Boundary conditions along the solid-liquid interface excluding the contact line are

imposed in terms of the Navier-slip coefficient. It is expressed as a function of the normal

projection of Cauchy stress tensor as discussed in Sec 2.5.2.

3.3 Discretized governing equations

This section summarizes the detailed discretization technique in Sec. 2.6, including

the retention force in the formulation. The continuity and momentum equations, eq. 2.2.1

and 2.2.4, are discretized in space using the PFEM scheme. The domain is represented by a

set of particles, and is evolved in a Lagrangian manner. The physical information is stored

at each node, and the domain is deformed according to the force and velocity fields. At

each time step, the domain is re-meshed to ensure that its boundaries are reconstructed in

accordance with the calculated velocity field. Both velocity and pressure are approximated

using first-order Lagrange elements on 2D trianglar meshes. The Newark-Bossak scheme

is used for the temporal discretization. However, a Backward-Euler scheme is used here to

simplify the expressions. The complete algorithm for the discretization and time marching

schemes can be found in [114, 184, 186].

The velocity and pressure, v̄n and p̄n, are assumed to be known at the current time,

tn. The updated values of velocity and pressure, v̄n+1 and p̄n+1, are found at the next time

step, tn+1, by solving:

M
v̄n+1− v̄n

∆t
+µLv̄n+1 +G p̄n+1 = F̄+ F̄st + F̄∂Γ + F̄ΓS (3.3.1)

Dv̄n+1 = 0 (3.3.2)
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where M is the mass matrix, L is the Laplacian matrix, ∆t is the time step, G is the gradient

matrix, F̄ is the vector of external forces, F̄st is the surface tension force vector acting at

the fluid-fluid interface, F̄∂Γ is the dissipative force vector acting along the contact line, F̄ΓS

is the dissipative force vector acting along the solid-liquid interface away from the contact

line, and D is the divergence matrix. The expressions of the local matrices and vectors are

given in Appendix C. Eqs. 3.3.1 and 3.3.2 are linearized using a Newton method. Moreover,

the pressure is stabilized using the algebraic sub-grid scales (ASGS) [52, 53, 157] stabi-

lization technique as the linear velocity-pressure elements do not fulfill the compatibility

condition [66]. The solution algorithm and implementation methodology are described in

more detail in Appendix D.

3.4 Mesh size and time step criteria

Our previous numerical work on drop spreading (chapter 2.8) demonstrated that the

implementation of the proposed boundary conditions into a PFEM numerical scheme results

in physically acceptable behavior and produces mesh-independent solutions. The adopted

mesh size, h, is estimated as a function of the wetting radius, a, as follows:

h∼ a
10

(3.4.1)

Adaptive mesh refinement can also be implemented at the boundaries in order to reduce the

computational cost. Mesh dependency analysis is presented in Sec. 3.5.2.

The main constraint for choosing the time step is the maximum velocity at the contact

line which must satisfy the range of applicability of Jiang’s model, that is 0 <Ca≤ 0.03. In

the present work, the time step criteria is calculated based on the Weber number (We) defined

as [180]:

We =
ρRu2

max
γ

(3.4.2)

where R is the radius of the drop (see Appendix E), and umax is the maximum value of the

tangential component of the velocity vector at the contact line. On one hand, if the capillary
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wave propagation at the contact line is dominant, i.e, We > 1 [180], the time step is governed

by the following equation [141]:

∆t ≤
√

2
π

γ

4ρ|u3
max|

(3.4.3)

On the other hand, if We< 1, the time step limit is governed by the Courant-Friedrichs-

Lewy condition as follows [185]:

∆t ≤ CFL
|umax|

h + 2µ

h2

(3.4.4)

where CFL is the Courant-Friedrichs-Lewy number and h is the mesh size. In practice, the

range of CFL is between 0.5 and 0.9.

In summary, in this work eq. 3.4.2 is used to estimate the Weber number, the step size

is then chosen to satisfy either eq. 3.4.3 or eq. 3.4.4.

3.5 Experimental validation

Six different experimental scenarios obtained from the published literature are exam-

ined to validate the proposed sliding drop model for a variety of liquid and substrate prop-

erties. Only steady-state profiles are examined, due to the lack of data during the unsteady,

initial drop motion which typically lasts a few milliseconds. The physical properties of the

liquids, the inclination angles of the substrates, and the corresponding simulation parameters

are summarized in Tables 3.1 and 3.2.

3.5.1 Cases #1 and #2: ethylene glycol drop on an omniphilic polycarbonate substrate

We first examine the sliding experiments performed by Kim et al. [125] for ethylene

glycol drop sliding down an inclined polycarbonate substrate. The drop of volume 29.2

µL wets a circular surface of the substrate of diameter 5.66 mm (see Appendix E). The

drop is allowed to slide over the substrate until it reaches its steady-state velocity. Two

inclination angles are considered, α = 11° and α = 20°. The steady-state velocities for
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Case # Liquid Substrate ρ µ γ θe Volume α

(kg.m−1) (Pa.s) (N.m−1) (°) (µL) (°)

1 [125]
ethylene glycol polycarbonate 1114 0.0209 0.0484 70.2

29.2 11

2 [125] 29.2 20

3 [16]
water PTFE 997 0.00089 0.0728 120

7.5 60

4 [16] 10 60

5 [151] water PMMA 997 0.00089 0.0728 74.4 30 0-70 at 20° s−1

6 [238] PEG smooth glass 1080 0.285 0.0533 34.0 [194, 215, 238] 100 27

Table 3.1: Physical properties of the liquids and substrate inclination angles.

α = 11° and α = 20° were found experimentally to be 3.75×10−4 m s−1 and 1.557×10−3

m s−1, respectively [125].

The simulations are performed using the physical properties for cases #1 and #2 in

Table 3.1. The wetting radius is a = 0.00283 m (see Table 3.2). Thus, the mesh size used

here is h = 3×10−4 m (eq. 3.4.1). Assuming the steady-state velocity is unknown for both

cases, the following steps are followed to estimate the time step. The maximum contact line

velocity, umax, is estimated first based on the range of applicability of Jiang’s model, i.e.,

0 < Ca ≤ 0.03. For the case of ethylene glycol, the critical velocity is then estimated to

be umax = 0.07 m s−1. The next step is to calculate the Weber number as a function of umax

using eq. 3.4.2. For this case, We= 0.34. Accordingly, eq. 3.4.4 is used to obtain the limiting

time step, and is found to be ∆t ≈ 1×10−6 s.

The value of k in eq. 3.2.4 is imposed using experimental results for a sliding ethylene

glycol sliding drop. Different sliding experiments have been performed with drop volumes

varying between 26 µL to 46 µL [80]. For a contact angle hysteresis varying between 7.4° to

45.3°, the average value of k was found experimentally to be 1.41, i.e., k
π
≈ 0.45. The values
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Case # Volume, Radius, Wetting radius, Mesh size, ∆t, Computational time

(µL) R, (m) a, (m) (m) (s) (minutes)

1 & 2 29.2 0.00301 0.00283 3E-4 1E-6 ∼ 60

3 7.5 0.001285 0.0011 1E-4 1E-6 ∼ 40

4 10 0.001414 0.0012 1.2E-4 1E-6 ∼ 40

5 30 0.002869 0.002763 3E-4 5E-6 ∼ 330

6 100 0.010492 0.00586 5E-4 2E-7 ∼ 150

Table 3.2: Simulation parameters.

of angles θA and θR can be estimated experimentally [80] as 76.2°and 58.4°, respectively.

The steady-state profiles of the sliding drop are shown in Fig. 3.2. The contact angle

evolution and both the advancing and receding velocities for the values of k
π
= 0.4, 0.45, and

0.49 are presented in Figs. 3.3 and 3.4.

Fig. 3.2 shows that the difference in the advancing and receding sliding angles in-

creases as the angle of inclination is increased from α = 11° to α = 20°. The advantage

of the PFEM-based model for the applications of drop dynamics is depicted in Figs. 3.2(b)

and 3.2(c), as it allows to accurately treat the evolution of the domain boundaries in accor-

dance with the calculated velocity field (Fig. 3.2(d) and 3.2(e)).

In Fig. 3.3(a) and 3.3(b), the difference in the sliding advancing and receding angles

angles for α = 11° and α = 20° are found to be 20° and 33°, respectively. At these two in-

clination angles, different values of parameter k
π

do not affect the steady-state sliding angles
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due to the high liquid viscosity, about 23 times greater than that of water. However, higher

oscillatory behavior is observed for higher k
π

values due to the higher resulting retention

force along the contact line, in agreement with eq. 3.2.2.

Anti-correlated oscillations are observed between the advancing and the receding

contact angles (Fig. 3.3). This oscillatory behavior is found to be, qualitatively, in agreement

with a number of experiments of drops sliding on inclined surfaces [80, 81, 151]. Specific

phases of sliding motion are typically observed: i) an initial advancing phase, (ii) a receding

phase, and finally (iii) a detachment phase [80, 81, 151]. Specifically, the drop initially

leans towards the gravitational field, until its advancing edge moves before its receding edge.

Thus, the advancing contact angle increases while the receding contact angle decreases. At

the same time, the retention force opposes the contact line motion and, consequently, the

advancing edge holds while the receding edge starts to slide. Finally, both the advancing and

the receding edges slide simultaneously, i.e., the drop completely detaches. Larger drops

were observed to slide with the absence of the second receding phase. In contrast, smaller

drops were found to move back and forth between the first and the second sliding phases

before they completely detach.

In Fig. 3.4(a) and 3.4(b), both the advancing and receding velocities increase as

spreading and sliding start simultaneously. Both velocities approach the steady-state velocity

as sliding becomes dominant. For k
π
= 0.45, the steady-state velocities are 5.51×10−4 m s−1

and 1.26×10−3 m s−1 for α = 11° and α = 20°, respectively. Numerical vs. experimental

steady-state velocities are presented in Table 3.3. The difference between the experimental

and numerical results are 46.9% and 19.1% for α = 11° and α = 20°, respectively. The

relative error increases as k
π

deviates from 0.45. A parametric study for three values of k
π

is presented in Table 3.4. The data indicates that the steady-state velocity is inversely pro-

portional to the parameter k
π

, i.e., the velocity is inversely proportional to the retention force

acting along the contact line, in agreement with eqs. 3.2.4 and 3.2.7.
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(a) (b)

(c)

11° 11°

, m/s

(d)

20° 20°

, m/s

(e)

Figure 3.2: Cases #1 and #2: a 29.2 µL ethylene glycol drop sliding on an inclined plane of
inclination angle α: (a) initial drop profile at α = 0° and t = 0 s, (b,c) steady-state profiles at
α = 11° and 20°, respectively, and (d,e) drop velocity fields at α = 11° and 20°, respectively.
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(a)

(b)

Figure 3.3: Cases #1 and #2: a 29.2 µL ethylene glycol drop sliding on an inclined plane,
with angle of inclination α: (a) contact angle evolution for α = 11°, (b) contact angle evo-
lution for α = 20°.
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(a)

(b)

Figure 3.4: Cases #1 and #2: a 29.2 µL ethylene glycol drop sliding on an inclined plane,
with angle of inclination α: (a) advancing and receding velocities for α = 11°, (b) advancing
and receding velocities for α = 20°.
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Case # Volume α k k
π

Experimental uss Numerical uss Error in uss

(µL) (°) (3D) (2D) (m s−1) (m s−1) (%)

1 29.2 11 1.41 [80] 0.45 3.75E-4 [125] 5.51E-4 46.9%

2 29.2 20 1.41 [80] 0.45 1.557E-3 [125] 1.26E-3 19.1%

3 7.5 60 1.35 [80] 0.43 0.12 [16] 0.11 8.3%

4 10 60 1.35 [80] 0.43 0.23 [16] 0.2 13.0%

5 30 0-70 (20° per seconds) Eq. 3.5.1 [80, 81] 0.43–0.5 [80, 81] ——— ——— ———

6 100 27 2 [238] 0.64 7.75E-4 [238] 8.7E-4 12.3%

Table 3.3: Numerical vs. experimental steady-state velocities (uss).

3.5.2 Mesh dependency analysis

For the drop spreading numerical model, the inclusion of the dissipative force as

boundary conditions results in a mesh-independent solution (see Sec. 2.8). For further val-

idation, the numerical results for the ethylene glycol drop sliding on an inclined plane with

α = 20°, in Sec. 3.5.1, is compared for the two extreme values of the parameter k
π

, i.e. 0.4 and

0.49, using two mesh sizes. The first mesh size is set to h = 2×10−4 m, with 431 triangular

elements. The second mesh size is obtained based on an adaptive mesh refinement approach,

such that h = 3× 10−4 m in the bulk part of the drop, and refined to 2× 10−4 m near the

boundaries. The total triangular elements of 226, about 50% fewer triangular elements than

in the first case (see Fig. 3.5(a)). The contact angle evolution and both the advancing and

receding velocities for both meshes are compared in Figs. 3.5(b) and 3.5(c). These results

illustrate that the dynamic behavior obtained numerically is stable and mesh-independent.

3.5.3 Cases #3 and #4: water drop on a hydrophobic PTFE substrate

The third and fourth validations consider the experiments performed by Annapragada

et al. [16]. In these experiments, two water drops of volume 7.5 µL and 10 µL slide on an

inclined PTFE substrate. Under equilibrium condition, the contact angle θe is 120°. Both

drops are sliding on a tilted plate at an inclination angle of 60°. The steady-state sliding

velocities were experimentally found to be 0.12 m s−1 and 0.23 m s−1 for the 7.5 µL and
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(a)

(b)

(c)

Figure 3.5: Demonstration of mesh-independence for a 29.2 µL ethylene glycol drop sliding
on an inclined plane of inclination angle α = 20°: (a) two different mesh sizes of h= 2×10−4

m and h = 3×10−4 m representing the initial configuration, (b) contact angle evolution, (c)
advancing and receding velocities.
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Case # Volume α Experimental uss k k
π

Numerical uss Error in uss

(µL) (°) (m s−1) (3D) (2D) (m s−1) (%)

1.26 0.4 1.37E-3 265.3%

1 29.2 11 3.75E-4 1.41 0.45 5.51E-4 46.9%

1.54 0.49 1.41E-4 62.4%

1.26 0.4 3.08E-3 97.8%

2 29.2 20 1.557E-3 1.41 0.45 1.26E-3 19.1%

1.54 0.49 3.2E-4 79.4%

3 7.5 60 0.12
1.13 0.36 0.18 50%

1.35 0.43 0.11 8.3%

4 10 60 0.23
1.35 0.43 0.2 13.0%

1.54 0.49 0.03 86.9%

1.5 0.48 1.79E-3 97.6%

6 100 27 7.75E-4 2 0.64 8.71E-4 12.3%

2.5 0.8 2.03E-4 73.8%

Table 3.4: Parametric analysis for different k values.

10.0 µL drops, respectively.

Using the physical properties and drop geometries for cases #3 and #4 in Table 3.1

and 3.2, the simulations are performed with corresponding mesh sizes of h = 1× 10−4 m

and h = 1.2× 10−4 m, respectively. For a sliding water drop on PTFE substrate, the corre-

sponding value of k was found experimentally to be 1.35 [80]. The values of angles θA and

θR are found experimentally to be 122.4°and 100.0°, respectively [80].

The quantity umax is found to be 2.45 m s−1 in order to satisfy the range of applicabil-

ity of Jiang’s model and, thus, We> 1. From eq. 3.4.3, the limiting time step is ∆t ≈ 1×10−6.

Alternatively, the limiting time step can be predicted by assuming the steady-state sliding ve-

locities, uss, based on the experimental results found in [16] to be 0.12 m s−1 and 0.23 m

s−1 for the 7.5 µL and 10.0 µL drops, respectively. From eq. 3.4.2, We is found to be ≤ 1
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for both cases. Therefore, according to eq. 3.4.4, we find ∆t = 3×10−6 s and = 4×10−6 s

for the 7.5 µL and 10.0 µL drops, respectively. Both eq. 3.4.3 and 3.4.4 give the same order

of magnitude of the limiting time steps, which is indicative of stability during the transition

between inertial to viscous regimes [141].

The experimental and numerical steady-state profiles are displayed in Fig. 3.6. Nu-

merically, the difference in the sliding advancing and receding angles are found to be 23°

and 31° for the 7.5 µL and 10 µL drops, respectively. Experimentally, these quantities

are measured using the drop analysis plugin of the ImageJ software [206], and found to

be 21° and 27° for the 7.5 µL and 10 µL drops. The drop profiles obtained numerically

are in good agreement with the experimental profiles. Moreover, the numerical profiles

shown in Fig. 3.6(d) and Fig. 3.6(c) show that large drop deformation leads to increasing

triangular remeshing over the domain at each time step. The velocity fields are shown in

Figs. 3.6(e) and 3.6(f) for the 7.5 µL and 10 µL drops, respectively. As in the case of EG

drops (Figs. 3.2(d) and 3.2(e)), the velocity field is constrained by the imposed boundary con-

ditions. However, the velocity field is found to be more uniform along the solid-liquid inter-

face for water drop on PTFE substrate. This indicates that the work of adhesion forces along

the solid-liquid interface decreases as the hydrophobicity of the surface increases [192].

The contact angle evolution, and both the advancing and receding velocities are illus-

trated in Fig. 3.7. The steady-state velocities for the 7.5 µL and 10 µL drops are numerically

found to be 0.11 m s−1 and 0.12 m s−1, respectively. The difference between the experimen-

tal and numerical results are 8.3% and 13.0% for the 7.5 µL and 10 µL drops, respectively

(Table 3.3). The error increases as the parameter k
π

deviates from 0.43 (see Table 3.4). Sim-

ilar to the EG drop on polycarbonate substrate, Sec. 3.5.1, the steady-state velocity of the

water drop on PTFE decreases as the parameter k
π

increases. For the value of k
π
= 0.49

corresponding to an over-predicted value of the retention force acting in the vicinity of the

contact line, both advancing and receding edges slide and overlap leading to nonphysical

oscillations, as shown in Fig. 3.7(b). Using the adequate/experimental value of the parame-

ter k of 1.35 [80], minor fluctuations are observed for the water drop at higher velocities, in

agreement with [16], which is hypothesized to be due to higher dissipation along the contact.
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Furthermore, due to the low water viscosity compared to ethylene glycol of Sec. 3.5.1, the

difference in the sliding advancing and receding angles increases as the value of k
π

increases,

as shown in Fig. 3.7(a).

3.5.4 Case #5: water drop on a hydrophilic PMMA substrate with time-varying incli-

nation

Here, we examine the deformed profiles of a water drop sliding on a rotating PMMA

substrate. Maurer et al. [151] studied the sliding profiles for a water drop of 30 µL volume.

The drop was initially at rest on a flat PMMA substrate, with contact angle θe = 74.4°. The

substrate was then rotated at a constant angular velocity of α̇ = 20° per second (Fig. 3.8).

The dynamic receding and advancing angles are measured at the inclination angles

α = 10°, 40°, 55°, and 70°. High drop deformation is expected, especially at high inclina-

tion angles. Therefore, the value of the parameter k is chosen based on the retention force

and contact angle hysteresis relation obtained experimentally by Extrand and Kumagai [80].

Accordingly, our numerical simulations are performed by using the following piecewise rep-

resentation of parameter k:

k =


1.34 for 0 < (cosθR− cosθA)≤ 0.7

2.8− 1
(cosθR− cosθA)

for 0.7 < (cosθR− cosθA)< 1.0
(3.5.1)

The values of angles θA adropsnd θR are found experimentally to be 77.0°and 47.4° [80],

respectively. The relevant physical properties can be found in Table 3.1, case #5. The mesh

size and time steps are chosen to be 3× 10−4 m and 5× 10−6 s, respectively. The grav-

itational field is modeled proportional to the time-varying inclination of the substrate, and

rotational inertia forces are neglected.

