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ABSTRACT

Database-driven Dynamic Spectrum Sharing (DSS) is the de facto technical

paradigm adopted by Federal Communications Commission (FCC) for meeting the

ever-growing spectrum demand by allowing secondary users (SUs) to opportunistically

access licensed spectrum bands without causing interference to primary users trans-

missions. In a database-driven DSS system, a geo-location database administrator

(DBA) maintains the spectrum availability in its service region in the form of a ra-

dio environment map (REM). Maintaining accurate spectrum availability information

requires the DBA to periodically collect a large number of spectrum measurements,

for which a promising approach is to rely on mobile crowdsourcing by outsourcing

spectrum sensing tasks to distributed mobile users. Database-driven DSS armed with

crowdsourcing-based spectrum sensing, unfortunately, faces many security and privacy

challenges.

This dissertation tackles three key security and privacy challenges in database-

driven DSS to pave the way for its wide development and deployment. First, the DBA

relies on spectrum measurements submitted by mobile users to construct and main-

tain the REM, but some mobile users may be malicious or compromised to submit

false spectrum measurements. To tackle this challenge, we introduce a novel mech-

anism for secure REM construction in the presence of false measurements. Second,

crowdsourcing-based spectrum sensing relies on mobile users’ participation, who not

only require strong incentive, but also demand privacy protection. To tackle this chal-

lenge, we design an incentive mechanism that simultaneously achieves differential bid

privacy, truthfulness, and high REM accuracy. Third, an effective approach to pro-

cess a large number of spectrum access requests with low latency is to adopt the edge

computing paradigm by having the DBA continuously pushes the spectrum availability

xiv



updates to distributed local edge servers, which in turn process spectrum access re-

quests from nearby SUs on the DBA’s behalf. However, edge servers owned by different

entities cannot be fully trusted to process SU’s spectrum request based on authentic

and the most recent spectrum information, which may result in either loss of revenue

or harmful interference to PUs’ transmissions. To tackle this challenge, we propose a

novel freshness authentication mechanism to allow SUs to verify that their spectrum-

access requests are decided based on authentic and up-to-date spectrum availability

information.

xv



Chapter 1

INTRODUCTION

The deep penetration of smartphones and tablets into people’s everyday life

along with the explosive growth in mobile apps have created an ever-increasing de-

mand for wireless spectrum. On the one hand, most of the usable radio spectrum has

already been licensed to various government and commercial entities. On the other

hand, several studies [1, 2, 3] have shown that many licensed spectrum allocated to

government and military entities are highly underutilized. The need for enhancing

wireless spectrum access has been highlighted as a catalyst for economic growth in

FCC’s National Broadband Plan [2] and the President’s Council of Advisors on Sci-

ence and Technology (PCAST) report [3], which call for fundamental paradigm shifts

and novel technologies to take full advantage of the underutilized licensed spectrum.

Database-driven Dynamic Spectrum Sharing(DSS) [4, 5] is the de facto tech-

nical paradigm adopted by Federal Communications Commission (FCC) for improv-

ing spectrum utilization by allowing secondary users (SUs) with cognitive radio(CR)

capabilities to opportunistically access licensed spectrum bands without interrupting

the transmissions of licensed primary users (PUs). In such a system, a geo-location

database administrator (DBA) maintains the spectrum availability in its service re-

gion. Any SU is required to inquire the DBA about the availability of any interested

spectrum before using it. The DBA either grants or denies the SU’s spectrum-access

request based on the maintained spectrum availability at the desired time and location.

In the current proposal, the DBA estimates the spectrum availability based on

the registered locations and transmission schedules of primary users (PUs) in combina-

tion with radio propagation modeling, e.g., FCC Curves [6] based on the Longley-Rice

model [7]. Recent measurement studies [8, 9, 10, 11], however, have shown that such

1



estimations are often inaccurate and tend to be overly conservative for ignoring local

environmental factors (e.g., trees and high-rise buildings), resulting in a considerable

waste of valuable spectrum opportunities. A more promising approach to enhance the

spectrum availability estimation accuracy is to let the DBA construct and maintain a

Radio Environmental Map (REM) [12], where the PU’s received signal strength (RSS)

at every location of interest is either directly measured or estimated using proper sta-

tistical spatial interpolation techniques.

Constructing and maintaining an accurate REM requires periodically collecting

a large number of spectrum measurements over the DBA’s service region. A widely

advocated approach is to let the DBA deploy a small number of dedicated spectrum

sensors at strategic locations [8, 9] and outsource the majority of spectrum-sensing tasks

to ubiquitous mobile users [13, 14]. The feasibility of this outsourcing approach lies

in two main aspects. First, mobile devices penetrate deeply into people’s everyday life

which indicates sufficient geographic coverage especially in metropolitan areas where

the spectrum demand is the highest. Second, future mobile devices are widely expected

to be capable of spectrum sensing via either internal spectrum sensors or external ones

acquired from the DBA [8, 9]. Crowdsourcing-based spectrum sensing is much more

cost effective than deploying a large-scale dedicated spectrum sensor network, which is

well known to be prohibitive to deploy and difficult to maintain.

Security and privacy concerns are among the most challenging obstacles to the

wide deployment of database-driven DSS systems armed with spectrum-sensing out-

sourcing. For example, mobile users may be malicious or compromised to submit false

spectrum measurements. Despite significant efforts on coping with such false-data in-

jection attacks in DSS systems [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], how to

construct a sufficiently accurate REM in the presence of forged spectrum measurements

remains an open challenge. As another example, mobile users not only require strong

incentives for participating in spectrum sensing, but also demand adequate privacy

protection. How to design a sound incentive mechanism for crowdsourcing-based spec-

trum sensing is unclear. In view of these challenges, this dissertation aims to tackle

2



the following three key security and privacy challenges in database-driven DSS to pave

the way for its wide development and deployment.

• Secure crowdsourced REM construction. Crowdsourcing-based spectrum

sensing is a promising approach for the DBA to construct and maintain an REM

in its service region. However, mobile users may be malicious or compromised

to submit false spectrum measurements. Since REM construction commonly re-

lies on statistical interpolation techniques [27, 28, 29, 30, 13] that are known to

be sensitive to outliers, even a small number of false measurements would sig-

nificantly degrade the accuracy of the REM, leading to either missed spectrum

opportunities or harmful interference to PU’s transmissions. To tackle this chal-

lenge, we have developed ST-REM, a novel framework for secure crowdsourced

REM construction in the presence of false spectrum measurements. Inspired by

the self-labeled techniques [31], ST-REM constructs highly accurate REMs from a

small number of trusted measurements and many more untrusted measurements

via iterative statistical spatial interpolation.

• Incentive-compatible and differentially-private spectrum sensing. Strong

incentive is needed to stimulate mobile users to participate in crowdsourcing-

based spectrum sensing. However, self-interested mobile users may game the

system to earn extra credits they are not entitled to. In addition, mobile users

may also hesitate to participate if their sensitive information is not adequately

protected. To tackle this challenge, we propose a novel incentive mechanism,

DPS, that simultaneously achieves differential bid privacy, approximated truth-

fulness, and high REM accuracy.

• Secure edge computing-based spectrum access request processing. A

promising approach for reducing spectrum-access request processing latency is to

explore the emerging edge computing paradigm by having the DBA proactively

push spectrum availability updates to distributed local edge servers, which in

turn process spectrum-access requests from nearby SUs on the DBA’s behalf.

However, edge servers, commonly owned by different entities, cannot be fully

trusted to process spectrum-access requests based on the most recent spectrum

3



availability, which may lead to either loss of revenue for spectrum owners or

harmful interference to PUs’ transmissions. To tackle this challenge, we propose

to design a novel freshness authentication technique to allow any SU to verify

whether the decision made by the local edge server is based on the most recent

spectrum availability information from the DBA.

1.1 Organization

The remainder of this dissertation is structured as follows. In Chapter 2, we

introduce ST-REM, a novel scheme for securely constructing REMs in the presence of

false spectrum measurements. In Chapter 3, we present a differentially-private incen-

tive mechanism for stimulating mobile users’ participation in crowdsourced spectrum

sensing while protecting their bid privacy. In Chapter 4, we propose KV-Fresh, a novel

freshness authentication mechanism allowing SUs to verify whether their spectrum-

access requests are processed based on authentic and most up-to-date spectrum avail-

ability information from the DBA. We finally conclude this dissertation in Chapter 5.
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Chapter 2

SECURE CROWDSOURCED RADIO ENVIRONMENT MAP
CONSTRUCTION

2.1 Introduction

Database-driven Dynamic Spectrum Sharing (DSS) is the de facto technical

paradigm adopted by Federal Communications Commission (FCC) for meeting the

ever-growing spectrum demand by allowing SUs to opportunistically access licensed

spectrum bands without causing interference to PUs’ transmissions [4, 5]. In a database-

driven DSS system, a geo-location database administrator (DBA) maintains the spec-

trum availability in its service region and manages spectrum access from secondary

users. Any SU who wants to access a licensed spectrum band is required to inquire

the DBA, which may either grant or deny the spectrum-access request based on the

spectrum availability at the desired time and location.

Effectively enhancing spectrum utilization requires accurate spectrum availabil-

ity information, for which a widely advocated approach is to let the DBA construct

and maintain a Radio Environmental Map (REM) over its service region. The REM

concept [32, 33] was originally proposed as an abstraction of radio environments rep-

resented by a distributed database for storing information and knowledge of the radio

environment to support a wide range of spectrum-related functionalities. Following the

recent work [34], we consider an REM as a map characterizing primary users’ radio

activities, in which the primary users’ received signal strength (RSS) in every location

of interest is either directly measured via spectrum sensing or estimated using proper

statistical spatial interpolation techniques.

Maintaining an accurate REM requires the DBA to periodically collect many

spectrum measurements over a large geographic region, which can be accomplished
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in mainly two ways. A straightforward approach is to deploy a network of spectrum

sensors for detecting radio activities on licensed spectrum bands. However, it is well

known that large-scale sensor networks are expensive to deploy and difficult to operate

and maintain. Therefore, it has been widely advocated that the DBA only needs to

deploy a small number of dedicated spectrum sensors at strategic locations [8, 9] and

outsource the majority of spectrum-sensing tasks to ubiquitous mobile users. The

feasibility of this approach lies in the deep penetration of mobile devices into everyday

life and the wide expectation that future mobile devices can perform spectrum sensing

via either internal spectrum sensors or external ones acquired from other parties like

the DBA [18, 21, 19, 35, 36, 37, 38].

Crowdsourcing-based REM construction is, unfortunately, vulnerable to false

spectrum measurements, which contain RSS values much higher (or lower) than the

true RSS values. In particular, mobile users cannot be fully trusted and may submit

false spectrum measurements due to various reasons. For example, a good mobile

user may submit false spectrum measurements because of faulty spectrum sensor. As

another example, a selfish mobile user may submit forged spectrum measurements

to claim the reward at the DBA without actual sensing to save battery. Last but not

least, a malicious mobile user may be hired by the DBA’s business competitor to submit

false spectrum measurements to damage the DBA’s reputation. Since most existing

approaches for REM construction [27, 28, 29, 30, 13] rely on statistical interpolation

techniques, e.g., Ordinary Kriging, that are known to be sensitive to outliers [39], even

a small number of false measurements can heavily distort the REM, leading to either

missed spectrum opportunities or harmful interference to PUs’ transmissions.

Despite the large body of work on secure cooperative spectrum sensing against

false spectrum measurements [15, 16, 17, 18, 19, 20, 21, 22, 23], how to construct an

accurate REM from possibly false spectrum measurements poses new challenges. In

particular, secure cooperative sensing aims to decide whether a primary user at a known

location is transmitting or not, whereas REM construction intends to estimate the

primary user’s RSS at every location of interest where the primary user’s transmission
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activity is known. The unique challenges brought by REM construction render prior

solutions [15, 16, 17, 18, 19, 20, 21, 22, 23] inapplicable. These situations call for

sound solutions to construct REM with high accuracy in the presence of false spectrum

measurements.

To tackle this challenge, we introduce ST–REM, a novel spatiotemporal ap-

proach for securely constructing REMs in the presence of false spectrum measurements.

Inspired by self-labeled techniques [31] originally developed for semi-supervised learn-

ing, our proposed approach constructs highly accurate REMs from a small number

of trusted measurements and many more untrusted measurements via iterative sta-

tistical spatial interpolation. Specifically, an initial REM is constructed using only

the trusted measurements from dedicated spectrum sensors and then gradually refined

by incorporating the most trustworthy measurements from the remaining ones. The

key ingredient of the proposed approach is a novel mechanism for evaluating of the

trustworthiness of every spectrum measurements submitted by mobile users, which

jointly considers the measurement’s spatial and temporal trustworthiness. The former

is evaluated based on the measurement’s spatial fitness with other measurements that

have already been deemed trustworthy. The latter, on the other hand, is evaluated by

tracking the mobile user’s long-term behavior, which provides strong indication for the

quality of the measurement he/she submits in the current epoch. Using the most trust-

worthy spectrum measurements, the DBA is able to filter out false ones and construct

an REM with high accuracy. Our contributions in this chapter can be summarized as

follows.

• To the best of our knowledge, we are the first to study secure crowdsourced REM

construction in the presence of false spectrum measurements.

• We introduce ST–REM, a novel approach for constructing REM from a small

number of trusted measurements from dedicated spectrum sensors and many

more from untrusted mobile users. The accuracy of the resulting REM is achieved
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by jointly considering the spatial and temporal trustworthiness of the measure-

ments from mobile users and constructing the REM only using the most trust-

worthy ones.

• The efficacy of ST–REM is confirmed via extensive simulation studies using a real

spectrum measurement dataset. For example, our simulation results show that

even when twenty percent of the measurements are false, ST–REM can produce

an REM with mean absolute error (MAE) of 2.75dB, which is only 2.83% higher

than the case where all false measurements are known in advance and excluded

by the DBA.

The rest of this chapter is structured as follows. Related work is discussed in

Section 2.2. We introduce the system and adversary models along with the design

goals in Section 2.3. Section 2.4 presents the design of ST–REM. We evaluate the

performance of the proposed approach in Section 2.5. Section 2.6 concludes our work.

2.2 Related Work

In this section, we discuss prior work in several areas that are most germane to

our work.

2.2.1 REM Construction via Statistical Spatial Interpolation

There have been a number of attempts to improve the spectrum estimation

accuracy at the DBA by constructing an REM or detailed PU coverage map from

spectrum measurements through statistical spatial interpolation, for which a recent

survey can be found at [40].

Ordinary Kriging is the most popular statistical spatial interpolation technique

for radio mapping. Alaya-Feki et al. [27] introduced a solution for constructing a

map of received signal strength from radio measurements using Ordinary Kriging. In

[28], Achtzehn et al. conducted a large-scale measurement campaign and demonstrated

that spatial interpolation techniques such as Ordinary Kriging outperform well-known

propagation models in predicting transmitter’s signal strengths in the TV whitespace.
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Another measurement study was reported in [29], in which Phillips et al. used Ordi-

nary Kriging to estimate the coverage of a 2.5 GHz WiMax network in a US university

campus. A similar study appeared in [41], which showed that the accuracy of TVWS

geo-location database can be improved by predicting the primary user’s signal strength

with a relatively small number of measurements using Ordinary Kriging. The advan-

tage of Ordinary Kriging over model-based prediction such as Longley-Rice model,

FCC F-Curves, and k nearest neighbor, is later reconfirmed by another measurement

study in Seattle, WA in [30]. Crowdsourcing-based REM construction using Ordi-

nary Kriging was firstly studied in [13], in which Ying et al. introduced an incentive

mechanism to stimulate mobile users’ participation.

Other statistical spatial interpolation techniques have also been used for radio

mapping. Ojaniemi et al. explored several methods, including Ordinary Kriging, Cok-

riging, and spatial simulated annealing, for integrating field measurements into radio

propagation model [42]. Dai et al. [43] proposed a framework for integrating spectrum

sensing results and spectrum database via Delaunay triangulation. Delaunay triangu-

lation was also used in [41] to predict the signal strengths at unmeasured locations.

All these works assume that all the measurements are trusted, while it is well

known that these statistical spatial interpolation techniques are sensitive to outliers due

to masking and swamping effects. For example, it was shown in [39] that even a small

number of false measurements could significantly affect the predictions at unobserved

locations.

2.2.2 Secure Cooperative Spectrum Sensing

Secure cooperative spectrum sensing has been studied extensively in the past

few decades, where the goal is to determine whether or not a PU at a known location

is transmitting from potentially false spectrum measurements. Existing solutions can

be generally classified into three categories.

The first category detects and filters out false spectrum measurements via sta-

tistical anomaly detection. In [16], Min et al. proposed an attack-tolerant distributed
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sensing protocol by exploring shadow fading correlation to detecting abnormal spec-

trum sensing results. A Bayesian-based approach was introduced in [44] to evaluate

the suspicious level of spectrum sensing reports whereby to filter out potential false

ones. In [25], Wang et al. introduced a joint spectrum sensing and access framework

based on statistical hypothesis testing to cope with false spectrum sensing reports.

A secure cooperative spectrum sensing scheme was introduced in [45] to detect false

sensing reports with M-ary quantized sensing data.

The second category uses reputation system to track sensors’ long term behav-

iors to differentiate bad sensors from good ones. Typically, every sensor’s reputation

score is computed based on the accuracy of their past sensing measurements [15] or

whether its local decision matches the global network decision [20]. A sensor is consid-

ered misbehaving if its reputation score drops below a certain threshold. For example,

a reputation-based detection scheme is introduced in [46] in which sensing reports from

a sensor would be excluded from the fusion process if its reputation score exceeds cer-

tain threshold. More recently, reputation score is incorporated into learning process

to determine possible punishment for secondary users with poor sensing performance

[47].

The third category relies on machine learning techniques to differentiate false

measurements from good ones. In [19], the authors proposed to train a classifier using

Support Vector Machines from reliable sensing reports whereby to detect and filter

false spectrum measurements. A reinforcement-learning-based user selection method

is proposed in [47] to select secondary according to their past performance.

Finally, it has been shown in [22, 23] that trusted sensors can be used to defend

against false measurements. For example, PUET [22] is a technique that explores a

trusted transmitter transmitting test signals to detect sensing data falsification attacks.

Reputation-based mechanisms have also been integrated with trusted users in [20, 23].

Furthermore, trusted measurements are also used as training data for machine learning

solutions [19].

As discussed in Section 2.1, none of these solutions can be applied to the problem
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of secure REM construction, in which the PU’s location and transmission activity are

known but its signal strength needs to be estimated at every location of interest.

2.2.3 False Data Injection Attack in Crowdsensing System

False data injection attack has also been studied in general crowdsensing sys-

tems. For example, Yang et al. [48] introduced an unsupervised learning approach

to evaluate users’ sensing qualities and long-term reputations and filter out anoma-

lous sensing data. A scheme was proposed in [49] to enhance data trustworthiness in

crowdsourcing-based positioning systems. More recently, data poisoning attacks were

studied in [50, 51], where Miao et al. introduced several attack strategies to allow

malicious workers to maximize attack utility while evading detection. None of these

works can be directly applied for secure crowdsourced REM construction.

2.3 Preliminary

In this section, we first introduce the system and adversary models and then

our design goals.

2.3.1 System Model

Fig. 2.1 shows an exemplary database-driven DSS system. We consider a DBA

that provides spectrum access service to secondary users in its service region D.

The DBA estimates the spectrum availability through spectrum sensing and

constructing and periodically updating an REM over D. As in [21, 23], we assume

that the DBA deploys a small number of stationary spectrum sensors at strategic

locations, referred to as anchor sensors hereafter. Anchor sensors can be remotely

attested by the DBA and excluded if they are detected as compromised. Due to cost

constraints, the DBA cannot afford to deploy too many anchor sensors to cover the

entire service region and still relies on the spectrum measurements from the majority

of mobile users, referred to as mobile sensors hereafter to ensure the accuracy of the

REM. We subsequently denote by Θa the set of anchor sensors and Θm the set of

mobile sensors.
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Figure 2.1: An exemplary database-driven DSS system.

We assume that the time is divided into epochs of equal length. At the beginning

of each epoch, every sensor i ∈ Θa

⋃
Θm submits a spectrum measurement Ri =

(Zi,xi), where Zi is the measured RSS (in dBm) at location xi. We assume that

the service region D is divided into N non-overlapping cells of equal size. Some cells

may not have any measurements taken, and the locations at which measurements are

taken may not be the center of any cell. Given the set of spectrum measurements

R = {Ri|i ∈ Θa

⋃
Θm}, the DBA’s goal is to construct an REM by estimating the

RSS at the center of every cell.

To ease the presentation, we assume that there is one primary user in D whose

location and transmission schedule are known to the DBA. Our work, however, can be

easily adapted to support multiple primary users with minimal effort.
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2.3.2 Adversary Model

The DBA is trusted to faithfully perform all system operations, and the spec-

trum measurements submitted by anchor sensors are trusted. In contrast, mobile sen-

sors may submit false spectrum measurements due to faculty spectrum sensors, forging

spectrum measurements to claim the reward at the DBA without actual sensing, or

being hired by the DBA’s business competitor to damage its reputation. We assume

that false spectrum measurements may contain RSS values arbitrarily different from

the true RSS measurements and that the number of false measurements is unknown

to the DBA in advance. On the other hand, we do not specifically consider spectrum

measurements with forged locations because such measurements are equivalent to false

measurements at the claimed locations. We assume that the attacker can submit false

RSS measurements in different epochs following an arbitrary strategy unknown to the

DBA.

