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ABSTRACT

This dissertation focuses primarily on the development of novel methods for
the transition metal-catalyzed cross-couplings of alkyl amine derivatives via carbon-
nitrogen (C-N) bond activation. Chapters 1-4 focus on the use of Katritzky
pyridinium salts, which can easily be obtained in a single step from primary amines.
These redox-active amine derivatives can then serve as non-traditional electrophiles in
a variety of nickel-catalyzed cross-coupling reactions. This work allows one to
consider alkyl amines as substrates in cross-couplings for the first time and may have
applications in late-stage derivatization of pharmaceutical targets. Chapter 5 focuses
on the development of a copper-catalyzed enantioselective alkynylation of iminium
ions to afford a-tetrasubstituted amines, an important motif in a variety of biologically
active molecules.

Chapter 1 describes a nickel-catalyzed Suzuki-Miyaura cross-coupling of alkyl
pyridinium salts with arylboronic acids. The combination of air- and moisture-stable
Ni(OAc),4H,0 and redox non-innocent bathophenanthroline (BPhen) ligand was
found to promote the desired cross-coupling. Both primary and secondary alkyl groups
participated smoothly under the optimized reaction conditions with excellent
functional group tolerance. Excitingly, we have demonstrated the amenability of this
method to pharmaceutical intermediates and amino acid derivatives. Notably, this is
the first example of a metal-catalyzed cross-coupling of an amine derivative bearing

unactivated alkyl groups. Preliminary mechanistic experiments suggest the

XV



intermediacy of alkyl radical species, and the reaction is proposed to proceed via a
Ni"™ catalytic cycle.

Chapter 2 describes a nickel-catalyzed Suzuki—Miyaura cross-coupling of
benzylic pyridinium salts with arylboronic acids. This method enables the synthesis of
diarylmethanes, a pharmaceutically relevant motif, from widely abundant benzylic
amines. The use of a benzylic pyridinium intermediate allows for the incorporation of
heteroaryl substitution, an important facet which is largely overlooked in other cross-
couplings to deliver diarylmethanes. Metal-ligand complex PhenNi(OAc),-4H,0O was
synthesized to enable facile reaction set-up and a wide solvent tolerance was
demonstrated to facilitate the use of this chemistry in synthesis. A one-pot procedure
was also developed for the direct conversion of a primary amine into the desired
diarylmethane. This work was performed in collaboration with Michelle Garnsey,
Brian Boscoe, and Joseph Tucker at Pfizer, Inc.

Chapter 3 describes a nickel-catalyzed Suzuki—Miyaura cross-coupling of
benzylic pyridinium salts with vinylboronic acids and esters. This method allows for
the rapid construction of 1,3-disubstituted allylic motifs. This chemistry is tolerant of
heteroaryl substitution and can employ either the vinylboronic acid or pinacol ester as
the coupling partner. Notably, this approach allows for control of the regioselectivity
of the alkene.

Chapter 4 describes a nickel-catalyzed reductive cross-electrophile coupling of
alkyl pyridinium salts with aryl bromides. This reaction leverages the wide availability
of alkyl amines and aryl halides to deliver highly valuable alkylarenes. The optimized
reaction conditions employ a catalyst system comprised of NiCl,-DME and 4,4’-

diOMeBipy in conjunction with manganese as a stoichiometric reductant. Primary,

XVi



secondary, and benzylic pyridinium salts are all amenable to this chemistry.
Importantly, this method is tolerant of acidic protons and epimerizable stereocenters.
We have shown the applicability of this chemistry to amino acid derivatives,
pharmaceuticals, and pharmaceutical intermediates. Preliminary mechanistic
experiments suggest that a radical-chain bimetallic pathway may be operative. This
work was performed in collaboration with Michelle Garnsey, Brian Boscoe, and
Joseph Tucker at Pfizer, Inc.

Chapter 5 describes my efforts towards a copper-catalyzed enantioselective
alkynylation of iminium ions to form o-diaryl tetrasubstitued amines. The use of
cyclic imines containing a removable tether allow for downstream cleavage to reveal
enantioenriched acyclic amine products. Preliminary efforts on cyclic N-sulfonyl
ketimine substrates have lead to good yields and modest ee’s. Futher optimization of
this reaction is ongoing. Additionally, unique conditions have been identified that can

achieve kinetic resolution of a related benzisoxazoles.
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Chapter 1

SUZUKI-MIYAURA CROSS-COUPLING OF ALKYL PYRIDINIUM SALTS
WITH ARYLBORONIC ACIDS

Work described here has already been published (Basch, C. H.; Liao, J.; Xu, J.; Piane,
J. J.; Watson, M. P. J. Am. Chem. Soc. 2017, 139 (15), 5313-5316.). It is reprinted in
this chapter with permission of the Journal of the American Chemical Society

(Copyright © 2017, American Chemical Society).

1.1 Introduction

Alkyl primary amines are prevalent amongst a wide range of natural and
synthetic biologically active molecules, as well as building blocks of various
complexities (Scheme 1.1)." The amino (NH,) group possesses many attractive
features such as ease of installation, straightforward purification, and the ability to be
carried through multi- step syntheses in protected form. The advantages of
alkylamines have been well recognized in the synthesis of many nitrogen containing
compounds. In contrast, alkylamines have yet to be broadly utilized as alkylating
agents in metal-catalyzed cross-coupling reactions. This would allow for rapid
construction of new carbon-carbon bonds from inexpensive, widely available primary
amine precursors. This would also enable the use of the amine (NH,) moiety as a
synthetic handle for structure-activity relationship (SAR) studies, along with late-stage

functionalization of complex bioactive molecules.



Scheme 1.1  Examples of natural or synthetic bioactive alkyl primary amines

o)
3 CO,Et
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1-1 1-2 CFs 1-3
Tamiflu® (Roche) Januvia® (Merck) lysine
antiviral antidiabetic amino acid

Cross-couplings have been achieved via cleavage of various Cg,—N bonds,
including those of aniline,” * enamine,’ and amide derivatives.” In contrast, methods
to harness C,p3—N bonds have been limited to electronically activated benzylic (1-4),'°

1617 as well as strain-activated

* allylic (1-5)," or a-keto amine derivatives (1-6),
aziridines (1-7)'*?° (Scheme 1.2). Recognizing the potential of unactivated Cgps—N
bonds, we set out to develop methodologies that would allow for the use of alkylamine
derivatives as non-traditional electrophiles in nickel-catalyzed cross-couplings via C—
N bond activation. Prior to our work, there were no examples of utilizing an

alkylamine derivative bearing unactivated alkyl groups in transition metal-catalyzed

cross-coupling reactions.

Scheme 1.2 Cgp3—N electrophiles used in transition metal-catalyzed cross-couplings

. . CO,Et +IN].
5 r
14 1-5 1-6 1-7
Watson Tian Wang Doyle
Tian Jamison
Rhee Michael
electronically activated strain activated

Historically, the use of alkyl Cgps coupling partners (both electrophilic and

nucleophilic) have proven challenging. Potential issues include slow oxidative



addition or transmetallation as well as slow reductive elimination. Additionally, the
alkylmetallic intermediates are prone to decomposition pathways such as B-hydride
elimination and protodemetallation. Nonetheless, intense efforts have identified a
variety of reagents suitable for the installation of alkyl groups lacking electronic or
strain activation (Scheme 1.3). Conditions have been developed for metal-catalyzed
cross-couplings of alkyl halides, pseudohalides, redox-active esters, and
organometallic nucleophiles. Moreover, dual photoredox/nickel catalysis has enabled
the use of oxalates, carboxylic acids, 1,4-dihydropyridines, organoboronates, and

organosilicates. Seminal reports in this area are detailed below.

Scheme 1.3 Reagents for installing unactivated alkyl groups via cross-couplings

H
Me N Me
|
H N
X OR Oj: © Ojv\ © NR, R R M
alk)\Me a|k)\|v|e ak” "Me ak” “Me alk” ~Me alk)\Me
1-8 1-9 1-10 1-11 1-12 1-13
halides sulfonates, carboxylic ~ redox-active  dihydropyridines  organometallics
oxalates acids esters M = BF5K,

Si(O,R),HNRg,
SnR3, MgX, ZnX

In 2003, Fu reported his seminal publication on the nickel-catalyzed Negishi
cross-coupling of unactivated alkyl bromides and iodides (1-14) (Scheme 1.4).*'
Notably, this was the first example of a nickel- or palladium-catalyzed cross-coupling
of unactivated, B-hydrogen-containing, secondary alkyl halides. Mechanistic studies
have revealed that alkyl halides can undergo single-electron transfer (SET) oxidative
addition to generate the corresponding alkyl radicals.** This finding set the stage for a

number of subsequent accounts expanding upon this chemistry for the construction of



new C—C and C—X bonds.”?° In fact, alkyl halides remain an active area of research

for the installation of alkyl groups via metal-catalyzed cross-coupling reactions.

Scheme 1.4  Fu’s Negishi cross-coupling of alkyl halides

X
R3-zZnY 0 | _ 0
Rl X Ni(cod),/°Bu-Pybox Rl _R3 7N YN
> N N—"
2 DMA, rt, 20 h 2
R R Me''- }Me
X =Br, | 1-15 Me Me
1-14 62-88% 1-16
SBu-Pybox

Within the last decade, interest has expanded towards the identification of
other readily available alkylating agents such as alcohols and carboxylic acids. The
MacMillan group has demonstrated that by combining photoredox and nickel
catalysis, cross-coupling of alkyl oxalates (1-18) and aryl halides can be achieved
(Scheme 1.5).”" In this case, 1-18 is formed from the corresponding alcohol (1-17) and
oxalyl chloride, and used without further purification. The iridium photocatalyst is
used to generate carbon-centered radical 1-19 via successive loss of two equivalents of
CO,. This alkyl radical can then intercept the nickel cycle to deliver cross-coupled
product 1-20. This method highlights the feasibility of alcohols to serve as latent Cgp3—

nucleophiles.



Scheme 1.5 MacMillan’s metallaphotoredox cross-coupling of alkyl oxalates

Ar—Br
0 NiBry(dtbbpy)

R1\rOH (COCI), RO % Ir[dFppy]x(dtbbpy)PFg R1YAr
R2 no b oH CSHCO, -
purification Re O dioxane/DMSO, 70 °C, 4 h
1-17 1-18 1-20

37-95%
va SET N T
-H+ o R2
-2 CO, 1-19

Similarly, carboxylic acids can also serve as alkyl nucleophiles. The Doyle and
MacMillan groups have shown that a-amino carboxylic acids (1-21) can undergo
cross-couplings with aryl halides by merging photoredox and nickel catalysis (Scheme
1.6).%® Again, the iridium photocatalyst is used to generate the a-amino radical via loss
of CO,. This can then engage in the nickel cycle with an aryl halide to give arylated
product 1-22. Additionally, the Molander group has demonstrated a variety of dual
photoredox/nickel-catalyzed cross-couplings using alkyl trifluoroborate salts, silicates,

29-31

and dihydropyridines.

Scheme 1.6 Doyle and MacMillan’s decarboxylative metallaphotoredox cross-

coupling of a-amino carboxylic acids

Ar—X
0 NiCl,-glyme/dtbbpy
R Ir[dF(CF3)ppylo(dtbbpy)PFg R_ _Ar
%OH > Y ,
: Cs,C04 NR>,
NR’, DMF, 23 °C
1-21 X =Br, I, Cl 1-22

60-93%



The umpolung approach utilizing carboxylic acids as alkyl electrophiles has
also been investigated. Alkyl carboxylic acids can be converted into the corresponding
N-hydroxyphthalimide esters (1-23). These redox-active esters have been
demonstrated to participate in a number of cross-coupling reactions. For example, in
his seminal publication, Baran has shown that these substrates can undergo Negishi
cross-couplings to form arylated products 1-26 (Scheme 1.7A).** The proposed

. . . . /I
mechanism for this transformation involves a Ni"

catalytic cycle. Radical anion 1-24
is generated via single electron-transfer from a Ni' species into the redox-active ester.
Fragmentation of 1-24 leads to extrusion of CO, and loss of the phthalimide anion,
forming alkyl radical 1-25. Additionally, Weix has demonstrated that these redox-
active esters (1-27) can participate in a reductive cross-electrophile coupling with aryl
iodides using Zn as a stoichiometric reductant (Scheme 1.7B).*> However, unlike

Baran’s chemistry, a radical-chain bimetallic pathway is proposed. Since then, a

number of different cross-couplings utilizing redox-active esters have been reported.”*
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Scheme 1.7  Nickel-catalyzed cross-couplings of redox-active esters

A. Baran’s Negishi cross-coupling

Ar—ZnCI-LiCl
0 NiCl,-glyme or NiCl,-6H,0O
o) di'BuBipy |q1\r Ar
1 >
R%O/N THF/DMF, 23 °C, 16 h R2
R? O 1-26
1-23 35-93%
via o® T
SET O Y R,
RN CN co W
“{O) M2 R2
5 0 -phthalimide
R® 124 1-25



B. Weix’s reductive cross-coupling with aryl iodides

@) Ar—I
O NiBr,(dtbbpy) |q1\r Ar
1 >
R%O/ N Zn R2
R2 e} DMA, rt, 5-12 h
1-27 1-28

41-97%

Alkyl amines are inexpensive, widely available feedstock chemicals. The
cross-coupling of an alkyl amine derivative would offer an exciting complementary
approach for installing unactivated alkyl groups. Towards this end, we identified
Katritzky pyridinium salts (1-31) as potential electrophiles for nickel-catalyzed cross-
couplings (Scheme 1.8).*” This unique approach hinges on the redox-active nature of
these pyridinium salts and their ability to serve as alkyl radical precursors via Cgp3—N
bond cleavage. Historically, these salts have primarily been employed in a variety of
two-electron nucleophilic substitution reactions.”® Herein, we disclose the first
example of a metal-catalyzed cross-coupling of an amine derivative bearing

unactivated alkyl groups.
Scheme 1.8  Proposed cross-coupling of alkyl amine derived pyridinium salts

Ph Ph
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1.2 Results and Discussion

1.2.1 Synthesis of Katritzky Pyridinium Salts

The Katritzky pyridinium salts (1-31) can be prepared in a single step via
condensation of an alkyl primary amine (1-29) with commercially available 2,4,6-
triphenylpyrylium tetrafluoroborate (1-30). Excitingly, this method is chemoselective
for primary amines and allows for the incorporation of other nitrogen containing
functionalities within the organic framework. Moreover, these salts often require no
chromatography as they precipitate upon trituration with ether to afford 1-31 as an air-
and moisture-stable solid. A variety of alkyl pyridinium salts can be prepared via this
method (Scheme 1.9). Notably, both primary and secondary alkyl groups can be

incorporated, as well as protected secondary (1-36) and tertiary (1-37 & 1-38) amines.

Scheme 1.9  Selected examples of alkyl pyridinium salts formed
Ph
©
| ™ BF,
®_
Ph 0] Ph Ph Ph
RH/NHZ (1-30, 1.0 equiv) . Vo
> RI_N_~ BF
R2 EtOH (1.0 M) Y ® N
reflux, 4 h R2 Ph
1-29 1-31
(1.2 equiv)
Ph | N @Ph Ph | N Ph Ph | N @Ph
©
(T) =~ BF, TBSO\/\/CIJ\é ~ BF, ('J\é ~ BF,
Ph Ph Ph

1-33, 88% 1-34, 77% 1-35, 63%

Ph Ph Ph Ph
BocHN 7 S Phl\eph NG
Me, ~_ _N__~ (jy N__~

Et Ph oc Ph BocN Ph

1-36, 66% 1-37, 84% 1-38, 72%



1.2.2 Reaction Optimization

My colleague Corey Basch chose pyridinium salt 1-39 for the preliminary
investigation of the Suzuki—-Miyaura cross-coupling with bench-stable arylboronic
acids. Optimization began with the first-generation conditions our group had
previously identified for the activation of benzylic trimethylammonium salts."
Disappointingly, the formation of only a trace amount of 1-40 was observed (Table
1.1, entry 1). A brief ligand screen revealed that redox non-innocent phenanthroline-
based ligands, specifically bathophenanthroline (BPhen, 1-41), were the most effective
in promoting the desired cross-coupling (entry 2). Switching to an alkoxide base as
well as from a Ni” source to a Ni" salt further improved the yield (entries 3 & 4). By
pre-mixing the nickel and ligand separately from the rest of the reagents, further
improvement was observed (entry 5). Finally, the addition of ethanol was found to
increase the yield of the reaction substantially (entry 6). We hypothesize that this

additive likely improves the solubility of the base and/or boronic acid.

Table 1.1 Reaction optimization of the Suzuki—-Miyaura cross-coupling of alkyl

pyridinium salts with arylboronic acids®
p-Tol-B(OH), (3.0 equiv)

Ph -~ Ph 10 mol % Nickel Me
| © 24 mol % Ligand O
0 N~ BF, > 0
< ® base (3.4 equiv) O
0 Ph EtOH (0-5.0 equiv) 0 1.40

1-39 dioxane (0.1 M), 60 °C, 24 h
Entry Ni Source Ligand Base Additive  Yield (%)"
1 Ni(cod), PPh,Cy K5PO, none 6
2 Ni(cod), BPhen K3POy4 none 21
3 Ni(cod), BPhen KO'Bu none 24



4 Ni(OAc), 4H,0 BPhen KO'Bu none 39
5¢ Ni(OAc),-4H,0 BPhen KO'Bu none 52

6° Ni(OAc),"4H,0 BPhen KO'Bu EtOH¢ 81

*Conditions: pyridinium salt 1-39 (0.10 mmol), p-Tol-B(OH), (3.0 equiv), [Ni] (10
mol %), ligand (24 mol %), base (3.4 equiv), dioxane (0.1 M), 60 °C, 24 h, unless
noted otherwise. "Determined by "H NMR analysis using 1,3,5-trimethoxybenzene as
internal standard. “Two mixtures (Vial 1: [Ni], Ligand, dioxane. Vial 2: pyridinium
salt 1-39, p-Tol-B(OH),, Base, EtOH, dioxane.) were stirred for 1 h before

combining. EtOH (5.0 equiv) added.

1.2.3 Reaction Scope

With optimized conditions in hand, I, along with Jianyu Xu and Jacob Piane,
joined the project to demonstrate the scope of this transformation (Scheme 1.10). We
were very delighted to find that a number of primary and secondary (cyclic and
acyclic) alkyl groups participated smoothly under these reaction conditions. The
model reaction afforded 1-40 in 75% isolated yield on a 1.0-mmol scale. We have also
shown that the reaction is somewhat tolerant of moisture, as a similar yield was
observed in the absence of oven-dried glassware for the formation of cross-coupled
product 1-42. However, a significant drop in yield (31%) was observed when minimal
precaution was taken to exclude air or moisture (solvents and glassware were not dried

and the reaction was set up under air).
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Scheme 1.10  Scope of non-pyridyl boronic acid®
Ar—B(OH), (3.0 equiv)

Ph_~.Fh 10 mol % Ni(OAc),-4H,0
| o 24 mol % BPhen Rl _Ar
RL_N._~ BF, - 7
Te KOBu (3.4 equiv), EtOH (5.0 equiv) R2

R2 Ph ; °
1-31 dioxane (0.1 M), 60 °C, 24 h 1-32
Me Cl
J & J
0]
< Me
0 7
1-40, 75% 1-42, 74% 1-43, 52%

w/o dry galssware: 66%"-°
minimal precaution: 31%"°¢

O 1-45, 70%

1-44, 78% 1-46, 73%
OM o
e A
Me
”Pent\(<j/
Me BocN
1-47, 58% 1-48, 66%° 1-49, 48%

Me

pN«/QF

BocN \) BocN

1-50, 69%
BocHN,, E@\
Me" TEt OBn
Boc
1-52, 65%0° 1-53, 52%° 1-54, 60%, 29% eeb-©
from proline single diastereomer 25%, 81% eebf
from isoleucine from lysine
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1-55, 71% 1-56, 62%
from Mosapride intermediate

*Conditions: pyridinium salt 1-31 (1.0 mmol), Ni(OAc),-4H,0 (10 mol %), BPhen (24
mol %), ArB(OH), (3.0 equiv), KO'Bu (3.4 equiv), EtOH (5 equiv), dioxane (0.1 M),
60 °C, 24 h. Average isolated yields (£6%) from duplicate experiments. "Single
experiment. “Glassware not oven-dried before use. *Minimal precautions to protect
from air and moisture. °0.5-mmol scale. '0.05-mmol scale. p-(CF3)C¢H4OH (2 equiv)
added. Yield determined by 'H NMR using 1,3,5-trimethoxybenzene as internal

standard.

Many functional groups on the alkyl coupling partner were well tolerated,
including ethers, silyl ethers, acetals, and esters. In addition, tertiary and Boc-
protected amines as well as heterocycles, such as piperidines, piperazines, and
morpholine, can be used. We have also coupled substrates derived from amino acids.
Products 1-52 and 1-53 are derived from proline and isoleucine, respectively. Notably,
1-53 is formed as a single diastereomer, indicating that non-acidic stereocenters are
preserved under these conditions. Cross-coupling of the amino side chain of N-Boc
lysine also proceeded in good yield, albeit with poor conservation of enantiomeric
excess (ee) (1-54). However, a much higher ee, but lower yield, was observed with the
use of an acidic additive (i.e., p-(CF3;)C¢H4sOH), suggesting conditions can be

identified to solve this problem. Moreover, we have demonstrated the synthetic utility

12



of this chemistry for late-stage functionalization of intermediates in the synthesis of
bioactive molecules. For example, products 1-55 and 1-56 are derived from an amine
intermediate in the synthesis of Mosapride, a treatment for gastrointestinal disorders.”

Broad scope was also achieved with the arylboronic acid. Various
functionalities were tolerated, including aryl chlorides (1-43) and fluorides (1-50, 1-
52), methyl ketones (1-44, 1-48), esters (1-45), amides (1-46), ethers (1-47, 1-52),
alkenes (1-49), silyl-protected alkynes (1-54), acetals (1-55), and nitriles (1-56). Given
the prevalence of heterocycles in bioactive molecules, we prioritized the incorporation
of heteroarylboronic acids in the cross-coupling. N-Methylindole was easily installed
(1-51). Pyridyl boronic acids can also be used under slightly modified conditions. By
utilizing a lower ligand loading (12 mol %) and more dilute conditions (0.025 M), a
variety of heteroarenes can be incorporated (Scheme 1.11). Both 3- and 4-pyridyl
groups work, including those with fluoride (1-57, 1-60, 1-61, & 1-65), ether (1-58 &
1-63), and morpholino (1-64) substituents. Notably, 2-fluoropyridines are primed for
elaboration via SyAr chemistry. Unsubstituted pyridyl (1-59) and quinoline (1-62)
were also successful. Moreover, product 1-65 is derived from an amine intermediate

used in the synthesis of Lipitor” (Pfizer, Inc.), an anti-cholesterol drug.*
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Scheme 1.11 Scope of pyridyl boronic acid®
Ar—B(OH), (3.0 equiv)

Ph_~.Fh 10 mol % Ni(OAc),-4H,0
| o 12 mol % BPhen Rl _Ar
RN~ BF, - T
\R(Z@ I8 KO'Bu (3.4 equiv), EtOH (5.0 equiv) R2
1-31 dioxane (0.025 M), 60 °C, 24 h 1-32
Z "N
Z >N |
Me N | N
- OMe
1-57, 81% 1-58, 74% 1-59, 53%
Me
4 - /K/\/C( TBSO/\/\(\/Q
n N
SN
1-60, 66% 1-61, 71% 1-62, 59%

_ | OMe NJ Me \/C(
TBSO N

BocN \) ~c 0,'Bu

1-63, 66% 1-64, 62%P 1-65, 46%P
from Lipitor® intermediate

*Conditions: pyridinium salt 1-31 (1.0 mmol), Ni(OAc),-4H,0 (10 mol %), BPhen (12
mol %), ArB(OH), (3.0 equiv), KO'Bu (3.4 equiv), EtOH (5 equiv), dioxane (0.025
M), 60 °C, 24 h. Average isolated yields (+6%) from duplicate experiments. "Single

experiment.

1.2.4 Mechanistic Studies

We reckoned that the cross-coupling could proceed via a Ni'™ or Ni’™

-0/11

catalytic cycle. A Ni' mechanism would involve two-electron oxidative addition
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(Sx1 or Sx2), whereas a Ni"™ cycle would proceed via single-electron transfer (SET)
from a Ni' intermediate to the pyridinium salt. Although, pyridinium salts have been
precedented to participate in Sx2 chemistry,*' Katritzky has also shown that these salts
can act as single-electron acceptors. For instance, they have been used in the C-
alkylation of nitronate anions (Scheme 1.12).** Pyridinium salts have also shown to be

. .. 43 . . 44
effective photosensitizers ™~ and sources of nitrogen-centered radicals.

Scheme 1.12 Katritzky’s alkylation of nitronate anions with alkyl pyridinium salts

O? .ONa
N
BN
Ph_~_Ph R R Ph._~o Ph o
lo Jo 167 N N P
) _ S — _ — >
Alk BF, SET Alk PY | C-alkyiation Alk)<R’
Ph Ph v
1-66 1-68 1-69 1-70

The superiority of bipyridyl ligands, which are often employed in Ni"™

catalysis, and the fact that Ni'' precursors outcompete Ni° pre-catalysts further allude
to a SET mechanism (See Table 1.1, entries 3 & 4). This mechanism would lead to the
formation of an alkyl radical intermediate. With that in mind, I performed several
mechanistic experiments to probe the intermediacy of this alkyl radical species. Given
the rapid interconversion of alkyl radicals, we proposed that erosion of stereochemical
information through the course of the reaction would be observed. In fact, cross-
coupling of pyridinium salt 1-71, which was prepared from enantiopure (S)-2-
aminooctane, led to the formation of racemic arylated product 1-72 in 54% yield
(Scheme 1.13A). Moreover, cross-coupling of radical-clock cyclopropane 1-73

resulted in ring-opened product 1-74 (Scheme 1.13B). The addition of TEMPO shut
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down the cross-coupling reaction and provided only TEMPO-trapped adduct 1-76 in
20% vyield (Scheme 1.13C). These results are in support of an alkyl radical

intermediate.

Scheme 1.13 Mechanistic support for radical intermediate

A. Racemization
Ar—B(OH), (3.0 equiv)

Phe_ PN 10 mol % Ni(OAC)-4H,0 OMe
N| o 24 mol % BPhen
2 BF, ~ "Pent”

n
Pent” "o KO™Bu (3.4 equiv), EtOH (5 equiv)

Me Ph dioxane (0.1 M), 60 °C, 24 h Me
1-71 1-72
from (S)-2-aminooctane 54% (NMR)
(>99% ee) racemic

B. Cyclopropyl ring-opening
p-Tol-B(OH), (3.0 equiv)
Ph 10 mol % Ni(OAc),-4H,0

Ph
Y o 24 mol % BPhen Me
N~ BF, >
® IR KO'Bu (3.4 equiv), EtOH (5 equiv) X

1-73 dioxane (0.1 M), 60 °C, 24 h 174

33% (NMR)

C. TEMPO trap

p-Tol-B(OH), (3.0 equiv) M
Ph__~_-Ph 10 mol % Ni(OAc),-4H,0 ®Me
Nl gF 24 mol % BPhen Ph/\/o‘N
N = 4 >
Ph ® KOBu (3.4 equiv), EtOH (5 equiv) Me
Ph TEMPO (2.0 equiv) Me
1-33 dioxane (0.1 M), 60 °C, 24 h 1-76

20% (NMR)

In light of this data, we have proposed the following Ni""" catalytic cycle

(Scheme 1.14). In this scheme, I have assigned redox events only to the nickel center
for simplicity, but certainly the BPhen ligand may also be undergoing redox events.
Ni' species A undergoes transmetallation with the activated boronate to generate aryl-

Ni' species B. Single-electron transfer (SET) from B into the pyridinium ring leads to
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the formation of radical species C. This then induces homolytic C—N bond cleavage to
generate alkyl radical D as well as 2,4,6-triphenylpyridine as byproduct. Alkyl radical
D can then recombine with Ni'-arene E via a radical-rebound pathway to generate
Ni'" species F. This intermediate is then prone to reductive elimination to deliver the
desired cross-coupled product and regenerate active catalyst A. This monometallic
“transmetallation-first” type mechanism is analogous to that proposed by Vicic for
Fu’s Negishi cross-coupling of alkyl halides.”> We are cognizant that alternative
pathways are possible such as a radical chain bimetallic SET oxidative addition® and
cannot distinguish these possibilities with the current data. Future efforts in the group

are focused on elucidating the elementary steps of this catalytic process.

Scheme 1.14 Proposed catalytic cycle
Ph Ar-B(OH), + KO'Bu + EtOH

Ar = N NII_
> EtO-B(OH), +
=~ HOBu + KX

Ph
/N‘ 'm/x B /N |
Ni —Ar
_ Il\l ~__R _ ’,\‘NI
Ph— g Ph
E Ph Ph
Ph = y SET N
_N ®
Ni”\ R\/N Z
= [\l Ar C) Ph
S BF
Ph Pho~-C Ph
R =
D\. ; R\/CN —~ C
Ph Ph
S Ph
N_
Ph
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1.3 Conclusion

In summary, we have developed a nickel-catalyzed cross coupling of alkyl
pyridinium salts with arylboronic acids. We have demonstrated broad substrate scope
in both coupling partners, particularly with the incorporation of nitrogen containing
functionalities. We have also shown the amenability of this method to a number of
amino acid derivatives and drug intermediates. These examples highlight the potential
of the amine (NH;) moiety to serve as a handle for elaboration and late-stage
functionalization, especially within the context of drug discovery efforts. Moreover,
this method allows inexpensive primary amine precursors to be converted into
complex, high value compounds. Notably, this is the first example of a metal-
catalyzed cross-coupling of an amine derivative bearing unactivated alkyl groups. This

work was published in the Journal of the American Chemical Society.*®

1.4 Experimental

1.4.1 General Information

Reactions were performed in oven-dried Schlenk flasks or in oven-dried
round-bottomed flasks unless otherwise noted. Round-bottomed flasks were fitted
with rubber septa, and reactions were conducted under a positive pressure of Nj.
Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive
liquids. Silica gel chromatography was performed on silica gel 60 (40-63 um, 60A)
unless otherwise noted. Commercial reagents, including 2,4,6-triphenylpyrylium

tetrafluoroborate and the primary and secondary alkyl amines (or corresponding
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hydrochloride salts), were purchased from Sigma Aldrich, Acros, Fisher, Strem, TCI,
Combi Blocks, Alfa Aesar, AK Scientific, Oakwood, or Cambridge Isotopes
Laboratories and used as received with the following exceptions: anhydrous ethanol
was degassed by sparging with N, for 20-30 minutes prior to use in the cross-coupling
reactions; dioxane was dried by passing through drying columns, then degassed by
sparging with N,.*’ In some instances oven-dried potassium carbonate was added to
CDCl; to remove trace acid. Proton nuclear magnetic resonance ('"H NMR) spectra,
carbon nuclear magnetic resonance (°C NMR) spectra, fluorine nuclear magnetic
resonance spectra ("'F NMR), and silicon nuclear magnetic resonance spectra (*’Si
NMR) were recorded on both 400 MHz and 600 MHz spectrometers. Chemical shifts
for protons are reported in parts per million downfield from tetramethylsilane and are
referenced to residual protium in the NMR solvent (CHCI; = 8 7.26). Chemical shifts
for carbon are reported in parts per million downfield from tetramethylsilane and are
referenced to the carbon resonances of the solvent (CDCIl; = & 77.16). Chemical shifts
for fluorine were externally referenced to CFCl; in CDCIl; (CFCl; = 6 0). Data are
represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d =
doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublets, h =
heptet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were
obtained using FTIR spectrophotometers with material loaded onto a KBr plate. The
mass spectral data was obtained at the University of Delaware mass spectrometry
facility. Optical rotations were measured using a 2.5 mL cell with a 0.1 dm path
length. Melting points were taken on a Thomas-Hoover Uni-Melt Capillary Melting

Point Apparatus.
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1.4.2 Suzuki-Miyaura Cross-Coupling of Alkyl Pyridinium Salts

1.4.2.1 General Procedure A: Cross-Coupling with Non-Pyridyl Aryl Boronic
Acids
Ar—-B(OH),

Ph Ph
= | Ni(OAc),*4H,0 (10 mol%)
R _Nx @BF BPhen (24 mol%) RH/ Ar
Y2® b ¢ KO#-Bu, EtOH

R2
dioxane, 60 °C, 24 h

To an oven-dried, 25-mL pear-shaped flask, was added Ni(OAc),-4H,O (25
mg, 0.10 mmol, 10 mol %) and bathophenanthroline (BPhen, 80 mg, 0.24 mmol, 24
mol %). The flask was fitted with a rubber septum, sealed with parafilm, and then
evacuated and refilled with N, (x 3). To an oven-dried, 50-mL Schlenk flask was
added the alkyl pyridinium salt (1.0 mmol, 1.0 equiv), arylboronic acid (3.0 equiv, 3.0
mmol), and KOz-Bu (382 mg, 3.4 mmol, 3.4 equiv). The flask was fitted with a rubber
septum, sealed with parafilm, and then evacuated and refilled with N, (x 3). To the
pear-shaped flask containing Ni(OAc),-4H,O and BPhen was added dioxane (sparged,
anhydrous; 2.5 mL). To the Schlenk flask containing the pyridinium salt, boronic acid,
and KOz-Bu was added dioxane (sparged, anhydrous; 2.5 mL), followed by EtOH
(sparged, anhydrous; 0.29 mL, 5.0 mmol, 5.0 equiv). After vigorously stirring of the
resulting mixtures for 1 h at room temperature, the heterogeneous mixture containing
the catalyst was transferred via cannula to the mixture containing the pyridinium salt
and activated boronate complex. The pear-shaped flask was rinsed multiple times with
dioxane (totaling 5 mL; each rinse was transferred via cannula to the reaction mixture)
to bring the total volume of dioxane in the reaction flask to 10 mL (0.1 M). The
resulting reaction mixture was stirred at 60 °C for 24 h. The mixture was allowed to
cool to room temperature. EtOAc (10 mL) was added. The mixture was stirred for 2—5

min, and then filtered through a small plug of silica gel. The filter cake was washed
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with EtOAc (4 x 20 mL), and the resulting solution was concentrated. The cross-

coupled product was then purified via silica gel chromatography.

Me
: U
1
5-(4-Methylphenethyl)benzo|d][1,3]dioxole (1-40). Prepared via General Procedure
A using pyridinium salt 1-39. The crude mixture was purified by silica gel
chromatography (step gradient: 1>5—>10—>20% toluene/hexanes) to give 1-40 (run 1:
183 mg, 76%; run 2: 177 mg, 74%) as a white solid (mp 81-82 °C): "H NMR (600
MHz, CDCl3) & 7.12-7.03 (m, 4H), 6.72 (d, J = 7.9 Hz, 1H), 6.69 (d, J = 1.5 Hz, 1H),
6.62 (dd, T = 7.9, 1.5 Hz, 1H), 5.92 (s, 2H), 2.87 — 2.78 (m, 4H), 2.32 (s, 3H); °C
NMR (151 MHz, CDCls) & 147.6, 145.8, 138.7, 135.9, 135.5, 129.2, 128.4, 121.3,
109.1, 108.2, 100.9, 37.9, 37.9, 21.2; FTIR (neat) 2940, 1490, 1246, 1038, 927, 815,
741 cm'l; HRMS (ESI+) calculated for Ci¢H;70,: 241.1223, found 241.1222.

Me
Me\/\/\/\/\Q/

1-Decyl-4-methylbenzene (1-42). Prepared via General Procedure A using
pyridinium salt 1-77. The crude mixture was purified by silica gel chromatography
(100% pentane) to give 1-42 (run 1: 172 mg, 74%) as a clear oil (Note: This product is
slightly volatile. Care should be used when drying under high vacuum.): '"H NMR
(400 MHz, CDCl3) 6 7.14 — 7.02 (m, 4H), 2.59 — 2.52 (m, 2H), 2.32 (s, 3H), 1.63 —
1.54 (m, 2H), 1.45 — 1.07 (m, 14H), 0.92 — 0.83 (m, 3H); °C NMR (101 MHz, CDCl;)
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o 140.0, 135.1, 129.0, 128.4, 35.7, 32.1, 31.8, 29.79, 29.76, 29.7, 29.5, 22.9, 21.2,
14.3. The spectral data matches that of the literature.*®
Reaction without Oven-dried Glassware

Product 1-42 also prepared via General Procedure A, except that the Schlenk
flask, pear- shaped flask, stir bars, and cannula were not oven-dried prior to use. The
crude mixture was purified by silica gel chromatography (100% pentane) to give 1-42
(154 mg, 66%).
Reaction with “Minimal Precaution” Set-up

Product 1-42 was also prepared via a procedure similar to General Procedure
A, except that minimal precautions were taken to protect the reaction from air and
moisture. No precautions were taken to either dry or degass dioxane and EtOH.
Neither the round-bottomed flask nor the pear-shaped flask were oven-dried prior to
use. The volume of dioxane was measured with a graduated cylinder and added
directly into each flask, open to air. Transfer of the catalyst mixture was performed
with a non-oven-dried pipet directly from the pear-shaped flask into the round-
bottomed flask. The reaction was set-up under air (no N»).

To a round-bottomed flask equipped with a stir bar was added p-TolB(OH),
(408 mg, 3.0 mmol, 3.0 equiv), pyridinium salt 1-77 (536 mg, 1.0 mmol, 1.0 equiv),
and KO#-Bu (382 mg, 3.4 mmol, 3.4 equiv). The flask was capped with a septum. To a
pear-shaped flask equipped with a stir bar was added Ni(OAc),4H,O (25 mg, 0.10
equiv, 0.10 mmol) and BPhen (80 mg, 0.24 mmol, 0.24 equiv), followed by dioxane
(2.5 mL). Dioxane (2.5 mL) was added to the round- bottomed flask containing the
boronic acid, pyridinium salt, and KO#-Bu, followed by EtOH (0.29 mL, 5.0 mmol, 5

equiv) via syringe. The septum was replaced, and the pear-shaped flask was also fitted
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with a septum. After stirring both mixtures vigorously for 1 h, both septa were
removed, and the catalyst mixture was transferred via pipet to the flask containing the
“activated-boronate” mixture. Additional dioxane (5 mL total) was used to rinse the
pear-shaped flask in order to ensure complete transfer of the catalyst mixture, thus
bringing the total volume of dioxane in the reaction to 10 mL (0.1 M). The reaction
flask was fitted with a septum, which was then wrapped in parafilm and secured with a
copper wire. The reaction mixture was stirred at 60 °C for 24 h. After cooling to room
temperature, EtOAc (10 mL) was added, and the mixture was filtered through a short
plug of silica gel. The filter cake was rinsed with EtOAc (4 x 20 mL), and the resulting
filtrate solution was concentrated. The residue was purified by silica gel

chromatography (100% pentane) to afford 1-42 (73 mg, 31%) as a clear oil.

jos
ol
1-Chloro-4-phenethylbenzene (1-43). Prepared via General Procedure A using
pyridinium salt 1-33. The crude mixture was purified by silica gel chromatography
(100% pentanes) to give 1-43 (run 1: 109 mg, 50%; run 2: 114 mg, 53%) as a white
solid: "H NMR (600 MHz, CDCl3) § 7.30 — 7.26 (m, 2H), 7.25 — 7.22 (m, 2H), 7.22 —
7.18 (m, 1H), 7.17 — 7.13 (m, 2H), 7.11 — 7.05 (m, 2H), 2.89 (s, 4H); °C NMR (151
MHz, CDCls) 6 141.4, 140.3, 131.8, 130.0, 128.6, 128.54, 128.52, 126.2, 37.9, 37.3.