The drop profiles and corresponding sliding angles evolution, both experimentally

and numerically, are shown in Fig. 3.8. The experimental values of contact angle were

measured using the drop analysis plugin of the ImageJ software. The numerical profiles

are found to be in good agreement with the experiments. The maximum error between

the experimental and numerical results is found to be ≈ 10%, localized near the advancing
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(a) (b)

(c) (d)

60° 60°

, m/s

(e)

60° 60°

, m/s

(f)

Figure 3.6: Cases #3 and #4: water drops sliding on PTFE substrate, inclined at angle α =
60°: (a,b) steady-state profile obtained experimentally for drop volumes of 7.5 µL and 10
µL, respectively [reproduced with permission from Annapragada et al. Int. J. Heat Mass
Transf. 55, 5-6 1466-1474 (2012). Copyright 2011 Elsevier Ltd.], (c,d) numerically obtained
steady-state profiles for drop volumes of 7.5 µL and 10 µL, respectively, and (e,f) velocity
fields for drop volumes of 7.5 µL and 10 µL, respectively.
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(a)

(b)

Figure 3.7: Cases #3 and #4: water drops sliding on a PTFE substrate, inclined at angle
α = 60°: (a) contact angle evolution, (b) advancing and receding velocities.
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contact line at α = 70°. It is hypothesized to be due to the limitation of the 2D simulations

in replicating the exact profile of the sliding drop.

3.5.5 Case #6: viscous Newtonian drop on an omniphilic smooth glass

The sixth validation aims to reproduce the experimental steady-state velocity ob-

tained by Xu et al. [238], where a polyethylene glycol (PEG) drop slides on an omniphilic

smooth glass, with contact angle θe = 34°. The volume of the drop is 100 µL, yielding an

initial wetting radius of a = 5.5 mm. The drop slides at an inclination angle of α = 27°.

The steady-state velocity was experimentally found to be 7.75× 10−4 m s−1. Due to the

high viscosity of the liquid, as shown in Table 3.1, high deformation is expected in this case.

Hence, the value of k is set to 2.0 [238].

The simulation is performed using the physical properties for case #6 in Table 3.1.

Adaptive mesh size is used with an initial grid size h = 5× 10−4 m, and refined to h =

2.5×10−4 m near the boundaries. The time step is set to ∆t = 2×10−7 s.

The sliding angle evolution is shown in Figs. 3.9 and 3.10. The values of angles θA

and θR are found experimentally to be 58°and 12° [238], respectively. Large wetting radius

and contact angle hysteresis lead to high adhesion and retention forces along the contact

line [238, 243]. Fig. 3.9(c) shows the drop’s velocity field. The work done by the retention

and dissipative force at solid-liquid interface opposes gravitational forces and, thus, reduces

the velocity field near the contact line. Thanks to the high liquid viscosity and the omniphilic-

ity of the substrate, the drop elongates and leaves a thin film on the substrate as it slides, as

shown in Fig. 3.9(b) and 3.10(a). This qualitative behavior is in agreement with experimental

observations of sliding viscous drops on omniphilic surfaces [238]. Figure 3.10(a) shows a

jump in the sliding receding angle at t = 0.04 s. It is caused by the addition of mesh nodes,

which is a feature of the PFEM [55], to account for the large elongation at the receding edge.

The numerical value of the steady-state velocity, which corresponds to the velocity

of the sliding advancing edge, is found to be 8.7×10−4 m s−1. As shown in Table 3.3, the

difference between the experimental and numerical results is 12.3%. The initial numerical
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(a)

(b)

(c)

Figure 3.8: Case #5: a 30 µL water drop sliding on a rotating PMMA substrate: (a) sliding
profile (experimentally)[reproduced with permission from Maurer et al. Proceedings of the
3rd Int. Conf. on FFHMT’16, 134 (2016). Copyright 2020, International ASET Inc.], (b)
numerically obtained drop profile, and (c) comparison of the advancing and receding contact
angle evolutions.
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instability observed in the time interval 0 < t < 0.005 s is thought to be due to high viscous

dissipation during the simultaneous spreading and sliding of the drop.

A parametric study for two additional values of the shape factor k = 1.5 and k = 2.5

is presented in Table 3.4. Similar to cases # 1 and #2, Fig. 3.10(a) shows that the difference

in the sliding advancing and receding angles obtained numerically are similar for the three

chosen values of k, which is likely due to the high fluid viscosity. Moreover, the steady-state

velocity decreases as the parameter k increases. However, larger k value leads to a non-

physical negative velocity in the time interval 0.005 < t < 0.02, as shown in Fig. 3.10(b).

The velocity then increases as the drop stretches, until it reaches the steady-state velocity.

3.6 Rolling viscous drops

The lower the work of adhesion between the liquid-solid interface the higher the

tendency for a drop to roll [10, 192]. It has been demonstrated that the mode of motion of a

viscous drop on a superomniphobic inclined surface is pure rolling [10, 218]. The value of

the descent rolling velocity of a small viscous rolling drop is expected to be of the order of

0.01 m s−1 [10]. Accordingly, the capillary number is expected to exceed 0.003 and, thus,

Jiang’s model is no longer applicable. Moreover, no-slip along the solid-liquid interface

has been observed for rolling viscous drop [10]. Hence, the Navier-slip condition, which

assumes constant slip length at the solid-liquid interface, is also not applicable for the case

of pure rolling. Furthermore, the retention force plays no major role [10, 140]. Instead, only

the no-slip boundary condition, i.e., v · t = 0, along the solid-liquid interface is adopted in

this case.

In conclusion, the governing equations used for modeling rolling viscous drops are

the classical continuity and momentum equations for an incompressible, viscous, Newto-

nian fluid expressed in eqs. 2.2.1 and 2.2.2. At the liquid-vapor interface, the Cauchy stress

boundary condition corresponding to the surface tension force is applied in the normal di-

rection of the stress (see Sec. 2.3). The no-slip boundary condition is applied along the

solid-liquid interface.
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(a)

(b)

27° 27°

, m/s

(c)

Figure 3.9: Case #6: a 100 µL PEG sessile drop sliding on smooth glass, inclined at α = 27°:
(a) initial drop profile at α = 0° and t = 0 s, (b) steady-state profile at α = 27°, (c) velocity
fields.
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(a)

(b)

Figure 3.10: Case #6: a 100 µL PEG sessile drop sliding on smooth glass, inclined at
α = 27°: (a) contact angle evolution and (b) sliding advancing velocity evolution.
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Rolling viscous glycerol drop on smooth PETG surface

In this example we validate the proposed drop rolling model using the rolling experi-

ment performed by Abolghasemibizaki et al. [10]. Glycerol drop of volume 5µL is allowed

to roll on smooth PETG surface until it reaches its descent steady-state velocity. Two incli-

nation angles are considered, α = 15° and α = 20°. The steady-state velocities for α = 15°

and α = 20° are found experimentally to be 0.033 m s−1 and 0.044 m s−1, respectively.

Two simulations are performed using the physical properties of glycerol on PETG

substrate: ρ = 1261 kg m−3, µ = 1.076 kg m−1 s−1, γ = 0.0646 N m−1, and θe =169.1°.

The mesh size used for these simulations is chosen as h = 1.1×10−4 m. This problem is a

surface tension dominant problem, i.e., both the capillary and the Bond numbers (Bo= ρgH2

γ
,

where H is the height of the drop [253]) are smaller than unity [112].

Thus, the time step criteria presented by Sussman and Ohta [213] is adopted as fol-

lows:

∆tcrit ≤

√
(ρL +ρg)h3

γ(2π)3 (3.6.1)

From eq. 3.6.1, we choose ∆t = 1×10−6 s. The average computational time for the

drop to reach its steady-state velocity was 30 minutes.

The numerical results of the rolling drops are shown in Fig. 3.11. The descent steady-

state velocities are found to be 0.0278 m s−1 and 0.0354 m s−1 for the α = 15° and α = 20°,

respectively. The difference between the experimental and numerical results are 15% and

19.5% for α = 15° and α = 20°, respectively. Fig. 3.12 shows the velocity vectors for a

rolling viscous drop at α = 15°, which is different than the those for sliding liquid drops

previously shown in Figs. 3.2(d), 3.2(e), 3.6(e), 3.6(f), and 3.9(c).

3.7 Conclusion

We extended our PFEM-based model for liquid drop spreading, presented in chap-

ter 2, to drop sliding under the effect of gravity, by including a retention force associated with

the aspect ratio of the drop footprint, surface tension force, and contact angle hysteresis.
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Figure 3.11: Descent rolling velocities for a 5 µL glycerol drop rolling on smooth PETG
surface at α = 15° and 20°.

15°

Figure 3.12: Velocity vector for a 5 µL rolling glycerol drop on smooth PETG surface at
α = 15°.
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For 2D sliding simulations and with an adequate choice of the shape factor k, the

model has been validated by using published experimental results, under a variety of physic-

ochemical conditions. These simulations demonstrate that the value of the shape factor k is

one of the key factors to obtain predictive and realistic results. For the most common liquids

and on a variety of substrates, such as water and ethylene glycol drops on polymer substrates,

the value of k is well documented and can be obtained using published experimental data.

The steady-state velocity was found to be inversely proportional to k, and the close-

ness between the experimental and numerical results was directly related to the chosen value

of this parameter. The temporal evolution of the contact line was found to be in good agree-

ment with the experiments, and the model produced mesh-independent results. The drop

profiles were validated as well. Moreover, interesting phenomenon associated with drop

sliding can be captured qualitatively using 2D simulation, such as was obtained in the tem-

poral free-surface evolution of a highly viscous drop.

By altering the boundary conditions at the solid-liquid interface, i.e. ignoring the

effect of retention and dissipative forces at the contact area, we proposed a simplified two-

dimensional numerical model for rolling viscous drops. The results of the model were found

to be in very good agreement with the experiments. However, the proposed scheme cannot

be used to study the transition from sliding to rolling motion. It is hypothesized that rolling

motion could be analyzed by modifying the boundary conditions at the liquid-solid interface.

The proposed 2D drop model produces numerical results comparable to experimen-

tal observations with significantly less computational cost than would be required in a 3D

model. The proposed model is also applicable to embedded two-phase flow simulations [186],

had the driving gravitational force been replaced by an external flow field. However, 2D sim-

ulations are inherently flawed as they cannot replicate the full shape of a sliding drop nor its

exact footprint profile. Nonetheless, our results are encouraging for further development

toward full 3D simulation, which we will present in chapter 4.
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Chapter 4

DROP DYNAMICS IN 3D

4.1 Introduction

Most drop dynamics models found in the published literature are simplified. They are

based on either quasi-static or axisymmetric conditions. In reality, however, drops experience

large asymmetric deformations under the effect of gravity and/or external shear flow [113,

162, 207]. These simplifications are not acceptable for modeling situations of i) liquid drop

injection, ii) liquid drop sliding, and iii) two-phase embedded flow, which are of interest in

this work. Accordingly, simulation in a 3D Cartesian coordinate system can provide a more

realistic spatio-temporal evolution than other coordinate systems.

Concerning the spatio-temporal evolution of a spreading drop, our proposed 2D

Cartesian-based Lagrangian formulation does not adequately produce axisymmetric drop

profiles [141, 142]. Likewise, the 2D model could not replicate the full shape of a sliding

drop nor its exact profile, as shown in chapter 3. The temporal evolution was successfully

predicted by these 2D models by normalizing geometric parameters, such the mean curva-

ture, the contact line perimeter, and the solid-liquid interfacial area. Moreover, the retention

force acting along the contact line was scaled by a factor of π (Sec. 3.2.2.1). This chapter is

an extension of our 2D drop dynamics model presented in chapters 2 and 3 to 3D. In addi-

tion to the geometric characteristic of the drop, we are interested in predicting the evolution

of both its spreading rate and its dynamic contact angle. Similarly, we wish to predict the

steady-state sliding velocity of a sliding drop.

This chapter is organized as follows: Sec 4.2 describes the mathematical model gov-

erning drop spreading, focusing on numerical treatment of geometric quantities, such as the

mean curvature of the free liquid-vapor interface, the perimeter of the solid-liquid-vapor in-

terface, and the wetting area of the solid-liquid interface. Similarly, Sec. 4.3 introduces the
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3D sliding model under the effect of gravity. Our 3D model is validated using published ex-

perimental results under a wide variety of fluid properties, drop sizes, and physicochemical

conditions.

4.2 3D model for drop spreading dynamics

The 2D numerical drop spreading model presented in chapter 2 is re-introduced and

extended to 3D, for which the essential differences come from treating the geometry. The

following section introduces the governing equations and boundary conditions of the 3D

spreading model.

4.2.1 Physical model

4.2.1.1 Governing equations

Adopting the same notations of Sec. 2.2, let Ω represent a liquid drop in contact with

a solid substrate, as shown in Fig. 4.1. The boundary of the domain is divided into three

regions ∂Ω = ΓI ∪ΓS∪∂Γ. ΓS represents the domain boundary corresponding to the liquid

in contact with the substrate, excluding the contact line. ∂Γ represents the contact line.

Finally, ΓI corresponds to the drop’s free-surface.

Figure 4.1: Schematic representation of the 3D Lagrangian domain.
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The governing equations for the liquid phase are the momentum and mass conser-

vation equations. The fluid is assumed to be incompressible Newtonian. Accordingly, the

governing equations are expressed as follows [113, 114]:

ρ
Dv
Dt
−µ∇ · (∇v+∇

T (v))+∇p = ρg on Ω (4.2.1)

∇ ·v = 0 on Ω (4.2.2)

where ρ is the fluid density, Dv
Dt = ∂v

∂ t +v ·∇v is the total material derivative, v is velocity, t

is time, µ is the fluid dynamic viscosity, p is pressure, and g is the gravitational acceleration.

The Lagrangian reference frame is adopted and, thus, the nonlinear convective term is absent

in the numerical treatment of eq. 4.2.1 [184].

4.2.1.2 Boundary conditions at the free-surface ΓI

At the free-surface, ΓI , a Cauchy stress boundary condition in the normal direction

of the stress is applied corresponding to the surface tension force:

fΓI
= σ ·n = γκHn at ΓI (4.2.3)

where fΓI
is the surface tension force, σ is the Cauchy stress tensor, n is the outer unit normal

to ΓI (see Fig. 4.1), γ is the surface tension coefficient, and κH is the mean curvature of the

free-surface (see Sec. 4.2.1.3). The Cauchy stress tensor σ is expressed as:

σ =−pI+µ(∇v+∇
Tv) (4.2.4)

According to eq. (4.2.3), the normal stress is balanced by the surface tension force [113,

186, 187]. Decomposing eq. 4.2.3 into normal and tangential components yields:

n · (σn) = γκH at ΓI (4.2.5)
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and

eθ · (σn) = 0 at ΓI (4.2.6)

where eθ represents any unit vector tangent to surface ΓI (Fig. 4.2). Assuming a stationary

exterior fluid and substituting eq. 4.2.4 into eq. 4.2.5 yields:

p−µn · ([∇v+∇
Tv] ·n) = γκH at ΓI (4.2.7)

4.2.1.3 Curvature in 3D

For surface tension-dominated problems, the driving force depends on the mean cur-

vature of the liquid-vapor interface. Thus, an accurate interface representation is required at

each time step. Indeed, drop dynamics models are successful insofar as they accurately track

the drop boundaries [14].

In this work, we utilize the 3D PFEM curvature model developed by Jarauta et

al. [112, 114] for a liquid drop, and extend it to account for both spreading and sliding. The

curvature in 3D [112, 114] is approximated using Meyer’s method [152] since it is found to

be the most accurate approach, based on Tasso et al. analyses [217].

Let S denote a surface in R3. The surface is approximated locally at any point P of S by

its tangent plane. The tangent plane is defined by the knowledge of point P and its normal

vector n. Let κN(θ) be the normal curvature for any unit tangent vector eθ , defined as the

curvature of a particular curve (passing through P) that is inscribed in S and is contained into

the plane spanned by both eθ and n [152], as shown in Fig. (4.2.a). The mean curvature can

then be defined as the average of normal curvatures as follows:

κH =
1

2π

∫ 2π

0
κ

N(θ)dθ (4.2.8)

The mean curvature is related to the face area minimization according to:

2κHn=K = lim
D(dA)→0

∇dA
dA

(4.2.9)
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Figure 4.2: (a) Normal curvature, and (b) principal directions in 3D [112].

where, dA is the infinitesimal area at point P, D(dA) is the diameter of the infinitesimal area

dA, ∇dA is the gradient of dA, andK is the mean curvature normal operator at point P [114].

According to the “one-ring neighborhood”, shown in Figure (4.3), let us define xi as a

vertex node of the surface mesh shown in Figure (4.3). Let us find the area around each xi by

defining the local area of each triangle, and then connect its circumcenter to the midpoints of

Figure 4.3: (a) The shaded area representing the “one-ring neighborhood” of xi node, (b)
angles located opposite to an edge. Figures are reproduced from [112].
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each edge of its adjacent triangles, as shown in Figure (4.3.a). The generated area is known

as “local Voronoi area”, A Voronoi. The triangle could be either non-obtuse or obtuse. If the

angle at node xi is obtuse, A Voronoi is computed as AT
2 . If one of the other two angles (for

the same triangle, and which opposite to the angle at xi) is obtuse, A Voronoi is computed as
AT
4 . For each of these cases, the area will be denoted by AM. After finding AM for each of the

vertex node xi, the normal operator of the mean curvature,K(xi), is computed as follows:

K(xi) =
1

2AM
∑

j∈N1(i)
(cotαi j + cotβi j)(xi−x j) (4.2.10)

In case of a non-obtuse triangle, the local Voronoi area, A Voronoi will be given by:

AVoronoi =
1
8 ∑

j∈N1(i)
(cotαi j + cotβi j)‖xi−x j‖2 (4.2.11)

where, AT is the total area of the triangle, αi j and βi j are the angles opposites to the edge

xix j as shown in Figure (4.3.b), and N1(i) is the one-ring neighborhood of xi. It follows

that:

n=
K(xi)

‖K(xi)‖
(4.2.12)

and

κH =
1
2
‖K(xi)‖ (4.2.13)

Finally, the surface tension term in eq. 4.2.3 can be approximated numerically by

combining eqs. 4.2.10, 4.2.12, and 4.2.13 above as follows:

fΓI
= γκHn=

γ

2

( 1
2AM

∑
j∈N1(i)

(cotαi j + cotβi j)(xi−x j)
)

(4.2.14)

4.2.1.4 Forces acting on the contact line, ∂Γ
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At the contact line, an effective slip boundary condition is applied to account for

i) the capillary effect (ζ ), ii) normal stress coefficient (βn), and iii) Navier-slip coefficient

(βs). This effective slip boundary condition is proportional to the velocity of the contact

line [37, 178, 226, 227] as follows:

f∂Γ =−β∂Γv at ∂Γ (4.2.15)

where f∂Γ is the dissipative force applied at the contact line, β∂Γ is the effective slip coeffi-

cient at the contact line, and v is the slip velocity of the fluid at the contact line.

At the solid-liquid interface, including the contact line, the direction normal to the

solid-liquid interface is represented by ez, whereas the tangential directions are represented

by ex and ey (see Fig. 4.1). As the drop starts to spread, the velocity of the contact line can

be related to the Young’s stress acting on it as follows:

v ·encl ∝ γ (cosθe− cosθd) (4.2.16)

where v is the velocity vector at the contact line, θd is the dynamic contact angle, and encl is

the unit normal vector at the point P at the contact line (Pcl), see Fig. 4.1. The proportionality

coefficient between the contact line velocity and Young’s stress is the effective slip boundary

condition defined as follows [178]:

β∂Γ(v ·encl) = γ(cosθe− cosθd) (4.2.17)

where β∂Γ is the effective slip coefficient, and is defined as [12, 22, 30, 37, 143, 178, 226,

227, 245]:

β∂Γ = ζ +βS|∂Γ+βn (4.2.18)

where ζ is the capillary effect coefficient, βS|∂Γ is the Navier-slip coefficient, and βn is the

normal stress coefficient. They are expressed as follows (see chapter 2 for details):
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ζ =
γ

v ·encl

(cosθe +1) tanh
(

4.96Ca0.702
)

(4.2.19)

βS|∂Γ=
1

v ·encl

µ∇(v ·encl) ·ez (4.2.20)

βn =
1

v ·encl

µ∇(v ·encl) ·encl (4.2.21)

After considering the contributions of the capillary effects, the Navier-slip as well as

the normal stresses in eq. (4.3.2), the coefficient β∂Γ is used to obtain the total dissipative

force and to apply the boundary condition defined by eq. (4.2.15).