Our subsequent discussion focuses on REM construction in the presence of false

spectrum measurements. We assume that communications between anchor/mobile

sensors and the DBA are properly secured via standard cryptographic techniques such

as TLS [52]. Moreover, we do not consider other attacks targeting DSS systems such

as primary user emulation attack for which we resort to existing rich literatures such

as [53].

2.3.3 Designed Goals

The proposed approach is designed with the following goals in mind.

• Resilience against false spectrum measurements : The approach should produce

an REM in the presence of unknown number of false spectrum measurements

with high accuracy. In particular, it should produce an REM with much higher

accuracy than either using only trusted spectrum measurements from anchor

sensors or blindly using all spectrum measurements.

• Low deployment cost : The proposed approach should only require a small number

of anchor sensors to ensure sufficiently high accuracy of the resulting REM.
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2.4 ST–REM: A Spatiotemporal Approach

In this section, we first give an overview of the proposed spatiotemporal ap-

proach and introduce the background of Ordinary Kriging, the interpolation technique

used by the proposed approach. We then detail the design of our proposed approach.

2.4.1 Overview

ST–REM is designed to construct highly accurate REMs using a small number

of trusted measurements and many untrusted measurements via iterative statistical

spatial interpolation. This approach is inspired by the self-labeled techniques [31]

proposed for semi-supervised learning with the goal of exploring a small amount of

labeled data and a large amount of unlabeled data for classification [31]. In self-

labeled techniques, an initial classifier is trained based on the labeled data only, which

is then applied to the unlabeled data to generate more labeled samples as additional

input to refine the classifier. Self-labeled techniques have been shown to surpass the

classification performance achieved by either supervised learning where all unlabeled

data are discarded or unsupervised learning where all label information is ignored.

As an analogue to self-labeled techniques, the proposed approach constructs an

REM in an iterative fashion. In each epoch, on receiving all the spectrum measure-

ments, an initial REM is constructed using only the trusted measurements from an-

chor sensors. In each subsequent iteration, a fixed number of remaining measurements

deemed most trustworthy are incorporated to refine the REM. This process continues

until certain terminal condition is met, at which point all remaining measurements are

discarded and the final REM is produced.

A key component of the proposed approach is the evaluation of the trustworthi-

ness of measurements submitted by mobile users. In particular, our proposed approach

calculates a spatial trustworthiness score and a temporal trustworthiness score for every

measurement. The spatial trustworthiness score is computed based on the measure-

ment’s spatial fitness with the REM constructed from the measurements that have

already been deemed trustworthy. The temporal trustworthiness score, on the other
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hand, is computed from the mobile sensor’s past performance, which provides strong

indication for the quality of the measurement he/she submits in the current epoch. The

overall trustworthiness score of the measurement is obtained by combining its spatial

and temporal trustworthiness scores.

While the proposed approach is general in the sense that it can be integrated

with different statistical interpolation techniques, we take Ordinary Kriging [54] as an

example to illustrate its design for Ordinary Kriging’s overwhelming popularity and

satisfactory performance in REM construction [27, 28, 29, 13, 55, 56, 30]. In what

follows, we first briefly introduce the background of Ordinary Kriging and then detail

the design of the proposed spatiotemporal approach.

2.4.2 Background on Ordinary Kriging

Kriging [54] is a class of geo-statistical spatial interpolation techniques originally

developed for mining but have been increasingly being used for radio mapping. Under

Kriging, the RSS at any location x is modeled as a Gaussian random field in the form

Z(x) = µ(x) + δ(x),

where µ(x) is the mean capturing path loss and shadowing, and δ(x) represents possible

sampling error.

In Ordinary Kriging [54], Z(x) is further assumed to be intrinsic stationary in

the sense that

E[Z(x)] = µ(x) = µ,

E[(Z(x1)− Z(x2))2] = 2γ(h) ,
(2.1)

for all x ∈ D, where E[·] denotes expectation, µ is an unknown constant, h = ||x1−x2||

is the distance lag between two locations x1 and x2, and γ(·) is the semivariogram

function that models the variance between two locations as a function of their distance.

The assumption of intrinsic stationarity may not hold for spectrum measurements

but has been found acceptable in the literature [27, 28, 13, 55, 56, 30], especially

15



after removing possible source of nonlinear trend from measurements through a proper

detrending process [29].

2.4.3 Detailed Design of ST–REM

In each epoch, the DBA constructs an REM from the set of measurements

R = {Ri|i ∈ Θa

⋃
Θm} it receives in three steps. First, the DBA performs detrending

process to the measurements to remove possible nonlinear trend from the measurements

so that the residue measurements fit the Ordinary Kriging model better. Second, the

DBA constructs an REM from the detrended measurements in an iterative fashion.

Finally, the DBA adds the detrended values back to produced REM to generate a final

REM.

2.4.3.1 Detrending

Detrending is the process of removing any non-linear trend from the measure-

ment original spectrum measurements, which is usually preferred as the resulting de-

trended measurements would better fit the Ordinary Kriging model [57]. Specifically,

given an original spectrum measurement Ri = (Zi,xi) from a mobile sensor or an

anchor sensor, the corresponding detrended measurement is given by R′i = (Si,xi),

where

Si = Zi − P (xi)

is the residue RSS at xi and P (xi) is the RSS at xi predicted by a suitable model.

ST–REM does not rely on any specific detrending procedure but assumes the exis-

tence of a suitable one for the received measurements. We will present an exemplary

detrending procedure adopted from [29].

2.4.3.2 Iterative Measurement Selection

Given the set of detrended measurements {R′i|i ∈ Θt

⋃
Θc}, the DBA gradually

selects a set of measurements in an iterative fashion for REM construction. Specifically,

the DBA maintains a trusted sensor set Θt and a candidate sensor set Θc at all time,
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where Θt = Θa and Θc = Θm initially. In each iteration, the DBA does the following

in sequel.

First, for every candidate measurement R′j, j ∈ Θc, the DBA calculates a trust

score Tj. The process of calculating Tj is deferred to Section 2.4.3.3. Second, the

DBA finds the q measurements with the highest trust scores, denoted by Θq, where q

is a system parameter that represents the tradeoff between computation overhead and

accuracy of the final REM. Third, the DBA moves Θq to the trusted sensor set, i.e.,

Θt = Θt

⋃
Θq and Θc = Θc \Θq.

The selection process is terminated if the ratio between the number of trusted

measurements and the total number of measurements reaches a predetermined thresh-

old η, i.e.,
|Θt|

|Θa

⋃
Θm|

≥ η ,

where η is a system parameter. All the remaining candidate measurements {R′j|j ∈ Θc}

are then discarded.

2.4.3.3 Spatiotemporal Trustworthiness Evaluation

A key component of ST–REM is a novel method to evaluate the trustworthiness

of a candidate measurement by jointly considering its spatial fitness with other trusted

measurements and the sensor’s past performance. Specifically, for every candidate

measurement R′j, j ∈ Θc, the DBA calculates a spatial trust score and a temporal trust

score and then combines the two into an overall trust score.

Spatial trust score. The spatial trust score of a measurement R′j, j ∈ Θc,

characterizes its spatial fitness with current trusted measurements {R′i|i ∈ Θt}. The

key idea is to construct an REM using the current trusted measurements whereby to

predict the RSS value at the candidate measurement’s location xj. The smaller the

difference between the reported RSS value and the predicted RSS value, the better R′j

fits the current trusted measurements, the more trustworthy of the candidate measure-

ment, and vice versa. In particular, the spatial trust score of each measurement R′j is

calculated as follows.
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First, the DBA builds an empirical semivariogram γ̂(h) from the current trusted

measurement set {R′i|i ∈ Θt}. Specifically, the DBA computes

γ̂(h) =
1

2|P(h)|
∑

(xi,xk)∈P(h)

(Si − Sk)2,

where P(h) = {(xi,xk)|i, k ∈ Θt, ||xi − xk|| = h} is the set of location pairs with

distance h. The DBA then fits γ̂(h) with a suitable parametric model. There are

several popular parametric models in Ordinary Kriging, such as Gaussian, Cauchy,

and Spherical models [58]. In this chapter, we choose the commonly used exponential

model, which is given by

γ(h;α1, α2) = α1(1− exp(
−h
α2

)) ,

where α1 is related to the variance of the spectrum measurements, and α2 scales the

correlation distance of the model. These parameters can be obtained from the esti-

mated semivariogram via least squares estimator.

Second, the DBA estimates the residue RSS at location xj at which candidate

measurement R′j was taken using the empirical semivariogram model γ̂(·). Specifically,

the DBA predicts the residue RSS at location xj as a linear combination of the trusted

residual measurements {R′i|i ∈ Θt} given by

Ŝ(xj) =
∑
i∈Θt

wi · Si , (2.2)

where
∑

i∈Θt
wi = 1 are normalized weights. The estimation error is given by

ε(xj) = Ŝ(xj)− S(xj)

= (w1, . . . , w|Θt|,−1) · (S1, . . . , S|Θt|, S(xj)) ,

where S(xj) is the true RSS residue at xj that may be different from the reported
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residue Sj. It is easy to see that the above estimator is unbiased as

E[ε(xj)] =
∑
i∈Θt

wiS(xi)− E[S(xj)]

=
∑
i∈Θt

wiE[S(xi)]− E[S(xj)]

=
∑
i∈Θt

wiµ− µ

= 0.

Let hi,k = ||xi − xk|| for all i, k ∈ Θt and hi,j = ||xi − xj|| for all i ∈ Θt, j ∈ Θm. Since

minimizing the prediction variance of an unbiased predictor is equivalent to minimizing

the mean squared error, we have

Var[ε(xj)] = E[(Ŝ(xj)− S(xj))
2]

=
∑
i∈Θt

∑
k∈Θt

wiwkE[S(xi)S(xk)]− 2
∑
i∈Θt

wiE[S(xi)S(xj)] + E[(S(xj))
2]

= −1

2

∑
i∈Θt

∑
k∈Θt

wiwkE[(S(xi)− S(xk))
2] +

∑
i∈Θt

wiE[(S(xi)− S(xj))
2]

= −
∑
i∈Θt

∑
k∈Θt

wiwkγ̂(hi,k) + 2
∑
i∈Θt

wiγ̂(hi,j)

To find the optimal weights {wi}i∈Θt , the DBA solves the following optimization prob-

lem

mininize −
∑
i∈Θt

∑
k∈Θt

wiwkγ̂(hi,k) + 2
∑
i∈Θt

wiγ̂(hi,j),

subject to
∑
i∈Θt

wi = 1.

The Lagrangian associated with the optimization problem is given by

L(w, ν) =−
∑
i∈Θt

∑
k∈Θt

wiwkγ̂(hi,k) + 2
∑
i∈Θt

wiγ̂(hi,j) + ν(
∑
i∈Θt

wi − 1),

where ν is the Lagrange multiplier. Taking the partial derivatives of L(w, ν) with

respect to the {wi}i∈Θt and ν, we can obtain ∂L
∂wi

= 0, ∀i ∈ Θt,

∂L
∂ν

= 0.
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The solution to the above optimization problem is then given by
w1

...

w|Θt|

ν

 =


γ(h1,1) . . . γ(h1,|Θt|) 1

...
. . .

...
...

γ(h|Θt|,1) . . . γ(h|Θt|,|Θt|) 1

1 . . . 1 0



−1
γ(h1,j)

...

γ(h|Θt|,j)

1

 . (2.3)

Under the optimized weights given in Eq. (2.3), the difference between the re-

ported RSS value Sj and predicted RSS value Sj is given by |
∑

i∈Θt
wiSi − Sj|. Intu-

itively, the smaller the difference, the better measurement R′j fits with other trusted

measurements {R′i|i ∈ Θt}, and vice versa. Let εmax be the maximum estimation er-

ror, which we set to be the maximum detrended RSS among all anchor sensors, i.e.,

max{Sj|j ∈ Θa}. We define the spatial trust score of the measurement Rj (or corre-

sponding detrended measurement R′j) as

T sj =
|
∑

i∈Θt
wiSi − Sj|
εmax

, (2.4)

where {wi}i∈Θt is given in Eq. (2.3).

Temporal trust score. Unlike spatial trust score that considers a measure-

ment’s spatial fitness with other trusted measurements, the temporal trust score of a

candidate measurement captures the mobile sensor’s long-term behavior. As a mo-

bile sensor participates in spectrum sensing in many epochs, its past performance

can provide strong indication for the quality of spectrum measurement it submits in

the current epoch. Recall that the DBA gradually incorporates candidate spectrum

measurements into trusted measurement sets to construct the REM in each epoch.

Intuitively, the earlier a measurement is added into the trusted measurement set, the

better the measurement fits with existing trusted measurements, the higher quality of

the measurement, and vice versa.

Based on the above intuition, the DBA maintains a temporal trust score T tj for

each mobile sensor j ∈ Θm, where 0 ≤ T tj ≤ 1. When each mobile sensor j first joins the

system, the DBA assigns an initial temporal score T tj = η, as the DBA does not know
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whether or not its first measurement would be added to the trusted measurement set

when iterative measurement selection terminates. At the end of each subsequent epoch,

the DBA updates T tj based on the quality of measurement he submits. Consider epoch

t as an example. Assume that measurement Rj from sensor j is the rjth measurement

moved from the candidate measurement set to the trusted measurement set, where we

postulate that rj = |Θm| if measurement Rj is discarded in the end. The DBA updates

mobile sensor j’s temporal trust score as

T tj = αT tj + (1− α)
rj
|Θm|

, (2.5)

where α ∈ [0, 1] is a system parameter that controls how fast past performance is

forgotten.

Overall trust score. The overall trust score of a candidate measurement is a

linear combination of the corresponding spatial trust score and temporal trust score.

Specifically, we define the trust score Tj of candidate measurement R′j as

Tj = ωT sj + (1− ω)T tj ,

where ω ∈ [0, 1] is another system parameter indicating the weight given to the spatial

trust score.

2.4.3.4 Final REM Construction

After the iterative selection process terminates, the DBA constructs a final

REM using the trusted measurements {R′j|j ∈ Θt}. In particular, the DBA refits the

empirical semivarogram model using {R′j|j ∈ Θt} as in the evaluation of spatial trust

scores. For every cell center xc, c ∈ {1, . . . , N}, the DBA predicts it residue RSS Ŝ(xc)

using Eq. (2.2) and outputs its estimated RSS as

Ẑ(xc) = Ŝ(xc) + P (xc) ,

where P (xc) is the predicted linear trend.
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2.4.4 Discussion

As mentioned before, the DBA terminates the process if the ratio between the

number of the trusted measurements and the total number of measurements reaches

a predetermined threshold η. This terminal condition assumes that the ratio of false

measurements is small, and the DBA intends to defend against up to 1 − η ratio of

false measurements.

There are another two possible terminal conditions with each corresponding to

a different assumption about the attacker. First, the iterative measurement selection

process may terminate when the number of trusted measurements reaches a predefined

threshold, i.e.|Θt| ≥ η2, where η2 ∈ [|Θa|, |Θa

⋃
Θm|] is a system parameter. This

terminal condition assumes that there are sufficient good measurements, while the ratio

of the number of false measurements over the total number of measurements could be

potentially large. Using this terminal condition, the DBA intends to construct an REM

with sufficiently high accuracy with just enough trusted measurements even if there are

additional good measurements that can be explored. Second, the iterative measurement

selection process may terminate when no remaining candidate measurement has a trust

score exceeding η3, where η3 ∈ [0, 1] is a system parameter. This terminal condition

assumes that false measurements exhibit high inconsistency in comparison with trusted

measurements, i.e., with large Tj. Note that under this terminal condition, the last

iteration may add fewer than q candidate sensors to the trust sensor set.

2.5 Performance Evaluation

In this section, we firstly introduce the spectrum measurement dataset used for

evaluation and the detrending procedure that we use. We then report our simulation

results.
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Figure 2.2: The locations of measurements and the PU in cu/wimax dataset.

2.5.1 Dataset

I use the CRAWDAD cu/wimax dataset [59] for the simulation studies, which

was also used in [29]. The cu/wimax dataset was collected at the University of Col-

orado Boulder (UC) and contains the Carrier to Interference plus Noise Ratio (CINR)

measurements of the WiMax network consisting of 5 base stations serving the UC

campus taken by a portable spectrum analyzer. The measurements were taken on a

100m equilateral triangular lattice and additional measurements taken at random and

optimized points. In our simulation studies, we choose the measurements for channel

308 and BSID 3674210305, which includes 145 measurements at different locations.

Fig. 2.2 shows the locations of the measurements and the PU.

2.5.2 Measurement Detrending

We follow the detrending procedure in [29] to remove the potential source of

non-linear trend from the measurements. Specifically, for each CINR measurement

Zcinr(x) at location x, we first convert it into the corresponding path loss value by

computing

Zpl(x) = T +Gtx −N − Zcinr(x) ,
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Table 2.1: Default Simulation Settings

Para. Val. Description.
|Θt| 10 The number of trusted measurements
|Θc| 90 The number of candidate measurements
ω 0.5 Weight of spatial trust score

20 The number of false measurements
T 5 dB Attack strength
q 10 Step length
η 80 Terminal condition 1
η1 0.8 Terminal condition 2
η2 0.8 Terminal condition 3

where T = 40dBm is the PU’s transmission power, Gtx =10dB is the receiver antenna

gain, and N = −95dBm is the constant noise floor value. Second, we compute the

predicted pass loss using an empirical log-distance path loss model as

P (x) = α10 log10(d) + 20 log10(f) + 32.45 + ε , (2.6)

where d is the distance between x and the PU, f = 2578MHz is the PU’s transmitting

frequency, 32.45 (dB) represents the free-space path loss, α = 1.22 and ε = 28.81dB

are the path loss exponent and the offset obtained by fitting the measurements. The

detrended measurement is then given by

S(x) = Zpl(x)− P (x). (2.7)

2.5.3 Simulation Settings

We divide the 145 measurements into two sets: a testing set Rt with 100 mea-

surements and a validating setRv with 45 measurements as the ground truth. From the

100 testing measurements, we randomly choose 10 measurements as trusted ones and

another 20 measurements as the false ones. Moreover, we define a false measurement

Ri has an attack strength T (dB) if it reports a Zi+T where Zi is the true measurement

[16]. Table 1 summarizes our default simulation settings unless mentioned otherwise.
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We primarily use Mean Absolute Error (MAE) to evaluate the performance of

ST–REM. In particular, for each measurement Ri ∈ Rv, let Zi and Ẑi be the reported

RSS and estimated RSS, respectively. The MAE is defined as

MAE =

∑
Ri∈Rv |Zi − Ẑi|
|Rv|

. (2.8)

Since ST–REM is the first solution for secure REM construction against false

spectrum measurements, we compare its performance with the following three strate-

gies.

• Trusted measurements only (TMO): the DBA constructs the REM using

the measurements submitted by anchor sensors only.

• All measurements (AM): the DBA constructs the REM constructed using all

measurements, including false ones.

• All but false measurements (ABFM): the DBA constructs the REM con-

structed using all the measurements except for the false ones. Note that since

the DBA does not know which measurements are false in reality, the accuracy

achieved under ABFM can be viewed as the upper bound of any mechanism that

can achieve.

2.5.4 Simulation Results

We now report the simulation results for comparison of TMO, AM, ABFM, and

ST–REM.

2.5.4.1 Exemplary REMs Constructed by TMO, AM, ABFM, and ST–REM

Fig. 2.3 shows four exemplary REMs constructed by ABFM, TMO, AM, and

ST–REM, respectively, where attack strength T is 5dB. Each REM is constructed

by estimating the path loss value at the center of every cell and then converting the

predicted path loss value back into RSS by computing

Ẑ(x) = T +Gtx − (Ŝ(x) + P (x)).
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(a) ABFM. (b) TMO.

(c) AM. (d) ST–REM.

Figure 2.3: Exemplary REMs constructed by TMO, AM, ABFM, and ST–REM with
10 trusted and 20 false measurements.

Specifically, Fig. 2.3a shows the REM constructed by ABFM using all the good mea-

surements, which can serve as the baseline for other mechanisms. Generally speaking,

the closer the REM to the REM constructed by ABFM, the more resilient the mecha-

nism against false spectrum measurements. Fig. 2.3b shows the REM constructed using

only the 10 known trusted measurements from anchor sensors, which is very coarse and

different from the REM constructed by ABFM. This shows that the REM constructed

using only a small number of known trusted measurements is very coarse. On the other

hand, Fig. 2.3c shows that the REM constructed using all the measurements is highly

distorted by the 20 false measurements, which highlights the detrimental impact of even

a small number of false measurements. Finally, Fig. 2.3d shows the REM constructed

by ST–REM. As we can see, the REM is very close to the REM constructed by ABFM
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shown in Fig. 2.3a, indicating the high resilience of ST–REM to false measurements.

These exemplary REMs demonstrate that the significant advantage of ST–REM over

both TMO and AM.

2.5.4.2 Impact of Attack Strength T

Fig. 2.4 shows the MAEs under ABFM, TMO, AM, and ST–REM with the

attack strength T varying from 0dB to 30dB. The MAEs under TMO and ABFM are

not affected by the change in the attack strength and are plotted for reference only.

As we can see, the MAE under ABFM, i.e., the ideal case, is approximately 2.67 dB.

This represents the lower bound of the MAE of the REM constructed using Ordinary

Kriging and coincides with the results obtained in the recent measurement study [28].