The spectral data matches that of the literature.*’

23



Vo

1-(4-Phenethylphenyl)ethanone (1-44). Prepared via General Procedure A using
pyridinium salt 1-33. The crude mixture was purified by silica gel chromatography
(5% EtOAc/hexanes) to give 1-44 (run 1: 175 mg, 78%; run 2: 172 mg 77%) as a
white solid: "H NMR (600 MHz, CDCl3) & 7.90 — 7.85 (m, 2H), 7.30 — 7.26 (m, 2H),
7.26 — 7.23 (m, 2H), 7.22 — 7.18 (m, 1H), 7.17 — 7.13 (m, 2H), 3.01 — 2.96 (m, 2H),
2.96 — 2.91 (m, 2H), 2.59 (s, 3H); °C NMR (151 MHz, CDCL;) & 197.9, 147.6, 141.2,
135.4, 128.9, 128.7, 128.58, 128.55, 126.3, 38.0, 37.6, 26.7. The spectral data matches

that of the literature.>®

N

OEt

4

Ethyl 4-phenethylbenzoate (1-45). Prepared via General Procedure A using
pyridinium salt 1-33. The crude mixture was purified by silica gel chromatography
(50% toluene/hexanes) to give 1-45 (run 1: 178 mg, 70%; run 2: 176 mg, 69%) as an
off-white solid: "H NMR (400 MHz, CDCl3) § 7.98 — 7.92 (m, 2H), 7.30 — 7.26 (m,
2H), 7.24 — 7.18 (m, 3H), 7.15 (d, J = 7.15 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 3.00 —
2.96 (m, 2H), 2.95 — 2.91 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H); °C NMR (101 MHz,
CDCl;) 6 166.8, 147.2, 141.3, 129.8, 128.63, 128.58, 128.5, 128.4, 126.2, 61.0, 38.0,

37.6, 14.5. The spectral data matches that of the literature.”'
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N,N-Diethyl-4-phenethylbenzamide (1-46). Prepared via General Procedure A using
pyridinium salt 1-33. The crude mixture was purified by silica gel chromatography
(50% EtOAc/hexanes) to give 1-46 (run 1: 211 mg, 75%; run 2: 200 mg, 71%) as a
yellow oil: '"H NMR (600 MHz, CDCl3) & 7.32 — 7.26 (m, 4H), 7.23 — 7.14 (m, 5H),
3.62 — 3.41 (m, br, 2H), 3.37 — 3.16 (m, br, 2H), 2.97 — 2.88 (m, 4H), 1.34 — 1.18 (m,
br, 3H), 1.18 — 1.02 (m, br. 3H); °C NMR (101 MHz, CDCI3) § 171.5, 143.0, 141.6,
135.0, 128.59, 128.58, 128.5, 126.5, 126.1, 43.4, 39.4, 37.87, 37.85, 14.4, 13.0; FTIR
(neat) 2972, 1630, 1426, 1287, 1095, 700 cm™'; HRMS (ESI+) [M+H]" calculated for
Ci9H24NO: 282.1852, found 282.1852.

Me

Me/\/\/KO\
OMe

1-(Heptan-2-yl)-4-methoxybenzene (1-47). Prepared via General Procedure A using
pyridinium salt 1-78. The crude mixture was purified by silica gel chromatography
(step gradient: 0—2—5% toluene/hexanes) to give 1-47 (run 1: 119 mg, 58%; run 2:
118 mg, 57%) as a colorless oil: '"H NMR (600 MHz, CDCls) & 7.14 — 7.04 (m, 2H),
6.89 — 6.78 (m, 2H), 3.79 (s, 3H), 2.63 (h, J=7.1 Hz, 1H), 1.56 — 1.48 (m, 2H), 1.31 —
1.12 (m, 9H), 0.90 — 0.81 (m, 3H); °C NMR (151 MHz, CDCl;) § 157.8, 140.3,
127.9, 113.8, 55.4, 39.2, 38.7, 32.1, 27.5, 22.75, 22.67, 14.2; FTIR (neat) 2956, 2926,
1513, 1247, 828 cm™; HRMS (ESI+) [M+H]" calculated for C4sH;0: 207.1743,
found 207.1741.
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1-(4-Cyclohexylphenyl)ethanone (1-48). Prepared via General Procedure A using
pyridinium salt 1-35. The crude mixture was purified by silica gel chromatography
(step gradient: 50—75% toluene/hexanes) to give 1-48 (run 1: 134 mg, 66%) as a pale
yellow solid: "H NMR (600 MHz, CDCl;) & 7.94 — 7.83 (m, 2H), 7.33 — 7.27 (m, 2H),
2.63 —2.49 (m, 4H), 1.93 — 1.80 (m, 4H), 1.80 — 1.73 (m, 1H), 1.48 — 1.35 (m, 4H),
1.31 — 1.23 (m, 1H); >C NMR (151 MHz, CDCl;) & 198.0, 153.9, 135.2, 128.7, 127.2,
44.8,34.3,26.9, 26.7, 26.2. The spectral data matches that of the literature.>

BocN

tert-Butyl 4-(4-vinylphenyl)piperidine-1-carboxylate (1-49). Prepared via General
Procedure A using pyridinium salt 1-38. The crude mixture was purified by silica gel
chromatography (3% EtOAc/hexanes) to give 1-49 (run 1: 148 mg, 51%; run 2: 130
mg, 45%) as a clear oil: "H NMR (600 MHz, CDCl3) & 7.38 — 7.33 (m, 2H), 7.19 —
7.14 (m, 2H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 5.72 (dd, J = 17.6, 0.9 Hz, 1H), 5.21
(dd, J=10.9, 0.8 Hz, 1H), 4.42 — 4.08 (m, br, 2H), 2.88 — 2.70 (m, 2H), 2.63 (tt, J =
12.1, 3.5 Hz, 1H), 1.85 — 1.76 (m, br, 2H), 1.67 — 1.55 (m, 2H), 1.48 (s, 9H); °C
NMR (151 MHz, CDCl) 6 155.0, 145.7, 136.6, 135.9, 127.1, 126.5, 113.5, 79.6, 44.5
(br), 42.6, 33.3, 28.6; FTIR (neat) 2933, 1693, 1424, 1170, 840 cm™'; HRMS (ESI+)
[M+H]" calculated for CsH,6NO,: 288.1958, found 288.1956.
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BocN/\
LN N

/Me

tert-Butyl 4-(3-fluoro-4-methylphenethyl)piperazine-1-carboxylate (1-50).
Prepared via General Procedure A using pyridinium salt 1-79. The crude mixture was
purified by silica gel chromatography (step gradient: 0—10—20—40%
EtOAc/hexanes) to give 1-50 (run 1: 214 mg, 66%; run 2: 228 mg, 71%) as a yellow
semi-solid; '"H NMR (600 MHz, CDCl) & 7.07 (t, J = 8.0 Hz, 1H), 6.89 — 6.81 (m,
2H), 3.50 — 3.41 (m, 4H), 2.79 — 2.72 (m, 2H), 2.61 — 2.55 (m, 2H), 2.50 — 2.40 (m, br,
4H), 2.23 (s, 3H), 1.46 (s, 9H); °C NMR (151 MHz, CDCl3) & 161.4 (d, Jor = 244.6
Hz), 154.9, 139.9 (d, Jc.r = 9.1 Hz), 131.4 (d, Jc.r = 6.0 Hz), 124.1 (d, Jc.r = 3.0 Hz),
122.5 (d, Jor = 16.6 Hz), 115.3 (d, Jor = 22.7 Hz), 79.8, 60.3, 53.1, 43.3 (br), 33.0,
28.6, 14.3; F NMR (565 MHz, CDCl;) & —118.0; FTIR (neat) 2930, 2809, 1698,
1422, 1249, 1173, 1123, 1004; HRMS (ESI+) [M+H]" calculated for CisH2sFN,Ox:
323.2129, found 323.2128.

BocN/\
Ak

\/\©f\§

N

Me
tert-Butyl  4-(2-(1-methyl-1H-indol-5-yl)ethyl)piperazine-1-carboxylate (1-51).
Prepared via General Procedure A using pyridinium salt 1-79. The crude mixture was
purified by silica gel chromatography (step gradient: 30—>70% EtOAc/hexanes) to
give 1-51 (run 1: 272 mg, 79%; run 2: 282 mg, 82%) as a light orange/yellow solid
(mp 80-83 °C): '"H NMR (600 MHz, CDCl;) & 7.46 — 7.41 (m, 1H), 7.26 — 7.23 (m,
1H), 7.10 — 7.05 (m, 1H), 7.03 (d, J = 3.1 Hz, 1H), 6.43 — 6.39 (m, 1H), 3.77 (m, br,
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3H), 3.59 — 3.41 (m, br, 4H), 2.91 (m, br, 2H), 2.66 (m, br, 2H), 2.50 (s, 4H), 1.47 (s,
9H); *C NMR (101 MHz, CDCl3) § 154.9, 135.6, 130.9, 129.2, 128.8, 122.7, 120.5,
109.2, 100.5, 79.7, 61.6, 53.2, 43.7, 33.7, 33.0, 28.6; FTIR (neat) 2929, 2808, 1694,
1422, 1247, 1171, 1002, 718 cm™'; HRMS (ESI+) [M+H]" calculated for CaH3oN30,:
344.2333, found 344.2331.

Me

N
Boc

(S)-tert-Butyl 2-(3-fluoro-4-methylbenzyl)pyrrolidine-1-carboxylate (1-52).
Prepared via General Procedure A using pyridinium salt 1-37. The crude mixture was
purified by silica gel chromatography (5% Et,O/toluene) to give 1-52 (189 mg, 65%)
as a yellow oil (mixture of rotamers): 'H NMR (600 MHz, CDCl3) § 7.13 — 7.02 (m,
br, 1H), 6.92 — 6.76 (m, br, 2H), 4.05 — 3.85 (m, br, 1H), 3.45 —3.18 (m, br, 2H), 3.16
—2.95 (m, br, 1H), 2.59 — 2.41 (m, br, 1H), 2.23 (s, br, 3H), 1.84 — 1.64 (m, br, 4H),
1.57 — 1.44 (s, br, 9H); °C NMR (151 MHz, CDCL) & 161.3 (d, Jor = 245.1 Hz),
154.6, 138.9 (d, Jcr = 7.4 Hz), 131.4 (d, Jc.r = 4.9 Hz, major), 131.2 (d, Jo.r = 4.4 Hz,
minor), 125.0 (minor), 124.8 (major), 122.6 (d, Jc.r = 17.6 Hz, minor), 122.4 (d, Jc.r =
16.4 Hz, major), 116.1 (d, Jcr = 20.3 Hz, minor), 115.8 (d, Jcr = 22.2 Hz, major),
79.5 (major), 79.2 (minor), 58.9 (major), 58.6 (minor), 47.0 (minor), 46.4 (major),
40.2 (major), 39.1 (minor), 29.8 (major), 29.1 (minor), 28.7, 23.6 (minor), 22.8
(major), 14.33, 14.31; "’F NMR (565 MHz, CDCl;) & —118.0 (major), —118.4 (minor);
FTIR (neat) 2973, 2875, 1694, 1394, 1172, 1114, 771 cm™; HRMS (ESI+) [M+H]"
calculated for C17H,sFNO,: 294.1864, found 294.1862.
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BocHN, | N
Me“[:; Z>0Bn
Me

tert-butyl ((2R,3S)-1-(4-(benzyloxy)phenyl)-3-methylpentan-2-yl)carbamate (1-
53). Prepared via General Procedure A using pyridinium salt 1-36. The crude mixture
was purified by silica gel chromatography (gradient: 1—-2% EtOAc/toluene) to give 1-
53 (201 mg, 52%) as an off-white solid (mp 121-123 °C): '"H NMR (600 MHz,
CDCl) 6 7.44 — 7.40 (m, 2H), 7.40 — 7.35 (m, 2H), 7.34 - 7.29 (m, 1 H), 7.12 — 7.05
(m, 2H), 6.92-6.86 (m, 2H), 5.03 (s, 2H), 4.36 — 4.24 (m, 1H), 3.80 — 3.68 (m, br, 1H),
2.79 - 2.73 (m, 1H), 2.57 — 2.53 (m, 1H), 1.55-1.47 (m, 2H), 1.35 (s, br, 9H), 1.15 —
1.05 (m, br, 1H), 0.97-0.86 (m, 6H); °C NMR (101 MHz, CDCls) & 157.4, 155.7,
137.3, 131.3, 130.3, 128.7, 128.0, 127.6, 114.8, 79.0, 70.1, 56.1, 37.7, 37.0, 28.5, 24.8,
15.8, 11.9; FTIR (neat) 3384, 2962, 1684, 1518, 1240, 744 cm™; HRMS (ESI+)
[M+H]" calculated for C24H34NO3: 384.2533, found 384.2526.

BocHN___CO,t-Bu

degl

(S)-tert-Butyl 2-((tert-butoxycarbonyl)amino)-6-(4-

Si(i-Pr)3

((triisopropylsilyl)ethynyl)phenyl)hexanoate  (1-54). Prepared via General
Procedure A using pyridinium salt 1-80 and (4-
((triisopropylsilyl)ethynyl)phenyl)boronic acid®® with the following exceptions: the
reaction was run on a 0.5 mmol scale and pyridinium salt 1-80 was pre-stirred with
Ni(OAc),-4H,;0 and BPhen instead of with the boronic acid, KOz-Bu, and EtOH The
crude mixture was purified by silica gel chromatography (5% EtOAc/hexanes) to give

1-54 (165 mg, 60%) as a clear oil. The enantiomeric excess was determined to be 29%
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by chiral HPLC analysis (CHIRALPAK IA, 1.0 mL/min, 2% i-PrOH/hexanes, A=254
nm); tr(major) = 14.52 min, tg(minor) = 9.78 min. [a]p>® = +40.1° (¢ 1.6, CHCL): 'H
NMR (600 MHz, CDCl3) é 7.38 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 4.98 (d,
J=17.8 Hz, 1H), 4.23 — 4.07 (m, 1H), 2.59 (t, J = 7.6 Hz, 2H), 1.81 — 1.72 (m, 1H),
1.68 — 1.57 (m, 3H), 1.44 (s, 9H), 1.43 (s, 9H), 1.40 — 1.35 (m, 1H), 1.35 — 1.29 (m,
1H), 1.12 (s, 21H); °C NMR (151 MHz, CDCl3) & 172.1, 155.5, 142.9, 132.2, 128.4,
121.1, 107.4, 89.8, 81.9, 79.7, 54.0, 35.7, 33.0, 30.9, 28.5, 28.1, 24.7, 18.8, 11.5; *’Si
NMR (119 MHz, CDCls) 6 —2.0; FTIR (neat) 3358, 2942, 2865, 2155, 1717, 1504,
1367, 1155, 677 cm™'; HRMS (ESI+) [M+H]" calculated for C3,HssNO,Si: 544.3817,
found 544.3811.

The arylation of pyridinium salt 1-80 was also performed in the presence of 4-
(trifluoromethyl)phenol. In a Nj-atmosphere glovebox: Ni(OAc),'4H,O (1.2 mg,
0.005 mmol, 10 mol %), BPhen (4.0 mg, 0.0012 mmol, 24 mol %), 4-
(trifluoromethyl)phenol (16 mg, 0.1 mmol, 2.0 equiv), and pyridinium salt 1-80 (34
mg, 0.05 mmol, 1.0 equiv) were added to an oven-dried 1-dram vial. To a separate
oven-dried 1-dram vial was added KO#-Bu (19 mg, 0.17 mmol, 3.4 equiv) and (4-
((triisopropylsilyl)ethynyl)phenyl)boronic acid (45 mg, 0.15 mmol, 3.0 equiv).
Dioxane (125 pL) was added to each vial. Each vial was then equipped with a micro
stir bar, capped with a pierceable Teflon-coated cap, and removed from the glovebox.
To the vial containing the boronic acid and KO#-Bu was added EtOH (15 pL) via a
Ny-purged syringe. Both mixtures were stirred for 1 h at rt. After pre-stirring was
complete, the catalyst mixture containing the pyridinium salt and 4-
(trifluoromethyl)phenol was transferred to the “activated- boronate” mixture via a N»-

purged syringe. Dioxane (250 pL total) was used to insure complete transfer of the
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catalyst mixture and bring the total concentration of the reaction to 0.1 M. The
resulting reaction mixture was heated to 60 °C and stirred vigorously for 24 h. Upon
completion, the mixture was diluted with EtOAc (approx. 1.5 mL) and filtered through
a short plug of silica gel. The filter cake was washed with EtOAc (5 x 1.5 mL) and the
resulting solution was concentrated. The yield of the crude product was determined to
be 25% and was obtained by integration by '"H-NMR with 1,3,5-trimethoxybenzene as
an internal standard. A small sample of the product was purified via preparatory thin-
layer chromatography (5% EtOAc/hexanes) and the enantiomeric excess was
determined to be 81% by chiral HPLC analysis (CHIRALPAK IA, 1.0 mL/min, 2% i-

PrOH/hexanes, A=254 nm); tg(major) = 14.57 min, tg(minor) = 9.84 min.
0O o]
(L
T,

2-(Benzo|d][1,3]dioxol-5-ylmethyl)-4-(4-fluorobenzyl)morpholine (1-55). Prepared
via General Procedure A using pyridinium salt 1-81. After the silica gel filtration, the
crude mixture was dissolved in Et,O (20 mL) and washed with HCI (1 N, 4 x 25 mL).
The combined aqueous layers were extracted with Et,O (4 x 50 mL, these organic
layers were discarded), basified to pH > 12 with NaOH (4 N), and then extracted with
Et,0O (4 x 50 mL). The combined organic layers were dried (MgSQO,), filtered, and
concentrated. The residue was then purified by silica gel chromatography (step
gradient: 10—20% EtOAc/hexanes) to give 1-55 (run 1: 224 mg, 68%; run 2: 240 mg,
73%) as a yellow oil: '"H NMR (600 MHz, CDCls) § 7.28 — 7.23 (m, 2H, overlaps with
CHCl3), 7.04 — 6.94 (m, 2H), 6.76 — 6.67 (m, 2H), 6.65 — 6.60 (m, 1H), 5.92 (s, 2H),
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3.87 — 3.81 (m, 1H), 3.74 — 3.66 (m, 1H), 3.64 — 3.57 (m, 1H), 3.52 — 3.46 (m, 1H),
3.41 — 3.34 (m, 1H), 2.78 — 2.67 (m, 2H), 2.62 — 2.55 (m, 2H), 2.16 — 2.08 (m, 1H),
1.96 — 1.87 (m, 1H); °C NMR (151 MHz, CDCl3) § 162.2 (d, Jc.r = 245.1 Hz), 147.6,
146.1, 133.6, 131.9, 130.7 (d, Jcr = 7.7 Hz), 122.2, 115.2 (d, Jcr = 21.3 Hz), 109.8,
108.2, 100.9, 76.7, 66.9, 62.6, 58.4, 52.8, 40.0; "’F NMR (565 MHz, CDCl;) 5 —115.8;
FTIR (neat) 2859, 2804, 1604, 1508, 1247, 1114, 1040, 810 cm'; HRMS (ESI+)
[M+H]" calculated for CoH, FNO;: 330.1500, found 330.1491.

3-((4-(4-Fluorobenzyl)morpholin-2-yl)methyl)benzonitrile (1-56). Prepared via
General Procedure A using pyridinium salt 1-81. After the silica gel filtration, the
crude mixture was dissolved in Et,O (20 mL) and washed with HCI (1 N, 4 x 25 mL).
The combined aqueous layers were extracted with Et,O (4 x 50 mL, these organic
layers were discarded), basified to pH > 12 with NaOH (4 N), and then extracted with
Et,0O (4 x 50 mL). The combined organic layers were dried (MgSQO,), filtered, and
concentrated. The residue was then purified by silica gel chromatography (20%
EtOAc/hexanes) to give 1-56 (run 1: 201 mg, 65%; run 2: 180 mg, 58%) as a yellow
oil: '"H NMR (600 MHz, CDCls) § 7.51 — 7.50 (m, 2H), 7.44 — 7.43 (m, 1H), 7.39 —
7.36 (m, 1H), 7.28 — 7.25 (m, 2H, overlaps with CHCI3), 7.02— 6.99 (m, 2H), 3.82 —
3.84 (m, 1H), 3.72 (m, 1H), 3.61 — 3.57 (m, 1H), 3.48-3.41 (m, 2H), 2.82 — 2.79 (m,
1H), 2.72 — 2.69 (m, 2H), 2.63 — 2.61 (m, 1H), 2.16 — 2.12 (m, 1H), 1.94 — 1.90 (m,
1H); C NMR (151 MHz, CDCl;) & 162.2 (d, Jo.r = 245.4 Hz), 139.9, 134.0, 133 .4,
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133.0, 130.7 (d, Jer = 7.6 Hz), 130.2, 129.1, 119.1, 115.3 (d, Jer = 21.1 Hz), 112.4,
75.9, 66.9, 62.5, 58.2, 52.9, 39.7; "’F NMR (376 MHz, CDCls) 8 —115.6; FTIR (neat)
2933, 2807, 2229, 1508, 1221, 1114, 693 cm'l; HRMS (ESI+) [M+H]+ calculated for
C19H20FN,O: 311.1554, found 311.1551.

1.4.2.2 General Procedure B: Cross-Coupling with Pyridyl Boronic Acids
Pyr—B(OH),

Ph _ Ph
| Ni(OAc),*4H50 (10 mol%)
R N @BF BPhen (12 mol%) RH/ Pyr
T® IR 4 KO#Bu, E1OH

R2
dioxane, 60 °C, 24 h

To an oven-dried, 25-mL pear-shaped flask was added Ni(OAc),-4H,O (25
mg, 0.10 mmol, 10 mol %), bathophenanthroline (BPhen, 40 mg, 0.12 mmol, 12 mol
%), and the alkyl pyridinium salt (1.0 mmol, 1.0 equiv). The flask was fitted with a
rubber septum, sealed with parafilm, and then evacuated and refilled with N, (x 3). To
an oven-dried, 100-mL Schlenk flask was added the arylboronic acid (3.0 equiv, 3.0
mmol) and KO#Bu (382 mg, 3.4 mmol, 3.4 equiv). The flask was fitted with a rubber
septum, sealed with parafilm, and then evacuated and refilled with N, (x 3). To the
pear-shaped flask containing Ni(OAc),-4H,0O and BPhen was added dioxane (sparged,
anhydrous; 10 mL). To the Schlenk flask containing the boronic acid and KO#-Bu was
added dioxane (sparged, anhydrous; 10 mL), followed by EtOH (sparged, anhydrous;
0.29 mL, 5.0 mmol, 5.0 equiv). After vigorously stirring the resulting mixtures for 2 h
at room temperature, the mixture (heterogeneous in some cases) of catalyst and
pyridinium salt was transferred via large-gauge cannula to the mixture containing the
activated boronate complex. The pear-shaped flask was rinsed multiple times with

dioxane (totaling 20 mL; each rinse was transferred via cannula to the reaction
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mixture) to bring the total volume of dioxane in the reaction to 40 mL (0.025 M). The
resulting reaction mixture was stirred at 60 °C for 24 h. The mixture was allowed to
cool to room temperature. EtOAc (10 mL) was added. The mixture was stirred 2—5
min, and then filtered through a small plug of silica gel. The filter cake was washed
with EtOAc (4 x 20 mL), and the resulting solution was concentrated. The cross-

coupled product was then purified via silica gel chromatography.

/IF
0 N
<
@)

5-(2-(Benzo|d][1,3]dioxol-5-yl)ethyl)-2-fluoropyridine (1-57). Prepared via General
Procedure B using pyridinium salt 1-39. The crude mixture was purified by silica gel
chromatography (4% EtOAc/hexanes) to give 1-57 (run 1: 201 mg, 82%; run 2: 193
mg, 79%) as a yellow oil: 'H NMR (600 MHz, CDCls) & 7.98 — 7.92 (m, 1H), 7.50 (td,
J=28.1,2.6 Hz, 1H), 6.82 (dd, /= 8.3, 2.9 Hz, 1H), 6.71 (d, /= 7.9 Hz, 1H), 6.62 (d, J
=1.7 Hz, 1H), 6.54 (dd, J=7.8, 1.7 Hz, 1H), 5.93 (s, 2H), 2.90 — 2.85 (m, 2H), 2.85 —
2.80 (m, 2H); °C NMR (101 MHz, CDCL;) & 162.4 (d, Jo.r = 238.0 Hz), 147.8, 147.3
(d, Jer=14.3 Hz), 146.0, 141.3 (d, Jc.r = 7.7 Hz), 134.324, 134.319 (d, Jc.r = 4.4 Hz),
121.5, 109.1 (d, Jer = 37.5 Hz), 109.0, 108.3, 101.0, 37.4, 34.2; "’F NMR (376 MHz,
CDCl3) & —71.9; FTIR (neat) 2925, 1596, 1486, 1246, 1040, 932, 811 cm™'; HRMS
(ESI+) [M+H]" calculated for C14H3FNO,: 246.0925, found 246.0925.
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4-Decyl-2-methoxypyridine (1-58). Prepared via General Procedure B using
pyridinium salt 1-77. The crude mixture was purified by silica gel chromatography
(step gradient: 100% toluene—2% EtOAc/hexanes) to give 1-58 (run 1: 195 mg, 78%;
run 2: 175 mg, 70%) as a yellow oil: '"H NMR (600 MHz, CDCls) & 8.03 (d, J = 5.3
Hz, 1H), 6.72 — 6.67 (m, 1H), 6.58 — 6.51 (m, 1H), 3.92 (s, 3H), 2.59 — 2.49 (m, 2H),
1.62 — 1.56 (m, 2H), z1.35 — 1.19 (m, 14H), 0.88 (t, J = 6.9 Hz, 3H); °C NMR (151
MHz, CDCls) 6 164.7, 154.8, 146.6, 117.7, 110.4, 53.4, 35.3, 32.0, 30.3, 29.74, 29.68,
29.6, 29.5, 29.3, 22.8, 14.2; FTIR (neat) 2926, 1613, 1398, 1157, 1044, 820; HRMS

(ESI+) [M+H]" calculated for C;sH7NO: 250.2165, found 250.2157.

4-Cyclohexylpyridine (1-59). Prepared via General Procedure B using pyridinium
salt 1-35. The crude mixture was purified by silica gel chromatography (50%
EtOAc/hexanes) to give 1-59 (run 1: 81 mg, 50%; run 2: 91 mg, 56%) as an orange
oil: '"H NMR (400 MHz, CDCls) & 8.49 — 8.47 (m, 2H), 7.13 — 7.11 (m, 2H), 2.53 —
2.45 (m, 1H), 1.91 — 1.67 (m, 5H), 1.46 — 1.19 (m, 5H); >C NMR (101 MHz, CDCl;)
0 156.7, 149.9, 122.5, 43.9, 33.6, 26.7, 26.1. The spectral data matches that of the

literature.>*
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(S)-2-Fluoro-3-methyl-5-(2-phenylpropyl)pyridine (1-60). Prepared via General
Procedure B using pyridinium salt 1-82. The crude mixture was purified by silica gel
chromatography (gradient: 10—20—30—50—70% toluene/hexanes—100% toluene)
to give 1-60 (run 1: 151 mg, 66%; run 2: 152 mg, 66%) as a dark orange oil: "H NMR
(400 MHz, CDCls) 6 7.67 (s, br, 1H), 7.32 — 7.26 (m, 2H), 7.24 — 7.15 (m, 2H), 7.15 —
7.07 (m, 2H), 2.94 (h, J = 7.0 Hz, 1H), 2.87 — 2.72 (m, 2H), 2.22 — 2.15 (s, 3H), 1.27
(d, J= 6.9 Hz, 3H); °C NMR (101 MHz, CDCl;)  161.1 (d, Jo.r = 237.0 Hz), 145.8,
144.8 (d, Jor = 14.2 Hz), 142.4 (d, Jcr = 5.9 Hz), 133.7 (d, Jc.r = 4.6 Hz), 128.6,
127.2, 126.5, 118.8 (d, Jcr=32.8 Hz), 41.8, 41.1 (d, Jcr= 0.9 Hz), 21.3, 14.6 (d, Jc-r
= 1.5 Hz); "’F NMR (376 MHz, CDCl;) 8 —76.6; FTIR (neat) 2962, 1591, 1471, 1246,
1143, 700 cm™'; HRMS (ESI+) [M+H]" calculated for C;sH;sFN: 230.1340, found
230.1334.

OFEt /Y F

EtO SN
5-(4,4-Diethoxybutyl)-2-fluoropyridine (1-61). Prepared via General Procedure B
using pyridinium salt 1-83. The crude mixture was purified by silica gel
chromatography (5% EtOAc/hexanes) to give 1-61 (run 1: 176 mg, 73%; run 2: 164
mg, 68%) as a yellow oil: '"H NMR (600 MHz, CDCl3) § 8.02 (s, 1H), 7.59 (td, J =
8.1, 2.5 Hz, 1H), 6.84 (dd, J = 8.3, 2.9 Hz, 1H), 4.49 (t, /= 5.3 Hz, 1H), 3.63 (dq, J =
9.4, 7.1 Hz, 2H), 3.48 (dq, J = 9.4, 7.1 Hz, 2H), 2.63 (t, J = 7.3 Hz, 2H), 1.72 — 1.61
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(m, 4H), 1.20 (t, J = 7.1 Hz, 6H); °C NMR (151 MHz, CDCl3) & 162.5 (d, Jo.r =
236.8 Hz), 147.2 (d, Jor = 14.3 Hz), 141.1 (d, Jer= 7.6 Hz), 135.2 (d, Jcr = 4.5 Hz),
109.1 (d, Jer = 37.4 Hz), 102.8, 61.3, 33.2, 31.94, 31.93, 26.4, 15.5; ’F NMR (565
MHz, CDCl;) & —72.3; FTIR (neat) 2975, 2872, 1593, 1485, 1249, 1126, 1065, 831
cm'l; HRMS (ESI+) [M+H]+ calculated for C13H>1FNO,: 242.1551, found 242.1548.

N/

3-(3-((tert-Butyldimethylsilyl)oxy)propyl)quinoline (1-62). Prepared via General
Procedure B using pyridinium salt 1-34. The crude mixture was purified by silica gel
chromatography (5% EtOAc/hexanes) to give 1-62 (run 1: 160 mg, 53%; run 2: 195
mg, 65%) as a yellow oil: "H NMR (600 MHz, CDCl;) & 8.80 (d, J = 2.2 Hz, 1H), 8.08
(d,J=8.4 Hz, 1H), 7.94 (s, 1H), 7.76 (d, J= 8.1 Hz, 1H), 7.66 (t, /= 7.2 Hz 1H), 7.52
(t,J=17.5Hz, 1H), 3.68 (t,J = 6.1 Hz, 2H), 2.92 — 2.87 (m, 2H), 1.96 — 1.90 (m, 2H),
0.92 (s, 9H), 0.07 (s, 6H); °C NMR (151 MHz, CDCl;) 8§ 152.2, 146.9, 135.0, 134.5,
129.3, 128.7, 128.3, 127.4, 126.7, 62.0, 34.1, 29.6, 26.1, 18.5, —5.1; FTIR (neat) 2929,
2857, 1471, 1255, 1102, 836 cm™; HRMS (ESI+) [M+H]" calculated for C sH,sNOS:
302.1935, found 302.1934.

N >OMe
5-(3-((tert-butyldimethylsilyl)oxy)propyl)-2-methoxypyridine (1-63). Prepared via
General Procedure B using pyridinium salt 1-34. The crude mixture was purified by
silica gel chromatography (gradient: 50—75% toluene/hexanes—100% toluene—5%

EtOAc/toluene) to give 1-63 (run 1: 196 mg, 70%; run 2: 176 mg, 62%) as a yellow
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oil: '"H NMR (400 MHz, CDCl3) & 7.97 (d, J = 2.1 Hz, 1H), 7.41 (dd, J = 8.5, 2.5 Hz,
1H), 6.67 (d, J = 8.4 Hz, 1H), 3.91 (s, 3H), 3.62 (t, J = 6.2 Hz, 1H), 2.63 — 2.55 (m,
2H), 1.83 — 1.73 (m, 2H), 0.90 (s, 9H), 0.05 (s, 6H); °C NMR (101 MHz, CDCl3) &
162.7, 146.2, 139.2, 130.1, 110.5, 62.1, 53.4, 34.5, 28.3, 26.1, 18.5, —5.1; FTIR (neat)
2929, 2857, 1608, 1493, 1256, 1102, 835 cm™'; HRMS (ESI+) [M+H]" calculated for
C15H,7NO,Si: 282.1884, found 282.1874.

(\N N

BocN

tert-Butyl 4-(2-(6-morpholinopyridin-3-yl)ethyl)piperazine-1-carboxylate (1-64).
Prepared via General Procedure B using pyridinium salt 1-79. The crude mixture was
purified by silica gel chromatography (100% EtOAc) to give 1-64 (233 mg, 62%) as a
yellow solid (mp 125-127 °C): '"H NMR (400 MHz, CDCl;) § 8.05 (d, J = 2.3 Hz,
1H), 7.37 (dd, J = 8.6, 2.4 Hz, 1H), 6.59 (d, J = 8.6 Hz, 1H), 3.91 — 3.75 (m, 4H), 3.58
—3.32 (m, 8H), 2.73 — 2.64 (m, 2H), 2.58 — 2.51 (m, 2H), 2.50 — 2.35 (m, 4H), 1.46 (s,
9H); °C NMR (101 MHz, CDCls) & 158.6, 154.9, 147.8, 138.2, 125.3, 107.0, 79.8,
66.9, 60.4, 53.1, 46.0, 43.7 (br), 29.8, 28.6; FTIR (neat) 2971, 2860, 1694, 1499, 1265,
1126, 810 cm™; HRMS (ESI+) [M+H]" calculated for Co0H33N4O5: 377.2547, found
377.2544.
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tert-Butyl 2-((4R,6R)-6-(2-(6-fluoropyridin-3-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-
yDacetate (1-65). Prepared via General Procedure B using pyridinium salt 1-84. The
crude mixture was purified by silica gel chromatography (5% EtOAc/hexanes) to give
1-65 (161 mg, 46%) as a dark pink oil: '"H NMR (400 MHz, CDCls) & 8.02 — 8.01 (m,
1H), 7.59 (td, J = 8.1, 2.6 Hz, 1H), 6.85 (dd, J = 8.4, 2.9 Hz, 1H), 4.21 (dtd, J = 11.6,
6.6, 2.4 Hz, 1H), 3.83 — 3.72 (m, 1H), 2.79 — 2.61 (m, 2H), 2.43 (dd, /= 15.2, 6.9 Hz,
1H), 2.29 (dd, J = 15.2, 6.2 Hz, 1H), 1.85 — 1.73 (m, 1H), 1.73 — 1.61 (m, 1H), 1.53
(dt, J=12.7,2.5 Hz, 1H), 1.43 (s, 9H), 1.41 (s, 3H), 1.38 (s, 3H), 1.27 — 1.17 (m, 1H);
BC NMR (101 MHz, CDCls) & 170.4, 162.4 (d, Jo.r = 237.8 Hz), 147.2 (d, Jep= 14.2
Hz), 141.3 (d, Jcr= 7.7 Hz), 134.9 (d, Jcr = 4.5 Hz), 109.2 (d, Jcr = 37.5 Hz), 98.9,
80.8, 67.5, 66.3, 42.8, 37.6, 36.6, 30.2, 28.2, 27.4, 19.9; '°’F NMR (376 MHz, CDCl;)
& —72.2; FTIR (neat) 2981, 2940, 1730, 1484, 1249, 1159, 951, 840 cm™'; HRMS
(ESI+) [M+H]" calculated for C1oH90FNO,: 354.2075, found 354.2072.
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1.4.3 Preparation of Pyridinium Salts

1.4.3.1 General Procedure C: Conversion of Amines to Pyridinium Salts

Ph Ph._~_Ph
R1\( NH, PC) EtOH ] | o
R * D] BF4 reflux, 4 h R YCT)\ BF,
Ph” 0~ “Ph R2 Ph

Primary amine (1.2 equiv) was added to a suspension of 2,4,6-
triphenylpyrylium tetrafluoroborate (1.0 equiv) and EtOH (1.0 M) in a round-
bottomed flask. The flask was fitted with a reflux condenser. The mixture was stirred
and heated at reflux in an oil bath at 80-85 °C for 4 h. The mixture was then allowed
to cool to room temperature. If product precipitation occurred during reflux, the solid
was filtered, washed with EtOH (3 x 25 mL) and then Et,O (3 x 25 mL), and dried
under high vacuum. If product precipitation did not occur during reflux, the solution
was diluted with Et,O (2-3x volume of EtOH used) and vigorously stirred for 1 h to
induce trituration. The resulting solid pyridinium salt was filtered and washed with
Et;0 (3 x 25 mL). If the pyridinium salt failed to precipitate at this point, the flask
containing the reaction mixture and Et;O was sealed with parafilm and stored in a —27
°C freezer for 1-3 days (or until precipitation occurred). The cold mixture was quickly
filtered and washed with Et,0O (3 x 25 mL) to give the corresponding analytically pure
pyridinium salt. If the salt still did not precipitate, it was subjected to silica gel
chromatography with acetone/DCM.

The corresponding amine hydrochloride salts can also be used (see synthesis of
pyridinium salt 1-82) using the following modified procedure: Et;N (1.2 equiv) was
added to a mixture of the corresponding alkyl ammonium hydrochloride salt (1.2
equiv) and EtOH (1.0 M). After stirring the mixture for 30 min at room temperature,

2,4,6-triphenylpyrylium tetrafluoroborate (1 equiv) was added. From this point
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forward, the same procedure was followed as for alkyl amines described above;
however prior to washing the solid product with EtOH and/or Et,O, the mixture was

washed with water (3 x 25 mL) to remove Et;N-HCI.

1-(2-(Benzo|d][1,3]dioxol-5-yl)ethyl)-2,4,6-triphenylpyridin-1-ium

tetrafluoroborate (1-39). Prepared via General Procedure C on a 7.5 mmol scale with
commercially available 2-(benzo[d][1,3]dioxol-5-yl)ethanamine (9.0 mmol) to give 1-
39 (3.64 g, 89%) as an off-white solid (mp 234235 °C): "H NMR (600 MHz, CDCl;)
0 7.91 (s, 2H), 7.83 — 7.77 (m, 6H), 7.68 — 7.62 (m, 6H), 7.59 — 7.55 (m, 1H), 7.55 —
7.51 (m, 2H), 6.48 (d, J = 7.9 Hz, 1H), 5.85 (s, 2H), 5.77 — 5.74 (m, 1H), 5.69 — 5.66
(m, 1H), 4.61 — 4.55 (m, 2H), 2.65 — 2.58 (m, 2H); °C NMR (151 MHz, CDCl;) &
156.7, 156.3, 148.0, 146.9, 134.2, 132.9, 132.3, 131.4, 129.9, 129.6, 129.3, 128.9,
128.3, 126.9, 121.4, 108.61, 108.57, 101.2, 56.1, 35.7; '°F NMR (565 MHz, CDCl;) 8
~153.27 (minor, ''BFy), —153.32 (major, '’BF,); FTIR (neat) 3060, 2903, 1624, 1489,
1053, 699 cm™'; HRMS (ESI+) [M-BF,]" calculated for C3;HxsNOg4: 456.1958, found

456.1961.
Ph = Ph
Me\/\/\/\/\/g)\ @BF4
Ph

1-Decyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-77). Prepared via
General Procedure C on a 4.17 mmol scale with commercially available decan-1-

amine (5.0 mmol) to give 1-77 (1.56 g, 58%) as a white solid (mp 98-100 °C): 'H
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NMR (600 MHz, CDCls) & 7.84 (s, 1H), 7.82 — 7.76 (m, 4H), 7.76 — 7.72 (m, 2H),
7.64 — 7.56 (m, 6H), 7.56 — 7.52 (m, 1H), 7.52 — 7.47 (m, 2H), 4.45 — 4.34 (m, 2H),
1.48 — 1.38 (m, 2H), 1.25 (p, J = 7.1 Hz, 2H), 1.20 — 1.08 (m, 4H), 1.05 — 0.97 (m,
2H), 0.95 — 0.81 (m, 5H), 0.79 — 0.69 (m, 4H); °C NMR (151 MHz, CDCl3) 5 156.6,
155.8, 134.2, 132.9, 132.1, 131.1, 129.8, 129.4, 129.2, 128.2, 126.8, 54.9, 31.9, 29.8,
29.3,29.2, 29.0, 28.0, 26.1, 22.8, 14.2; ’F NMR (376 MHz, CDCl;) & —153.4 (minor,
"'BF,), —153.5 (major, '°BF,); FTIR (neat) 2926, 1625, 1566, 1056, 704 cm™'; HRMS
(ESI+) [M-BF,]" calculated for C33H3sN: 448.2999, found 448.3004.