4.2.1.5 Forces acting on the solid-liquid interface away from the contact line, ΓS

At the solid-liquid interface excluding the contact line, ΓS, the applied boundary

condition is obtained by projecting the Cauchy stress tensor on the normal direction of

ΓS [37, 178]:

fΓS
= σ ·ez =−βΓsv at ΓS (4.2.22)

where fΓS
and βΓs are the dissipative force and the slip coefficient applied at the solid-liquid

interface, respectively, and v is the slip velocity of the fluid on the solid-liquid interface.

The Navier-slip model is considered in this work, as it corresponds to the viscous dissipation

along the solid-liquid interface as the drop deforms [12, 178, 226, 227]. Therefore, the slip

coefficient βΓs at the solid-liquid interface ΓS is obtained as follows:
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βΓs = βs =
1

v ·encl

µ∇(v ·encl) ·ez (4.2.23)

Eq. (4.2.23) is used in combination with eq. (4.2.22) to apply the boundary condition at the

solid-liquid interface.

4.2.2 Mesh size and time step criteria

As the drop spreads, capillary waves are generated at the contact line and move from

∂Γ towards ΓI [46, 123]. Numerically, the mesh size at the contact line is restricted by the

wavelength of the capillary wave propagation. The values of the mesh size (h) and the time

step ∆t are estimated as illustrated in Sec. 2.7. For the sake of clarity, we re-introduce those

criteria as follows:

h =
γ

2ρv2
max

(4.2.24)

and,

∆tcap ≤
√

2
π

γ

4ρ|v3
max|

(4.2.25)

where v is the magnitude of the slip velocity of the fluid on the solid-liquid interface, i.e.

v =‖v‖.

4.2.3 Discretized governing equations

The Particle Finite Element Method (PFEM) [108, 147, 148, 163, 164, 184] is used

in the present work to discretize eqs. (4.2.1) and (4.2.2) in space. The PFEM adopts the

updated Lagrangian description of the governing equations. The fluid domain is discretized

by a standard finite element mesh. The nodes can be interpreted as immaterial particles

that move according to their velocity. At each solution step, the domain deforms. Thus, in

order to avoid excessive mesh degradation, re-meshing is performed at each time step using

Delaunay triangulation. For droplet dynamics problems, the re-meshing procedure ensures
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that the domain boundaries are reconstructed in accordance with the velocity field. Linear

interpolation functions for both velocity and pressure are used over tetrahedral elements. In

the present implementation, the discretization in time is performed using the Newark-Bossak

scheme. However, for the sake of clarity, it is expressed here using the Backward-Euler

scheme [184]. Given a known v̄n and p̄n at time tn, the values of these variables at time tn+1

are obtained by solving the following system of equations:

M
v̄n+1− v̄n

∆t
+µLv̄n+1 +Gp̄n+1 = F̄+ F̄st + F̄∂Γ + F̄ΓS (4.2.26)

Dv̄n+1 = 0 (4.2.27)

where ∆t is the time step; M, L, G, and D are the mass, Laplacian, gradient, and divergence

matrices, respectively; and F̄, F̄st , F̄∂Γ, and F̄ΓS are the vectors of the external forces, the

surface tension force, the dissipative force acting on the contact line, and the dissipative

force acting on the solid-liquid interface away from the contact line, respectively. Local cell

matrices and vectors are defined in Appendix F.

The nonlinear dependence on the unknown configuration, Xn+1, is dealt with by using

a Newton method. The governing equations are first written in their residual form:

r̄m = F̄+ F̄st + F̄∂Γ + F̄ΓS−
(

M
v̄n+1− v̄n

∆t
+µLv̄n+1 +G p̄n+1

)
(4.2.28)

r̄c = Dv̄n+1 (4.2.29)

Eqs. (4.2.28) and (4.2.29) are then linearized, and the system is solved iteratively. The re-

sulting linearized system of governing equations reads: M 1
∆t +µL+Hst G

D 0


 δ v̄

δ p̄

=

 r̄m

r̄c

 (4.2.30)

where Hst originates from the linearization of the surface tension force term, F̄st . This term
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is responsible for the implicit treatment of the surface tension, and it allows for using large

time steps. The derivation of this term, as well as the stabilization terms, can be found in

reference [114]. The linear velocity-pressure elements used in our model do not fulfill the

compatibility condition [66] and therefore pressure must be stabilized. In this work, the

algebraic sub-grid scales (ASGS) [52, 53, 157] stabilization technique is implemented (see

reference [114] for details). Once the system in eq. (4.2.30) has been solved for δ v̄ and δ p̄,

the primary variables are updated according to v̄k+1
n+1 = v̄k

n+1 + δ v̄ and p̄k+1
n+1 = p̄k

n+1 + δ p̄,

where k is the nonlinear iteration index, until convergence is achieved. As a final step, the

nodal position in the moving mesh is updated according to the employed time integration

scheme. In case of Backward Euler integration, this yields Xk+1
n+1 = Xn + ∆t v̄k+1

n+1. The

solution algorithm is further illustrated in Appendix G.

4.2.4 Numerical examples

The effects of adding a dissipative force on a moving contact line are assessed in this

example. The spreading motion is simulated for different initial arbitrarily shaped drops.

This example demonstrates the success of our 3D drop dynamics model in i) regularizing the

contact line singularity, ii) tracking the deformed boundaries, and iii) achieving the equilib-

rium configuration. The domain initial configuration is set to be a prismatic (nominal) drop

with height H = 0.02 cm and two different cross-sections: (a) a square of 0.05 cm per side,

and b) a triangle of 0.05 cm per side. The considered substrates are (i) kapton-coated surface

with static contact angle value of 75 degrees [74] (hydrophilic), and (ii) polytetrafluoroethy-

lene (PTFE)-coated surface with static contact angle of 108 degrees [165] (hydrophobic).

The driving forces acting on the drop are the surface tension force and gravity directed

normal to the substrate. Fluid density, viscosity and surface tension coefficient are set to ρ =

1000 kg m−3, µ = 8.90× 10−4 kg m−1 s−1, γ = 0.072 N m−1, respectively, representative

of a water drop. Initial pressure in the liquid is set to p0 = 0 Pa. The domain is meshed using

tetrahedral elements of size 0.005 cm and a time step size of ≈ 1× 10−6 seconds is used.

The predicted drop geometry at various times during the simulation is shown in Figure (4.5).

113



Figure 4.4: Initial and steady-state configurations for sessile drops starting with two different
prismatic initial configurations.

In both configurations, the steady-state solution is achieved in less than 4 ms. Ta-

ble 4.1 shows the obtained value of the contact angle for each configuration and substrate,

where θave is the node-averaged contact angle. It can be observed that in all cases, the com-

puted relative error was less than 7% for kapton, and 3% for PTFE.

The simulated drops evolved in accordance to the proposed mathematical model and

boundary conditions presented in Sec. 4.2.1, until they successfully reached their equilibrium

configurations. Our numerical results ensured that the equilibrium configuration of each

prism is a drop with the prescribed contact angle, regardless of the initial shape.

4.2.5 Experimental validation

This section emphasizes the limitation of the 2D model in replicating the shape of a

drop by examining the equilibrium configuration of two viscous glycerol drops on a smooth

polyethylene terephthalate glycol surface. We then validate the 3D drop spreading model

using two experimental studies of spreading on smooth flat surfaces with differing contact
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(a) initial shape, water on kapton
substrate

(b) 3E-5 mesh, 0.0015 s (c) 3E-5 mesh, 0.005 s

(d) initial shape, water on PTFE
substrate

(e) 3E-5 mesh, 0.0015 s (f) 3E-5 mesh, 0.005 s

(g) initial shape, water on
kapton substrate

(h) 2E-5 mesh, 0.0015 s (i) 2E-5 mesh, 0.00399 s

(j) initial shape, water on
PTFE substrate

(k) 2E-5 mesh, 0.0015 s (l) 2E-5 mesh, 0.0075 s

Figure 4.5: Spreading evolution for two different initial geometries.
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Configuration Substrate θave, (deg) Error (|θave−θe|) / θe, (%)

Square
kapton 79.9 6.5

PTFE 105.0 2.8

Triangle
kapton 79.3 5.7

PTFE 104.5 3.2

Table 4.1: Contact angles values obtained numerically (θave) for water drops on kapton
and PTFE substrates, and the corresponding error with respect to the prescribed equilibrium
angle θe.

angles. The following cases are studied:

• Cases #1 and #2: equilibrium configurations of 2.2 mm and 4.3 mm diameters viscous

glycerol drops on a smooth polyethylene terephthalate glycol surface. At equilibrium,

the viscous glycerol drop rests on the polyethylene terephthalate glycol substrate with

equilibrium contact angle of 169.1° [10].

• Case #3: spreading of a 1.64 mm diameter water drop on a hydrophobic triethoxysilane

substrate, with equilibrium contact angle of 117° [28].

• Case #4: spreading of a 1 mm diameter water drop on a hydrophilic kapton substrate,

with equilibrium contact angle of 75° [74].

4.2.5.1 Cases #1 and #2: equilibrium configuration for viscous glycerol drops on smooth

polyethylene terephthalate glycol surface

For each case, replicating the exact shape of the drop is the ultimate goal of the

spreading simulation. In this section, the equilibrium configuration of a viscous drop is

examined both in 2D and 3D. We will take advantage of the experimental work by Abol-

ghasemibizaki et al. [10] for viscous glycerol drops on smooth polyethylene terephthalate

glycol (PETG) surface.
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Figure 4.6: schematic representation of the initial configuration (dashed line) and the equi-
librium configuration (solid line) of a viscous liquid drop [10].

Two drop sizes of 1.1 mm and 2.15 mm radii are considered. The gravitational field

acts normal to the flat substrate. The drop is lowered from its center by a value of δ , forming

a wetting radius of a (shown in Fig. 4.6) due to its own weight. At equilibrium, the center of

mass displacement, δ , is estimated as [10]:

δ ≈ ρgR3/γ (4.2.31)

The simulations are performed using the physical properties of glycerol on PETG

substrate, θe =169.1°. Fluid density, viscosity and surface tension coefficient are set to

ρ = 1261 kg m−3, µ = 1.076 kg m−1 s−1, γ = 0.0646 N m−1, respectively. The mesh sizes

are chosen to be 0.00015 and 0.0003 m for the 5.6µL and 41.6µL drops, respectively. The

capillary waves at the moving contact line are neglected compared to the dominant surface

tension force. Hence, the time step is chosen based on the implicit criteria devised by Jarauta

et al. [114] as ∆t ≈ 5×10−3 s.

Figs. 4.7 and 4.8 show the equilibrium configuration of each drop. Figure 4.8(c)

shows a transparent view, indicating both the distribution and the total number of particles

(∼2808 mesh nodes) for the 2.15 mm radius drop. The mesh is refined at the contact line and,

thus, crude meshing is avoided. For both cases, i.e., 1.1 mm and 2.15 mm radii drops, the

drop profiles in 3D are found to be in better agreement with the experimental profiles than in
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(a)

(b) (c)

Figure 4.7: Case #1: equilibrium configuration for a glycerol drop on smooth PETG surfaces
of: (a) 1.35 mm radius, experimentally [10], (b) 1.1 mm radius, numerically in 2D and (c)
1.1 mm radius, numerically in 3D.

2D. The corresponding change in δ is shown in Table 4.2 for each drop size. As indicated by

eq. 4.2.31, the value of δ increases as the drop size increases. The error between numerical

and experimental values of δ increases as the weight of the drop increases. The 3D model,

however, provides more reliable results than the 2D model, especially for larger drops. This

is hypothesized to be due to the limitation of 2D simulations in Cartesian coordinates to

properly replicate the full shape of the drop.
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(a)

(b) (c)

Figure 4.8: Case #2: equilibrium configuration for a glycerol drop on smooth PETG surfaces
of: (a) 2.3 mm radius, experimentally [10], (b) 2.15 radius, numerically in 2D and (c) 2.15
radius, numerically in 3D.
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Case # Initial radius δ , eq. (4.2.31) δ , numerically (2D) Difference in δ , numerically (3D) Difference in
R, (mm) (mm) (mm) δ (2D), % (mm) δ (3D), %

1 1.1 0.25 0.2 20.0% 0.23 8.0%

2 2.15 1.9 1.1 42.1% 1.5 21.1%

Table 4.2: Dimensions of glycerine drops at equilibrium configuration.

Spreading case:
Time, Experimental spreading diameter (2a), Numerical spreading diameter (2a), Error in 2a,

(s) (mm) (mm) (%)

0.4 0.705 0.77 9.2 %

Water on triethoxysilane 0.8 0.82 0.9 9.75 %

1.2 0.9 0.93 3.3 %

Table 4.3: Comparison between numerical and experimental spreading evolution for a water
drop of 0.82 radius spreading on a triethoxysilane substrate (based on Fig. 4.9).

4.2.5.2 Case #3: water drop spreading on a hydrophobic triethoxysilane substrate

In this second numerical study, we simulate the sessile water drop deposition experi-

ments performed by Bird et al. [28]. In their study, a drop was placed on the triethoxysilane

substrate through a needle. The drop contacts the substrate at a diameter of 1.64 mm, and

was allowed to spread spontaneously over the substrate until equilibrium was reached, i.e.,

until the value θ = θe = 117° is reached. Spreading displacement (a) was measured over the

time of spreading.

In order to reproduce this experiment, a drop is placed on the substrate with an initial

radius R = 0.82 mm, contact angle nearly equal to 180°, and liquid pressure of p0 = 0 Pa.

The drop is allowed to deform until equilibrium is achieved, i.e., θe = 117°. Fluid density,

viscosity and surface tension coefficient are set to ρ = 1000 kg m−3, µ = 8.90× 10−4 kg

m−1 s−1, γ = 0.072 N m−1, respectively. The time step and mesh size are chosen to be

h = 8×10−5 m and 10−7 s, respectively.

Fig. 4.9 and Table 4.3 show that the experimental and numerical profiles are in very

good agreement. In addition, the time evolution of the spreading radius is found to be in a
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(a)

(b)

Figure 4.9: Case #3: water drop of a radius 0.82 spreading on triethoxysilane, for 0 < t ≤ 1.2
ms, with a dominant capillary wave propagation at the contact line (a) experimentally [28],
(reproduced with permission from J. Phys. Rev. Lett. 100, 234501 (2008). Copyright 2008
American Physical Society), and (b) numerically.
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good match with the experimental data. Initial deviation between the numerical and experi-

mental data is observed due to the difference in the initial drop configuration and spreading

conditions, i.e., a drop with a spherical configuration was relaxed experimentally while it

was attached to a needle.

4.2.5.3 Case #4: water drop spreading on a hydrophilic kapton substrate

The spreading rate for a water drop deposited on a hydrophilic kapton substrate is

compared to the average spreading rate obtained experimentally by Bird et al. [28]. In

that study, water drops of 1 mm diameter were placed on substrates with various levels

of hydrophobicity through a needle. Each drop was allowed to spread spontaneously over

the substrate until equilibrium was reached. Spreading rates were measured until the drop

reaches its steady configuration. The average value of the spreading rate was found to be of

the order of 1 m s−1.

The numerical model is used to predict the spreading rate of a water drop of an

initial radius R = 0.495 mm. The equilibrium contact angle of water on kapton is 75° [74].

Fluid density, viscosity and surface tension coefficient are set to ρ = 1000 kg m−3, µ =

8.90×10−4 kg m−1 s−1, γ = 0.072 N m−1, respectively. The contact line velocity is found

experimentally to be in the range of 0.8 m s−1. Accordingly, the time step and mesh size

for this simulation are chosen to be ∆t ≈ 2.5× 10−5 s and h ≈ 5× 10−5 m, respectively.

The spreading profiles are shown in Fig. 4.10. Furthermore, the spreading rate is shown

in Fig. 4.11. The numerical results obtained numerically is in good agreement with the

experimental observation.

Our 3D model succeeded in tracking the spatio-temporal evolution of a spreading

liquid drop on flat solid substrate. In the next section, we further extend the 3D single-phase

drop spreading model to account for sliding motion.

4.3 3D model for sliding liquid drops

As is the case of spreading, this section introduces the numerical treatment for the 3D

geometry of a sliding liquid drop. As the drop starts to slide, the effect of the retention force
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(a) initial configuration (b) 0.8 ms

(c) 0.96 ms (d) 1.3 ms

(e) Final configuration (f) Displacement profile

(g) Displacement profile, footprint view

Figure 4.10: Case #4: spreading evolution for water drop on kapton substrate.
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Figure 4.11: Spreading rate evolution for water drop on kapton substrate.

acting on the contact line has to be included. This retention force is known to be a function of

i) the drop size, ii) the aspect ratio of the wetting perimeter, iii) the surface tension coefficient,

and iv) the contact angle hysteresis, as follows [34, 75, 80, 125, 241, 242] (see Sec. 3.2.2.1

for details):

Fretention = kaγ(cosθR− cosθA) (4.3.1)

where k is a function of the aspect ratio of the drop footprint, a is the wetting radius of the

liquid drop, θR is the receding contact angle, and θA is the advancing contact angle. The

parameters θA and θR are the maximum and minimum contact angles along the contact line,

respectively (see Sec. 1.1.3 for more details). For a liquid drop sliding under the effect of

gravity, the retention force will oppose the effect of the gravitational force.

The effect of the retention force is added to eqs. 4.2.15-4.2.21. Accordingly, for the

case of sliding liquid drop the coefficient β∂Γ is defined as follows:

β∂Γ = ζ +βn +βS +βretention (4.3.2)
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The coefficient βretention accounts for the effect of the retention force. It is given by:

βretention =
γka
v ·encl

(cosθR− cosθA) (4.3.3)

Boundary conditions along the solid-liquid interface, excluding the contact line, are

expressed in terms of the Navier-slip coefficient as discussed in Sec 4.2.1.5.

4.3.1 Mesh size and time step criteria

Our previous numerical work on drop spreading demonstrated that the implementa-

tion of the proposed model results in physically and quantitatively acceptable behavior. The

adopted mesh size, h, is estimated as a function of the wetting radius, a, as follows:

h∼ a
10

(4.3.4)

The constraint for choosing the time step is derived by guaranteeing the range of

applicability of Jiang’s model, that is 0 < Ca ≤ 0.03. The time step criterion is calculated

based on the Weber number (We) defined as [180]:

We =
ρRv2

max
γ

(4.3.5)

where R is the radius of the drop, and vmax is the magnitude of the maximum slip velocity

of the liquid at the contact line. The time step can be calculated as follows (see Sec. 3.4 for

details):

∆t ≤



√
2
π

γ

4ρ|v3
max|

for We≥ 1

CFL
|vmax|

h + 2µ

h2

for We < 1
(4.3.6)

where CFL is the Courant-Friedrichs-Lewy number and h is the mesh size. The range of

CFL is practically found to be between 0.5 and 0.9. In 3D, the computational cost is very

high for smaller mesh sizes and time steps. Thus, for free-surface problems, i.e., We < 1, we
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will take advantage of the following time step criteria presented by Sussman and Ohta [213]:

∆tcrit ≤

√
(ρL +ρg)h3

γ(2π)3 (4.3.7)

4.3.2 Experimental validation

Three different experimental scenarios obtained from the published literature are ex-

amined to validate the proposed sliding drop model for a variety of liquid and substrate

properties. The physical properties of the liquids are presented in Tables 4.4.