In addition, the MAE under TMO is around 4.86 dB, which again shows that the REM

constructed from only a small number of trusted measurements is highly inaccurate.

Moreover, the MAE under AM increases nearly linearly as the attack strength increases.

In contrast, the MAE of ST–REM is very close to that of ABFM, which demonstrates

the resilience of ST–REM against the change in attack strength.

2.5.4.3 Impact of the Number of False Measurements

Fig. 2.5 shows the MAEs under TMO, AM, and ST–REM with the number

of false measurements varying from 0 to 50, where the MAE under TMO stays at
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Figure 2.4: MAE vs. attack strength.
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Figure 2.5: MAE vs. # of false mea-
surements.
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4.86 dB and is plotted for reference only. We can see that the MAE under AM is

the same as that under ABFM when there is no false measurement and increases

nearly linearly as the number of false measurements increases. This is anticipated, as

the adverse impact of false measurements on the MAE grows as the number of false

measurements increases. On the other hand, the MAE under ABFM slightly increases

as the number of false measurements increases, which is caused by the corresponding

decrease in the number of good measurements. In addition, the MAE under ST–REM

initially declines as the number of false measurements increases. The reason for the

initial decline is that ST–REM may terminate too early when there are only few false

measurements, i.e., some good measurements are excluded from being used to improve

the accuracy of the REM. As the number of false measurements approaches 20, fewer

good measurements are discarded, and the MAE under ST–REM approaches that

under ABFM. As the number of false measurements further increases from 20, the

MAE under ST–REM deteriorates but is still much lower than that under AM. This is

also expected, as ST–REM would include some false measurements in the final REM

under such situations.

2.5.4.4 Impact of the Number of Trusted Measurements.

Fig. 2.6 compares the MAEs under ABFM, AM, and ST–REM with the number

of trusted measurements, i.e., anchor sensors, varying from 10 to 80, where the MAEs

under AM and ABFM are not affected and are plotted for reference only. As we can

see, the MAEs under AM and ABFM are 3.38dB and 2.67dB, respectively. In addi-

tion, the MAE under TMO decreases from 4.86dB to 2.67dB as the number of trusted

measurements increases from 10 to 80. This is anticipated, as the more good measure-

ments, the higher the accuracy of the resulting REM, and vice versa. Moreover, while

we can see that the MAE under ST–REM decreases as the number of trusted measure-

ments increases, the gain resulted from additional trusted measurements is quite small.

For example, the MAE under ST–REM is 2.76dB with 10 trusted measurements and

decreases to 2.73dB with additional 10 trusted measurements. These results indicate
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Figure 2.7: MAE vs. step length q.

that ST–REM only requires a small number of trusted measurements to achieve high

accuracy of resulting REM.

2.5.4.5 Impact of Step Length q

Fig. 2.7 shows the MAEs under ST–REM with step length q varying from 2

to 20, where the MAEs under AM, TMO, and ABFM are not affected by the change

in step length and are plotted for reference only. As we can see, the MAE under

ST–REM slightly increases as the step length increases at the beginning. The reason is

that the initial REM constructed from the measurements submitted by anchor sensors

is quite coarse, and using the initial REM to estimate the trustworthiness of other

measurements and add too many other measurements at once may have some false

measurements included. This would lead to higher MAE of the final REM. As the step

length further increases from 15 to 20, the MAE of the final REM slightly fluctuates.

Overall, the change in step length has very limited impact on the accuracy of resulting

REMs under the default settings.

2.5.4.6 Impact of Anchor Sensor Placement

We also evaluate the impact of anchor sensors’ placement. Specifically, we con-

sider the following four strategies for placing anchor sensors.
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• 1/4–Grid–Random: Divide the whole area into four square grids of equal size

and randomly select 2 or 3 measurements in each grid to form the 10 trusted

measurements.

• Random: Randomly select 10 measurements in the whole area as the trusted

measurements.

• Random-500m: Randomly select 10 measurements within 500 meters of the PU

as the trusted measurements.

• Random-300m: Randomly select 10 measurements within 300 meters of the PU

as the trusted measurements.

Generally speaking, anchor sensors are distributed most evenly under 1/4-Grid-

Random, followed by Random, Random-500m, and Random-300m.

Fig. 2.8 compares the MAEs under the four anchor sensor placement strategies

for ST–REM. The median MAEs under 1/4-Grid-Random, Random, Random-500m,

and Random-300m over 100 runs are 2.79dB, 2.82dB, 2.94dB, and 2.97dB, respectively.

Generally speaking, the more unevenly anchor sensors are distributed, the higher the

MAE, and vice versa. However, the difference among the four placement strategies are

relatively small. Given the limited size of our dataset, we leave the further investigation

of the optimal anchor sensor placement as our future work.
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2.5.4.7 Comparison of SSO, TSO, and ST–REM.

Since ST–REM relies on both spatial and temporal trust scores to rank and

select candidate measurements, we also compare it with the following two variants to

better understand their effectiveness.

• Spatial trust score only (SSO): The spatial trust score in ST–REM is given an

weight of one, i.e., α = 1 in Eq. (2.5).

• Temporal trust score only (TSO): The spatial trust score in ST–REM is given

zero weight, i.e., α = 0 in Eq. (2.5).

Fig. 2.9 shows the Cumulative Distribution Functions (CDFs) of the MAEs

under SSO under different attack strengths across 100 runs, where the CDF of ABFM

is plotted for reference. As we can see, the MAE under SSO decreases as the attack

strength increases. In particular, when the attack strength is 15dB, 94% of MAEs

are higher than 3dB. In contrast, when the attack strength is 10dB and 5dB, the

percentage drops to 87% and 31%, respectively. This is due to the fact that when

the attack strength is small, e.g., 5dB, the differences between false measurements

and good measurements are quite small, making it difficult to differentiate them and

resulting in a relatively high MAE. It also indicates that SSO is most effective if the

attack strength is large.
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Figure 2.9: CDF of MAE under SSO.
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Fig. 2.10 shows the CDFs of the MAEs under TSO under different attack

strengths, where the CDF under ABFM is plotted for reference only. We can see

that when the attack strength keeps 5dB in the previous four epochs, the MAE under

TSO in the fifth epoch is much higher than that under ABFM. In contrast, when the

attack strength is 15dB in the previous four epochs, the CDF of the MAEs under TSO

matches closely with that of ABFM in the fifth epoch. This is anticipated, because

the larger the attack strength, the later a false measurement is added into the trusted

measurement set, the higher the temporal trust score of the false measurement, and

vice versa. It is thus easier for TSO to differentiate false measurements from good ones

when the attack strength is high.

2.5.4.8 Impact of Sudden Change in Attack Strength

To evaluate the effectiveness of spatial and temporal trust scores in filtering out

false measurements in the presence of sudden change in the attack strength, we further

consider the following two exemplary attack strategies.

• Attack Strategy 1-sudden decrease in the attack strength: The attacker chooses an

attack strength of 15dB in the first four epochs and changes the attack strength

to 5dB in the fifth epoch.

• Attack Strategy 2-sudden increase in attack strength: The attacker chooses an

attack strength of 5dB in the first four epochs and changes the attack strength

to 15dB in the fifth epoch.

Fig. 2.11 shows the CDFs of MAEs in the fifth epoch under ST–REM, SSO,

TSO, and ABFM under Attack Strategy 1, where the CDF of the MAE under ABFM

is plotted for reference only. We can see that the MAE under ST–REM is very close

to that under TSO and much lower than that under SSO. In particular, the CDF of

MAEs under ST–REM and TSO are close to the one under ABFM, while the CDF of

the MAEs under SSO is quite far from that under ABFM. In addition, the CDF of

the MAEs under TSO overlaps with the one under ABFM. The reason is that as the
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attack strength in the previous epoch is relatively high, e.g., 15dB, false measurements

are easier to be filtered out by SSO and ST–REM, which result in lower temporal

trust scores for false measurements in the current epoch. In contrast, since the attack

strength is relatively small, i.e., 5dB, in the current epoch, the spatial trust score of false

measurements are relatively small, making it difficult to filter out false measurements

by SSO, leading to a higher MAE under SSO.Although SSO alone is less effective under

Attack Strategy 1, ST–REM is still able to differentiate false measurements from good

ones by jointly considering the temporal trust scores of the measurements.

Fig. 2.12 shows the CDFs of the MAEs under ST–REM, SSO, TSO, and ABFM

under Attack Strategy 2, where the CDF of the MAE under ABFM is again plotted

for reference. We can see that ST–REM outperforms TSO, but it is less effective than

SSO. The reason is that under Attack Strategy 2, the attack strength in each previous

epoch is 5dB, which is too small to always assign high temporal trust scores for false

measurements. Thus, the CDF of MAEs under TSO is far from the CDF of MAEs

under ABFM. In contrast, since the attack strength in current epoch is 15dB, which

is large enough to filter out false measurements correctly, the CDF of MAEs under

SSO is very close to the ideal case. In this circumstance, although the temporal trust

score is not reliable, ST–REM is also powerful to exclude false measurements with the

benefit of spatial trust score.
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These results indicate that SSO is most effective in filtering out false measure-

ments when the attack strength is high in the current epoch, while TSO can differentiate

false measurements from good ones as long as the attack strength is high enough in pre-

vious epochs. By jointly considering the spatial and temporal trust scores, ST–REM

can effectively filter out false measurements as long as the attacker chooses a high

attack strength in any epoch.

2.5.4.9 Impact of Dynamic Attack Strength

We also evaluate the impact of dynamic attack strengths by considering the

following three attack strategies: gradually ascending attack strengths, gradually de-

scending attack strengths, and static attack strengths.

Fig. 2.13 shows the MAE under ST–TEM with the attack strength gradually

increased from 0 by 2dB in each epoch for 15 epochs and different ωs, where the MAEs

under ABFM is plotted for reference. We can see that the MAE under ST–REM ini-

tially increases and then gradually decreases until reaching the MAE under ABFM

under all weight ωs. In addition, the higher the weight ω, the earlier the MAE un-

der ST–REM starts to decrease, and thus the earlier converge to that under ABFM.

The reason is that when the attack strength is small, e.g., 2dB in the second epoch,

false measurements are very similar to good ones, and ST–REM is unable to filter
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out all false measurements. As the attack strength further increases, while false mea-

surements become easier to filter out by ST–REM, some false measurements are still

deemed trusted by ST–REM, and their overall impact on the MAE increases due to

higher attack strength. As the attack strength keeps increasing, more and more false

measurements are detected by ST–REM and excluded from the final REM, resulting

in the overall decrease in the MAE under ST–REM. In addition, we can see that the

higher the weight ω, the earlier the MAE starts to decrease, and vice versa. This is

because spatial trust score is more effective than temporal trust score in filtering out

false measurements with increasing attack strength.

Fig. 2.14 shows the MAE under ST–TEM with the attack strength gradually

decreased from 30dB by 2dB in each epoch for 15 epochs and different ωs, where again

the MAEs under ABFM is plotted for reference. We can see that the MAE under

ST–REM is the same as that under ABFM for the first eight epochs for all ωs. This

is because false measurements with large attack strength, e.g., 16dB in the eighth

epoch, are very different from good ones and can be easily filtered out by ST–REM.

As the attack strength further decreases, the MAE under ST–TEM first increases and

then decreases under different ωs. The reason is that as the attack strength becomes

smaller, some false measurements will be deemed trusted under ST–REM, leading to

the increase in the MAE. As the attack strength keeps decreasing, while more false

measurements will be added to the trusted measurement set under ST–REM, their

accumulative impact on the MAE becomes smaller. Moreover, we can see that the

higher the weight ω, the larger the maximum MAE the attacker can achieve over the

16 epochs. This is because the spatial trust score alone is less effective in filtering

out false measurements with small attack strengths and the smaller the weight given

temporal trust score, the less likely a false measurement can be filtered out by ST–REM.

Fig. 2.15 shows the average temporal trust score of good and false measurements

over 15 epochs, where the attack strength stays at 5dB, 10dB, and 15dB for all epochs.

We can see that the average temporal trust score of good measurements decreases
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Figure 2.16: MAE vs. weight ω.

rapidly in the first few epochs and then remains stable in the following epochs. In

contrast, the average temporal trust score of false measurements increases in the first

few epochs and becomes stable in the following epochs. The reason that the average

temporal trust scores of good and false measurements change slower in later epochs is as

follows. In the first epoch, all the measurements are assigned the same initial temporal

score η, and measurements are added to the trusted measurement set entirely based

on their spatial trust scores. The order in which the measurements are added to the

trusted measurement set results in the update in their temporal trust scores. In each of

the subsequent epochs, false measurements with higher temporal trust scores will have

higher overall trust scores and thus be added to the trusted measurement even later

than in the previous epoch, if ever. This process results in the continuous decrease

in the average temporal trust score of good measurements as well as the continuous

increase in that of false ones. Finally, we can see that the higher the attack strength,

the larger the gap between the average temporal trust score of good measurements and

that of false ones, and vice versa, which is expected.

To conclude, ST–REM can achieve an acceptable performance as long as the

spatial trust score is reliable or the temporal trust score is reliable. In addition, for

the temporal trust score, it is reliable as long as there are several large enough attack

strength appeared in the previous epochs.
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2.5.4.10 Impact of the Weight ω.

Fig. 2.16 shows the MAE of ST–REM with the weight of spatial score ω varying

from 0 to 1, where the MAEs under TSO (ω = 0 ) and SSO (ω = 1) are plotted for

reference. Here we assume that the attack strength in current epoch is 5dB and that in

the previous three epochs is 5dB, 10dB and 15dB, respectively. We can see that as ω

increases from 0 to 0.1, the MAE under ST–REM first decreases sharply from 3.34dB

under TSO to 3.14dB, 2.71dB and 2.67dB when attack strength in previous epoch is

5dB, 10dB, and 15dB, respectively. As ω further increases from 0.1 to 1, the MAE

under ST–REM gradually increases to 3.14dB achieved by SSO under all three attack

strengths in previous epochs. This result shows that there is always an optimal weight

ω assignment under which ST–REM outperforms both SSO and TSO.

2.6 Summary

In this chapter, we have introduced the design and evaluation of ST–REM,

a novel spatiotemporal approach for securing crowdsourced REM construction in the

presence of false spectrum measurements. Inspired by self-labeled techniques, ST–REM

gradually constructs an initial REM from trusted measurements from a small number

of anchor sensors and then iteratively refine it by gradually incorporating the measure-

ments from mobile sensors that are deemed most trustworthy. The trustworthiness

evaluation in ST–REM jointly considers a measurement’s spatial fitness of trusted

measurements and the long-term behavior of the mobile sensor. Extensive simulation

studies using a real spectrum measurement dataset confirm that the proposed approach

can produce an REM with sufficient accuracy in the presence of false measurements.
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Chapter 3

DIFFERENTIALLY-PRIVATE INCENTIVE MECHANISM FOR
CROWDSOURCED RADIO ENVIRONMENT MAP CONSTRUCTION

3.1 Introduction

Crowdsourcing-based REM construction requires sound incentive mechanisms

to stimulate crowdsourcing workers’ participation. In particular, performing spectrum

sensing incurs non-trivial effort to crowdsourcing workers, such as their time and device

battery. Without strong incentives, potential workers may be reluctant to participate

in crowdsourcing-based spectrum sensing. A common approach for providing incentives

in mobile crowdsourcing systems is to use reverse auction [60], where crowdsourcing

workers sell their services by submitting their bids to the DBA, which in turn selects a

subset of bidders as winners and offers payments based on their bids. Reverse auction

has been widely used in many mobile crowdsourcing systems such as [61, 62].

A sound reverse auction mechanism for crowdsourcing-based REM construction

needs to satisfy three critical requirements. First, crowdsourcing workers are selfish

in reality and may lie about their costs if doing so can increase their utilities. This

requires the reverse auction mechanism to be truthful, which means that bidding the

true sensing cost is the optimal strategy for mobile crowdsourcing workers. Second,

mobile crowdsourcing workers’ bids may reveal their personal information, such as their

locations [63, 64] and opportunity costs. While the DBA is commonly assumed to be

trusted, curious workers could infer other workers’ bids from the change in the payment

profiles by submitting different bids for the same sensing task in different rounds [65].

It is thus necessary to protect crowdsourcing workers’ bid privacy against other curious

workers. Last but not least, reverse auction involves the selection of a set of winners,
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which needs to ensure the accuracy of the resulting REM. However, the optimal se-

lection of winners to maximize REM accuracy is an NP-hard problem even without

considering the first two requirements. Despite the large body of work on privacy-

preserving incentive mechanisms for mobile crowdsourcing systems [66, 67, 68, 69, 70],

none of them satisfy the above three requirements. There is thus a pressing need

to develop sound privacy-preserving incentive mechanisms to stimulate crowdsourc-

ing workers’ participation while protecting their bid privacy and ensuring high REM

accuracy.

In this chapter, we tackle this challenge by introducing DPS, a novel differentially-

private reverse auction mechanism which can simultaneously ensure bid privacy for

crowdsourcing workers and the accuracy of the constructed REM. In DPS, every crowd-

sourcing worker submits a bid for performing spectrum sensing at his current location.

Serving as the auctioneer, the DBA selects a subset of workers as winners based on the

received bids and determines the payment to the winners. The key ingredient of DPS is

a greedy algorithm for selecting a candidate winner set with guaranteed REM accuracy

with respect to every possible payment price and choosing the final winner set with

corresponding payment price using the exponential mechanism to ensure differential

privacy for individual workers. Our main contributions can be summarized as follows.

• To the best of our knowledge, we are the first to study differentially-private

mechanism design for crowdsourcing-based REM construction.

• We introduce a novel differentially-private reverse auction mechanism that can

simultaneously provide differential privacy to crowdsourcing workers’ bids, ap-

proximate truthfulness, and guaranteed REM accuracy at the DBA.

• We thoroughly evaluate the proposed mechanism via a combination of theoretical

analysis and detailed simulations studies using real spectrum measurement data,

which confirm the efficacy and efficiency of the proposed mechanism.

The rest of this chapter is structured as follows. Section 3.2 discusses the related

work. Section 3.3 introduces the necessary background of statistical interpolation tech-

nique and our system model along with design goals. Section 3.4 introduces the design
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of our solution. Section 3.5 analyzes the performance of DPS. Section 3.6 reports the

simulation results, and Section 3.7 concludes this work.

3.2 Related Work

In this section, we discuss some of the prior work in several areas related to our

work.

Differentially-private mechanism design has attracted many attentions in recent

years. McSherry and Talwar [60] introduced the first differentially private auction

mechanism by incorporating the exponential mechanism. General methods for design-

ing auction mechanisms with differential privacy guarantee were studied in [66, 71,

72, 67]. All these works focus on maximizing social welfare and are inapplicable to

crowdsourced REM construction where the objective is to maximize the average K-var

reduction.

Several privacy-preserving mechanisms have been proposed for spectrum allo-

cation problem. THEMIS [73] incorporated cryptographic technique into spectrum

auction to deal with the seller-side fraudulent actions. Huang et al. [69] proposed a

truthful and privacy-preserving mechanism to achieve k-anonymity in spectrum auc-

tions. Subsequently, PPS [68] applied homomorphic encryption to maximizes the social

efficiency and preserves bid privacy. All these solutions rely on cryptographic tech-

niques and incur high computation and communication overheads. Moreover, neither

of them provide differential privacy guarantee for individual worker’s bid.

DEAR [74] integrated the exponential mechanism with spectrum auction to

achieve approximate truthfulness, privacy preservation, and approximate revenue max-

imization. Zhu et al. [75] also incorporated differential privacy to design a truthful auc-

tion mechanism for dynamic spectrum redistribution. BidGuard [65] is a differentially

private auction mechanism aiming at minimizing social cost. Jin et al. [76] designed

a differentially-private incentive mechanism to protect workers’ bid privacy against

honest-but-curious workers, and a total payment minimization problem is formulated

to ensure the truthfulness and workers’ utility. However, these solutions assume that
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auctioneers have a prior knowledge of the bidders’ valuation distribution and focus on

the revenue maximization. They are thus not directly applicable to our context.

Another line of research is to design truthful auction mechanisms for mobile

crowdsourcing systems. Yang et al. [61] designed an incentive mechanism with the

objective function maximizing platform utility to satisfy individual rationality and

truthfulness. Zhao et al. [62] also aimed at selecting a subset of users to maximize the

value of service from selected mobile users subjected to individual rationality. TRAC

[77] is a truthful auction mechanism for location-aware crowdsensing systems. Ying et

al. [13] introduced an incentive mechanism for crowdsourcing-based spectrum sensing,

which achieved approximate maximization of K-var reduction by considering crowd-

sourcing workers’ marginal contribution. None of these solutions consider users’ bid

privacy and thus cannot be applied to our target problem. A truthful reverse auction

is introduced in [78] for crowdsourcing-based data aggregation, which provides differ-

ential privacy for sensed data. Truthful double auction has also been studied in [79]

for crowdsourcing systems involving multiple auctioneers. None of them considered

protecting crowdsourcing workers’ bid privacy.

3.3 Preliminaries

In this section, we introduce the system and adversarial models, crowdsourcing-

based REM construction, the auction model, and our design objectives.

3.3.1 System Model

We consider a DBA which maintains an REM for the spectrum availability in

its service area D ∈ R2. The area D is divided into a number of cells of equal size.

The DBA relies on spectrum sensing to constructs and maintains the REM.