1-Phenethyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-33). Prepared via
General Procedure C on a 10 mmol scale with commercially available 2-
phenylethanamine to give 1-33 (4.40 g, 88%) as a white solid (mp >260 °C): '"H NMR
(400 MHz, CDCl3) & 7.92 (s, 2H), 7.89 — 7.73 (m, 6H), 7.73 — 7.48 (m, 9H), 7.15 —
7.09 (m, 1H), 7.09 — 7.03 (m, 2H), 6.32 — 6.26 (m, 2H), 4.69 — 4.62 (m, 2H), 2.73 —
2.66 (m, 2H); °C NMR (101 MHz, CDCl3) & 156.8, 156.2, 135.3, 134.1, 132.8, 132.3,
131.3, 129.9, 129.5, 129.3, 128.9, 128.33, 128.30, 127.4, 126.9, 56.0, 35.8; '’F NMR
(376 MHz, CDCl3) & —153.26 (minor, ''BF,), —153.32 (major, '°BF,); FTIR (neat)
3068, 1624, 1494, 1055, 699 cm™'; HRMS (ESI+) [M—BF,]" calculated for C3;HxgN:
412.2060, found 412.2048.
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1-(Heptan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-78). Prepared
via General Procedure C on a 5.0 mmol scale with commercially available heptan-2-
amine to give 1-78 (1.21 g, 49%) as a pale yellow solid (mp 157-158 °C): '"H NMR
(400 MHz, CDCls) 6 87.99 — 7.44 (m, 17H), 4.96 — 4.84 (m, 1H), 1.84 — 1.70 (m, 1H),
1.49 — 1.36 (m, 4H), 1.20 — 1.08 (m, 2H), 1.07 — 0.93 (m, 3H), 0.89 — 0.73 (m, 4H);
BC NMR (151 MHz, acetone-dg) & 158.7, 155.3, 135.1, 134.4, 133.3, 131.9, 130.6,
130.4, 129.7, 129.4, 128.6, 68.4, 37.2, 31.7, 26.7, 22.8, 22.5, 14.1; ’F NMR (376
MHz, CDCls) & —153.3 (minor, ''BF,), —153.4 (major, '°BF4); FTIR (neat) 2956,
1621, 1412, 1056, 765 cm'; HRMS (ESI+) [M-BF4]" calculated for CsoH3N:
406.2529, found 406.2516.

Ph Z Ph
O/g\ | S
Ph
1-Cyclohexyl-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-35). Prepared via
General Procedure C on a 10 mmol scale with commercially available
cyclohexanamine (12 mmol) to give 1-35 (2.99 g, 63%) as pale yellow solid (mp 181—
182 °C): "H NMR (400 MHz, CDCl3) & 7.83 — 7.76 (m, 2H), 7.76 — 7.69 (m, 6H), 7.64
— 7.54 (m, 6H), 7.54 — 7.48 (m, 1H), 7.48 — 7.42 (m, 2H), 4.61 (tt, J = 12.2, 2.9 Hz,
1H), 2.12 (m, 2H), 1.64 — 1.40 (m, 4H), 1.34 (d, J = 13.3 Hz, 1H), 0.74 (m, 2H), 0.61
(tt, J=13.1, 3.5 Hz, 1H); °C NMR (101 MHz, CDCls) & 157.1, 155.1, 134.2, 134.1,
131.9, 130.9, 129.7, 129.4, 128.9, 128.4, 128.2, 72.0, 33.7, 26.6, 24.7; °F NMR (376
MHz, CDCl;) 8 —152.36 (minor, ''BF,), —153.41 (major, '°BF,); FTIR (neat) 3061,
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2934, 1621, 1055, 705 cm™; HRMS (ESI+) [M-BF,]" calculated for C,oHysN:
390.2216, found 390.2199.

Ph._~_Ph
Crey o
BocN Ph

1-(1-(tert-Butoxycarbonyl)piperidin-4-yl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1-38). Prepared via General Procedure C on a 5.0 mmol scale with
commercially available tert-butyl 4-aminopiperidine-1-carboxylate to give 1-38 (2.08
g, 72%) as an off-white solid (mp 165166 °C): "H NMR (600 MHz, CDCls) & 7.86 —
7.69 (m, 6H), 7.67 (d, J= 7.2 Hz, 2H), 7.64 — 7.52 (m, 6H), 7.52 — 7.46 (m, 1H), 7.46
—7.36 (m, 2H), 4.82 — 4.69 (m, 1H), 4.04 — 3.75 (m, 2H), 2.27 — 1.95 (m, 4H), 1.74 —
1.51 (m, 2H), 1.30 (s, 9H)' °C NMR (101 MHz, CDCl3) § 157.2, 155.5, 154.3, 134.0,
133.8, 132.1, 131.2, 129.7, 129.4, 129.1, 128.4, 128.3, 80.2, 70.0, 44.3 (br), 32.8 (br),
28.3; "’F NMR (565 MHz, CDCls) & —153.07 (minor, ''BFy), —153.13 (major, '°BE,);
FTIR (neat) 2977, 1692, 1621, 1057, 706 cm™; HRMS (ESI+) [M—BF,]" calculated
for C33H35N,0,: 491.2693, found 491.2686.

Ph = Ph

|
(\N/\/CT)\ ®BF4

BocN__J Ph

1-(2-(4-(tert-Butoxycarbonyl)piperazin-1-yl)ethyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1-79). Prepared via General Procedure C on a 1.67 mmol scale
with commercially available tert-butyl 4-(2-aminoethyl)piperazine-1-carboxylate to

give 1-79 (0.82 g, 81%) as an off-white solid (mp 133-135 °C): '"H NMR (600 MHz,
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CDCl3) § 7.88 — 7.75 (m, 6H), 7.74 — 7.69 (m, 2H), 7.65 — 7.56 (m, 6H), 7.55 — 7.50
(m, 1H), 7.50 — 7.44 (m, 2H), 4.66 — 4.57 (m, 2H), 3.13 — 3.00 (m, 4H), 2.41 — 2.31
(m, 2H), 1.82 — 1.73 (m, br, 4H), 1.39 (s, 9H); °C NMR (151 MHz, CDCl;) & 157.0,
156.1, 154.6, 134.1, 133.0, 132.3, 131.3, 129.8, 129.51, 129.46, 128.3, 126.8, 79.9,
56.4, 52.4, 51.8, 43.2 (br), 28.5; ’F NMR (565 MHz, CDCl;) & —152.96 (minor,
"'BF,), —153.01 (major, '°BF,): FTIR (neat) 2976, 1690, 1623, 1169, 1056, 703 cm’';
HRMS (ESI+) [M-BF,]" calculated for C34H3sN30,: 520.2959, found 520.2950.

Boc ®

(8)-1-((1-(tert-Butoxycarbonyl)pyrrolidin-2-yl)methyl)-2,4,6-triphenylpyridin-1-
ium tetrafluoroborate (1-37). Prepared via General Procedure C on a 4.17 mmol
scale with commercially available (S)-fert-butyl 2-(aminomethyl)pyrrolidine-1-
carboxylate to give 1-37 (2.08 g, 84%) as a white solid (mp 180-181 °C): '"H NMR
(600 MHz, CDCl3) 6 8.31 — 7.84 (m, br, 3H), 7.80 (s, 2H), 7.72 (d, J = 7.4 Hz, 2H),
7.70 — 7.38 (m, 10H), 4.89 —4.74 (m, 1H), 4.71 — 4.55 (m, 1H), 3.98 — 3.83 (m, 1H),
291 (td, J=10.7, 6.5 Hz, 1H), 2.66 (t, J = 9.3 Hz, 1H), 1.58 — 1.43 (m, 2H), 1.32 (s,
9H), 1.28 — 1.22 (m, 1H), 0.88 — 0.74 (m, 1H); °C NMR (151 MHz, CDCl;)  158.0
(br), 155.6, 155.4, 134.3, 133.5, 132.1, 131.0, 130.4, 129.8, 129.4, 128.0, 126.3, 80.1,
57.5, 55.1, 47.3, 28.5, 28.4, 23.4; "’F NMR (565 MHz, CDCl;) & —153.08 (minor,
"'BF,), —153.13 (major, '°BF,); FTIR (neat) 2975, 1687, 1622, 1383, 1058, 704 cm';
HRMS (ESI+) [M-BF,]" calculated for C33H35N,0,: 491.2693, found 491.2672.
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BOCHNPh@/Ph
Y O,

Me
1-((25,35)-2-((tert-Butoxycarbonyl)amino)-3-methylpentyl)-2.4,6-
triphenylpyridin-1-ium tetrafluoroborate (1-36). Prepared via General Procedure
C; however a 1:1 ratio of 2,4,6-triphenylpyrylium tetrafluoroborate (1.9 mmol) to fert-
butyl ((25,35)-1-amino-3-methylpentan-2-yl)carbamate 1-86 (see synthesis below)
was used. After stirring for the 4 h period, the reaction mixture was concentrated. The
crude residue was purified via column chromatography (5% acetone/CH,Cl,) to give
pyridinium salt (1-36) (0.74 g, 66%) as a pale yellow solid (mp 107-109 °C): "H NMR
(600 MHz, CDCl3) 6 8.42 — 8.12 (m, 2H), 7.96 — 7.50 (m, 15H), 4.98 (dd, J = 14.6, 3.4
Hz, 1H), 4.59 (dd, J = 14.6, 11.7 Hz, 1H), 3.91 (d, J = 10.1 Hz, 1H), 3.61 — 3.54 (m,
1H), 1.31 (s, 9H), 1.09 — 1.01 (m, 1H), 0.85 — 0.72 (m, 2H), 0.49 (t, J = 7.4 Hz, 3H),
0.31 (d, J = 6.8 Hz, 3H); °C NMR (151 MHz, CDCl;) § 158.3, 155.9, 155.1, 134.2,
133.5, 132.3, 131.2, 130.4, 129.9, 129.4, 128.0, 126.5, 80.3, 56.4, 53.6, 37.1, 28.5,
25.2, 14.2, 10.6; "’F NMR (565 MHz, CDCl3) 8 —153.0 (minor, ''BF3), —153.1 (major,
''BE,); FTIR (neat) 3442, 3357, 2968, 1707, 1621, 1057, 703 cm™; HRMS (ESI+)
[M—BF,]" calculated for C34H30N,0,: 507.3006, found 507.2995.

BocHN BocHN BocHN
MeﬁoH ref.55  Me, _ _NH, BHxSMe: Me, “_ NH,
THF/toluene
I 7Y o i
Me Me 0°Ctort Me
Boc-lle-OH 1-85 1-86

tert-Butyl ((2S5,35)-1-amino-3-methyl-1-oxopentan-2-yl)carbamate (1-85).

Prepared according to the literature procedure.”
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tert-Butyl  ((2S,3S)-1-amino-3-methylpentan-2-yl)carbamate (1-86). Prepared
according to a procedure adapted from the literature®® (note: these reduction conditions
are unoptimized for Boc-Ile-NH; 1-85): In a round-bottomed flask, a solution of amide
1-85 (1.5 g, 6.5 mmol, 1.0 equiv) in THF (21.7 mL, 0.30 M) was cooled to 0 °C.
BH3-SMe; (2.0 M in toluene, 32.6 mL, 65.1 mmol, 10.0 equiv) was added portionwise
(approx. 6-7 mL/min). After the addition was complete, the solution was stirred for 5
min at 0 °C, allowed to warm room temperature, and stirred for 24 h. The solution was
then concentrated, and MeOH (36 mL, 5.6 mL/mmol) was slowly added (CAUTION:
add slowly to prevent violent evolution of gas!). The solution was stirred briefly and
then concentrated. This dilution/concentration protocol was repeated two more times.
The resulting residue was then dissolved in Et,O (50 mL) and extracted with HCI (1
N, 4 x 50 mL). The combined aqueous layers were washed with Et,O (4 x 50 mL) and
then basified with KOH (4 N) to pH>12. The basic aqueous layer was then extracted
with Et,0O (4 x 100 mL). The combined organic layers were washed with sat. NaCl
(100 mL), dried (MgS0,), filtered through a cotton plug, and concentrated to afford
amine 1-86 (0.464 g, 33%) as a white solid which was used without further

purification.

BocHN___CO,t-Bu
: Q
BF,
®
Ph__N__Ph

g
A

Ph

(8)-1-(6-(tert-Butoxy)-5-((tert-butoxycarbonyl)amino)-6-oxohexyl)-2.,4,6-

triphenylpyridin-1-ium tetrafluoroborate (1-80). Prepared via General Procedure C
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on a 4.91 mmol scale with Boc-Lys-O'Bu.”” Attempts to triturate the product failed;
the crude residue was purified via column chromatography (5—20% acetone/CH,Cl,)
to give pyridinium salt 1-80 as a tan solid (mp 96-100 °C): 'H NMR (600 MHz,
CDCl3) 6 7.91 (s, 2H), 7.85 = 7.77 (m, 6H), 7.67 — 7.61 (m, 6H), 7.61 — 7.57 (m, 1H),
7.57 —7.53 (m, 2H), 4.84 (d, br, J = 7.7 Hz, 1H), 4.49 — 4.38 (m, 2H), 3.90 — 3.78 (m,
1H), 1.55 — 1.46 (m, 2H), 1.42 (s, 9H), 1.40 (s, 9H), 1.33 — 1.26 (m, 1H), 1.11 — 1.03
(m, 1H), 0.94 — 0.76 (m, 1H); °C NMR (151 MHz, CDCls) & 171.3, 156.6, 156.0,
155.4, 134.2, 132.8, 132.2, 131.2, 129.8, 129.5, 129.2, 128.3, 126.9, 82.2, 79.9, 54.5,
53.5, 31.8, 29.5, 28.4, 28.1, 22.1; "F NMR (376 MHz, CDCls) & —153.3 (minor,
'BF,), —153.4 (major, '°BF,); FTIR (neat) 3374, 2978, 1711, 1624, 1155, 1057, 704
cm’'; HRMS (ESI+) [M-BF,]" calculated for C3sHysN,O4: 593.3374, found 593.3366.

F Ph Ph
oY |
\©\/N\)\/g>\ G>B|:4
Ph

1-((4-(4-Fluorobenzyl)morpholin-2-yl)methyl)-2,4,6-triphenylpyridin-1-ium

tetrafluoroborate (1-81). Prepared via General Procedure C (refluxed for 22 h) ona 5
mmol scale with commercially available (4-(4-fluorobenzyl)morpholin-2-
yl)methanamine (6.0 mmol) to give 1-81 (2.67 g, 89%) as a tan solid (mp 170-172
°C): '"H NMR (400 MHz, CDCl3) 5 7.89 (s, 2H), 7.87 — 7.67 (m, 6H), 7.64 — 7.51 (m,
9H), 7.09 — 7.03 (m, 2H), 6.98 — 6.91 (m, 2H), 4.73 (dd, J = 14.9, 4.1 Hz, 1H), 4.55
(dd, J=14.9, 9.7 Hz, 1H), 3.67 — 3.58 (m, 1H), 3.33 — 3.16 (m, 4H), 2.47 — 2.39 (m,
1H), 2.13 — 2.04 (m, 1H), 1.89 (td, J = 11.4, 3.3 Hz, 1H), 1.33 — 1.24 (m, 1H); °C
NMR (151 MHz, CDCls) 8 162.2 (d, Jc.r = 245.7 Hz), 157.8, 155.7, 134.0, 133.2,
132.6, 132.4, 131.1, 130.7 (d, Jc.r = 7.9 Hz), 129.9, 129.6, 129.3, 128.2, 126.3, 115.2
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(d, Jor=21.4 Hz), 72.5, 66.6, 61.9, 56.3, 55.6, 52.2; ’F NMR (376 MHz, CDCl3) & —
115.3, —153.2 (minor, ''BF,), —153.3 (major, '’BF,); FTIR (neat) 3065, 2815, 1622,
1058, 703 cm™'; HRMS (ESI+) [M—BF,]" calculated for C3sH3,FN,O: 515.2493, found
515.2486.

(R)-2,4,6-Triphenyl-1-(2-phenylpropyl)pyridin-1-ium tetrafluoroborate (1-82).
Prepared via General Procedure C on a 5.0 mmol scale with commercially available
(R)-2-phenylpropan-1-aminium chloride to give 1-82 (2.27 g, 88%) as a white solid
(mp 206-207 °C): 'H NMR (400 MHz, CDCl3) & 8.44 — 7.30 (m, 17H), 7.23 — 7.16
(m, 1H), 7.08 (t, J = 7.5 Hz, 2H), 6.49 — 6.37 (m, 2H), 5.03 (dd, J = 14.3, 5.5 Hz, 1H),
4.81 (dd, J = 14.3, 9.4 Hz, 1H), 2.80 — 2.63 (m, 1H), 0.82 (d, J = 7.0 Hz, 3H); °C
NMR (101 MHz, CDCls) 8 157.6, 155.8, 140.4, 133.8, 133.2, 132.5, 131.2, 129.9,
129.65, 129.59, 129.1, 128.2, 127.7, 126.9, 126.6, 61.3, 39.8, 17.9; ’F NMR (565
MHz, CDCls) & —153.1 (minor, ''BF,), —153.2 (major, '’BF4); FTIR (neat) 3062,
1620, 1562, 1057, 702 cm™; HRMS (ESI+) [M-BF,]" calculated for CiHysN:
426.2216, found 426.2220.

ot P~ Ph
I o

EtO)\/\/g)\ BF,
Ph

1-(4,4-Diethoxybutyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-83).
Prepared via General Procedure C on a 4.0 mmol scale with commercially available

4,4-diethoxybutan-1-amine (4.8 mmol) to give 1-83 (1.86 g, 86%) as a fluffy white
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solid (mp 139-140 °C): 'H NMR (600 MHz, CDCls) & 7.87 (s, 2H), 7.83 — 7.78 (m,
4H), 7.78 — 7.74 (m, 2H), 7.63 — 7.58 (m, 6H), 7.58 — 7.54 (m, 1H), 7.54 — 7.48 (m,
2H), 4.49 — 4.42 (m, 2H), 4.01 (t, J = 5.2 Hz, 1H), 3.36 (dq, J = 9.0, 7.0 Hz, 2H), 3.18
(dq, J = 9.1, 7.0 Hz, 2H), 1.60 — 1.52 (m, 2H), 1.10 — 0.98 (m, 8H); °C NMR (101
MHz, CDCly) § 156.5, 155.8, 134.0, 132.8, 132.1, 131.0, 129.7, 129.3, 129.0, 128.1,
126.8, 101.5, 61.6, 54.7, 30.5, 25.1, 15.2; ’F NMR (376 MHz, CDCLy) & —153.4
(minor, ''BF;), —153.5 (major, '°BF,); FTIR (neat) 2975, 2880, 1624, 1566, 1056, 703
cm™'; HRMS (ESI+) [M—BF,4]" calculated for C3H3NO,: 452.2584, found 452.2589.

Ph — Ph

SO
TBSO\/\/&_‘> BF4

Ph
1-(3-((zert-Butyldimethylsilyl)oxy)propyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (1-34). Prepared via General Procedure C on a 1.67 mmol scale
with 3-((tert-butyldimethylsilyl)oxy)propan-1-amine®® (2.0 mmol) to give 1-34 (0.73
g, 77%) as a white solid (mp 170-171 °C): '"H NMR (600 MHz, CDCls) & 7.89 (s, 2H),
7.84 —7.75 (m, 6H), 7.65 — 7.58 (m, 6H), 7.58 — 7.49 (m, 3H), 4.58 — 4.52 (m, 2H),
3.13 (t, J = 5.6 Hz, 2H), 1.74 — 1.65 (m, 2H), 0.67 (s, 9H), —0.21 (s, 6H); °C NMR
(101 MHz, CDCl3) 6 156.7, 156.0, 134.3, 133.0, 132.1, 131.2, 129.8, 129.5, 129.1,
128.3, 127.1, 60.1, 53.4, 32.8, 25.9, 18.2, —5.5; "’F NMR (376 MHz, CDCl;) & —153.4
(minor, ''BF;), —~153.5 (major, '’BF,); FTIR (neat) 2954, 2855, 1622, 1054, 837, 771,
703 cm”; HRMS (ESI+) [M—BE4]" calculated for CiH3sNO4: 480.2717, found
480.2716.
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Ph Ph
Q

"
MX;/OJ"“\/QD\ BF,
o Ph
:\COQt-Bu
1-(2-((4R,6R)-6-(2-(tert-Butoxy)-2-oxoethyl)-2,2-dimethyl-1,3-dioxan-4-yl)ethyl)-
2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-84). Prepared via General
Procedure C on a 5.0 mmol scale with commercially available tert-Butyl 2-((4R,6R)-6-
(2-aminoethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate (6.0 mmol) to give 1-84 (1.44 g,
44%) as a white solid (mp 128-130 °C): '"H NMR (600 MHz, CDCl;) & 7.90 (s, 2H),
7.87 —7.72 (m, 6H), 7.70 — 7.60 (m, 6H), 7.60 — 7.56 (m, 1H), 7.56 — 7.50 (m, 2H),
4.71 — 4.63 (m, 1H), 4.55 — 4.47 (m, 1H), 4.02 — 3.96 (m, 1H), 3.33 — 3.27 (m, 1H),
2.26 (dd, J =15.3, 7.2 Hz, 1H), 2.14 (dd, J = 15.3, 5.9 Hz, 1H), 1.65 — 1.54 (m, 2H),
1.42 (s, 9H), 1.16 (s, 3H), 1.13 (dt, J = 12.6, 2.2 Hz, 1H), 1.03 (s, 3H), 0.72 (q, J =
11.7 Hz, 1H); >C NMR (101 MHz, CDCl5) & 170.1, 156.9, 156.0, 134.2, 132.9, 132.2,
131.2,129.8, 129.5, 129.2, 128.2, 126.9, 98.6, 80.9, 66.1, 65.7, 51.9, 42.4, 35.9, 35.4,
29.9, 28.2, 19.6; '°F NMR (376 MHz, CDCl3) 8 —153.3 (minor, ''BF3), —153.4 (major,
'"BF,); FTIR (neat) 2990, 1726, 1624, 1160, 1057, 703 cm™'; HRMS (ESI+) [M-BF,]"
calculated for C37H4NO4: 564.3108, found 564.3099.

Ph /| Ph
Me N~ ©
W@Ph o
e

(8)-1-(Octan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-71). Prepared
via General Procedure C; however a 1:1 ratio of 2,4,6-triphenylpyrylium

tetrafluoroborate (5.0 mmol) to commercially available (S)-octan-2-amine was used.
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After refluxing overnight with stirring, the reaction mixture was concentrated. The
crude residue was purified via silica gel chromatography (10% acetone/CH,Cl,) to
give 1-71 (1.55 g, 61%) as an orange solid (mp 67-69 °C): '"H NMR (400 MHz,
CDCls) 6 7.93 — 7.38 (m, 17H), 4.94 — 4.82 (m, 1H), 1.82 — 1.71 (m, 1H), 1.48 — 1.32
(m, 4H), 1.21 — 1.11 (m, 2H), 1.11 — 0.91 (m, 5H), 0.88 — 0.72 (m, 4H); >C NMR
(101 MHz, CDCls) 6 157.2 (br), 155.1, 134.0, 133.9, 132.0, 131.0, 129.7, 129.3 (br),
128.9 (br), 128.8 (br), 128.4, 67.1, 36.9, 31.5, 28.5, 26.6, 22.5, 21.7, 14.1; 19F NMR
(376 MHz, CDCl3) & —153.25 (minor, ''BF,), —153.31 (major, '°BF,); FTIR (neat)
2927, 2857, 1621, 1564, 1055, 765, 703 cm™'; HRMS (ESI+) [M—BF,]+ calculated for
C31H34N: 420.2686, found 420.2685.

Ph = | Ph
©
A/g)\ BF4
Ph

1-(cyclopropylmethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1-73).
Prepared via General Procedure C on a 5.0 mmol scale with commercially available
cyclopropylmethanamine (6.0 mmol) to give 1-73 (1.64 g, 71%) as a white solid (mp
178-180 °C): '"H NMR (400 MHz, CDCl3) 8 7.86 (s, 2H), 7.84 — 7.78 (m, 4H), 7.78 —
7.71 (m, 2H), 7.66 — 7.56 (m, 6H), 7.56 — 7.45 (m, 3H), 4.51 (d, J = 6.8 Hz, 2H), 0.72
—0.61 (m, 1H), 0.34 — 0.20 (m, 2H), —0.38 (q, J = 5.1 Hz, 2H); °C NMR (101 MHz,
CDCl) 6 157.0, 155.7, 133.9, 133.3, 132.3, 131.2, 129.9, 129.54, 129.46, 128.2,
126.8, 59.2, 10.8, 5.1; ’F NMR (376 MHz, CDCl;) & —153.2 (minor, ''BF,), —153.3
(major, '’BFy); FTIR (neat) 3064, 1621, 1566, 1057, 703 cm™'; HRMS (ESI+) [M—
BF,]" calculated for C7H24N: 362.1903, found 362.1898.
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1.4.4 Mechanistic Experiments

1.4.4.1 Test for Stereospecificity

Ar—B(OH),
Ph _ Ph Ni(OACc),*4H50 (10 mol%) OMe
| BPhen (24 mol%) ©/
Me Ne » © Me
%\(@ BF, ~ KOtBu, EtOH W
Me Ph dioxane, 60 °C, 24 h Me

In a Ny-filled glovebox: To an oven-dried 1-dram vial was added
Ni(OAc),-4H,0 (2.5 mg, 0.01 mmol, 10 mol %) and BPhen (8.0 mg, 0.024 mmol, 24
mol %). To a separate oven-dried 1-dram vial was added KO#-Bu (38 mg, 0.17 mmol,
3.4 equiv), 4-methoxyphenylboronic acid (46 mg, 0.30 mmol, 3.0 equiv), and
pyridinium salt 1-71 (51 mg, 0.10 mmol, 1.0 equiv). Dioxane (250 uL) was added to
each vial. Each vial was then equipped with a micro stir bar, capped with a pierceable
Teflon-coated cap, and removed from the glovebox. To the vial containing the boronic
acid, KO#-Bu, and pyridinium salt 1-71, was added EtOH (29 pL) via a Np-purged
syringe. Both mixtures were stirred for 1 h at rt. The catalyst mixture was then
transferred to the “activated-boronate” and pyridinium salt mixture via a Np-purged
syringe. Dioxane (500 pL total) was used to ensure complete transfer of the catalyst
mixture and bring the total concentration of the reaction to 0.1 M. The resulting
reaction mixture was stirred vigorously at 60 °C for 24 h. The mixture was diluted
with Et,0O (approx. 1.5 mL) and filtered through a short plug of silica gel. The filter
cake was washed with Et;O (5 x 1.5 mL), and the resulting solution was concentrated.
The yield of the crude product 1-72 was determined to be 54% by 'H-NMR analysis
with 1,3,5-trimethoxybenzene as an internal standard. A small sample of the product
was purified via preparatory thin-layer chromatography (10% toluene/hexanes), and

the enantiomeric excess was determined to be 0% by chiral HPLC analysis
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(CHIRALPAK IF, 0.2 mL/min, 100% hexanes, A=254 nm); tg (enantiomer A) = 31.32

min, tg (enantiomer B) = 32.85 min.

1.4.4.2 Radical-Clock Experiment

p-Tol-B(OH),
Ph__~_Ph Ni(OAC)2*4H50 (10 mol%)
k | 9 BPhen (24 mol%) Me
N
®Y  BF KO#Bu, EtOH M/(j
Ph dioxane, 60 °C, 24 h

In a Ny-filled glovebox: To an oven-dried 1-dram vial was added
Ni(OAc),-4H,0 (2.5 mg, 0.01 mmol, 10 mol %) and BPhen (8.0 mg, 0.024 mmol, 24
mol %). To a separate oven-dried 1-dram vial was added KO#-Bu (38 mg, 0.17 mmol,
3.4 equiv), 4-methylphenylboronic acid (41 mg, 0.30 mmol, 3.0 equiv) and pyridinium
salt 1-73 (45 mg, 0.10 mmol, 1.0 equiv). Dioxane (250 pL) was added to each vial.
Each vial was then equipped with a micro stir bar, capped with a pierceable Teflon-
coated cap, and removed from the glovebox. To the vial containing the boronic acid,
KO#-Bu, and pyridinium salt 1-73, was added EtOH (29 uL) via a N,-purged syringe.
Both mixtures were stirred for 1 h at rt. The catalyst mixture was then transferred to
the “activated-boronate” and pyridinium salt mixture via a Nj-purged syringe.
Dioxane (500 pL total) was used to insure complete transfer of the catalyst mixture
and bring the total concentration of the reaction to 0.1 M. The resulting reaction
mixture was stirred vigorously at 60 °C for 24 h. The mixture was then diluted with
Et;O (approx. 1.5 mL) and filtered through a short plug of silica gel. The filter cake
was washed with Et,O (5 x 1.5 mL), and the resulting solution was concentrated. The
yield of the crude ring-opened product 1-74 was determined to be 33% by 'H-NMR

analysis with 1,3,5-trimethoxybenzene as an internal standard.
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1.4.4.3 Radical Trap Experiment

p-Tol-B(OH),
Ph._~_Ph Ni(OAC)»*4H,0 (10 mol%) Me_Me
| BPhen (24 mol%) O.
No” ©.. + Me Me N
@ BF,4 Me N Me KOt-Bu, EtOH Me
Ph 0] dioxane, 60 °C, 24 h Mé

In a Ny-filled glovebox: To an oven-dried 1-dram vial was added
Ni(OAc),-4H,0 (2.5 mg, 0.01 mmol, 10 mol %) and BPhen (8.0 mg, 0.024 mmol, 24
mol %). To a separate oven-dried 1-dram vial was added KO#-Bu (38 mg, 0.17 mmol,
3.4 equiv), 4-methylphenylboronic acid (41 mg, 0.30 mmol, 3.0 equiv), 2,2,6,6-
tetramethylpiperidine-N-oxyl (TEMPO; 31 mg, 0.20 mmol, 2.0 equiv), and pyridinium
salt 1-33 (50 mg, 0.10 mmol, 1.0 equiv). Dioxane (250 pL) was added to each vial.
Each vial was then equipped with a micro stir bar, capped with a pierceable Teflon-
coated cap, and removed from the glovebox. To the vial containing the boronic acid,
KO#-Bu, TEMPO, and pyridinium salt 1-33, was added EtOH (30 pL) via a N,-purged
syringe. Both mixtures were stirred for 1 h at rt. After pre-stirring was complete, the
catalyst mixture was transferred to the “activated-boronate” and TEMPO/pyridinium
salt mixture via a Np-purged syringe. Dioxane (500 pL total) was used to ensure
complete transfer of the catalyst mixture and bring the total concentration of the
reaction to 0.1 M. The resulting reaction mixture was heated to 60 °C and stirred
vigorously for 24 h. The mixture was diluted with Et,O (approx. 1.5 mL) and filtered
through a short plug of silica gel. The filter cake was washed with Et,O (5 x 1.5 mL),
and the resulting solution was concentrated. 1,3,5-trimethoxybenzene (7.2 mg, 0.043
mmol, 0.43 equiv) was added as an internal standard. The yield of known TEMPO
adduct 1-76°° was determined to be 20% by analysis of the "H-NMR spectrum of the

crude reaction mixture. No cross-coupled product was observed.
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Chapter 2

SUZUKI-MIYAURA CROSS-COUPLING OF BENZYLIC PYRIDINIUM
SALTS WITH ARYLBORONIC ACIDS

Work described here has already been published (Liao, J.; Guan, W.; Boscoe, B. P.;
Tucker, J. W.; Garnsey, M. R.; Watson, M. P. Org. Lett., 2018, 20 (10), 3030-3033).
It is reprinted in this chapter with permission of Organic Letters (Copyright © 2018,
American Chemical Society). This work was performed in collaboration with Michelle

Garnsey, Brian Boscoe, and Joseph Tucker at Pfizer, Inc.

2.1 Introduction

Diarylmethanes are an important motif in a number of medicinally relevant
molecules including anti-bacterial, anti-HIV, and antitumor agents (Scheme 2.1)."* In
particular, heteroaryl substitution is commonly found in these bioactive molecules but
largely overlooked in conventional methods to furnish these targets. In fact, our
collaborator at Pfizer, Dr. Michelle Garnsey, has identified diarylmethanes such as 2-3
as subtype-selective positive allosteric modulators (PAMs) of the muscarinic M;
receptor.” ¢ With the growing abundance of diarylmethanes as bioactive molecules, we
recognized the importance of developing methods to enable the rapid synthesis of
these motifs from readily available precursors. As discussed in Chapter 1, we were
attracted to amines as starting materials because of their wide availability and ease of

synthesis.
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Scheme 2.1  Examples of medicinally relevant diarylmethanes

NH,
S O O C O
P

H,N” N QOH \/N
OMe o]
Me HO
2-1 2-2 23 o
Trimethoprim Elvitegravir PF-06827443
(GlaxoSmithKiline) (Gilead Sciences) (Pfizer)
antibacterial HIV treatment M;PAM

Traditionally, the diarylmethane motif can be synthesized via transition-metal
catalyzed cross-couplings of a benzylic electrophile with an aryl nucleophile. One of
the most common approaches focuses on the use of benzylic halides. In particular,
Suzuki—Miyaura cross-couplings are the method of choice. For example, the Molander
group has shown the palladium-catalyzed coupling of potassium aryltrifluoroborates
with benzylic halides (2-4) to form diarylmethanes (2-5) (Scheme 2.2A).” Similarly,
Tudge et al. at Merck have demonstrated the use of palladium catalyst 2-7 to affect
cross-coupling of benzylic chlorides (2-6) with (hetero)arylboronic acids for the
preparation of highly-functionalized nitrogen-bearing diarylmethanes (2-8) (Scheme
2.2B).* Other organometallic nucleophiles such as aryl Grignard reagents (Scheme
2.2C)’ and diaryl zinc reagents (Scheme 2.2D)" have also been shown to cross-couple
with benzylic halides to access this motif. Alternatively, a reductive approach cross-
coupling benzyl chlorides (2-14) with aryl chlorides and fluorides using nickel catalyst

2-15 has been demonstrated by the Sun group (Scheme 2.2E)."!
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Scheme 2.2  Metal-catalyzed arylations of benzylic halides

A. Aryltrifluoroborates (Molander)
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62



Benzylic alcohols can also serve as common precursors in the synthesis of
diarylmethanes. The Shi group has demonstrated the direct arylation of benzyl
alcohols (2-17) with Grignard reagents via nickel-catalyzed C—-O bond activation
(Scheme 2.3A)." In addition, a number of benzyl alcohol derivatives have been
utilized as electrophiles in metal-catalyzed arylation reactions. The Tobisu and
Chatani group have shown that benzyl methyl ethers (2-19) can be cross-coupled with
arylboronic esters under nickel-catalysis to form diarylmethanes (2-20) (Scheme
2.3B)."” Similarly, Stewart and Maligres et al. at Merck have demonstrated an
approach to di(hetero)arylmethanes (2-22) via a Suzuki cross-coupling of
heterobenzylic acetates (2-21) with heteroarylboronic acids under nickel-catalyzed
conditions (Scheme 2.3C)."* Kuwano has shown that benzylic carbonates (2-23) can
undergo analogous Suzuki cross-couplings under palladium catalysis (Scheme
2.3D)."> ' McLaughlin has also published on the Suzuki arylation of benzylic
phosphates (2-25) (Scheme 2.3E).'” '® Additionally, our group and others have
identified benzylic alcohol derivatives as electrophiles in a variety of stereospecific

. 19-25
transformations.
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Scheme 2.3  Metal-catalyzed arylations of benzyl alcohols and their derivatives

A. Benzyl alcohols (Shi)
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The umpolung approach using metal-based benzylic nucleophiles has also been
explored for the construction of diarylmethanes. For example, the Tobisu and Chatani
group have shown that benzylic Grignard reagents (2-27) can react with anisoles under
nickel-catalyzed conditions to form diarylmethanes (2-28) via C—-O bond cleavage
(Scheme 2.4A).*° The Knochel group has demonstrated that benzylic aluminum
organometallic reagents (2-30) can be formed from insertion of aluminum powder into
the benzylic C—X bond of benzylic chlorides (2-29). These can then undergo
palladium-catalyzed cross-couplings with various electrophiles such as arylhalides to
deliver diarylmethanes (2-31) (Scheme 2.4B).*” Knochel has also shown that
TMPZnCI-LiCl (TMP= 2,2,6,6-tetramethylpiperidyl) can afford directed zincation of
methyl-substituted N-heterocycles (2-32) to generate 2-33. These nucleophiles can
then participate in Negishi cross-couplings to afford diarylmethane 2-34 (Scheme
2.4C).® Moreover, benzylic boronates have also been employed as nucleophiles,
although mostly in the context of stereospecific cross-couplings. For example, the
Crudden group has demonstrated palladium-catalyzed cross-coupling of chiral
secondary boronic esters (2-35) with aryl halides to form enantioenriched 1,1-

diarylethanes (2-36) (Scheme 2.4D).”
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Scheme 2.4  Arylations of benzylic organometallic nucleophiles

A. Benzylic Grignard reagents (Tobisu and Chatani)
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D. Stereospecific cross-coupling of secondary benzylic boronic esters (Crudden)
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> 90% es

In contrast to benzylic halides and alcohol derivatives, benzylic amine
derivatives have only sparingly been investigated as electrophiles for the construction
of diarylmethanes. Our group has demonstrated that benzylic trimethylammonium
salts (2-37) can participate in nickel-catalyzed Suzuki cross-couplings with

arylboronic acids to deliver diarylmethanes (2-38) (Scheme 2.5A).*" ' More recently,
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Zhao has reported an analogous cross-coupling using palladium.*® The benzylic C-N
bond can also be activated via conversion to the corresponding benzylic sulfonimides.
The Tian group has investigated the copper(l)-catalyzed arylation of 2-39 with
Grignard reagents (Scheme 2.5B).*> In addition, the Rhee group has shown that
benzylic sulfonimides (2-41) can be coupled with arylboronic acids under palladium
catalysis (Scheme 2.5C).** Notably, however, conversion of benzylic primary amines
to ammonium salts or sulfonimides requires two steps and can limit the inclusion of
basic heteroatoms elsewhere in the substrate. These constraints restrict the utility of
these cross-couplings, particularly in the context of drug discovery which often

requires basic heteroatoms in the final structure.

Scheme 2.5  Metal-catalyzed arylations of benzylic amine derivatives

A. Watson’s cross-coupling of benzylic ammonium salts with arylboronic acids
Ar>-B(OH),
Ni(cod),/PPh,Cy

N
A" NMe,OTf > 17N 2
8 CsF or K3PO4 Ar Ar
dioxane, 40 °C, 24 h

2-38
49%—quant.

2-37

B. Tian’s cross-coupling of benzylic sulfonimides with aryl Grignards

Ar>—-MgX
Cul
A~ - N
2 THF, 70 °C, 2 h Art A
2-39 2-40

65-93%

C. Rhee’s cross-coupling of benzylic sulfonimides with arylboronic acids

Ar?—B(OH),
N Pd(MeCN),(BF,),/DPEPhos
Ar'” "NTs, LY
K,COg, DMF, 60 °C
2-41 2-42

71-99%
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We believe that the lack of methods to harness benzylic amines in cross-
couplings is a missed opportunity in the toolbox of reactions for drug discovery.
Benzylic amines are generally inexpensive and widely available. They can be easily
synthesized™ > and can often be purified without chromatography. As a case study for
their availability versus more common substrates for cross-couplings, our collaborator
Dr. Michelle Garnsey queried the internal Pfizer chemical store in mid-2018. She
found that 5,208 benzylic primary amines are present in the internal chemical store, in
contrast to only 1,843 benzylic chlorides and 1,020 benzylic bromides. Moreover, we
recognized that benzylic halides can serve as genotoxic impurities (GTIs), and
benzylic amines would be superior in that regard. Additionally, a benzylic amine can
easily be brought through a multi-step synthesis in protected form, providing
opportunities for late-stage functionalization.

In Chapter 1, I discussed our development of nickel-catalyzed cross-couplings of
Katritzky pyridinium salts bearing unactivated alkyl groups with arylboronic acids.
Initial studies suggested that these reactions likely proceed via an alkyl radical formed
via single-electron transfer (SET) from a Ni' intermediate to the pyridinium ring,
initiating C—N bond fragmentation.*” Based on this mechanistic hypothesis, cross-
coupling of a benzylic pyridinium salt (2-45) should also be feasible, given that a
stabilized benzylic radical will be formed in this key step. Thus, we envisioned that
benzylic amines could be converted to diarylmethanes in a 2-step process. First,
benzylic amine 2-43 could be converted into the corresponding benzylic pyridinium
salt 2-45. Pyridinium salt 2-45 can then participate in nickel-catalyzed Suzuki—
Miyaura cross-coupling with arylboronic acids to deliver diarylmethane 2-46 (Scheme

2.6). In particular, I focused on developing this method to enable access to
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diarylmethanes with heteroaryl substitution, as these motifs are prevalent in
pharmaceuticals and largely overlooked in other cross-couplings to deliver
diarylmethanes. Because pyridinium formation is chemoselective for primary amines,
other nitrogen containing functionalities such as secondary or tertiary amines as well

as other heterocycles can be tolerated using this unique mode of activation.