• Case #1: the first validation examines the steady-state velocity for an ethylene glycol

(EG) drop of volume 29.9µL, sliding on an omniphilic polycarbonate substrate. The

corresponding equilibrium contact angle is θe = 70°. The inclination angle of the

substrate is considered to be α = 20° [125].

• Case #2: the second validation examines the steady-state velocities for water drop of

volume 7.5µL, sliding on an omniphobic PTFE substrate. The corresponding equilib-

rium contact angle is θe = 120°. The drop slides at an inclination angle of α = 60° [16].

• Case #3: the last validation examines the steady-state velocity for a viscous Newtonian

omniphilic polyethylene glycol (PEG) drop of volume 100µL, sliding on a smooth

glass substrate. The corresponding equilibrium contact angle is θe = 34°. The drop

slides at an inclination angle of 27° [238].

4.3.2.1 Case #1: ethylene glycol drop on an omniphilic polycarbonate substrate

We examine the sliding experiment performed by Kim et al. [125] for an ethylene

glycol drop sliding on an inclined polycarbonate substrate. The drop of volume 29.2 µL

slides over the substrate until it reaches its steady-state velocity. An inclination angle of α =

20° is considered. The steady-state velocities was found experimentally to be 1.557×10−3

m s−1 [125].
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ρ µ γ θe Volume α k

Case # Liquid Substrate (kg.m−1) (Pa.s) (N.m−1) (°) (µL) (°)

1 [125] ethylene glycol polycarbonate 1114 0.0209 0.0484 70.2 29.2 20 1.41

2 [16] water PTFE 997 0.00089 0.0728 120 7.5 60 1.35

3 [238] PEG smooth glass 1080 0.285 0.0533 34.0 100 27 2.0

Table 4.4: Physical properties of the sliding liquid drops for different liquid/solid pairs.

The simulation is performed using the physical properties for cases #1 of Table 4.4.

The wetting radius is a = 0.00283 m (see Appendix E). Thus, the mesh size and time step

are calculated to be h = 4×10−4 m and ∆t ≈ 1×10−6 s. The Weber number is found to be

< 1 for the given steady-state velocity, i.e., 1.557×10−3 m s−1 [125]. Hence, we are able to

utilize the advantage of eq. 4.3.7. Therefore, the time step used here is ∆t ≈ 8×10−5 s.

The value of k is chosen by using experimental results for a sliding ethylene glycol

sliding drop. It is found to be 1.41 [80]. The numerical results are shown in Fig. 4.12

and 4.13. The numerical value of the steady-state velocity is found to be 1.65×10−3 m s−1.

The error between the experimental and numerical results is found to be ≈ 6%, as shown in

the first case of Table 4.5.

4.3.2.2 Case #2: water drop on a hydrophobic PTFE substrate

The second validation considers the experiments performed by Annapragada et al. [16].

In this experiment, a water drop of volume 7.5 µL slides on an inclined PTFE substrate. Un-

der equilibrium condition, the contact angle θe is 120°. The drop is sliding on a tilted plate

at an inclination angle of 60°. The steady-state sliding velocity was experimentally found to

be 0.12 m s−1.

Using the physical properties for cases #2 of Table 4.4, the simulation is performed

with corresponding mesh sizes of h = 1.1×10−4 m. The value of the parameter k was found

127



(a) initial configuration, t = 0 s (b) initial configuration, side view

(c) drop configuration, t = 0.04 s (d) drop configuration, t = 0.04 s

(e) steady-state configuration, t > 0.08 s (f) steady-state configuration, side view

(g) steady-state velocity profile

Figure 4.12: Case #1: sliding profiles for EG drop on an omniphilic polycarbonate substrate.
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(a) Contact angle evolution

(b) Sliding velocity

Figure 4.13: Case #1: contact angle and spreading rate evolution for EG drop sliding on
polycarbonate substrate.
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experimentally to be 1.35 [80]. The limiting time step can be predicted by assuming the

steady-state sliding velocities, uss, based on the experimental results found in [16] to be 0.12

m s−1. We is found to be ≤ 1 and, therefore, the time step used here is ∆t ≈ 1× 10−5 s

(eq. 4.3.7).

The numerical results are shown in Fig. 4.14 and 4.15. The error between the ex-

perimental and numerical results is found to be ≈ 12.5%, as shown in the second case of

Table 4.5. Figure 4.15 shows fluctuations during sliding, which is hypothesized to be due

to both physical and numerical effects. Physically, it has been observed that high contact

line velocity leads to higher capillary action [180] and viscous dissipation along the contact

line. Due to the nature of the PFEM, minor numerical fluctuations are expected when the

mesh nodes are added or deleted as the domain undergoes large deformation. Mesh addi-

tion/deletion is performed at each time step as needed to avoid crude meshing and mesh

deterioration.

4.3.2.3 Case #3: viscous Newtonian drop on an omniphilic smooth glass

The last scenario aims to simulate the experimental steady-state velocity obtained by

Xu et al. [238]. In this experiment, a polyethylene glycol (PEG) drop slides on an omniphilic

smooth glass, with contact angle θe = 34°. The volume of the drop is 100 µL. The drop slides

at an inclination angle of α = 27°. The steady-state velocity was experimentally found to be

7.75×10−4 m s−1. The value of k is chosen to be 2.0 [238].

The simulation is performed using the physical properties for case #3 of Table 4.4.

Adaptive mesh size is used with an initial grid size h = 9× 10−4 m, and refined to h =

6×10−4 m near the boundaries. The time step is set to ∆t = 1×10−4 s.

The numerical results are shown in Fig. 4.16 and 4.17. The numerical value of the

steady-state velocity is found to be 8.1×10−4 m s−1. As shown in Table 4.5, the difference

between the experimental and numerical results is 4.52%.

The steady-state sliding velocity obtained numerically is found to be in very good
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(a) initial configuration (b) initial configuration, side view

(c) drop configuration, t = 0.01 s (d) drop configuration, side view

(e) steady-state configuration, t > 0.4 s (f) steady-state configuration,
side view

(g) steady-state velocity profile

Figure 4.14: Case #2: sliding profiles for water drop sliding on PTFE substrate.
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(a) Contact angle evolution

(b) Sliding velocity

Figure 4.15: Case #2: contact angle and spreading rate evolution for water drop sliding on a
hydrophobic PTFE substrate.
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(a) initial configuration, t = 0 s (b) initial configuration, side view

(c) drop configuration, t = 0.75 s (d) drop configuration, side view, t = 0.75 s

(e) steady-state configuration, t > 1.5 s (f) steady-state configuration, side view

(g) steady-state velocity profile

Figure 4.16: Case #3: sliding profiles for viscous Newtonian fluid on an omniphilic smooth
glass.
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(a) Contact angle evolution

(b) Sliding velocity

Figure 4.17: Case #3: contact angle and spreading rate evolution for viscous Newtonian
fluid.
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Case #
Volume α k Experimental uss Numerical uss Error in uss

(µL) (°) (3D) (m s−1) (m s−1) (%)

1 29.2 20 1.41 [80] 1.557E-3 1.65E-3 5.97 %

2 7.5 60 1.35 [80] 0.12 0.105 12.5 %

3 100 27 2 [238] 7.75E-4 8.1E-4 4.52 %

Table 4.5: Numerical vs. experimental steady-state velocities (uss) in 3D.
nnn

Case #
Volume α k k

π
Experimental uss Numerical uss Error in uss

(µL) (°) (3D) (2D) (m s−1) (m s−1) (%)

1 29.2 20 1.41 [80] 0.45 1.557E-3 [125] 1.26E-3 19.1%

2 7.5 60 1.35 [80] 0.43 0.12 [16] 0.11 8.3%

3 100 27 2 [238] 0.64 7.75E-4 [238] 8.7E-4 12.3%

Table 4.6: Numerical vs. experimental steady-state velocities (uss) in 2D.

agreement with the experiment (Table 4.5). In 3D, compared to 2D, the accuracy of steady-

state sliding velocity increased for the case of viscous Newtonian fluid (Table 4.5 vs. Ta-

ble 4.6). The 3D model demonstrates its ability to replicate the full geometry of a sliding

liquid drop and to account for the out-of-plane forces.

4.4 Conclusion

In this chapter, we extended the two-dimensional model for spreading and sliding

liquid drops, presented in chapters 2 and 3 to account for full 3D geometries. Our 3D model

takes into account the out-of-plane forces and it replicates the full shape of a sliding drop.

Seven experiments have been considered for validations, and the numerical results were
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found to be in very good agreement. The results of the steady-state velocities in 3D were

found to be more accurate than those in 2D.

Our PFEM model was demonstrated to have the ability to predict the drop dynamics

in a single phase, i.e., assuming the surrounding gas phase does not affect the liquid drop.

The next chapter extends the single-phase PFEM drop dynamics model to an embedded

two-phase flow model, where the gas phase exerts an external shear force on the liquid drop.
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Chapter 5

AN EMBEDDED TWO-PHASE FLOW

5.1 Introduction

Modeling two-phase flow phenomena is an active and challenging area of research,

especially when considering interfacial and wetting phenomena. This includes non-conventional

sources of energy, power and heat transfer systems, and additive manufacturing technolo-

gies [109]. In this chapter, we develop a numerical model for an embedded two-phase flow,

using the Eulerian-PFEM approach, that is capable of predicting the behavior of surface

tension dominant problems. The proposed modeling approach is examined in the context of

water drop motion in the gas channels of Proton Exchange Membrane Fuel Cells (PEMFCs).

PEMFCs, also known as polymer electrolyte membrane (PEM) fuel cells, are promis-

ing, scalable, reliable, and efficient energy conversion devices. They provide high power

density and, thus, are suitable for a wide range of applications such as in the transportation

domain.

From an engineering point of view, designing an optimal PEMFC remains a chal-

lenge. Its mechanical performance and chemical stability are highly dependent on the water

management inside the PEMFC channel. Table 5.1 [8, 43, 211] shows the targeted operating

conditions of a PEMFC, proposed by the U.S. Department of Energy (DOE).

Water is produced during the fuel cell operation. Under normal operating conditions,

water leaves the fuel cell in vapor form. Under high current density, however, the vapor can

condense within the GDL. The condensed water blocks the GDL pores and, thus, reduces

the GDL permeability. This leads to reactant starvation at the reaction site, causing a drop in

current density [112, 252]. If the condensed water is not effectively removed, it can lead to

flooding inside the channel. As shown in Fig. 1.5, liquid water can flow inside the PEMFC
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Characteristics/Specifications Target

Maximum Oxygen/Hydrogen crossover 2 mA/cm2

Membrane conductivity at ambient temperature 0.07 S/cm

20,000 cycles,

Mechanical & chemical durability 500 hrs

< 10 sccm crossover

Table 5.1: U.S. DOE technical specifications and targets for automotive PEMFC [8, 43, 211].

channel in the form of drops, films, or slugs. Water drops are formed when the current

density is below 0.4 A cm−2. A water film is produced when the current density value is

between 0.4 and 1.5 A cm−2. Slugs are observed when the current density exceeds 2 A

cm−2 [139]. Any type of flooding exacerbates pressure losses along the gas channel [198].

To resolve the water management issue, the GDL is treated with PTFE to mitigate

excessive water condensation. At the same time, the membrane needs to be adequately hy-

drated to maintain proton conductivity [229]. For example, at 30 °C, a typical FC membrane

has a conductivity of 0.11 S cm−1 at 45% of water volume fraction [229]. Hence, a technical

challenge is to obtain an optimal PTFE treated GDL that are not saturated with liquid water,

while also ensuring proper hydration inside the membrane.

Investigation of drop dynamics in channels of specific geometry and wettability could

improve water management and enhance fuel cell performance. Such analyses depend on

the spatiotemporal evolution of two-phase flows which are governed by surface tension and

partial wetting effects.

Two-phase flow modeling in fuel cell channels has been studied in many publi-

cations [44, 115, 193, 219, 229, 236, 251]. Some studies are based on analytical mod-

els [44, 116, 131]. These models, however, are found to be valid for small drops of predefined

geometries [113]. Alternatively, numerical models have been considered for predicting drop

dynamics, as they can better take into consideration the effect of gravity and both interfacial

and wetting phenomena [113, 114, 141, 142].
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Regarding embedded two-phase flows, early numerical models have been developed

to simulate drops deformation in gas channels [86, 87, 203]. For instance, Cai et al. [39]

performed numerical simulations, using the VOF method, to predict water film evolution in

PEMFC micro-channels. Their results showed that water evacuation is promoted inside a

channel when its sidewalls are hydrophilic and its bottom wall is hydrophobic. A similar

observation was reported by other studies that modeled drop detachment in straight chan-

nels [14, 156, 176].

Identifying the optimal drop-to-channel height ratios of PEMFC channels is an ad-

ditional challenge for the water management issue. Studies of effects of channel designs on

water transport phenomena have also been published in the literature [18, 41, 103, 118, 119,

120, 121, 124, 174, 247]. Cho et al. [49] reported that smaller droplets are detached at higher

airflow rates. Jarauta et al. [116] reported that the PEMFC channel height has no effect on

water drops for a drop-to-channel height ratio of less than 10%. Under this condition, the

embedded two-phase flow system can be simplified as a single-phase flow, i.e., ignoring the

effect of the external shear flow. For drop-to-channel height ratios greater than 10%, an

embedded two-phase flow formulation should be considered.

Experimental validation of numerical models has seldom been performed in the pub-

lished literature. To the best of our knowledge, the validation of a numerical model an-

alyzing contact angle evolution is still missing [156, 160, 219]. Moreover, the effect of

substrate wettability is a critical factor to predict drop detachment, and should be taken into

account. In addition, most of the above-mentioned numerical studies use the volume of

fluid (VOF) [98] method due to its availability in commercial computational fluid dynam-

ics (CFD) codes (e.g., ANSYS Fluent [2], STAR-CCM [5]) and open-source codes (e.g.,

GERRIS Flow solver (GFS) [4]). Surface tension is usually modeled with the continuum

surface force (CSF) model [31], which is explicit in time and therefore has time step limi-

tations [114, 213]. An alternative to the VOF model is the embedded Eulerian-Lagrangian

formulation [115, 146, 186, 187]. Since the drop is discretized with a moving mesh, its inter-

face is tracked precisely, whereas the gas domain is described using a fixed mesh. At every

time step, the mesh has to be regenerated. However, the size of the liquid domain is limited
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and, therefore, the cost of re-meshing is small.

In this chapter, a novel numerical model for water transport in fuel cell channels

is presented both in 2D and 3D. The governing equations for water and air are briefly in-

troduced, as well as the coupling mechanism between both liquid and gas domains. The

experimental set-up used to validate the model is described. Experimental observations for

drop deformation and contact angle evolution are compared with numerical predictions to

validate the model. Furthermore, the proposed model can provide helpful insight in the se-

lection of optimal drop-to-channel height, by examining the spatio-temporal evolution of a

wide variety of drop sizes as a function of inlet air velocities.

5.2 Physical model

The working principle of the embedded model hinges on the following ideas [112,

115, 185, 186, 187]. First, the Lagrangian domain, based on the PFEM technique, represents

the water liquid phase. Second, the fixed mesh Eulerian domain represents the gas or vapor

phase. The advantages of this approach are its ability:

• to accurately track the gas-liquid interface,

• to accurately compute the changes of the material properties such as viscosity and

density across the interface, and

• to properly address the jump discontinuity of pressure across the interface, with the

possibility of using a time-marching scheme with large time step.

5.2.1 Governing equations for the proposed embedded numerical model

As displayed in Fig. 5.1, let ΩL and ΩE represent the Lagrangian domain (for the liq-

uid phase) and the Eulerian domain (for the gas phase), respectively. Let ΓE be the external

boundary of the domain ΩE where ΩL is embedded into ΩE , and ΓI represents the gas-liquid

interface defined by the position of the Lagrangian boundary ΓL. Boundary ΓI splits the Eu-

lerian domain into two domains: the gas domain represented by Ωr
E , and a fictitious Eulerian

domain Ω
f
E (which does not have any physical meaning and is used mainly for the coupling
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approach). The fictitious Eulerian domain coincides with the Lagrangian domain (ΓI = ΓL).

The governing system of equations is based on Navier-Stokes equations accounting

for the incompressibility condition:

ρ
Dv
Dt
−µ∇ · (∇v+∇

T (v))+∇p = ρg in Ω
r
E and ΩL (5.2.1)

∇ ·v = 0 in Ω
r
E and ΩL (5.2.2)

where D
Dt = ∂

∂ t + v ·∇ is the total material derivative, p is the pressure, t is time, g is the

gravitational body force. ρ and µ are the fluid density and viscosity, respectively, with

ρ = ρE and µ = µE in ΩE , and ρ = ρL and µ = µL in ΩL.

5.2.2 Boundary and interface conditions

The external and internal boundaries are defined as follows [112, 115, 185, 186, 187]:

• On the external boundary ΓE , the following conditions are prescribed:

v = vpr at ΓE (5.2.3)

σn= σpr
n at ΓE (5.2.4)

where vpr is the prescribed inlet velocity, n is the outer unit normal to ΓE , and σpr
n is

the prescribed traction; in tensor notation this can be written as σ
pr
ni = σi jn j.

For the Eulerian domain, we impose: i) no-slip boundary conditions on the channel

walls and substrate, excluding its inlet and outlet, ii) a prescribed inlet velocity at the

inlet, and iii) a prescribed pressure (atmospheric pressure) at the outlet.
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(a) Schematic representation of the embedded two-phase flow formulation

(b) side cross-sectional view

Figure 5.1: Schematic graph for the embedded approach [115, 187].
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• On the internal interface, ΓI , the following coupling conditions are imposed:

JvK = 0 at ΓI (5.2.5)

JσKn= γκHn at ΓI (5.2.6)

where n here is the unit normal to ΓI interface, γ is the surface tension coefficient, κH

is the interface mean curvature, and JxK symbol is representing the jump of quantity x

across the interface. For instance, JvK = vE −vL, where vE and vL are the velocities

corresponding to the Eulerian and Lagrangian domains, respectively.

Eq. 5.2.5 imposes the continuity of the velocity components. The equality of the nor-

mal components vEn = vLn ensures no mass flux across the interface. Equality of the

tangential components is equivalent to a no-slip condition. Finally, eq. 5.2.6 indicates

that the normal stress across the interface ΓI is balanced by the surface tension force.

Eq. 5.2.6 can be projected into normal and tangential directions (in 2D) as follows:

n · (JσKn) = γκH at ΓI (5.2.7)

t · (JσKn) = 0 at ΓI (5.2.8)

where t is the unit tangent to surface ΓI . Since JσK = σE −σL, this yields:

(pL− pE)+ [µE ·n · ([∇v+∇
Tv]En)−µLn([∇v+∇

Tv]Ln)] = γκH (5.2.9)

µE · t · ([∇v+∇
Tv]En)−µLt · ([∇v+∇

Tv]Ln) = 0 (5.2.10)
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In 3D, the vector t in eqs. 5.2.8 and 5.2.10 is replaced by eθ , Fig. 5.1, and represents

any unit vector tangent to surface ΓI (see Sec. 4.2.1.3 for more details).

5.3 Finite element formulation for the gas phase

The governing equations of the gas phase can be discretized as follows: given v̄n and

p̄n at a particular time tn, the discretization for v̄n+1 and p̄n+1 at tn+1 yields:

M
v̄n+1− v̄n

∆t
+[K̄(v̄n+1)+µL]v̄n+1 +Gp̄n+1 = F̄ (5.3.1)

Dv̄n+1 = 0 (5.3.2)

where M, L, and G are the mass, Laplacian, and Gradient matrices (defined in Sec. 2.6.2).

