
1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

A Bifactor Approximation Algorithm for Cloudlet
Placement in Edge Computing

Dixit Bhatta, Student Member, IEEE, Lena Mashayekhy, Senior Member, IEEE

Abstract—Emerging applications with low-latency requirements such as real-time analytics, immersive media applications, and
intelligent virtual assistants have rendered Edge Computing as a critical computing infrastructure. Existing studies have explored the
cloudlet placement problem in a homogeneous scenario with different goals such as latency minimization, load balancing, energy
efficiency, and placement cost minimization. However, placing cloudlets in a highly heterogeneous deployment scenario considering
the next-generation 5G networks and IoT applications is still an open challenge. The novel requirements of these applications indicate
that there is still a gap in ensuring low-latency service guarantees when deploying cloudlets. Furthermore, deploying cloudlets in a
cost-effective manner and ensuring full coverage for all users in edge computing are other critical conflicting issues. In this paper, we
address these issues by designing a bifactor approximation algorithm to solve the heterogeneous cloudlet placement problem to
guarantee a bounded latency and placement cost, while fully mapping user applications to appropriate cloudlets. We first formulate the
problem as a multi-objective integer programming model and show that it is a computationally NP-hard problem. We then propose a
bifactor approximation algorithm, ACP, to tackle its intractability. We investigate the effectiveness of ACP by performing extensive
theoretical analysis and experiments on multiple deployment scenarios based on New York City OpenData. We prove that ACP
provides a (2,4)-approximation ratio for the latency and the placement cost. The experimental results show that ACP obtains
near-optimal results in a polynomial running time making it suitable for both short-term and long-term cloudlet placement in
heterogeneous deployment scenarios.

Index Terms—edge computing; cloudlets; placement cost; latency; full coverage; approximation algorithm.

F

1 INTRODUCTION

THE advances in wireless network technologies and com-
putational capabilities of smart connected devices have

now made it possible to use many novel and sophisticated
applications not feasible before. Domains such as healthcare,
connected vehicles, and smart cities have generally been
beneficiaries of this innovation and so have contemporary
applications like live streaming on social media apps and
games on virtual reality headsets [1]. Despite massive im-
provements in mobile hardware capabilities over past few
years, it is still a challenge to run computation and data-
intensive applications on mobile devices since they are re-
stricted by weight, size, battery life, and heat dissipation [2].
These restrictions impose limitations on processing power,
memory, and storage capacities of these devices.

Edge computing is a relatively new computing paradigm
that provides a distributed computing solution at the edge
of the network. As such, mobile users are able to consume
the computing resources in their vicinity. These resource-
rich components placed closer to the users are called
“Cloudlets” or “micro data centers” [3], [4]. The mobile
devices can offload their resource-intensive applications to
cloudlets to augment their resources while experiencing
significantly reduced latency compared to the conventional
cloud [5], [6]. Since cloudlets are geo-distributed, a challenge
lies in strategically placing them in an area to reduce the
placement cost while providing low-latency edge services.

D. Bhatta and L. Mashayekhy are with the Department of Computer and
Information Sciences, University of Delaware, Newark, DE, USA 19716
Email: dixit@udel.edu, mlena@udel.edu

Despite existing research literature in cloudlet placement
in edge computing, very few view the problem from the
heterogeneous perspective and evolving needs of the next-
generation 5G networks and IoT applications. As we move
into 5G networks, presence of micro network operators
(MNOs), smaller cell towers, and short-range millimeter
wave communication lead to a highly localized and hetero-
geneous deployment environment [7]. Cloudlet placement
is at the core of providing ultra-low latency services by the
likes of Verizon Inc. with their 5G Edge service [8]. Ensuring
consistent low-latency across the region and providing full
coverage to all users is computationally and economically
expensive in such scenarios. Therefore, many factors such as
cost, latency, capacity, and coverage must be considered for
heterogeneous cloudlet placement. One-track approach to
optimize only one of these objectives, persistently presented
by multiple studies, is very limited in heterogeneous real
world scenarios. As a result, they fall short of addressing all
the practical aspects of the cloudlet placement problem.

In this paper, we address the placement challenges com-
prehensively by designing a bicriteria approximation algo-
rithm. Our goal is to deploy cloudlets with heterogeneous
capacities and coverage radius in a region to provide edge
services to heterogeneous devices in order to guarantee
bounded service latency, placement cost, and full coverage.
We formulate a thorough representation of the optimal
heterogeneous cloudlet placement problem as an Integer
Program (IP).

The cloudlet placement problem is NP-hard as we prove
that the decision version of the problem is NP-complete (see
Theorem 1). For any NP-hard problem, it is not possible to
design algorithms that can simultaneously achieve optimal

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

results in polynomial time and for all instances of the
problem [9]. When designing a solution for such problems,
we must choose any two out of these three properties.
Designing either a meta-heuristic approach or an approx-
imation algorithm is an effective way to solve such hard
problems. While a fast converging meta-heuristic approach
is useful, one of the major limitations of such approaches is
the apparent lack of guarantees on its solutions.

An approximation algorithm is a stronger notion where
we can formally claim that our proposed approximate
cloudlet placement (ACP) always results in near-optimal
solution, with simultaneously guaranteed theoretical upper-
bounds on both latency and cost, and ensures full device
coverage and consistent performance over all instances.
We use the linear programming (LP) relaxation of our IP
formulation to design ACP as a “bifactor” approximation
algorithm, i.e., it provides separate worst-case bounds for
the two objectives. Having a bifactor approximation allows
us to isolate and independently analyze the worst-case sce-
nario for each objective instead of the overall approximation
of their linear combination.

We perform extensive theoretical analysis and several
experiments to show the effectiveness of ACP in finding
approximate solutions in polynomial time for different de-
ployment scenarios. We prove that ACP provides a (2,4)-
approximation ratio for the latency and the placement
cost, while providing full coverage. Our experiments are
designed based on real data containing the latest WiFi
hotspot locations and usage statistics obtained from NYC
OpenData [10], provided by NSF COSMOS [11]. The results
show that ACP efficiently finds near-optimal solutions in
these real world-based scenarios.

1.1 Related Work

We have divided our related work section into two cate-
gories: classical placement problem approaches and edge
computing placement approaches.

1.1.1 Classical Placement Problem Approaches
The classical approaches to tackle the placement problems
include approaches for facility location problems, cluster-
ing problems, and assignment problems. The most studied
among them is the metric uncapacitated facility location
problem. Multiple studies [12]–[16] have proposed approx-
imation algorithms for this problem. Byrka and Aardal [15]
provided a bifactor approximation algorithm for the facility
cost and the connection cost, which are analogous to our
placement costs and latency. However, there are no capacity
constraints. Mahdian et al. [12] additionally provided a 2-
approximation algorithm for the soft-capacitated version of
the problem. However, capacity is a hard constraint in our
problem. Thus, these approaches are not directly applicable
to our problem.

For capacitated k-facility location problem, Aardal et
al. [17] provided a (7 + ε) approximation algorithm for uni-
form opening costs and non-uniform capacities by placing
at most 2k facilities. However, as full coverage service is
significantly important in edge computing, it is not known
that k cloudlets will suffice in any scenario. Also, the costs
depend on multiple parameters such as the capacity of a

cloudlet and coverage radius. General clustering approaches
such as k-means and k-medoids do not apply well to our
problem for the same reasons. Raghavan et al. [18] did the
first study to formulate integer programming models for
capacitated mobile facility location problem. They provided
algorithms to find fractional LP solutions and an LP round-
ing heuristic that works well with homogeneous facilities.
However, the heuristic is not guaranteed to terminate with
a feasible integer solution.

Lin and Vitter [19] is a useful study since they provided
important assignment properties for an LP-based approx-
imation algorithm for finding geometric means. Efficient
approximation algorithms are available for Generalized As-
signment Problems as presented in studies such as [20], [21]
which have hard capacity constraints. However, they are
more suitable for task assignment with profit maximization.