Specifically, the DBA deploys a small number of static spectrum sensors at strategic

locations and outsources the majority of spectrum sensing tasks to mobile crowdsourc-

ing workers. Deploying few static spectrum sensors cannot only guarantee minimum

level of service when there are insufficient mobile crowdsourcing workers, e.g., during
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nighttime, but also facilitate detection of potential false spectrum measurements [80].

Denote by S the set of dedicated spectrum sensors and N = {1, . . . , n} the set of

crowdsourcing workers. We assume that the locations of dedicated spectrum sensors

are known to the DBA. We also assume that each crowdsourcing worker owns a mobile

device capable of spectrum sensing and acquiring its current location.

The DBA periodically collects spectrum measurements from both static spec-

trum sensors and selected crowdsourcing workers to update the REM. Assume that

the time is divided into epochs. At the beginning of each epoch, the DBA broad-

casts a spectrum sensing request to all the potential crowdsourcing workers in D,

which includes sensing frequency, sampling rate, etc. On receiving the sensing request,

each crowdsourcing worker i ∈ N submits a bid bi along with his location xi to the

DBA, indicating that he is willing to perform spectrum sensing at location xi for a

minimal payment of bi. Once the DBA receives a bid-location profile (b,X ) where

b = (b1, · · · , bn) and X = (x1, · · · ,xn), it selects a winner set W ⊆ N and determines

the payment pi for each winner i ∈ W .

The DBA then informs the winners and collects spectrum measurements from

them as well as static spectrum sensors. In particular, each static sensor or winning

crowdsourcing worker i ∈ S
⋃
W submits a spectrum measurement Z(xi) to the DBA.

On receiving all the measurements {Z(xi)|i ∈ S
⋃
W}, the DBA estimates the RSS at

the center of every cell using Eq. (3.1) whereby to produce the updated REM.

3.3.2 The Objective Function at the DBA

A primary goal of the DBA is to maximize REM accuracy, for which Kriging

Variance reduction has been proposed as a proper metric.

Recall that under Ordinary Kriging (OK) [54], the RSS at an unmeasured lo-

cation x0 is estimated from the RSSs at measured locations. Specifically, given a set

of spectrum measurements at locations X = {x1, · · · ,xn}, the RSS at location x0 is

estimated as

Ẑ(x0) =
n∑
i=1

ωiZ(xi), (3.1)
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where
∑n

i=1 ωi = 1 are normalized weights. It is easy to see that Ẑ(x0) is a linear unbi-

ased estimator as E(Ẑ(x0)−Z(x0)) = E(
∑n

i=1 ωiZ(xi)−Z(x0)) =
∑n

i=1 ωiE(Z(xi))−

E(Z(xi)) = µ
∑n

i=1 ωi − µ = 0.

By minimizing the Mean Squared Error (MSE) E[(Ẑ(x0)−Z(x0))2] with respect

to {ωi} under the normalization constraint
∑n

i=1 ωi = 1, we can obtain a set of linear

equations, commonly referred to as Kriging system.

Solving the Kriging system leads to the optimal coefficients given by

ω∗ = (ω∗i )i∈X = Σ−1
XXΣXx0 , (3.2)

where Σ−1
XX is the covariance matrix, and

∑
Xx0

is the vector of cross-covariances be-

tween every Z(xi)(i ∈ [1, n]) and Z(x0). Since the estimator is unbiased, the minimized

MSE, commonly referred to as Kriging variance (K-var), is given by

σ2
x0|X = σ2

x0
− ΣT

Xx0
(Σ−1
XX )ΣXx0 ,

where σ2
x0

is the unknown K-var when X = ∅. K-var represents the prediction uncer-

tainty at the unmeasured location and is often used as the estimator design metric.

The smaller K-var, the higher accuracy of the estimation, and vice versa.

The DBA’s primary objective is to choose the set of winners W with total pay-

ment under the budget constraint while minimizing the average K-var of the produced

REM over its service region.

We adopt an objective function similar to [13], where The DBA chooses winners

partially based on the predicted contribution of additional measurements submitted at

the winners’ locations. Specifically, under the optimal weights given in Eq.(3.2), the

K-var at an unmeasured location x ∈ D after taking measurements from deployed

dedicated sensors S at locations XS = {xi|i ∈ S} is given by [13].

σ2
x|XS = σ2

x − ΣT
XSxΣ−1

XSXSΣXSx, (3.3)

where σ2
x is the unknown variance at location x, ΣXSXS is the covariance matrix of

all measurements from dedicated sensors, and ΣXSx is the vector of cross-covariances

between {Z(xi)|i ∈ S} and Z(x).
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Given a winner set W , the DBA will collect additional spectrum measurements

from locations XW = {xi|i ∈ W}. Combing spectrum measurements from S and W ,

the Kriging variance at an unmeasured location x ∈ D is given by

σ2
x|XS⋃

W
= σ2

x − ΣT
XS⋃

WxΣ−1
XS⋃

WXS⋃
W

ΣXS⋃
Wx. (3.4)

Subtracting Eq. (3.4) from Eq. (3.3), we can obtain the predicted Kriging vari-

ance reduction at location x caused by additional measurements from W as

4σ2
x(W) = ΣT

XS⋃
WxΣ−1

XS⋃
WXS⋃

W
ΣXS⋃

Wx − ΣT
XSxΣ−1

XSXSΣXSx. (3.5)

Now consider the whole service region D. The average reduction of Kriging

variance caused by the measurements submitted by winner set W is given by

f(W) =
1

|D|
∑
x∈D

4σ2
x(W). (3.6)

Assume that the DBA has a budget B for payment to the winners for each epoch.

The DBA intends to find a set of winners W along with payment profile {pi|i ∈ W}

under the budget constraint that maximizes the average reduction of Kriging variance

in the service region D, which can be formulated as the following optimization problem.

Maximize f(W)

subject to
∑
i∈W

pi ≤ B,

W ⊆ N .

(3.7)

The above optimization problem is NP hard. In particular, let us temporally

ignore the payment profile and budget constraints and assume that the DBA can choose

a fixed number of winners. We can see that even this simplified version of the problem

is a special case of subset selection problem, which is NP hard in general because of

the non-linear nature of objective function f(W).
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3.3.3 Other Design Objectives

In addition to budget feasibility and maximizing the average K-var reduction in

D, we also intend to design our incentive mechanism to satisfy the following objectives.

Approximate truthfulness. Since crowdsourcing workers are selfish in real-

ity, they submit bids different from their true valuations for the costs of performing

spectrum sensing if doing so could increase their utilities. Assume that each crowd-

sourcing worker i has a true valuation vi for the cost of performing spectrum sensing

at location xi, which might be different from his bid bi. The worker i’s utility is then

given by

ui =

pi − vi, if i ∈ W ,

0, otherwise,

(3.8)

where pi is the payment worker i receives from the DBA if he is selected as a winner.

As a result, we aim to ensure that every crowdsourcing worker’s optimal strategy

is to bid his cost truthfully. Exact truthfulness, however, is usually difficult to achieve

without losing other desirable properties. Instead, we aim to achieve γ-truthfulness

such that no crowdsourcing worker can gain more than γ utility by bidding untruthfully.

Definition 1. (γ-truthful). An auction mechanism is γ-truthful in expectation if and

only if for any bid bi 6= vi and any bid profile of other workers b−i,

E[u(vi, b−i)] ≥ E[u(bi, b−i)]− γ . (3.9)

where γ is a small positive constant.

Differential privacy. We also intend to protect crowdsourcing workers’ bid-

ding privacy. While every worker’s bid is known to the DBA and kept private from

other workers, a curious worker could still infer other workers’ bids by submitting dif-

ferent bids in different rounds of auction. Since the change in a single bid may result in

significant change in the selected winner set and the payment profile, a curious worker

may infer other workers’ bids from the change in the payment he receives from the

different payments she receives in different rounds. Differential privacy [81, 60] is a
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powerful technique to protect bid privacy against such differential attacks. The key

idea is that given two neighboring input datasets, a differentially-private mechanism

will behave approximately the same on both datasets, which offers a strong guarantee

that the presence or absence of a single element would not cause any major change in

the output of the mechanism. The formal definition of differential privacy is given as

follows.

Definition 2. (Differential privacy [81, 60]). Let M(·) be a function that maps

an input bid profile b to a payment profile p ∈ P . Mechanism M(·) is ε-differentially

private if and only if for any set of payment profiles R ⊆ P and any two bid profiles b

and b′ that differ in only one bid, we have

Pr[M(b) ∈ R] ≥ exp(ε)Pr[M(b′) ∈ R] . (3.10)

where ε is a small positive constant commonly referred to as privacy budget.

The exponential mechanism [60] is a classical tool to facilitate mechanism design

via differential privacy. The key idea is to map a pair of input dataset A and candidate

outcome o to a real valued ”quality score” q(A, o), where a higher score indicates

better performance of the outcome. Given the output space O, a score function q(),

and the privacy budget ε, the exponential mechanism chooses the outcome o ∈ O with

probability proportional to εq(A, o).

Theorem 1. [60] The exponential mechanism gives 2ε4 differential privacy.

Here 4 is the global sensitivity of εq(A, o) that captures the largest change in

the quality score by a single change of the input in A.

Computation efficiency. The selection of winner set and corresponding pay-

ment price should be computed in polynomial time.

Individual rationality. Our last design objective is individual rationality,

which ensures that every crowdsourcing worker’s utility is non-negative, i.e., ui ≥ 0

for all i ∈ N , if he bids truthfully. The property is desired to stimulate mobile users’

participation in any mobile crowdsourcing systems.
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3.4 The DPS Design

In this section, we first give an overview of DPS and then detail its design.

3.4.1 Overview

DPS is designed by integrating a number of ideas. First, inspired by [74, 70]

we adopt the single-price mechanism in which the DBA pays every winner the same

amount of payment. It has been proved in [82] that the optimal single-price payment

mechanism is within a constant factor of any differentiated payment mechanism. Sec-

ond, under the single-price payment mechanism, we further design a greedy algorithm

for selecting winners with guaranteed approximation ratio. Specifically, for any fixed

payment price p, the maximum number of workers that the DBA can select is bB/pc.

Any worker whose bid not higher than p can be chosen as a winner without violat-

ing the individual rationality. The winner selection problem under the single payment

price p is then converted into the special case of subset selection problem which can

be solved by greedy algorithm with guaranteed approximation ratio. Third, we choose

final winner set and payment price using the exponential mechanism to ensure differen-

tial privacy. In particular, for each possible payment price, we can find a corresponding

winner set and calculate the predicted average Kriging variance reduction. Given a set

of possible payment prices, we then choose the final winner set and payment price using

the exponential mechanism.

In what follows, we detail the DPS’s design.

3.4.2 Detailed Design

We now detail the process of winner selection and payment price determination.

On receiving the bid-location profile (b,X ), the DBA first finds a set of feasible payment

prices. Without loss of generality, we assume that the possible payment to individual

worker forms a finite set P = {pmin, . . . , pmax}, where the lowest and highest payment

prices are pmin and pmax, respectively. Let bmin and bmax be the lowest and highest bids

in b, respectively.
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We say a price pk ∈ P is feasible if and only if there is at least one crowdsourcing

worker with a bidding price no higher than p. The maximum number of winners is

constrained by the budget B. In particular, given budget B and payment price p, the

number of winners is at most bB/pc.

Second, for each feasible payment price pk ∈ P , the DBA finds a winner set Wk

using a greedy algorithm. The greedy algorithm explores the fact that the objective

function f(·) in Eq. (3.12) is submodular, non-negative, and monotone [13]. Specifically,

it is easy to see that the f(·) is non-negative as the K-var reduction is always positive

for any non-empty winner set. Moreover, a set function f : 2C → R is submodular if

and only if f(A
⋃
{x})− f(A) ≥ f(B

⋃
{x})− f(B) for any A ⊆ B ⊆ C and x ∈ C \ B.

Submodularity captures the diminishing returns behavior of f : adding a new element

to the input set always results in the increase in f , and the amount of increase reduces

as the number of existing elements increases. Finally, f(·) is monotone if and only if

f(A) ≤ f(B) for any A ⊆ B ⊆ C. A widely known result [83] is that for any function

that is simultaneously submodular, monotone, and non-negative, a greedy algorithm

that chooses the local optimal element at each step can find a solution with guaranteed

approximation ratio of 1−1/e, and no polynomial-time algorithm can achieve a better

guarantee unless P = NP .

We now detail the greedy algorithm for winner selection for each payment price.

Consider payment price pk as an example, let Nk = {i|bi ≤ pk} be the set of workers

whose bids are not higher than pk. The DBA maintains a winner set Wk, a set of

candidate workers Ck, where Wk = ∅ and Ck = Nk initially. The winner set is selected

in nk = bB/pkc iterations. In each iteration, the DBA finds worker j from Ck with

j = arg max
j∈Ck

f(Wk

⋃
{j})− f(Wk).

In other words, the measurement from winner j is expected to give the maximum K-var

reduction among all candidate workers. The DBA then moves worker j from candidate

set to the winner set, i.e.,Wk =Wk

⋃
{j} and Ck = Ck \{j}. The algorithm terminates

after nk iterations or Ck is empty, whichever happens the first.
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After computing the all possible winner sets {Wk|pk ∈ P} using the greedy

algorithm, the DBA chooses the final winner set and corresponding payment price

using the exponential mechanism to guarantee differential privacy for workers’ bids.

As discussed in Section 3.3.3, applying the exponential mechanism requires a score

function along with its global sensitivity. Here we choose the objective function f(·) as

the score function, whose global sensitivity is the maximum change that can be caused

by the change in a single bid. In particular, let us represent the greedy algorithm as

a function g(·) that takes a bid profile b, a budget B, and a possible payment price

pk as input and outputs a winner set Wk. The function f ◦ g, i.e., the composition of

functions f and g, then maps a bid profile (along with a budget and a payment price)

into corresponding K-var reduction. Denote by ∆f the global sensitivity of f ◦g, which

we will derive in Section 3.4.3. Given all winner sets {Wk|pk ∈ P}, the DBA first

calculates the probability distribution

Pr[p = pk] =
exp

(
εf(Wk)

2∆f

)
∑

pk∈P exp
(
εf(Wk)

2∆f

)
for all pk ∈ P , where ε is the privacy budget.

The DBA finally chooses the final payment price pk and corresponding winner

set Wk according the computed probability distribution.

We summarize the whole procedure in Algorithm 1. For each feasible payment

price pk ∈ P , the algorithm firstly initializes the winner Wk as an empty set and the

candidate worker set as all the workers whose bids are not higher than payment price

pk (line 2). We then calculate the corresponding winner set Wk for the payment pk

using the greedy algorithm (line 3-6). To achieve differential privacy, we randomly

output price for each winner set according to the distribution (line 8-10) and finally

return the winner set and the corresponding payment price (line 11-12).

3.4.3 Global Sensitivity 4f

We now estimate ∆f , the global sensitivity of function f ◦g. Directly estimating

the global sensitivity of f(·) is unfortunately difficult due to the unpredictable behavior
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Algorithm 1: Winner and payment price determination

input : Bid-location profile b = (b1, . . . , bn) and X = (x1, . . . ,xn), budget
B, and privacy budget ε, global sensitivity ∆f

output: Winner set W and payment price p
1 foreach pk ∈ P do
2 Wk ← ∅, Ck ← {j|bj ≤ pk};
3 while |Wk| ≤ bB/pkc do
4 Find worker j with j = arg maxj∈Ck f(Wk

⋃
{j})− f(Wk);

5 Wk ←Wk

⋃
{j}, Ck ← Ck \ {j};

6 end

7 end
8 foreach pk ∈ P do

9 Calculate Pr[p = pk] =
exp
(
εf(Wk)

2∆f

)
∑
pk∈P

exp
(
εf(Wk)

2∆f

) ;

10 end
11 Randomly pick a price pk along with winner set Wk according to the

computed distribution;
12 return 〈Wk, pk〉;

of the greedy algorithm. Instead, we seek to derive an upper bound of ∆f that suffices

to provide differential privacy guarantee.

Theorem 2. Let b and b′ be any two bid profiles that differ in a single bid. For any

payment price pk ∈ P , letWk andW ′k be the winner sets chosen by the greedy algorithm

based on b and b′, respectively. We have

|f(Wk)− f(W ′k)| ≤ (bB/pminc/e+ 1)ϕ , (3.11)

where ϕ = maxi∈N f({i}).

Proof. Let Ck and C ′k be the candidate sets for any payment price pk ∈ P under bid

profiles b and b′, respectively. Since b and b′ differ in a single bid, Ck and C ′k differ in at

most one element. Without loss of generality, suppose that Ck = C ′k
⋃
{j}, e.g., worker

j is excluded from C ′k because bj ≤ pk < b′j.
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We now consider the following subset selection problem.

Maximize f(W)

subject to W ⊆ C,

|W| = nk,

(3.12)

where nk = bB/pkc is the number of winners chosen by the greedy algorithm.

Let Wopt,k and W ′opt,k be the optimal winner sets chosen from Ck and C ′k, re-

spectively. Also let Wk and W ′k be the winner sets chosen from Ck and C ′k by the

greedy algorithm, respectively. Since C ′k ⊂ Ck, we have W ′opt,k ⊂ Ck, and therefore

f(Wopt,k) ≥ f(W ′opt,k).

Since function f(·) is non-negative, monotone, and submodular, the greedy al-

gorithm can produce a solution within (1 − 1
e
) of the optimal solution. We therefore

have

(1− 1

e
)f(Wopt,k) ≤ f(Wk) ≤ f(Wopt,k),

and

(1− 1

e
)f(W ′opt,k) ≤ f(W ′k) ≤ f(W ′opt,k).

It follows that

|f(Wk)− f(W ′k)| ≤ max(f(W ′opt,k)−
(

1− 1

e

)
f(Wopt,k),

f(Wopt,k)−
(

1− 1

e

)
f(W ′opt,k))

= f(Wopt,k)−
(

1− 1

e

)
f(W ′opt,k),

where the last equation holds because f(W ′opt,k) ≤ f(Wopt,k).

Let ϕ = maxi∈N f({i}) be the maximal K-var reduction caused by a single

worker among all workers. Since f(·) is submodular, we have

f(Wopt,k) ≤ f(W ′opt,k

⋃
{j})

≤ f(W ′opt,k) + f({j}) ≤ f(W ′opt,k) + ϕ
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In addition, since f(Wopt,k) ≤ nkϕ and nk ≤ bB/pminc, it follows that

|f(Wk)− f(W ′k)| ≤ f(W ′opt,k) + ϕ−
(

1− 1

e

)
f(W ′opt,k)

=
1

e
f(W ′opt,k) + ϕ ≤

(nk
e

+ 1
)
ϕ

≤ (bB/pminc/e+ 1)ϕ.

3.5 Theoretical Analysis

We first have the following theorems regarding DPS’s differential privacy guar-

antee.

Theorem 3. The DPS auction mechanism is ε-differentially private.

Proof. Let b and b′ be two bid profiles that differ in only one worker’s bid. For any

payment price pk ∈ P , letWk andW ′k be the winner sets chosen by the greedy algorithm

based on b and b′, respectively.

Pr(M(b) = pk)

Pr(M(b′) = pk)
=

exp
(
εf(Wk)

2∆f

)
∑
pk∈P

exp
(
εf(Wk)

2∆f

)
exp

(
εf(W′

k
)

2∆f

)
∑
pk∈P

exp

(
εf(W′

k
)

2∆f

)

=
exp

(
εf(Wk)

2∆f

)
exp

(
εf(W ′k)

2∆f

) · ∑pk∈P exp
(
εf(W ′k)

2∆f

)
∑

pk∈P exp
(
εf(Wk)

2∆f

)
= exp

(
ε(f(Wk)− f(W ′k))

2∆f

)
·

∑
pk∈P exp

(
εf(W ′k)

2∆f

)
∑

pk∈P exp
(
εf(Wk)

2∆f

)
≤ exp

(
ε∆f

2∆f

)
·

∑
pk∈P exp

(
ε(f(Wk)+∆f)

2∆f

)
∑

pk∈P exp
(
εf(Wk)

2∆f

)
= exp

( ε
2

)
·

exp
(
ε∆f
2ε∆f

)∑
pk∈P exp

(
εf(Wk)

2∆f

)
∑

pk∈P exp
(
εf(Wk)

2∆f

)
= exp

( ε
2

)
· exp

( ε
2

)
= exp(ε) .

(3.13)
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The following theorem is about DPS’s budget feasibility.

Theorem 4. The DPS auction mechanism is budget feasible.

Proof. For any output winner set and payment 〈Wk, pk〉$, they satisfies |Wk| ≤ bB/pkc

according to the Algorithm. 1. Then the total payment is |Wk| × pk ≤ B

Let ∆p = pmax−pmin. We have the following theorem regarding the truthfulness

of the auction mechanism.

Theorem 5. The DPS auction is ε∆p-truthful.

Proof. Consider an arbitrary worker j ∈ N whose true valuation of the sensing cost is

uj. Let b and b′ be two bid profiles that differ in only worker j’s bid, e.g., j bids uj and

bj 6= uj in b and b′, respectively. Similar to the proof of Theorem 3, for any pk ∈ P , we

have Pr(M(b) = pk) ≥ exp(−ε)Pr(M(b′) = pk).