Scheme 2.6  Proposed cross-coupling of benzylic amine derived pyridinium salts

Ph
O
| AN BF4
®
Ph” >0 “Ph Ph
2-44 ® © Ni catalyst
(he)Ar” > NH, > (Hetar” N7 BF, L L AN (het)ar”NAr
single step P Ar—B(OH),
selective for NH
2-43 2 Ph Ph 2-46

2-45

2.2 Results and Discussion

2.2.1 Synthesis of Benzylic Pyridinium Salts

The benzylic pyridinium salts were prepared following the procedure
previously used for the synthesis of alkyl pyridinium salts.* The benzylic amine
precursors were obtained commercially or via reduction of the corresponding
benzonitriles. Treatment of the benzylic amine (2-43) with commercially available
2,4,6-triphenylpyrylium tetrafluoroborate (2-44) in ethanol afforded the electron-poor
benzylic pyridinium salts in excellent yields with no chromatography upon
precipitation with ether (Scheme 2.7). A variety of heteroaromatic substrates can be
incorporated via this method including pyridines (2-47, 2-48, 2-49), quinoline (2-50),
pyrimidine (2-51), and pyrazine (2-52).
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Scheme 2.7  Selected examples of electron-poor benzylic pyridinium salts formed

Ph
©
| N BF,
'
Ph O” "Ph Ph
(2-44, 1.0 equiv) ® e
(et Ar”NH, > (he)Ar” TN B,
EtOH (1.0 M) |
2.43 reflux, 5 h Ph = Ph
(1.2 equiv) 2-45
Ph Ph Ph
® 1l © N ® 1l © ®l o
|\ Nl\BF4 @AN\BF‘L N Nl\BF4
N
N Ph” > ph Z P N pn Z P 7 ph
2-47, 90% 2-48, 94% 2-49, 70%
Ph Ph Ph
©l o N ol o N ol o
4 N~ XXy BF A N~ Xy BF N N~ ™~ BF
ED/\ | b 4 E/?\l/\ | b 4 [ m\ 4
N Ph Ph ZPh Ph N~ Ph Ph
2-50, 87% 2-51, 85% 2-52, 79%

However, utilization of more electron-rich benzylic amine substrates, such as
2-53, resulted in low desired product yield (2-54, 26%). Formation of the undesired
benzylic ether byproduct (2-55) was observed, likely arising from a nucleophilic
substitution reaction of ethanol to cleave the labile C—N bond of the desired
pyridinium salt under these elevated temperatures (Scheme 2.8, top).
Triphenylpyridine (2-56) is also formed as result of this reaction. In an effort to
suppress the formation of benzylic ether byproduct 2-55, the reaction was performed
using a non-nucleophilic solvent (CH,Cl,) under much milder conditions (Scheme 2.8,
bottom). Excitingly, the desired pyridinium salt was obtained in a much higher yield
(71%). It has been shown that the use of acetic acid can help to accelerate the rate of

pyridinium ring closure.*' Moreover, silica gel chromatography can be avoided with
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the use of an aqueous work-up, and the target pyridinium salts can then be precipitated

with ether.

Scheme 2.8  Synthesis of electron-rich benzylic pyridinium salts
Ph OEt

A BF4
/©/\NH2 | @/ 2 -44) /@/\)\)j\lga C 2 55
Ph
/N g
C’\,l pe3 EtOH, reflux N
/ 2-54, 26% _

Ph Ph N Ph

) 2-56
X, BF4 Ph
o | (2-44) ®l O
Ph” O~ “Ph /©/\N Xy BF,
> |
Et;N, 4 AMS N Ph™ 7 ph

7
CH,Cl, (0.5 M), rt, 20 min C,{, 2-54. 71%
then AcOH, 5 h ’

With this procedure, a number of electron-rich benzylic amines (2-57) were
converted into the corresponding benzylic pyridinium salts (2-58) in good to excellent
yields, often without the need for chromatographic purifications (Scheme 2.9).
Interestingly, secondary benzylic pyridinium salt 2-59 can be formed via this method.
Note that a deactivating electron-poor aryl substituent is required for pyridinium
formation from secondary benzylic amines; the pyridinium salt of oa-
methylbenzylamine could not be isolated. I hypothesize that the desired pyridinium
salt is relatively unstable and rapidly hydrolyzes to form the corresponding benzylic
alcohol. Electron-rich 5-membered heterocycles pendent off the phenyl ring (2-60, 2-
61, 2-62) as well as directly bound to the benzylic carbon (2-63, 2-64) worked well

under these conditions.
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Scheme 2.9  Selected examples of electron-rich benzylic pyridinium salts formed
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2.2.2 Reaction Optimization

My optimization began with examining the conditions previously identified for
the Suzuki—Miyaura cross-coupling of alkyl pyridinium salts. I chose pyridinium salt
2-47 for the model reaction. Excitingly, the desired product (2-65) was afforded in
66% yield under these conditions (Table 2.1, entry 1). Switching ligands from the
exotic bathophenanthroline (BPhen) to the much simpler and cheaper phenanthroline
(Phen) provided a comparable yield (entry 2). On the basis of commercial availability
and cost, I decided to continue optimizing with phenanthroline as ligand. I

hypothesized that the use of a harsh alkoxide base may lead to the formation of the
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undesired ylide,” especially given the increased acidity of the benzylic proton. Indeed,

switching to a milder phosphate base led to a dramatic increase in yield (entry 3).

Table 2.1 Reaction optimization of the Suzuki—-Miyaura cross-coupling of

benzylic pyridinium salts with arylboronic acids®

Ph p-Tol-B(OH), (3.0 equiv)
@ © Ni(OAc),-xH50, ligand X
o7 N )P base (3.4 equiv), EIOH (5.0 equiv) |
_ ase (3.4 equiv), Et .0 equiv &
N~ Ph = Ph dioxane (0.5 M), 60 °C, 24 h N Me
2-47 2-65
Entry Catalyst (mol %) Base Yield (%)"
1° Ni(OAc),-4H,0 (10)/ BPhen (24) KO'Bu 66
2° Ni(OAc),-4H,0 (10)/ Phen (12) KO'Bu 59
3¢ Ni(OAc),-4H,0 (10)/ Phen (12) K;3POy4 90
4 Ni(OAc),-4H,0 (10)/ Phen (12) K;3POy4 75
5 PhenNi(OAc), xH,O (10) K;3POy4 93
6 PhenNi(OAc), xH,0 (5) K5PO, 93
7de PhenNi(OAc), xH,0 (5) K5PO, 98

*Conditions: pyridinium salt 2-47 (0.10 mmol), p-Tol-B(OH), (3.0 equiv), [Ni],
ligand, base (3.4 equiv), EtOH (5.0 equiv), dioxane (0.1 M), 60 °C, 24 h, unless
noted otherwise. "Determined by 'H NMR analysis using 1,3,5-trimethoxybenzene
as internal standard. “Two mixtures (Vial 1: [Ni], Ligand, dioxane. Vial 2:
pyridinium salt 2-47, p-Tol-B(OH),, Base, EtOH, dioxane.) were stirred for 1 h

before combining. 5 h. €0.5 M.

73



Unfortunately, one of the mechanical issues associated with this reaction was
the need to pre-stir Ni(OAc),-4H,0 and Phen for 1 h before combing with the other
reagents. In the absence of this protocol, wherein the reaction was set up in a single
pot, the desired product 2-65 was obtained in only 75% yield (entry 4). I theorized that
pre-ligation of the nickel-ligand complex may be critical, so I decided to synthesize
the single-component catalyst 2-66 (Scheme 2.10). This catalyst can easily be made in
multi-gram quantities as an air- and moisture-stable solid. Gratifyingly, the utilization
of 2-66 enabled the reaction to be set up under a one-pot procedure and eliminated the
need for a prestir (Table 2.1, entry 5). With this operationally simplified set-up, much
better reproducibility was also observed. Furthermore, this improvement allowed for
lower catalyst loadings and shortened reaction times (entry 6). Finally, by increasing
the overall concentration of the reaction to 0.5 M, the yield of 2-65 was increased to

98% (entry 7).

Scheme 2.10 Preparation of metal-ligand complex PhenNi(OAc), xH,0 2-66

Ni(OAC),-4H,0 + / N I : ) xH,0 SR
_ =/ THEm48h SN_ o N=

N s

Ni
AcO’ I\OAc

2-66, 90%
2173 g

2.2.3 Reaction Scope
With optimized conditions in hand, my colleague Weiye Guan and I
investigated the scope of this transformation. A wide range of benzylic pyridinium

salts successfully underwent the desired cross-coupling reaction (Scheme 2.11). Model
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product 2-65 was isolated in 94% yield on a 1.0-mmol scale. I have also demonstrated
that the two-component catalyst system is viable using 10 mol % Ni and 12 mol %
Phen, and can be used when preparation of the single-component nickel-ligand
complex is less convenient. To test the sensitivity of the reaction, it was performed
without oven-dried glassware and without precautions against air or moisture. In both
cases, good yields were still obtained, highlighting the robustness of the reaction.
Other electron-poor heteroaryl pyridinium salts were well-tolerated, including 2-, 3-,
and 4-pyridine (2-74, 2-65, 2-75), quinoline (2-76), pyrimidine (2-77), and pyrazine
(2-78). Various electron-rich heteroaryls were also tolerated, including imidazole (2-
80), pyrazole (2-81, 2-82), pyrrole (2-83, 2-84), thiadiazole (2-85), oxazole (2-86), and
thiazole (2-87, 2-88). Furan-derived pyridinium salts were competent as well,
providing 2-89 in 34% yield, along with undesired ethyl ether byproduct. By
eliminating EtOH, the yield improved to 47%. When solubility of the pyridinium salt

or boronic acid was low, 3:1 dioxane/DMSO was used as solvent.

Scheme 2.11 Reaction scope of Suzuki arylation of benzylic pyridinium salts®

Ph Ar?>-B(OH), (3.0 equiv)
@ O 5 mol % PhenNi(OAc),xH>0
ArtTONTS BF, LY
| P K3POy, (3.4 equiv), EtOH (5.0 equiv)
Ph Ph dioxane (0.5 M), 60 °C, 5 h 2-68
2-67
OMe
X A A
N Me N X N OMe
2-65, 94% 2-69, X = C|, 92% 2-71, 65°/od
two-component catalyst: 93%P¢.4 2-70, X = Br, 85%

without dry glassware: 84%P¢
minimal precaution: 71%°f
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2-84, 86% 2-85, 63% 2-86, 90%
0]
m
SOzMe </ SMe
CONEt, 2-89, 34%
Me 2-87,86% 2-88, 95% w/o EtOH: 47%!

*Conditions: pyridinium salt 2-67 (1.0 mmol), PhenNi(OAc),"xH,O (5 mol %),
ArB(OH), (3.0 equiv), KsPOy4 (3.4 equiv), EtOH (5 equiv), dioxane (0.5 M), 60 °C, 5
h. Average isolated yields (+5%) from duplicate experiments. "Single experiment. 10
mol % Ni(OAc),-4H,0, 12 mol % Phen. ‘24 h. “Glassware was not oven-dried.
"Minimal precautions to protect from air and moisture. #3:1 dioxane:DMSO. "0.1
mmol scale. Yield determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as

internal standard. 'EtOH omitted. ‘Conditions: pyridinium salt 2-59 (1.0 mmol),



Ni(OAc),-4H,0 (10 mol %), 4,4'-di'BuBipy (12 mol %), p-Tol-B(OH), (3.0 equiv),
K3PO4 (3.4 equiv), dioxane (0.1 M), 60 °C, 24 h.

Secondary benzylic pyridinium salts were also examined. However,
diarylethane 2-79 was formed in only 23% yield. Omission of EtOH only slightly
increased the yield. A brief screen of ligands revealed that the use of 4,4'-di'BuBipy
increased the yield to 45%. Triphenylpyridine was only formed in ~60% in this
reaction, suggesting that C—N bond cleavage was sluggish.

For the aryl boronic acid, broad tolerance for functional groups and heteroaryls
was observed, including aryl chlorides (2-69, 2-74), fluorides (2-85, 2-86) and even
bromides (2-70), ethers (2-71, 2-83), amides (2-72, 2-88), nitroarenes (2-74), ketones
(2-75), nitriles (2-76), trifluoromethyls (2-77), esters (2-78), tertiary amines (2-83),
sulfones (2-87), and thioethers (2-89). Both electron-rich and electron-poor heteroaryls
can be used, including unprotected indole (2-73), benzofuran (2-80), pyridine (2-81, 2-
83, 2-85, 2-86), and pyrazine (2-82). Notably, many of these pyridines are poised for
further elaboration via SnyAr chemistry. Moreover, aryl groups containing acidic
protons can be used without the need for any excess base (2-72, 2-73).

Cognizant that poor solubility can be limiting for some substrates, I tested the
tolerance of this reaction to a variety of solvents (Table 2.2). Excitingly, a wide range
of solvents can be used. Etheral solvents provided excellent yields of 2-65 (entries 1—
3). Lower yields were observed when very polar solvents such as DMSO or DMF
were used (entries 7 & 8), but these yields were still of high synthetic utility. In fact,
the reaction can be run in neat ethanol to afford 2-65 in 77% isolated yield (entry 9).
Notably, however, this can only be used for pyridinium salts with electron-poor

heteroaryls, which do not undergo substitution with EtOH. These results highlight the
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feasibility of finding a solvent mixture that would be compatible with any given

substrate.

Table 2.2 Wide solvent tolerance®

Ph p-Tol-B(OH), (3.0 equiv)
©) O 5 mol % PhenNi(OAc),'xH,0 X
XN BF, : — |
| _ | P K3POy, (3.4 equiv), EtOH (5.0 equiv) N Me
N~ Ph Ph solvent (0.5 M), 60 °C, 16 h
2-47 2-65
Entry Solvent Yield (%)b
1 2-Me-THF 96
2 CPME 96
3 EtZO 90
4 PhMe 94
5 MeCN 91
6 CH,Cl, 83
7 DMSO 62
8 DMF 61
9 EtOH 77¢

*Conditions: pyridinium salt 2-47 (0.10 mmol), PhenNi(OAc),'xH,O (5 mol %),
ArB(OH), (3.0 equiv), K3PO4 (3.4 equiv), EtOH (5 equiv), solvent (0.5 M), 60 °C, 16
h. *Determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal

standard. 24 h. “Isolated yield.
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The robustness of the cross-coupling reaction as well as tolerance for various
solvents presented the opportunity to combine the pyridinium formation and cross-
coupling in a one-pot operation. By forming the pyridinium salt in-situ, cross-coupled
product 2-65 can be obtained directly from benzylic amine 2-90 (Scheme 2.12). The
addition of 4 A molecular sieves proved critical in this transformation. In the absence
of sieves, 2-65 was obtained in only 19% yield. I believe that the desiccant may aid in
pyridinium formation by preventing undesired hydrolysis of intermediate 2-91, as well
as by eliminating water that may be problematic in the cross-coupling. Notably, this is
not a two-step, one-pot procedure; all reagents were added simultaneously at the
beginning of the reaction. We believe that this approach can enable rapid screening to

access a variety of diarylmethanes.

Scheme 2.12  One-pot transformation
Ph

| N §F4 (2-44, 1.0 equiv)
@
Ph™ "O” "Ph
p-Tol-B(OH), (3.0 equiv)
X NH, 5 mol % PhenNi(OAc),xH,O X

N K3POy, (3.4 equiv) N Me
2-90 EtOH (5.0 equiv), 4 A MS 2-65, 76%

dioxane (0.5 M), 60 °C, 24 h in EtOH: 59% (NMR)
without 4 A MS: 19%

Ph
7"\

- X N/ pnh OH
P

N 2-91

Ph
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2.2.4 Mechanistic Studies

We theorize that this reaction proceeds via a Ni'™

catalytic cycle, analogous to
that of the Suzuki—Miyaura cross-coupling of alkyl pyridinium salts (Chapter 1). The
identity of the ligand, redox non-innocent phenanthroline, suggests that the oxidative
addition likely proceeds through a single-electron transfer (SET) pathway. Although
further experiments are needed to confirm the active nickel species, a radical trapping
experiment supports the intermediacy of a benzylic radical.¥ When TEMPO was
added to the cross-coupling of pyridinium 2-48, known TEMPO adduct 2-92 was
produced in 32% yield (Scheme 2.13). No desired cross-coupled product was

observed.

Scheme 2.13 Radical trapping experiment
TEMPO (2.0 equiv)

Ph p-Tol-B(OH), (3.0 equiv) Me
N ® o 5 mol % PhenNi(OAc),'xH,O Me
N BF, N _N
| P » KsPO, (3.4 equiv), EtOH (5.0 equiv) o
Ph Ph dioxane (0.5 M), 60 °C, 5 h P> Me Me
2-48 2-92, 32% (NMR)

We believe that the following Ni"™"

catalytic cycle may be operative (Scheme
2.14). This mechanism is analogous to that of Fu’s Negishi cross-coupling of alkyl
halides.** Ni' species A can undergo transmetallation with the activated aryl boronate
to generate Ni'-arene species B. This species can then perform single-electron transfer
into the benzylic pyridinium salt to generate C, which fragments to give stabilized
benzylic radical D. This radical can then recombine with Ni" species E to afford Ni'™

species F. Reductive elimination from F delivers the diarylmethane product and

regenerates the active Ni' catalyst A. Another possible mechanism is a radical-chain

80



bimetallic pathway, which has been observed in Weix’s reductive cross-electrophile

couplings.” With our current data, we cannot rule out this possibility.

Scheme 2.14 Proposed catalytic cycle for cross-coupling of benzylic pyridinium salts

== Ar?-B(OH), + K3PO,
17N, 2 Nil— X
Ar )/ _ N,Nl N@PO‘;B(OH)
~ + KX
A

| S AI’2
= IIII/X /N | 2
Ni -
N A N Ni'—Ar
=~ ~

F
0 ser /™" N Ph
/N‘Nin’ Ar‘vN®/
=N AR S
~ ~ BF, Ph
1 E Ph /U- Ph

2.3 Conclusion

In summary, I have developed a nickel-catalyzed Suzuki—Miyaura cross-
coupling of benzylic pyridinium salts with aryl boronic acids. This reaction enables
efficient conversion of widely available benzylic amines to diarylmethanes, a
prevalent motif in pharmaceuticals and other bioactive molecules. Notably, the use of
a pyridinium salt enables broad scope of heteroaromatic substituents, including those

that would not be amenable to activation via a trimethylammonium triflate. Broad
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solvent tolerance was also demonstrated, providing viable alternatives when solubility
becomes problematic. Finally, for benzylic pyridinium salts with electron-poor aryl
groups, a one-pot procedure was developed to facilitate the use of this chemistry in

synthesis. This work was published in Organic Letters and highlighted in Synfacts.*®
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2.4 Experimental

2.4.1 General Information

Reactions were performed in oven-dried Schlenk flasks or in oven-dried
round-bottomed flasks unless otherwise noted. Round-bottomed flasks were fitted
with rubber septa, and reactions were conducted under a positive pressure of Nj.
Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Silica
gel chromatography was performed on silica gel 60 (40-63 pm, 60A) unless otherwise
noted. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher,
Strem, TCI, Combi Blocks, Alfa Aesar, AK Scientific, Oakwood, or Cambridge
Isotopes Laboratories and used as received with the following exceptions: anhydrous
ethanol and DMSO were degassed by sparging with N, for 20-30 minutes prior to use
in the cross-coupling reactions; THF and CH,Cl, were dried by passing through
drying columns; dioxane was dried by passing through drying columns, then degassed
by sparging with N,.** Powdered, activated 4A molecular sieves were prepared by
heating sieves to ~200°C under high vacuum overnight and then crushing to achieve a
fine powder. In some instances oven-dried potassium carbonate was added to CDCl;

. . 1
to remove trace acid. Proton nuclear magnetic resonance (‘H NMR) spectra, carbon
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nuclear magnetic resonance (°C NMR) spectra, and fluorine nuclear magnetic
resonance spectra (’F NMR) were recorded on both 400 MHz and 600 MHz
spectrometers. Chemical shifts for protons are reported in parts per million downfield
from tetramethylsilane and are referenced to residual protium in the NMR solvent
(CHCl3 = 6 7.26). Chemical shifts for carbon are reported in parts per million
downfield from tetramethylsilane and are referenced to the carbon resonances of the
solvent (CDCl; = & 77.16). Chemical shifts for fluorine were externally referenced to
CFCl; in CDCl;s (CFCls = 6 0). Data are represented as follows: chemical shift,
multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m =
multiplet, dd = doublet of doublets, h = heptet), coupling constants in Hertz (Hz),
integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with
material loaded onto a KBr plate. The mass spectral data were obtained at the
University of Delaware mass spectrometry facility. Melting points were taken on a

Thomas-Hoover Uni-Melt Capillary Melting Point Apparatus.

2.4.2 Preparation of PhenNi(OAc), xH,O (2-66)

4
N|(OAC)2'4H2O + / \ > \ ‘XHQO
N = THF, 1t, 48 h =N_ N=

N'/
AcO’ I‘OAc

The following was adapted from a literature procedure.* To an oven-dried,
100-mL round-bottomed flask was added Ni(OAc),-4H,O (1.49 g, 6.0 mmol, 1.0
equiv) and phenanthroline (1.08 g, 6.0 mmol, 1.0 equiv). The flask was fitted with a
septum, and THF (35 mL) was added. The reaction mixture was stirred at room

temperature for 48 h. The resulting pale blue suspension was filtered. The solid was
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washed with Et,0O (3 x 20 mL) and dried under high vacuum. The solid was used as is
without further purification: '"H NMR (400 MHz, DMSO-ds) & 47.32 — 41.84 (m, 8H),
22.88 (s, 3H), 18.03 (s, 3H); HRMS (LIFDI) [M]" calculated for C;cH;4N,O,Ni:
356.0307, found 356.0290.

2.4.3 Cross-Coupling of Pyridinium Salts to Give Diarylmethanes

2.4.3.1 General Procedure A: Cross-Coupling of Pyridinium Salts with Boronic

Acids
" 5 ol PherNI(OAG) s xH;0
® ©) mol% eniNi C)o® XHo
(HehAr” >N BF, > (He)Ar” Ar
| _ K3PO4 (34 eqUiV)
Ph Ph EtOH (5.0 equiv)

dioxane (0.5 M), 60 °C, 5 h

To an oven-dried, 25-mL Schlenk flask was added PhenNi(OAc),-xH,O (20
mg, 0.050 mmol, 5 mol %), pyridinium salt (1.0 mmol, 1.0 equiv), arylboronic acid
(3.0 mmol, 3.0 equiv), and K3sPO4 (722 mg, 3.4 mmol, 3.4 equiv). The flask was fitted
with a rubber septum, sealed with parafilm, and then evacuated and refilled with N, (x
3). Dioxane (2.0 mL) was added, followed by EtOH (0.29 mL, 5.0 mmol, 5.0 equiv).
The flask was sealed and resulting mixture was stirred at 60 °C for 5 h. The mixture
was allowed to cool to room temperature, and then filtered through a small pad of
Celite. The filter cake was washed with CH,Cl, (4 x 25 mL), and the filtrate was
concentrated. The cross-coupled product was then purified via silica gel

chromatography.
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N Me

3-(4-Methylbenzyl)pyridine (2-65). Prepared via General Procedure A using
pyridinium salt 2-47. The crude mixture was purified by silica gel chromatography
(50% ether/hexanes) to give 2-65 (run 1: 170 mg, 93%; run 2: 172 mg, 94%) as pale
yellow oil: 'H NMR (600 MHz, CDCl;) & 8.50 (s, 1H), 8.47 — 8.43 (m, 1H), 7.48 —
7.43 (m, 1H), 7.21 — 7.16 (m, 1H), 7.11 (d, J = 7.9 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H),
3.94 (s, 2H), 2.32 (s, 3H); °C NMR (151 MHz, CDCls) & 150.2, 147.6, 136.8, 136.7,
136.2, 136.0, 129.4, 128.7, 123.4, 38.7, 21.0. The spectral data matches that reported
in the literature.™
Reaction without Oven-dried Glassware

Product 2-65 also prepared via General Procedure A, except that the Schlenk
flask and stir bar were not oven-dried prior to use. The crude mixture was purified by
silica gel chromatography (50% ether/hexanes) to give 2-65 (155 mg, 84%).
Reaction with “Minimal Precaution” Set-up

Product 2-65 was also prepared via a procedure similar to General Procedure
A, except that minimal precautions were taken to protect the reaction from air and
moisture. Dioxane (ACS grade) and EtOH (absolute) were used as received; they were
not dried or degassed. The round-bottomed flask and stir bar were not oven-dried prior
to use. Reagents were added directly into the flask, open to air. The reaction was set
up under air (no Ny).

To a 25-mL round-bottomed flask equipped with a stir bar was added
PhenNi(OAc), xH,O (20 mg, 0.050 mmol, 5 mol %), pyridinium salt 2-47 (486 mg,
1.0 mmol, 1.0 equiv), p-tolylboronic acid (408 mg, 3.0 mmol, 3.0 equiv), and K;PO4
(722 mg, 3.4 mmol, 3.4 equiv). Dioxane (2.0 mL) was added, followed by EtOH (0.29
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mL, 5.0 mmol, 5.0 equiv). The flask was fitted with a rubber septum and sealed with
parafilm (no N; inlet). The resulting mixture was stirred at 60 °C for 5 h. The mixture
was allowed to cool to room temperature, and then filtered through a small pad of
Celite. The filter cake was washed with CH,Cl, (4 x 25 mL), and the filtrate was
concentrated. The crude mixture was purified by silica gel chromatography (50%
ether/hexanes) to give 2-65 (131 mg, 71%).
Reaction with Ethanol as Solvent

Product 2-65 was also prepared via a procedure similar to General Procedure
A, except that EtOH was used as the solvent. To an oven-dried, 25-mL Schlenk flask,
was added PhenNi(OAc),-xH,0 (20 mg, 0.050 mmol, 5 mol %), pyridinium salt 2-47
(486 mg, 1.0 mmol, 1.0 equiv), p-tolylboronic acid (408 mg, 3.0 equiv, 3.0 mmol),
and K;PO4 (722 mg, 3.4 mmol, 3.4 equiv). The flask was fitted with a rubber septum,
sealed with parafilm, and then evacuated and refilled with N, (x 3). EtOH (2.0 mL)
was added. The resulting mixture was stirred at 60 °C for 24 h. The mixture was
allowed to cool to room temperature, and then filtered through a small pad of Celite.
The filter cake was washed with CH,Cl, (4 x 25 mL), and the filtrate was
concentrated. The crude mixture was purified by silica gel chromatography (50%
ether/hexanes) to give 2-65 (141 mg, 77%).
Reaction with Two-component Catalyst

Product 2-65 was also prepared using a two-component catalyst system. To an
oven-dried, 25-mL pear-shaped flask, was added Ni(OAc),-4H,0 (25 mg, 0.10 mmol,
10 mol %) and phenanthroline (22 mg, 0.12 mmol, 12 mol %). The flask was fitted
with a rubber septum, sealed with parafilm, and then evacuated and refilled with N, (x

3). To an oven-dried, 25-mL Schlenk flask was added pyridinium salt 2-47 (486 mg,
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1.0 mmol, 1.0 equiv), p-tolylboronic acid (408 mg, 3.0 equiv, 3.0 mmol), and K;PO4
(722 mg, 3.4 mmol, 3.4 equiv). The flask was fitted with a rubber septum, sealed with
parafilm, and then evacuated and refilled with N, (x 3). To the pear-shaped flask
containing Ni(OAc),'4H,O and Phen was added dioxane (sparged, anhydrous; 2.5
mL). To the Schlenk flask containing the pyridinium salt, boronic acid, and K3POj4
was added dioxane (sparged, anhydrous; 2.5 mL), followed by EtOH (sparged,
anhydrous; 0.29 mL, 5.0 mmol, 5.0 equiv). After vigorously stirring of the resulting
mixtures for 1 h at room temperature, the heterogeneous mixture containing the
catalyst was transferred via cannula to the mixture containing the pyridinium salt and
activated boronate complex. The pear-shaped flask was rinsed multiple times with
dioxane (totaling 5 mL; each rinse was transferred via cannula to the reaction mixture)
to bring the total volume of dioxane in the reaction flask to 10 mL (0.1 M). The
resulting reaction mixture was stirred at 60 °C for 24 h. The mixture was allowed to
cool to room temperature, and then filtered through a small pad of Celite. The filter
cake was washed with CH,Cl, (4 x 25 mL), and the resulting solution was
concentrated. The crude mixture was purified by silica gel chromatography (50%
ether/hexanes) to give 2-65 (171 mg, 93%).

AN

-~

N Cl
3-(4-Chlorobenzyl)pyridine (2-69). Prepared via General Procedure A using
pyridinium salt 2-47. The crude mixture was purified by silica gel chromatography
(50% ether/hexanes) to give 2-69 (run 1: 182 mg, 90%; run 2: 190 mg, 93%) as a clear
oil: '"H NMR (600 MHz, CDCls) & 8.53 — 8.48 (m, 2H), 7.49 — 7.43 (m, 1H), 7.32 —
7.27 (m, 2H), 7.26 — 7.21 (m, 1H), 7.15 — 7.11 (m, 2H), 3.97 (s, 2H); °C NMR (151
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MHz, CDCl;) & 150.2, 147.9, 138.3, 136.2, 135.9, 132.4, 130.2, 128.8, 123.5, 38.4.

The spectral data matches that reported in the literature.”'

N Br
3-(4-Bromobenzyl)pyridine (2-70). Prepared via General Procedure A using
pyridinium salt 2-47. The crude mixture was purified by silica gel chromatography
(60% ether/hexanes) to give 2-70 (run 1: 222 mg, 89%; run 2: 199 mg, 80%) as a pale
yellow oil: '"H NMR (600 MHz, CDCls) & 8.50 — 8.45 (m, 2H), 7.46 — 7.40 (m, 3H),
7.23 —7.18 (m, 1H), 7.07 — 7.02 (m, 2H), 3.93 (s, 2H); °C NMR (151 MHz, CDCl;) &
150.1, 147.9, 138.8, 136.2, 135.8, 131.8, 130.6, 123.5, 120.4, 38.5. The spectral data

matches that reported in the literature.”

OMe

N

~

N OMe
3-(2,4-Dimethoxybenzyl)pyridine (2-71). Prepared via General Procedure A using
pyridinium salt 2-47, except that the reaction mixture was heated for 24 h. The crude
mixture was purified by silica gel chromatography (30% ethyl acetate/hexanes) to give
2-71 (run 1: 168 mg, 68%; run 2: 154 mg, 62%) as pale yellow oil: 'H NMR (400
MHz, CDCls) & 8.53 — 8.47 (m, 1H), 8.44 — 8.37 (m, 1H), 7.50 — 7.42 (m, 1H), 7.20 —
7.12 (m, 1H), 7.03 — 6.96 (m, 1H), 6.48 — 6.38 (m, 2H), 3.87 (s, 2H), 3.79 (s, 3H),
3.77 (s, 3H); °C NMR (151 MHz, CDCl3) § 159.8, 158.2, 150.3, 147.2, 136.9, 136.1,
130.5, 123.2, 120.9, 104.1, 98.7, 55.4, 55.3, 32.8; FTIR (neat) 2936, 2835, 1612, 1507,
1209, 1035, 713 cm™; HRMS (ESI+) [M+H]" calculated for C4H;sNO,: 230.1181,
found 230.1178.
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4-(Pyridin-3-ylmethyl)benzamide (2-72). Prepared via General Procedure A using
pyridinium salt 2-47, except that a 3:1 mixture of dioxane (1.5 mL) and DMSO (0.5
mL) was used as the solvent. The crude mixture was purified by silica gel
chromatography (5—-10 MeOH/CH,Cl,) to give 2-72 (run 1: 186 mg, 88%; run 2: 208
mg, 98%) as an off-white solid (mp 152154 °C): '"H NMR (600 MHz, CDCls) & 8.53
—8.46 (m, 2H), 7.78 — 7.73 (m, 2H), 7.48 — 7.42 (m, 1H), 7.28 — 7.25 (m, 2H, overlaps
with CHCl;), 7.25 — 7.19 (m, 1H), 6.01 (s, br, 1H), 5.57 (s, br, 1H), 4.03 (s, 2H); °C
NMR (151 MHz, CDCls) & 168.8, 150.2, 148.0, 144.2, 136.3, 135.6, 131.6, 129.1,
127.8, 123.5, 38.9; FTIR (neat) 3393, 3172, 1652, 1616, 1416, 1394, 1030, 712 cm’;
HRMS (ESI+) [M+H]" calculated for C13H;3N,0: 213.1022, found 213.1019.
® N

N H
5-(Pyridin-3-ylmethyl)-1H-indole (2-73). Prepared via General Procedure A using
pyridinium salt 2-47, except that a 3:1 mixture of dioxane (1.5 mL) and DMSO (0.5
mL) was used as the solvent and the reaction mixture was heated for 24 h. The crude
mixture was purified by silica gel chromatography (50% ethyl acetate/hexanes) to give
2-73 (140 mg, 67%) as an off-white solid: "H NMR (600 MHz, CDCls) & 8.57 — 8.53
(m, 1H), 8.46 — 8.42 (m, 1H), 8.18 (s, br, 1H), 7.52 — 7.47 (m, 1H), 7.47 — 7.43 (m,
1H), 7.35 = 7.30 (m, 1H), 7.22 — 7.19 (m, 1H), 7.19 — 7.15 (m, 1H), 7.04 — 6.99 (m,
1H), 6.52 — 6.48 (m, 1H), 4.08 (s, 2H); °C NMR (151 MHz, CDCls) & 150.2, 147.4,
137.6, 136.3, 134.6, 131.3, 128.2, 124.6, 123.3, 123.3, 120.6, 111.2, 102.5, 39.2. The

spectral data matches that reported in the literature.'*
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2-(3-Nitrobenzyl)pyridine (2-74). Prepared via General Procedure A using
pyridinium salt 2-48. The crude mixture was purified by silica gel chromatography
(50% ether/hexanes) to give 2-74 (run 1: 196 mg, 91%; run 2: 200 mg, 93%) as an
orange oil: '"H NMR (600 MHz, CDCl;) & 8.59 — 8.55 (m, 1H), 8.13 (s, 1H), 8.11 —
8.06 (m, 1H), 7.66 — 7.59 (m, 2H), 7.50 — 7.45 (m, 1H), 7.19 — 7.14 (m, 2H), 4.25 (s,
2H); >C NMR (151 MHz, CDCls) § 159.2, 149.8, 148.4, 141.5, 136.9, 135.3, 129.4,
123.9, 123.2, 121.8, 121.6, 44.1. The spectral data matches that reported in the

literature.>

N X

| |
N~ Z>CoMe

1-(4-(Pyridin-4-ylmethyl)phenyl)ethan-1-one  (2-75). Prepared via General
Procedure A using pyridinium salt 2-49. The crude mixture was purified by silica gel
chromatography (50% ethyl acetate/hexanes) to give 2-75 (run 1: 163 mg, 77%; run 2:
159 mg, 75%) as a yellow oil: '"H NMR (600 MHz, CDCls) & 8.52 (d, J = 5.9 Hz, 2H),
791 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 5.9 Hz, 2H), 4.02 (s,
2H), 2.59 (s, 3H); °C NMR (151 MHz, CDCl3) & 197.6, 150.1, 148.8, 144.4, 135.8,
129.2, 128.8, 124.2, 41.2, 26.6; FTIR (neat) 3029, 2921, 1681, 1597, 1414, 1268, 609
cm’'; HRMS (ESI+) [M+H]" calculated for C4H4NO: 212.1075, found 212.1071.

SOAGA

3-(Quinolin-6-ylmethyl)benzonitrile (2-76). Prepared via General Procedure A using

pyridinium salt 2-50. The crude mixture was purified by silica gel chromatography
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(50-80% ether/hexanes) to give 2-76 (run 1: 231 mg, 94%; run 2: 238 mg, 98%) as a
pale yellow solid (mp 79-81 °C): 'H NMR (400 MHz, CDCl;) & 8.93 — 8.87 (m, 1H),
8.14 — 8.02 (m, 2H), 7.61 — 7.56 (m, 1H), 7.56 — 7.45 (m, 4H), 7.45 — 7.38 (m, 2H),
4.20 (s, 2H); *C NMR (101 MHz, CDCLs) & 150.3, 147.3, 141.9, 137.8, 135.7, 133.5,
132.5, 130.8, 130.3, 130.1, 129.4, 128.4, 127.1, 121.5, 118.8, 112.7, 41.4; FTIR (neat)
3032, 2920, 2229, 1594, 1501, 838, 688 cm™; HRMS (ESI+) [M+H]" calculated for
Ci7H13N3: 245.1079, found 245.1074.

N
7 TL
N CF,

2-(4-(Trifluoromethyl)benzyl)pyrimidine (2-77). Prepared via General Procedure A
using pyridinium salt 2-51. The crude mixture was purified by silica gel
chromatography (50% ether/hexanes) to give 2-77 (run 1: 212 mg, 89%; run 2: 208
mg, 87%) as a yellow oil: '"H NMR (600 MHz, CDCls) & 8.69 (d, J = 4.9 Hz, 2H), 7.56
(d, J=8.0 Hz, 2H), 7.48 (d, ] = 8.0 Hz, 2H), 7.16 (t, J = 4.9 Hz, 1H), 4.35 (s, 2H); °C
NMR (101 MHz, CDCls) 6 169.2, 157.5, 142.2 (q, Jc.r = 1.5 Hz), 129.5, 128.9 (q, Jc.r
=32.4 Hz), 125.5 (q, Je.r = 3.8 Hz), 124.2 (q, Je.r = 271.9 Hz), 119.0, 45.8; '°F NMR
(565 MHz, CDCl3) 8 —62.49; FTIR (neat) 3043, 2929, 1563, 1418, 1327, 1067, 633
cm™; HRMS (ESI+) [M+H]" calculated for Ci,HoF3N,: 239.0796, found 239.0791.

N
AN
()L
N CO,Et

Ethyl 4-(pyrazin-2-ylmethyl)benzoate (2-78). Prepared via General Procedure A
using pyridinium salt 2-52. The crude mixture was purified by silica gel

chromatography (50% ether/hexanes) to give 2-78 (run 1: 210 mg, 87%; run 2: 209
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mg, 86%) as an orange solid (mp 62—65 °C): '"H NMR (600 MHz, CDCl;) & 8.53 —
8.49 (m, 1H), 8.49 — 8.46 (m, 1H), 8.45 — 8.41 (m, 1H), 7.99 (d, J = 8.2 Hz, 2H), 7.34
(d, J=8.2 Hz, 2H), 4.36 (q, J= 7.1 Hz, 2H), 4.22 (s, 2H), 1.37 (t, J = 7.1 Hz, 3H); °C
NMR (151 MHz, CDCl3) § 166.3, 155.7, 144.7, 144.2, 143.2, 142.7, 130.0, 129.2,
129.0, 60.9, 41.9, 14.3; FTIR (neat) 2981, 2924, 1713, 1276, 1100, 1019, 758 cm™;
HRMS (ESI+) [M+H]" calculated for C14H 5sN>O,: 243.1134, found 243.1129.

0
N@N

1-(4-(Benzofuran-2-ylmethyl)phenyl)-1H-imidazole (2-80). Prepared via General
Procedure A using pyridinium salt 2-93, except that a 3:1 mixture of dioxane (1.5 mL)
and DMSO (0.5 mL) was used as the solvent. The crude mixture was purified by silica
gel chromatography (70% ethyl acetate/hexanes) to give 2-80 (run 1: 216 mg, 79%;
run 2: 221 mg, 81%) as a pale yellow solid (mp 76-78 °C): '"H NMR (600 MHz,
CDCls) &6 7.88 — 7.84 (m, 1H), 7.54 — 7.50 (m, 1H), 7.47 — 7.42 (m, 3H), 7.41 — 7.35
(m, 2H), 7.30 — 7.29 (m, 1H), 7.27 — 7.20 (m, 3H), 6.49 — 6.45 (m, 1H), 4.19 (s, 2H);
C NMR (151 MHz, CDCl3) § 156.8, 155.0, 136.8, 136.2, 135.6, 130.5, 130.3, 128.6,
123.7, 122.7, 121.8, 120.5, 118.3, 111.0, 103.7, 34.5; FTIR (neat) 3111, 1522, 1303,
1252, 1056, 752 cm™'; HRMS (ESI+) [M+H]" calculated for C;sH;sN,O: 275.1184,
found 275.1180.
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4-(4-(1H-Pyrazol-1-yl)benzyl)pyridine (2-81). Prepared via General Procedure A
using pyridinium salt 2-54. The crude mixture was purified by silica gel
chromatography (50% ethyl acetate/hexanes) to give 2-81 (run 1: 189 mg, 80%; run 2:
205 mg, 87%) as a tan solid (mp 51-53 °C): '"H NMR (600 MHz, CDCls) & 8.52 (d, J
= 6.0 Hz, 2H), 7.90 (d, J = 2.0 Hz, 1H), 7.72 (d, J = 1.5 Hz, 1H), 7.65 (d, J = 8.5 Hz,
2H), 7.26 (d, J = 8.5 Hz, 2H, overlaps with CHCI3), 7.11 (d, J = 6.0 Hz, 2H), 6.46 (dd,
J=2.0, 1.5 Hz, 1H), 4.00 (s, 2H); >C NMR (151 MHz, CDCl;) & 150.0, 149.6, 141.1,
139.0, 137.1, 130.0, 126.7, 124.1, 119.5, 107.6, 40.6; FTIR (neat) 3026, 2921, 1599,
1524, 1394, 936, 785 cm™; HRMS (ESI+) [M+H]" calculated for C;sH4N3: 236.1188,
found 236.1183.