1.1.2 Edge Computing Placement Approaches
Multiple clustering-based approaches have been proposed
to place cloudlets. Kang et al. [22] used a greedy geographic
clustering approach to balance workload and collaborative
scheduling to reduce access delay. Jia et al. [23] proposed
density-based clustering and k-means clustering of users
to minimize response time. Zhang et al. [24] focused on
reducing latency by greedily selecting cloudlets with min-
imum distance to the center of the user cluster. However,
none of them consider placement costs and heterogeneity of
cloudlets in their approach. Furthermore, a cloudlet is most
often placed at the centroid of each cluster of users. This
is unlike real world where the connectivity requirements of
the users must be met individually.

Further greedy approaches include Zeng et al. [25],
who proposed a greedy-based algorithm that minimizes the
number of cloudlets to be placed considering latency re-
quirements. A greedy heuristic approach is proposed in [26]
to reduce access delay for users served from nearby access
points. Li et al. [27] proposed energy-aware placement of
cloudlets using swarm optimization, while assuming users
are mapped to cloudlets through base stations. Yao et al. [28]
presented a greedy approach with heterogeneous cloudlets
and placement costs. However, they consider user coverage
in terms of probability of user contact with access points.
Only the last study directly considers the placement cost
and none of these studies consider full coverage of individ-
ual users.

Other approaches include Wang et al. [29] proposing a
binary-based differential evolution cuckoo search (BDECS)
algorithm. They emphasize on deployment of cloudlets
based on cost and latency for Internet of Things (IoT) sce-
nario. However, they consider fixed placement cost ignoring
heterogeneity. Fan and Ansari [30] proposed a Lagrangian
heuristic algorithm for cost aware placement to obtain sub-
optimal solutions. Their approach only indirectly addresses
cloudlet heterogeneity and lacks device heterogeneity en-
tirely. Mondal et al. [31] proposed a hybrid cost-optimization
framework for optimal cloudlet placement specifically for
three-tier fiber wireless network topology. However, they
only proposed a mixed integer non-linear programming
model as their solution. Another study [32] investigates
deployment of edge servers cost-effectively so that the col-
lective area of edge servers is maximized. Their focus is

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

TABLE 1: Comparison with existing research

Study C
os

t
O

bj
.

La
te

nc
y

O
bj

.

H
et

.C
lo

ud
le

ts

H
et

.D
ev

ic
es

C
ap

ac
it

y
C

on
st

.

R
ea

l
D

at
as

et

Fu
ll

C
ov

er
ag

e

A
pp

ro
xi

m
at

io
n

Kang et al. [22] X X
Zhang et al. [24] X
Zeng et al. [25] X X
Xu et al. [26] X X X X
Li et al. [27] X
Yao et al. [28] X X X
Wang et al. [29] X X
Fan and Ansari [30] X X X
Mondal et al. [31] X X X
Wang et al. [32] X
Wang et al. [33] X X X
Guo et al. [34] X X X
Ma et al. [35] X
Meng et al. [36] X X X X X

Our Study X X X X X X X X

primarily on maximizing coverage at a reduced placement
cost.

Wang et al. [33] used Mixed Integer Programming (MIP)
to find K locations to place edge servers. Their approach
uses CPLEX, an optimization solver, to get results. The work
has been extended in [34] by combining K-means clustering
and MIP. The placed servers are still homogeneous. Ma et
al. [35] used Particle Swarm Optimization (PSO) to place K
cloudlets at K access points (APs) to reduce access delay.
Like most other studies, they lack capacity considerations,
placement costs, and heterogeneity.

There have been a few studies that provide approx-
imation algorithms for the cloudlet placement problem.
Meng et al. [36] use direct reduction of capacitated k-facility
placement problem [17] to their problem formulation to
provide a (7 + ε) approximation bound. This is the best
bound provided by them which assumes placement of up
to 2k cloudlets with identical capacities. Xu et al. [26], which
we already discussed under greedy approaches, have also
provided an approximation algorithm with a bound of 16(
1 + ε) on average access delay.

As summarized in Table 1, none of these studies provide
approximate solutions with worst-case performance guar-
antees on both the placement cost and the latency. Moreover,
they do not investigate heterogeneous deployment. Another
point to consider is that the experiments performed in these
studies are based on either synthetic or randomly generated
networks. Only a few studies have used scenarios based
on real datasets for their experiments (cellular base stations
data: [27], [33], [34], transportation network data: [23]).
Finally, none of these studies consider full mapping of
individual users or devices to cloudlets.

1.2 Organization

The rest of the paper is organized as follows. In Section 2,
we introduce the cloudlet placement problem and provide a

TABLE 2: Notations

Symbol Description

P set of candidate points
C set of cloudlets
E set of devices
ρk a candidate point in P
cj a cloudlet in C
ei a device in E
Πj ,Mj , Sj capacity parameters of cj
rj coverage radius of cj
πi,mi, si demand parameters of ei
λi coordinate location of ei
Φ(cj , ρk) or φjk cost of placing cj at ρk
L(ei, ρk) or lik latency between ei and ρk

mathematical optimization model. In Section 3, we present
our proposed LP-based approximation approach, ACP, in
detail. In Section 4, we evaluate the performance of ACP
by extensive experiments. In Section 5, we summarize our
results and present possible directions for future research.

2 CLOUDLET PLACEMENT PROBLEM

We aim to efficiently place cloudlets to specific locations in
a region to serve the demands of all the end devices (IoT)
that require edge services. We model the region as a two-
dimensional space (grid), where cloudlets and devices can
exist. The devices could be at any point in the space. On
the other hand, we assume only a set of candidate points
within the grid are available where the cloudlets can be
placed and the devices can be best served from. The can-
didate points are selected based on the load of user requests
and the location of user demands over a long period. The
determination of candidate points are also constrained by
technological and economic aspects such as available loca-
tions in the existing infrastructure, network bottlenecks, lack
of sufficient space, unavailable private property, and high
placement and operating expenses. The set of candidate
points is hence defined as P = {ρ1, ρ2, . . . , ρn}, where
each refers to a preselected, feasible placement location in
the grid (in coordinate axes).

A set of cloudlets is denoted by C = (c1, c2, . . . , cw). The
cloudlets are heterogeneous, and each cj ∈ C is represented
by a 4-tuple cj = {Πj , Mj , Sj , rj} denoting its attributes:
processor capacity Πj (in GHz), RAM Mj (in GB), storage
capacity Sj (in GB), and coverage radius rj (Euclidean
distance units). We define a distance function d(a, b) for
calculating the Euclidean distance between points a and b.
A set of heterogeneous devices requiring edge computing
services is denoted by E = (e1, e2, . . . , ev). Each ei ∈ E is
represented by a 4-tuple ei = {πi, mi, si, λi} denoting its
attributes, where πi is the processing demand (in GHz), mi

is its memory demand (in GB), si is its storage demand
(in GB), and λi represents the location of the device (in
coordinate axes).

The incurred cost of placing cloudlet cj ∈ C at a
candidate point ρk ∈ P on the grid is defined by a cost
function Φ(cj , ρk) (simply, φjk). The cost may include
procurement cost, space (rented, public) cost, and mainte-
nance costs as needed. We consider that the cost function
is linearly correlated with cloudlet capacities and coverage

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

radius. While our approach is applicable for a non-linear
cost function, we cannot theoretically bound the obtained
cost in that case (see Theorem 4).

Devices may experience delays in receiving their com-
puting services based on the availability of bandwidth and
distance metrics [37]. To capture that, we define a latency
function L(ei, ρk) (simply, lik) that represents the latency
when device ei ∈ E is served by a cloudlet placed at candi-
date point ρk ∈ P of the grid. We assume a homogeneous
bandwidth across the grid in our model. As a result, latency
is predominantly affected by distance. Well-known models
have shown that latency is logarithmically related with
distance in wireless networks, including 5G. Our model
supports any latency function increasing on distance.