It follows that

Epk∼M(b)[ui(pk)] =
∑
pk∈P

ui(p)Pr(M(b) = pk)

≥
∑
pk∈P

ui(pk)Pr(M(b′) = pk)

= exp(−ε)Epk∼M(b′)[ui(pk)]

≥ (1− ε)Epk∼M(b′)[ui(pk)]

= Epk∼M(b′)[ui(pk)]− εEpk∼M(b′)[ui(pk)].

(3.14)

Since ui(pk) ≤ pmax − pmin = ∆p. We have

Epk∼M(b)[ui(pk)] ≥ Epk∼M(b′)[ui(pk)]− ε∆p.

We therefore conclude that our DPS auction is ε∆p-truthful.

The next theorem is about DPS’s computational efficiency.
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Theorem 6. Under DPS, the winner set and payment price can be computed in poly-

nomial time.

Proof. We first measure the computational complexity of DPS in terms of the number

of calls to function f(·). For each payment price pk ∈ P , we need choose at most N

winners, one in each iteration. In each iteration, finding the worker with the maximum

K-var reduction takes O(N) time. The complexity of computing all possible winner

sets is thus O(|P |N2). In addition, the evaluation of f(·) takes polynomial time in

terms of the total number of spectrum measurements. Therefore, the winner set and

payment price can be computed in polynomial time.

DPS is also individually rational.

Theorem 7. DPS achieves individually rationality.

Proof. Under DPS, each worker i’s utility is pk − vi if he is selected as a winner and

paid pk and zero otherwise. For any final payment price pk, only the workers whose

bid is lower than pk can be selected. A worker cannot receive negative utility if he bids

truthfully. Therefore, DPS is individually rational.

Finally, we have the following theorem regarding the quality of the REM pro-

duced by the auction mechanism.

Theorem 8. LetWopt be the optimal winner set among all possible winner sets {Wp|p ∈

P}. Assume that Algorithm 1 outputs a winner set Wk with payment price pk. The ex-

pected average K-var reduction given by Wk and the maximum average K-var reduction

given by f(Wopt) satisfies that

Epk∈P [f(Wk)] ≥ f(Wopt)− ln

(
e+

ε|P |f(Wopt)

2∆f

)
×
(

6∆f

ε

)
.

Proof. We start by defining the following four sets for any constant t > 0, including

Bt = {pk|f(Wk) > f(Wopt) − t}, B̄t = {pk|f(Wk) ≤ f(Wopt) − t},B2t = {pk|f(Wk) >

f(Wopt)− 2t}, and B̄2t = {pk|f(Wk) ≤ f(Wopt)− 2t}.
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Since Pr[pk ∈ Bt] ≤ 1, we have

Pr[pk ∈ B̄2t] ≤
Pr[pk ∈ B̄2t]

Pr[pk ∈ Bt]

=

∑
pk∈B̄2t

exp
(
εf(Wk)

2∆f

)
∑
pi∈P

exp
(
εf(Wi)

2∆f

)
∑

pk∈Bt
exp
(
εf(Wk)

2∆f

)
∑
pi∈P

exp
(
εf(Wi)

2∆f

)

=

∑
pk∈B̄2t

exp
(
εf(Wk)

2∆f

)
∑

pk∈Bt exp
(
εf(Wk)

2∆f

)
<
|B̄2t| exp

(
ε(f(Wopt)−2t)

2∆f

)
|Bt| exp

(
ε(f(Wopt)−t)

24f

)
=
|B̄2t|
|Bt|

exp

(
−εt
2∆f

)
.

Since Pr[pk ∈ B̄2t] + Pr[pk ∈ B2t] = 1, it follows that

Pr[pk ∈ B2t] = 1− Pr[pk ∈ B2t]

> 1− |B̄2t|
|Bt|

exp

(
−εt
2∆f

)
.

We can estimate the Epk∈P [f(Wk)] as

Epk∈P [f(Wk)] =
∑
pk∈P

f(Wk)Pr[p = pk]

≥
∑
pk∈B2t

f(Wk)Pr[p = pk]

≥ (f(Wopt)− 2t)Pr[pk ∈ B2t]

≥ (f(Wopt)− 2t)

(
1− |B̄2t|
|Bt|

exp

(
−εt
2∆f

))
= (f(Wopt)− 2t)

(
1− |P | exp

(
−εt
2∆f

))
,

(3.15)

where the last inequality holds as |B2t| ≤ |P | and |Bt| ≥ 1.

For any t that satisfies the following inequality

t ≥ ln

(
f(Wopt)|P |

t

)
×
(

2∆f

ε

)
, (3.16)
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we have

exp

(
−εt
2∆f

)
≤ exp

−ε
(

ln
(
f(Wopt)|P |

t

)
×
(

2∆f
ε

))
2∆f


=

t

f(Wopt)|P |
.

(3.17)

Plugging Inequality. (3.17) into Eq. (3.15), we get

Epk∈P [f(Wk)] = (f(Wopt)− 2t)

(
1− |P | exp

( −εt
2∆f

))
≥ (f(Wopt)− 2t)

(
1− |P | · t

f(Wopt)|P |

)
= f(Wopt)− 3t+

2t2

f(Wopt)

> f(Wopt)− 3t,

(3.18)

if Inequality (3.16) holds.

We now show that t = ln
(
e+ ε|P |f(Wopt)

2∆φ

)
×
(

2∆φ
ε

)
satisfies Inequality (3.16).

In particular, since ln
(
e+ ε|P |f(Wopt)

2∆φ

)
> 1, we have t > 2∆φ

ε
. In addition, since

ln
(
e+ ε|P |f(Wopt)

2∆φ

)
> ln

(
ε|P |f(Wopt)

2∆φ

)
, we have

t = ln

(
e+

ε|P |f(Wopt)

2∆f

)
×
(

2∆f

ε

)
≥ ln

(
|P |f(Wopt) ·

ε

2∆f

)
×
(

2∆f

ε

)
> ln

(
|P |f(Wopt)

t

)
×
(

2∆f

ε

)
.

Finally, substituting t = ln
(
e+ ε|P |f(Wopt)

2∆φ

)
×
(

2∆φ
ε

)
into Eq. (3.18), we obtain

Epk∈P [f(Wk)] ≥ f(Wopt)− ln

(
e+

ε|P |f(Wopt)

2∆f

)
×
(

6∆f

ε

)
.

The theorem is therefore proved.

3.6 Simulation Results

In this section, we evaluate the performance of our auction mechanism via sim-

ulation using a real spectrum measurement dataset.
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Table 3.1: Default Simulation Settings

Para. Val. Description.
pmin 1 The lowest payment price
pmax 2 The highest payment price
bmin 2 The lowest bid price
bmax 2 The highest bid price
|P | 101 The number of possible payment prices
|S| 5 The number of dedicated sensors
ε 0.1 Privacy budget
|N | 140 The number of crowdsourcing workers
B 30 Budget

3.6.1 Dataset

As in [29, 80], we use the CRAWDAD cu/wimax dataset [59] for our simulation

studies. The cu/wimax dataset was collected at the University of Colorado Boulder

(UC) and contains the signal-to-interference-plus-noise ratio (CINR) measurements of

five WiMax base stations serving the University of Colorado campus. The measure-

ments were taken by a portable spectrum analysis on a 100m equilateral triangular

lattice. For our purpose, we chose the total 145 measurements for channel 308 and

BSID 3674210305.

3.6.2 Simulation Settings

We randomly divide the total 145 measurements into a set of 5 measurements

as the ones reported by dedicated anchor sensors and a set of the remaining 140 as

submitted by mobile crowdsourcing workers. We fit the semivariogram from the total

145 measurements along with the locations where they are taken. We also assume that

the semivariogram of each location in OK is inherent constant and it has been known

to the DBA. In addition, for each mobile worker, their bid price is randomly picked

among (1, 1.01, · · · , 2). Every point in the subsequent figures is the average of 100

runs, each with a distinct seed. Table 3.1 summarizes our default simulation settings

unless mentioned otherwise.
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Since DPS is the first proposal for crowdsourcing-based REM construction, we

compare the performance of DPS with other two strategies.

• Baseline differentially private auction (BDPA): In BDPA, for each possible

price pk ∈ P , the DBA first computes predicted average K-var reduction f({i})
for each worker i ∈ Nk and selects winner set Wk as the bB/pkc workers with

the highest average K-var reductions. The final winner set and payment price

are then chosen using the exponential mechanism as in Algorithm 1 line 11. It

is easy to verify that BDPA achieves approximate truthfulness and ε differential

privacy as DPS.

• Optimal single-price auction (OSPA): In OSPA, for each possible price

pk ∈ P , the DBA chooses the corresponding winner setWk using the greedy algo-

rithm as in Algorithm 1 and then selects the final winner set with corresponding

payment price as the one that gives the maximum average K-var reduction. The

K-var reduction achieved by OSPA can be viewed as the upper bound of the

DPS.

We use three metrics to evaluate the performance of DPS: average K-var re-

duction, individual worker’s utility, and privacy leakage. Besides the average K-var

reduction and individual worker’s utility defined in Section II, the privacy leakage is

defined as follows.

Privacy Leakage. We use the Kullback-Leibler divergence [84] to evaluate

the privacy leakage of DPS. Let b and b′ be two bid profiles that differ in a single bid.

Denote their payment probability distributions under DPS as Pr(M(b)) and Pr(M(b′)),

respectively. The privacy leakage in terms of the Kullback-Leibler divergence of the

two probability distribution is defined as

PL = KL
(
Pr(M(b))|Pr(M(b′))

)
=
∑
pk∈P

Pr(M(b) = pk) ln

(
Pr(M(b) = pk)

Pr(M(b′) = pk)

)
.

KL divergence indicates the statistical difference between two probability distributions.

Generally, the smaller value of KL, the harder to distinguish the two bid profiles and
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Figure 3.1: K-var reduction vs. budget
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Figure 3.2: K-var reduction vs. privacy
budget ε.

thus better protection of workers’ bid privacy. Thus, PL can quantify the privacy

preserving performance.

3.6.3 Simulation Results

We now report our simulation results.

3.6.3.1 Impact of Budget B

Fig. 3.1 compares the K-var reductions under BDPA, OSPA, and DPS with

total budget B varying from 10 to 80. As we can see, as the total budget increases,

the average K-var reductions of all three mechanisms increase. This is anticipated,

as the higher budget, the more winners chosen by the DBA, the higher average K-var

reduction, and vice versa. Moreover, the OSPA’s K-var reduction is always the highest,

which confirms that it is the upper bound of the DPS mechanism. While DPS’s average

K-var reduction is slightly lower than that of OSPA, it outperforms BDPA by a large

margin. These results indicate that DPS can achieve approximate maximal K-var

reduction while providing differential bid privacy to crowdsourcing workers.

3.6.3.2 Impact of Privacy Budget ε

Fig. 3.2 compares the K-var reductions of BDPA and DPS varying with privacy

budget ε, where the K-var reduction of AMNDP is not affected by the change in ε and
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is plotted for reference only. As we can see, the K-var reductions of DPS and BDPA

both increase as ε increases. The reason is that the larger ε, the higher the probability

of a high-quality winner set and payment price being selected by the exponential mech-

anism, the higher K-var reduction, and vice versa. Moreover, the variance of K-var

reductions of both BDPA and DPS decrease as ε increases, which is anticipated. In ad-

dition, the K-var of DPS is always higher than that of BDPA by a large margin, which

confirms the effectiveness of the greedy algorithm in selecting high-quality winner set.

3.6.3.3 Impact of the Number of Workers

Fig. 3.3 compares the K-var reductions of BDPA, OSPA, and DPS as the number

of participating workers increases from 20 to 140. We can see that the K-var reductions

of all three mechanisms increase as the number of participating workers increases, as

the DBA can select more winners. Similar to Fig. 3.1, the OSPA’s K-var reduction

is always the highest, followed by DPS, and that of BDPA is the lowest. It is worth

noting that when the number of participating workers is small, the advantage of DPS

over OSPA is small. For example, when the number of participating workers is 20,

DPS and OSPA have the same K-var reduction. This is because the DBA can afford

to select all the workers as winners in such cases. Finally, the difference between DPS

and AMNDP is caused by the exponential mechanism and can be viewed as the cost

of providing differential bid privacy.
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Figure 3.4: Expected utility of individual worker under different bid prices

3.6.3.4 Truthfulness

While we have proved that DPS is ε∆p-truthful in Theorem 5, ε∆p is an upper

bound of the utility that any individual worker can achieve by not bidding truthfully.

In this set of experiments, we randomly select one worker, fix his true valuation of

the task, and vary his bidding price. For each bid price, we calculate the probability

distribution of the final winner set and payment price to obtain the worker’s expected

utility, i.e.,
∑

pk∈P u(pk).

Fig. 3.4 illustrates the individual worker’s expected utility with his bidding

price varying from 1 to 2. Specifically, Figs. 3.4a to 3.4c show the individual worker’s

expected utility under different budgets, privacy budget εs, and true valuations of the

sensing cost, respectively. In all three figures, the vertical dotted lines represent the

true valuations of the sensing cost. In all three figures, we can see that the maximum
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Figure 3.5: K-var reduction and privacy leakage vs. ε.

expected utility of the worker is achieved when he bids truthfully. While these results

cannot prove that DPS is fully truthful, they nevertheless indicate that individual

worker is very unlikely to increase his utility by deviating from his true valuation.

3.6.3.5 Privacy Leakage

Fig. 3.5 shows the privacy leakage and K-var reduction under DPS varying

with privacy budget ε. As we can see, as ε increases, the privacy leakage and K-var

reduction both increase. This is expected, as the larger ε, the higher the probability of

high-quality winner set being selected by the exponential mechanism, the higher K-var

reduction, and vice versa. At the same time, the higher ε, the less privacy protection,

and the larger privacy leakage, and vice versa. Generally speaking, the choice of ε

represents a trade-off between the quality of the winner set (i.e., REM’s accuracy) and

privacy leakage.

3.7 Summary

In this chapter, we have introduced the design and evaluation of DPS, a novel

differentially-private reverse auction mechanism for crowdsourced REM construction.

We have proved that the proposed auction mechanism achieves approximate truth-

fulness, differential privacy, and near-optimal REM accuracy. Extensive simulation

studies using a real spectrum measurement dataset confirm the efficacy and efficiency

of the proposed mechanism.
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Chapter 4

SECURE EDGE COMPUTING-BASED SPECTRUM ACCESS
REQUEST PROCESSING

4.1 Introduction

In a database-driven DSS system, the DBA potentially needs to process a large

number of spectrum access requests from many SUs in real-time. A naive approach

is to relying on a single DBA server to process all the requests in centralized fashion,

which would not only place a high burden on the DBA’s processing capability, but

also may result in higher processing latency due to the large distance between some

SUs and the DBA. Moreover, such an approach also suffers from a single point of

failure and reduces the reliability of the DSS system. A more promising approach is

to embrace the emerging edge computing paradigm by outsourcing the processing of

spectrum access requests to third-party edge computing service providers. As shown

in Fig. 4.1, the DBA can proactively push spectrum availability updates to distributed

edge servers at a sufficiently high frequency, and edge servers process spectrum-access

requests from nearby SUs on the DBA’s behalf. Exploring edge computing for spectrum

access request processing cannot only greatly reduce the processing latency, but also

offers much better scalability and reliability than the centralized approach.

Edge computing-based spectrum access requests processing, unfortunately, is

vulnerable to untrusted edge servers. In particular, third-party edge servers cannot

be fully trusted to process spectrum-access request based on the most recent spec-

trum availability updates for various reasons. For example, a compromised edge server

may blindly grant spectrum access requests to cause harmful interference to PUs so

as to damage the DBA’s reputation. As another example, some edge computing ser-

vice providers may discriminate some SUs, e.g., those with no long term membership
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Figure 4.1: Framework of outsourced spectrum access request processing.

subscription, by denying their spectrum access requests. Last but not least, an in-

termittent network outage may result in an honest edge server processing spectrum

access requests based on authentic but stale spectrum availability information. These

situations call for sound authentication techniques to ensure any decision on spectrum

access requests is based on authentic and up-to-date spectrum availability information

from the DBA.

We observe that similar problems have been studied in the context of authen-

ticated query processing in the data outsourcing paradigm, in which a data owner

(e.g., the DBA) outsources its dataset and query processing to a third party service

provider (e.g., the edge servers), which in turn answers data queries from users (e.g.,

SUs) on the data owner’s behalf. While ensuring query-result authenticity, i.e., the

query result contains only authentic and complete data, has been extensively studied

in the past [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96], authenticating query-result

freshness has thus far received very limited attention. Common to existing solutions

[97, 98, 99, 100, 101] is to divide the time into intervals and let the data owner to

generate a cryptographic proof for every interval with no update. On receiving a query

from a user, the third-party service provider is required to return the most recent

update along with the proof of no update for every subsequent interval. Since the
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size of the proof is proportional to the number of intervals after the most recent up-

date, it is inversely proportional to the length of the interval. The state-of-art solution

[101] suggests minute-based intervals to strike a good balance between communica-

tion cost and real-time guarantee, which is unable to meet the stringent real-time

requirement of spectrum access requests processing. When applying these solutions to

edge-computing-powered spectrum-access request processing, they suffer from either

extremely high communication cost because of small time interval or inadequate real-

time guarantee caused by large time interval. There is thus a pressing need to develop

communication-efficient freshness authentication techniques without such limitations.

In this chapter, we tackle this challenge by introducing KV-Fresh, a novel fresh-

ness authentication techniques for edge computing-based spectrum access requests pro-

cessing that can support much stronger real-time guarantee, e.g., second or millisecond-

based interval, with low communication cost. Specifically, we model the spectrum

updates from a DBA as a multi-version key-value store and map the problem of au-

thenticating spectrum access request processing against untrusted edge servers into

authenticated outsourced query processing. A key-value store is a database storing

a collection of data records, each of which is a key-value pair that can be efficiently

retrieved using the key. In a multi-version key-value store, the data value of a record

(i.e., the spectrum availability at a cell) has multiple versions, each of which is an

updated value received at a different time. Commercial examples of key-value stores

include MongoDB, Amazon DynamoDB, Azure Cosmos DB, and so on. We consider

a more general problem in which a user may ask for the most recent data record as of

any given time including now. We observe that the key to meet both requirements is

to break the linear dependence between the proof size and the number of intervals after

the latest update. Based on this observation, we propose a novel data structure that

embeds a chaining relationship among updates in different intervals to realize efficient

freshness proof. Built upon this novel data structure, KV-Fresh allows the third party

service provider to prove the freshness of any query result by returning information for

only a small number of intervals while skipping potentially many intervals in between.
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Our contributions in this chapter can be summarized as follows.

• We advocate for edge computing-based spectrum access request processing for

reducing processing latency and improving the DSS system’s scalability and reli-

ability and identify the need for authenticated spectrum access request process-

ing.

• We map the problem of authenticating spectrum access request processing against

untrusted edge servers into authenticated outsourced query processing over multi-

version key-value store.

• We propose a novel data structure that allows highly efficient proof of no update

over a large number of intervals.

• We introduce KV-Fresh, a novel freshness authentication mechanism for out-

sourced spectrum availability updates that can provide stronger real-time guar-

antee with low communication cost.

• We confirm the high efficiency of KV-Fresh via extensive simulation studies using

a synthetic dataset generated from a real dataset. In particular, our simulation

results show that KV-Fresh reduces the communication cost by up to 99.6%

for proving data freshness and achieves up to nine times higher throughput in

comparison with the state-of-art solution INCBM-TREE [101].

The rest of this chapter is structured as follows. Section 4.2 discusses the re-

lated work. Section 4.3 formulates the problem. Section 4.4 introduces a novel data

structure, LKS-MHT, and proposes an efficient freshness authentication mechanism,

KV-Fresh built upon LKS-MHT. We evaluate the performance of KV-Fresh in Sec-

tion 4.5 and finally conclude this chapter in Section 4.6.

4.2 Related Work

Existing solutions for authenticating data freshness in data outsourcing can be

generally classified into two categories. The first category relies on the data owner to

construct and maintain a proper data digest at the third party, such as a Merkle Hash

tree or its variants [97, 102, 98, 103, 99]. These approaches require the data owner
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to maintain large local states about historical data or incur significant cost between

the data owner and third party service provider. The second category [104, 105, 106]

detects the third party’s misbehavior via an offline auditing process, which cannot

guarantee data freshness in real time. To authenticate data freshness in real time,

Yang et al. introduced a design based on trusted computing hardware [100]. In [101],

Tang et al. introduced INCBM-TREE, a data structure based on the Bloom filter

and multi-level key-ordered Merkle hash tree. But INCBM-TREE can only support

relaxed real-time freshness check at the granularity of minute-based intervals, as the

size of the freshness proof is inversely proportional to the interval length. Our proposed

research is mostly related to [101] and enables freshness verification at much smaller

time granularity without using trusted computing hardware.

Our work is also related to authenticating outsourced data processing [85], in

which a data owner outsources its data to a third-party service provider who is respon-

sible for answering the data queries from end users on the owner’s behalf. Significant

effort has been devoted to ensuring query integrity, i.e., that a query result is indeed

generated from the outsourced data and contains all the data satisfying the query. Var-

ious types of queries have been studied, including relational queries [86, 87, 88], range

queries [89, 90], skyline queries [91, 92, 93], top-k queries [94, 95, 96], kNN queries

[107, 108], shortest-path queries [109], etc. Common to these proposals is to let the

data owner outsource both its dataset and signatures to the service provider which re-

turns both the query result and a verification object computed from the data owner’s

signatures, whereby the querying user can verify query-result integrity. None of these

works consider the freshness of returned data records, and they are thus inapplicable

to the problem addressed in this chapter.