K̄(v̄n+1) represents the non-linear convective term. It is expressed as follows:

K̄ = kIJ = ρ

∫
Ωe

NIv̄k
∂NJ

∂xk
dΩ (5.3.3)

and F̄ is the body force vector, given by:

F̄ = fI =
∫

Ωe

ρgkNIdΩ (5.3.4)

The system of equations, eqs. 5.3.1 and 5.3.2, can be solved using either a monolithic

approach or using a fractional step method.

5.3.1 Monolithic approach

Using Algebraic Sub-Grid Scale (ASGS) and following the same procedure described

in section 2.6.3, the following term will be added to left-hand side of eqs. 5.3.1 and 5.3.2

[112, 115, 185, 186, 187]:

ne

∑
e=1

∫
Ωe

τ[F−L (vh)]
T L ∗(wh)dΩ (5.3.5)
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Upon applying the Backward Euler scheme, the time dependent residual will be given by:

L (vh) =

 ρ
∂vh
∂ t +ρvh ·∇vh−µ∇ · (∇vh +∇Tvh)+∇ph

∇ ·vh

=

 ρ
vn+1−vn

∆t +ρvn+1 ·∇vn+1 +∇pn+1

∇ ·vn+1


(5.3.6)

where the convective term is linearized, assuming a constant convective velocity of vn+1.

Hence, L ∗, the adjoint of L , for ASGS is given by [112]:

L ∗(wh) =

 −vn+1 ·∇wh−∇qh

−∇ ·wh

 (5.3.7)

Substitution of eqs. 5.3.6 and eq. 5.3.7 into eq. 5.3.5 gives the following resulting stabilizing

term:

∫
Ωe

τ1(vn+1 ·∇wh +∇qh)
(

ρ
vn+1−vn

∆t
+ρvn+1 ·∇vn+1 +∇pn+1−f

)
dΩ+∫

Ωe

τ2(∇ ·wh)(∇ ·vn+1)dΩ

(5.3.8)

Addition of the term obtained by multiplying the momentum equation by wh to the term
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obtained by multiplying the continuity equation by qh yields:

∫
Ωe

τ1(vn+1 ·∇wh)
(

ρ
vn+1

∆t
+ρvn+1 ·∇vn+1

)
dΩ

+
∫

Ωe

τ2(∇ ·wh)(∇ ·vn+1)dΩ

+
∫

Ωe

τ1(vn+1 ·∇wh)∇pn+1dΩ

−
∫

Ωe

τ1(vn+1 ·∇wh)
(

ρ
vn

∆t
+f

)
dΩ

(5.3.9)

and:

∫
Ωe

τ1∇qh

(
ρ
vn+1

∆t
+ρvn+1 ·∇vn+1

)
dΩ

+
∫

Ωe

τ1∇pn+1∇qhdΩ

−
∫

Ωe

τ1∇qh ·
(

ρ
vn

∆t
+f

)
dΩ

(5.3.10)

Hence, the stabilized equations are governed by:

M
v̄n+1− v̄n

∆t
+[K̄(v̄n+1)+µL+SK]v̄n+1 +[G+SG]p̄n+1 = F̄ + F̄m (5.3.11)

[D+SD]v̄n+1 +SL p̄n+1 = F̄q (5.3.12)

where,

SK = sK,IJ =
∫

Ωe

[τ1

(
v̄k

∂NI

∂xk

)(
ρ

NJ

∆t
+ρ v̄k

∂NJ

∂xk

)
+ τ2

∂NI

∂xk

∂NJ

∂xk
]dΩ (5.3.13)

SG = sG,IJ =
∫

Ωe

τ1

(
v̄k

∂NI

∂xk

)
∂NJ

∂xk
dΩ (5.3.14)
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SD = sD,IJ =
∫

Ωe

τ1
∂NI

∂xk

(
ρ

∆t
NJ + v̄k

∂NJ

∂xk

)
dΩ (5.3.15)

SL = sL,IJ =
∫

Ωe

τ1
∂NI

∂xk

∂N j

∂xk
dΩ (5.3.16)

F̄m = fmI =
∫

Ωe

ρgk

(
v̄k

∂NI

∂xk

)(
ρ

∆t
NI +NI

)
dΩ (5.3.17)

F̄q = fqI =
∫

Ωe

ρgk
∂NI

∂xk

(
ρ

∆t
NI +NI

)
dΩ (5.3.18)

where NI is the FEM shape function for node I, Ωe is the element integration domain, and k

represents the spatial variables x,y, and z. τ1 is the first algorithmic stabilization parameter

given by:

τ1 =
1

2‖v̄‖
h + 4ν

h2

(5.3.19)

and τ2 is the second algorithmic stabilization parameter given by:

τ2 =
h2

τ1
(5.3.20)

where h is the element size, ν is the kinematic viscosity. τ1 has a dimension of time, and

corresponds to the momentum equation, coupled through the pressure, whereas τ2 has the

dimension of a numerical kinematic viscosity which controls the volumetric strain rate and

the velocity divergence.

5.3.2 Fractional step approach

The fractional step method is more efficient in terms of the computational cost (ap-

proximately ten times faster in our case), as compared to the monolithic approach [112, 115,

185, 186, 187]. However, it does not accurately preserve mass conservation. Jarauta et

al. [112] shows that the fractional step approach can be used when considering the Eulerian
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domain, but not for the Lagrangian domain where excessive remeshing takes place. To re-

duce the computational cost, this work considers the fractional step approach when solving

for the Eulerian domain.

Let v̌ be an intermediate velocity, defined as follows:

M
(v̄n+1− v̌)+(v̌− v̄n)

∆t
+[K̄(v̄n+1)+µL]v̄n+1 +G(p̄n+1− p̄n + p̄n) = F̄ (5.3.21)

Multiplied the Laplacian matrix by the intermediate velocity v̌ instead of v̄n+1
1 yields the

following:

M
(v̌− v̄n)

∆t
+[K̄(v̌)+µL]v̌+Gp̄n = F̄ (5.3.22)

M
(v̄n+1− v̌)

∆t
+G(p̄n+1− p̄n) = 0 (5.3.23)

We then rearrange the term above in the following form:

v̌ = v̄n+1 +∆tM−1G(p̄n+1− p̄n)

and multiply each side by D matrix:

Dv̌ = Dv̄n+1 +D∆tM−1G(p̄n+1− p̄n) (5.3.24)

From eq. 5.3.2 and eq. 5.3.24, the term Dv̄n+1 will vanish. Furthermore, D =−GT and, thus

DM−1G can be approximated as L [184, 112]. Using L instead of DM−1G leads to smaller

1 The fractional step approach has proven to be more efficient in computational cost than the monolithic
approach [51, 112]. However, it is not a mass conservative method. Ryzhakov et al. [188] devised a numerical
technique to enhance the mass-conservation properties of the fractional step formulation by introducing an
intermediate velocity field (more details about the fractional step approach can be found in references [51, 185,
188]).
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computational cost. Consequently, we find

Dv̌ = ∆tL(p̄n+1− p̄n) (5.3.25)

The three equations of the fractional step approach will take the following form:

M
(v̌− v̄n)

∆t
+[K̄(v̌)+µL]v̌+Gp̄n = F̄ (5.3.26)

Dv̌ = ∆tDM−1G(p̄n+1− p̄n) (5.3.27)

M
(v̄n+1− v̌)

∆t
+G(p̄n+1− p̄n) = 0 (5.3.28)

Eq. 5.3.26 is the fractional momentum equation solving for the intermediate velocity v̌,

eq. 5.3.27 is the pressure Poisson equation solving for the pressure p̄n+1, and eq. 5.3.28

is the end-of-step momentum equation solving for v̄n+1. Finally, the stabilized system of

equations of the fractional approach formulation are given by [112, 115, 185, 186, 187]:

M
v̌− v̄n

∆t
+[K̄(v̌)+µL+Sk]v̌+[G+SG]p̄n = F̄ (5.3.29)

Dv̌ = [∆tL−SD](p̄n+1− p̄n) (5.3.30)

M
v̄n+1− v̌n

∆t
+[G+SG](p̄n+1− p̄n) = 0 (5.3.31)

We solve for v̌ from eq. 5.3.29. Then, p̄n+1 is solved by eq. 5.3.30. Finally, v̄n+1 is obtained

by eq. 5.3.31.

5.4 Finite element formulation for the liquid phase

The finite element formulation for the liquid phase is explained in details in Sec. 2.6.3.

For the sake of clarity, the equations governing the liquid phase are re-introduced as follows
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[112, 115, 185, 186, 187]:

(
M

1
∆t

+µL+Sk

)
v̄n+1 +Gp̄n+1 = F̄ + F̄int + F̄∂Γ + F̄ΓS +M

v̄n

∆t
(5.4.1)

(D+SD)v̄n+1 +SL p̄n+1 = F̄q (5.4.2)

where F̄int represents the Neumann term including the normal stress, shear stress, and surface

tension.

5.5 Coupling strategy

Figure 5.2 defines the following quantities [112, 115, 185, 186, 187]:

• The boundary of the Lagrangian domain is represented by ΓL. The representation of

the Lagrangian boundary on the Eulerian mesh is denoted by ΓI (note that ΓL ≈ ΓI as

the element size h goes to zero),

• The embedded interface ΓI domain (including the interface elements) splits the Eule-

rian domain into two domains: the real domain (including the real nodes) Ωr
E and the

fictitious domain Ω
f
E (including the fictitious nodes).

In order to model the interacting domains, a coupling approach must be implemented. Dirichlet-

Neumann coupling technique is devised as follows [115, 186]:

• The effect of the Lagrangian domain (liquid) on the Eulerian domain (gas) will be

represented by the Dirichlet boundary condition at ΓI (eq. 5.2.5),

• The effect of the Eulerian domain on the Lagrangian domain is represented by the

Neumann boundary condition applied at ΓL. This boundary condition is expressed by

eq. 5.2.9 and 5.2.10,
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5.5.1 Dirichlet boundary condition

The Dirichlet boundary condition, vE = vL imposed on ΓI , can be implemented by

using one of two methods [112, 115, 185, 186, 187]:

• In the first method, the Eulerian elements are split into two elements. Accordingly, ΓL

and Eulerian mesh intersection will coincide with the Lagrangian nodes. This is known

as “strong coupling”. One disadvantage of this approach is that when introducing

(adding) new nodes in the Eulerian mesh, the system matrices will have additional

degrees of freedom, which will increase the computational cost.

• The second method consists of minimizing the difference between velocities of the

Lagrangian domain and the Eulerian domain at ΓL. This implies that the Dirichlet

boundary condition will be applied at the fictitious nodes (black nodes shown in Fig.

5.2.c. This coupling approach is known as “weak coupling”. The main advantage of

this approach is that no degree of freedom will be added and the matrix system will

not be affected.

Following the second approach, the difference in velocity is minimized as follows:

∫
ΓI

(vn+1
k −vL

k )NIdΓI = 0 (5.5.1)

where vn+1
k is the velocity of the kth nodes of the Eulerian domain, and vL

k is the velocity of

the Lagrangian domain at ΓI . Discretization of eq. 5.5.1 yields:

MΓI v̄n+1 = fΓI (5.5.2)

where v̄n+1 is the velocity at the nodes of the interface, and MΓI and fΓI are given by:

MΓI = mab
ΓI

=
∫

ΓI,X
NaNbdΓX =−

∫
ΓI

NaNbJΓ(X) dΓ (5.5.3)

fΓI = f a
ΓI
=
∫

ΓI,X
Na

f vL
k dΓX =−

∫
ΓI

Na
f vL

k JΓ(X) dΓ (5.5.4)
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(a) (b)

(c)

Figure 5.2: Embedded schematic of a) real superimposed discretized Eulerian-PFEM do-
mains, b) fictitious interface on the Eulerian mesh, and c) elements of the interface [112].
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where Na
f is the shape function of the fictitious nodes, and v̄n+1 = v̄r

n+1 + v̄
f
n+1 (since the

interface domain elements contain both real and fictitious nodes).

Assuming the velocity vectors entries of the real node correspond to zero velocity vectors at

fictitious nodes, and vice versa, this yields:

MΓI v̄
r
n+1 +MΓI v̄

f
n+1 = fΓI (5.5.5)

Eq. 5.5.5 can be solved by assuming the real nodes velocities at the interface, in gray colored

dots of Fig. 5.2, are equal to the velocities at their previous time step as follows:

MΓI v̄
f
n+1 = fΓI −MΓI v̄

r
n+1 (5.5.6)

v̄r
n+1 ≈ v̄r

n (5.5.7)

5.5.2 Neumann boundary condition

Neumann boundary condition will be expressed in terms of the normal and shear

stresses exerted by the Eulerian domain (gas) on the Lagrangian domain (liquid), and in-

cluding the surface tension forces. These forces are represented by F̄int as follows [112, 115,

185, 186, 187]:

F̄int = F̄N + F̄st + F̄sh on ΓL (5.5.8)

where,

F̄N = f a
N,i j =−

∫
ΓL

Nani dΓ+µE

∫
ΓL

(
∂Na

∂x j

)
E

ni dΓL (5.5.9)

F̄st = f a
st,i =−

∫
ΓL

γκHNani dΓL (5.5.10)
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F̄sh = f a
sh,i j = µE

∫
ΓL

(
∂Na

∂x j

)
E

mi dΓL (5.5.11)

where,m represents a vector tangent to ΓL, and n represents the vector normal to ΓL.

5.6 Solution algorithm

The following solution algorithm is followed (see Fig. 5.3 for further clarification):

• Assume both the velocity v̄n and the pressure p̄n at time tn are known for both the

Eulerian and Lagrangian domains ΩE and ΩL.

• Start with solving the Lagrangian problem (liquid phase). The output from this step

are the Lagrangian mesh new position, v̄n+1, and p̄n+1 in Lagrangian domain Ω
n+1
L .

• Identify the interface position between ΩL and ΩE , including both real and fictitious

nodes. The output from this step is the position of ΓI .

• In the Eulerian domain ΩE , assign the velocity at the interface real nodes with the

known gas velocity. The output from this step is v̄r,n+1 = v̄n

• Solve eq. 5.5.5 for the fictitious velocity nodes v̄ f ,n+1. Fix the velocity of the fictitious

node (interface Dirichlet boundary condition).

• Solve for the gas problem, using the real part of the Eulerian domain and utilizing the

Dirichlet boundary condition at the fictitious nodes on the interface. The output from

this step is v̄n+1 and p̄n+1 in Ω
n+1
E

• Project the gas stress onto the liquid boundary ΓL surface, using eq. 5.5.8 and eq. 5.5.9

to compute F̄int for the momentum equation of the Liquid.
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Figure 5.3: Coupling algorithm flowchart.

• Update the velocity and pressure fields until convergence of velocity on the Lagrangian

boundary nodes ΓL = ε as follows:

‖δ v̄‖
‖v̄n+1‖

< ε (5.6.1)

5.7 Validating the Eulerian domain

The Lagrangian model for liquid drops has been experimentally validated in chapters

2-4. In this section, we aim to validate the gas flow simulation in the Eulerian domain by

comparison with approximate analytical expression of the pressure drop inside a channel

of size 6.5 mm x 6.5 mm x 12 mm. The dimension of this channel is chosen based on

the experimental work performed by the UC Berkeley Group (see Sec. 5.8). The analytical

results are then used to validate the Eulerian model, both in 2D and 3D.

The length of the channel is characterized as short or long, according to the type of

the flow profile inside that channel. For a laminar flow inside a horizontal channel, i.e., when

the Reynolds number (Re = ρvDhy
µ

, where Dhy is the channel hydraulic diameter and v is the
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average flow velocity) is below 2300, two types of flow profiles can be observed. The first

type is a hydrodynamically developing flow, for which the velocity profile develops in the

direction of the flow. The second type is a hydrodynamically fully developed flow, where the

velocity profile is invariant in the direction of the flow. The type of velocity profile can be

predicted by using the non-dimensional hydrodynamic entrance length of the channel (Lhy).

The parameter Lhy represents the required channel length to achieve a fully developed profile.

It is expressed in terms of both Reynolds number and the hydraulic diameter of the channel

cross-section as follows:

Lhy =
Le

DhyRe
(5.7.1)

where Le is the dimensional hydrodynamic entrance length, Dhy is the hydraulic diameters,

and Re is the Reynolds number. The hydraulic diameter is calculated as follows [42]:

Dhy = 4Acs/`cs (5.7.2)

where Acs and `cs are the area and perimeter of the channel cross-section (cs), respectively.

Considering various channel geometries, various authors studied the threshold en-

trance length (L∗hy) as a function of the length-to-diameter ratio of the channel [201]. A

hydrodynamically fully developed flow exists when Lhy ≥ L∗hy, whereas a hydrodynamically

developing flow exists when Lhy < L∗hy. Most of the fuel channels are designed with rect-

angular cross-sections. Different authors proposed different Lhy∗ criteria for a rectangular

channel [199]. In this work, Han’s criteria [91], shown in Table 5.2 [201], is considered as

it accounts for the rapid flow development inside the channel, i.e., for larger inertial forces

relative to the viscous forces [201, 42].

156



Aspect ratio, L∗hy,

α∗ = height / width Han [91]

1 0.0752

0.750 0.0735

0.5 0.066

0.25 0.0427

0.125 0.0227

0 0.0099

Table 5.2: L∗hy criteria for a fully developed laminar flow inside a rectangular channel [91,
201].

The pressure drop along the channel is estimated as follows [42]:

∆P = fD
L

Dhy

ρv2
in

2
(5.7.3)

where fD is the Darcy-Weisbach friction factor along the channel and vin is the prescribed

inlet velocity of the gas phase. The value of fD is given in Table 5.3 for a hydrodynamically

developing flow inside a rectangular channel. For a hydrodynamically fully developed flow

in a long cylindrical channel of constant cross-section, eq. 5.7.3 becomes the well-known

Hagen–Poiseuille equation [42]:

∆P =
128µLvinAcs

πD4 (5.7.4)

where D is the channel diameter. Considering a fully developed flow of the same flow area,

the pressure gradient inside a rectangular channel is found to be greater than that of a circular

channel. Natarajan and Lakshmanan [158] proposed the following equation that relates the

pressure drop gradient along a rectangular channel to that in a circular channel of the same

flow area [158, 201]:

(∆P/∆L)r/(∆P/∆L)c = 0.861(`r/`c)2.75 (5.7.5)
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where ` is the perimeter and r & c stand for a rectangular channel and a circular channel,

respectively.

Our proposed Eulerian model for gas channel flow is validated using the 6.5 mm x

6.5 mm x 120 mm rectangular channel. Two different inlet flow rates of 6 standard liter

per minute (SLPM) and 10 SLPM are considered, (case #1 and case #2, respectively). The

physical properties of the gas are ρ = 1.2 kg m−3, µ = 1.81 ×10−5 kg m−1 s−1. The

non-dimensional hydrodynamic entrance length of the channel Lhy is found to be 0.018

(eq. 5.7.1). The value of its aspect ratio α∗ = 1 and, thus, L∗hy = 0.0752 (Table 5.2). Accord-

ingly, the value of the parameter Lhy is found to be less than L∗hy. Therefore, the flow inside

the channel is a hydrodynamically developing flow according to analytical predictions [201].

For each case, the value of ∆P along the channel is found using the approximate

analytical solution. For the first case, i.e., inlet flow rate of 6 SLPM, the inlet velocity

of the gas and the corresponding Reynolds number are vin = 2.37 m s−1 and Re ∼1000,

respectively. Considering a short channel of Lhy = 0.018 and α∗ = 1, the parameter fD in

eq. 5.7.3 can be estimated by ∼124/Re [102, 201] (see Table 5.3). Thus, fD takes the value

of 0.124. From eq. 5.7.3, the value of ∆P is found to be∼8 Pa. Similarly for the second case,

i.e., inlet flow rate of 10 SLPM, the inlet velocity of the gas and the corresponding Reynolds

number are vin = 3.95 m s−1 and Re ∼1700, respectively. Thus, Lhy and fD are found to be

0.01 and 0.09, respectively. Accordingly, the approximate analytical solution of ∆P is found

to be ∼16 Pa.