Our goal is to simultaneously minimize the cost of de-
ploying heterogeneous cloudlets in the region and minimize
the latency in accessing edge services, while providing the
services to all devices (full coverage). This is a bicriteria
optimization problem and computationally NP-hard.

2.1 Optimal Cloudlet Placement
We now formulate the heterogeneous cloudlet placement
problem as a bicriteria optimization model. We define the
following decision variables:

yjk =

{
1 if cloudlet cj is placed at candidate point ρk,
0 otherwise,

and

aik =

{
1 if device ei is served from candidate point ρk,
0 otherwise.

We mathematically formulate the optimal cloudlet place-
ment (OCP) as an Integer Program (IP) as follows:{

Φ = min
∑w
j=1

∑n
k=1 φjk yjk

L = min
∑v
i=1

∑n
k=1 lik aik

(1)

Subject to:
w∑
j=1

n∑
k=1

yjk ≤ |C| (2)

d(λi, ρk)aik ≤
w∑
j=1

rjyjk ∀ei ∈ E , ρk ∈ P (3)

v∑
i=1

miaik ≤
w∑
j=1

Mjyjk ∀ρk ∈ P (4)

v∑
i=1

siaik ≤
w∑
j=1

Sjyjk ∀ρk ∈ P (5)

v∑
i=1

πiaik ≤
w∑
j=1

Πjyjk ∀ρk ∈ P (6)

aik ≤
w∑
j=1

yjk ∀ei ∈ E , ρk ∈ P (7)

w∑
j=1

yjk ≤ 1 ∀ρk ∈ P (8)

n∑
k=1

yjk ≤ 1 ∀cj ∈ C (9)

n∑
k=1

aik = 1 ∀ei ∈ E (10)

yjk ∈ {0, 1} ∀cj ∈ C, ρk ∈ P (11)
aik ∈ {0, 1} ∀ei ∈ E , ρk ∈ P (12)

The objective functions shown in Eq (1) minimize the total
cost of placing the cloudlets and the total latency suffered
by the devices. Constraint (2) ensures that the total number
of cloudlets placed in the grid does not exceed the num-
ber of available cloudlets. Constraints (3) guarantee that
each device must be within the coverage range of some
cloudlet. Constraints (4-6) satisfy supply and demand in
terms of memory, storage, and processing requirements.
Constraints (7) guarantee that a device can be served from
a candidate point only if at least one cloudlet is placed
there. Constraints (8) ensure that at most one cloudlet is
placed at any candidate point. Constraints (9) ensure that
a cloudlet can only be placed at a single candidate point.
Constraints (10) guarantee that all devices must be served,
and each is served from exactly one candidate point. Finally,
constraints (11-12) ensure the integrality requirements of the
decision variables.

OCP finds the optimal placement of the cloudlets min-
imizing both the placement cost and the service latency,
while guaranteeing full coverage. Our goal is to solve OCP
in the presence of trade-offs between these two conflicting
objectives. OCP can run equally well or better without
the full coverage constraint or a lower coverage (e.g. 90%)
threshold. However, our goal is to look into low-latency
edge services for all devices, where latency of connection to
the cloud is unbearable. The cost obtained is an appropriate
representation of the worst cost at the time of planning.
Next, using an example we show the ε-constraint method
and its limitations in solving our multi-objective problem.

2.2 Optimization Example

Figure 1a represents a scenario with 20 grid points, 7 can-
didate points, 25 devices, and 5 cloudlets to be placed such
that the optimization criteria of OCP are met. In this figure,
the candidate points are denoted by numbered circles with
their respective index. Likewise, low-demand devices are
represented by smartwatch icons, and high-demand devices
are shown as cellphone icons. For this example, the specifica-
tions of cloudlets and devices are provided in Table 3 and
Table 4, respectively.

TABLE 3: Specifications of Cloudlets

Type Πj Mj Sj rj φjk

Large 20 20 20 3 63
Medium 10 10 10 2 32
Small 5 5 5 1 16

TABLE 4: Specifications of Devices

Type πi mi si

High-Demand (Cellphone) 2 2 2
Low-Demand (Smartwatch) 1 1 1

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

(a) A Cloudlet Placement Scenario (b) Optimal Cost Placement (c) Optimal Latency Placement

Fig. 1: A Cloudlet Placement Scenario along with Single-objective Optimal Cloudlet Placement Solutions

In this example, among the 5 available cloudlets, 1 is
large, 3 are medium, and 1 is of small size, according to
their capacity and coverage radius factor.

We now use the ε-constraint method for solving our
multi-objective problem. In the ε-constraint method, we
optimize one of the objective functions and use the other
objective functions as constraints [38]. We use this approach
to find a set of Pareto-optimal solutions, where none of
the objective functions can be improved in value without
degrading the other objective value.

Minimizing Cost (OCP-Cost). Figure 1b shows the per-
spective of minimizing only the cost (i.e., latency objective
is ignored), while providing full coverage. In the figure,
the sizes of cloudlets are depicted by the radius around
the candidate point. The larger the radius, the larger is the
cloudlet placed at the candidate point. The devices can be
observed to be within the coverage of multiple cloudlets
but they are assigned optimally. The figure shows that only
three (2 medium, 1 large) cloudlets are placed to serve all
the devices, and the minimum cost is 127. However, this
solution does not lead to the minimum latency for the users
(the obtained latency is 48).

Minimizing Latency (OCP-Latency). Figure 1c depicts the
perspective of only minimizing the latency (i.e., cost is
relaxed), while providing full coverage. Unlike the solution
of OCP-Cost, the optimal solution of OCP-Latency consists
of all available cloudlets. The minimum latency is 22.

Cost-Latency Tradeoff. We now investigate how the Pareto-
optimal solutions behave when using the ε-constraint
method. Note that the other objective becomes an additional
constraint with different threshold values in OCP.

For our analysis, we use the latency value of OCP-Cost
solution as the initial threshold, which is an upper bound on

� �� �� �� ��
�
�����

�

��

��

��

���

���

���

���

�
��

�

	
����

�
�����
����

Fig. 2: Cost versus Latency Trade-off in OCP

latency in the added constraint. We then gradually decrease
the threshold value until there is no solution to OCP-Cost,
meaning that we reach the optimal solution of the latency
objective. This is shown in Figure 2. When the minimum
cost obtained by OCP-Cost is 127, the value of latency is 48,
but the best value of latency at this cost is 37 (see green “x”).
By adding a new hard constraint on latency (e.g., 25), the
best achievable cost increases to 145. If we further decrease
the latency constraint to 22 (optimal latency), the best cost
becomes 175 (see red “x”).

All of these suggest a clear trade-off between cost and
latency, and optimizing one does not give the best value
for the other. It is even more challenging when the problem
size is large since the trade-off range becomes even larger.
Therefore, approximation of any one objective is insufficient,
which is why we need to design a bifactor approximation
algorithm. We discuss our proposed approach to address
this challenge in the upcoming sections.

3 BIFACTOR APPROXIMATION OF CLOUDLET
PLACEMENT

We design a bifactor approximation algorithm for the
cloudlet placement problem as shown in Algorithm 1. The
algorithm, called ACP, uses linear programming (LP) relax-
ation of OCP as a guide to obtain a feasible solution and
to provide separate bounds on the total placement cost and
the total latency. To achieve this, ACP runs in three phases
(two parts): 1) filtering, 2) rounding (the first part), and 3)
supplementing (the second part).

ACP receives the set of candidate points, cloudlets
and users, and the cost and latency matrices as inputs.
It then solves LP-OCP-Cost() to obtain fractional solu-
tions y∗jk, a

∗
ik ∈ R≥0 (line 2). Two sets AC and AE are

defined to store the mappings of cloudlets and devices to
the candidate points, respectively (lines 3-4). Each set holds
a pair that shows such a mapping. Next, ACP calculates
the total fractional latency Di for each device ei ∈ E to all
candidate points and creates a set of nearby candidates Ni
such that Ni is the set of fractionally assigned (non-zero)
candidate points within 2Di of the device (line 5-7). This is
the “filtering” phase of the algorithm and has a property
that at least half of every device is assigned to candidates
in Ni of the device (see Lemma 2). ACP then creates a
skipped set S and a temporary unassigned devices set T .
ACP uses the temporary devices set to iteratively assign
devices to candidate points or skip them (lines 10-28).