4.3 Problem Formulation

In this section, we formulate the problem by detailing the data model, system

models, adversary model, and design goals.
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Figure 4.2: Illustration of a data outsourcing system.

4.3.1 Data Model

We model the spectrum availability information pushed by the DBA to local

edge servers as a multi-version key-value store. In particular, we assume the DBA

divides its service region into K non-overlapping cells of equal size, denoted by K =

{1, . . . , K}. We assume that all the locations within the same cell have the same

spectrum availability at any given time. The spectrum availability in each cell k ∈ K is

represented as Vk = 〈k, v, t〉, where k is the cell ID and serves as the key, v is the latest

spectrum availability in cell k, and t is the timestamp at which the latest spectrum

update is received. The spectrum availability value v is updated over time and can be

of different forms. For example, v = 0 can indicate the channel is vacant while v = 1

indicates the channel is busy. As another example, v can represent the PU’s received

signal strength based on the REM maintained at the DBA. Without loss of generality,

we assume v ∈ R.

4.3.2 System Model

We map the problem of authenticating outsourced spectrum access requests

processing into authenticated query processing in data outsourcing. We consider a

data outsourcing system consisting of three parties: a data owner (i.e., the DBA), a

cloud server owned by a third-party service provider (i.e., the edge server), and many
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end users (i.e., SUs). The data owner outsources a dataset in the form of a multi-

version key-value store to the cloud server, which in turn answers data queries from

users on behalf of the data owner.

As shown in Fig. 4.2, the data owner proactively pushes key-value records

{〈k, v, t〉|k ∈ K} to the cloud server as they become available. We assume that the

data owner has limited storage and only has the most recent key-value records for any

k ∈ K. The cloud server maintains the collection of key-value records from the data

owner, commonly referred to as multi-version key-value store, and based on which pro-

cess data queries from end users on the data owner’s behalf. Users access data records

in the key-value store through the cloud server’s GET API that supports both point

queries and range queries. Specifically, a point query is represented as Q(k, tq), where

k is the queried key and tq is an optional parameter indicating the point of time up

to which the data record is requested. On receiving a query Q(k, tq), the cloud server

needs to return the most recent data record for key k as of tq. Moreover, a range query

is modeled by Q([l, r], tq), where 1 ≤ l < r ≤ |K| and [l, r] denotes the range of keys

being queried. On receiving query Q([l, r], tq), the cloud server needs to return the

most recent data records for every key k ∈ [l, r] as of tq. It is easy to see that point

query is a special case of range query where l = r. For both point queries and range

queries, the absence of the optional parameter tq indicates that the user is asking for

the most recent data record for a specific key or the most up-to-date records for a set

of keys belonging to the key range as of now.

4.3.3 Adversary Model

We assume that the data owner is trusted to faithfully perform all system op-

erations. In contrast, the cloud server cannot be fully trusted and may launch the

following two attacks. First, the cloud server may return forged or tampered data

records that do not belong to the data owner’s dataset. Second, the cloud server may

return authentic but stale data records in response to the user’s GET query.
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We assume that the communication channels between the data owner and the

cloud server as well as between the cloud server and users are secured using standard

techniques, e.g., TLS [52]. In addition, we also assume that the data owner cannot

predict the keys that the user will query in advance.

4.3.4 Design Goals

Strict freshness verification—also referred to as real-time freshness check in

[101]—requires the cloud server to not only push authenticated data updates to the

cloud sever as soon as there are available but also constantly inform the cloud server

even if there is no update, which would result in prohibitive processing and communica-

tion cost. As in the state-of-art solution in [101], we seek to achieve relaxed real-time

freshness verification. Specifically, we assume that time is divided into intervals of

equal length, which means that the data owner pushes authenticated data updates to

the cloud server on the interval basis. To ease the presentation, we assume that in

every interval, every data object k ∈ K has either no or just one new updated value.

Note that our proposed mechanism can be easily adapted to support multiple updated

values in one interval.

In view of the aforementioned two attacks, we aim to design a freshness authen-

tication mechanism to allow a user to verify whether the query result returned by the

cloud server satisfies the following two conditions.

• Query-result integrity : for each queried key k, the returned data value v is indeed

an updated value from the data owner and has not been tampered with.

• Query-result freshness : for each queried key k, there is no update in any interval

that starts after t and ends before or exactly at tq.

In other words, we aim to achieve relaxed real-time freshness verification because

it cannot guarantee no update for key k in the interval that encloses tq. The smaller the

interval size, the stronger the real-time guarantee, and vice versa. We aim to support

strong real-time guarantee with millisecond-based intervals and low communication and
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computation costs. In particular, the mechanism should incur low update cost between

the data owner and the cloud server as well as low communication and computation

cost for proving data freshness.

4.4 KV-Fresh

In this section, we first introduce two strawman approaches for freshness au-

thentication followed by an overview of KV-Fresh. We then introduce a novel data

structure that underpins KV-Fresh and its construction. Finally, we detail the design

of KV-Fresh.

4.4.1 Two Strawman Approaches

We first introduce two strawman approaches to enable query-result integrity

and freshness verification.

Strawman Approach 1. The first approach is to let the data owner maintain

the most recent update for every key and build a Merkle hash tree over all data records

in every interval, some of which are updated in the current interval and the rest are

copied from the previous interval. The data owner pushes the Merkle hash tree to

the cloud server. With the Merkle hash tree constructed for every interval, the cloud

server can prove the integrity and freshness of the query result. This approach incurs

low communication cost for proving data freshness but excessively high update cost

between the data owner and cloud server, as the data owner has to transmit information

for every key even if many have no update in the short interval. In particular, the

update cost between the data owner and the cloud server is linear to the size of the

key space.

Strawman Approach 2. The second approach is to let the cloud server con-

struct a Key-Ordered Merkle Hash Tree (KOMT) for every interval over only keys with

update, where the absence of a key implicitly indicates that the most recent update for

this key happened in one of the previous intervals. Given a batch of key-value records,

the data owner sorts the records according to their keys and builds a Merkle hash
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tree over the sorted list. Doing so can minimize the communication cost between the

data owner and the cloud server due to fewer leaf nodes in each KOMT. However, it

still incurs high communication cost for proving data freshness if each key is updated

infrequently, as the cloud server needs to prove that there is no update in possibly

many intervals after the most recent update. More importantly, the number of inter-

vals after the most recent update is inversely proportional to the size of interval, which

means that strong real-time guarantee, i.e., small interval size, would incur significant

communication cost for proving data freshness.

4.4.2 Overview Of KV-Fresh

KV-Fresh is designed to take the advantages of both strawman approaches by

striking a good balance between the update cost between data owner and cloud service

provider and the size of freshness proof. In particular, the first strawman approach

achieves low communication cost for proving data freshness by copying the most recent

update to the Merkle hash tree constructed for the current interval. Doing so allows

the cloud server to prove data freshness using the Merkle hash tree constructed for the

current interval. In contrast, the second approach achieves low update cost between

the data owner and the cloud server by greatly reducing the number of leaf nodes of

the Merkle hash tree constructed for every interval. We find that the key to realize

efficient freshness authentication with strong real-time guarantee is to simultaneously

maintaining small Merkle hash tree size while realizing efficient proof of no update in

possibly many intervals after the most recent update.

Based on the above observation, we introduce Linked Key Span Merkle Hash

Tree (LKS-MHT), a novel data structure to achieve small Merkle hash tree size in every

interval while allowing efficient proof of no update in possibly many intervals. The key

idea behind LKS-MHT is to bundle adjacent keys with no update in one interval as a

key block to reduce the number of leaf nodes. To enable efficient proof of no update

over multiple intervals, each key block embeds the index of an earlier interval if none

of the keys in the block has update after the earlier interval. This allows the cloud

72



Figure 4.3: An example of LKS-MHT.

server to skip possibly many intervals in between in the freshness proof. LKS-MHT can

effectively break the linear dependence between the freshness proof size and the number

of intervals with no update and thus enables highly efficient freshness authentication.

Under KV-Fresh, the data owner builds one LKS-MHT for every interval and

pushes the LKS-MHT to the cloud server. The LKS-MHT contains information for

every key in the key space, either an updated value received in the current interval

or an index of an earlier interval, for which the LKS-MHT contains the most recent

update or the index of another earlier interval. On receiving a GET query from the

end user, the cloud server returns the LKS-MHT leaf node containing the queried key

in the queried interval. If there is no update for the key in the queried interval, the

cloud server further returns the LKS-MHT leaf node for the interval with an index

embedded in the leaf node of the queried interval. This process continues until the

most recent update for the queried key is found. In what follows, we first introduce

LKS-MHT and its construction and then detail the operations of KV-Fresh.

4.4.3 LKS-MHT:Linked Key Span Merkle Hash Tree

We now introduce LKS-MHT, the data structure that underpins KV-Fresh.

An LKS-MHT Ti is a binary tree constructed for each interval i with θi leaf nodes

Li,1, . . . , Li,θi . Every leaf node Li,j, 1 ≤ j ≤ θi, consists of the following fields.
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(1) A key block Ki,j = [li,j, ri,j] with li,j, ri,j ∈ K and li,j ≤ ri,j. If li,j = ri,j, then

Ki,j represents a single key li,j.

(2.a) An interval index γi,j ∈ {0, . . . , i − 1} that indicates that there is no update for

any key in Ki,j from interval γi,j + 1 to i. In other words, the information about

the most recent update for each key in Ki,j can be found in interval γi,j or earlier.

(2.b) Or an updated key value vik along with timestamp tik, if Ki,j represents a single

key k (i.e., k = li,j = ri,j) which receives an update in interval i.

Given Li,1, . . . , Li,θi , the LKS-MHT is constructed similar to the traditional Merkle

hash tree. In particular, we first calculate hi,j = H(Li,j) for all 1 ≤ j ≤ θi, where

H(·) denotes a cryptographic hash function such as SHA-256. We then compute every

internal node as the hash of the concatenation of its two children. Note that if the

number of leaf nodes is not a perfect power of two, some dummy leaf nodes need be

introduced.

Fig. 4.3 shows an example of the LKS-MHT constructed for an interval i with

the key space K = {1, . . . , 8}. The first leaf node corresponds to key Ki,1 = 1 with

the updated value vi1 and timestamp ti1 received in the interval i; the second leaf node

corresponds to a key block Ki,2 = [2, 4] and an interval index 3, meaning that the most

recent information for keys in [2, 4] can be found in interval 3 or earlier; the third leaf

node corresponds a key block Ki,3 = [5, 7] and an interval index 2, meaning that the

most recent information about any key in [5, 7] can be found in interval 2 or earlier; and

the last leaf node corresponds to key Ki,8 = 8 with updated value vi8 and timestamp

ti8.

To see how LKS-MHT can be used to realize efficient freshness authentication,

consider Fig. 4.4 as an example, where eight LKS-MHTs T1, . . . , T8 are constructed for

intervals 1 to 8 over key space K = {1, 2, 3, 4}. Assume that the user issues a GET

query as Q(2, tq), where tq is the end of interval 8. Since the most recent update for

key 2 is v3
2 received in interval 3, the cloud server needs to prove that there has been

no update in intervals 4 to 8. To do so, the cloud server only needs to return the first

leaf node in LKS-MHT T8, which is a key block [1, 2] and embeds an interval index
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Figure 4.4: Illustration of LKS-MHT-based freshness authentication

6, and the second leaf node in LKS-MHT T6, which is a key block [2, 3] and embeds

an interval index 3, and the second leaf node in LKS-MHT T3, which is a single key 2

with updated value v3
2. As we can see, there is no need for the cloud server to return

any information about intervals 4, 5, and 7.

In the next two subsections, we introduce how to construct the LKS-MHT for

the first interval and the subsequent intervals, respectively.

4.4.4 LKS-MHT Construction in the First Interval

We first show how to construct LKS-MHT Ti for the first interval i (i = 1).

Denote by K1 ⊆ K the subset of keys that receive updates in the first interval. Without

loss of generality, suppose K1 = {k1,1, k1,2, . . . , k1,λ1}, where λ1 = |K1| and k1,1 < k1,2 <

· · · < k1,λ1 . We can see that the λ1 keys, K1 = {k1,1, k1,2, . . . , k1,λ1}, split the whole

key space K = {1, . . . , K} into λ1 + 1 key blocks without update, B1 = [1, k1,1 − 1],

B2 = [k1,1 + 1, k1,2 − 1], . . . , Bλ1+1 = [k1,λ1 + 1, K]. For simplicity, we assume that

none of these key blocks are empty, from which we can form θi = 2λ1 + 1 key blocks

{K1,j}θij=1, where

K1,j =

B(j+1)/2, if j is odd,

k1,j/2, if j is even,
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for all 1 ≤ j ≤ θi. We then create one leaf node L1,j for each key block K1,j, where

L1,j =

〈B(j+1)/2, 0〉, if j is odd,

〈k1,j/2, v
1
kj/2

, t1kj/2〉, if j is even.

4.4.5 LKS-MHT Construction in Subsequent Intervals

We now discuss how to construct LKS-MHT Ti for the subsequent interval i (i ≥

2), for which the key question is to determine the set of key blocks with corresponding

interval index. Let Ki = {ki,1, ki,2, . . . , ki,λi} be the subset of keys that have received

updates in the subsequent interval i, where λi = |Ki| and ki,1 < ki,2 < · · · < ki,λi .

For every subsequent interval i, the leaf nodes of Ti are determined jointly by the leaf

nodes of Ti−1 and Ki in two steps: (1) constructing a set of candidate leaf nodes and

(2) determining the leaf nodes.

Candidate leaf nodes. First, we can obtain a set of candidate leaf nodes

based on Li−1,1, . . . , Li−1,θi−1
, and Ki. Consider as an example a leaf node Li−1,j with

key block Ki−1,j = [li−1,j, ri−1,j] and interval index γi−1,j < i. Assume that |Ki−1,j| ≥ 2.

If no key in Ki−1,j receives any update in interval i, we create one candidate leaf node

the same as Li−1,j. Otherwise, we split Ki−1,j into multiple non-overlapping key blocks

and create one candidate leaf node from each of them. Each candidate leaf node either

contains a key with update in interval i or a key block with no update that inherits the

interval index γi−1,j from Li−1,j. For example, if a single key k ∈ Ki−1,j is updated in

interval i and li−1,j < k < ri−1,j, we can split Ki−1,j into three smaller candidate blocks

and create three candidate leaf nodes: the first one with key block [li−1,j, k − 1] and

the same interval index γi−1,j, the second one with a single key k and updated value vik

and timestamp tik, and the third one with key block [k+1, ri−1,j] and the same interval

index γi−1,j.

We summarize the general procedure for constructing a list of candidate leaf

nodes in Algorithm 1, which takes a list of leaf nodes Li−1,1, . . . , Li−1,θi−1
of LKS-MHT

Ti−1 and Ki as input and outputs a sorted list of candidate leaf nodes Ci. Specifically,

we initiate the list of candidate leaf nodes to an empty list (Line 1). We then create
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Algorithm 2: Construct candidate leaf nodes
input : Leaf nodes Li−1,1, . . . , Li−1,θi−1

and Ki
output: An ordered list of candidate leaf nodes for Ti

1 Ci ← emptylist;
2 foreach j ∈ {1, . . . , θi−1} do
3 Ki,j ← Ki−1,j ;

4 if Li−1,j = 〈k, vi−1
k , ti−1

k 〉 then
5 γi,j = i− 1;
6 end
7 else if Li−1,j = 〈[li−1,j , ri−1,j ], γi−1,j〉 then
8 γi,j = γi−1,j ;
9 end

10 Append Ci,j = 〈Ki,j , γi,j〉 to Ci;

11 end
12 foreach ki,j ∈ Ki do
13 Find Ci,x ∈ Ci such that ki,j ∈ Ki,x;
14 Delete Ci,x from Ci;
15 Insert C∗i = 〈ki,j , viki,j , t

i
ki,j
〉 after Ci,x−1;

16 if ki,j > li,x then
17 Insert 〈[li,x, ki,j − 1], i〉 before C∗i ;
18 end
19 if ki,j < ri,x then
20 Insert 〈[ki,j + 1, ri,x], i〉 after C∗i ;
21 end

22 end
23 return Ci;

one candidate leaf node from each leaf node Li−1,j where the interval index is set to

i − 1 if Li−1,j corresponds to a single key with update in interval i − 1 or γi,j−1 if it

corresponds to a key block (Lines 2 to 11). We then check every key ki,j ∈ Ki to make

necessary adjustment to the candidate leaf nodes (Lines 12 to 22). Specifically, for

every ki,j ∈ Ki, we find the candidate leaf node Ci,x whose key block encloses ki,j and

replace Ci,x with a new candidate leaf node 〈ki,j, viki,j , t
i
ki,j
〉, a candidate leaf node on

the left if ki,j > li,x, and a candidate leaf node on the right if ki,j < ri,x.

Leaf nodes. We now determine the leaf nodes for Ti from the candidate leaf

nodes, for which the key is to merge some adjacent candidate leaf nodes into one to

maintain a small number of leaf nodes. Without merging, the number of leaf nodes

would increase monotonically at every interval and eventually reach |K|, resulting in
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excessive update cost between the data owner and the cloud server as in Strawman

Approach 1.

Under what condition can adjacent candidate leaf nodes be merged? We observe

that multiple adjacent candidate leaf nodes can be merged into one if none of the

keys in the corresponding key blocks is updated in interval i. Specifically, for a group

of adjacent candidate leaf nodes Ci,j, . . . , Ci,j+s for some s ≥ 1, if none of the keys in

their respective key blocks
⋃j+s
x=jKi,x have received any update in interval i, then we can

merge key blocks Ki,j, . . . , Ki,s into one and create a new leaf node as 〈
⋃j+s
x=jKi,x, i−1〉,

which indicates that the most recent information about any key in
⋃j+s
x=jKi,x can be

found in Ti−1.

Which adjacent candidate leaf nodes should be merged? A plausible answer is

to merge every group of consecutive candidate leaf nodes into one to minimize the

number of leaf nodes and thus the update cost between the data owner and the cloud

server. However, doing so would increase the size of freshness proof, as the cloud server

needs to return information for more intervals. Fig. 4.5 shows an example of blindly

merging all possible leaf nodes for 8 LKS-MHTs. Assume that the end user issues a

GET query as Q(2, tq), where tq is at the end of interval 8. The cloud server needs to

return the first leaf node of T8, which is a key block [1, 3] and embeds an interval index

7, and the first leaf node in LKS-MHT T7, which is a key block [1, 2] and embeds an

interval index 6, the second leaf node of T6, which is a key block [2, 4] and embeds an

interval index 5, the first leaf node in LKS-MHT T5, which is a key block [1, 3] and

embeds an interval index 3, and the second leaf node of T2 which is a single key 2 with

the updated value v3
2. In comparison with the previous example shown in Fig. 4.4, the

cloud server needs to return two more leaf nodes.

We first observe that some merging decisions can be made based on whether

related keys have updates in the two intervals. Let Ci = 〈Ci,1, . . . , Ci,φi〉 be the list

of candidate leaf nodes output by Algorithm 1, where φi is the number of candidate

leaf nodes. We define bj as the decision variable such that bj = 1 if Ci,j and Ci,j+1

are merged into one and 0 otherwise for all 1 ≤ j ≤ φi − 1. We find that bj can be
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Figure 4.5: An example of LKS-MHTs constructed under maximum merging.

predetermined in the following two cases.

• Case 1: If either Ci,j or Ci,j+1 corresponds to a single key that has received an

update in interval i, then bj = 0, as the corresponding leaf node needs to record

the updated value and thus cannot be merged with the other.

• Case 2: If Ci,j and Ci,j+1 each correspond to a single key that has received an

update in interval i − 1, i.e., |Ki,j| = |Ki,j+1| = 1 and γi,j = γi,j+1 = i − 1, then

we should merge them into one, i.e., bj = 1. Doing so can reduce the number of

leaf nodes without increasing freshness proof size, because the cloud server needs

to return the leaf node for at least one interval after the most recent update in

interval i− 1.

Based on the above observations, we define three index sets as Φ = {1, . . . , φi−

1},Φ0 = {j|j ∈ Φ, Ki,j ∈ Ki ∨ Ki,j+1 ∈ Ki} and Φ1 = {j|j ∈ Φ, |Ki,j| = |Ki,j+1| =

1, γi,j = γi,j+1 = i − 1}, where Φ0 and Φ1 correspond to the first and second cases,

respectively. In other words, bj = 0 for all j ∈ Φ0 and bj = 1 for all j ∈ Φ1. We

further note that if we set bj = 1 for all j ∈ Φ \Φ0, i.e., merging every possible pair of

candidate leaf nodes, then it would take |Φ|− |Φ0| merging operations and the number

of remaining leaf nodes is given by

φi − (|Φ| − |Φ0|) = φi − (φi − 1− |Φ0|)

= |Φ0|+ 1 .

Therefore, the minimum number of leaf nodes that Ti can have is |Φ0|+ 1.
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We make the remaining merging decisions through an optimization approach.

In what follows, we introduce two optimization problem formulations with different

objective functions and present their solutions.