5-(3-(1H-Pyrazol-1-yl)benzyl)-2-chloropyrimidine (2-82). Prepared via General
Procedure A using pyridinium salt 2-60. The crude mixture was purified by silica gel
chromatography (25-50% ether/hexanes) to give 2-82 (run 1: 188 mg, 70%; run 2:
208 mg, 77%) as an orange solid (mp 71-73 °C: "H NMR (600 MHz, CDCl3) & 8.49
(s, 2H), 7.93 — 7.89 (m, 1H), 7.73 — 7.70 (m, 1H), 7.64 — 7.60 (m, 1H), 7.57 — 7.52 (m,
1H), 7.45 — 7.39 (m, 1H), 7.09 — 7.05 (m, 1H), 6.49 — 6.45 (m, 1H), 4.02 (s, 2H); °C
NMR (151 MHz, CDCls) & 159.8, 159.6, 141.3, 140.8, 139.4, 132.4, 130.2, 126.7,
126.6, 119.7, 117.6, 107.9, 35.7; FTIR (neat) 2922, 1548, 1393, 1153, 1044, 753;
HRMS (ESI+) [M+H]" calculated for C;4H2CIN,: 271.0750, found 271.0745.
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4-(5-(2-(1H-Pyrrol-1-yl)benzyl)pyridin-2-yl)morpholine = (2-83). Prepared via
General Procedure A using pyridinium salt 2-61. The crude mixture was purified by
silica gel chromatography (20% ethyl acetate/hexanes) to give 2-83 (run 1: 135 mg,
42%; run 2: 141 mg, 44%) as a white solid (mp 119-121 °C): '"H NMR (400 MHz,
CDCl3) 6 7.89 (d, J = 2.1 Hz, 1H), 7.35 — 7.19 (m, 4H, overlaps with CHCl3), 7.08
(dd, J=8.7,2.5 Hz, 1H), 6.74 (t,J = 2.1 Hz, 2H), 6.53 (d, /= 8.7 Hz, 1H), 6.31 (t,J =
2.1 Hz, 2H), 3.85 — 3.77 (m, 4H), 3.73 (s, 2H), 3.47 — 3.40 (m, 4H); °C NMR (101
MHz, CDCls) 6 158.3, 147.8, 140.3, 138.1, 136.9, 130.6, 128.0, 127.3, 127.1, 125.5,
122.3,109.0, 106.8, 66.8, 45.8, 33.3; FTIR (neat) 2959, 2852, 1606, 1493, 1244, 1120,
494, 729 c¢m’'; HRMS (ESI+) [M+H]" calculated for CpH2N30: 320.1763, found
320.1749.

F
Me

1-(2-(3-Fluoro-4-methylbenzyl)phenyl)-1H-pyrrole (2-84). Prepared via General
Procedure A using pyridinium salt 2-61. The crude mixture was purified by silica gel
chromatography (25% toluene/hexanes) to give 2-84 (run 1: 220 mg, 83%; run 2: 236
mg, 89%) as a clear oil: "H NMR (400 MHz, CDCl3) § 7.35 — 7.27 (m, 3H), 7.26 —
7.21 (m, 1H), 7.07 — 6.98 (m, 1H), 6.72 (t, J = 2.1 Hz, 2H), 6.70 — 6.58 (m, 2H), 6.29
(t, J = 2.1 Hz, 2H), 3.81 (s, 2H), 2.21 (d, Jy.r = 1.8 Hz, 3H); °C NMR (101 MHz,
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CDCl3) 8 161.2 (d, Jer = 244.4 Hz), 140.4, 140.0 (d, Je.r = 7.2 Hz), 136.5, 131.2 (d,
Jer = 5.6 Hz), 130.9, 128.0, 127.3 (d, Je.r = 6.7 Hz), 124.1 (d, Jer = 3.2 Hz), 122.5,
122.31,122.28, 115.2 (d, Jer = 22.3 Hz), 108.9, 36.3 (d, Je.r = 1.7 Hz), 142 (d, Jor =
3.4 Hz); F NMR (565 MHz, CDCl3) § —117.88; FTIR (neat) 3030, 2927, 2860, 1503,
1328, 1113, 728 cm™; HRMS (ESI+) [M+H]" calculated for C;gH;7FN: 266.1345,
found 266.1341.

Me

\

S
N

N
5-(4-((6-Fluoro-5-methylpyridin-3-yl)methyl)phenyl)-1,2,3-thiadiazole (2-85).
Prepared via General Procedure A using pyridinium salt 2-62, except that the reaction
mixture was heated for 24 h. The crude mixture was purified by silica gel
chromatography (30-50% ether/hexanes) to give 2-85 (run 1: 172 mg, 60%; run 2:
188 mg, 66%) as a yellow solid (mp 141-143 °C): "H NMR (600 MHz, CDCl3) & 8.62
(s, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.93 (s, 1H), 7.42 — 7.36 (m, 1H), 7.32 (d, /= 8.2 Hz,
2H), 4.00 (s, 2H), 2.24 (s, 3H); °C NMR (151 MHz, CDCL;) § 162.5, 161.2 (dc.p, J =
237.3 Hz), 144.4 (d, Jc.r = 14.3 Hz), 142.0 (d, Jc.r = 6.0 Hz), 141.3, 133.7 (d, Je.r =
4.7 Hz), 129.7, 129.6, 129.3, 127.8, 119.5 (d, Jc.r = 32.8 Hz), 37.8, 14.5 (d, Jc.r = 1.2
Hz); "F NMR (565 MHz, CDCls) & —75.62; FTIR (neat) 3091, 2923, 2851, 1590,
1464, 1244, 804, 544 cm’'; HRMS (ESI+) [M+H]" calculated for C;sH;3EN;S:

286.0814, found 286.0810.
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5-(4-((2-Fluoropyridin-4-yl)methyl)phenyl)oxazole (2-86). Prepared via General
Procedure A using pyridinium salt 2-94. The crude mixture was purified by silica gel
chromatography (30% ethyl acetate/hexanes) to give 2-86 (run 1: 231 mg, 91%; run 2:
224 mg, 88%) as a pale yellow solid (mp 6871 °C): 'H NMR (400 MHz, CDCl3) &
8.18 — 8.12 (m, 1H), 7.94 (s, 1H), 7.69 — 7.62 (m, 2H), 7.37 (s, 1H), 7.27 (d, J = 8.3
Hz, 2H), 7.06 — 6.99 (m, 1H), 6.79 — 6.73 (m, 1H), 4.05 (s, 2H); °C NMR (101 MHz,
CDCl3) 6 164.2 (d, Je.r= 238.9 Hz), 155.5 (d, Je.r = 7.7 Hz), 151.2, 150.5, 147.7 (d,
Jer =153 Hz), 138.6, 129.7, 126.6, 124.9, 121.9 (d, Jc.r = 4.0 Hz), 121.6, 109.6 (d,
Jer =37.2 Hz), 40.8 (d, Je.r = 3.0 Hz); "’F NMR (376 MHz, CDCl;) § —68.31 ; FTIR
(neat) 3124, 1611, 1410, 941, 819, 640 cm™'; HRMS (ESI+) [M+H]" calculated for
CisH12FN>O: 255.0934, found 255.0930.

/
/

<\S I SO,Me

N
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Me
4-Methyl-5-(4-(4-(methylsulfonyl)benzyl)phenyl)thiazole (2-87). Prepared via
General Procedure A using pyridinium salt 2-95. The crude mixture was purified by
silica gel chromatography (50% ethyl acetate/hexanes) to give 2-87 (run 1: 296 mg,
86%; run 2: 280 mg, 81%) as a pale yellow solid (mp 123-125 °C): '"H NMR (600
MHz, CDCls) 6 8.67 (s, 1H), 7.91 — 7.86 (m, 2H), 7.44 — 7.37 (m, 4H), 7.26 — 7.21 (m,
2H), 4.11 (s, 2H), 3.05 (s, 3H), 2.53 (s, 3H); °C NMR (151 MHz, CDCl;) & 150.2,
148.6, 147.1, 139.2, 138.7, 131.5, 130.5, 129.8, 129.7, 129.3, 127.8, 44.6, 41.5, 16.1;
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FTIR (neat) 2922, 1408, 1304, 1149, 759, 533 cm™'; HRMS (ESI+) [M+H]" calculated
for ClnggNOZSQZ 3440779, found 344.0775.

S
L
CONEt,

N,N-Diethyl-4-(thiazol-2-ylmethyl)benzamide (2-88). Prepared via General
Procedure A using pyridinium salt 2-63. The crude mixture was purified by silica gel
chromatography (50-80% ethyl acetate/hexanes) to give 2-88 (run 1: 264 mg, 96%;
run 2: 259 mg, 94%) as a dark orange oil: "H NMR (400 MHz, CDCls) & 7.71 (d, J =
3.3 Hz, 1H), 7.36 — 7.31 (m, 4H), 7.22 (d, J = 3.3 Hz, 1H), 4.36 (s, 2H), 3.66 — 3.39
(m, br, 2H), 3.39 — 3.09 (m, br, 2H), 1.35 - 1.17 (m, br, 3H), 1.17 — 0.95 (m, br, 3H);
“C NMR (101 MHz, CDCl;) § 171.0, 169.5, 142.6, 138.9, 136.0, 129.0, 126.9, 119.2,
43.3, 39.3 (20), 14.3, 12.9; FTIR (neat) 3077, 2972, 2933, 1627, 1427, 1427, 1288,
1095 c¢m; HRMS (ESI+) [M+H]" calculated for C;sH;oN,OS: 275.1218, found
275.1212.

O
U L
SMe

2-(4-(Methylthio)benzyl)furan (2-89). Prepared via General Procedure A using
pyridinium salt 2-64. The crude mixture was purified by silica gel chromatography
(10-20% toluene/hexanes) to give 2-89 (run 1: 69 mg, 34%; run 2: 70 mg, 34%) as an
orange oil: 'H NMR (600 MHz, CDCls) 8 7.34 — 7.30 (m, 1H), 7.24 — 7.19 (m, 2H),
7.18 = 7.13 (m, 2H), 6.31 — 6.27 (m, 1H), 6.02 — 5.98 (m, 1H), 3.93 (s, 2H), 2.47 (s,
3H); °C NMR (151 MHz, CDCls) & 154.4, 141.5, 136.3, 135.2, 129.2, 127.1, 110.2,
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106.2, 34.0, 16.2; FTIR (neat) 3115, 3021, 2919, 1494, 1009, 799, 732 cm™'; HRMS
(ESI+) [M+H]" calculated for C1,H;30S: 205.0687, found 205.0677.
Reaction of Pyridinium Salt 2-64 without Ethanol

Product 2-89 also prepared via General Procedure A, except that no EtOH was
added to the reaction mixture. The crude mixture was purified by silica gel

chromatography (10-20% toluene/hexanes) to give 2-89 (95 mg, 47%).

2.4.3.2 One-pot Cross-Coupling of Benzylamine with Boronic Acid
2,4,6-triphenylpyrylium(BF,) (1.0 equiv)
p-Tol-B(OH), (3.0 equiv)

AN NH, 5 mol% (phen)Ni(OAc),xH,O N

N K3POy, (3.4 equiv) N Me
EtOH (5.0 equiv), 4A MS
dioxane (0.5 M), 60 °C, 24 h

Product 2-65 was formed via a procedure adapted from General Procedure A,
except that the pyridinium salt was formed in situ. To an oven-dried, 25-mL Schlenk
flask was added PhenNi(OAc),-xH,O (20 mg, 0.050 mmol, 5 mol %), p-tolylboronic
acid (408 mg, 3.0 equiv, 3.0 mmol), K5;PO4 (722 mg, 3.4 mmol, 3.4 equiv), 2,4,6-
triphenylpyrillium tetrafluoroborate (396 mg, 1.0 mmol, 1.0 equiv), and powered,
activated 4A molecular sieves (500 mg, 500 mg/mmol). The flask was fitted with a
rubber septum, sealed with parafilm, and then evacuated and refilled with N, (x 3).
Commercially available 3-(aminomethyl)pyridine (2-90) (sparged; 0.10 mL, 1.0
mmol, 1.0 equiv) was added, followed by dioxane (sparged, anhydrous; 2.0 mL) and
EtOH (sparged, anhydrous; 0.29 mL, 5.0 mmol, 5.0 equiv). The resulting mixture was
stirred at 60 °C for 24 h. The mixture was allowed to cool to room temperature, and

then filtered through a small pad of Celite. The filter cake was washed with CH,Cl, (4
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x 25 mL), and the filtrate was concentrated. The crude mixture was purified by silica

gel chromatography (50% ether/hexanes) to give 2-65 (140 mg, 76%).

2.43.3 Cross-Coupling of Secondary Benzylic Pyridinium Salt with Boronic
Acid
pTolB(OH), (3.0 equiv)
Me Ph 10 mol% Ni(OAc),-4H,0 Me

N ol o 12 mol% 4,4'-ditBuBipy \
DDA KsPO, ( ) 0
3.4 equiv
3 4
Z ph N ph dioxane (0.1 M), 60 °C, 24 h = Ve

2-(1-(p-Tolyl)ethyl)pyridine (2-79). To an oven-dried, 25-mL pear-shaped

flask, was added Ni(OAc),-4H,0 (25 mg, 0.10 mmol, 10 mol %) and 4,4’-di'BuBipy
(32 mg, 0.012 mmol, 12 mol %). The flask was fitted with a rubber septum, sealed
with parafilm, and then evacuated and refilled with N, (x 3). To an oven-dried, 25-mL
Schlenk flask was added pyridinium salt 2-59 (500 mg, 1.0 mmol, 1.0 equiv), p-
tolylboronic acid (408 mg, 3.0 equiv, 3.0 mmol), and K3PO4 (722 mg, 3.4 mmol, 3.4
equiv). The flask was fitted with a rubber septum, sealed with parafilm, and then
evacuated and refilled with N, (x 3). To the pear-shaped flask containing
Ni(OAc),-4H,0 and 4,4’-di'BuBipy was added dioxane (sparged, anhydrous; 2.5 mL).
To the Schlenk flask containing the pyridinium salt, boronic acid, and K;PO4 was
added dioxane (sparged, anhydrous; 2.5 mL). After vigorously stirring of the resulting
mixtures for 1 h at room temperature, the heterogeneous mixture containing the
catalyst was transferred via cannula to the mixture containing the pyridinium salt and
activated boronate complex. The pear-shaped flask was rinsed multiple times with
dioxane (totaling 5 mL; each rinse was transferred via cannula to the reaction mixture)

to bring the total volume of dioxane in the reaction flask to 10 mL (0.1 M). The flask
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was sealed off and resulting mixture was stirred at 60 °C for 24 h. The mixture was
allowed to cool to room temperature, and then filtered through a small pad of Celite.
The filter cake was washed with CH,Cl, (4 x 25 mL), and the filtrate was
concentrated. The cross-coupled product was then purified via silica gel
chromatography (25% ether/hexanes) to give 2-79 (run 1: 92 mg, 47%; run 2: 85 mg,
43%): '"H NMR (600 MHz, CDCl3) & 8.58 — 8.53 (m, 1H), 7.58 — 7.52 (m, 1H), 7.21 —
7.17 (m, 2H), 7.13 = 7.09 (m, 3H), 7.09 — 7.06 (m, 1H), 4.26 (q, J = 7.2 Hz, 1H), 2.31
(s, 3H), 1.69 (d, J = 7.2 Hz, 3H); °C NMR (151 MHz, CDCl;) & 165.3, 149.1, 142.1,
136.3, 135.8, 129.2, 127.5, 122.0, 121.1, 47.0, 21.0, 20.8; FTIR (neat) 3048, 3006,
2968, 2927, 2871, 1588, 1432, 748, 549 cm™'; HRMS (ESI+) [M+H]" calculated for
Ci4H6N: 198.1277, found 198.1272.

2.4.4 Preparation of Pyridinium Salts

2.44.1 General Procedure B: Conversion of Electron-poor (Hetero)Arylamines
to Pyridinium Salts

Ph
©
N
& @l o
Ph” >0 “Ph
(Het Ar” > NH, > (Hetar” "N BF,
EtOH, reflux, 5 h | P
Ph Ph

The following reaction was run open to air without oven-dried flasks. To a 25-
mL, round-bottomed flask was added 2,4,6-triphenylpyrillium tetrafluoroborate (1.98
g, 5.0 mmol, 1.0 equiv) followed by EtOH (5 mL). Amine (6.0 mmol, 1.2 equiv) was
added to the resulting suspension. The flask was fitted with a reflux condenser and

heated in an oil bath at 80—85 °C for 5 h. The mixture was then allowed to cool to
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room temperature. If product precipitation occurred during reflux or upon cooling, the
solid was filtered, washed with EtOH (3 x 25 mL) and then Et,0 (3 x 25 mL), and
dried under vacuum. If product precipitation did not occur, the solution was diluted
with Et,O (15 mL) and vigorously stirred for 1 h to induce precipitation. The resulting
solid pyridinium salt was filtered and washed with Et,O (3 x 25 mL). If the pyridinium
salt failed to precipitate at this point, the flask containing the reaction mixture and
Et,O was sealed with parafilm and stored in a —27 °C freezer for 1-3 days (or until
precipitation occurred). The cold mixture was quickly filtered and washed with Et,O
(3 x 25 mL) to give the corresponding analytically pure pyridinium salt. If the salt still

did not precipitate, it was subjected to silica gel chromatography with acetone/CH,Cl,.

Ph
®) ©

o
|

N Ph > pn

2,4,6-Triphenyl-1-(pyridin-3-ylmethyl)pyridin-1-ium tetrafluoroborate (2-47).
Prepared via General Procedure B on a 10 mmol scale with commercially available 3-
(aminomethyl)pyridine to give 2-47 (4.37 g, 90%) as a white solid (mp 174-176 °C):
'H NMR (600 MHz, CDCl3) § 8.42 — 8.37 (m, 1H), 7.97 (s, 2H), 7.83 — 7.78 (m, 2H),
7.75 - 7.71 (m, 1H), 7.70 — 7.66 (m, 4H), 7.63 — 7.58 (m, 1H), 7.57 — 7.48 (m, 8H),
7.07 —7.01 (m, 1H), 6.88 — 6.82 (m, 1H), 5.84 (s, 2H); °C NMR (151 MHz, CDCl;) &
157.5, 156.9, 149.6, 147.4, 134.5, 133.7, 132.6, 132.5, 131.3, 130.0, 129.9, 129.5,
129.1, 128.2, 126.8, 123.6, 56.0; ’F NMR (376 MHz, CDCl3) & —152.63 (minor,
"'BF,), —152.68 (major, '’BF4); FTIR (neat) 3063, 1622, 1599, 1057, 703 cm™'; HRMS
(ESI+) [M-BF,]" calculated for Co9H23N,: 399.1856, found 399.1855.
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2,4,6-Triphenyl-1-(pyridin-2-ylmethyl)pyridin-1-ium tetrafluoroborate (2-48).
Prepared via General Procedure B on a 5.0 mmol scale with commercially available 2-
(aminomethyl)pyridine to give 2-48 (2.28 g, 94%) as a white solid (mp 170-173 °C):
'H NMR (600 MHz, CDCl;) & 8.46 — 8.42 (m, 1H), 7.94 (s, 2H), 7.85 — 7.80 (m, 2H),
7.66 — 7.52 (m, 7TH), 7.49 — 7.42 (m, 2H), 7.42 — 7.34 (m, 5H), 7.16 — 7.11 (m, 1H),
6.52 (d, J = 7.8 Hz, 1H), 5.78 (s, 2H); °C NMR (151 MHz, CDCl;) & 157.5, 155.9,
153.3, 149.2, 136.7, 134.1, 133.0, 132.1, 130.7, 129.7, 128.88, 128.85, 128.1, 126.1,
123.0, 121.8, 59.0; 'F NMR (565 MHz, CDCl3) & —153.30 (minor, ''BF,), —153.35
(major, '’BFy4); FTIR (neat) 3061, 1622, 1598, 1056, 764, 701 c¢cm™'; HRMS (ESI+)
[M—BF,]" calculated for C290H23N,: 399.1856, found 399.1859.

Ph
ol o

I X N~y BF,
|

N o ph

2,4,6-Triphenyl-1-(pyridin-4-ylmethyl)pyridin-1-ium tetrafluoroborate (2-49).
Prepared via General Procedure B on a 5.0 mmol scale with commercially available 4-
(aminomethyl)pyridine to give 2-49 (1.70 g, 70%) as an orange solid (mp 168—172
°C): '"H NMR (600 MHz, CDCls) & 8.40 — 8.36 (m, 2H), 8.00 (s, 2H), 7.85 — 7.80 (m,
2H), 7.67 — 7.59 (m, 5H), 7.58 — 7.50 (m, 4H), 7.50 — 7.44 (m, 4H), 6.52 — 6.47 (m,
2H), 5.79 (s, 2H); >C NMR (151 MHz, CDCls) & 157.6, 157.0, 150.2, 143.0, 133.6,
132.7, 132.3, 131.3, 129.9, 129.4, 129.0, 128.2, 126.7, 120.9, 57.0; °F NMR (565
MHz, CDCl;) & —152.85 (minor, ''BF,), —152.90 (major, '°BF,); FTIR (neat) 3061,
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1622, 1560, 1055, 702 cm’'; HRMS (ESI+) [M-BF.]" calculated for CyoHy3Ny:
399.1856, found 399.1860.

Ph
ol o
l
SN Ph-" 7 > ph

2,4,6-Triphenyl-1-(quinolin-6-ylmethyl)pyridin-1-ium tetrafluoroborate (2-50).
Prepared via General Procedure B on a 5.0 mmol scale with commercially available 6-
aminomethylquinoline to give 2-50 (2.32 g, 87%) as a white solid (mp 207-210 °C):
'H NMR (400 MHz, CDCl;) & 8.90 — 8.84 (m, 1H), 8.04 — 7.93 (m, 3H), 7.87 — 7.77
(m, 3H), 7.69 — 7.62 (m, 4H), 7.60 — 7.46 (m, 5H), 7.44 — 7.33 (m, 5H), 6.99 — 6.94
(m, 1H), 6.86 — 6.78 (m, 1H), 5.95 (s, 2H); °C NMR (101 MHz, CDCl3) & 157.5,
156.7, 151.3, 147.4, 136.2, 133.7, 132.7, 132.5, 132.0, 131.1, 130.3, 129.8, 129.3,
129.1, 128.2, 127.8, 126.8, 126.7, 126.3, 122.1, 58.1; '’F NMR (376 MHz, CDCl3) & —
152.50 (minor, ''BF,), —152.55 (major, '’BFy); FTIR (neat) 3062, 1622, 1564, 1057,
702 cm’'; HRMS (ESI+) [M-BF4]" calculated for Ci3HysNy: 449.2012, found

449.2018.
Ph
N ® L9
z Z>ph

Ph
2,4,6-Triphenyl-1-(pyrimidin-2-ylmethyl)pyridin-1-ium tetrafluoroborate (2-51).
Prepared via General Procedure B on a 5.0 mmol scale with commercially available 2-
aminomethylpyrimidine hydrochloride to give 2-51 (2.06 g, 85%) as an orange solid
(mp 110-118 °C): 'H NMR (600 MHz, CDCl;) & 8.52 (d, J = 4.9 Hz, 2H), 7.95 (s,
2H), 7.84 — 7.79 (m, 2H), 7.70 — 7.50 (m, 6H), 7.48 — 7.31 (m, 7H), 7.22 (t, J = 4.9
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Hz, 1H), 5.79 (s, 2H); C NMR (151 MHz, CDCL) & 157.4, 157.3, 156.5, 134.1,
132.7, 132.2, 130.9, 129.7, 129.0, 128.7, 128.2, 126.3, 120.3, 120.2, 59.5; ’F NMR
(565 MHz, CDCl3) & —153.43 (minor, ''BF,), —153.48 (major, '°BF,); FTIR (neat)
3061, 1622, 1599, 1055, 702 cm™'; HRMS (ESI+) [M=BF,]" calculated for CagHxoNj:

Ph
N ® ©
[ \]/\N X BF,
|
N~ Ph™ > “ph

2,4,6-Triphenyl-1-(pyrazin-2-ylmethyl)pyridin-1-ium tetrafluoroborate (2-52).

400.1808, found 400.1812.

Prepared via General Procedure B on a 5.0 mmol scale with commercially available 2-
aminomethylpyrazine. The crude residue was purified via silica gel chromatography
(10% acetone/dichloromethane) to give 2-52 (1.93 g, 79%) as an orange solid (mp 95—
99 °C): '"H NMR (600 MHz, CDCl;) & 8.44 — 8.40 (m, 2H), 7.97 (s, 2H), 7.86 — 7.81
(m, 2H), 7.76 — 7.72 (m, 1H), 7.65 — 7.53 (m, 7H), 7.53 — 7.47 (m, 2H), 7.47 — 7.41
(m, 4H), 5.87 (s, 2H); °C NMR (151 MHz, CDCls) & 157.5, 156.4, 149.4, 144.1,
143.7, 143.5, 133.9, 132.7, 132.4, 131.2, 129.8, 129.1, 128.8, 128.1, 126.1, 56.8; '°F
NMR (565 MHz, CDCl3) & —152.94 (minor, ''BF,), —152.99 (major, '’BFs4); FTIR
(neat) 3063, 1624, 1569, 1418, 1057, 702 cm™; HRMS (ESI+) [M—-BF,4]" calculated
for CysH2,N3: 400.1808, found 400.1811.
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2.44.2 General Procedure C: Conversion of Electron-rich (Hetero)Arylamines
to Pyridinium Salts
Ph

©
X
Ph” ~O~ “Ph @ S
(Het)Ar)\NHZ - (Het)Ar)\/,\Ej\BF4
EtsN, AcOH, 4A MS
s Ph” 7 ph

CH,yCly, 1, 5 h

To a 50-mL round-bottomed flask was added 2,4,6-triphenylpyrillium
tetrafluoroborate (1.98 g, 5.0 mmol, 1.0 equiv), amine (5.0 mmol, 1.0 equiv), and
powered, activated 4A molecular sieves (2.5 g, 0.5 g/mmol). The flask was fitted with
a rubber septum. To the flask was added CH,Cl, (anhydrous; 10 mL) followed by
Et;N (0.70 mL, 5.0 mmol, 1.0 equiv). The reaction mixture was stirred for 20 min at
room temperature. To the flask was added AcOH (0.57 mL, 10.0 mmol, 2.0 equiv),
and the resultant mixture was stirred for 5 h at room temperature. The mixture was
filtered through a small pad of Celite, and the filter cake was washed with CH,Cl, (4 x
15 mL). The resulting solution was washed with water (2 x 30 mL) and brine (1 x 30
mL) The organic extract was dried (MgSQOs), filtered, and concentrated. The residue
was suspended in Et,O (25 mL) and vigorously stirred for 1 h to induce precipitation.
The resulting solid pyridinium salt was filtered and washed with Et,O (3 x 25 mL). If
the solid contained impurities, it was subjected to silica gel chromatography with

acetone/CH,Cl,.

Me Ph
N ® L9
| N N™ BF4
|
Z ph” F > ph

2,4,6-Triphenyl-1-(1-(pyridin-2-yl)ethyl)pyridin-1-ium tetrafluoroborate (2-59).

Prepared via General Procedure C on a 5.0 mmol scale with commercially available 1-
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(pyridin-2-yl)ethan-1-amine to give 2-59 (2.31 g, 93%) as an orange solid (mp 119—
123 °C): '"H NMR (600 MHz, CDCl;) § 8.57 — 8.52 (m, 1H), 7.91 — 7.84 (m, 4H), 7.83
— 7.78 (m, 2H), 7.56 — 7.40 (m, 9H), 7.29 — 7.15 (m, 4H), 6.69 (d, J = 8.0 Hz, 1H),
6.22 (q, J = 7.2 Hz, 1H), 1.85 (d, J = 7.2 Hz, 3H); °C NMR (151 MHz, CDCl;) &
157.3, 157.2, 155.7, 149.3, 137.2, 134.2, 133.6, 131.9, 130.5, 129.6, 128.7, 128.5,
128.3, 127.9, 123.3, 120.5, 66.8, 18.4; "’F NMR (565 MHz, CDCls) 8 —153.26 (minor,
"BF,), —153.31 (major, '°BF,); FTIR (neat) 3061, 1621, 1564, 1055, 762, 699 cm";
HRMS (ESI+) [M-BF,]" calculated for C30H,sNy: 413.2012, found 413.2019.

Ph

[eh ok
N\//; N Ph o Ph
1-(4-(1H-Imidazol-1-yl)benzyl)-2,4,6-triphenylpyridin-1-ium  tetrafluoroborate
(2-93). Prepared via General Procedure C on a 6.7 mmol scale with (4-(1H-imidazol-
1-yl)phenyl)methanamine.” The crude residue was purified via silica gel
chromatography (30% acetone/CH,Cl,) to give 2-93 (1.69 g, 55%) as a yellow solid
(mp 109-114 °C): "H NMR (600 MHz, CDCl3) & 8.01 (s, 2H), 7.89 — 7.83 (m, 2H),
7.82 — 7.78 (m, 1H), 7.73 — 7.66 (m, 4H), 7.65 — 7.50 (m, 9H), 7.24 — 7.15 (m, 4H),
6.68 — 6.62 (m, 2H), 5.87 (s, 2H); ?C NMR (151 MHz, CDCl;) & 157.5, 156.7, 137.1,
135.2, 133.7, 133.2, 132.7, 132.6, 131.2, 130.8, 129.9, 129.4, 129.1, 128.2, 128.1,
126.8, 121.3, 117.8, 57.6; ’F NMR (565 MHz, CDCl3) § —152.40 (minor, ''BFj), —
152.45 (major, '’BF4); FTIR (neat) 3062, 1621, 1524, 1058, 701 cm™'; HRMS (ESI+)
[M—BF,]" calculated for C33Ha6N3: 464.2121, found 464.2118.
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1-(4-(1H-Pyrazol-1-yl)benzyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (2-
54). Prepared via General Procedure C on a 4.8 mmol scale with [4-(1H-pyrazol-1-
yl)phenyl]methylamine.”> The crude residue was purified via silica gel
chromatography (10% acetone/CH,Cl,) to give 2-54 (1.87 g, 71%) as a yellow solid
(mp 111-115 °C): "H NMR (600 MHz, CDCl3) & 7.97 (s, 2H), 7.86 — 7.84 (m, 1H),
7.84 — 7.80 (m, 2H), 7.70 — 7.64 (m, 5H), 7.60 — 7.46 (m, 11H), 6.57 (d, J = 8.3 Hz,
2H), 6.48 — 6.41 (m, 1H), 5.80 (s, 2H); °C NMR (151 MHz, CDCls) & 157.6, 156.6,
141.4, 139.9, 133.8, 132.7, 132.5, 132.0, 131.1, 129.8, 129.3, 129.1, 128.2, 127.5,
126.7, 126.7, 119.1, 108.1, 57.7; "F NMR (565 MHz, CDCls) & —152.83 (minor,
'BF,), —152.89 (major, '°BF,); FTIR (neat) 3061, 1621, 1526, 1395, 1057, 701 cm";
HRMS (ESI+) [M-BF,]" calculated for C33HasN3: 464.2121, found 464.2125.

A i\
ol o
|
Ph-" " ph

1-(3-(1H-Pyrazol-1-yl)benzyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (2-
60). Prepared via General Procedure C on a 5.0 mmol scale with commercially
available [3-(1H-pyrazol-1-yl)phenyllmethylamine. The crude residue was purified
via silica gel chromatography (10% acetone/CH,Cl,) to give 2-60 (1.80 g, 65%) as a
tan solid (mp 109—114 °C): '"H NMR (600 MHz, CDCl;) & 7.96 (s, 2H), 7.83 — 7.78
(m, 2H), 7.77 — 7.73 (m, 1H), 7.71 — 7.62 (m, 5H), 7.60 — 7.44 (m, 10H), 7.19 (t, J =
7.9 Hz, 1H), 6.92 — 6.88 (m, 1H), 6.45 — 6.41 (m, 1H), 6.39 (d, J = 7.7 Hz, 1H), 5.82
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(s, 2H); *C NMR (151 MHz, CDCL) & 157.6, 156.5, 141.4, 140.4, 135.5, 133.7,
132.7, 132.5, 131.1, 130.0, 129.8, 129.3, 129.1, 128.2, 126.7, 126.6, 124.0, 118.5,
117.0, 108.1, 57.9; F NMR (565 MHz, CDCl3) & —152.75 (minor, ''BF,), —152.80
(major, '°BF,); FTIR (neat) 3064, 1621, 1057, 765, 701 c¢cm'; HRMS (ESI+) [M—
BF,]" calculated for C33HasNi3: 464.2121, found 464.2129.

m

N Ph
ol o
N~y BF,
|
Ph~ > ph

1-(2-(1H-Pyrrol-1-yl)benzyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (2-
61). Prepared via General Procedure C on a 5.0 mmol scale with commercially
available [2-(1H-pyrrol-1-yl)phenyl]methylamine to give 2-61 (2.16 g 78%) as a tan
solid (mp 183-188 °C): 'H NMR (600 MHz, CDCl;) & 7.86 (s, 2H), 7.82 — 7.77 (m,
2H), 7.60 — 7.55 (m, 5H), 7.54 — 7.50 (m, 4H), 7.47 — 7.41 (m, 4H), 7.30 — 7.24 (m,
2H, overlaps with CHCI;3), 6.99 — 6.95 (m, 1H), 6.79 — 6.74 (m, 1H), 6.14 (t, J = 2.1
Hz, 2H), 5.97 (t, J = 2.1 Hz, 2H), 5.64 (s, 2H); °C NMR (101 MHz, (CD3),CO) &
157.6, 156.3, 138.9, 133.7, 133.0, 132.6, 131.1, 130.2, 129.7, 129.3, 129.11, 129.09,
128.7, 128.2, 128.1, 127.0, 126.7, 121.8, 109.5, 55.8; '’F NMR (565 MHz, CDCl3) & —
153.04 (minor, ''BF,), —153.09 (major, '’BFy); FTIR (neat) 3063, 1620, 1503, 1056,
701 cm™; HRMS (ESI+) [M-BF4]" calculated for CssHy/N,: 463.2169, found
463.2176.
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1-(4-(1,2,3-Thiadiazol-5-yl)benzyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate (2-62). Prepared via General Procedure C on a 4.4 mmol scale with
commercially available 4-(1,2,3-thiadiazol-5-yl)benzylamine to give 2-62 (2.53 g,
quant.) as a yellow solid (mp 119-122 °C): '"H NMR (600 MHz, CDCl;) & 8.68 (s,
1H), 7.98 (s, 2H), 7.85 — 7.80 (m, 4H), 7.74 — 7.70 (m, 3H), 7.63 — 7.42 (m, 10H),
6.63 (d, J = 8.1 Hz, 2H), 5.86 (s, 2H); °C NMR (151 MHz, CDCl;) & 161.6, 157.6,
156.6, 135.1, 133.7, 132.7, 132.5, 131.1, 130.89, 130.85, 129.8, 129.3, 129.1, 128.2,
127.7, 127.0, 126.7, 58.1; ’F NMR (565 MHz, CDCls) § —152.81 (minor, ''BFj), —
152.86 (major, '’BF4); FTIR (neat) 3062, 1621, 1560, 1057, 701 cm™'; HRMS (ESI+)
[M—BF,]" calculated for C3,H4N3S: 482.1685, found 482.1693.

Ph

ol o
N~y BF,
|

<O Ph-" " ph

W,

N

1-(4-(Oxazol-5-yl)benzyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (2-94).
Prepared via General Procedure C on a 2.8 mmol scale with [4-(1,3-oxazol-5-
yl)phenyl]methanamine.® The crude residue was purified via silica gel
chromatography (10% acetone/CH,Cl,) to give 2-94 (0.680 g, 44%) as a yellow solid
(mp 118-123 °C): 'H NMR (600 MHz, CDCl3) & 7.98 (s, 2H), 7.89 (s, 1H), 7.86 —
7.82 (m, 2H), 7.69 — 7.66 (m, 3H), 7.63 — 7.45 (m, 10H), 7.42 — 7.38 (m, 2H), 7.31 (s,
1H), 6.58 — 6.54 (m, 2H), 5.81 (s, 2H); °C NMR (151 MHz, CDCL) & 157.6, 156.6,
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150.7, 150.4, 134.5, 133.8, 132.7, 132.5, 131.1, 129.8, 129.3, 129.1, 128.2, 127.7,
126.9, 126.7, 124.6, 122.3, 57.9; "F NMR (565 MHz, CDCl;) & —153.01 (minor,
'BF,), —153.07 (major, '’BF4); FTIR (neat) 3063, 1622, 1559, 1056, 701 cm™'; HRMS
(ESI+) [M—-BF,]" calculated for C33HasN,O: 465.1961, found 465.1963.

Ph

ol o
N™ X BF4
|
<S Ph-" " ph
W,

NMe

1-(4-(4-Methylthiazol-5-yl)benzyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate
(2-95). Prepared via General Procedure C on a 1.8 mmol scale with [4-(4-methyl-1,3-
thiazol-5-yl)phenyl]methanamine.”” The crude residue was purified via silica gel
chromatography (10% acetone/CH,Cl,) to give 2-95 (0.482 g, 46%) as a yellow solid
(mp 89108 °C): 'H NMR (600 MHz, CDCl;) & 8.66 (s, 1H), 7.94 (s, 2H), 7.82 — 7.78
(m, 2H), 7.69 — 7.66 (m, 3H), 7.59 — 7.45 (m, 10H), 7.19 — 7.14 (m, 2H), 6.56 — 6.52
(m, 2H), 5.82 (s, 2H), 2.44 (s, 3H); >C NMR (151 MHz, (CD3),CO) & 158.2, 156.9,
151.5, 149.5, 134.7, 134.4, 133.9, 133.2, 132.60, 132.58, 131.7, 130.4, 130.0, 129.9,
129.8, 129.3, 127.7, 127.4, 58.9, 16.0; "’F NMR (565 MHz, CDCls) 8 —152.84 (minor,
"'BF,), —152.89 (major, '’BF4); FTIR (neat) 3062, 1621, 1560, 1057, 701 cm™'; HRMS
(ESI+) [M-BF,]" calculated for C34H,7N,S: 495.1889, found 495.1890.

Ph
©
s ®
X
N Pz
Ph Ph

2,4,6-Triphenyl-1-(thiazol-2-ylmethyl)pyridin-1-ium tetrafluoroborate (2-63).

Prepared via General Procedure C on a 5.0 mmol scale with commercially available 2-
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(aminomethyl)thiazole to give 2-63 (2.12 g, 86%) as a tan solid (mp 209-215 °C): 'H
NMR (600 MHz, CDCl3) & 7.95 (s, 2H), 7.84 — 7.79 (m, 2H), 7.71 — 7.64 (m, 4H),
7.61 — 7.42 (m, 10H), 7.23 (d, J = 3.2 Hz, 1H), 5.93 (s, 2H); °C NMR (101 MHz,
CDCls) & 162.1, 157.3, 156.4, 142.4, 133.9, 132.6, 132.4, 131.0, 129.8, 129.0, 128.9,
128.2, 126.2, 121.2, 55.5; ’F NMR (565 MHz, CDCl3) § —153.23 (minor, ''BF;), —
153.29 (major, '°BE,); FTIR (neat) 3060, 1621, 1055, 767, 701 cm™'; HRMS (ESI+)
[M—BF,]" calculated for C,7H2,N,S: 405.1420, found 405.1423.