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Algorithm 1 ACP: Approximate Cloudlet Placement

1: Input: C, E , P , Φ, L
2: (y∗jk, a

∗
ik)← LP-OCP-Cost()

3: AC = ∅ . cloudlet to candidate mapping
4: AE = ∅ . device to candidate mapping

/* Filtering */
5: for ei ∈ E do
6: Di =

∑
∀ρk∈P lik a

∗
ik . Fractional total latency

7: Ni ← All ρk ∈ P with a∗ik > 0 within 2Di of ei
8: S = ∅ . Set of skipped devices
9: T = E . Temporary set of devices

/* Rouding */
10: while |T | > 0 do
11: ei ← MaxD(T) . Device with the largest Di

12: ρi ← BestCandidate(ei) . Closest ρk ∈ Ni to ei
13: ci ← BestCloudlet(ei, ρi) . Selected cloudlet
14: if ci = ∅ then
15: S = S ∪ {ei}
16: else
17: AE = AE ∪ {(ei, ρi)}
18: AC = AC ∪ {(ci, ρi)}
19: Adjust remaining capacities of ci
20: Ei ← All ev ∈ E with ρi ∈ Nv . Extended set
21: while |Ei| > 0 do
22: ev ← MaxD(Ei) . Device with the largest Dv

23: if RangeCap(ev, ci) then
24: AE = AE ∪ {(ev, ρi)}
25: Adjust remaining capacities of ci
26: T = T \ {ev}
27: Ei = Ei \ {ev}
28: T = T \ {ei}

/* Supplementing */
29: for ei ∈ S do
30: (c∗i , ρ

∗
i)← BestFeasiblePair(ei, AC)

31: if (c∗i , ρ
∗
i) = ∅ then

32: (c∗i , ρ
∗
i)← UpgradeCloudlet(ρ∗i)

33: AC = AC ∪ {(c∗i , ρ∗i)}
34: AE = AE ∪ {(ei, ρ∗i)}
35: Adjust remaining capacities of c∗i
36: Calculate Φ̂, L̂

37: Output: AE , AC , Φ̂, L̂

In each iteration, MaxD() function takes the temporary
devices set T as an input and returns a device, ei, that has
the largest value of total fractional latency, Di (line 11).
This is to ensure the worst possible cases are handled
first, which simplifies the assignment problem as the algo-
rithm progresses. Next, ACP selects candidate point ρi from
set Ni that leads to the lowest latency for ei by calling the
BestCandidate(ei) function. Then, the best cloudlet is
selected using the BestCloudlet(ei, ρi) function, given
in Algorithm 2. If a cloudlet c∗i with sufficient capacity
and range is already placed at candidate point ρi (Alg. 2,
lines 3-4), c∗i is selected and returned as the best cloudlet ci.

Algorithm 2 BestCloudlet(ei, ρi)

1: ci ← ∅
2: if {(c∗i , ρi)} ∈ AC then . Cloudlet already exists
3: if RangeCap(ei, c∗i) then
4: ci ← c∗i

5: else
6: ci ← SmallestFeasibleCloudlet()

7: return ci

Otherwise, the smallest possible cloudlet that can cover the
device is selected to be placed at ρi (Alg. 2, lines 7-8). If
no such a cloudlet is found, i.e., BestCloudlet(ei, ρi) re-
turns null (∅), ACP simply skips the device by adding it to S
(lines 14-15). The skipped devices are handled in the second
part of the algorithm. The successful mappings of a cloudlet
to a candidate point and a device to a candidate point are
added to the respective solution sets AC and AE (lines 17-
18). The demands (processing, memory, and storage) of the
assigned device ei are then subtracted from the the capacity
of the selected cloudlet ci.

For every device with a successfully selected candidate
point and feasible cloudlet, ACP creates an extended neigh-
borhood set Ei containing all unassigned devices, ev ∈ T ,
that have candidate point ρi in their neighborhood set Nv
(line 20). ACP then assigns all devices in Ei that are within
the radius and capacity of cloudlet ci and removes them
from T (line 22-26). These devices are prioritized based
on the value of their total fractional latencies. Device ei
is finally removed from the temporary set (line 28). This
concludes the “rounding” phase, where the assignments are
finalized for all devices except the skipped devices kept in S.

The second part of the algorithm (lines 29-35) is for
all skipped devices added to S. Here, ACP assigns each
individual device ei to the best existing candidate-cloudlet
pair {c∗i , ρ∗i }. That is, the candidate point with the least la-
tency among the ones having feasible cloudlets for device ei
is chosen. If no feasible candidate-cloudlet pair is found for
the device, ACP then upgrades the cloudlet at the least-
latency candidate point ρ∗i so that it can meet the device’s
demand and cover it sufficiently (line 32). The upgrade
here is the addition of the capacity and radius equivalent
to the smallest cloudlet to the existing cloudlet. This is the
“supplementing” phase of ACP.

Once the mappings are completed for all devices, ACP
calculates the approximate cost (Φ̂) and the approximate
latency (L̂) based on the final mappings in AC and AE , re-
spectively (line 36). The algorithm terminates by displaying
the mapping sets and the approximate values (line 37).

ACP has two notable properties: the latency for a device
does not go beyond the initial 2Di bound since it is still
assigned within 2Di, and the upgraded cloudlets do not
increase the overall cost by more than the cost of filtering
and rounding. We prove both bounds in Theorem 3 and The-
orem 4, and demonstrate that ACP is a (2,4)-approximation
algorithm for the OCP problem.

ACP Properties. Our proposed algorithm always finds
a feasible solution with performance guarantees if
LP-OCP-Cost() has a feasible solution. Given the cloudlet

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

upgrades, ACP eventually covers all devices skipped due to
insufficient capacity or radius. We structure our algorithm
in this manner since checking if a feasible solution exists
for OCP is NP-complete. For that, we need to strictly know,
for every instance, if w cloudlets placed across n candidate
points are sufficient for covering v devices. We prove this
NP-completeness next.

Theorem 1. Checking feasibility of the OCP problem is NP-
complete.

Proof. Given an instance and a feasible solution of the OCP
problem, we can verify if all devices are covered by the de-
ployed cloudlets in polynomial time. It takes O(|E|) time to
check coverage for all devices. However, given an arbitrary
instance with w cloudlets, n candidate points, and v devices,
it is NP-complete to check if a feasible solution exists. We
prove this by reducing the Set Cover decision problem to
OCP and vice versa in polynomial time.
We first briefly explain the Set Cover problem. Given a
set of elements U ={1,2,...,u} called the universe and a
collection G of |G| sets whose union equals the universe,
the Set Cover decision problem is to identify whether there
is a sub-collection of G with k sets Gk ⊆ G whose union
equals the universe U [39]. The decision version of the set
cover problem is NP-complete.

For a given instance of the Set Cover decision problem,
we can always construct an equivalent instance of the OCP
problem. In doing so, we construct a collection of candidate
point-to-device assignments, then the universe is AE , which
equals to all assignments to cover the devices. Each device
is required to be covered by at least one cloudlet. For every
set (and their elements) in the collection set of set-cover G,
we construct a set of corresponding assignments in AE and
assume it is the set of assignments that can be covered by
deploying a cloudlet c on a candidate point ρ. Intuitively,
the union of all such sets equals to AE . The set of cloudlets
placed at the candidate points in AE to cover all devices is
hence AC .