Numerical simulations are performed to validate the Eulerian model for both cases,

both in 2D and 3D. In 2D, the channel is no longer a real channel. Figure 5.4(a) represents

a parallel plate channel. The pressure gradient in parallel plate channels can be estimated

analytically using Goldstein’s [85] and Mohanty and Das [155] criteria. Accordingly, the

pressure drop along a parallel plate channel of 6.5 mm (H) x 120 mm (L) is found analytically

to be 3.3 Pa and 6.4 Pa for the first and the second cases, i.e., vin of 2.37 m s−1 and 3.95 m

s−1, respectively. We aim to demonstrate the limitation of 2D simulations in replicating the

actual geometry of the channel, which has a direct effect on the spatio-temporal evolution of
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∼ ( fD/4) Re
L

ReDhy

α∗ = 1 α∗ = 0.5 α∗ = 0.2

0.005 51.5 51.8 52.5

0.010 38.0 38.2 38.9

0.015 32.1 23.5 33.3

0.05 21.0 21.8 23.7

0.1 17.8 18.8 21.4

Table 5.3: Approximated value of fD for developing laminar flow in a rectangular chan-
nel [56, 201].

the embedded drop. We shall restrict our injection numerical simulations in 2D only. Full

3D simulations will be conducted in the absence of injection. The mesh sizes are set as 6

×10−4 and ∼1 ×10−3 m for the 2D and 3D simulations, respectively (see Fig. 5.4). In 2D,

the mesh size is refined to ∼ 2.5 ×10−4 m at the center of the channel where the injection

takes place. The time step is chosen based on Courant–Friedrichs–Lewy condition to be ≤ 1

×10−5 s and ≤ 1 ×10−4 s for the 2D and 3D simulations, respectively.

The values ∆P of case #1 are found to be 3.1 Pa and 7.3 Pa in 2D and 3D, respectively

(see Fig. 5.5). For case #2, the values of ∆P are found to be 6.41 Pa and 16.7 Pa in 2D and

3D, respectively (see Fig. 5.6).

The numerical solution of the 3D model is found to be in good agreement with the

approximate analytical solution. The 2D results appear to be scaled by a factor of about 3 in

both cases. Regarding the pressure drop evolution obtained by the 3D simulations, numerical

oscillations are observed at initial time steps, i.e., 0 < t < 0.05 s, see Figs. 5.5(c) and 5.6(c).

This oscillatory behavior is hypothesized to be due to the high value of the prescribed inlet

velocity while fixing the exit pressure at atmospheric, i.e., higher oscillations are observed

for higher inlet velocity (see Figs 5.5 and 5.6). In 2D, however, no oscillations are observed

because the domain is oversimplified and the pressure drop value is under-predicted.
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(a)

(b)

Figure 5.4: Mesh sizes for a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) channel: (a) a mesh
size of 6 ×10−4 m, refined to 2.5 ×10−4 m at the center of the channel where the injection
takes place, (b) a mesh size of 1 ×10−3 m.
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(a)

(b)

(c)

Figure 5.5: Pressure drop along a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) channel, air inlet
flow rate of 6 SLPM : (a) solution of the Eulerian domain in 2D, (b) solution of the Eulerian
domain in 3D, and (c) pressure drop evolution both in 2D and 3D.
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(a)

(b)

(c)

Figure 5.6: Pressure drop along a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) channel, air inlet
flow rate of 10 SLPM : (a) solution of the Eulerian domain in 2D, (b) solution of the Eulerian
domain in 3D, and (c) pressure drop evolution both in 2D and 3D.
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5.8 Experimental validation for the embedded, two-phase flow, model

Four drop detachment simulations are considered in this section to reproduce the ex-

perimental work performed by the UC Berkeley and ESDLab Groups. The experimental

data was obtained by T. Chan at UC Berkeley, under the supervision of A. Weber and M. Se-

canell. The first two simulations are performed in 2D for water drops injected inside a PFEM

channel. Air flows inside the channel during the injection process. Each experiment/simula-

tion is performed using a hydrophilic kapton-coated or a hydrophobic PTFE-coated channel.

The third and fourth simulations are performed in 3D to predict the detachment sliding ve-

locity for water drops in a PEMFC channel. Both experiments consider a hydrophobic PTFE

channel. Details and results for each validation are introduced in the next subsections.

5.8.1 2D embedded simulation: water drop injection on kapton and PTFE substrates

Our first objective is to assess the 2D numerical model by varying i) the physico-

chemical nature of the substrate (PTFE and Kapton) and ii) airflow rate (F) in SLPM and

water injection rate (Q) in µL on the dynamic contact angle evolution.

The task consists of simulating the behavior of a water drop inside a channel of 6.5

mm x 6.5 mm x 12 mm (6.5 mm x 12 mm in 2D) driven by airflow. In the experiments, water

was injected from the bottom of the channel from a small conduit of 6×10−4 m diameter in

the substrate using a peristaltic pump, as shown in Fig. 2.17, and driven at an inlet airflow

rate of 6 SLPM. The experimental results were analyzed for two cases of i) kapton F6-

Q15 and ii) PTFE F6-Q25. Accordingly, two numerical simulations are performed. Each

simulation is validated by i) tracking the spatio-temporal evolution of the injected drop using

a sequence of dynamic contact angles (measured graphically with ImageJ software) and ii)

examining both the formation and flow of the injected water with respect to the channel

substrate, specifically, whether a drop would detach or generate a thin film.

While air flows into the channel, water is continuously injected in the substrate at

constant flow rates of 15 µL/s and 25 µL/s on kapton and PTFE substrates, respectively. Two

simulations are performed to reproduce these two experiments. To reproduce the experi-

ments, we match the initial drop profile with the experimental profile to define our initial
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condition, shown in Fig. 5.7(a), 5.8(a), 5.9(a) and 5.10(a). The physical properties of the gas

phase are ρ = 1.2 kg m−3 and µ = 1.81 ×10−5 kg m−1 s−1. The physical properties of the

liquid phase are ρ = 1000 kg m−3 and µ = 8.9 ×10−4 kg m−1 s−1. The mesh size is chosen

to be 6 ×10−4, refined to ∼ 2.5 ×10−4 m at the center of the channel where the injection

takes place.

Drop evolution obtained experimentally and numerically are shown in Figs. 5.7 and 5.8,

and Figs. 5.9 and 5.10, for water on kapton and PTFE substrates, respectively. Moreover,

profiles of sliding water drops on PTFE substrate, after detachment, is shown in Fig. 5.11.

(a) Initial configuration (b) t = 2 s

(c) t = 3 s

Figure 5.7: Injection experiment: evolution of water drop injected on kapton substrate at
flow rates of F6-Q15.
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(a) Initial-configuration

(b) t = 2 s

(c) t = 3 s

Figure 5.8: Injection simulation: evolution of water drop injected on kapton substrate at flow
rates of F6-Q15.
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(a) Initial configuration

(b) t = 0.65 s

(c) t = 1.3 s

Figure 5.9: Injection experiment: evolution of water drop injected on PTFE substrate at flow
rates of F6-Q25.
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(a) Initial configuration

(b) t = 0.65 s

(c) t = 1.3 s

Figure 5.10: Injection simulation: drop evolution of water drop injected on PTFE substrate
at flow rate of F6-Q25.
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(a)

(b)

(c)

Figure 5.11: Profiles of sliding water drops on PTFE substrate, driven by an inlet airflow of
6 SLPM: a) experimentally and b,c) numerically.
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Injection parameters Time, (s) Volume, (µL) Exp. ASA, (deg) Num. ASA, (deg) ErrorASA, (%) Exp. RSA, (deg) Num. RSA, (deg) ErrorRSA, (%)

Water-kapton: F6-Q15
2 80 93 82 11.8 65 63 3.1

3 95 92 85 7.6 64 65 1.6

Water-PTFE: F6-Q5
0.65 31.25 106 108 1.9 83 93 12

1.6 55 108 115 6.5 75 78 4

Table 5.4: Dynamic contact angle vs volume of injected drop, experimental vs. numerical,
for water drop injected on kapton and PTFE substrates. ASA and RSA stand for advancing
and receding sliding angles, respectively.

(a)

(b)

Figure 5.12: Dynamic contact angle vs volume of injected drop, experimental vs. numerical,
for : (a) water injected on kapton at flow rates of F6-Q15 and (b) PTFE substrates at flow
rates of F6-Q25.
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The simulation results are in good agreement with the experimental data with an

average error of 5%, considering both hydrophilic and hydrophobic substrates as shown in

Table 5.4 and Fig. 5.12. Injected water forms a drop that spreads on the hydrophilic kapton

substrate (Fig. 5.8). The drop does not detach due to the high adhesion force between the

drop and hydrophilic substrate. We stopped the simulation when the water drop came in

contact with the sidewalls during the experiment. This evolution in the out-of-plane direction

can not be simulated in 2D. On the PTFE substrate, however, the injected water forms a drop.

The water drop leaves the PTFE substrate at an inlet airflow rate of 6 SLPM (Re ∼1000),

contact angle hysteresis of 30°, and drop-to-channel height ratio of ∼0.65 (Fig. 5.10 and

5.11).

Our injection and detachment analysis match the experimental results found by Cho

et al. [49, 50]. In their work, water was injected on a hydrophobic surface inside a 1 mm

(H) x 1.6 mm (W) x 40 mm (L) fuel cell channel, and driven by varying inlet airflow rates.

The range of Reynolds numbers of their inlet airflows was between ∼450 and ∼900. Under

equilibrium condition, the drop rests on the substrate with an equilibrium contact angle of

θe = 128°. Considering twelve drop-to-channel height ratios that vary between 0.63 and

0.97, Cho et al. reported the required air velocity to detach each drop. They concluded that

the detachment velocity is inversely proportional to the droplet diameter. At the highest and

lowest values of Reynolds numbers, i.e., Re ∼900 and 450, the drop detached at drop-to-

channel height ratios of ∼0.64 and 0.96, respectively. The detachment occurred when the

contact angle hysteresis was found to be ∼40°.

For our detached drop on the PTFE substrate, Fig. 5.11 shows its sliding profile. Once

the drop has detached, we switch off the injection simulation. The contact angle hysteresis

is found to be ∼30°, both experimentally and numerically, with an advancing sliding angle

value of ∼110° and a receding contact angle value of ∼80°. The average sliding velocity

of the liquid drop after detachment is tracked using imageJ software. Experimentally, it is

found to be ∼0.015 m s−1. In 2D simulation, the value of the sliding velocity is found to

be 0.005 m s−1 (see Fig. 5.11(b)). Though the experimental and numerical sliding profiles

are found to be in very good agreement, the sliding velocity obtained numerically is found
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to be under-predicted by a factor of ∼3. This variation in the sliding velocity is expected, as

both values of the water injection rate and the pressure drop along the channel are found to

be scaled by a factor of ∼3 (see Secs. 2.9.3 and 5.7, respectively).

5.8.2 3D embedded flow simulations: water drop ejection from a PEMFC channel

In this second study, we conduct 3D simulation of liquid drop motion along channels

of rectangular cross-section under the effect of gas injection. Note that we are not modeling

the drop injection into the channel. This should be the object of future work as suggested in

Sec. 6.7.2. Once again, we wish to duplicated the work performed by the Berkeley group for

water drop detachment in a PEMFC gas flow channel of 6.5 mm (H) x 6.5 mm (W) x 120 mm

(L). Under equilibrium condition, the drop rests on the hydrophobic PTFE substrate with a

contact angle of 107°at the center of the channel. Two experimental scenarios are considered

as follows: i) drop-to-channel height ratio of 0.65 with an inlet airflow of 6 SLPM (case #1),

and ii) drop-to-channel height ratio of 0.53 with an inlet airflow of 10 SLPM (case #2).

As the drop immediately slides along the channel, its experimental sliding profile

and average sliding velocity are tracked using imageJ software. The sliding profiles for both

cases are shown in Fig. 5.13. For a drop with drop-to-channel height ratio of 0.65 and driven

by an inlet airflow of 6 SLPM, the values of the advancing and receding sliding angles are

found to be ∼110° and ∼85°, respectively. These values are found to be ∼113° and ∼80° in

the case of a drop-to-channel height ratio of 0.53 and driven by an inlet airflow of 10 SLPM.

The average sliding velocities are found to be ∼0.015 m s−1 and ∼0.0028 m s−1 for the first

and the second cases, respectively.

Two simulations are performed to reproduce these two experimental scenarios, i.e.,

case #1 and case #2 above. The physical properties of the gas phase are set as ρ = 1.2 kg m−3

and µ = 1.81 ×10−5 kg m−1 s−1. The physical properties of the liquid phase are ρ = 1000

kg m−3 and µ = 8.9 ×10−4 kg m−1 s−1. The mesh size of the Lagrangian domain is chosen

to be 4 ×10−4 m and the time step was set to 1 ×10−5 s for both cases.

The pressure fields along the channel and the average sliding velocities for case #1
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(a) (b)

Figure 5.13: Profiles of sliding water drops on PTFE substrate: a) a drop with drop-to-
channel height ratio of 0.65 driven by airflow of 6 SLPM, and b) a drop with drop-to-channel
height ratio of 0.53 driven by airflow of 10 SLPM.

and case #2 are shown in Figs. 5.14 and 5.15, respectively. The drop profiles obtained nu-

merically (see Figs. 5.14(d) and 5.15(d)) are found to be in good agreement with the exper-

imental profiles (Fig. 5.13). The average sliding velocities are found to be ∼0.0163 m s−1

and ∼0.0025 m s−1 for the first and the second cases, respectively (see Figs. 5.14(f) and

5.15(f)). The relative errors between the experimental and numerical average sliding veloc-

ities are found to be 8.7% and 10.0% for the first and the second cases, respectively. For

the first case, the values of the advancing and receding sliding angles are found numerically

to be ∼109° and ∼92°, respectively. These values are found numerically to be ∼112° and

∼90° for the second case, respectively. The average relative error between the experimental

and numerical contact angle measurements is found to be ∼ 6% for both cases.

The presence of the drop increases the pressure drop along the channel. For case

#1, Figs 5.5(b) and 5.14(b) show that the pressure drop increased by ∼6.5 Pa. The pressure

drop for the second case was found to be ∼9 Pa (Figs 5.6(b) and 5.15(b)). The pressure

drop across the drop was found to be ∼7 Pa and ∼11 Pa for the first and the second cases,

respectively (Figs. 5.14(c) and 5.15(c)). This indicates that the drop size and the inlet air

flow rate both play important roles in affecting the pressure drop along the channel.
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The evolution of the average sliding velocity for both cases shows physical oscilla-

tions (Figs. 5.14(f) and 5.15(f)). These oscillations are hypothesized to be due to the mi-

nor fluctuations in the pressure evolution corresponding to the drop motion, as shown in

Figs 5.14(e) and 5.15(e) for cases #1 and #2, respectively.

5.9 An embedded simulation for Reynolds number greater than 2300

This section addresses the effect of Reynolds number (Re) on the pressure drop along

the channel. We will take advantage of one last experimental batch of data produced by the

Berkeley and ESDLab Groups, for transitional flow inside a 6.5 mm (H) x 6.5 mm (W) x

120 mm (L) channel driven by airflow of 19 SLPM.

Practically, the fluid flow in a pipe can be i) a laminar flow, when Re ≤ 2300, ii) a

turbulent flow, when Re > 4000, or iii) a transitional flow, when 4000 > Re ≥ 2300. Under

well-controlled conditions, i.e., smooth pipe with no external disturbances, laminar flows can

be maintained for Reynolds numbers of up to a hundred thousand [42]. Hence, we aim to

study the effect of the transitional flow regime on our embedded model. First, we examine the

Eulerian model assuming a smooth rectangular pipe, i.e., in the absence of embedded drops.

Then, we perform a two-phase flow simulation to obtain i) the evolution of the pressure drop

along the channel and ii) the sliding profile of the embedded drop.

For this experimental case, air inlet the channel at a flow rate of 19 SLPM, i.e., with

an inlet velocity of 7.5 m s−1. Thus, the value of Re is calculated to be∼ 3250. The drop-to-

channel height ratio is 0.33. Due to high inlet speed, we could not track the sliding velocity

of the drop. Instead, we obtained its sliding profile.

We first simulate the pressure evolution of a transitional flow regime inside the chan-

nel. We set the physical properties of the air as ρ = 1.2 kg m−3 and µ = 1.81 ×10−5 kg

m−1 s−1. The mesh size and time step are chosen to be ∼1.7 ×10−3 m and 1 ×10−4 s,

respectively. Figure 5.16 shows the numerical results for both i) steady-state pressure field

along the channel and ii) pressure drop evolution at the inlet of the channel.
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(a)

(b)

(c) (d)

(e) (f)

Figure 5.14: Numerical results for case #1 of the 3D embedded simulation: a) representation
of the initial configuration of drop-to-channel height ratio, b) pressure field along a 6.5 mm
(H) x 6.5 mm (W) x 120 mm (L) channel driven by airflow at 6 SLPM, c) external pressure
acting on a water drop (Lagrangian domain), d) profile of sliding water drops on PTFE
substrate, e) pressure evolution at the inlet of the channel, and f) evolution of the average
sliding velocity.
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(a)

(b)

(c) (d)

(e) (f)

Figure 5.15: Numerical results for case #2 of the 3D embedded simulation: a) representation
of the initial configuration of drop-to-channel height ratio, b) pressure field along a 6.5 mm
(H) x 6.5 mm (W) x 120 mm (L) channel driven by airflow at 10 SLPM, c) external pressure
acting on a water drop (Lagrangian domain), d) profile of sliding water drops on PTFE
substrate, e) pressure evolution at the inlet of the channel, and f) evolution of the average
sliding velocity.
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Numerical oscillations are observed initially, i.e., for 0 < t < 0.015 s. Similar oscil-

lations were observed for laminar flow regimes (see Figs. 5.14 and 5.14), which is hypoth-

esized to be due to the high value of the instantaneous prescribed inlet velocity. For time

t > 0.015, the pressure field reaches its steady state of ∆P ∼ 45 Pa (Fig. 5.16(b)). Though

the Re number of the gas flow falls in the transitional regime, the pressure field demon-

strates a laminar flow behavior. It is hypothesized to be due to the smoothness of the pipe

as well as the effect of the numerical stabilization, in agreement with experimental obser-

vations [42]. For laminar flow with Re ∼ 3250, the Darcy friction factor is found to be

fD ∼0.063 (Table 5.3). Thus, the analytically predicted pressure drop along the channel is

calculated from eq. 5.7.3 to be ∼ 40 Pa, which is in good agreement with what is found

numerically (Fig. 5.16).

We then examine the effect of Re number on the embedded, two-phase flow, simu-

lation. We set the physical properties of the drop as ρ = 1000 kg m−3 and µ = 8.9 ×10−4

kg m−1 s−1. The mesh size of the Lagrangian domain is chosen to be 2.8 ×10−4 m. Fig-

ure 5.17 shows the pressure drop evolution along the channel at different time steps. The

relevant sliding profiles obtained numerically are shown in Fig. 5.18. The presence of the

drop disturbs the pressure field and, thus, leads to a transitional flow regime (Fig. 5.17(d)).

Thus, special attention need to be paid for Re > 2300. One has to include the effect of the

transitional regime, which is outside the scope of this work. Though we are performing a

simulation for a transitional flow regime, Fig. 5.19 shows good agreement between the ex-

perimental and numerical sliding profiles. The drop evolves in accordance with the applied

forcing field (Figs. 5.18). The advancing and receding sliding angles are measured using

ImageJ software. Experimentally, these angles are found to be 115°and 71°, respectively.