Ph

ol o

O NTXy BF,
N

Ph Ph

1-(Furan-2-ylmethyl)-2,4,6-triphenylpyridin-1-ium  tetrafluoroborate (2-64).
Prepared via General Procedure C on a 5.0 mmol scale with commercially available 2-
aminomethylfuran to give 2-64 (1.05 g, 44%) as a tan solid (mp 109-111 °C,
decomp): "H NMR (600 MHz, CDCls) & 7.91 (s, 2H), 7.81 — 7.77 (m, 2H), 7.75 — 7.70
(m, 4H), 7.59 — 7.51 (m, 9H), 7.23 (s, 1H), 6.11 — 6.07 (m, 1H), 5.71 (s, 2H), 5.37 —
5.33 (m, 1H); °C NMR (151 MHz, CDCL;)  157.4, 156.3, 145.7, 143.1, 133.8, 132.7,
132.3, 131.0, 129.8, 129.2, 129.1, 128.1, 126.5, 110.9, 110.2, 51.9; °F NMR (565
MHz, CDCl;) & —152.98 (minor, ''BF,), —153.03 (major, '°BF,); FTIR (neat) 3063,
1621, 1056, 736, 701 cm; HRMS (ESI+) [M-BF.]" calculated for C,sH»nNO:
388.1696, found 388.1682.
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2.4.5 Mechanistic Experiment

2.4.5.1 Radical Trap Experiment
Ph pTolB(OH), (3.0 equiv) Me
N ® e) 7(1 5 mol% PhenNi(OAc),xH,O Me
X N~ BF, + Me Me N N
| P W Me Me  KgPO, (3.4 equiv), EOH (5.0 equiv) I~ " O
Ph Ph 0] dioxane (0.5 M), 60 °C, 5 h P> Me Me

-Z

In a N»-filled glovebox, PhenNi(OAc),-xH,0O (2.0 mg, 0.005 mmol, 5 mol %),
2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO; 31 mg, 0.20 mmol, 2.0 equiv),
pyridinium salt 2-48 (49 mg, 0.1 mmol, 1.0 equiv), p-tolylboronic acid (41 mg, 0.3
mmol, 3.0 equiv), and K3;PO4 (722 mg, 3.4 mmol, 3.4 equiv) were added to an oven-
dried 1-dram vial. Dioxane (200 plL) was added to the vial. The vial was then
equipped with a stir bar, capped with a pierceable Teflon-coated cap, and removed
from the glovebox. To the vial was added EtOH (29 pL) via a Np-purged syringe. The
resulting mixture was stirred vigorously at 60 °C for 5 h. The mixture was then diluted
with EtOAc (1.5 mL) and filtered through a short plug of silica gel. The filter cake
was washed with EtOAc (10 mL), and the filtrate was concentrated. 1,3,5-
Trimethoxybenzene (internal standard) and CDCl; were added. The yield of known
TEMPO adduct 2-92°° was determined to be 32% by analysis of the 'H-NMR

spectrum of the crude reaction mixture. No cross-coupled product was observed.
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Chapter 3

SUZUKI-MIYAURA CROSS-COUPLING OF BENZYLIC PYRIDINIUM
SALTS WITH VINYLBORONIC ACIDS

Work described here has already been published (Guan, W.; Liao, J.; Watson, M. P.
Synthesis, 2018, 50 (16), 3231-3237). It is reprinted in this chapter with permission of
Synthesis (Copyright © 2018, Georg Thieme Verlag KG). Weiye Guan and I are co-

first authors.

3.1 Introduction

1,3-Disubstituted allylic molecules have proven to be versatile intermediates in
the synthesis of complex organic molecules."* They can be elaborated via the
functionalization of the alkene or reactive benzylic position (Scheme 3.1). Excitingly,
these molecules can participate in a number of oxidation and reduction reactions as
well as addition reactions. Moreover, 1,3-diaryl allylic molecules themselves can
possess promising biological activity.”® Building on our success in cross-coupling
benzylic pyridinium salts, we believed that an analogous approach would open a new

avenue for the synthesis of these valuable molecules.
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Scheme 3.1  Synthetic versatility of 1,3-disubstituted allylic molecules
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The importance of this motif has encouraged the development of efficient

methods to access these targets (3-9), with transition metal-catalyzed cross-couplings

being a predominant approach. A common strategy employs the cross-coupling of an

allylic electrophile with an aryl nucleophile (Scheme 3.2, left). However, controlling

regioselectivity and stereoselectivity of the alkene geometry can be challenging. An

alternative disconnection relies on the cross-coupling of a benzylic electrophile with a

vinyl nucleophile (Scheme 3.2, right). This approach mitigates many of the

problematic isomerization issues.

Scheme 3.2  Strategies for the synthesis of 1,3-diaryl allylic compounds

FRS
Ar1/\+/\X a LBF b X .\ Ar?
- 1/\/\/\//\ > >
Ar’—M Ar a0 /Ar Ar1/\/M
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The former approach leverages the wide availability of allylic electrophiles

5 16, 17

(Scheme 3.3). Towards this end, allylic alcohols’"®, carbonates, phosphates,'®

ethers,'” and esters’*> have been utilized as electrophiles in this type of chemistry.

2 have also been

Additionally, allylic halides®**® and amine derivatives>”
demonstrated to be competent electrophiles. The ability to be cross-coupled with
various organometallic aryl nucleophiles (e.g., Ar—BX,, Ar-MgX) allows for rapid

diversifications of these precursors. However, many of these reactions proceed via a -

allyl intermediate, which can lead to the formation of undesired regioisomers.

Scheme 3.3 Cross-couplings of allylic electrophiles

Ar/\/\OR Ar/\/\X Ar/\/\NRZ
3-10 3-11 3-12
alcohols, carbonates, halides amines
phosphates, ethers,
esters

The latter approach utilizes benzylic electrophiles in conjunction with a vinyl
nucleophile (Scheme 3.4). Benzylic alcohol derivatives (carbonates, carboxylates,
esters)”” * and halides’' ™ are frequently employed. In addition, the umpolung

6-38 as well

approach of cross-coupling a benzylic nucleophile with a vinyl electrophile’
as reductive cross-electrophile couplings of benzylic and vinyl halides®®** have also
been reported. In contrast, examples of cross-couplings of benzylic amine derivatives
with vinyl nucleophiles are much more limited. In one of these examples, our group
has shown that benzylic trimethylammonium salts (3-16) can participate in Suzuki—

. . . . . . 43-46
Miyaura cross-couplings with vinylboronic acids.
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Scheme 3.4  Cross-couplings of benzylic substrates

Ar” O OR Ar” X Ar” M Ar” > NMezOTf
3-13 3-14 3-15 3-16
carbonates, halides organometallics ammonium salts
carboxylates, esters M = MgX, ZnX

While these methods are highly efficient in the formation of 1,3-disubstituted
allylic products, heteroaryl substitution is largely neglected. Given the importance of
heteroaromatics in bioactive molecules as well as the abundance of benzylic amines,
we envisioned that the cross-coupling of benzylic pyridinium salt 3-19 with vinyl
boronic acids would afford vinylated product 3-20 bearing a useful alkene handle
(Scheme 3.5). More importantly, this would allow for the incorporation of heteroaryl

fragments from readily available benzylic amine precursors 3-17.

Scheme 3.5  Proposed vinylation of benzylic pyridinium salts

Ph
S
| X, BF4
©)
Ph” 0" “Ph Ph
3-18 ® ©) Ni catalyst
(heAr” NH, - > (Hevar” N7 BF, e L (het)ArM\R
single step |
selective for NH, Ph” N “ph
3-17 3-19 3-20

3.2 Results and Discussion

Given our success with nickel-catalyzed Suzuki—Miyaura arylation of benzylic
pyridinium salts (Chapter 2), we wanted to extend these conditions to incorporate
other nucleophiles such as vinylboronic acids. Gratifyingly, the desired vinylated
product 3-22 was produced in 76% yield under the previously optimized conditions

(Table 3.1, entry 1). Surprisingly, in the absence of nickel catalyst, the formation of 3-
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22 was also observed, albeit in slightly diminished yield (entry 2). Moreover, in an
effort to improve the utility of this reaction, we found that only two equivalents of
boronic acid were needed (entry 3). In this case, omission of nickel catalyst led to a
greatly reduced yield (entry 4). The pinacol boronic ester could also be used, requiring
only 2.5 equivalents of base (entry 5). The ability to cross-couple either a boronic acid
or a boronic ester broadens the pool of commercially available reagents that can be

used.

Table 3.1 Reaction optimization of the Suzuki—-Miyaura cross-coupling of
benzylic pyridinium salts with vinylboronic acids®
Ph =~
Ph \/\B(OH)z (3.0 equiv)
® o 5 mol % PhenNi(OAc),xH,0 N “pn
X Ny BF, >
| W KsPO, (3.4 equiv), EtOH (5.0 equiv) NT
Ph

N Ph dioxane (0.5 M), 60 °C, 24 h

3-21 3-22
Entry Modification from original conditions Yield (%)b
1 none 76
2 no PhenNi(OAc), xH,0O 62
3 boronic acid (2 equiv) 74
4 no PhenNi(OAc),-xH,O, boronic acid (2 equiv) 46
5 boronic acid pinacol ester (2.0 equiv), K5PO4 (2.5 equiv) 74

*Conditions: pyridinium salt 3-22 (0.10 mmol), PhenNi(OAc),'xH,O (5 mol %),
boronic acid (3.0 equiv), KsPO4 (3.4 equiv), EtOH (5 equiv), dioxane (0.5 M), 60
°C, 24 h. "Determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as

internal standard.
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We were intrigued by the transition-metal-free results and wanted to probe this
possibility further. In using only two equivalents of boronic acid, the nickel-catalyzed
reaction, produced vinylated product 3-22 in 74% yield, while the metal-free reaction
gave only 46% yield (Table 3.1, entries 3 & 4). Similarly, the metal-free conditions
proved less effective for other substrates (Scheme 3.6). Phenyl-substituted product 3-
25 and imidazole 3-26 were formed in only 23% and 33% yield, respectively, under
these conditions. In all cases, a considerable drop in yield was observed when
switching to the metal-free conditions. These results demonstrate that a metal-free
reaction is feasible but not as efficient as the nickel-catalyzed pathway. There are a

74 We believe that a similar pathway is

few reports of metal-free vinylation reactions.
operational in our case, whereby nucleophilic attack (likely Sn2) of a vinyl boronate to
the benzylic pyridinium ion leads to the formation of desired product. However, in the
presence of the nickel catalyst, a Ni"™ (or Ni”™) catalytic cycle may also be at play.
We are also cognizant of the possibility that nickel may act as a Lewis acid. Because
higher yields are observed with all three substrates, we proceeded to investigate the
scope of the reaction in the presence of the nickel catalyst. Notably, these conditions
are also the less expensive choice. For a 1.0-mmol scale reaction, the cost of 5 mol %
Ni(OAc);4H,0 and 5 mol % Phen (approximately $0.20 from Sigma-Aldrich) is less

than an extra equivalent of phenylvinylboronic acid (approximately $2.00) or pinacol

ester (approximately $10.40).

123



Scheme 3.6 Comparison of reactions with and without the nickel catalyst”

Ph Ph\/\B(OH)z (3.0 equiv)
PR o 0 or 5 mol % PhenNi(OAc),-xH,O
Ar N X BF, > Ar/\/\Ph
| P K3POy, (3.4 equiv), EtOH (5.0 equiv)
Ph 3.23 Ph dioxane (0.5 M), 60 °C, 24 h 3.04

=
Ph
= Ph /@/\/\
N7 N
3-25 =/ 3-26

with [Ni]: 59% with [Ni]: 53%
without [Ni]: 23% without [Ni]: 33%

*Conditions: Salt 3-23 (0.1 mmol), PhenNi(OAc), xH,O (0 or 5 mol %), boronic acid
(2.0 equiv), KsPOy4 (3.4 equiv), EtOH (5 equiv), dioxane (0.5 M), 60 °C, 24 h. Yields

determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

With optimized conditions in hand, my colleague Weiye Guan and I
demonstrated the broad scope of this transformation. In particular, we prioritized
substrates with heteroaryl substituents. We were delighted to find that a variety of
benzylic pyridinium salts cross-coupled effectively (Scheme 3.7). Model product 3-22
was obtained in 80% and 70% yield using the corresponding vinylboronic acid or
pinacol boronic ester, respectively. Throughout our scope studies, we used either the
boronic acid or ester, depending on which was commercially available. If both were
available, the less expensive reagent was used. Electron-poor benzylic coupling
partners such as 2-, 3-, and 4-pyridine (3-22, 3-26, 3-27, 4-28), quinoline (3-29), and
pyrimidine (3-30) were well tolerated. Substrates containing electron-rich heterocycles
such as imidazole (3-31), oxazole (3-32), pyrazole (3-33), thiadiazole (3-34), pyrrole

(3-35), and thiazole (3-46) also cross-coupled effectively. Notably, no isomerization of
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the alkene double bond was observed except in the case of pyrimidine 3-34, which

gave a 1.3:1 ratio of alkene isomers.

Scheme 3.7  Reaction scope of vinylation reaction”

RH/A B(OH),

Ph R2 (2.0 equiv)
® © 5 mol % PhenNi(OAc),'xH,O A
A" N BF, .~ AR
P KsPO,, EtOH R2
Ph Ph dioxane (0.5 M), 60 °C, 24 h 3.25
3-23
X
| N/ N =
3-22, B(OH),: 80% 3-26, 72%" 3-27, 51% 3-28, 61%?”
BPin: 70%"
= N e
E&N
3-29, 72% OMe 3-30, 81% CFs

Ilwl
/\
N7

= 331, 63%

3-33, 87% N 52%P
I\
N
S 7 Me
= &MM@
0, S
3-35, 75%° Cl 3-36, 50%

*Conditions: pyridinium salt 3-23 (1.0 mmol), PhenNi(OAc),"xH,O (5 mol %),
boronic acid (2.0 equiv), KsPO4 (3.4 equiv), EtOH (5.0 equiv), dioxane (0.5 M), 60
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°C, 24 h, unless noted otherwise. Isolated yields. ®Pinacol boronate ester (2.0 equiv),
K5PO4 (2.5 equiv). ‘Alkene isomers readily separated via silica gel chromatography

and isolated in 45% and 36% yield.

A wide range of vinyl groups can also be installed via this method. Both
electron-rich (3-29) and electron-poor (3-30) phenyl substitution is well tolerated.
Heteroaryls such as thiophene (3-26) can also be used. Additionally, aliphatic alkenes
can be formed, including cyclic trisubstituted alkene 3-27, benzyl-substituted alkene
3-31, and tert-butyl-substituted alkene 3-36, as well as electron-poor a,B-unsaturated
ester 3-28. In addition to the heteroaryl tolerance, multiple functional groups are
compatible, including esters (3-28), ethers (3-29, 3-32), trifluoromethyl (3-30),
fluoride (3-33, 3-34), and chloride (3-35). Unfortunately, more bulky vinyl groups,
such as (3-methyl-2-buten-2-yl)boronic ester, 2-methylprop-1-enylboronic ester, or 1-
phenylvinylboronic ester, resulted in less than 30% yield. Simple vinylboronic ester
also resulted in a low yield (17% by '"H NMR analysis).

Given the similarity in conditions between the arylation (Chapter 2) and
vinylation reactions, we believe that this cross-coupling may proceed via an analogous
Ni"™ catalytic cycle involving a stabilized benzylic radical intermediate (See Scheme
2.14). The nickel free pathway may also be in operation and contribute to the observed

product formation via a nucleophilic substitution event.

3.3 Conclusion
In summary, we have developed conditions for the Suzuki—Miyaura cross-

coupling of benzylic pyridinium salts with vinyl boronic acids and esters. This method
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allows for efficient access to valuable 1,3-disubstituted allylic molecules. This
reaction is amenable to heteroaryl substitution on both coupling partners, as well as a
wide range of functional groups. This work was published in Synthesis as part of the
Special Topic: Modern Coupling Approaches and their Strategic Applications in

Synthesis.”

3.4 Experimental

3.4.1 General Information

Reactions were performed in oven-dried Schlenk flasks or in oven-dried
round-bottomed flasks unless otherwise noted. Round-bottomed flasks were fitted
with rubber septa, and reactions were conducted under a positive pressure of Nj.
Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Silica
gel chromatography was performed on silica gel 60 (40-63 pm, 60A) unless otherwise
noted. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher,
Strem, TCI, Combi Blocks, Alfa Aesar, AK Scientific, Oakwood, or Cambridge
Isotopes Laboratories and used as received with the following exceptions: anhydrous
ethanol was degassed by sparging with N, for 20-30 minutes prior to use in the cross-
coupling reactions; dioxane was dried by passing through drying columns, then
degassed by sparging with N,.”' In some instances oven-dried potassium carbonate
was added to CDCl; to remove trace acid. Proton nuclear magnetic resonance ('H
NMR) spectra, carbon nuclear magnetic resonance (°C NMR) spectra, and fluorine
nuclear magnetic resonance spectra ('’F NMR) were recorded on both 400 MHz and

600 MHz spectrometers. Chemical shifts for protons are reported in parts per million
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downfield from tetramethylsilane and are referenced to residual protium in the NMR
solvent (CHCl; = § 7.26). Chemical shifts for carbon are reported in parts per million
downfield from tetramethylsilane and are referenced to the carbon resonances of the
solvent (CDCl; = & 77.16). Chemical shifts for fluorine were externally referenced to
CFCl; in CDCl;s (CFCls = 6 0). Data are represented as follows: chemical shift,
multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m =
multiplet, dd = doublet of doublets, h = heptet), coupling constants in Hertz (Hz),
integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with
material loaded onto a KBr plate. The mass spectral data were obtained at the
University of Delaware mass spectrometry facility. Melting points were taken on a

Thomas-Hoover Uni-Melt Capillary Melting Point Apparatus.

3.4.2 Cross-Coupling of Pyridinium Salts

3.4.2.1 General Procedure A: Cross-Coupling of Pyridinium Salts with Boronic

Acids
B(OH),
R1/\( (2.0 equiv)
Ph o R2
) o ,
<Het)Ar/\N| X, BF,4 5 mol% PhenNi(OAc),-xH,O (Het)Ar/\/\W
Ph Zph K5PO, (3.4 equiv) R2

EtOH (5.0 equiv)
dioxane (0.5 M), 60 °C, 24 h

To an oven-dried, 25-mL Schlenk flask equipped with a stir bar was added
PhenNi(OAc), xH,0 (20 mg, 0.050 mmol, 5 mol %), pyridinium salt (1.0 mmol, 1.0
equiv), vinylboronic acid (2.0 equiv, 2.0 mmol), and K;PO4 (722 mg, 3.4 mmol, 3.4
equiv). The flask was fitted with a rubber septum, sealed with parafilm, and then

evacuated and refilled with N, (x 3). Dioxane (2.0 mL) was added, followed by EtOH
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(0.29 mL, 5.0 mmol, 5.0 equiv). The flask was sealed off and resulting mixture was
stirred at 60 °C for 24 h. The mixture was allowed to cool to room temperature, and
then filtered through a small pad of Celite. The filter cake was washed with CH,Cl, (4
x 25 mL), and the filtrate was concentrated. The cross-coupled product was then

purified via silica gel chromatography.

3.4.2.2 General Procedure B: Cross-Coupling of Pyridinium Salts with Boronic

Acid Pinacol Ester
Ph o e Bpin (2.0 equiv)
® .
Py BF 5 mol% PhenNi(OAc),-xH,0
(HeAr NI N 4 272 (Het)Ar/\/\R
Ph % Ph K3PO4 (25 eqUiV)

EtOH (5.0 equiv)
dioxane (0.5 M), 60 °C, 24 h

To an oven-dried, 10-mL round bottom flask equipped with a stir bar was
added PhenNi(OAc),'xH,O (20 mg, 0.050 mmol, 5 mol %), pyridinium salt (1.0
mmol, 1.0 equiv), vinylboronic acid pinacol ester (2.0 equiv, 2.0 mmol), and K;PO4
(531 mg, 2.5 mmol, 2.5 equiv). The flask was fitted with a rubber septum, sealed with
parafilm, and then purged with a nitrogen line for 20 minutes. Dioxane (2.0 mL) was
added, followed by EtOH (0.29 mL, 5.0 mmol, 5.0 equiv). The flask was sealed off
and resulting mixture was stirred at 60 °C for 24 h. The mixture was allowed to cool to
room temperature, and then filtered through a small pad of Celite. The filter cake was
washed with CH,Cl; (4 x 25 mL), and the filtrate was concentrated. The cross-coupled

product was then purified via silica gel chromatography.
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| X
N
3-Cinnamylpyridine (3-22). Prepared via General Procedure A using 2,4,6-
Triphenyl-1-(pyridin-3-ylmethyl)pyridin-1-ium tetrafluoroborate. The crude mixture
was purified by silica gel chromatography (50% ether/hexanes) to give 3-22 (156 mg,
80%) as a pale yellow oil: 'H NMR (600 MHz, CDCls) & 8.54 — 8.46 (m, 2H), 7.58 —
7.53 (m, 1H), 7.37 — 7.33 (m, 2H), 7.33 — 7.28 (m, 2H), 7.25 — 7.20 (m, 2H), 6.47 (d, J
= 15.8 Hz, 1H), 6.32 (dt, J = 15.8, 6.8 Hz, 1H), 3.56 (d, J = 5.4 Hz, 2H); °C NMR
(151 MHz, CDCl3) 6 150.3, 147.9, 137.2, 136.3, 135.6, 132.1, 128.7, 127.9, 127.6,
126.3, 123.5, 36.6. The spectral data matches that reported in the literature.>
Product 3-22 was also prepared via General Procedure B. The crude mixture
was purified by silica gel chromatography to give 3-22 (135 mg, 70%).
» B
% S
(E)-2-(3-(Thiophen-3-yl)allyl)pyridine (3-26). Prepared via General Procedure B
using 2,4,6-Triphenyl-1-(pyridin-2-ylmethyl)pyridin-1-ium tetrafluoroborate. The
crude mixture was purified by silica gel chromatography (50% ethyl acetate/hexanes)
to give 3-26 (146 mg, 72%) as an orange oil: 'H NMR (600 MHz, CDCl3) § 8.58 —
8.53 (m, 1H), 7.61 (td, J= 7.7, 1.8 Hz, 1H), 7.26 — 7.18 (m, 3H), 7.16 — 7.08 (m, 2H),
6.54 (d, J = 15.8 Hz, 1H), 6.30 (dt, J = 15.7, 7.1 Hz, 1H), 3.70 (dd, J = 7.1, 1.4 Hz,
2H); C NMR (151 MHz, CDCl;) & 160.4, 149.6, 140.1, 136.7, 127.6, 126.3, 126.0,
125.2, 123.0, 121.5, 121.4, 42.1; FTIR (neat) 3078, 3007, 2923, 1590, 1472, 1434,
965, 766 cm’'; HRMS (ESI+) [M+H]" calculated for C;,H,NS: 202.0690, found
202.0687.
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4-(Cyclohex-1-en-1-ylmethyl)pyridine (3-27). Prepared via General Procedure A
using 2,4,6-Triphenyl-1-(pyridin-4-ylmethyl)pyridin-1-ium tetrafluoroborate. The
crude mixture was purified by silica gel chromatography (step gradient: 20—100%
EtOAc/hexanes) to give 3-27 (88 mg, 51%) as yellow oil: "H NMR (600 MHz, CDCl;)
0 8.51 — 8.46 (m, 2H), 7.12 — 7.08 (m, 2H), 5.53 — 5.48 (m, 1H), 3.22 (s, 2H), 2.06 —
2.00 (m, 2H), 1.86 — 1.80 (m, 2H), 1.63 — 1.51 (m, 4H); °’C NMR (151 MHz, CDCl;)
0 149.8, 149.7, 135.6, 124.6, 124.4, 44.1, 28.2, 25.5, 23.0, 22.4; FTIR (neat) 3024,
2926, 2834, 1599, 1559, 1414 cm'l; HRMS (ESI+) [M+H]+ calculated for C;,HgN:
174.1283, found 174.1277.

N = OEt

| - o
Ethyl (E)-4-(pyridin-3-yl)but-2-enoate (2-28). Prepared via General Procedure B
using 2,4,6-Triphenyl-1-(pyridin-3-ylmethyl)pyridin-1-ium tetrafluoroborate. The
crude mixture was purified by silica gel chromatography (step gradient: 50—75%
EtOAc/hexanes) to give 3-28 (117 mg, 61%) as pale yellow oil: 'H NMR (400 MHz,
CDCl;) 6 8.61 — 8.55 (m, 1H), 8.50 — 8.43 (m, 1H), 7.74 — 7.66 (m, 1H), 7.26 — 7.21
(m, 1H), 6.48 (d, J=16.0 Hz, 1H), 6.38 (dt, /= 16.0, 6.8 Hz, 1H), 4.18 (q, /= 7.1 Hz,
2H), 3.27 (dd, J = 6.9, 1.2 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H); °C NMR (151 MHz,
CDCl;) ¢ 171.3, 148.8, 148.4, 132.8, 132.6, 130.0, 124.5, 123.6, 61.1, 38.6, 14.4;
FTIR (neat) 3030, 2982, 2937, 1734, 1160, 1025, 970, 709 cm™'; HRMS (ESI+)

[M+H]" calculated for C;;H14NO,: 192.1025, found 192.1020.
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(E)-6-(3-(4-Methoxyphenyl)allyl)quinoline (3-29). Prepared via General Procedure
A using 2,4,6-Triphenyl-1-(quinolin-6-ylmethyl)pyridin-1-ium tetrafluoroborate. The
crude mixture was purified by silica gel chromatography (step gradient: 5—50%
EtOAc/hexanes) to give 3-29 (197 mg, 72%) as yellow oil: '"H NMR (600 MHz,
CDCls) 6 8.88 (dd, J = 4.2, 1.7 Hz, 1H), 8.13 — 8.08 (m, 1H), 8.08 — 8.03 (m, 1H),
7.67 — 7.60 (m, 2H), 7.38 (dd, J = 8.3, 4.2 Hz, 1H), 7.34 — 7.29 (m, 2H), 6.87 — 6.83
(m, 2H), 6.47 (d, J = 15.7 Hz, 1H), 6.29 (dt, J = 15.7, 6.9 Hz, 1H), 3.80 (s, 3H), 3.72
(d, J= 6.9 Hz, 2H); *C NMR (151 MHz, CDCl3) § 159.2, 150.0, 147.5, 139.1, 135.8,
131.3, 131.3, 130.3, 129.7, 128.6, 127.5, 126.6, 126.4, 121.3, 114.2, 55.5, 39.4; FTIR
(neat) 3030, 2956, 2834, 1606, 1511, 1247, 1175, 968, 835 cm™'; HRMS (ESI+)
[M+H]" calculated for C1oHsNO: 276.1388, found 276.1384.

N\ =
o,
(E)-2-(3-(4-(Trifluoromethyl)phenyl)allyl)pyrimidine (3-30a). Prepared via General
Procedure A using 2,4,6-Triphenyl-1-(pyrimidin-2-ylmethyl)pyridin-1-ium
tetrafluoroborate. The crude mixture was purified by silica gel chromatography (step
gradient: 8570% EtOAc/hexanes) to give 3-30a (119 mg, 45%) as yellow oil: 'H
NMR (600 MHz, CDCl3) 6 8.71 (d, J = 4.9 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.47 (d,
J=28.2 Hz, 2H), 7.17 (t, J = 4.9 Hz, 1H), 6.72 — 6.58 (m, 2H), 3.94 (d, J = 6.7 Hz,
2H); °C NMR (151 MHz, CDCl3) & 169.4, 157.5, 140.9, 131.2, 129.2 (q, J = 32.3
Hz), 129.1, 126.6, 125.6 (q, J = 3.8 Hz), 124.5 (q, J = 271.7 Hz), 119.0, 43.4; °F
NMR (565 MHz, CDCl;) & —62.48; FTIR (neat) 3041, 1563, 1422, 1327, 1164, 1122,
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1068 cm™; HRMS (ESI+) [M+H] calculated for Ci4H,FsNy: 265.0953, found
265.0950.

N\ AN
T,

(E)-2-(3-(4-(Trifluoromethyl)phenyl)prop-1-en-1-yl)pyrimidine (3-30b). Prepared
via General Procedure A using 2,4,6-Triphenyl-1-(pyrimidin-2-ylmethyl)pyridin-1-
ium tetrafluoroborate. The crude mixture was purified by silica gel chromatography
(step gradient: 8—70% EtOAc/hexanes) to give 3-30b (94 mg, 36%) as yellow oil: 'H
NMR (600 MHz, CDCl;) & 8.66 (d, J=4.9 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.37 (d,
J=28.0 Hz, 2H), 7.32 — 7.26 (m, 1H), 7.09 (t, J = 4.8 Hz, 1H), 6.61 — 6.55 (m, 1H),
3.69 (d, J = 6.6 Hz, 2H); °C NMR (151 MHz, CDCl;) § 164.4, 157.0, 143.0, 138.8,
131.3, 129.2, 128.9 (q, J = 32.1 Hz), 125.5 (q, J = 3.8 Hz), 124.3 (q, J = 271.8 Hz),
118.7, 38.7; F NMR (565 MHz, CDCls) & —62.43; FTIR (neat) 3037, 2918, 1557,
1421, 1332, 1161, 1105 cm™; HRMS (ESI+) [M+H]" calculated for C4;H;2F3Ny:
265.0953, found 265.0951.

Z>N

"
(E)-1-(4-(4-Phenylbut-2-en-1-yl)phenyl)-1 H-imidazole (3-31). Prepared via General
Procedure A wusing 1-(4-(1H-Imidazol-1-yl)benzyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate. The crude mixture was purified by silica gel chromatography (step
gradient: 20—100% EtOAc/hexanes) to give 3-31 (172 mg, 63%) as yellow oil: 'H
NMR (600 MHz, CDCls) & 7.85 — 7.81 (m, 1H), 7.34 — 7.27 (m, 6H), 7.26 — 7.25 (m,
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1H), 7.24 — 7.17 (m, 4H), 5.76 — 5.62 (m, 2H), 3.44 — 3.37 (m, 4H); °C NMR (151
MHz, CDCl;) § 140.6, 140.4, 135.8, 135.7, 131.4, 130.5, 130.0, 129.8, 128.7, 128.6,
126.2, 121.8, 118.5, 39.1, 38.5; FTIR (neat) 3026, 2899, 1521, 1492, 1303, 1057, 965
cm™; HRMS (ESI+) [M+H]" calculated for CoH;oN,: 275.1548, found 275.1543.

= OMe
T
<
N

(E)-5-(4-(3-(3-Methoxyphenyl)allyl)phenyl)oxazole (3-32). Prepared via General
Procedure B using 1-(4-(Oxazol-5-yl)benzyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate. The crude mixture was purified by silica gel chromatography (step
gradient: 10—>50% EtOAc/hexanes) to give 3-32 (220 mg, 76%) as yellow solid (mp
60-63 °C): 'H NMR (600 MHz, CDCl;) § 7.90 (s, 1H), 7.63 — 7.58 (m, 2H), 7.34 —
7.29 (m, 3H), 7.22 (t, J = 7.9 Hz, 1H), 6.99 — 6.94 (m, 1H), 6.92 — 6.88 (m, 1H), 6.80
—6.75 (m, 1H), 6.48 — 6.41 (m, 1H), 6.35 (dt, J = 15.7, 6.8 Hz, 1H), 3.81 (s, 3H), 3.58
(d, J=7.2 Hz, 2H); *C NMR (151 MHz, CDCl3) & 160.0, 151.7, 150.4, 141.0, 138.9,
131.6, 129.7, 129.4, 129.0, 126.0, 124.8, 121.3, 119.0, 113.1, 111.6, 55.4, 39.2; FTIR
(neat) 3027, 2937, 2833, 1598, 1579, 1490, 1267, 1043, 941 cm™'; HRMS (ESI+)
[M+H]" calculated for C1oHsNO,: 292.1338, found 292.1331.

& F
=N
(E)-1-(4-(3-(4-Fluorophenyl)allyl)phenyl)-1 H-pyrazole (3-33). Prepared via General

Procedure A using 1-(4-(1H-Pyrazol-1-yl)benzyl)-2,4,6-triphenylpyridin-1-ium

tetrafluoroborate. The crude mixture was purified by silica gel chromatography (step
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gradient: 5—>20% ether/hexanes) to give 3-33 (241 mg, 87%) as light yellow solid (mp
80-83 °C): '"H NMR (600 MHz,CDCls) § 7.90 (d, J = 2.4 Hz, 1H), 7.72 (d, J= 1.7 Hz,
1H), 7.66 — 7.61 (m, 2H), 7.35 — 7.29 (m, 4H), 7.02 — 6.96 (m, 2H), 6.48 — 6.39 (m,
2H), 6.28 (dt, J = 15.8, 6.8 Hz, 1H), 3.57 (dd, J = 6.8, 1.4 Hz, 2H); °C NMR (151
MHz, CDCLy) § 162.3 (d, Jor = 246.1 Hz), 141.1, 138.8, 138.5, 133.6 (d, Jo.r = 3.4
Hz), 130.4, 129.8, 128.7 (d, Jer = 2.2 Hz), 127.7 (d, Jer = 8.0 Hz), 126.8, 119.6,
115.6 (d, J = 21.2Hz), 107.6, 38.8; ’F NMR (565 MHz, CDCls) § —115.13; FTIR
(neat) 3037, 2922, 1524, 1507, 1394, 1225, 936, 838, 748 cm'; HRMS (ESI+)
[M+H]" calculated for C1gH6FN,: 279.1298, found 279.1292.

F
_
LT T
N ] F
N

(E)-5-(4-(3-(2,4-Difluorophenyl)allyl)phenyl)-1,2,3-thiadiazole (3-34). Prepared via
General Procedure B using 1-(4-(1,2,3-Thiadiazol-5-yl)benzyl)-2,4,6-triphenylpyridin-
1-ium tetrafluoroborate. The crude mixture was purified by silica gel chromatography
(step gradient: 1—>10% ether/hexanes) to give 3-34 (163 mg, 52%) as yellow solid
(mp 117-120 °C): 'H NMR (600 MHz, CDCl3) & 8.62 (s, 1H), 8.03 — 7.98 (m, 2H),
7.43 —7.37 (m, 3H), 6.85 — 6.75 (m, 2H), 6.62 — 6.55 (m, 1H), 6.39 (dt, J=15.9, 6.9
Hz, 1H), 3.63 (d, J= 6.3 Hz, 2H); C NMR (101 MHz, CDCl3) & 162.88, 162.30 (dd,
J=196.6, 11.9 Hz), 159.81 (dd, J = 199.2, 11.9 Hz), 141.42, 131.01 (dd, J=4.7,2.3
Hz), 129.76, 129.60, 129.07, 128.10 (dd, /= 9.5, 5.5 Hz), 127.73, 123.16 (dd, J = 3.0,
1.4 Hz), 121.52 (dd, J = 12.5, 4.0 Hz), 111.51 (dd, J = 21.3, 3.7 Hz), 104.10 (t, J =
25.7 Hz), 39.60; "°F NMR (565 MHz,CDCl3) 8 —111.66 (d, Jrr = 7.1 Hz), —114.30 (d,
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Jr.r=17.1 Hz); FTIR (neat) 3094, 2931, 1589, 1503, 1427, 1223, 970, 846, 809 cm™’;
HRMS (ESI+) [M+H]" calculated for C;7H;3F,NS: 315.0768, found 315.0759.

n

N
=
T,
(E)-1-(2-(3-(4-Chlorophenyl)allyl)phenyl)-1 H-pyrrole (3-35). Prepared via General
Procedure B  using  1-(2-(1H-Pyrrol-1-yl)benzyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate. The crude mixture was purified by silica gel chromatography (step
gradient: 1->10% toluene/hexanes) to give 3-35 (220 mg, 75%) as colorless oil: 'H
NMR (600 MHz, CDCls) & 7.38 — 7.28 (m, 4H), 7.25 — 7.19 (m, 4H), 6.82 — 6.78 (m,
2H), 6.34 — 6.30 (m, 2H), 6.21 (d, J = 15.9 Hz, 1H), 6.14 (dt, J = 15.8, 6.4 Hz, 1H),
3.40 (d, J = 6.4 Hz, 2H); °C NMR (151 MHz,CDCl3) § 140.6, 136.1, 136.0, 132.9,
130.6, 130.4, 129.3, 128.8, 128.1, 127.5, 127.4, 127.3, 122.5, 109.1, 34.8; FTIR (neat)

3028, 1502, 1491, 1327, 1093, 764, 727 cm’; HRMS (ESI+) [M+H]" calculated for
C1oH17CIN: 294.1050, found 294.1041.

S = Me
(E)-2-(4,4-Dimethylpent-2-en-1-yl)thiazole (3-36). Prepared via General Procedure
A using 2,4,6-Triphenyl-1-(thiazol-2-ylmethyl)pyridin-1-ium tetrafluoroborate. The
crude mixture was purified by silica gel chromatography (step gradient: 2—20%
EtOAc/hexanes) to give 3-36 (91 mg, 50%) as light yellow oil: 'H NMR (600 MHz,
CDCl3) 6 7.69 (d, J= 3.3 Hz, 1H), 7.20 (d, /= 3.3 Hz, 1H), 5.75 — 5.69 (m, 1H), 5.58
(dt, J = 15.5, 6.9 Hz, 1H), 3.71 (dd, J = 6.9, 1.3 Hz, 2H), 1.04 (s, 9H); °C NMR (151
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MHz, CDCL3) § 171.4, 145.9, 142.6, 120.5, 118.6, 36.9, 33.3, 29.6; FTIR (neat) 3081,
2959, 2902, 2866, 1501, 1363, 973, 720 cm™'; HRMS (ESI+) [M+H]" calculated for
C1oH16NS: 182.1003, found 182.0998.
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Chapter 4

REDUCTIVE CROSS-ELECTROPHILE COUPLING OF ALKYL
PYRIDINIUM SALTS WITH ARYL BROMIDES

This work was performed in collaboration with Michelle Garnsey, Brian Boscoe, and

Joseph Tucker at Pfizer, Inc.

4.1 Introduction

Over the last century, transition-metal catalysis has revolutionized our ability
to form new carbon-carbon bonds. Notably, these advancements have enabled the
rapid construction of a variety of Cgp3—Cgp2 bonds. For example, alkylarene 4-1 can
easily be obtained via the cross-coupling of an alkyl halide with an arylboronic acid or
arylzinc halide (Scheme 4.1, left).! However, the generation of these aryl nucleophiles
requires additional synthetic steps and can sometimes limit functional group tolerance
and scope. Thus, intense efforts have focused on the identification of novel,
inexpensive cross-coupling partners for synthesis. In particular, we were drawn
towards aryl halides because of their wide abundance and ease of synthesis. As a case
study for their availability versus more common aryl nucleophiles, our collaborator,
Dr. Michelle Garnsey, performed a search of Pfizer’s internal chemical store. Over
56,000 (hetero)aryl bromides are present in the internal chemical store, in contrast to
only 6,200 boronic acids/esters. We have previously developed methods to utilize

Katritzky pyridinium salts in nickel-catalyzed cross-coupling reactions as a means to
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harness ubiquitous alkyl amines as electrophiles via C—N bond activation (Chapters 1—
3). We envisioned that the cross-coupling of these two feedstock chemicals (i.e., an
alkyl amine derivative with an aryl halide) would allow one to build complexity from
inexpensive starting materials and greatly expand the pools of compounds available

for such cross-coupling approaches (Scheme 4.1, right).

Scheme 4.1  Synthesis of alkylarenes
R! R!
R
a b
RZJ\ X f— RQJ\,':Ar — RZJ\ NH,
+ +
Ar—[M] 4-1 Ar—X

Most conventional approaches to cross-couplings require the use of a
preformed organometallic nucleophile (e.g., R-BX,, R-MgX, R—ZnX) in conjunction
with an organic electrophile (e.g., R—X) (Scheme 4.2, top).! The inherent differences
in reactivity between the nucleophile and electrophile allow these reactions to be
cross-selective; the nucleophile reacts with the catalyst by transmetallation, and the
electrophile reacts by oxidative addition. Nonetheless, the use of nucleophilic carbon
reagents presents some shortcomings and challenges. Many organometallic reagents
have limited commercial availability and are often synthesized from the corresponding
organohalide, which adds steps to a synthetic sequence. Furthermore, some of these
reagents have limited air and moisture stability, preventing their widespread use in
industry. The intrinsic nucleophilicity of these organometallic reagents can limit the
incorporation of electrophilic functional groups; the basic reagents required to
facilitate transmetallation poses issues in substrates containing acidic protons. More

importantly, these couplings often require a large excess of the organic nucleophile
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due to competing side reactions such as protodemetallation, thereby decreasing the

overall atom economy of these transformations.

Scheme 4.2  Conventional cross-coupling vs reductive cross electrophile-coupling
Conventional Transition Metal-Catalyzed Cross-Coupling
metal catalyst

R'—[M] + R2-X >  R'-R2
nucleophile electrophile inherent substrate reactivity
transmetallation oxidative addition favors cross-selectivity

Reductive Cross-Electrophile Coupling
metal catalyst

R1-X + R2-X > R1—R2
electrophile electrophile reductant catalyst controls homo-
oxidative addition oxidative addition Vs cross-selectivity

In contrast, a reductive cross-electrophile approach mitigates many of these
issues by eliminating the need for preformed organometallic species (Scheme 4.2,
bottom).> As a result, this area has garnered significant attention over the past decade.
These couplings employ the use of commercially abundant organohalides, which are
much more stable and easier to handle than their organometallic counterparts. More
importantly, greater functional group compatibility can be observed due to the
omission of stoichiometric strong bases and nucleophiles. This approach also provides
a unique opportunity for synthetic orthogonality to traditional cross-couplings.