We claim that there is a sub-collection of G with k sets,
whose union equals the universe, if and only if there exist k
candidate points to deploy cloudlets, which can cover all
devices. We illustrate the reduction using an example of
Set Cover decision problem with 4 elements {e1, ..., e4},
and OCP with 4 devices, 3 cloudlets, and 3 candidate
points (as shown in Figure 3). In the example, the sub-
collections of G are G1 = {e2, e1, e4}, G2 = {e2, e1}, and
G3 = {e3}. The minimum number of subsets whose union
equals the universe set is k = 2, with G1 and G3. Now,
in the corresponding OCP problem, {e3} can be covered
from ρ1, {e4, e1, e4} are the devices that can be covered
from ρ2 , and {e1, e2} can be covered from ρ3. Placing
cloudlets c1 and c2 on ρ1 and ρ2 respectively is suffi-
cient to cover all devices. Thus, the minimum number of
candidate points to deploy cloudlets is 2. The assignment
set is AE = {(ρ1, e3), (ρ2, e2), (ρ2, e1), (ρ2, e4)}, and the
cloudlet assignment set is AC = {(ρ1, c1), (ρ2, c2)}.

Conversely, if we can deploy cloudlets on k candidate
points to cover devices, then we can select corresponding k
sets from G. As all devices are covered, the union of the
sub-collection sets of G equals the universe. Therefore, since

Fig. 3: Reduction of Set Cover decision problem to OCP

the Set Cover decision problem is an NP-complete problem,
checking feasibility of the OCP problem is NP-complete.

To prove the bounds, we first need to prove the following
lemma.

Lemma 2. Using LP-OCP-Cost(), at least half of every de-
vice ei ∈ E is assigned to the candidate points in its neighborhood
set Ni.

Proof. We need to prove
∑
ρk∈Ni

a∗ik ≥ 1/2. Let Xi(β)
denote the subset of candidate points to which device ei is
fractionally assigned and are more than βDi latency from ei.
Therefore, Ni in our formulation is equivalent to remaining
candidate points to which ei is fractionally assigned, i.e.,
∀ρk /∈ Xi(β), where β = 2.

Let zik =
∑
ρk∈P a

∗
ik. We know that for any feasible

solution, zik = 1. Suppose if
∑
ρk∈Xi(β)

a∗ik >
zik
β . Then,

Di =
∑

ρk∈Xi(β)

lik a
∗
ik +

∑
ρk /∈Xi(β)

lik a
∗
ik

≥
∑

ρk∈Xi(β)

lik a
∗
ik

≥ βDi

∑
ρk∈Xi(β)

a∗ik

> βDi
zik
β

> Di

which is a contradiction. Therefore,
∑
ρk∈Xi(β)

a∗ik ≤
zik
β .

And by extension, we have:∑
ρk /∈Xi(β)

a∗ik ≥ zik(1− 1

β
) ≥ 1− 1

β

If we set β = 2, which is our condition for 2Di,∑
ρk /∈Xi(2)

a∗ik ≥ 1/2. This proves
∑
ρk∈Ni

a∗ik ≥ 1/2. In
other words, the sum of non-zero fractional assignments to
filtered candidate points in Ni is at least 1/2.

Theorem 3. ACP is a 2-approximation algorithm for latency
(L̂ ≤ 2L).

Proof. ACP begins by assigning device ei with the largestDi

to the closest candidate point ρi in its neighborhood set Ni
(within 2Di of ei). Any device selected using this criterion
is always assigned to a candidate point within 2Di.

Next, it builds an extended set for every candidate
point ρi selected above. The extended set contains all de-
vices ev ∈ E that have ρi in their respective neighborhood

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

set Nv . All devices that can be covered by cloudlet ci placed
at ρi are assigned to ρi. Since this ρi is inNv of any device ev
(by the definition of the extended set), all such devices are
within 2Dv from ρi.

Any skipped device ei ∈ S is assigned in the second
part of the algorithm. These devices are evaluated against
cloudlet-candidate point pairs established in the solution
setAC in the first part. An important observation here is that
the devices are skipped if and only if they were selected as
the initial device (in line 11) with the largest Di, i.e., they
are never skipped from an extended set. This means an
empty (null) cloudlet was returned by BestCloudlet()
function due to capacity or radius constraint. Since we
can upgrade the cloudlet when the BestFeasiblePair()
has insufficient capacity or radius, any cloudlet-candidate
pair assigned in the second part should be either in the
device’s Ni or not in Ni.

If it is in Ni, we know the latency is within 2Di. If
it is not in Ni, it means BestFeasiblePair(), which
always selects the candidate point with the least latency
among available, has found a candidate point with better
latency than the candidate points in Ni. So, the latency is
still within 2Di. Note that if no candidate point is feasible,
ACP will upgrade the cloudlet, and the latency will remain
in 2Di. Therefore, all skipped devices are within 2Di as well.
Mathematically, we have:

L̂ ≤
∑
ei∈E

2Di. (13)

We know that:

Di =
∑
ρk∈P

lik a
∗
ik (14)

Since all individual devices are within 2Di, the sum over all
devices is also within twice the value of LP latency, denoted
by L∗. ∑

ei∈E
Di ≤

∑
ρk∈P

∑
ei∈E

lik a
∗
ik∑

ei∈E
Di ≤ L∗

2
∑
ei∈E

Di ≤ 2L∗

L̂ ≤ 2L∗

Since the LP latency (L∗) is a lower-bound on the opti-
mal latency value of the OCP problem (L∗ ≤ L), ACP is a
2-approximation algorithm for latency (L̂ ≤ 2L).

Theorem 4. ACP is a 4-approximation algorithm for placement
cost (Φ̂ ≤ 4Φ).

Proof. We prove the placement cost bound for ACP using
properties of the LP-OCP-Cost() solution, linearity of the
cost function, and nature of the upgrades.

The solution of ACP is based on an important assign-
ment property, where for every device ei, at least half of
it is fractionally assigned to its neighborhood set Ni (see
Lemma 2). ∑

ρk∈Ni

a∗ik ≥ 1/2 (15)

As we start assigning devices to the candidate points in
their Ni and cloudlets to those candidate points, we round
the fractional a∗ik and y∗ik values to either 0 or 1 to ob-
tain the approximate assignments âik and ŷjk, respectively
(Alg 1, line 17-18). Since every device is assigned to exactly
one candidate point in ACP (also in OCP, constraint 12),
we have that the approximate device to cloudlet assign-
ment

∑
ρk∈Ni

âik = 1, ∀ei ∈ E . Combining with Eq (15),
this leads us to: ∑

ρk∈Ni

âik ≤ 2
∑
ρk∈Ni

a∗ik (16)

There is also a mathematical relationship between the
two decision variables based on constraint (7) of OCP. The
LP-Cost-OCP() solution must follow this constraint for a
feasible solution. Thus, we have:

a∗ik ≤
∑
cj∈C

y∗jk ∀ei ∈ E , ρk ∈ P (17)

Since the relation above is true for every candidate
point ρk ∈ P , it is true for sum over all ρk ∈ Ni. Thus,∑

ρk∈Ni

a∗ik ≤
∑
ρk∈Ni

∑
cj∈C

y∗jk ∀ei ∈ E (18)

Combining Eq (16) and (18), we get:∑
ρk∈Ni

âik ≤ 2
∑
ρk∈Ni

∑
cj∈C

y∗jk ∀ei ∈ E (19)

In ACP, exactly one cloudlet is placed at ρk to which a
device ei is assigned, and a device is assigned to exactly
one ρk, which gives us the relation:∑

cj∈C
ŷjk =

∑
ρk∈P

âik ∀ei ∈ E (20)

This equation implies that every device is served by a single
cloudlet uniquely placed at a candidate point.