4.4.5.1 Formulation 1: Expected Freshness Proof Size Minimization

Our first formulation aims to minimize the expected size of freshness proof

under the constraint of the maximum number of leaf nodes. We observe that the size

of freshness proof is linear to the number of intervals for which the cloud server needs to

return a leaf node in response to a point query. Let hk,i and hk,i−1 denote the numbers

of leaf nodes the cloud server needs to return in response to queries Q = (k, i) and

Q = (k, i − 1), respectively, for all k ∈ K. Also let pk be the probability of each key

k being queried, where
∑

k∈K pk = 1. If every key is equally likely being queried, we

then have pk = 1/K for all k ∈ K. Let 4hk = hk,i− hk,i−1 for all k ∈ K. The expected

number of leaf nodes that the cloud server needs to return for freshness proof is given

by

E(hi) =
∑
k∈K

pkhk,i

=
∑
k∈K

pkhk,i−1 +
∑
k∈K

pk4hk ,
(4.1)

where E(·) denotes expectation. Since merging decisions in interval i have no im-

pact on the first term
∑

k∈K pkhk,i−1, minimizing E(hi) is equivalent to minimizing∑
k∈K pk4hk.

Next, we analyze the relationship between decision variables b1, . . . , bφi−1 and∑
k∈K pk4hk. First, we observe that 4hk = 1 if key k belongs to a candidate leaf

node being merged with another adjacent one and 0 otherwise. Let Φ′ = Φ \ (Φ0

⋃
Φ1)

and {bj|j ∈ Φ′} be the remaining decision variables that need be determined. Further

denote by Φ′1 = {bj = 1|j ∈ Φ′} and Φ′0 = {bj = 0|j ∈ Φ′} the subsets of decision

variables set to one and zero, respectively. Given Φ′1 and Φ1, a candidate leaf node
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Ci,j is merged with another one if either j − 1 or j ∈ Φ′1
⋃

Φ1. Let Π = {j|j − 1 ∈

Φ′1
⋃

Φ1 ∨ j ∈ Φ′1
⋃

Φ1 ∧ j ∈ Φ}. We have∑
k∈K

pk4hk =
∑
j∈Π

∑
k∈Ki,j

pk,

where Ki,j is the key block of Ci,j.

Let f(Φ′1) =
∑

j∈Π

∑
k∈Ki,j pk. We formulate the merging decisions as the fol-

lowing programming problem.

minimize f(Φ′1)

subject to Φ′1 ⊆ Φ′,

φi − |Φ1

⋃
Φ′1| ≤ max(τ, |Φ0|+ 1),

bj = 0, ∀j ∈ Φ0

⋃
Φ′0,

bj = 1, ∀j ∈ Φ1

⋃
Φ′1,

(4.2)

where φi − |Φ1

⋃
Φ′1| is the number of leaf nodes after |Φ1

⋃
Φ′1| merging operations,

and τ is a system parameter that limits the number of leaf nodes for every LKS-MHT

and usually set to be the larger the expected number of updates in each interval.

We now introduce an efficient greedy algorithm to solve the above optimization

problem with guaranteed approximation ratio. We can see that the objective function

f : 2Φ′ → R is a set function, and the following theorem characterizes its properties.

Theorem 9. The objective function f(·) in Eq. (4.2) is non-negative, submodular, and

monotone.

Proof. First, as pk ≥ 0 for all k ∈ K, and {Ki,j|j ∈ Φ′} ⊆ K, the objection function

f(·) is non-negative for any k ∈ Φ′.

Second, we show that f : 2Φ′ → R is submodular. Consider any two subsets Φx

and Φy where Φx ⊆ Φy ⊂ Φ′. There are two cases. First, if Φx = Φy, then Φx

⋃
{j} =

Φy

⋃
{j} for any j ∈ Φ′. It follows that f(Φx

⋃
{j})− f(Φx) = f(Φy

⋃
{j})− f(Φy).

Now let us consider the second case where Φx ⊂ Φy. For any j ∈ Φ′ \Φy, i.e., Cj

and Cj+1 are two adjacent candidate leaf nodes, there are further four possible cases.

81



• Case 1: if j−1 ∈ Φy \Φx and j+ 1 ∈ Φy \Φx, then both Cj and Cj+1 are merged

with other candidate leaf nodes in Φy, but none of them has been merged with

another in Φx, which indicates that f(Φy

⋃
{j})− f(Φy) = 0 and f(Φx

⋃
{j})−

f(Φx) > 0. Thus, for any j ∈ Φ′ \ Φy, f(Φx

⋃
{j}) − f(Φx) > f(Φy

⋃
{j}) −

f(Φy) = 0.

• Case 2: if j − 1 ∈ Φy \ Φx and j + 1 /∈ Φy \ Φx, then Cj has been merged with

another candidate leaf node Cj−1,j − 1 ∈ Φy resulting in smaller return from

adding j. Thus, for any j ∈ Φ′ \Φy, f(Φx

⋃
{j})− f(Φx) > f(Φy

⋃
{j})− f(Φy).

• Case 3: if j−1 /∈ Φy\Φx and j+1 ∈ Φy\Φx, then this case is symmetric to Case 2,

which leads to the same conclusion that for any j ∈ Φ′\Φy, f(Φx

⋃
{j})−f(Φx) >

f(Φy

⋃
{j})− f(Φy).

• Case 4: if j − 1 /∈ Φy \ Φx and j + 1 /∈ Φy \ Φx, neither Cj nor Cj+1 have been

merged with another one in Φy resulting in the same return from adding j. Thus,

for any j ∈ Φ′ \ Φy we have f(Φx

⋃
{j})− f(Φx) = f(Φy

⋃
{j})− f(Φy).

To sum up, for any Φx ⊆ Φy ⊂ Φ′ and j ∈ Φ′ \ Φy, we have f(Φx

⋃
{j}) − f(Φx) ≥

f(Φy

⋃
{j})− f(Φy). Therefore, f(·) is submodular.

Finally, f(·) is also monotone as the more candidate leaf nodes are merged, the

larger the expected proof size, which indicates f(Φx) ≤ f(Φy) for any Φx ⊆ Φy ⊆

Φ′.

A well known result is that for any objective function that is non-negative,

submodular, and monotone, a greedy algorithm that iteratively selects the local optimal

element at every step can output a solution with guaranteed approximation ratio of

1− 1/e, and no polynomial-time algorithm can achieve a better guarantee unless P =

NP [83].

We now detail the greedy algorithm for the merging decision in Algorithm 3.

We first initialize the number of leaf nodes θi to φi − |Φ1|, i.e., φi candidate nodes

after |Φ1| merging operations (Line 1). We then initialize Φ′1 to empty set and the

set of remaining decision variables Φ′ to Φ \ (Φ0

⋃
Φ1). We then iteratively make the
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Algorithm 3: Minimizing Expected Proof Size
input : Candidate leaf nodes Ci,1, . . . , Ci,φi , Φ, Φ0, Φ1, and τ
output: Φ′1 and Φ′0

1 θi ← φi − |Φ1|;
2 Φ′1 ← ∅;
3 Φ′ ← Φ \ (Φ0

⋃
Φ1);

4 while θi > max(τ, |Φ0|+ 1) do
5 j∗ = arg minj∈Φ′ f(Φ′

⋃
{j});

6 Φ′1 ← Φ′1
⋃
{j∗};

7 Φ′ ← Φ′ \ {j∗};
8 θi ← θi − 1;

9 end
10 Φ′0 ← Φ′ \ Φ′1;
11 return Φ′1 and Φ′0;

remaining merging decisions (Lines 4 to 9). In each iteration, we find j∗ ∈ Φ′ with

the smallest f(Φ′
{
j∗}) and move j∗ from Φ′ to Φ′1. This process continuous until the

number of leaf nodes θi reaches max(τ, |Φ0| + 1). Finally, Φ′1 and Φ′0 = Φ′ \ Φ′1 are

output for constructing the leaf nodes for LKS-MHT Ti.

4.4.5.2 Formulation 2: Minimizing Maximal Size of Freshness Proof

Our second formulation seeks to minimize the maximal freshness proof size

among all keys, i.e., maxk∈K{hk,i}, under the constraint of the maximal number of leaf

nodes. Note that this would require the data owner to keep track of {hk,i|k ∈ K}.

Again let hk,i and hk,i−1 be the number of leaf nodes that need be returned in response

to queries Q = (k, i) and Q = (k, i− 1), respectively, for all k ∈ K. Recall that Ki ⊆ K

is the subset of keys that receive an update in interval i. It follows that hk,i = 1 for all

k ∈ Ki. Since hk,i ≥ 1 for all k ∈ K, we have

max
k∈K
{hk,i} = max

k∈K\Ki
{hk,i}. (4.3)

Let C−i = {Ci,j|Ki,j

⋂
Ki = ∅}, i.e., Ci,j contains no key that receives an update

in interval i. For every candidate leaf node Ci,j ∈ C−i , denote its maximum freshness
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proof size in response to Q = (k, i − 1) and Q = (k, i) by mi−1,j = maxk∈Ki,j{hk,i−1}

and mi,j = maxk∈Ki,j{hk,i}, respectively. It follows that

max
k∈K\Ki

{hk,i} = max
Ci,j∈C−i

{mi,j}

= max
Ci,j∈C−i

{mi−1,j +4mj},
(4.4)

where 4mj = mi,j −mi−1,j for all Ci,j ∈ C−i .

We now analyze the relationship between decision variables b1, . . . , bφi−1 and

maxCi,j∈C−i {mi−1,j + 4mj}. Similar to the case of Formulation 1, 4mj = 1 if the

candidate leaf node Ci,j is merged with another and 0 otherwise. Again let Φ′ = Φ \

(Φ0

⋃
Φ1) and {bj|j ∈ Φ′} be the remaining decision variables that need be determined.

Also let Φ′1 = {bj = 1|j ∈ Φ′} and Φ′0 = {bj = 0|j ∈ Φ′} be the subsets of decision

variables set to one and zero, respectively. Given Φ′1 and Φ1, a candidate leaf node

Ci,j is merged with another one if either j − 1 or j ∈ Φ′1
⋃

Φ1. Let Π = {j|j − 1 ∈

Φ′1
⋃

Φ1 ∨ j ∈ Φ′1
⋃

Φ1 ∧ j ∈ Φ}. We have

max
Ci,j∈C−i

{mi,j} = max({mi−1,j + 1}j∈Π, {mi−1,j}j∈Φ\Π). (4.5)

Let g(Φ′1) = max({mi−1,j + 1}j∈Π, {mi−1,j}j∈Φ\Π). We formulate the remaining

merging decisions as the following optimization problem.

minimize g(Φ′1)

subject to Φ′1 ⊆ Φ′,

φi − |Φ1

⋃
Φ′1| ≤ max(τ, |Φ0|+ 1),

bj = 0,∀j ∈ Φ0

⋃
Φ′0,

bj = 1,∀j ∈ Φ1

⋃
Φ′1.

(4.6)

Theorem 10. The objective function g(·) in Eq. (4.6) is non-negative, submodular,

and monotone.

Proof. First, we note that the objection function g(·) is non-negative as max({mi−1,j +

1}j∈Π, {mi−1,j}j∈Φ\Π) ≥ 0 for all j ∈ Φ′ ⊆ Φ.
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Second, we show that g : 2Φ′ → R is submodular. Consider any two subsets Φx

and Φy where Φx ⊆ Φy ⊂ Φ′. There are two cases. First, if Φx = Φy, then Φx

⋃
{j} =

Φy

⋃
{j} for any j ∈ Φ′. It follows that g(Φx

⋃
{j})−g(Φx) = g(Φy

⋃
{j})−g(Φy). We

now consider the second case where Φx ⊂ Φy. For any j ∈ Φ′ \ Φy, i.e., Cj and Cj+1

are two adjacent candidate leaf nodes, the objective function g(·) satisfies one of the

following four cases.

• Case 1: if {j− 1, j+ 1} ⊆ Φy \Φx, then both Cj and Cj+1 are merged with other

candidate leaf nodes in Φy, but none of them has been merged with another in

Φx, which indicates that g(Φy

⋃
{j}) − g(Φy) = 0 and g(Φx

⋃
{j}) − g(Φx) > 0.

Thus, for any j ∈ Φ′ \ Φy g(Φx

⋃
{j})− g(Φx) > g(Φy

⋃
{j})− g(Φy) = 0.

• Case 2: if j − 1 ∈ Φy \ Φx and j + 1 /∈ Φy \ Φx, then Cj has been merged

with another one in Φy resulting in smaller return from adding j. Thus, for any

j ∈ Φ′ \ Φy g(Φx

⋃
{j})− g(Φx) > g(Φy

⋃
{j})− g(Φy).

• Case 3: if j − 1 /∈ Φy \ Φx and j + 1 ∈ Φy \ Φx, then it is symmetric to Case 2,

which leads to the same conclusion that for any j ∈ Φ′\Φy, g(Φx

⋃
{j})−g(Φx) >

g(Φy

⋃
{j})− g(Φy).

• Case 4: if j − 1 /∈ Φy \ Φx and j + 1 /∈ Φy \ Φx, then neither Cj nor Cj+1 have

been merged with another one in Φy resulting in the same return from adding j.

Thus, for any j ∈ Φ′ \ Φy we have g(Φx

⋃
{j})− g(Φx) = g(Φy

⋃
{j})− g(Φy).

To sum up, for any Φx ⊆ Φy ⊂ Φ′ and j ∈ Φ′\Φy, we have g(Φx

⋃
{j})−g(Φx) ≥

g(Φy

⋃
{j})− g(Φy). Therefore, g(·) is submodular.

Finally, g(·) is also monotone as the more candidate leaf nodes are merged, the

larger the maximal proof size, which indicates g(Φx) ≤ g(Φy) for any Φx ⊆ Φy ⊆ Φ′.

We now introduce an efficient greedy algorithm to solve the above optimization

problem. While choosing the local optimal with the smallest g(·) can lead to an efficient

greedy algorithm with guaranteed approximation ratio as in the first formulation, we

notice that there may be multiple choices with the same minimal g(·) in each step. We
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therefore further prioritize the merging decision that involves the new candidate leaf

nodes with the smallest key block size.

We detail the procedure for determining the merging decisions in Algorithm 4.

Specifically, we first initialize the number of merging decisions needed θi to φi − |Φ1|,

output Φ′1 to the empty set, and remaining merging decisions Φ′ to Φ \ (Φ0

⋃
Φ1)

(Lines 1 to 3). We then define a variable flagj for each candidate leaf node Ci,j to

indicate whether it has been merged with another and initiate {flagj}
φi
j=1 based on

predetermined merging decisions Φ1 (Lines 4 to 10). We then define three temporary

variables TempObj, TempSize, and TempIndex to store the local merging choice, affected

new candidate leaf node’s key block size, and corresponding value of the objective

function, respectively (Lines 11 to 13). In the subsequent While loop (Lines 14 to 35),

we iteratively select merging decisions until the terminal condition is met. Specifically,

in each iteration, we check each of the remain merging decisions j ∈ Φ′ to find the

one with the smallest objective function value g(Φ′1
⋃
j) (Lines 16 to 22). If there are

multiple ones with the same smallest objective function value, we then break the tie

by choosing the one that introduces the smallest key block size (Lines 23 to 32).
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Algorithm 4: Minimizing Maximum Proof Size

input : Candidate leaf nodes Ci,1, . . . , Ci,φi , Φ, Φ0, Φ1, τ , and {hk,i−1|k ∈ K}
output: Φ′1 and Φ′0

1 θi ← φi − |Φ1|; Φ′1 ← ∅; Φ′ ← Φ \ (Φ0
⋃

Φ1);
2 forall j ∈ {1, . . . , φi} do
3 flagj ← false;

4 forall j ∈ Φ1 do
5 if flagj = false then

6 flagj ← true;

7 if flagj+1 = false then

8 flagj+1 ← true;

9 TempIndex← null; TempObj←∞; TempSize← 0;
10 while θi > max(τ, |Φ0|+ 1) do
11 forall j ∈ Φ′ do
12 if g(Φ′1

⋃
{j} < TempObj) then

13 TempIndex← j;
14 if flagj = false then

15 TempSize← |Ki,j |;
16 if flagj+1 = false then

17 TempSize← TempSize + |Ki,j+1|;
18 TempObj← g(Φ′1

⋃
{j};

19 else if g(Φ′1
⋃
{j} = TempObj) then

20 TempSize′ ← 0;
21 if flagj = false then

22 TempSize′ ← |Ki,j |;
23 if flagj+1 = false then

24 TempSize′ ← TempSize′ + |Ki,j+1|;
25 if TempSize′ < TempSize then
26 TempIndex← j;
27 TempSize← TempSize′;
28 TempObj← g(Φ′1

⋃
{j};

29 Φ′1 ← Φ′1
⋃
{TempIndex};

30 Φ′ ← Φ′ \ {TempIndex};
31 θi ← θi − 1;

32 Φ′0 ← Φ′ \ Φ′1;
33 return Φ′1 and Φ′0;
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4.4.6 Point Query Processing

We now detail the procedure of KV-Fresh for point queries, which consists of

three phases: update preprocessing, query processing, and query-result verification. We

assume that the data owner has a public/private key pair that supports batch verifi-

cation of digital signatures such as RSA [110].

Update Preprocessing. Assume that the data owner receives data records

{〈vik, tik〉|k ∈ Ki} in each interval i for i = 1, 2, . . . . At the end of each interval

i, the data owner generates the leaf nodes Li,1, . . . , Li,θi according to the procedures

presented in Section 4.4.4 if i = 1 or Section 4.4.5 otherwise. The data owner then

constructs an LKS-MHT Ti over Li,1, . . . , Li,θi . Let (n, e) and d be the data owner’s

RSA public/private key pair and Ri the root of Ti. The data owner computes

si = H(i||Ri)
d mod n.

Finally, the data owner sends all the leaf nodes Li,1, . . . , Li,θi and its signature si to

the cloud server, whereby the cloud server can compute all the intermediate nodes and

root of Ti.

Query Processing. Assume that a data user issues a GET query Q(k, tq)

asking for the most recent data record for key k as of the end of interval q1. Also

assume that vik is the most recent update for key k received at time tik in interval i,

where i ≤ q1.

Given T1, . . . , Tq1 , the cloud server constructs the query result from the leaf

nodes that containing key k in a subset of LKS-MHTs to prove the freshness of vik.

Specifically, the cloud server first finds the leaf node Lq1,j1 in LKS-MHT Tq1 such that

k ∈ Kq1,j1 . If i = q1, then we have Lq1,j1 = 〈k, vik, tik〉. Otherwise, Lq1,j1 = 〈Kq1,j1 , γq1,j1〉.

Specifically, for every x = 1, 2, . . . , the cloud server finds the leaf node Lqx,jx in LKS-

MHT Tqx such that k ∈ Kqx,jx . It follows that Lqx,jx = 〈k, vik, tik〉 if qx = i and

〈Kqx,jx , γqx,jx〉 otherwise. The cloud server returns

Rx = 〈qx, Lqx,jx ,A(Rqx|Lqx,jx), sqx〉, (4.7)
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as a partial query result, where Rqx is the root of LKS-MHT Tqx , and A(Rqx|Lqx,jx) is

the set of internal nodes in Tqx needed for computing root Rqx from leaf node Lqx,jx .

If qx > i, then the cloud server set qx+1 = γqx,jx and repeat the above process until

qx = i, i.e., the most recent update for key k received in interval i has been returned.

Query-Result Verification. Assume that the user has received the query

result in the form of R = 〈R1, . . . ,Rr〉, where Rx = 〈qx, Lqx,jx ,A(Rqx|Lqx,jx), sqx〉, for all

1 ≤ x ≤ r. The data user first verifies the integrity of the query result. Specifically,

for every x = 1, . . . , r, the user first computes Rqx from Lqx,jx using A(Rqx|Lqx,jx). It

then verifies all r signatures in batch by checking whether

(
r∏

x=1

sqx)
e ?

=
r∏

x=1

H(qx||Rqx) mod n,

where (n, e) is the data owner’s RSA public key. If so, the user considers the query

result authentic.

The data user also proceeds to verify the freshness of the query result using

the interval indexes embedded in the returned leaf nodes. Assume that q1 > · · · > qs.

The user first checks if qs = q1, as the cloud server should always return one leaf node

for the queried interval q1. If so, the user further checks whether qx+1 = γqx,jx for all

x = 1, . . . , s−1. Finally, the user verifies whether leaf node Lqx,jx contains the updated

value vik and timestamp tik. If so, the user considers the query result fresh and accepts

vik as the most recent.

4.4.7 Range Query Processing

We now discuss how to extend the above solution for point query into range

query. A straightforward solution is to convert any range query into multiple point

queries with each corresponding to one unique queried key. Under this approach,

the proof size is approximately linear to the size of query range, which would incur

significant communication overhead when the query range is large. Our key observation

is that the point query responses with respect to adjacent queried keys have large

overlap and can be merged to significantly reduce the communication overhead. In
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what follows, we detail the procedures of query processing and query-result verification,

as that of update preprocessing is identical to the case of point query.

Query Processing. Assume that the cloud server receives a GET range query

Q([l, r], tq) asking for the most recent data record for every key k ∈ [l, r] as of the end

of interval q. Also assume that vk is the most recent update received at time tik in

interval ik, where ik ≤ q for all k ∈ [l, r]).

The cloud server first generates a point query result for every queried key k ∈

[l, r]. Let Rk = {Rk1, . . . ,Rkrk} be the query result for each queried key k ∈ [l, r], where

rk is the number of partial query results and

Rkx = 〈qkx, Lkqx,jx ,A(Rk
qkx
|Lkqx,jx), sqkx〉, (4.8)

for all 1 ≤ x ≤ rk. It is easy to see that qk1 = q for all l ≤ k ≤ r as the query result for

every queried key must contain the information about interval q.