However, one of the ongoing challenges associated with cross-electrophile
couplings is selectivity. The two coupling partners are both electrophilic in nature and
tend to react with a metal catalyst via oxidative addition. This can lead to dimerization
of either electrophile, as well as other byproducts such as protodehalogenation and -

hydride elimination. Intense efforts have identified several strategies to afford high
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yields and/or cross-selectivity in these types of reductive cross-couplings (Scheme

4.3).}

Scheme 4.3 Strategies for obtaining high yields in reductive cross-couplings

A. Excess of one reagent
Mcat

Y

R1_X + RZ_X R1_R2 + R2_R2
reductant

excess high yield major product
based on R™-X

B. Electronic differentiation of starting materials

©
1— 1 e 2_X
M....0 _R=X, t||/R Mcato_RTl R R1-R2
selective O.A.  °® ™>X  reductant _
major product
C. Steric matching of substrate and catalyst
1-X L_Mcat - L-M_..—R! ﬂ» 1 2
A reductant cat .R R
sterics of ligand or reductant major product
govern selectivty
D. Radical chain process
Mcat
R'-X + R2-X o RUR
reductan
oxidative addition radical precursor major product

Employing an excess of one reagent leads to a statistical mixture of products
and delivers the cross-coupled product in high yield (Scheme 4.3A). However, this
sacrifices a large amount of one starting material, and the major product of this
reaction is the dimer of the excess reagent. The second approach relies on the
electronic differentiation of two unlike electrophiles through sequential oxidative
addition (Scheme 4.3B). The catalytic cycle must have two different active, low-valent

species that can each selectively react with one of the starting materials. If the
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reactivities of the electrophiles are similar, sterics can be used to differentiate the two
species (Scheme 4.3C). Steric matching between substrate and ligand or reductant can
afford cross-selectivity. Finally, the native heterolytic versus homolytic reactivity
patterns of the starting materials can be exploited to achieve selective cross-coupling
(Scheme 4.3D). One electrophile is prone to undergo a two-electron oxidative
addition, while the other proceeds through a SET mechanism to generate the
corresponding radical intermediate. In this case, the catalyst must be capable of both
single- and two-electron processes. We sought to utilize this strategy for our proposed
reaction.

In 2010, Weix and coworkers disclosed a seminal report on the nickel-
catalyzed reductive cross-coupling of primary and secondary alkyl halides (4-3) with
aryl halides using manganese as a stoichiometric reductant (Scheme 4.4).* In contrast
to previously reported couplings of alkyl halides with aryl halides, this reaction does
not go through an intermediate organometallic species. Instead, this approach relies on
the ability of the aryl halide to undergo a two-electron oxidative addition, while the
alkyl halide can serve as a radical precursor. Shortly after, Weix expanded on this
initial finding and published more general conditions using zinc as the stoichiometric
metal reductant.” He demonstrated broad scope with over 40 examples including those
containing nucleophilic and electrophilic groups as well as acidic protons.
Additionally, vinyl halides were also amenable to this chemistry. More recently, Weix
disclosed an analogous reductive cross-coupling of redox-active esters (4-4) with aryl

iodides (Scheme 4.5).°
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Scheme 4.4  Weix’s reductive coupling of alkyl halides with aryl halides

Ar—X
Nil,'xH,O/4,4’-di'BuBipy
R1\(X dppbz, pyridine R1\(Ar
R? Mn© R?
X =Br, | DMPU, 60-80 °C 4-3
4-2 X=Br, | 38-88%

Scheme 4.5 Weix’s reductive coupling of redox-active esters with aryl iodides

o) Ar—|
0] NiBr,(dtbbpy) Fﬂ\r Ar
1 >
R\Hko’N Zn R2
R? 0 DMA, rt, 5-12 h
4-4 4-5

41-97%

In a subsequent publication, the Weix group performed detailed mechanistic
studies to elucidate the mechanism of his reductive cross-electrophile coupling of
alkyl halides with aryl halides.” ’ He proposed a radical-chain bimetallic pathway
(Scheme 4.6). Notably, this is distinct from the traditional radical rebound mechanism
in which the radical intermediate recombines with the same nickel complex that
formed it. Starting from low-valent Ni” species A, selective two-electron oxidative
addition of the aryl halide generates Ni'-arene B, which appears to be the catalyst
resting state. This then reacts with a solvent cage escaped alkyl radical C to form
diorgano-Ni'" species D. Reductive elimination of the cross-coupled product produces
reactive Ni' species E that can then undergo SET with the alkyl halide to generate the
aforementioned alkyl radical C and Ni" species F. Finally, the cycle can be turned-
over via reduction of F back to the active Ni’ species A with a stoichiometric

reductant such as manganese or zinc.
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Scheme 4.6  Weix’s proposed radical-chain bimetallic pathway

MIX X
Ni°L,,

X-NillL, Ar— N|”Ln
X
e
R’
l}liIL
X Ar— NI”IL
D
R Ar

Although Weix focused primarily on primary alkyl halides, he demonstrated
limited examples of cross-coupling secondary alkyl halides and only in modest yields
(<70%). Gong later improved on this chemistry to affect cross-coupling of secondary
alkyl bromides (4-6) with aryl bromides (Scheme 4.7).* Notably, however, these
methods lacked scope in heterocyclic alkyl electrophiles. Towards this end, the
Molander group has optimized conditions for the cross-coupling of saturated
heterocyclic bromides (4-8) with (hetero)aryl bromides (Scheme 4.8).” A number of
4-, 5-, and 6-membered O- and N-heterocyclic alkyl bromides were well tolerated
under these conditions. This chemistry was later extended to heterocyclic tosylates as

well.1°
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Scheme 4.7  Gong’s coupling of secondary alkyl bromides
Ar—Br
R! Br  Nily/4,4-di'BuBipy R _Ar

- T

R? Zn% R?
4-6 MgCl,, pyridine 4-7
DMA, 25 °C, 12 h 30-98%

Scheme 4.8  Molander’s coupling of heterocyclic alkyl bromides
Ar—Br
Br NiCly-glyme/Phen Ar

\’(:r)n Mn© - J{:—r)n

4-Et-pyridine, NaBF,4

Y = NBoc, O ° 4-9
4-8 MeOH, 60 °C, 18 h 20_739,

However, despite these advancements, tertiary alkyl halides remained a

challenging class of substrates. In 2015, the Gong group disclosed conditions for the

reductive cross-coupling of tertiary alkyl bromides (4-10) with aryl bromides to afford

all-carbon quaternary centers (4-12) (Scheme 4.9).'" Although pyridine-based

bidentate and tridentate ligands were ineffective, the use of N-heterocyclic carbene

precursors (4-11) resulted in the desired cross-coupling. Unfortunately, cross-

couplings of electron-rich aryl halides were problematic under these original

conditions. More recently, Gong modified these conditions to enable the coupling of

electron-rich aryl iodides."

Scheme 4.9  Gong’s reductive coupling of tertiary alkyl halides

Ar—Br
R! pmr Ni(acac),/4-11 R' Ar
R ~ Rl RN N-R
R3 Zn%, DMAP, MgCl, RS
4_10 DMA, 25 OC, 12 h 4_12 R = ’Pr’ tBu

30-95%
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Reductive cross-couplings utilizing a metallaphotoredox approach have also
been investigated. Unlike methods that employ a stoichiometric metal reductant, this
approach allows for the cross-coupling to occur under much milder conditions by
utilizing a photocatalyst. The MacMillan group has demonstrated that under Ni/Ir
dual-photoredox conditions, alkyl bromides (4-13) can be coupled with aryl bromides
at room temperature with blue LED irradiation (Scheme 4.10)." This method relies on
a photocatalytically generated silyl radical species, which can perform halogen-atom
abstraction to generate the nucleophilic carbon-centered radical 4-14. Notably a
variety of heteroarenes can be incorporated as well as two examples of tertiary alkyl

groups.

Scheme 4.10 MacMillan’s metallaphotoredox reductive coupling

Ar—Br
NiCl,(dtbbpy)
Rgl/ Br Ir[dF(CF3)ppyl2(dtbbpy)PFg Rgr Ar
2 > 2
e (MeSi),SiH e
Na,COj; or LiOH, blue LEDS
4-13 DME or dioxane, 25 °C, 6 h 4-15
32-94%
via (MeSi)sSi R! T
» 2 °
- (Me3Si)3SiBr R3
4-14

Although nickel-catalyzed reductive cross-couplings have exploded within the
past decade, a number of other metals have also been found to effect analogous
reactions. For example, the Buchwald group has found that palladium precatalyst 4-17
can promote the cross-coupling of heterocyclic alkyl bromides (4-16) with aryl halides
and triflates under aqueous Lipshutz-Negishi conditions (Scheme 4.11A).'* In 2009,

Jacobi von Wagelin published the first direct iron-catalyzed cross-coupling of alkyl
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bromides (4-19) with aryl bromides (Scheme 4.11B)."> However, the functional group
tolerance was much lower than manganese- or zinc-mediated reactions due to the
formation of a Grignard reagent in-sifu. Gosmini reported a cobalt-catalyzed coupling
of alkyl bromides (4-21) with aryl bromides (Scheme 4.11C)."® Notably, however, the

alkyl electrophile is generally used in excess (1.1-3 equiv).

Scheme 4.11 Metal-catalyzed reductive cross-couplings

A. Buchwald’s palladium-catalyzed coupling

YPhOS
MeHN-Pd-OMs
Ar—X 4-17 =
” § Sl
\’(:()n Zn®, TMEDA \’(:r)n
Na-octanoate, 1-octanol Cy,P OMe
Y=NBoc. O 1,0,45°C, 18-36 h o o,
X = Br, Cl, OTf VPhos = O O By
Bu
B. Jacobi von Wagelin’s iron-catalyzed coupling

Ar—Br

R1\|/ Br FeCl; R1\r Ar

R2 Mg R2
4-19 THF, 0°C,3h 4-20
38-81%
C. Gosmini’s cobalt-catalyzed coupling
Ar—X
CoBr,
RH/ Br 'ProPhP or Bipy R1\r Ar
R2 Mn© R2
4-21 DMF/pyridine, 30-50 °C 4-22
X = Br, Cl 38-96%

151



With the advancement of metal-catalyzed reductive cross-couplings, a variety
of Cyp3—Csp2 bonds can be forged via these types of approaches. However, examples of
cross-selective couplings of two unactivated alkyl electrophiles to form new Cqp3—Cop3
bonds have been much more limited. In 2011, Gong reported a nickel-catalyzed
coupling of two unactivated alkyl halides (primary or secondary) (Scheme 4.12)."
Notably, a large excess of one alkyl halide (3 equiv) was required to achieve high
selectivity and competing dimerization was a major side reaction. Gong later
improved upon this chemistry and reported an analogous reaction using B,Pin; as the
terminal reductant in place of zinc.'® In this case, only a slight excess (1.5 equiv) of
one of the alkyl halides can be used to achieve good yields. This method relies on the
steric differentiation of the two alkyl electrophiles (vide supra, Scheme 4.3C) to
enable selective sequential oxidative addition. More recently, the Fu and Liu groups
disclosed the copper-catalyzed coupling of alkyl tosylates and mesylates with alkyl
and aryl bromides (Scheme 4.13)." Again, this method relies on an excess of the alkyl
or aryl bromide (23 equiv). There is also one example of coupling fert-butyl bromide,
albeit in poor yield (25%). To date, a general cross-selective reductive alkyl-alkyl

cross-coupling remains an unsolved challenge.

Scheme 4.12  Gong’s nickel-catalyzed reductive alkyl-alkyl coupling
R3-X (3 equiv)
Ni(cod),
R! _Br (S)-SBuPybox or (4-Cl)-H-Pybox R! _R3

he >

R? Zn° R2
4-23 DMA, 25 °C, 12 h 4-24
RS =1°, 2° alkyl; X = Br, | 40-92%
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Scheme 4.13 Fu and Liu’s cobalt-catalyzed reductive alkyl-alkyl/aryl coupling

R4-Br
R x Cul/CH,(PPh,), R! g
ReY > R?
R3 LiOMe, Mg R3
X = OTs, OMs T'jF’ 0-rt, 24 h 4-26
4-25 R = alkyl, aryl 25-89%

Recognizing the advantages of a reductive cross-electrophile coupling as well
as the lack of methods to utilize alkyl amine derivatives in this regard, I set out to
develop a reductive coupling of alkyl pyridinium salts with aryl bromides. Unlike the
previously discussed Suzuki-Miyaura cross-coupling (Chapter 1), this approach
allows for a much broader scope under mild conditions. In particular, I hoped to
successfully utilize substrates that were problematic under our basic Suzuki conditions
(Scheme 4.14). Substrates such as 4-27 and 4-28 were prone to elimination under the
basic conditions. Acidic protons as well as substrates susceptible to base-promoted
epimerization events (4-29) are now tolerated and existing stereocenters are preserved
under the new reductive conditions. More importantly, this approach allows for the
use of more widely abundant aryl bromides in place of arylboronic acids and provides

a complementary method to our existing chemistries.

Scheme 4.14 Challenging substrates under Suzuki conditions

|
BocHN_ . J\OtBu
0 Ph P (

3

©
ol o EWG PN
RJ\/\N N BF, j/\N BF, o

| N

| H = “®

Ph” " P Ph Ph o
BF,

Ph

4-27 o 4-28 Ph
B-keto amine derivatives acidic hydrogens - 429
Mannich adducts (elimination) epimerizable stereocenters
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4.2 Results and Discussion

4.2.1 Reaction Optimization: Primary Alkyl Pyridinium Salts

The optimization of this reductive cross-coupling began by coupling model
pyridinium salt 4-30 with 3-bromoquinoline to afford desired arylated product 4-31.
Analogous to the competing dimerization of alkyl halides, one of the major byproducts
(4-32) results from addition of the alkyl radical into the 4-position of another molecule
of unreacted pyridinium salt. My colleague Corey Basch conducted preliminary
experiments to demonstrate the feasibility of this reductive approach. Initial screens
focused on the identification of a suitable reductant for this transformation. Common
metal reductants such as zinc and manganese were tested (Table 4.1, entries 1 & 2).
Excitingly, the arylated product 4-31 was observed in 26% yield using manganese.
The addition of an additive, such as lithium chloride, was found to increase the yield
considerably as well as suppress the formation of 4-32 (entry 3). Switching to N-
methylpyrrolidone as solvent under slightly more dilute conditions further improved
the yield of the reaction (entry 4). Upon investigating a variety of additives, I found
that magnesium chloride was superior in giving high yields of 4-31 while suppressing
the formation of 4-32 (entry 5). We propose that the magnesium chloride may serve a
role in accelerating the rate of reduction of the Ni' intermediates as well as help

activate the surface of the metal reductant.’® %!

Decreasing the amount of metal
reductant to two equivalents did not impact yield (entry 6). I screened a variety of
ligands and found that the more electron-rich 4,4’-dimethoxy-2,2’-bipyridine ligand
was unique in improving this reaction (entry 7). Finally, by employing a slight excess

of pyridinium salt 4-30 (1.2 equiv) relative to the aryl bromide (1.0 equiv), 4-31 was

observed in 85% isolated yield (entry 8).
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Table 4.1 Reaction optimization of the reductive cross-electrophile coupling

primary alkyl pyridinium salts with aryl bromides®

Br | N (1.1 equiv)
N Ph
DO I N
N.__~ BF, ° 9 - | + N~
Ph/\/® MO (3.0 equiv) Ph A Ph/\/
Ph additive (1.0 equiv) Ph
4-30 80°C,24h 4-31 4-32
Yield (%)"
Entry M’ Additive Ligand Solvent 4-31 4-32 Ar-Ar
1 Zn° none 4,4-di'BuBipy DMA (0.33 M) 9 24 5
2 Mn’ none 4,4-di'BuBipy DMA (0.33 M) 26 25 4
3 Mn’ LiCl  44-di'BuBipy DMA (0.33M) 54 14 4
4 Mn’ LiCl  44-di'BuBipy NMP (0.17M) 62 10 10
5 Mn’  MgCl, 44°-di'BuBipy NMP (0.17M) 65 8 15
6 Mn’ MgCl, 44-di'BuBipy NMP (0.17M) 67 6 17
7 Mn’ MgCl, 44°-diOMeBipy NMP (0.17M) 74 7 15
8¢ Mn” MgCl, 4,4-diOMeBipy NMP (0.17M) 85° nd. n.d.

*Conditions: pyridinium salt 4-30 (0.10 mmol), 3-bromoquinoline (1.1 equiv), [Ni]
(10 mol %), ligand (12 mol %), M° (3.0 equiv), 80 °C, 24 h, unless noted otherwise.
®Determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

2.0 equiv M°. U1.2 equiv 4-30, 1.0 equiv ArBr. ‘Isolated yield.
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4.2.2 Reaction Optimization: Secondary Alkyl Pyridinium Salts

With conditions optimized for the primary alkyl system, I wanted to see if the
same conditions would be amenable to the corresponding secondary alkyl system. I
chose pyridinium salt 4-33 to test for reactivity. Although the desired product (4-34)
was formed in 19% yield, the unwanted 4-addition byproduct (4-35) was observed in
32% yield (Scheme 4.15, top). Notably for every molecule of 4-35 formed, two
molecules of starting material 4-33 are consumed, making this a particularly
detrimental competing reaction. I decided to run a series of control experiments to
probe this competing pathway. In the absence of nickel and ligand, 4-35 was formed
in a similar 39% yield (Scheme 4.15, bottom). Therefore, this byproduct can arise
from an off-cycle non-nickel-catalyzed pathway at a rate that is competitive with
cross-coupling. The major challenge here was to figure out how to use transition metal
catalysis to accelerate the rate of productive cross-coupling while suppressing this

unwanted off-cycle pathway.

Scheme 4.15 Cross-coupling of secondary alkyl pyridinium salt 4-33

Brm (1.1 equiv)
N/

Ph__~__Ph _10mol % NiCly DME N o Ph 1o
| o 12 mol % 4,4’-diOMeBipy - | =
Me. _N.__~ BF, > Me X Me. N__~ Me
® Mn® (2.0 equiv) Y
Me Ph MgCl, (1.0 equiv) Me Me Ph
4-33 NMP (0.17 M), 80 °C, 24 h 4-34, 19% 4-35, 32%
Br .
Ph ~_Ph | \/ (1.1 equiv) _N oh Ph e
! O N \ -~
Me. _N.__~ BF, > Me X Me. _N__~ Me
® MnC (2.0 equiv) \(
Me Ph MgCl, (1.0 equiv) Me Me Ph
4-33 NMP (0.17 M), 80 °C, 24 h 4-34, 0% 4-35, 39%

Yields determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal

standard.
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To gain a deeper understanding of the reaction, I took a closer look at one
possible mechanism. I proposed a radical-chain bimetallic pathway (Scheme 4.16),
analogous to Weix’s reductive coupling of alkyl halides with aryl halides (vide supra,
Scheme 4.6)." If the generated alkyl radical intermediate 4-36 proceeds via a
productive on-cycle event (Path A), desired cross-coupling is observed. However, if
instead it gets trapped by another molecule of unreacted pyridinium 4-37 (Path B), we
observe the formation of 4-addition byproduct 4-38. This is further complicated by the
fact that manganese appears to be able to directly reduce the pyridinium to form alkyl

radical 4-36, and in turn lead to the formation of undesired 4-38.

Scheme 4.16 Proposed radical-chain mechanism for reductive coupling

Ph.__ | Ph
No 9 MIXX? A%
Y Y~ BFs NifL,
R M
457
1/2 MO X NI”L AI’ Nl”L
1/2 MIXX’ 439

R Ph :
Ar— |||
4-38 437 vv/ F=NiTL,
X
RYAr
Rl

Thus, effectively controlling the reactivity of carbon-centered radical 4-36 is
key in controlling the selectivity of this reaction. We need to limit the concentration of

pyridinium salt 4-37 relative to radical 4-36 to suppress the competing dimerization
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pathway (Path B), while having a relatively high concentration of Ni'-arene 4-39 to
intercept alkyl radical 4-36 and enable cross-coupling (Path A). I proposed performing
a slow-addition of pyridinium salt 4-37. This procedure would limit the concentration
of 4-36 in solution and suppress the formation of unwanted 4-38. Additionally, this
would allow for build-up of Ni species 4-39 to enable rapid capture of alkyl radical 4-
36 and feed back into the catalytic cycle.

I was delighted to find that a slow-addition of 4-33 over the course of two
hours more than doubled the yield of desired cross-coupled product 4-34 (Table 4.2,
entries 1 vs 3). Moreover, the formation of 4-addition 4-35 was greatly suppressed.
Notably, however, the amount of biaryl (Ar—Ar) formed increased significantly. This
dimer presumably arises from metathesis of the Ni'-arene species 4-39 followed by
reductive elimination. This tells us that the rate of oxidative addition of the aryl halide
into the low valent Ni’ species is likely fast. Additionally, the overall mass balance for
the alkyl portion of the molecule is quite poor, suggesting that the corresponding rate
of radical formation is slower. In order to mitigate these issues, I performed a slow
addition of a solution of both the alkyl pyridinium salt as well as the aryl halide. In
doing so, the amount of biaryl formation was suppressed and a much better mass
balance was observed (entry 4). Finally, good yield of cross-coupled product 4-34 was
observed with a slow addition of pyridinium salt 4-33 and 3-bromoquinoline over six
hours (entry 7). Excitingly, there is only minimal formation the 4-addition 4-35 and

biaryl byproducts under these conditions.
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Table 4.2 Reaction optimization of the reductive cross-electrophile coupling
secondary alkyl pyridinium salts with aryl bromides®

Br | N (1.1 equiv)
N/ .

Ph N Ph 10 mgl % l\fIC.|2'D|V|El /N Bh Ph Me
| o 12 mol % 4,4’-diOMeBipy | =
Me._N._~ BF, > Me ~ FMer N Me

\(® Mn© (2.0 equiv) \(
Me Ph MgCl, (1.0 equiv) Me Me Ph
4-33 NMP (0.17 M), 80 °C, 24 h 4-34 4-35
Slow Addition Yield (%)"

Entry Reagents Time (h) 4-34 4-35 Ar-Ar
1 none none 19 32 12
2 4-33 1 24 28 28
3 4-33 2 50 3 20
4 4-33 + ArBr 2 50 14 12
5 4-33 + ArBr 3 68 9 11
6 4-33 + ArBr 4 76 8 6
7 4-33 + ArBr 6 84 2 4

*Conditions: pyridinium salt 4-33 (0.5 mmol), 3-bromoquinoline (1.1 equiv),
NiCl,'DME (10 mol %), 4,4’-dimethoxy-2,2’-bipyridine (12 mol %), Mn” (2.0 equiv),
MgCl, (1.0 equiv), NMP (0.17 M), 80 °C, 24 h, unless noted otherwise. "Determined

by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

4.2.3 Reaction Scope
With conditions optimized for both the primary and secondary alkyl systems, I

recruited my colleagues Megan Hoerrner and Mike Talley to help explore the scope of
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this transformation. Overall, very broad substrate scope was realized (Scheme 4.17).
Model product 4-31 was isolated in 85% yield on a 1.0-mmol scale. A variety of
primary and secondary (cyclic and acyclic) alkyl groups coupled effectively.
Excitingly, substrates containing heterocycles such as piperazine (4-45), piperidine (4-
51), pyrrolidine (4-56), and pyridine (4-50 & 4-52) were amenable to this chemistry.
Additionally, benzylic pyridinium salts were competent coupling partners (4-52). I
have also demonstrated the cross-coupling of tertiary alkyl substrate 4-53, albeit in
low yield. Importantly, substrates that readily eliminate under the basic Suzuki
conditions such as 4-46 and 4-47 proceeded smoothly under these reductive

conditions. Additionally, unprotected alcohol 4-48 was well tolerated.

Scheme 4.17 Reaction scope of reductive coupling”
R' Ph 10 mol % NiCl,-DME

R2 © 12 mol % 4.4"-diOMeBi :
® o 4, py R
Rw Fa + Ar—Br > Rik
Mn© (2.0 equiv) R® Ar
Ph” " pp 4-a1

) MgCl, (1.0 equiv) )
4-40 NMP (0.17 M), 80 °C, 24 h 4-42

/N 7 O N
L0 D e ey,

4-31, 85% 4-43, 62% 4-44, 56%
Ph
-
(\N ’BUO F C/\/&D
BocN S 8
4-45, 74% 4-46, 64% 4-47, 81%
0] BPin
MeO =
4-48, 76% 4-49, 51% 4-50, 63%
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RS cr@ K@@

4-34, 70%P 4-51, 71%P° 4-52, 58%?° 4-53, 35%P
BocHN \\\
| MeO " "OBu
Boc
4-54, 35% 4-55, 51%"P 4-56, 58%, >99% ee®¢  4-57, 45%, 90% ee®
from methionine from proline from lysine

*Conditions: pyridinium salt 4-40 (1.2 mmol), aryl bromide 4-41 (1.0 mmol),
NiCl,'DME (10 mol %), 4,4’-dimethoxy-2,2’-bipyridine (12 mol %), Mn’ (2.0 equiv),
MgCl, (1.0 equiv), NMP (0.17 M) 80 °C, 24 h. Average isolated yields (£5%) from
duplicate experiments. beridinium salt 4-40 (1.0 mmol), aryl bromide 4-41 (1.1
mmol). °Enantiomeric excess determined by chiral HPLC analysis. ‘Single
experiment. 0.1-mmol scale. Yield determined by 'H NMR using 1,3,5-

trimethoxybenzene as internal standard.

Substrates derived from amino acids were also competent coupling partners.
Cross-coupling of the a-amino group of methionine methyl ester (4-55) and a proline
derivative (4-56) proceeded smoothly. Moreover, cross-coupling of the amino side
chain of N-Boc lysine produced 4-57 in 45% yield and 90% ee. Notably, the parent
amine of N-Boc lysine fert-butyl ester was determined to be 90% ee. This example
highlights the advantage of this reductive approach for the preservation of
enantiomeric excess in substrates containing epimerizable stereocenters. Excitingly,

this has implications for biological applications of this chemistry, particularly in the
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context of peptide conjugation and the formation of cyclic peptides via cross couplings
of the N-terminus or lysine side chain.

Broad scope was also observed in the aryl bromide coupling partner.
Heteroarenes such as quinoline (4-31, 4-47, 4-34, 4-53 & 4-56), 2- and 3-pyridine (4-
43 & 4-54), pyrimidine (4-55), benzofuran (4-51), and dibenzothiophene (4-46) were
well tolerated. Excitingly, unprotected benzamide (4-49) participated smoothly under
the reaction conditions, demonstrating that functional groups containing acidic protons
can be incorporated via this method. Aryl boronic ester (4-50) highlights the
orthogonality of this approach to standard Suzuki—-Miyaura cross-couplings.

Additionally, I wanted to demonstrate the advantage of utilizing an alkyl
amine, as well as the utility of this chemistry for late-stage functionalization by cross-
coupling substrates derived from pharmaceutical drugs and their intermediates
(Scheme 4.18). Product 4-58 derives from an amine intermediate used in the synthesis
of Lipitor® (Pfizer, Inc.), an anti-cholesterol drug.”* Products 4-59 and 4-60 are
derived from an amine intermediate in the synthesis of Mosapride, a treatment for
gastrointestinal disorders.” Notably, 4-60 was formed on a gram scale (1.04 g),
highlighting the scalability of this reaction, even with the heterogeneous nature of the
metal reductant. Moreover, we recognized that the amine (NH;) moiety is present in a
number of bioactive molecules and can be further derivatized via this approach.
Amlodipine, a treatment for high blood pressure,** cross-coupled effectively under the
standard reaction conditions to afford 4-61 in 64% yield. Norephedrine, a common
decongestant,” afforded 4-62 in synthetically useful yield, albeit in poor
diastereomeric ratio (dr). Excitingly, these examples demonstrate the advantage of

harnessing the native amine (NH;) moiety of these molecules in cross-couplings.
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Scheme 4.18 Cross—coupling of substrates derived from pharmaceutical drugs®
R1 Ph 10 mol % NiCl,-DME

12 mol % 4,4’-diOMeBipy R1
BF
N - * 4+ Ar—Br > Rik
4-41 Mn© (2.0 equiv) RS Ar

MgCl, (1.0 equiv) )
4-40 NMP (0.17 M), 80 °C, 24 h 4-42

S OO O
oL, N,

F
4-58, 57%" 4-59, 80% 4-60, 74%°

from Lipitor® intermediate from Mosapride intermediate
F
Cl OH CF3

MeO,C CO,Et
. S
H
4-61, 64% 4-62, 41% (1:1 dr)P
from Amlodipine from norephedrme

*Conditions: pyridinium salt 4-40 (1.2 mmol), aryl bromide 4-41 (1.0 mmol),
NiCl,'DME (10 mol %), 4,4’-dimethoxy-2,2’-bipyridine (12 mol %), Mn’ (2.0 equiv),
MgCl, (1.0 equiv), NMP (0.17 M) 80 °C, 24 h. Average isolated yields (£5%) from
duplicate experiments. beridinium salt 4-40 (1.0 mmol), aryl bromide 4-41 (1.1

mmol). “Single experiment. 4.0-mmol scale.

4.2.4 Mechanism Studies
A series of mechanistic experiments were conducted to elucidate the
mechanism of this transformation (Scheme 4.19). In using an organic reductant such

as tetra(dimethylamino)ethylene (TDAE) in place of manganese, arylated product 4-
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31 was observed in 24% yield (Scheme 4.19A). This result suggests that an
organomanganese species is not an intermediate, because both arylated product 4-31
and catalyst turnover are observed in the absence of manganese. Furthermore,
cyclopropyl ring-opening and TEMPO trapping experiments (Scheme 4.19B and C)
support the formation of an alkyl radical intermediate from the alkyl pyridinium salt.
This is evidence against mechanisms involving sequential two-electron oxidative

additions.

Scheme 4.19 Mechanistic experiments

A. Organic reductant
Br

| X
N/
Ph N Ph 10 mol % NiCl,"DME N
N| © 12 mol % 4,4-diOMeBipy z |
Ph/\/@ = BR TDAE (2.0 equiv) o X
Ph MgCl, (1.0 equiv) Ph
4-30 NMP (0.17 M), 80 °C, 24 h 4-31, 24%
B. Cyclopropyl ring-opening
Br | N
N/
Ph N Ph 10 mol % NiCl,"DME
| © 12 mol % 4,4’-diOMeBipy = =
N~ BF, > -
® Mn© (2.0 equiv) N
Ph MgCl, (1.0 equiv)
4-63 NMP (0.17 M), 80 °C, 24 h 4-64, 30%
C. TEMPO trapping
Br_~
| <
N
Ph ~Ph 10 mol % NiCl,"DME Me Me
| ) 12 mol % 4,4-diOMeBipy NI AN
N.~ BF -
N 4 0 . )
Ph @ Mn® (2.0 equiv), MgCl, (1.0 equiv) Me
Ph TEMPO (2.0 equiv) Me
4-30 NMP (0.17 M), 80 °C, 24 h 4-65, 50%

Yields determined by '"H NMR analysis using 1,3,5-trimethoxybenzene as internal

standard.
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Based on observations made in related cross-couplings of alkyl halides, the
two most likely mechanistic pathways involving alkyl radical intermediates are shown
in Scheme 4.20. The proposed radical-chain bimetallic pathway (vide supra) is shown
on the left. The other major competing mechanism invokes a radical rebound pathway
(Scheme 4.20, right). In this case, low valent Ni’ species A undergoes oxidative
addition into the aryl halide to form Ni'-arene species B. This is followed by a single-
electron reduction to generate Ni'-arene C. Oxidative addition of the alkyl pyridinium
salt via single electron transfer and recombination leads to diorgano-Ni'"" species D,
which is primed to undergo reductive elimination forming arylated product and Ni'-X
species E. Finally, the cycle is turned over via a single-electron reduction of E back to

Ni’ species A by manganese.

Scheme 4.20 Two possible mechanisms for the reductive coupling of alkyl

pyridinium salts with aryl bromides

Ph Ph
, 1/2 MIXX a
R._R )
RN~ 5F
R._Ar 1/2 MO Ar=Ni'L, Y @ 4
\( Ar—Ni'lL,, R Ph
' c
a X PhgP
Ar—Ni'L, B o
X
NilL, R_R

X D
Ar Ar—NilllL,

X Rj
R |
Ph__~_Ph NiL, A X
e
RN~ BF, F E
Te il "
R Ph XLy NIy
PhSPy X MO 1/2 MO X RYAI'
RI

Notably, the role of manganese is unique in each pathway. In the radical-chain

bimetallic pathway, manganese is required to reduce Ni" species F back to Ni” species
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A and turn over the catalytic cycle. However, in the radical-rebound pathway,
manganese is involved in both reduction of Ni'-arene B to Ni'-arene C as well as
reduction of Ni' species F back to Ni” species A. In this case, manganese is required
for catalyst turnover and for one of the elementary steps of the catalytic cycle. A
stoichiometric nickel study in the absence of manganese would help differentiate
between the two mechanisms. In the case of the former mechanism, the lack of a
reductant should have little or no effect on the reaction if it is only required for
catalyst turnover. However, in the latter mechanism, the absence of manganese should
prevent the desired pathway from proceeding, leading to little or no product formation.
In utilizing a stoichiometric amount of Ni’, the desired product 4-31 was observed in
substantial yield (Scheme 4.21). This is evidence against the radical-rebound pathway.
Notably, however, there are other ways to get to Ni-arene species C such as
comproportionation of A and B, and therefore we cannot currently rule out this
possibility. Moreover, although initiation of this reaction has not been studied in
detail, it may involve Mn” or one of the Ni intermediates (on- or off-cycle). Further
mechanistic studies are needed to confirm our proposed radical-chain bimetallic

pathway.

Scheme 4.21  Stoichiometric Ni° study

O
L
N

Ph . Fh Ni(cod), (1.0 equiv) N
N| (é)F 4,4’-diOMeBipy (1.2 equiv) = |
= '
Ph” 5 N MgCl, (1.0 equiv) Ph N
Ph NMP (0.17 M), 80 °C, 24 h
4-30 4-31, 27%

cat. Ni(cod)o/L, Mn®: 41%
Yield determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal

standard.
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4.3 Conclusion

In summary, I have developed a reductive cross-electrophile coupling of alkyl
pyridinium salts with aryl bromides. This approach leverages the wide availability of
alkyl amines and aryl halides for the construction of new carbon-carbon bonds.
Additionally, this method demonstrates increased scope compared to the initial
Suzuki—-Miyaura cross-coupling. Notably, substrates containing acidic protons,
eliminatable hydrogens, or epimerizable stereocenters were well tolerated. We have
also shown the applicability of this chemistry to amino acid derivatives,
pharmaceuticals, and pharmaceutical intermediates. Preliminary mechanistic data

supports a radical-chain bimetallic pathway.

4.4 Experimental

4.4.1 General Information

Reactions were performed in oven-dried Schlenk flasks or in oven-dried
round-bottomed flasks unless otherwise noted. Round-bottomed flasks were fitted
with rubber septa, and reactions were conducted under a positive pressure of Nj.
Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Silica
gel chromatography was performed on silica gel 60 (40-63 pm, 60A) unless otherwise
noted. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher,
Strem, TCI, Combi Blocks, Alfa Aesar, AK Scientific, Oakwood, or Cambridge
Isotopes Laboratories and used as received with the following exceptions: anhydrous
NMP degassed by sparging with N, for 20-30 minutes prior to use in the cross-
coupling reactions; CH,Cl, was dried by passing through drying columns.** Powdered,

activated 4A molecular sieves were prepared by heating sieves to ~200°C under high
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vacuum overnight and then crushing to achieve a fine powder. In some instances
oven-dried potassium carbonate was added to CDCl; to remove trace acid. Proton
nuclear magnetic resonance ('H NMR) spectra, carbon nuclear magnetic resonance
(*C NMR) spectra, and fluorine nuclear magnetic resonance spectra ('°"F NMR) were
recorded on both 400 MHz and 600 MHz spectrometers. Chemical shifts for protons
are reported in parts per million downfield from tetramethylsilane and are referenced
to residual protium in the NMR solvent (CHCl; = & 7.26). Chemical shifts for carbon
are reported in parts per million downfield from tetramethylsilane and are referenced
to the carbon resonances of the solvent (CDCIl; = 6 77.16). Chemical shifts for fluorine
were externally referenced to CFCl; in CDCl; (CFCl; = 8 0). Data are represented as
follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q
= quartet, p = pentet, m = multiplet, dd = doublet of doublets, hept = heptet), coupling
constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR
spectrophotometers with material loaded onto a KBr plate. The mass spectral data
were obtained at the University of Delaware mass spectrometry facility. Melting

points were taken on a Thomas-Hoover Uni-Melt Capillary Melting Point Apparatus.

4.4.2 General Optimization Procedure

In a Ny-filled glovebox: To an oven-dried 1-dram vial was added nickel salt
(0.010 mmol, 10 mol %), ligand (0.012 mmol, 12 mol %), additive (0.1 mmol, 1.0
equiv), reductant (0.3 mmol, 3.0 equiv), and pyridinium salt 4-30. 3-Bromoquinoline
(15 pL, 0.11 mmol, 1.1 equiv) was then added to the vial followed by solvent. The
vial was then equipped with a stir bar, capped with a Teflon-coated cap, and removed

from the glovebox. The resulting mixture was stirred vigorously at 80 °C for 24 h. The
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mixture was then diluted with EtOAc (1.5 mL), filtered through a short plug of silica
gel, and the filter cake was washed with EtOAc (10 mL). The filtrate was then washed
with brine (2 x 5 mL), dried with MgSO,, and concentrated. 1,3,5-Trimethoxybenzene
(internal standard) and CDCl; were added, and the yield was determined by 'H NMR

analysis.

4.4.3 Reductive Cross-Electrophile Coupling of Alkyl Pyridinium Salts with

Aryl Bromides
,R" Ph o 10 mol % NiCl,-DME
R @ BF, 12 mol % 4,4-diOMeBipy LR
R3" N7 + Ar—Br » R
« | Mn® (2.0 equiv) RS MAr
Ph Ph MgCl, (1.0 equiv)

NMP (0.17 M), 80 °C, 24 h

4.4.3.1 General Procedure A: Cross-Coupling of Primary Alkyl Pyridinium
Salts

To an oven-dried, 25-mL Schlenk flask was added NiCl,-DME (22 mg, 0.10
mmol, 10 mol %), 4,4’-dimethoxy-2,2’-bipyridine (26 mg, 0.12 mmol, 12 mol %),
magnesium chloride (95 mg, 1.0 mmol, 1.0 equiv), manganese powder (110 mg, 2.0
mmol, 2.0 equiv), alkyl pyridinium salt (1.2 mmol, 1.2 equiv), and arylbromide (1.0
mmol, 1.0 equiv), if solid. The flask was fitted with a rubber septum, sealed with
parafilm, and then evacuated and refilled with N, (x 3). If the arylbromide was a
liquid, it was introduced via syringe at this point. N-Methyl-2-pyrrolidone (6.0 mL)
was added, and the flask was sealed. The resulting mixture was stirred at 80 °C for 24
hours. The mixture was then allowed to cool to room temperature, filtered through a

short plug of silica gel, and the filter cake washed with ethyl acetate (4 x 25 mL). The
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filtrate was then washed with brine (4 x 25 mL). The combined aqueous layers were
back-extracted with ethyl acetate (1 x 25 mL). The combined organic layers were
dried with magnesium sulfate and concentrated. The cross-coupled product was then

purified via silica gel chromatography.