Since
∑
cj∈C ŷjk is equal to the value of

∑
ρk∈P âik for

each device ei and from Eq (19), we have:∑
ρk∈Ni

∑
cj∈C

ŷjk ≤ 2
∑
ρk∈Ni

∑
cj∈C

y∗jk (21)

Having a linear cost function based on capacity and ra-
dius of the cloudlets, any change in the objective value (cost)
from LP-OCP-Cost() to ACP is linearly proportional to a
change in y∗jk values over all candidate points and cloudlets
(as seen in Eq 21). This is because no capacity other than
the cloudlets fractionally used in LP-OCP-Cost() is used
(only rounded) in the first part of ACP. The added capacity,
hence the added cost, only comes from the upgrades in the
second part of ACP. If the set of the upgrades (c+j) added
is L, the overall approximate cost is given by:

Φ̂ =
∑
cj∈C

∑
ρk∈Ni

φjkŷjk +
∑
c+j ∈L

∑
ρk∈Ni

φjkŷjk

From Lemma 5, the upgrades do not exceed the overall
placement cost of cloudlets placed in the first part of ACP.

Φ̂ ≤ 2
∑
cj∈C

∑
ρk∈Ni

φjkŷjk

As all candidate points not in Ni of devices are never
Accepted Manuscript

Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

chosen for placement, we can perform the above sum over
all candidate points in P , and using Eq (21) we have:

Φ̂ ≤ 2× 2
∑
j∈C

∑
k∈P

φjky
∗
jk

Φ̂ ≤ 4Φ∗

Since the LP cost (Φ∗) is a lower-bound on the cost value
of the optimal solution, ACP is a 4-approximation algorithm
for the placement cost (Φ̂ ≤ 4Φ).

Lemma 5. The upgrade cost does not exceed the cost of cloudlets
placed in the first part of ACP.

Proof. Based on Lemma 2, at least half-of each device ei
is assigned to the candidate points in their Ni by
LP-OCP-Cost(). Consequently, at least half of the device
demands are met by placing cloudlets in Ni. Since devices
are either assigned or skipped in the first part, the upgrades
need to meet at most the remaining half of the overall
demands. Hence, in the worst case, the overall capacity and
radius of the cloudlets have to be doubled by upgrading
them. Again, we know that each upgrade is no larger than
the size of the smallest cloudlet. If only smallest cloudlets
are being used to cover the demands, it leads to the least
possible cost for that demand since cloudlet placement is
binary (either place whole cloudlet or none). This is at worst
as costly as the placements in the first part. Therefore, the
worst cost of upgrades does not exceed the cost of the first
part of ACP.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup
As much as we have theoretically demonstrated the per-
formance guarantees of our approach, the practical sce-
narios where the approach needs to be implemented can
be different from the extreme cases we analyzed in the
proofs. Thus, we perform an extensive set of experiments
to investigate the effectiveness of ACP. For our deployment
scenarios, we use the five boroughs of New York City as
it has been selected by National Science Foundation (NSF)
as a testbed for the new wave of mobile technology [11],
[40]. Also, the presence of NYC Open Data [10] allows us
to access the latest information about implemented hotspot
locations, types of placement locations, and usage statistics.
The primary datasets that we utilize for our experiments are:
NYC WiFi Hotspot Locations, LinkNYC Map, and LinkNYC
Usage Statistics.

To setup the experiments, we treat the five boroughs of
New York City as individual scenarios since they provide

TABLE 5: Experiment Scenarios

Scenario |P| |C| |E|
Staten Island 7-10 5-8 59-71
Bronx 31-40 24-31 190-210
Queens 57-69 44-52 321-349
Brooklyn 81-97 61-73 428-451
Manhattan 113-127 81-96 1042-1091

sufficient variety in hotspot locations, candidate point se-
lection, and usage metrics. NYC Open Data has equivalent
2D coordinates defined for each geolocation representing a
WiFi hotspot or Kiosk. We use the exact locations in our
experiments without any simplification or reduction so the
experiments represent as close of a scenario to the real world
as possible. The hostspot locations represent the device
locations in our setup. Likewise, the hotspot locations that
represent a feasible space for cloudlet placement such as a
subway station or a local library serve as a candidate point.

The device demands (processing, memory, storage) are
randomly selected from a uniform distribution, X ∼
U(5, 20) to signify heterogeneous demands. This broad
range of demands also signifies that we are accounting for
multiple devices at some hotspot locations. The cloudlet
capacities are subsequently specified based on the total
demand of the devices in each scenario. Finally, the coverage
radii of the cloudlets is based on the mean latency of the
devices from the candidate points. Each scenario represents
a set of experiments than a single experiment. We randomly
draw fixed number of candidate points and devices from
each scenario to create 30 similarly-sized sub-scenarios. This
provides further experimental variety and ability to statisti-
cally analyze the performance at scenarios of different sizes
and scales. The experiment scenarios and their deployment
sizes are summarized in Table 5.

We run four different types of experiments to compre-
hensively evaluate and compare the performance of the
proposed approach ACP to the three related approaches:
the Optimal Cost of the Cloudlet Placement (OCP-Cost),
the Optimal Latency of the Cloudlet Placement (OCP-
Latency), and the Genetic Algorithm-based Cloudlet Place-
ment (GACP), proposed in [41]. The first experiment shows
the coverage of each approach, visualizing the device as-
signments and the obtained locations for the cloudlet place-
ment. The next two experiments show the comparisons for
the placement cost and the latency individually. Finally, we
investigate the scalability of the approaches.

The optimal results from OCP-Cost and OCP-Latency
are found using IBM ILOG CPLEX Concert Technology API
for Java [42]. ACP and GACP partially use CPLEX to obtain
LP results to guide their respective solution approaches.
It is noteworthy that solving any LP optimally (unlike IP)
using CPLEX takes polynomial time as it is in P, and other
approaches can be used to obtain optimal fractional results.
Both ACP and GACP are implemented in the same version
of Java, and the experiments for all approaches are run on
the same JVM on the Nautilus HyperCluster [43] with 16
CPU cores and 64 GB RAM. Note that we could not compare
our results with other existing studies because they either do
not have the same objectives or have different constraints as
we discussed in Section 1.1. Hence, any direct comparisons
would be unfair. It is also noteworthy that CPLEX provides
the optimal results for the small cases of the problem,
which is used as a proper benchmark. However, it is not
able to obtain any results for large-scale problems due to
NP-hardness of the problem. GACP likewise struggles to
converge with full coverage when the experiment instances
have narrow solution spaces. As a result, OCP-Cost and
GACP have partial but valid results which are explained
further in the analysis section.

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

(a) OCP-Cost Placement (b) OCP-Latency Placement (c) ACP Placement (d) GACP Placement

Fig. 4: Cloudlet Coverage

4.2 Analysis of Results

We first compare the results of ACP with OCP-Cost, OCP-
Latency, and GACP approaches in terms of device cover-
age. In Figure 4, we visualize the locations of the placed
cloudlets using shaded circles (larger circles represent larger
cloudlets) and the devices covered by those cloudlets with
different markers (using the same color) in each approach.
As we can see, OCP-Cost, shown in Fig. 4a, uses the
minimum cloudlet resources to obtain the minimum cost.
OCP-Latency, shown in Fig. 4b, covers devices with the
minimum latency (the assignment of the devices are mostly
to their closest cloudlets, and an additional cloudlet has
been used, compared to that of OCP-Cost). GACP, shown
in Fig. 4d, effectively clusters the devices around the placed
cloudlets while using the same number of cloudlets as OCP-
Cost. However, it uses two large cloudlets since a medium
cloudlet is mutated by GACP to a large cloudlet. So, it ob-
tains a higher cost. Likewise, the latency is not minimized in
GACP since some devices are far away from their mapped
cloudlet despite the clustering. In contrast, ACP, shown
in Fig. 4c, achieves coverage similar to OCP-Cost and OCP-
Latency. The overall coverage scenario of ACP can be seen
as a blend of these two optimal benchmarks. ACP reflects
the optimal solutions closely while taking significantly less
running time. We analyze them in detail next.

Figure 5a shows the placement costs obtained by the
approaches. Before explaining the results, we should note
that CPLEX was not able to converge to provably optimal
solutions for OCP-Cost for more than 24 hours. Hence, a

node-limited solution was used to best estimate the optimal
value (presented by OCP-Cost*) based on the solution gap
value given by CPLEX. The average OCP-Cost* solution gap
for each scenario is presented in Figure 6b. Likewise, GACP
was not able to converge with full coverage for all instances.
Hence, solutions with partial (yet high) coverage values
are presented for comparison as indicated by GACP*. The
amount of coverage GACP* achieved on average is shown
in Figure 6a.