Given all the partial query results {Rkx|l ≤ k ≤ r, 1 ≤ x ≤ rk}, the cloud

server then constructs the final query result in two steps. First, the cloud server

sorts {Rkx|l ≤ k ≤ r} first according to interval index qkx and then key k such that

partial query results for the adjacent keys and the same interval appears next to each

other. The cloud server then identifies and eliminates duplicate partial query results

for different keys for the same interval. Second, the cloud server merges all the partial

query results into one for every interval that appears in {Rkx|l ≤ k ≤ r}. Specifically, let

i∗ = mink∈[l,r]{ik} be the earliest interval with the most recent update for any queried

key. For every interval j ∈ [i∗, q] with at least one partial query result, the cloud server

constructs an aggregated partial query result as follows. Let K[l,r]
j ∈ [l, r] be the subset

of keys that have partial query results for interval j. For each k ∈ K[l,r], let its partial

query result for interval j be

Rk = 〈j, Lkj ,A(Rk|Lkj ), sj〉, (4.9)

where we omit a part of the subscript to simplify the notation. We can see that

{Lkj}k∈[l,r] are a subset of LKS-MHT Tj’s leaf nodes. The cloud server constructs an
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aggregate query result for interval j as

R
[l,r]
j = 〈j, {Lkj |k ∈ K

[l,r]
j },A(Rk|{Lkj |k ∈ K

[l,r]
j }), sj〉, (4.10)

where A(Rk|{Lkj |k ∈ K
[l,r]
j }) is the union of the subsets of internal nodes of LKS-MHT

Tj needed to compute the root Rk from Lkj for all k ∈ K[l,r].

Query-Result Verification. The verification of a range query result is essen-

tially the same as verifying multiple point query results. In particular, the only differ-

ence between the query processing in the two cases is that the cloud server eliminates

the duplicated information among multiple point query results, so all the information

needed for verifying the integrity and freshness of individual point query results are

included in the range query result. We omit the details here due to overlap.

4.5 Performance Evaluation

In this section, we evaluate the performance of KV-Fresh via extensive simula-

tion studies using a real dataset.

4.5.1 Dataset

We create a synthetic dataset from a TrueFax real-time currency conversion

dataset [111] that includes tick-by-tick historical conversion rates for 16 major currency

pairs with fractional pip spreads in millisecond detail. For our purpose, we take the

currency conversion rate from EUR to USD from 12:00 am (GMT), January 2nd, 2019

to 03:46:40 pm (GMT) January 3rd, 2019. We divide the time period into 10,000

segments of 10 seconds. We treat the segment indexes as keys and the conversion rates

as the updates. Our synthetic dataset consists of 10,000 keys for a period of 10 seconds,

and on average 131.55 keys receive updates for every 10 ms.

4.5.2 Simulation Settings

We implement KV-Fresh in Python and test it on a desktop with i7-6700 CPU,

16GB RAM, and 64-bit Win10 operating system. We adopt the SHA-256 for the
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Table 4.1: Default Simulation Settings

Para. Val. Description.
ε 10 ms The interval size
|K| 10,000 The number of keys
m 1,000 The number of intervals
τ 1024 The maximal number of key blocks
|H(·)| 256 The length of hash
|si| 1024 The length of data owner’s signature

cryptographic hash function and RSA for digital signature. Table 4.1 summarizes our

default settings unless mentioned otherwise.

For point query, we compare KV-Fresh with the state-of-art solution INCBM-

TREE [101] as well as the Strawman-1 and Strawman-2 approaches discussed in Sec-

tion 4.4.1 using four performance metrics: (1) update cost which is the number of extra

bits per second transmitted from the data owner to cloud server, (2) proof size which

is the number of extra bits needed for proving the integrity and freshness for a query

result, (3) throughput which is the number of queries processed by the cloud server

per second, and (4) verification time which is the time needed for verifying a returned

query result by the user.

4.5.3 Simulation Results for Point Queries

We now report our simulation results for point queries where every point in the

following figures represents the average over 10,000 runs each with a distinct random

seed. We refer to the two formulations discussed in Sections 4.4.5.1 and 4.4.5.2 as

KV-Fresh-1 and KV-Fresh-2, respectively.

4.5.3.1 The Impact of Interval Size

Fig. 4.6a compares the update cost under Strawman-1, Strawman-2, INCBM-

TREE, KV-Fresh-1, and KV-Fresh-2 with interval size varying from 10 s to 1 ms,

respectively. As we can see, the update cost per second increases as the interval sizes

decreases under all mechanisms. This is expected, as the number of intervals is inversely

proportional to the interval size. Among the five mechanisms, Strawman-1 has the
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Figure 4.6: Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE
with interval size varying from 10s to 1ms.

highest update cost when the interval size is smaller than 1 s, as the data owner needs

to send the most recent key-value record for every key in every interval. Strawman-2

and INCBM-TREE have the lowest update cost, as the data owner only sends keys with

updates under both mechanisms. The update costs of KV-Fresh-1 and KV-Fresh-2 fall

in the middle and increase much slower than that of Strawman-1. This is anticipated,

as both KV-Fresh-1 and KV-Fresh-2 require the data owner to send only updated key-

value records and key block information with no update for every interval. Moreover,

when the interval size is 1 ms, both KV-Fresh-1 and KV-Fresh-2 incur an update cost

of approximately 108 bits per second. In other words, a 100-Mbps link between the

data owner and the cloud server suffices to support a key space of 10,000 keys, which

makes KV-Fresh very practical.
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Fig. 4.6b shows the impact of interval size on the proof size of Strawman-1,

Strawman-2, INCBM-TREE, KV-Fresh-1, and KV-Fresh-2. The proof size of Strawman-

1 is not affected by the interval size and stays at 4460 bits. The proof sizes of the other

four mechanisms all increase as the interval size decreases. Among the them, the proof

sizes of Strawman-2 and INCBM-TREE grow the fastest and are approximately in-

versely proportional to the interval size. The reason is that the data owner needs to

prove that there is no update in every interval after the most recent update under the

both mechanisms. While INCBM-TREE employs a Bloom filter for efficient proof of

no update, every Bloom filter covers only a constant number of intervals. In contrast,

the proof sizes under KV-Fresh-1 and KV-Fresh-2 grow much slower as the interval

size decreases, because both KV-Fresh-1 and KV-Fresh-2 allow the cloud server to skip

potentially many intervals in the freshness proof. We can also see that the proof size

of KV-Fresh-1 is slightly lower than that of KV-Fresh-2, which is anticipated as KV-

Fresh-1 aims to minimizing the expected size of freshness proof and the proof size in

Fig. 4.6b is the average over 10,000 runs. In addition, we can see that KV-Fresh outper-

forms INCBM-TREE by a large margin when the interval size is small. For example,

when the interval size is 1 ms, the proof sizes under KV-Fresh-1 and KV-Fresh-2 are

approximately 90 Kb and 115 Kb, respectively, which are less than 0.4% and 0.5% of

the 22.9 Mb under INCBM-TREE, respectively.

Fig. 4.6c compares the throughput under Strawman-1, Strawman-2, INCBM-

TREE, KV-Fresh-1, and KV-Fresh-2. We can see that the throughput under Strawman-

1 is the highest and not affected by the change in interval size. Among the other four,

the throughput of Strawman-2 is the smallest, followed by INCBM-TREE. The reason

is that the smaller the interval size, the more intervals after the most recent update

on average, the more intervals the cloud server needs to process under Strawman-2

and INCBM-TREE, and vice versa. In contrast, the throughput of KV-Fresh-1 and

KV-Fresh-2 initially decline as the interval size decreases from 10 s to 10 ms and then

become stable or decrease slightly as the interval size decreases from 10 ms to 1 ms.

The reason for the initial decline is that when the interval size is large, most of the keys
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have updates in every interval, and the merging constraint is determined by |Φ0| instead

of τ , which results in excessive merging operations and more intervals that the cloud

server needs to check. As the interval size further decreases, fewer and fewer keys have

updates in each interval, which results in fewer merging operations and thus fewer in-

tervals the cloud server needs to check. Moreover, KV-Fresh-1 outperforms KV-Fresh-2

with higher average throughput due to its merging decision policy, which aims to min-

imize the expected proof size. Generally speaking, in comparison with Strawman-2

and INCBM-TREE, both KV-Fresh-1 and KV-Fresh-2 have similar throughput when

the interval size is large while outperforming Strawman-2 and INCBM-TREE by large

margins when the interval size is small. For example, when the interval size is 1 ms,

KV-Fresh-1 achieves 9.05 and 41.75 times higher throughput than INCBM-TREE and

Strawman-2, respectively.

Fig. 4.6d compares the verification cost of the five mechanisms under different

interval sizes. As we can see, the verification cost of Strawman-1 remains at 0.6357ms

and is not affected by the change in interval size. The verification cost increases as the

interval size decreases under all the other four mechanisms. Among them, KV-Fresh-1

and KV-Fresh-2 both outperform INCBM-TREE and Strawman-2 by large margins.

The reason is that fewer leaf nodes need be returned under either KV-Fresh-1 or KV-

Fresh-1 than both INCBM-TREE and Strawman-2. For example, when interval size

is 1 ms, it takes 0.86 ms and 0.96 ms to verify a query result under KV-Fresh-1 and

KV-Fresh-2, respectively, while Strawman-2 and INCBM-TREE require 11.96 ms and

6.84 ms, respectively.

These results demonstrate the significant advantages of KV-Fresh over other

two mechanisms.

4.5.3.2 The Impact of the Number of Keys

Figs. 4.7a to 4.7d compare the performance of KV-Fresh-1, KV-Fresh-2, Strawman-

1, Strawman-2 and INCBM-TREE with |K|, i.e., the total number of keys, varying from

100 to 50,000. As we can see from Fig. 4.7a, the update costs of all schemes increase
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Figure 4.7: Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE
with |K| varying from 100 to 50,000.

as the number of keys increase, which is anticipated. Moreover, the update cost of

KV-Fresh-1 and KV-Fresh-2 are lower than that of Strawman-1 by a larger margin but

higher than that of Strawman-2 and INCBM-TREE. More importantly, even when the

|K| is 50,000, the update costs of KV-Fresh-1 and KV-Fresh-2 are both approximately

3.9×107 bits per second, which is very practical for 10-ms interval. From Fig. 4.7b, we

can see that the proof sizes under all mechanisms increase as |K| increases, as a larger

|K| leads to a deeper MHT. Moreover, as |K| increases from 100 to 50,000, the proof

sizes under KV-Fresh-1 and KV-Fresh-2 are always significantly smaller than those

under Strawman-2 and INCBM-TREE. Similarly, Figs. 4.7c and 4.7d show that both

KV-Fresh-1 and KV-Fresh-2 achieve much higher throughput and lower verification

cost than Strawman-2 and INCBM-TREE because fewer leaf nodes need be returned
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Figure 4.8: Comparison of KV-Fresh, Strawman-1, Strawman-2, and INCBM-TREE
with τ varying from 256 to 10,000.

under KV-Fresh-1 and KV-Fresh-2 than the other two.

4.5.3.3 The Impact of τ

Figs. 4.8a to 4.8d show the performance of KV-Fresh-1 and KV-Fresh-2 with

τ varying from 256 to 8192, where the performance of Strawman-1, Strawman-2, and

INCBM-TREE are not affected by τ and only plotted for reference. Generally speaking,

the larger τ , the higher the update cost, the smaller proof size, the higher throughput,

the smaller verification cost for both KV-Fresh-1 and KV-Fresh-2, and vice versa. In

addition, the update cost, proof size, throughput, and verification cost under KV-

Fresh-1 and KV-Fresh-2 are almost always between those under Strawman-1 and those

under Strawman-2 and INCBM-TREE, which is expected. While KV-Fresh-1 and
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Figure 4.9: Comparison of KV-Fresh-1 and KV-Fresh-2 with interval size varying from
10s to 1ms.

KV-Fresh-2 incur higher update cost than Strawman-2 and INCBM-TREE, they incur

much lower communication cost between the cloud server and the user and smaller

verification cost at the user. Moreover, while update only happens between the data

owner and the cloud server, the cloud server needs to serve potentially many users at

the same time.

4.5.4 Comparison between KV-Fresh-1 and KV-Fresh-2

We now compare KV-Fresh-1 and KV-Fresh-2 in terms of their average and

worst-case performance.

Fig. 4.9a and Fig. 4.9c compare the performance of KV-Fresh-1 and KV-Fresh-2

with interval size varying from 10 s to 1 ms, where KV-Fresh-1 (Avg.) and KV-Fresh-2
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(Avg.) represent the average results of 10,000 runs and KV-Fresh-1 (Worst) and KV-

Fresh-2 (Worst) represent the worst case among the 10,000 runs under KV-Fresh-1 and

KV-Fresh-2, respectively. As we can see from Fig. 4.9a, as the interval size decreases,

both the average and the largest proof sizes increase under both KV-Fresh-1 and KV-

Fresh-2, which is expected. More importantly, KV-Fresh-1 achieves smaller average

proof size but larger proof size under the worst case. The reason is that KV-Fresh-

1 and KV-Fresh-2 are designed to minimize the expected and maximum proof sizes,

respectively. Fig. 4.9b shows that as the interval size increases, both the average and

maximum proof sizes initially decrease followed by stable or decrease slightly due to

the same reason in Fig. 4.6c. We also observe that KV-Fresh-1 achieves higher average

throughout but lower worst-case throughput than KV-Fresh-2. From Fig. 4.9c, we

can see that KV-Fresh-2 incurs a slightly higher average verification cost than KV-

Fresh-1 for the same reason. More importantly, the worst-case verification cost under

KV-Fresh-2 is significantly lower than that of KV-Fresh-1. Moreover, we can see that

the gap between the average and worst-case verification costs grows as the interval size

decreases. The reason is that when the interval size is large, many keys receive updates

in each interval on average, and the terminal condition for merging is mainly determined

by τ , so there are very few merging opportunities to demonstrate the difference between

KV-Fresh-1 and KV-Fresh-2. As the interval size decreases, the terminal condition is

gradually determined by τ , and different merging decisions have large impact on the

average and worst-case verification costs, which leads to the increased gap between the

two mechanisms.

Fig. 4.10a and Fig. 4.10c compare the average and worst-case performance of

KV-Fresh-1 and KV-Fresh-2 with |K| varying from 100 to 50,000. Generally speaking,

the larger |K|, the larger proof size, the lower throughout, and the higher verifica-

tion cost for both the average and worst-case under the two mechanisms. Moreover,

KV-Fresh-1 outperforms KV-Fresh-2 in terms of average proof size, throughout and

verification cost, while KV-Fresh-2 has better worst-case performance. In addition,
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Figure 4.10: Comparison of KV-Fresh-1 and KV-Fresh-2 with |K| varying from 100 to
50,000.

we can see from Fig. 4.10c that the gap between the average and the worst-case per-

formance increases as |K| increase from 100 to 50,000. For example, the difference

between KV-Fresh-1 (Avg.) and KV-Fresh-1 (Worst) grows from 0.84 ms to 5.1 ms

when the |K| increases from 5,000 to 50,000.

Figs. 4.11a to 4.11c compare the average and worst-case performance of KV-

Fresh-1 and KV-Fresh-2 with with τ varying from 256 to 8192. Generally speaking,

the larger τ , the higher update cost, the smaller proof size, the higher throughput, the

smaller verification cost under both KV-Fresh-1 and KV-Fresh-2, and vice versa. In

addition, KV-Fresh-1 (Avg.) always outperforms KV-Fresh-2 (Avg.) while KV-Fresh-2

(Worst) always outperforms KV-Fresh-1 (Worst), which are expected.
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Figure 4.11: Comparison of KV-Fresh-1 and KV-Fresh-2 with tau varying from 256 to
8192.

4.5.5 Simulation Results for Range Queries

We now report the simulation results for KV-Fresh on range queries. Since

INCBM-TREE [101] is not directly applicable to range query, we compare KV-Fresh

with a baseline solution, referred to as KV-Fresh-baseline, which processes a range

query as multiple independent points as in KV-Fresh. For the performance evaluation,

we still use the metrics proof size, throughput, and verification time but omit the metric

update cost as KV-Fresh and KV-Fresh-baseline share the same update preprocessing

procedure.

Fig. 4.12a shows the impact of the size of query range on the proof size under

KV-Fresh-1, KV-Fresh-2, KV-Fresh-1-baseline, and KV-Fresh-2-baseline. We can see

that the proof size increases as the number of queried keys increases under all four
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Figure 4.12: Comparison of KV-Fresh-1 and KV-Fresh-2 with the size of query range
varying from 1 to 100.

mechanisms, which is expected. Moreover, KV-Fresh-1 and KV-Fresh-2 both outper-

form corresponding KV-Fresh-1-baseline and KV-Fresh-2-baseline with a large margin.

The reason is that the two baseline solutions treat a range query as multiple indepen-

dent point queries for which the query results have large overlap. In contrast, both

KV-Fresh-1 and KV-Fresh-2 eliminate such redundancy in the query result, resulting

in significant reduction in the freshness proof size and thus higher communication and

computation efficiency. In addition, the average proof size under KV-Fresh-1 is slightly

lower than that under KV-Fresh-2 due to the same reason discussed in section 4.5.4

Fig. 4.12b compares the throughput of KV-Fresh-1, KV-Fresh-2, KV-Fresh-1-

baseline, and KV-Fresh-2-baseline with the number of queried keys varying from 1

to 100. We can see that the throughput under all four mechanisms decreases as the
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number of queried keys increase, which is expected as it takes longer time to process a

range query with a larger query range size. Moreover, both KV-Fresh-1 and KV-Fresh-

2 outperform corresponding KV-Fresh-1-baseline and KV-Fresh-2-baseline, especially

when the size of query range is large, as they both treat a range query as a whole

instead of multiple independent point queries. For example, when the size of query

range is 100, KV-Fresh-1 can process 522 range queries in one second, while KV-Fresh-

1-baseline can only process 149 range queries.

Fig. 4.12c shows the verification cost of KV-Fresh-1, KV-Fresh-2, KV-Fresh-

1-baseline, and KV-Fresh-2-baseline with different sizes of query range. We can see

that the verification cost of all mechanisms sharply increase as the number of queried

keys increases. Similar to Fig. 4.12a and Fig. 4.12b, both KV-Fresh-1 and KV-Fresh-2

outperform corresponding KV-Fresh-1-baseline and KV-Fresh-2-baseline in terms of

verification cost, which is expected. These results further confirm the high efficiency

of KV-Fresh in processing range queries.

4.6 Summary

In this chapter, we embrace edge computing paradigm for low-latency spectrum

access requests processing by outsourcing spectrum access requests processing to dis-

tributed edge servers. We have mapped the problem of authenticating outsourced spec-

trum access requests processing as authenticated query processing over multi-version

key-value store, and presented the design and evaluation of KV-Fresh, a novel freshness

authentication scheme for outsourced spectrum availability updates modeled as multi-

version key-value stores. KV-Fresh is built upon LKS-MHT, a novel data structure

that allows efficient proof of no update over a potentially large number of intervals.

KV-Fresh supports both point query and range query. Extensive simulation studies

confirm that KV-Fresh can always simultaneously achieve strong real-time guarantee

and high communication efficiency.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this dissertation, we have tackled three key security and privacy challenges in

database-driven DSS to pave the way for its wide development and deployment. First,

we introduce a novel mechanism that allows a DBA to construct highly accurate REMs

in the presence of false spectrum measurements. Inspired by self-labeled techniques, our

solution iteratively constructs an REM using a small number of trusted measurements

and gradually incorporating measurements from mobile sensors by jointly considering

each measurements spatial fitness of trusted measurements and the long-term behavior

of the mobile sensor. We have confirmed the effectiveness of our solution via detailed

simulation studies using a real spectrum measurement dataset.

Second, we present a novel differentially-private reverse auction mechanism to

stimulate mobile workers’ participation in crowdsourcing-based REM construction by

integrating a novel greedy algorithm for winner selection with differential privacy.

Through a combination of theoretical analysis and simulation studies using real spec-

trum measurements, we have confirmed that the proposed incentive mechanism can

simultaneously achieve differential bid privacy, approximated truthfulness, individual

rationality, budget feasibility, and high REM accuracy.

Third, we explore the edge computing paradigm for low-latency spectrum-access

requests processing and study the problem of authenticated spectrum-access requests

processing via untrusted edge servers. By mapping the problem into authenticated

outsourced multi-version key-value stores, we propose KV-Fresh, a novel freshness au-

thentication scheme based on LKS-MHT, a novel data structure that allows efficient

proof of no update over a potentially large number of intervals. Our solution supports

both point query and range query. Extensive simulation studies using a real dataset
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show that KV-Fresh is not only much more efficient but also offers stronger real-time

guarantee than state-of-the-art freshness authentication techniques.

There are a number of issues worthy of further investigation. First, we notice

that our solution for secure REM construction works in an iterative fashion which may

incur high computation latency when processing a large number of spectrum measure-

ments. We therefore plan to investigate alternative solutions with low computation

complexity. Second, while our simulation results suggest that our differentially-private

reverse auction mechanism is truthful, we have only been able to prove that its approx-

imate truthfulness. We will seek to either prove its truthfulness or develop alternative

solutions to guarantee truthfulness. Last but not least, we plan to extend KV-Fresh

to support other types of non-SQL database such as document store.
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