They are numerically found to be 117°and 69°, respectively. The relative error was found to

be less than 5%.
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(a)

(b)

Figure 5.16: Numerical results for transitional flow inside a 6.5 mm (H) x 6.5 mm (W) x 120
mm (L) channel driven by airflow at 19 SLPM, without the drop: a) pressure field along the
channel, b) pressure evolution at the inlet of the channel.
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(a)

(b) (c)

(d)

Figure 5.17: Numerical results for transitional flow in the 3D embedded simulation, pressure
field along a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) channel driven by airflow at 19 SLPM:
a) at t = 0.01 s, b) at t = 0.055 s, c) at t = 0.064 s, and d) pressure evolution at the inlet of
the channel.
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(a) (b)

(c)

(d)

Figure 5.18: Numerical results for transitional flow in the 3D embedded simulation, drop
profiles inside a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) channel driven by airflow at 19
SLPM: a) initial drop profile, b) external pressure at t = 0.055 s, c) top view t = 0.055 s, and
d) side view t = 0.055 s.
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(a)

(b)

Figure 5.19: Profile of sliding water drops on PTFE substrate, driven by an inlet airflow of
19 SLPM: a) experimentally, b) numerically.
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Case vin Pressure drop along the channel Pressure drop along the channel Average sliding velocity of the drop Advancing sliding angle Receding sliding angle

number (m s−1) in the absence of the drop, (Pa) in the presence of the drop, (Pa) (m s−1) (°) (°)

1 2.37 7.3 15 0.016 109 90

2 3.35 12.5 31 0.03 155 77

3 3.95 16.7 43 0.047 160 71

Table 5.5: Numerical parametric analysis for different values of inlet air velocity (vin): hor-
izontal channel of size 6.5 mm x 6.5 mm x 12 mm, and drop-to-channel height ratio of
∼0.65.

5.10 Numerical experiments

In this section, we perform 3D numerical experiments to examine the effect of the

inlet airflow rate on an embedded, two-phase flow. We consider the same channel of size

6.5 mm x 6.5 mm x 12 mm, and a drop-to-channel height ratio of ∼0.65. Three numerical

scenarios are considered for an embedded drop driven by inlet air velocity of: case #1) vin =

2.37 m s−1, which corresponds to case #1 of Sec. 5.8.2, case #2) vin = 3.35 m s−1, and case

#3) vin = 3.95 m s−1. For each case, we obtain i) the pressure drop along the channel, ii) the

average sliding velocity of the drop, and iii) the values of the advancing and receding sliding

angles.

The same physical properties of the gas/liquid, i.e., air/water, are adopted. The mesh

sizes of the Lagrangian and Eulerian domains are chosen to be 4 ×10−4 m and 1 ×10−3 m,

respectively.

Simulation results are shown in Figs. 5.14, 5.20, and 5.21. Consequently, numerical

parametric analysis for different values of inlet air velocity is presented in Table. 5.5. The

higher the inlet velocity of the air, the higher i) the pressure drop along the channel, ii) the av-

erage sliding velocity of the drop, and iii) the dynamic contact angle hysteresis. Figure 5.22

demonstrates the relation between the inlet air velocity and both the pressure drop along the

channel and the average sliding velocity of the drop. These results show that both the pres-

sure drop along the channel and the average sliding velocity of the drop increase nonlinearly

with the inlet air velocity. The numerical profiles of the sliding drops for the three cases are

shown in Fig 5.23. As expected, the higher the external pressure across the drop, the higher

its dynamic contact angle hysteresis.
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(a)

(b)

(c) (d)

(e) (f)

Figure 5.20: Numerical results for case #2 of the 3D embedded simulation: a) pressure field
along a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) horizontal channel in the absence of the
drop, b) pressure field along a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) horizontal channel
in the presence of the drop, c) external pressure acting on a water drop (Lagrangian domain),
d) profile of sliding water drops on PTFE substrate (top view), e) pressure evolution at the
inlet of the channel, and f) evolution of the average sliding velocity.
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(a)

(b) (c)

(d) (e)

Figure 5.21: Numerical results for case #3 of the 3D embedded simulation: a) pressure field
along a 6.5 mm (H) x 6.5 mm (W) x 120 mm (L) horizontal channel driven by airflow at
3.95 m s−1 (side view of drop-to-channel height ratio of ∼0.65), b) external pressure acting
on a water drop (Lagrangian domain), c) profile of sliding water drops on PTFE substrate
(top view), d) pressure evolution at the inlet of the channel, and e) evolution of the average
sliding velocity.
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(a)

(b)

Figure 5.22: Numerical parametric analysis for different values of inlet air velocity (vin): (a)
inlet air velocity vs pressure drop along the channel (in the presence of the drop) and (b) inlet
air velocity vs average sliding velocity of the drop.
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(a)

(b) (c)

(d)

Figure 5.23: Numerical profiles of water drops on PTFE substrate: (a) initial drop configura-
tion, (b) sliding profile for case #1, (c) sliding profile for case #2, (d) sliding profile for case
#3.
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5.11 Conclusion

This chapter successfully demonstrated the ability of our Eulerian-PFEM model to

simulate two-phase flow of drops embedded in gas channels. The Eulerian model was vali-

dated first using an approximate analytical analysis. Following this analysis, the embedded

formulation was validated using experimental data performed by the UC Berkeley group.

Our model was first examined in 2D. Simulation results were compared with two

micro drop injection experiments for water on kapton (hydrophilic) and PTFE (hydrophobic)

substrates. The model was able to predict the type of water formation inside the gas channel.

Drop detachment was also successfully reproduced for a specific drop-to-channel height ratio

(Figs. 5.9-5.11). Though the 2D model produces good qualitative outcomes and within the

same order of magnitude of the experimental data, it neglects out-of-plane forces. Thus, we

found numerically predicted pressure drop and drop sliding speed under predicted by a factor

of about 3.

We extended the 2D Eulerian-PFEM model to 3D. The model was examined using

two experiments for drop sliding at different inlet airflow rates and drop-to-channel height

ratios. Numerical results of the drop profiles and average sliding velocities were found to

be in good agreement with the experimental data. Our simulations showed that both airflow

and drop-to-channel height ratio play major roles in drop sliding dynamics: smaller drops

require higher inlet airflow rates to detach. It is worth mentioning that the GDL in real fuel

cells is a porous media made with carbon fibers. Hence, the effect of surface roughness and

porosity should be considered and included into the model for tracking the spatio-temporal

evolution of the liquid drops/films along the GDL channel.

We demonstrated the effect of the Reynolds number on the proposed embedded, two-

phase flow. In our Eulerian simulation, without considering the Lagrangian domain, laminar

flow can be maintained for Re of up to 3250. However, the existence of the drop disturbs

the flow, causing a transitional flow regime. This flow regime randomly switches between

laminar and turbulent flows. Turbulent flow regime is highly nonlinear, stochastic, and irre-

versible. Thus, our two-phase flow model should be restricted to the practical laminar flow

criteria of Re < 2300 for accurate prediction of the gas flow behavior inside the channel.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Predicting the motion of liquid drops on partially wetting surfaces is of significant

importance in countless natural and industrial applications. In this dissertation, we intro-

duced novel techniques to simulate the spatio-temporal evolution of liquid drops in a motion

on partially-wettable substrates and in a variety of physical conditions. We successfully de-

veloped a PFEM model for the prediction of drop dynamics in single-phase and in embedded

two-phase flow, both in 2D and 3D. Our proposed drop dynamics model produced physically

acceptable and mesh-independent spatio-temporal evolution of drop spreading and sliding

under the effect of gravity and/or external gas flow.

For surface tension and moving contact line problems, drop dynamic models face the

following challenges: i) the precise tracking of the free-surface deformation, ii) the mathe-

matical and numerical treatment of the moving contact lines, and iii) the producing of mesh-

independent solutions. The first difficulty has been resolved by Jarauta et al. [114]. This

dissertation addressed the remaining challenges. We first studied the physical phenomena

underlying drop dynamics. Accordingly, we identified the interaction forces between a drop

and its surrounding. We then modeled each phenomenon by taking advantage of the PFEM

Lagrangian scheme.

We presented the fundamental physical effects governing all drop spreading or slid-

ing motions, namely, surface tension, surface forces under partial wetting conditions and

gravity. Surface tension is a consequence of the cohesion between liquid molecules. It

is expressed in terms of the Young-Laplace equation. Partial wetting phenomenon reflects

solid-liquid-vapor interactions along the contact line. Drop spreading is caused by capillary
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action, associated with the motion of the contact line (adhesive force) and the deformation

of the free-surface (cohesive force). Under the effect of gravitational and/or external shear

forces, the sliding motion of a liquid drop is associated with the surface forces acting on

the contact line, opposing the external forcing field. In this work, we adopted the empirical

concept of the retention force.

Many numerical models have been developed in the past for the prediction of the fluid

flow. Among the widely used numerical approaches, we adopt the Lagrangian approach to

perform hydrodynamic simulations of liquid drops. More specifically, we took advantage

of the Particle Finite Element Method (PFEM) for its ability to precisely simulate the fluid

boundaries. In the next sections, we summarize the novelty and the main achievements of

our work.

6.2 Drop spreading dynamics

Identifying and imposing the physical interaction forces between liquids and solid

substrates is one of the key factors to obtain a reliable drop spreading model. Classical

Navier-Stokes equations cannot allow for the contact line motion of a liquid drop on a no-

slip substrate. On one hand, the no-slip condition leads to nonphysical energy dissipation

and mathematical singularity known as “Huh and Scriven’s paradox”. On the other hand,

the free-slip condition, i.e., the no-penetration condition whereby the tangential component

of the fluid velocity vector is unrestricted, leads to non-realistic velocity and contact angle

temporal evolution. We implemented boundary conditions that resulted in physically accept-

able and mesh-independent solutions. These boundary conditions include the effect of the

capillary force and the normal and tangential viscous forces, both acting at the contact line,

and the Navier-slip condition at the liquid-solid interface.

First, we developed a 2D PFEM based model for liquid drop spreading, using an

updated Lagrangian framework. We introduced the physical model, FEM discretization,

and solution strategies. The monolithic approach was adopted to solve for both velocity

and pressure fields simultaneously. Algebraic Sub-Grid Scales (ASGS) stabilization method
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is used to ensure numerical stability. Also, we devised mesh size and time step criteria

associated with the wavelength of the capillary wave propagation at the contact line.

Detailed mesh dependence study was performed to examine the effect of our pro-

posed boundary conditions on the spatio-temporal evolution on a spreading drop. We found

that our model produces mesh-independent solutions. The model was then successfully val-

idated experimentally on a variety of liquids and substrates, such as a water drop spreading

on a hydrophobic Triethoxysilane substrate or on an omniphilic silica substrate. We were

able to capture both the early spreading inertial regime and the inertial to viscous transition

regimes.

The 2D model was compared with sessile-drop injection experiments, performed by

the UC Berkeley and U Alberta Energy Systems Design Laboratory (ESDL) groups. To per-

form the injection simulation in 2D, we normalized the inlet injection rate by a factor of∼ 3.

The contact angle evolution obtained numerically was validated for each case. As the vol-

ume of the drop increased, however, the numerical profiles were found to have a discrepancy

with the experimental data. This was most likely due to the fact that an axisymmetric drop

geometry cannot be properly modeled in a 2D Cartesian coordinate system.

6.3 Drop sliding dynamics

Our 2D spreading model was extended to the case of liquid drops sliding down an

inclined substrate under the effect of gravity. The liquid sliding model included the effect of

a retention force accounted with i) the aspect ratio of the drop footprint, associated with the

shape factor parameter k, ii) surface tension force, and iii) contact angle hysteresis.

The extended model was validated using six different experimental scenarios of slid-

ing drops on inclined substrates, under a variety of wettability conditions. The first two ex-

periments were for two ethylene glycol drops, of the same volume, sliding on an omniphilic

polycarbonate substrate at different inclination angles. The third and fourth scenarios were

for water drops, of different volumes, sliding on a hydrophobic PTFE substrate at the same

inclination angle. The fifth case was for a water drop sliding on a hydrophilic PMMA sub-

strate with time-varying inclination. The last validation was for a viscous Newtonian drop
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sliding on an omniphilic smooth glass.

Using published experimental results, different values of the parameter k were chosen

for each solid/liquid pair. With adequate choices of the parameter k, and by scaling the

retention force along the contact line by a factor of π , both steady-state velocity and drop

profiles were found to be in good agreement with the experiments. Similar to the drop

spreading dynamic model, we performed a mesh dependency analysis and found that our

choice of boundary conditions alleviates the mesh-dependency of the solution.

Parametric study was performed to examine the effect of the shape factor k on the

steady-state velocity. Our simulations demonstrated that the steady-state velocity of a sliding

liquid drop is inversely proportional to the scaled parameter k/π . The need of scaling the

retention force indicated that the 2D model is inherently flawed, i.e., it neither able to account

for out-of-plane forces nor to replicate the full shape of a sliding drop.

2D rolling drop simulations were performed and validated. The rolling model was

equipped with no-slip boundary condition at the solid-liquid interface, ignoring the effect

of the retention force. The numerical results of the descent rolling velocities for two small

viscous glycerol drops, of different volumes, were obtained. The numerical results were

found to be in very good agreement with the experimental data. The relative error, however,

increased proportionally to the volume of the drop.

6.4 3D drop dynamic model

Our 2D drop dynamic, single-phase, model was successfully extended to 3D. Our

main contribution was the numerical treatment of both the contact line perimeter and the

wetting area of the solid-liquid interface. We validated the extended model using experimen-

tal results obtained from the published literature, under a wide variety of liquid properties

and wettability conditions.

The results showed that the 3D model was more accurate than the 2D. The spatio-

temporal evolution of the contact line were found to be in very good agreement with the

experiments. Our results demonstrated the success of our proposed 3D model in replicating

the shape of the drops and in accounting for out-of-plane forces.
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6.5 Embedded, two-phase, flow model

In the this dissertation, we demonstrated the advantages of the embedded Eulerian-

PFEM two-phase flow formulation in the analysis of gas-liquid interaction problems. We

adopted the PFEM scheme to model the liquid phase while adopting the Eulerian scheme

to model the gas phase. In addition to controlling the computation cost, this combination

allows for i) precise simulation of the liquid domain boundaries and ii) accurate computation

of the changes of material properties across the gas-liquid interface.

The single-phase PFEM-based drop dynamics model was further extended for two-

phase flow both in 2D and 3D, where the embedded Eulerian-PFEM model was adopted.

We started by presenting the governing equations for the proposed embedded numerical

model, followed by the boundary and interface conditions. Both Dirichlet and Neumann

boundary conditions were applied at the interface. The finite element formulation for the

gas phases was introduced. The robust fractional step approach was used to solve for the

Eulerian system of equations, whereas the system of equations for liquid phases was solved

by the mass conservative monolithic approach. Consequently, both the coupling strategy and

solution algorithms were implemented.

We started our validation process on the Eulerian domain, both in 2D and 3D, by

comparing the pressure drop inside a rectangular channel with approximate analytical ex-

pression. The results of our proposed Eulerian model were found to be in good agreement

with the analytical solutions.

Taking advantage of the experimental work of the UC Berkeley and ESDL groups,

our 2D embedded formulation was successfully validated. Two experimental scenarios were

considered: i) injection of water drop on kapton substrate, and ii) injection of water drop

on PTFE substrate. In their experiment, water was injected at different flow rates from a

small conduit from the bottom of the channel. The injection process was captured using two

cameras, positioned perpendicular to each other.

Our injection simulation predicted film formation on kapton, whereas it predicted

drop detachment on the PTFE substrate. Both the water formation rate and the contact angle

evolution were found to be in a good match with the experiments. This study demonstrated
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the success of the proposed mathematical model, coupling strategy, and numerical results for

drop detachment analysis. However, full 3D simulations are still required to better take into

consideration the effect of the geometrical effects.

The proposed Eulerian-PFEM model was extended to 3D. The model was validated

using two experimental scenarios of different drop-to-channel height ratios and inlet airflow

rates. Both drop profiles and average sliding velocities matched the experimental data. Our

numerical results showed that the airflow rate required to eject a drop is inversely propor-

tional to the drop-to-channel height ratio, in agreement with the experiments.

The effect of the Reynolds number on the flow regime was also demonstrated. Our

numerical simulations showed that for a smooth pipe, with the absence of the drop, laminar

flows can be maintained for Reynolds numbers above 2300. The presence of the drop, how-

ever, causes a disturbance in the pressure field along the channel. Therefore, a transitional

flow regime, i.e., a mixture of laminar and turbulent flows, was observed. The treatment of

the high non-linearity and irreversibility of the turbulent flow regime has not been addressed

in our embedded model yet.

For all cases presented in Secs. 6.2-6.5, the advantage of the PFEM scheme was

amply illustrated, as it allowed to precisely simulate the evolution of the domain boundaries

in accordance with the computed velocity field.

6.6 Achievements and contributions

The work presented in this dissertation has led to the following publications and

presentations:

• Published article:

Elaf Mahrous, R. Valéry Roy, Alex Jarauta, and Marc Secanell. “A two-dimensional

numerical model for the sliding motion of liquid drops by the particle finite element

method.” Physics of Fluids, 33(3):032117, 2021.

• Published article:

Elaf Mahrous, Alex Jarauta, Thomas Chan, Pavel Ryzhakov, Adam Z. Weber, R.
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Valéry Roy, and Marc Secanell. “A particle finite element-based model for droplet

spreading analysis.” Physics of Fluids, 32(4):042106, 2020.

• Conference contribution:

Elaf Mahrous, R. Valéry Roy, Alex Jarauta, Marc Secanell, and Pavel Ryzhakov.

“Simulation of Droplet Spreading Dynamics by Particle Finite Element Method Based

Model and Hydrodynamic Lubrication.” In APS Division of Fluid Dynamics Meeting

Abstracts, pp. S21-003. 2019.

• Conference contribution:

Pavel Ryzhakov, Alex Jarauta, Elaf Mahrous, Jordi Pons, Marc Secanell, R. Valéry

Roy, J. Marti et al. “Advances in the Embedded Eulerian-PFEM Modeling of Multi-

phase Flows.” By Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE),

PFEM session, 2019.

• Conference contribution:

Alex Jarauta, Elaf Mahrous, Pavel Ryzhakov, Jordi Pons-Prats, and Marc Secanell. “A

transient two-phase flow model for droplets on substrates with moving contact lines.”

By Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), coupled Prob-

lems session, 2019.

• Numerical framework for physical modeling:

Pavel Ryzhakov, Alex Jarauta, Jordi Cotela, Elaf Mahrous. The author contributed in

developing the surface-tension model within Kratos Multi-Physics [182], a C++ object

oriented finite element open-source framework [57].

6.7 Future work

In this section, we propose seven promising areas for future work within the scope of

the PFEM framework developed in this dissertation.
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6.7.1 Rolling viscous drops simulations in 3D

Though the rolling model presented in Sec. 3.6 provides acceptable descent rolling

velocity of small viscous drops, it must be extended to 3D. The transition motion between

sliding and rolling should also be studied. Moreover, additional experimental work should

be considered for validating the transition regime.

6.7.2 Liquid injection simulations in 3D

For the 2D injection model, we enhanced the numerical treatment of free surface flow

with moving contact line by careful meshing strategies, so as to avoid element distortions

during the injection process. Performing 3D liquid injection simulations should be the object

of future work. Newly inserted nodes and elements must be carefully created to i) reflects

the correct value of the inserted mass and ii) accurately predicts the free-surface evolution.

6.7.3 Modeling heat transport

In the context of this dissertation, the proposed numerical model developed for fuel

cell channel flow can be further enhanced with additional heat and mass transfer effects.

Numerical simulation can be extended to predict optimal operating conditions of fuel cells

under different thermal conditions. Regarding evaporative cooling in wet cooling towers

(see Sec. 1.2.2), addition of heat transfer effects will play an important role in optimizing the

fill-zones design, where most of the heat transfer takes place.