The results show that the costs obtained by ACP are very
close (and much lower than the proven theoretical bound)
to the optimal costs in all scenarios. Although GACP* costs
in some scenarios are lower, it is because GACP* does
not cover all devices. For the largest Manhattan scenario,
ACP, covering all devices, obtains observably lower cost
than GACP*, which only covers 85% devices on average.
Costs obtained by ACP are similarly much lower than OCP-
Latency costs.

The latency values presented in Figure 5b show that ACP
obtains higher latency than GACP*. However, note that the
results of GACP* do not include the high latency values
by simply not covering those devices. A direct comparison
with full coverage GACP in Staten Island shows no signif-
icant difference in latency. In addition, despite the fact that
latency values of OCP-Cost* and ACP look comparable for
Staten Island, Bronx, and Queens, ACP is able to achieve
incrementally lower latency than OCP-Cost* as the problem
size grows. Also, all latency values of ACP for the scenarios
are still within the proven theoretical bound.

Finally, we perform experiments to observe running

� � ���
�����
���" �!����
�����#� ����� ��
��������

�

�����

�����

�����

�����

�����

�
��

�	��
	��
�	���
������� �
������ ���#

(a) Placement Cost of Different Approaches

� � ���
�����
���" �!����
�����#� ����� ��
��������

�

���

����

����

����

����

����

����

����

��
 �

��
#

�	��
	��
�	���
������� �
������ ���#

(b) Latency Suffered by Different Approaches

Fig. 5: Summary of Cost and Latency values.
GACP* denotes only the instances unable to obtain full coverage due to indefinite convergence time.
OCP-Cost* denotes that CPLEX did not converge to an optimal solution, and the Percentage Gap value from a node-limited CPLEX run has
been used to derive the “best estimated” optimal value.

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

(a) GACP* Coverage Values (b) OCP-Cost* Solution Gap (c) Running Time

Fig. 6: Partial Solution Scenarios and Running Time

time and scalability of the approaches. Since the number
of cloudlets is already determined from the device demand,
we only consider the number of candidate points and the
number of devices in our experiments. Figure 6c shows
running time as a function of the number of candidate
points and the number of devices in a 3D plot. The vertical
axis uses a logarithmic scale (log2) that shows the running
time in seconds. As we move from left to right, the data
points are closer to the viewer’s perspective, and they corre-
spond from the smallest to the largest experiment scenarios
in Table 5. We can observe that ACP is faster than the
compared approaches in all instances except for the largest
scenario (Manhattan), where OCP-Latency is faster. Being an
NP-hard problem, both OCP-Cost and OCP-Latency have
random bursts (peaks) in running time. In addition, both
of them were not able to find a feasible solution for some
instances. ACP and GACP, on the other hand, can find a
solution even in those scenarios because they can perform
upgrades and mutations, respectively.

GACP* seems to coincide in terms of running time with
ACP in most instances because both ACP and GACP rely
on LP-OCP-Cost() solution, which makes up the majority
portion of their running time. However, purely ACP run-
ning time is significantly faster than purely GACP conver-
gence time. Moreover, ACP achieves full coverage which
GACP is simply unable for majority of instances. One of the
weakness of GACP is that it may never converge for difficult
problem instances. This can be seen in Figure 6a where
the coverage values decrease as the problem size increases.
Therefore, ACP is the only approach which guarantees full
coverage in a polynomial running time.

To summarize, ACP is able to reduce cost and latency by
performing smaller upgrades to existing cloudlets instead of
provisioning new cloudlets. Practically, if appropriate esti-
mates are made about user demands and their distribution,
and a reasonable set of candidate points are established,
ACP does not even need the upgrades to find a feasible
solution. In that case, we have even tighter bounds on cost
and latency. This is clearly observable in our results above.
The efficient, polynomial running time makes this method
suitable for both short-term and long-term placements.

5 CONCLUSION

The primary motivation of edge computing is to mitigate
latency suffered by the users and save network bandwidth

by placing resources closer to where they are consumed.
In highly heterogeneous scenarios like 5G networks and
IoT, deployment cost becomes an equally important pa-
rameter since it is extremely expensive to cover all users.
Indiscriminate placement or disregard for heterogeneity
necessarily make any approach both inefficient and ineffec-
tive in next generation networks. Existing literature lacks
considering heterogeneous scenarios while simultaneously
reducing cost and latency. In this paper, we address these
challenges by designing a bifactor approximation algorithm
for the heterogeneous cloudlet placement problem. Our
approach, ACP, runs in polynomial time and provides a
(2,4) approximation bound for latency and cost, respectively.
The rigorous experimental results show that ACP is scalable
and achieves close to the optimal results in experimental
scenarios. Our approach, however, does not consider mobil-
ity factors in the placement decision, which need a more
meticulous formulation. Mobility can be handled either
proactively (predictive placement) or reactively (adaptive
placement), both of which are possible extensions of our
work. Further enhancements can also be done by introduc-
ing 3D coverage, adaptive user mapping, and distributed
placement decisions.

ACKNOWLEDGMENT

This paper is an extended version of [41], which received
the best paper award of the 2019 CloudCom. This research
was supported in part by NSF grant CNS-1755913.

REFERENCES

[1] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing:
State-of-the-art and research challenges,” IEEE Communications
Surveys Tutorials, vol. 20, no. 1, pp. 416–464, Firstquarter 2018.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Communications
Surveys Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[3] M. Satyanarayanan, “The emergence of edge computing,” Com-
puter, vol. 50, no. 1, pp. 30–39, 2017.

[4] N. Sharghivand, F. Derakhshan, L. Mashayekhy, and L. Moham-
madkhanli, “An edge computing matching framework with guar-
anteed quality of service,” IEEE Transactions on Cloud Computing
(in press), pp. 1–14, 2020.

[5] W. Ma and L. Mashayekhy, “Truthful computation offloading
mechanisms for edge computing,” in Proc. of the 6th IEEE Intl.
Conf. on Edge Computing and Scalable Cloud, 2020, pp. 1–8.

[6] E. Farhangi Maleki and L. Mashayekhy, “Mobility-aware compu-
tation offloading in edge computing using prediction,” in Proc. of
the 4th IEEE Intl. Conf. on Fog and Edge Computing, 2020, pp. 69–74.

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3126256, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

[7] P. Ahokangas, M. Matinmikko-Blue, S. Yrjölä, V. Seppänen,
H. Hämmäinen, R. Jurva, and M. Latva-aho, “Business models
for local 5g micro operators,” IEEE Transactions on Cognitive Com-
munications and Networking, vol. 5, no. 3, pp. 730–740, 2019.

[8] “Harness the power of 5G Edge,” https://enterprise.verizon.
com/business/learn/edge-computing/, accessed: 2020-12-31.

[9] D. P. Williamson and D. Shmoys, The Design of Approximation
Algorithms. Cambridge University Press, 2011, ch. 1, pp. 10–20.

[10] City of New York, “NYC Open Data,” https://opendata.
cityofnewyork.us/data/, accessed: 2019-02-22.

[11] “Cloud Enhanced Open Software Defined Mobile Wireless Testbed
for City-Scale Deployment (COSMOS).” https://www.cosmos-
lab.org/, accessed: 2020-12-29.

[12] M. Mahdian, Y. Ye, and J. Zhang, “Approximation algorithms for
metric facility location problems,” SIAM Journal on Computing,
vol. 36, no. 2, pp. 411–432, 2006.

[13] D. Shmoys, “Approximation algorithms for facility location prob-
lems.” in Proc. of the Intl. Workshop on Approximation Algorithms for
Combinatorial Optimization, 2000, pp. 27–33.