The inclusion of thermal effects should be considered in the model. The main goal is

to obtain an optimal heat exchange rate between the two phases by:

• Predicting the pressure drops in the channel, which depends on water and air flow

rates.

• Estimating phase and temperature changes in the water, which depends on evaporation.

6.7.4 Effect of surface porosity

Our drop dynamics model was able to predict the spatio-temporal evolution of a mov-

ing drop on a smooth surface. Regarding PEMFCs applications, our model was able to
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predict i) the drop-to-channel height ratio at which a drop detaches and ii) the detachmen-

t/ejection velocity. The GDL used in real fuel cells, however, is made up of a macro porous

carbon fiber material. Therefore, the effect of surface porosity should be included in the

model for predicting the spatio-temporal evolution of the drop after its detachment.

6.7.5 Effect of transitional and turbulent flow regimes

For smooth pipes under ideal conditions, experiments show that laminar flows can

be maintained for Reynolds numbers (Re) of up to 100,000 [42]. Practically, a transitional

regime starts for a flow of Reynolds number greater than 2300. The effect of the transitional

flow regime on our embedded, two-phase, flow simulation was demonstrated in Sec. 5.9.

Disturbance in the pressure field of the channel was observed due to the presence of the

drop. Thus, our model is found to be restricted to laminar flow regime, i.e, Re < 2300. The

effect of higher values of Reynolds numbers should be included in the model to account for

both transitional and turbulent flow regimes.

6.7.6 Drop breakup and coalescence simulations

Drops, and rivulets, may breakup or coalesce in gas channels. Conducting a thorough

study on drop coalescence and breakup phenomena will further enhance the capability of our

proposed model.

6.7.7 Computational optimization

The remeshing requirement of the PFEM, at each time step, causes high computa-

tional cost. The computational cost can be minimized by enhancing the remeshing algo-

rithm of the existing meshing application (within Kratos Multi-Physics framework [182]).

In addition to the remeshing requirement, the monolithic scheme of the liquid domain (see

chapter 2) results in higher computational cost compared with other numerical schemes, such

as fractional step approach. The fractional step scheme, however, was found to be inefficient

for modeling drop dynamics [112]. An alternative numerical scheme to solve for the liquid

domain should be considered also to reduce the computational cost of our proposed model.
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Appendix A

DELAUNAY TRIANGULATION AND ALPHA SHAPE METHOD

In the PFEM scheme, the initial configuration of the domain consists of mesh nodes

treated as particles. Mathematical information and physical quantities are assigned to each

node. The finite element mesh is generated and connected by a Delaunay triangulation/te-

trahedralization. Domain boundaries are identified by the alpha shape method. An updated

Lagrangian framework is used to solve the governing equations. This appendix elaborates on

the most unique feature of the PFEM scheme, which is the generation of the finite element

mesh. This includes both the Delaunay triangulation/tetrahedralization and the alpha shape

method. More details about the PFEM can be found in [55, 185, 187].

A.1 Delaunay triangulation/tetrahedsralization

Let mi to be a set of number of points, i.e., mesh nodes, of a given domain Ω (see

Fig. A.1(a) [55]). The division of the real plane Rn, where n ∈ {2,3}, into convex cells (Si)

close to each of mi is defined as Voronoı̈ diagram [55] (see Fig. A.2(a) [212]). The Voronoı̈

cell is closed for the internal domain and open at the boundaries.

The Delaunay triangulation/tetrahedsralization of mi points is the triangulation/tetra-

hedsralization process of connecting mi points whose Si cells share a common edge (see

Figs. A.1(b) and A.2 [55]). Vertices of the Delaunay triangulation/tetrahedsralization are

empty circumcircles/circumspheres, i.e, no points in the plane exist inside any triangle/tetra-

hedron circumcircle/circumsphere [55, 185].
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(a) (b)

(c)

Figure A.1: Schematic representation of: a) initial mesh nodes configuration, b) mesh con-
nectivity by Delaunay triangulation, and c) mesh nodes after implementing the alpha shape
method. Figures are reproduced from [55].
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(a) (b)

Figure A.2: Schematic representation of a) Voronoı̈ diagram, figure is reproduced from [212]
and b) Delaunay triangulation, figure is reproduced from [55].

A.2 Alpha shape method

Mesh connectivity is the main role of the Delaunay triangulation/tetrahedsralization.

However, the Delaunay triangulation/tetrahedsralization does not recover the domain bound-

aries (see Fig. A.1(b)). To do so, the alpha shape technique is implemented in our PFEM

scheme.

For a given domain Ω, let h represents the characteristic mesh size. Also, let α be

a predefined radius of the circumcircle/circumsphere generated by the Delaunay partition,

whereby the original Delaunay triangulation/tetrahedsralization is fully recovered when the

value of the parameter α goes to infinity [55, 185]. Accordingly, all mesh nodes on an

empty circle/sphere with a radius greater than αh are identified as boundary nodes, as shown

in Fig.A.1 [55]. All triangles/tetrahedrons associated with the boundary nodes are erased. In

practice, the parameter α takes the value of 1.3 and 1.5 in 2D and 3D, respectively [185].
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Appendix B

VISCOUS STRESS IMPLEMENTATION

This appendix introduces the viscous stress in 2D and 3D.

B.1 Viscous stress implementation in 2D

In two dimensions, the viscous stress tensor is given by [53, 112] :

τ =
( τxx τxy

τyx τyy

)
(B.1.1)

where

τxx = 2µ
∂u
∂x

(B.1.2)

τxy = τyx = µ

(
∂u
∂y

+
∂v
∂x

)
(B.1.3)

τyy = 2µ
∂v
∂y

(B.1.4)

and u is the velocity component in x direction, and v is the velocity component in y direction.

The following steps give the expression of the element velocity gradient:

• First we apply the chain rule as follows:

∂v
∂x

=
∂v
∂ξ

∂ξ

∂x
=

∂v
∂ξ

J−1 (B.1.5)
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where, ξ is the isoparametric coordinates (ξ ,η) of local coordinate system, and J is

the first derivative Jacobian matrix,

and the shape functions of the system coordinates are:

N1 = ξ (B.1.6)

N2 = η (B.1.7)

N3 = 1−η−ξ (B.1.8)

The global Cartesian coordinates (x,y) are obtained from the local isoparametric coor-

dinates as follows:

x = N1x1 +N2x2 +N3x3 = ξ x1 +ηx2 +(1−ξ −η)x3 = (x1− x3)ξ +(x2− x3)η + x3

(B.1.9)

y = N1y1 +N2y2 +N3y3 = ξ y1 +ηy2 +(1−ξ −η)y3 = (y1− y3)ξ +(y2− y3)η + y3

(B.1.10)

Hence, the Jacobian matrix is found to be:

J =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

=

x13 y13

x23 y23

 (B.1.11)

where, xi j = xi− x j. Now that Jacobian inverse is found to be:

J−1 =
1

2A

 y23 −y13

−x23 x13

 (B.1.12)
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where A is the area of the element such that A = 1
2detJ.

• Second, the velocity can be obtained at any particular location as follows:

u = N1u1+N2u2+N3u3 = ξ u1+ηu2+(1−ξ −η)u3 = (u1−u3)ξ +(u2−u3)η +u3

(B.1.13)

v = N1v1 +N2v2 +N3v3 = ξ v1 +ηv2 +(1−ξ −η)v3 = (v1− v3)ξ +(v2− v3)η + v3

(B.1.14)

Now, substituting equation eq. B.1.12 into equation eq. B.1.5 yields,

( ∂u
∂x
∂u
∂y

)
= J−1

( ∂u
∂ξ

∂u
∂η

)
=

1
2A

( y23u13 −y13u23

−x23u13 x13u23

)
(B.1.15)

( ∂v
∂x
∂v
∂y

)
= J−1

( ∂v
∂ξ

∂v
∂η

)
=

1
2A

( y23v13 −y13v23

−x23v13 x13v23

)
(B.1.16)

• Finally, the viscous stress discrete expression is governed by combining eqs. B.1.15

and B.1.16, into B.1.2, B.1.3, and B.1.4.

B.2 Viscous stress implementation in 3D

This section introduces the viscous stress in 3D. The viscous stress tensor in three

dimensions is given by [53, 112]:

τ =


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (B.2.1)
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whose components are given by:

τxx = 2µ
∂u
∂x

(B.2.2)

τxy = τyx = µ

(
∂u
∂y

+
∂v
∂x

)
(B.2.3)

τxz = τzx = µ

(
∂u
∂ z

+
∂w
∂x

)
(B.2.4)

τyy = 2µ
∂v
∂y

(B.2.5)

τyz = τzy = µ

(
∂v
∂ z

+
∂w
∂y

)
(B.2.6)

τzz = 2µ
∂w
∂ z

(B.2.7)

The velocity gradient can be found by applying the chain rule as follows:

∂v

∂x
=

∂v

∂ξ

∂ξ

∂x
=

∂v

∂ξ
J−1 (B.2.8)

where, ξ is the isoparametric coordinates (ξ ,η ,ζ ) which map local and global coordinates,

J is the first derivative Jacobian matrix,

and the shape functions of the system coordinates are:

N1 = ξ (B.2.9)

N2 = η (B.2.10)

202



N3 = ζ (B.2.11)

N4 = 1−η−ζ −ξ (B.2.12)

The Cartesian coordinates can be obtained using the following isoparametric coordi-

nates:

x = x1N1 + x2N2 + x3N3 + x4N4 = x4 + x14ξ + x24η + x34ζ (B.2.13)

and,

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
+

∂

∂ζ

∂ζ

∂x
(B.2.14)

Then,


∂

∂ξ

∂

∂η

∂

∂ζ

=


∂x
∂ξ

∂y
∂ξ

∂ z
∂ξ

∂x
∂η

∂y
∂η

∂ z
∂η

∂x
∂ζ

∂y
∂ζ

∂ z
∂ζ




∂

∂x
∂

∂y
∂

∂ z

 (B.2.15)

where,

[J] =


∂x
∂ξ

∂y
∂ξ

∂ z
∂ξ

∂x
∂η

∂y
∂η

∂ z
∂η

∂x
∂ζ

∂y
∂ζ

∂ z
∂ζ

=


x14 y14 z14

x24 y24 z24

x34 y34 z34

 (B.2.16)

and hence, the equations above yields:

{
∂

∂x

}
= [J−1]

{
∂

∂ξ

}
(B.2.17)
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Finally, we obtain [J−1], as follows:

J−1 =
1

det[J]


y24z34− y34z24 y34z14− y14z34 y14z24− y24z14

x34z24− x24z34 x14z34− x34z14 z14x24− x14z24

y34x24− x34y24 x34y14− y34x14 x14y24− x24y14

 (B.2.18)

where,

det[J] = x14[y24z34− y34z24]+ y14[z24x34− z34x24]+ z14[x24y34− x34y24] = 6V , and

V is the element volume, V = 1
6 det J,
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Appendix C

ELEMENTAL CONTRIBUTION TO MATRIX ENTRIES OF THE 2D LIQUID
DROP SLIDING MODEL

Eqs. 2.2.1, 2.2.2, 2.5.9-2.5.12, 3.2.5, 3.2.6, 3.3.1 and 3.3.2 are assembled using the

local matrices and vectors, with components defined as:

Mab = ρ

∫
ΩX

NaNb dΩX = ρ

∫
Ω

NaNbJ(X) dΩ (C1)

Lab =
∫

ΩX

∂Na

∂Xi

∂Nb

∂Xi
ΩX =

∫
Ω

∂Na

∂xi

∂Nb

∂xi
J(X) dΩ (C2)

Gab
i =−

∫
ΩX

∂Na

∂Xi
NbdΩX =−

∫
Ω

∂Na

∂xi
NbJ(X) dΩ (C3)

f a
i = ρ

∫
ΩX

NagidΩX = ρ

∫
Ω

NagiJ(X) dΩ (C4)

Dab
i =

∫
ΩX

Na ∂Nb

∂Xi
dΩX =

∫
Ω

Na ∂Nb

∂xi
J(X) dΩ (C5)

f a
st,i =−

∫
ΓI,X

γκNanidΓX =−
∫

ΓI

γκNaniJΓ(X) dΓ (C6)

f a
∂Γ,i =−

∫
∂ΓX

β∂ΓuiNad∂ΓX =−
∫

∂Γ

β∂ΓuiNaJΓ(X) d∂Γ (C7)

f a
ΓS,i =−

∫
ΓS,X

βΓSuiNadΓX =−
∫

ΓS

βΓSuiNaJΓ(X) dΓ (C8)

where Na represents the standard finite element shape function at node a, and the index i is

used for the spatial components. The model is based on the updated Lagrangian formula-

tion. The integration domains in eqs. (C1)-(C5), ΩX, represent to the updated configuration.

The Jacobian transformation is performed between the reference configuration, Ω, and the

updated one.
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Appendix D

SOLUTION ALGORITHM OF THE 2D LIQUID DROP SLIDING MODEL

Assuming the current configuration Xn, velocity v̄n, and pressure p̄n, are known at

time tn, the solution algorithm for updating the values of these variables at the next time step

is summarized in Algorithm 2.

Algorithm 2: Simulation algorithm of the liquid phase problem using a

PFEM formulation.

1 for t = tn+1 do

2 Current configuration is the known configuration, such that: Xk
n+1 = Xn;

3 for nonlinear iteration k do

4 Obtain curvature at Xk
n+1; Update discrete operators in eqs. (C1)-(C5);

5 Compute f a
st,i using eq. (C6),

6 Compute f a
∂Γ,i and f a

ΓS,i using eq. (C7) and eq. (C8), respectively;

7 Update both velocity and pressure, such that: v̄k+1
n+1 = v̄

k
n+1 +dv̄ and

p̄k+1
n+1 = p̄k

n+1 +d p̄, respectively;

8 Update configuration, such that: Xk+1
n+1 = Xk

n+1 +∆t ·dv̄;

9 Remesh;

10 end

11 Xn+1 = Xn +∆t · v̄n+1;

12 end
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Appendix E

GEOMETRY OF SPHERICAL DROPS

The equations which relate the volume and contact angle to the geometrical param-

eters of a drop in contact with an omniphilic or an omniphobic surface are presented here

(see references [78, 112] for more details). The initial shape of the drop is considered as i) a

spherical cap on an omniphilic substrate or ii) a spherical drop on an omniphobic substrate,

as shown in Fig.E.1(a) and E.1(b), respectively. This assumption might produce up to 15%

error when the gravitational force is considered for a drop size of the order of 10 µL [125].

i) Starting with a known liquid drop volume and equilibrium contact angle condition

of a spherical cap, the drop height (H), drop radius (R), and wetting radius (a) are obtained

using the following equations:

R =
( V

π

3 (2−3cosθ + cos3 θ)

) 1
3 (E1)

a = Rsinθ (E2)

H = R(1− cosθ) (E3)

ii) Starting with a known liquid drop volume and equilibrium contact angle condition,

the geometrical parameters of a spherical drop are obtained as follows:

R =
( V

4π

3 −
π

3 (1+ cosθ)2(2− cosθ)

) 1
3 (E4)

H̄ =−Rcosθ (E5)
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(a) (b)

Figure E.1: Geometrical parameters of a drop (a) on an omniphilic substrate and (b) on an
omniphobic substrate.
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Appendix F

ELEMENTAL CONTRIBUTION TO MATRIX ENTRIES OF THE 3D
LAGRANGIAN MODEL

Eqs. 4.2.26, 4.2.27, 4.2.22, and 4.2.15 are assembled using the local matrices and

vectors, with components defined as:

Mab = ρ

∫
ΩX

NaNb dΩX = ρ

∫
Ω

NaNbJ(X) dΩ (F1)

Lab =
∫

ΩX

∂Na

∂Xi

∂Nb

∂Xi
ΩX =

∫
Ω

∂Na

∂xi

∂Nb

∂xi
J(X) dΩ (F2)

Gab
i =−

∫
ΩX

∂Na

∂Xi
NbdΩX =−

∫
Ω

∂Na

∂xi
NbJ(X) dΩ (F3)

f a
i = ρ

∫
ΩX

NagidΩX = ρ

∫
Ω

NagiJ(X) dΩ (F4)

Dab
i =

∫
ΩX

Na ∂Nb

∂Xi
dΩX =

∫
Ω

Na ∂Nb

∂xi
J(X) dΩ (F5)

f a
st,i =−

∫
ΓI,X

γκNanidΓX =−
∫

ΓI

γκNaniJΓ(X) dΓ (F6)

f a
∂Γ,i =−

∫
∂ΓX

β∂Γv ·
(
v · (ex +ey)

)
i
Nad∂ΓX =−

∫
∂Γ

β∂Γ

(
v · (ex +ey)

)
i
NaJΓ(X) d∂Γ

(F7)

f a
ΓS,i =−

∫
ΓS,X

βΓs

(
v · (ex +ey)

)
i
NadΓX =−

∫
ΓS

βΓs

(
v · (ex +ey)

)
i
NaJΓ(X) dΓ (F8)

where Na represents the standard finite element shape function at node a, and the index i

is used for the spatial components. The present model is based on the updated Lagrangian

formulation (ULF), and therefore the integration domains in eqs. (F1)-(F5), ΩX, correspond

to the updated configuration. The transformation between the reference configuration, Ω,

and the updated one is performed using the Jacobians J(X) and JΓ(X).
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Appendix G

SOLUTION ALGORITHM OF THE 3D LAGRANGIAN MODEL

Given a known configuration Xn, velocity v̄n, and pressure p̄n, at time tn, the proce-

dure for obtaining the values of these variables at the next time step tn+1 is summarized in

Algorithm 3.

Algorithm 3: Simulation algorithm of the liquid phase problem using a
PFEM formulation.

1 for t = tn+1 do
2 Current configuration is the known configuration, such that: Xk

n+1 = Xn;
3 for nonlinear iteration k do
4 Obtain curvature at Xk

n+1;
5 Update discrete operators in eqs. (F1)-(F5);
6 Compute f a

st,i, f a
∂Γ,i, and f a

ΓS,i using eq. (F6), eq. (F7), and eq. (F8),
respectively;

7 Solve system of equations for liquid phase, eq. (4.2.30);
8 Update both velocity and pressure, such that: v̄k+1

n+1 = v̄
k
n+1 +δ v̄ and

p̄k+1
n+1 = p̄k

n+1 +δ p̄, respectively;
9 Update configuration, such that: Xk+1

n+1 = Xk
n+1 +∆t ·δ v̄;

10 Remesh;
11 end
12 Xn+1 = Xn +∆t · v̄n+1;
13 end
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Appendix H

PERMISSION

The author has the publisher’s permission to include the following published articles

in this dissertation (see Fig. H.1):

• The main concepts, figures, and outcomes of chapter 2 are reproduced from [Elaf

Mahrous, Alex Jarauta, Thomas Chan, Pavel Ryzhakov, Adam Z Weber, R Valéry

Roy, and Marc Secanell. A particle finite element-based model for droplet spreading

analysis. Physics of Fluids, 32(4):042106, 2020.], with the permission of AIP Pub-

lishing. “https://aip.scitation.org/doi/abs/10.1063/5.0006033”.

• The main concepts, figures, and outcomes of chapter 3 are reproduced from [Elaf

Mahrous, R Valéry Roy, Alex Jarauta, and Marc Secanell. A two-dimensional nu-

merical model for the sliding motion of liquid drops by the particle finite element

method. Physics of Fluids, 33(3):032117, 2021.], with the permission of AIP Publish-

ing. “https://aip.scitation.org/doi/10.1063/5.0039517”.

More information about the publisher’s regulation can be found in the link below:

“https://publishing.aip.org/resources/researchers/rights-and-permissions/permissions/”.
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Figure H.1: Permission to include the published articles in this dissertation.
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