[14] F. A. Chudak and D. B. Shmoys, “Improved approximation algo-
rithms for the uncapacitated facility location problem,” SIAM J.
Comput., vol. 33, no. 1, p. 1–25, 2004.

[15] J. Byrka and K. Aardal, “An optimal bifactor approximation al-
gorithm for the metric uncapacitated facility location problem,”
SIAM Journal on Computing, vol. 39, no. 6, pp. 2212–2231, 2010.

[16] S. Li, “A 1.488 approximation algorithm for the uncapacitated
facility location problem,” Information and Computation, vol. 222,
pp. 45–58, 2013.

[17] K. Aardal, P. L. van den Berg, D. Gijswijt, and S. Li, “Approxima-
tion algorithms for hard capacitated k-facility location problems,”
European J. of Operational Research, vol. 242, no. 2, pp. 358–368, 2015.

[18] S. Raghavan, M. Sahin, and F. S. Salman, “The capacitated mobile
facility location problem,” European Journal of Operational Research,
vol. 277, no. 2, pp. 507 – 520, 2019.

[19] J.-H. Lin and J. S. Vitter, “Approximation algorithms for geometric
median problems,” Information Processing Letters, vol. 44, no. 5, pp.
245–249, 1992.

[20] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation
for the generalized assignment problem,” Information Processing
Letters, vol. 100, no. 4, pp. 162 – 166, 2006.

[21] D. B. Shmoys and É. Tardos, “An approximation algorithm for
the generalized assignment problem,” Mathematical programming,
vol. 62, no. 1-3, pp. 461–474, 1993.

[22] S. Kang, L. Ruan, S. Guo, W. Li, and X. Qiu, “Geographic clustering
based mobile edge computing resource allocation optimization
mechanism,” in Proc. of the 15th International Conference on Network
and Service Management, 2019, pp. 1–5.

[23] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,”
IEEE Transactions on Cloud Computing, vol. 5, no. 4, pp. 725–737,
2017.

[24] Y. Zhang, K. Wang, Y. Zhou, and Q. He, “Enhanced adaptive
cloudlet placement approach for mobile application on spark,”
Security and Communication Networks, vol. 2018, pp. 1–12, 2018.

[25] F. Zeng, Y. Ren, X. Deng, and W. Li, “Cost-effective edge
server placement in wireless metropolitan area networks,” Sensors,
vol. 19, p. 32, 2018.

[26] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms
for capacitated cloudlet placements,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 10, pp. 2866–2880, 2016.

[27] Y. Li and S. Wang, “An energy-aware edge server placement algo-
rithm in mobile edge computing,” in Proc. of the IEEE International
Conference on Edge Computing, 2018, pp. 66–73.

[28] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heterogeneous
cloudlet deployment and user-cloudlet association toward cost
effective fog computing,” Concurrency and Computation: Practice
and Experience, vol. 29, no. 16, pp. 1–9, 2017.

[29] Z. Wang, F. Gao, and X. Jin, “Optimal deployment of cloudlets
based on cost and latency in internet of things networks,” Wireless
Networks, vol. 26, no. 8, pp. 6077–6093, 2020.

[30] Q. Fan and N. Ansari, “On cost aware cloudlet placement for
mobile edge computing,” IEEE/CAA Journal of Automatica Sinica,
vol. 6, no. 4, pp. 926–937, 2019.

[31] S. Mondal, G. Das, and E. Wong, “Cost-optimal cloudlet placement
frameworks over fiber-wireless access networks for low-latency
applications,” Journal of Network and Computer Applications, vol.
138, pp. 27–38, 2019.

[32] F. Wang, X. Huang, H. Nian, Q. He, Y. Yang, and C. Zhang, “Cost-
effective edge server placement in edge computing,” in Proc. of the
5th International Conference on Systems, Control and Communications,
2019, pp. 6–10.

[33] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server
placement in mobile edge computing,” Journal of Parallel and
Distributed Computing, vol. 127, pp. 160–168, 2019.

[34] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C.-H. Hsu, “User
allocation-aware edge cloud placement in mobile edge comput-
ing,” Software: Practice and Experience, vol. 50, no. 5, pp. 489–502,
2020.

[35] L. Ma, J. Wu, L. Chen, and Z. Liu, “Fast algorithms for capacitated
cloudlet placements,” in Proc. of the IEEE 21st International Confer-
ence on Computer Supported Cooperative Work in Design, 2017, pp.
439–444.

[36] J. Meng, W. Shi, H. Tan, and X. Li, “Cloudlet placement and
minimum-delay routing in cloudlet computing,” in Proc. of the 3rd
International Conference on Big Data Computing and Communications,
2017, pp. 297–304.

[37] R. Goonatilake and R. Bachnak, “Modeling latency in a network
distribution,” Network and Communication Technologies, vol. 1, no. 2,
2012.

[38] G. Mavrotas, “Effective implementation of the ε-constraint method
in multi-objective mathematical programming problems,” Applied
Mathematics and Computation, vol. 213, no. 2, pp. 455 – 465, 2009.

[39] R. Karp, “Reducibility among combinatorial problems,” Complex-
ity of Computer Computations, vol. 40, pp. 85–103, 01 1972.

[40] Columbia Engineering, “NSF Announces New York City
as Testbed for New Wave of Mobile Technology,” https:
//engineering.columbia.edu/news/nsf-cosmos-testbed, 2018, ac-
cessed: 2019-02-20.

[41] D. Bhatta and L. Mashayekhy, “Generalized cost-aware cloudlet
placement for vehicular edge computing systems.” in Proc. of the
11th IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), 2019, pp. 159–166.

[42] IBM, “Overview (CPLEX Java API Reference Manual),”
https://www.ibm.com/support/knowledgecenter/en/SSSA5P
12.8.0/ilog.odms.cplex.help/refjavacplex/html/index.html,
accessed: 2019-02-25.

[43] “Nautilus documentation,” https://pacificresearchplatform.org/
nautilus/, accessed: 2020-11-30.

BIOGRAPHIES

Dixit Bhatta is a Ph.D. Student and a Doctoral
Fellow in the Department of Computer and Infor-
mation Sciences at the University of Delaware.
He received his B.Sc. in Computer Science and
Information Technology from Tribhuvan Univer-
sity (St. Xavier’s College) in 2015 and a sec-
ond B.S. in Computer Science from the Uni-
versity of the People (Online) in 2016. He re-
ceived the Best Paper Award at the IEEE Cloud-
Com 2019 and the 2020 Outstanding Graduate
Student Award. His research interests include

edge/cloud computing, Internet of Things, and distributed systems. He
is a Student Member of the IEEE and the ACM.

Lena Mashayekhy is an assistant professor in
the Department of Computer and Information
Sciences at the University of Delaware. Her re-
search interests include edge/cloud computing,
data-intensive computing, Internet of Things,
and algorithmic game theory. Her doctoral dis-
sertation received the 2016 IEEE TCSC Out-
standing PhD Dissertation Award. She is also a
recipient of the 2017 IEEE TCSC Award for Ex-
cellence in Scalable Computing for Early Career
Researchers. She has published more than forty

peer-reviewed papers in venues such as IEEE Transactions on Parallel
and Distributed Systems and IEEE Transactions on Cloud Computing.
She is a member of the IEEE and ACM.

Accepted Manuscript
Version of record at: https://doi.org/10.1109/TPDS.2021.3126256

https://enterprise.verizon.com/business/learn/edge-computing/
https://enterprise.verizon.com/business/learn/edge-computing/
https://opendata.cityofnewyork.us/data/
https://opendata.cityofnewyork.us/data/
https://www.cosmos-lab.org/
https://www.cosmos-lab.org/
https://engineering.columbia.edu/news/nsf-cosmos-testbed
https://engineering.columbia.edu/news/nsf-cosmos-testbed
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.8.0/ilog.odms.cplex.help/refjavacplex/html/index.html
https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.8.0/ilog.odms.cplex.help/refjavacplex/html/index.html
https://pacificresearchplatform.org/nautilus/
https://pacificresearchplatform.org/nautilus/