4.4.3.2 General Procedure B: Cross-Coupling of Secondary Alkyl Pyridinium
Salts

To an oven-dried, 25-mL Schlenk flask was added NiCl,-DME (22 mg, 0.10
mmol, 10 mol %), 4,4’-dimethoxy-2,2’-bipyridine (26 mg, 0.12 mmol, 12 mol %),
magnesium chloride (95 mg, 1.0 mmol, 1.0 equiv), and manganese powder (110 mg,
2.0 mmol, 2.0 equiv). The flask was fitted with a rubber septum, sealed with parafilm,
and then evacuated and refilled with N, (x 3). N-Methyl-2-pyrrolidone (4.0 mL) was
added, and the resultant mixture was heated to 80 °C. To a separate oven-dried, 10-mL
Schlenk flask was added alkyl pyridinium salt (1.0 mmol, 1.0 equiv) and arylbromide
(1.1 mmol, 1.1 equiv), if solid. The flask was fitted with a rubber septum, sealed with
parafilm, and then evacuated and refilled with N, (x 3). If the arylbromide was a
liquid, it was introduced via syringe at this point. N-Methyl-2-pyrrolidone (2.0 mL)
was added and the contents transferred into a 3-mL nitrogen-purged leur-lock syringe.
The solution was added at a steady rate into the flask containing the catalyst mixture
via syringe pump over a period of six hours. The resulting mixture was stirred at 80 °C
for an additional 18 hours (24 hours total). The mixture was then allowed to cool to
room temperature, filtered through a short plug of silica gel, and the filter cake washed
with ethyl acetate (4 x 25 mL). The filtrate was then washed with brine (4 x 25 mL).

The combined aqueous layers were back-extracted with ethyl acetate (1 x 25 mL). The
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combined organic layers were dried with magnesium sulfate and concentrated. The

cross-coupled product was then purified via silica gel chromatography.

3-Phenethylquinoline (4-31). Prepared via General Procedure A using 1-phenethyl-
2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was purified by
silica gel chromatography (10-50% ethyl acetate/hexanes) to give 4-31 (run 1: 201
mg, 86%; run 2: 195 mg, 84%) as a pale yellow oil: 'H NMR (600 MHz, CDCl;) &
8.75 (d,J=2.2 Hz, 1H), 8.08 (d, J= 8.5 Hz, 1H), 7.88 — 7.85 (m, 1H), 7.77 — 7.72 (m,
1H), 7.69 — 7.63 (m, 1H), 7.55 — 7.49 (m, 1H), 7.29 (t, J = 7.5 Hz, 2H), 7.23 — 7.14
(m, 3H), 3.13 (t, J = 7.8 Hz, 2H), 3.03 (t, J = 7.8 Hz, 2H); °C NMR (151 MHz,
CDCl) 8 152.0, 146.9, 140.8, 134.4, 134.2, 129.2, 128.7, 128.5, 128.1, 127.3, 126.6,

126.2, 37.5, 35.1. The spectral data matches that reported in the literature.”’

Ph

Ph =

N~

S
1,4-Diphenethyl-2,4,6-triphenyl-1,4-dihydropyridine (4-32): '"H NMR (400 MHz,
CDCl3) & 7.57 (s, 6H), 7.44 — 7.35 (m, 8H), 7.25 — 7.11 (m, 6H), 7.04 — 6.95 (m, 3H),
6.51 — 6.44 (m, 2H), 5.18 (s, 2H), 3.29 — 3.20 (m, 2H), 2.72 — 2.63 (m, 2H), 2.37 —

2.28 (m, 2H), 2.20 — 2.11 (m, 2H); *C NMR (101 MHz, CDCLy) & 151.4, 143.1,
143.0, 139.1, 138.0, 128.42, 128.39, 128.37, 128.35, 128.3, 128.11, 128.08, 128.00,
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126.4, 125.8, 125.6, 125.5, 113.3, 50.0, 46.7, 43.8, 34.7, 32.7; HRMS (ESI+) [M+H]"
calculated for C39H3gN: 518.2842, found 518.2823.

\

3-Phenethylpyridine (4-43). Prepared via General Procedure A using 1-phenethyl-
2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was purified by
silica gel chromatography (5—60% ether/hexanes w/ 1% Et;N) to give 4-43 (run 1: 115
mg, 63%; run 2: 110 mg, 60%) as a pale yellow oil: 'H NMR (400 MHz, CDCl;) &
8.45(dd, J=4.8,1.7 Hz, 1H), 8.44 — 8.41 (m, 1H), 7.43 (dt, J= 7.8, 2.0 Hz, 1H), 7.31
— 7.26 (m, 2H), 7.23 — 7.13 (m, 4H), 2.93 (s, 4H); °C NMR (101 MHz, CDCL;) &
150.2, 147.6, 141.0, 136.9, 136.0, 128.59, 128.57, 126.3, 123.3, 37.6, 35.1. The

spectral data matches that reported in the literature.*®

o
0 0]
4-(3-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)phenyl)morpholine (4-44). Prepared via
General  Procedure = A  using 1-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-2,4,6-
triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was purified by silica gel
chromatography (5-20% ethyl acetate/hexanes) to give 4-44 (run 1: 164 mg, 53%; run
2: 181 mg, 58%) as an off-white solid (mp 4446 °C): 'H NMR (600 MHz, CDCl5) &
7.20 (t, J=7.8 Hz, 1H), 6.76 (dd, J = 8.1, 2.0 Hz, 1H), 6.74 — 6.70 (m, 3H), 6.68 (d, J
=1.6 Hz, 1H), 6.63 (dd, J=7.9, 1.7 Hz, 1H), 5.92 (s, 2H), 3.88 — 3.83 (m, 4H), 3.16 —
3.11 (m, 4H), 2.83 (s, 4H); °C NMR (151 MHz, CDCl3) § 151.4, 147.5, 145.6, 142.7,
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135.7, 129.1, 121.2, 120.3, 116.1, 113.4, 109.0, 108.1, 100.8, 67.0, 49.5, 38.6, 37.7;
FTIR (neat) 2853, 1600, 1489, 1443, 1242, 1121, 928, 696 cm™; HRMS (ESI+)
[M+H]" calculated for C1oH2oNO3: 312.1594, found 312.1590.

OO
N

BocN

tert-Butyl 4-(2-([1,1'-biphenyl]-4-yl)ethyl)piperazine-1-carboxylate (4-45).
Prepared via General Procedure A using 1-(2-(4-(tert-butoxycarbonyl)piperazin-1-
yDethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was
purified by silica gel chromatography (10-20% ethyl acetate/hexanes) to give 4-45
(run 1: 268 mg, 73%; run 2: 275 mg, 75%) as a white solid (mp 85-89 °C): 'H NMR
(400 MHz, CDCls) & 7.61 — 7.55 (m, 2H), 7.55 — 7.48 (m, 2H), 7.48 — 7.39 (m, 2H),
7.38 —7.31 (m, 1H), 7.31 — 7.27 (m, 2H), 3.52 — 3.44 (m, 4H), 2.90 — 2.81 (m, 2H),
2.69 — 2.60 (m, 2H), 2.52 — 2.46 (m, 4H), 1.47 (s, 9H); °C NMR (101 MHz, CDCl;) &
154.8, 141.0, 139.2, 139.1, 129.1, 128.8, 127.2, 127.1, 127.0, 79.7, 60.5, 53.0, 33.2,
28.5; FTIR (neat) 2929, 2807, 1695, 1420, 1247, 1171, 1003, 761 cm™; HRMS (ESI+)
[M+H]" calculated for C23H31N,0,: 367.2380, found 367.2376.

@)

tert-Butyl 3-(dibenzo[b,d]thiophen-2-yl)propanoate (4-46). Prepared via General
Procedure A using 1-(3-(fert-butoxy)-3-oxopropyl)-2,4,6-triphenylpyridin-1-ium

tetrafluoroborate. The crude mixture was purified by silica gel chromatography (2—
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10% diethyl ether/hexanes) to give 4-46 (run 1: 200 mg, 64%; run 2: 199 mg, 64%) as
a white solid (mp 53—55 °C): 'H NMR (600 MHz, CDCl3) & 8.19 — 8.13 (m, 1H), 8.02
(s, 1H), 7.90 — 7.84 (m, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.50 — 7.44 (m, 2H), 7.37 — 7.32
(m, 1H), 3.12 (t, J = 7.8 Hz, 2H), 2.67 (t, J= 7.8 Hz, 2H), 1.45 (s, 9H); °C NMR (151
MHz, CDCl3) & 172.2, 139.8, 137.23, 137.21, 135.8, 135.4, 127.5, 126.6, 124.3, 122.9,
122.7, 121.5, 121.2, 80.5, 37.5, 31.2, 28.1; FTIR (neat) 2976, 2930, 1726, 1366, 1150,
764 cm’; HRMS (ESI+) [M+H]" calculated for CjoH» 0,S: 313.1257, found
313.1245.

\

FsC

3-(3,3,3-Trifluoropropyl)quinoline (4-47). Prepared via General Procedure A using
2,4,6-triphenyl-1-(3,3,3-trifluoropropyl)pyridin-1-ium tetrafluoroborate. ~The crude
mixture was purified by silica gel chromatography (10—40% ethyl acetate/hexanes) to
give 4-47 (run 1: 188 mg, 84%; run 2: 173 mg, 77%) as a pale yellow solid (mp 54-55
°C): 'H NMR (400 MHz, CDCl3) § 8.80 (d, J = 2.3 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H),
797 (d, J = 1.3 Hz, 1H), 7.83 — 7.75 (m, 1H), 7.75 — 7.66 (m, 1H), 7.60 — 7.51 (m,
1H), 3.14 — 3.05 (m, 2H), 2.60 — 2.43 (m, 2H); °C NMR (101 MHz, CDCl;) & 151.3,
147.2, 134.5, 131.5, 129.3, 129.2, 127.9, 127.4, 127.0, 126.4 (q, J c—r = 276.9 Hz),
35.3 (q, J cr = 28.8 Hz), 25.7 (q, Je_r = 3.3 Hz); ’F NMR (376 MHz, CDCl;) & —
66.43; FTIR (neat) 2955, 1496, 1235, 1143, 1097, 976, 756 cm™'; HRMS (ESI+)
[M+H]" calculated for C,H;F3N: 226.0838, found 266.0838.
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HO

3-(Naphthalen-2-yl)propan-1-ol (4-48). Prepared via General Procedure A using 1-
(3-hydroxypropyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture
was purified by silica gel chromatography (10—40% ethyl acetate/hexanes) to give 4-
48 (run 1: 145 mg, 78%; run 2: 137 mg, 74%) as a white solid: '"H NMR (600 MHz,
CDCl) 6 7.73 (d, J = 8.0 Hz, 1H), 7.72 — 7.68 (m, 2H), 7.57 (s, 1H), 7.40 — 7.33 (m,
2H), 7.30 — 7.26 (m, 1H), 3.64 (t, J = 6.4 Hz, 2H), 2.84 — 2.78 (m, 2H), 1.96 — 1.88
(m, 2H); °C NMR (151 MHz, CDCL) & 139.30, 133.64, 132.03, 127.97, 127.61,
127.40, 127.27, 126.43, 125.94, 125.18, 62.28, 34.10, 32.22. The spectral data

matches that reported in the literature.”

@)

j)\/\/Ej)LNHZ
MeO

Methyl 4-(4-carbamoylphenyl)butanoate (4-49). Prepared via General Procedure A
using 1-(4-methoxy-4-oxobutyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The
crude mixture was purified by silica gel chromatography (50-100% ethyl
acetate/hexanes) to give 4-49 (run 1: 103 mg, 46%; run 2: 125 mg, 56%) as a light
pink solid: "H NMR (400 MHz, CDCl3) & 7.74 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.0 Hz,
2H, overlaps with CHCI3), 6.06 (s, br, 1H), 5.69 (s, br, 1H), 3.67 (s, 3H), 2.70 (t, J =
7.6 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 1.97 (p, J = 7.5 Hz, 2H); °C NMR (101 MHz,
CDCl) 6 173.7, 169.2, 145.9, 131.1, 128.8, 127.6, 51.6, 35.0, 33.3, 26.2; HRMS
(ESI+) [M+H]" calculated for C;,H;¢NO3: 222.1125, found 222.1124.
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| ¥
2-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenethyl)pyridine (4-50).
Prepared via General Procedure A wusing 2,4,6-triphenyl-1-(2-(pyridin-2-
yl)ethyl)pyridin-1-ium tetrafluoroborate. The crude mixture was purified by silica gel
chromatography (2—10% ethyl acetate/hexanes) to give 4-50 (run 1: 183 mg, 59%; run
2: 203 mg, 66%) as a white solid: '"H NMR (400 MHz, CDCls) & 8.59 — 8.52 (m, 1H),
7.72 (d, J=8.0 Hz, 2H), 7.55 (td, /= 7.7, 1.9 Hz, 1H), 7.21 (d, J= 7.9 Hz, 2H), 7.13 —
7.08 (m, 1H), 7.08 — 7.01 (m, 1H), 3.13 — 3.02 (m, 4H), 1.33 (s, 12H); °C NMR (101
MHz, (CD;),CO) & 161.9, 150.13, 150.11, 146.2, 137.0, 135.6, 128.8, 123.7, 122.0,
84.4, 40.5, 36.5, 25.2; HRMS (ESI+) [M+H]" calculated for C;oH,sBNO,: 310.1973,

found 310.1972.

Me
Me | N
N
3-Isopropylquinoline (4-34). Prepared via General Procedure B using 1-isopropyl-
2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was purified by
silica gel chromatography (5—15% ethyl acetate/hexanes) to give 4-34 (run 1: 119 mg,
70%; run 2: 118 mg, 69%) as a yellow oil: '"H NMR (400 MHz, CDCl3) 5 8.84 (d, J =
2.3 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 2.2 Hz, 1H), 7.82 — 7.75 (m, 1H),
7.70 —7.61 (m, 1H), 7.56 — 7.47 (m, 1H), 3.14 (hept, J = 7.0 Hz, 1H), 1.38 (d, J=6.9

Hz, 6H); °C NMR (101 MHz, CDCl3) & 151.3, 146.9, 141.1, 131.8, 129.1, 128.5,
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128.2, 127.5, 126.5, 31.9, 23.7. The spectral data matches that reported in the

literature.*°

Ph Me
Ph =

Me. N_~ Me
Me Ph
1,4-Diisopropyl-2,4,6-triphenyl-1,4-dihydropyridine (4-35): 'H NMR (400 MHz,
CDCl3) 6 7.67 — 7.60 (m, 4H), 7.50 — 7.43 (m, 2H), 7.42 — 7.29 (m, 8H), 7.20 — 7.12
(m, 1H), 5.29 (s, 2H), 3.30 (hept, /= 6.9 Hz, 1H), 2.01 (hept, J = 6.8 Hz, 1H), 0.78 (d,
J=6.8 Hz, 6H), 0.58 (d, J= 6.9 Hz, 6H); °C NMR (101 MHz, CDCl3) § 151.7, 145.2,
140.9, 128.2, 128.0, 127.9, 127.7, 126.8, 125.1, 115.3, 53.6, 47.0, 39.5, 22.6, 18.4;
HRMS (ESI+) [M+H]" calculated for C,0H3,N: 394.2529, found 394.2513.

0]
/

BocN

tert-Butyl 4-(benzofuran-5-yl)piperidine-1-carboxylate (4-51). Prepared via
General Procedure B  using 1-(1-(tert-butoxycarbonyl)piperidin-4-yl)-2,4,6-
triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was purified by silica gel
chromatography (2—10% ethyl acetate/hexanes) to give 4-51 (run 1: 218 mg, 72%; run
2: 210 mg, 70%) as a white solid: '"H NMR (600 MHz, CDCls) & 7.62 — 7.58 (m, 1H),
7.44 —7.40 (m, 2H), 7.17 — 7.12 (m, 1H), 6.73 (s, 1H), 4.37 — 4.17 (br m, 2H), 2.92 —
2.77 (m, 2H), 2.74 (tt, J=12.2, 3.6 Hz, 1H), 1.89 — 1.83 (m, 2H), 1.73 — 1.62 (m, 2H),
1.49 (s, 9H); °C NMR (151 MHz, CDCls) & 154.9, 153.7, 145.3, 140.5, 127.6, 123 .4,
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118.7, 111.2, 106.5, 79.4, 44.5 (br), 42.7, 33.8, 28.5. The spectral data matches that

reported in the literature.’

CN

\

OMe
3-Methoxy-5-(pyridin-3-ylmethyl)benzonitrile (4-52). Prepared via General
Procedure B using 2,4,6-triphenyl-1-(pyridin-3-ylmethyl)pyridin-1-ium
tetrafluoroborate. The crude mixture was purified by silica gel chromatography (20—
60% ethyl acetate/hexanes) to give 4-52 (run 1: 129 mg, 58%, run 2: 127 mg, 57%) as
an off-white solid (mp 74-78 °C): 'H NMR (400 MHz, CDCl;) & 8.54 — 8.46 (m, 2H),
7.49 —7.41 (m, 1H), 7.26 — 7.23 (m, 1H), 7.08 — 7.04 (m, 1H), 7.03 — 6.98 (m, 1H),
6.95 — 6.90 (m, 1H), 3.97 (s, 2H), 3.80 (s, 3H); °C NMR (101 MHz, CDCl;) & 159.9,
150.1, 148.3, 142.8, 136.3, 134.8, 124.8, 123.7, 120.0, 118.6, 114.8, 113.4, 55.6, 38.6;
FTIR (neat) 3029, 2923, 2841, 2228, 1591, 1292, 1059, 718 cm’'; HRMS (ESI+)
[M+H]" calculated for C4H3N,0: 225.1022, found 255.1021.

\

Me N

3-(1-Methylcyclopropyl)quinoline (4-53). Prepared via General Procedure B using 1-
(1-methylcyclopropyl)-2,4,6-triphenylpyridin-1-ium  tetrafluoroborate. The crude
mixture was purified by silica gel chromatography (5-20% ethyl acetate/hexanes) to
give 4-53 (run 1: 61 mg. 33%, run 2: 65 mg, 36%) as a yellow oil: '"H NMR (400
MHz, CDCIs) ¢ 8.84 (d, J = 2.3 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.99 — 7.93 (m,
1H), 7.76 (d, J = 8.1 Hz, 1H), 7.69 — 7.60 (m, 1H), 7.56 — 7.47 (m, 1H), 1.51 (s, 3H),
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1.00 (t, J = 5.4 Hz, 2H), 0.87 (t, J = 5.4 Hz, 2H); °C NMR (151 MHz, CDCl;) &
151.0, 146.5, 139.6, 132.9, 129.1, 128.5, 127.9, 127.3, 126.6, 25.6, 18.4, 15.0; FTIR
(neat) 3076, 3001, 2958, 2925, 2870, 1492, 1016, 750 cm™; HRMS (ESI+) [M+H]"
calculated for C13H4N: 184.1121; found 184.1116.

a
@] \N
<O

2-(2-(Benzo[d][1,3]dioxol-5-yl)ethyl)pyridine  (4-54). Prepared via General
Procedure A using 1-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate. The crude mixture was purified by silica gel chromatography (5—
40% ether/hexanes) to give 4-54 (run 1: 83 mg, 36%; run 2: 77 mg, 34%) as a yellow
oil: "H NMR (400 MHz, CDCl;) & 8.57 — 8.54 (m, 1H), 7.56 (td, J = 7.7, 1.9 Hz, 1H),
7.13 = 7.05 (m, 2H), 6.71 (d, J = 7.9 Hz, 1H), 6.69 (d, J = 1.6 Hz, 1H), 6.63 (dd, J =
7.9, 1.7 Hz, 1H), 5.91 (s, 2H), 3.07 — 3.01 (m, 2H), 3.00 — 2.94 (m, 2H); °C NMR
(101 MHz, CDCl;5) 6 161.2, 149.5, 147.6, 145.8, 136.4, 135.5, 123.1, 121.34, 121.31,
109.1, 108.3, 100.9, 40.7, 35.9. The spectral data matches that reported in the

literature.!

Methyl 4-(methylthio)-2-(pyrimidin-5-yl)butanoate (4-55). Prepared via General
Procedure B using 1-(1-methoxy-4-(methylthio)-1-oxobutan-2-yl)-2,4,6-

triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was purified via silica gel
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chromatography (5-30% ethyl acetate/hexanes) to give 4-55 (run 1: 113 mg, 50%; run
2: 116 mg, 51%) as a pale yellow oil: '"H NMR (400 MHz, CDCls) § 9.15 (s, 1H), 8.71
(s, 2H), 3.87 — 3.82 (m, 1H), 3.71 (s, 3H), 2.54 — 2.34 (m, 3H), 2.12 — 2.01 (m, 1H),
2.07 (s, 1H); °C NMR (101 MHz, CDCLs) § 172.6, 158.1, 156.7, 132.1, 52.8, 45.4,
31.9, 31.6, 15.4; FTIR (neat) 2917, 1736, 1561, 1412, 1203, 728 cm™'; HRMS (ESI+)
[M+H]" calculated for CoH;5N,0,S: 227.0849, found 227.0851.

N\
o 2
goc

tert-Butyl (5)-2-((2-methylquinolin-6-yl)methyl)pyrrolidine-1-carboxylate (4-56).
Prepared via General Procedure B using (S)-1-((1-(fert-butoxycarbonyl)pyrrolidin-2-
yl)methyl)-2.,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was
purified via silica gel chromatography (10-50% ethyl acetate/hexanes) to give 4-56
(run 1: 191 mg, 59%; run 2: 182 mg, 56%) as a yellow oil (mixture of rotamers): 'H
NMR (400 MHz, CDCls) 6 8.03 — 7.92 (m, br, 2H), 7.62 — 7.49 (m, br, 2H), 7.31 —
7.26 (m, br, 1H, overlaps with CHCl3), 4.16 — 4.02 (m, br, 1H), 3.44 — 3.15 (m, br,
3H), 2.80 — 2.65 (m, br, 1H), 2.74 (s, br, 3H), 1.81 — 1.70 (m, br, 4H), 1.51 (s, br, 9H);
BC NMR (101 MHz, CDCls) & 158.5 (major), 158.3 (minor), 154.6 (minor), 154.6
(major), 146.6, 136.8 (minor), 135.9 (major), 132.0 (minor), 131.4 (major), 128.5
(major), 128.2 (minor), 127.4, 127.3, 126.5, 122.2 (major), 122.0 (minor), 79.4
(major), 79.2 (minor), 58.7, 46.9 (minor), 46.3 (major), 40.5 (major), 39.5 (minor),
29.8 (major), 29.0 (minor), 28.6, 25.3, 23.5 (minor), 22.7 (major); FTIR (neat) 2972,
2875, 1691, 1395, 1170, 1116, 772 cm'l; HRMS (ESI+) [M+H]" calculated for

C0H27N>0,: 327.2067, found 327.2066. The enantiomeric excess was determined to
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be >99% by chiral HPLC analysis (CHIRALPAK IA, 0.2 mL/min, 2% i-

PrOH/hexanes, A=210 nm); tg(major) = 103.75 min, tg(minor) = 111.85 min.

Me Me
o 0

’BquC\\v'v'v,/\@
CN

tert-Butyl  2-((4R,6R)-6-(4-cyanophenethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate
(4-58). Prepared via General Procedure B using 1-(2-((4R,6R)-6-(2-(tert-butoxy)-2-
oxoethyl)-2,2-dimethyl-1,3-dioxan-4-yl)ethyl)-2,4,6-triphenylpyridin-1-ium
tetrafluoroborate. The crude mixture was purified via silica gel chromatography (5—
60% ether/hexanes) to give 4-58 (run 1: 191 mg, 53%; run 2: 219 mg, 61%) as a clear
oil: '"H NMR (400 MHz, CDCl3) § 7.59 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H),
4.23 (dtd, J = 11.5, 6.5, 2.5 Hz, 1H), 3.86 — 3.74 (m, 1H), 2.91 — 2.65 (m, 2H), 2.45
(dd, J=15.2, 6.9 Hz, 1H), 2.31 (dd, J=15.2, 6.3 Hz, 1H), 1.90 - 1.76 (m, 1H), 1.78 —
1.64 (m, 1H), 1.56 (dt, J = 12.7, 2.4 Hz, 1H), 1.46 (s, 9H), 1.43 (s, 3H), 1.41 (s, 3H),
1.29 — 1.19 (m, 1H); >*C NMR (101 MHz, CDCls) & 170.3, 147.8, 132.2, 129.3, 119.1,
109.7, 98.8, 80.7, 67.5, 66.2,42.6, 37.3, 36.5, 31.4, 30.1, 28.1, 19.8; FTIR (neat) 2980,
2227, 1729, 1368, 1159, 845 cm™'; HRMS (ESI+) [M+H]" calculated for C,;H3oNOs:
360.2169, found 360.2167.
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1-(4-((4-(4-Fluorobenzyl)morpholin-2-yl)methyl)phenyl)ethan-1-one (4-59).
Prepared via General Procedure A wusing 1-((4-(4-fluorobenzyl)morpholin-2-
yl)methyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture was
purified by silica gel chromatography (20-75% ethyl acetate/hexanes w/ 1% Et;:N) to
give 4-59 (run 1: 244 mg, 77%; run 2: 258 mg, 82%) as a pale yellow oil: 'H NMR
(400 MHz, CDCl3) & 7.92 — 7.85 (m, 2H), 7.33 — 7.28 (m, 2H), 7.28 — 7.21 (m, 2H,
overlaps with CHCl3), 7.04 — 6.94 (m, 2H), 3.88 — 3.80 (m, 1H), 3.80 — 3.71 (m, 1H),
3.59 (td, J=11.3, 2.5 Hz, 1H), 3.51 — 3.35 (m, 2H), 2.86 (dd, J = 13.9, 7.7 Hz, 1H),
2.78 - 2.66 (m, 2H), 2.65 — 2.55 (m, 1H), 2.58 (s, 3H), 2.13 (td, J=11.3, 3.3 Hz, 1H),
1.99 — 1.89 (m, 1H); *C NMR (101 MHz, CDCL) & 198.0, 162.2 (d, J = 245.1 Hz),
144.2, 135.52, 133.46 (d, J= 3.1 Hz), 130.7 (d, J= 8.0 Hz), 129.6, 128.6, 115.2 (d, J =
21.2 Hz), 76.2, 67.0, 62.5, 58.4, 52.8, 40.3, 26.8; '’F NMR (376 MHz, CDCl;) & -
115.59; FTIR (neat) 2935, 2805, 1682, 1268, 842 cm’'; HRMS (ESI+) [M+H]"
calculated for Co0Ho3FNO,: 328.1707, found 328.1703.

SAGW
| Y,
Q,

4-(4-Fluorobenzyl)-2-(4-(oxazol-2-yl)benzyl)morpholine  (4-60). Prepared via
General Procedure A using 1-((4-(4-fluorobenzyl)morpholin-2-yl)methyl)-2.,4,6-
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triphenylpyridin-1-ium tetrafluoroborate on a 4 mmol scale. The crude mixture was
purified by silica gel chromatography (10-15% ethyl acetate/hexanes) to give 4-60
(1041 mg, 74%) as a pale yellow oil: '"H NMR (600 MHz, CDCls) & 7.96 (d, J = 8.3
Hz, 2H), 7.69 (s, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.28 — 7.23 (m, 2H, overlaps with
CHCl3), 7.22 (s, 1H), 6.99 (t, J = 8.7 Hz, 2H), 3.87 — 3.81 (m, 1H), 3.81 — 3.74 (m,
1H), 3.65 — 3.57 (m, 1H), 3.48 (d, J = 13.0 Hz, 1H), 3.39 (d, J = 13.0 Hz, 1H), 2.87
(dd, J=14.0, 7.4 Hz, 1H), 2.76 — 2.69 (m, 2H), 2.60 (d, J = 11.2 Hz, 1H), 2.17 - 2.10
(m, 1H), 1.95 (t, J = 10.5 Hz, 1H); °C NMR (151 MHz, CDCL) & 162.05 (d, J =
2449 Hz), 162.04, 140.8, 138.3, 133.4 (d, J = 3.2 Hz), 130.5 (d, J = 7.9 Hz), 129.7,
128.4, 126.4, 125.7, 115.1 (d, J = 21.2 Hz), 76.2, 66.9, 62.4, 58.3, 52.7, 40.1; F
NMR (565 MHz, CDCl3) 6 —115.72; FTIR (neat) 3125, 3040, 2935, 2856, 2805, 1921,
1509, 1221, 1112, 846, 715 cm™'; HRMS (ESI+) [M+H]" calculated for C5;H2,FN,0,:
353.1660, found 353.1654.

Cl
MeO,C CO,Et
|
H
CF3
3-Ethyl S-methyl 4-(2-chlorophenyl)-6-methyl-2-((4-

(trifluoromethyl)phenethoxy)methyl)-1,4-dihydropyridine-3,5-dicarboxylate (4-
61). Prepared via General Procedure A using 1-(2-((4-(2-chlorophenyl)-3-
(ethoxycarbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydropyridin-2-

yl)methoxy)ethyl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate. The crude mixture

was purified via silica gel chromatography (5—40% ethyl acetate/hexanes) to give 4-61
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(run 1: 326 mg, 61%; run 2: 357 mg, 67%) as a yellow oil: '"H NMR (400 MHz,
CDCl3) § 7.61 (d, J = 7.7 Hz, 2H), 7.43 — 7.35 (m, 2H), 7.31 (dd, J = 7.7, 1.7 Hz, 1H),
7.22 (dd, J = 8.0, 1.4 Hz, 1H), 7.16 — 7.07 (m, 1H), 7.08 — 6.99 (m, 1H), 6.68 (s, 1H),
5.36 (s, 1H), 4.79 — 4.62 (m, 2H), 4.10 — 3.97 (m, 2H), 3.88 — 3.73 (m, 2H), 3.60 (s,
3H), 3.02 (t, J = 6.3 Hz, 2H), 2.08 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); °C NMR (101
MHz, CDCly) § 167.93, 167.14, 145.61, 145.12, 143.64, 142.96, 132.35, 131.46,
129.28, 129.27, 129.04 (q, J = 32.5 Hz), 127.40, 126.82, 125.56 (q, J = 3.7 Hz),
123.71 (q, J = 271.7 Hz), 103.92, 101.43, 71.44, 67.68, 59.84, 50.84, 37.18, 35.95,
19.26, 14.28; F NMR (376 MHz, CDCly) & —62.43; HRMS (ESI+) [M+H]"
calculated for Co7H,5CIF3NOs: 538.1603, found 538.1590.
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Chapter 5

COPPER-CATALYZED ENANTIOSELECTIVE ALKYNYLATION OF
IMINIUM IONS TO FORM o-DIARYL TETRASUBSTITUTED
STEREOCENTERS

5.1 Introduction

Chirality is present in a wide array of molecules ranging from simple amino
acids to complex bioactive molecules. Recognizing the importance of these
stereogenic centers, intense efforts have focused on the development of
enantioselective methodologies to enable synthesis. In particular, amines bearing an o-
diaryl tetrasubstitued stereocenter are found in a number of pharmaceutically relevant
molecules (Scheme 5.1).'” Unfortunately, construction of these stereocenters is
challenging, and there are a limited number of methods that enable efficient access to

these motifs.

Scheme 5.1  Examples of bioactive amines containing an o-diaryl tetrasubstitued

stereocenter
O._ OEt
O
B D
N/
OMe Me
5-2 5-3
BMS-795311 (Pfizer) Dizocilpine
(Bristol-Myers Squibb) Prostaglandin D (Merck)
cholesteryl ester transfer synthase inhibitor anticonvulsant and
protein inhibitor anesthetic
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An enantioselective addition of a chiral nucleophile to a prochiral ketimine (5-
4) would allow access to amines bearing an o-tetrasubstituted stereocenter (5-5)
(Scheme 5.2, left). Moreover, addition of an alkyne moiety would enable the
incorporation of a versatile handle that can be used for further product elaboration
(Scheme 5.2, right). For example, product 5-5 can be hydrogenated to form the
corresponding alkene or alkane (5-6). The alkyne can also participate in click

chemistry to form triazole 5-7. In addition, it can be oxidized to form ketone 5-8.

Scheme 5.2  Synthetic utility of alkynylated products

R3
‘NHR2
R1MR4
4 5-6
R3
3 NH
RQN =R R~NHR2 J%N
> MY > R1 Ky
N
R1JLR2 chiral catalyst R1J\ . \ N
5-4 55 R T ST R
R3
A 'NH_,O
“R?
R’ R*
5-8

Unfortunately, enantioselective additions to diaryl ketimines remains an on-
going challenge. It is very difficult for a chiral catalyst to distinguish between two
similar aryl groups, thereby resulting in poor enantioselectivities. Nonetheless, there
are limited examples in the literature that demonstrate the feasibility of this approach
(Scheme 5.3). In 2010, the Zhang and Gosselin groups disclosed an asymmetric
hydrogenation of substituted benzophenone N-H ketimines (5-9) using an
iridium/phosphoramidite (5-10) catalyst system (Scheme 5.3A)." Similarly, the Wang
group published the enantioselective transfer hydrogenation of ortho-

hydroxybenzophenone N-—H ketimines (5-12) using chiral phosphoric acid (5-13)
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(Scheme 5.3B).” In this case, a Hantzsch ester is employed as the hydrogen source.
Additionally, the Feng group has demonstrated an asymmetric cyanation of ketimine
5-15 to deliver Strecker products 5-18 (Scheme 5.3C).° This reaction employs a
catalyst generated from titanium isopropoxide [Ti(O'Pr),], cinchona alkaloid 5-16, and
achiral biphenol 5-17. Notably, in every instance ortho-substitution on one of the aryl
rings is required for good stereoinduction. Chiral auxiliary based approaches have also
been used, but again rely on steric differentiation of the two aryl groups to obtain good

diastereomeric ratios (dr).”

Scheme 5.3  Enantioselective additions to diaryl ketimines

A. Zhang and Gosselin’s asymmetric hydrogenation

NH,CI [Ir(cod)|_(|3l]2/5-1 0 NHClI O O
2
N X > X 0 Me

R'T— | —R2 CH,Cl,/MeOH  R!— | —Re R
= i, 36 h =

/ -~
o)
5-9 5-11 OO \—Ph
80-96%
31-98% ee 5-10

B. Wang’s asymmetric transfer hydrogenation

BUOZCI\/[COQtBU SiPhg
|
OH NH OH NH,

Me H Me o .0

P

X X X XX 2N\

R | —R? 513 R'— | —R2 o OH
_ Z PhH, 50 °C, 72 h % %
5-12 5-14 SiPhg,
80-96% )
88—-99% ee 5-13

C. Feng’s asymmetric cyanation

N ~Ts 2-naphthyl
| Ti(O'Pr)4/5-16/5-17 NG, NHTs BN O
N ) P N 2 OH
R TMSCN, ProH R OH
5-15 PhMe, -20 °C 5-18 O
90-99%
0-98% ee 2;”1a$hthy'
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Previously, our group has developed copper-catalyzed enantioselective
alkynylations of isochroman acetals and isoquinolines to form these types of a-diaryl
tetrasubstituted stereocenters (Scheme 5.4).° In the former case, a Lewis acid
(BF;3-OEt,) is used to ionize the racemic acetal substrate (5-19) to form prochiral
oxocarbenium ion intermediate 5-20 (Scheme 5.4A).”'! This cation is then susceptible
to addition of a chiral ligand-bound copper-acetylide to form alkynylated product 5-21
bearing an o-diaryl tetrasubstitued stereocenter. An analogous reaction can be
performed on N-acyl iminium ion 5-23, formed from the acylation of ketimine 5-22
with methyl chloroformate (Scheme 5.4B)."* This delivers isoquinoline products 5-24
bearing a similar tetrasubstitued stereocenter. Notably, in both cases, the substrates are
designed so that an alkyl tether can be used to differentiate the faces of the diaryl

oxocarbenium or iminium ion, resulting in the formation of cyclic products.

Scheme 5.4  Watson’s copper-catalyzed enantioselective alkynylations

A. Oxocarbenium ions

AN CuSPh/Ph-PyBox :
T 2-——H RG—
R = (0] R > l % /O®
BF5-OEt,, MTBD
Ar OMe  CHClg, 4°C, 48 h Ar
5-19 5-20 5-21 -
26-94%
36-97% ee

B. Iminium ions

R2——H
A

Cul/Ph-PyBox Rti—

CICO,Me
—_—

Ar iPr,NEt
CHCI;, 4°C, 48 h
5-23 5-24 R2
38-94%
4-98% ee
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Having developed methods for the enantioselective alkylation of these types of
cyclic substrates, we envisioned designing substrates containing a removable tether (5-
25), which would allow us to access acyclic amines bearing an a-diaryl tetrasubstitued
stereocenter (5-28) (Scheme 5.5). Effectively, the tether would allow for
differentiation of the ketimine faces to afford high levels of enantioselectivity in the
alkynylated product (5-27). The tether can then be cleaved to reveal the desired
acyclic product (5-28). This approach would circumvent many of the issues associated

with the differentiation of two similar aryl groups in acyclic substrates.

Scheme 5.5  Proposed strategy towards enantioselective synthesis of acyclic amines

R R H——R°
% N > N, .
®R
Ar Ar
5-25 5-26

With this intrinsic protecting group anchoring strategy in mind,'> '* I designed
several substrates that contained a suitable tether (Scheme 5.6). The two aryl groups
can be differentiated based on the freedom of rotation exhibited by the pendant aryl

ring versus the tethered aryl ring. It is also possible that the m-faces are more
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electronically differentiated because of the tether onto nitrogen (lone pair vs alkyl
group). Cyclic 5- and 6-membered N-sulfonyl ketimines (5-29 & 5-30) as well as

benzisoxazole (5-31) were chosen as model substrates.

Scheme 5.6  Substrates containing a removable tether

(0] 0]
,O O
: \ ‘é\/ R;\ \$:O R;\ O\N
= R _ LN AN N
Ar Ar Ar
5-29 5-30 5-31

Enantioselective additions of a variety of nucleophiles to cyclic N-sulfonyl

15-20

imines have been reported including arylations, vinylations,*" ** propargylations,*

and hydrogenations®* (Scheme 5.7). More importantly, the sulfonyl group can be
cleaved with little or no loss of enantiopurity of the a-stereocenter. Aryl sulfamates
and sulfonamides have also been shown to participate in a variety of cross-coupling

25-29

reactions. Excitingly, isoxazolidines, the resultant products from isoxazole 5-31,

have proven to be a privileged scaffold for organic and medicinal chemistry.*

Scheme 5.7  Enantioselective additions to cyclic N-sulfonyl imines

N 7 \ /7

.S,

xS N +  Nuc - X /r\iH
! | ) . 'Nuc

\\~—’)\R1 .- R

R = H, Alkyl, Aryl, CO,Et 5-33

5-32 R
7 UBX, /~Bpin
Ar_B(OH)2 R' // H2
Kong-McLaughlin [Rh] Zhao [Co] Jarvo [Ag] Zhou [Pd]
Xu [Rh] Lam [Rh]

Nishimura-Hayashi [Rh]
Feng-Lin [Rh]
Lu-Hayashi [Pd]
Zhang [Pd]
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In comparison to these previously established methods, examples of
enantioselective alkynylations of cyclic N-sulfonyl imines are much more limited. The
Pedro group has shown that an asymmetric addition of an alkyne to aldimine 5-34 can
be achieved using dimethylzinc and a chiral VAPOL ligand (Scheme 5.8A).%'
Additionally, Morimoto and Ohshima have demonstrated that a chiral
(Phebox)Rhodium(III) complex (5-37) can be used to catalyze the enantioselective
alkynylation of o-ketiminoesters (5-36) (Scheme 5.8B).*> However, enantioselective
alkynylations of cyclic N-sulfonyl ketimines to set o-diaryl tetrasubstitued
stereocenters has not yet been achieved. With that in mind, I set out to develop an
asymmetric copper-catalyzed alkynylation of cyclic ketimines bearing a removable

tether en-route to this challenging class of products.

Scheme 5.8  Enantioselective alkynylations of cyclic N-sulfonyl imines

0
MesZn O~ ‘O

o 0 (R-VAPOL g [ $70

TN "S=0 2_— 2 NH
R1|_ 7 R H _ Ph
AN o
i DCE, tt, 2-18 h I o )
R2 ‘
5-34 5-35
54-93%

56—86% ee

A. Pedro (aldimine)

B. Morimoto and Ohshima (a-ketiminoesters)

0
\\//O 5_37 \é,/o
/‘N R———H NH o
. o g | O |J
4A MS R
EtO N—Rh=—N
o’ OEt  PhMe, 70 °C, 48-96h _\\o Qf e 2
5-36 5-38 _
90-99% MesSi  5-37
78—-86% ee
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5.2 Results and Discussion

Initial screening began with 5- and 6-membered sufonyl ketimines 5-40 and 5-
42. These substrates can be easily synthesized in a single step in excellent yields and
in multi-gram quantities (Scheme 5.9). Excitingly, these products can simply be
recrystallized and require no column chromatography for isolation. This route also

allows for the rapid incorporation of a variety of aryl groups.

Scheme 5.9  Synthesis of cyclic N-sulfonyl ketimines 5-40 and 5-42

\ PhLi \
NH ! > N
THF, -78 °C %
0 Ph
5-39 5-40, 80%
OH O O\\ //O e} O
o> n=07° "$=0
PhMe, 105 °C N
Ph
5-41 5-42, 87%

Unfortunately, these substrates were unreactive towards alkynylation under a
variety of conditions tried, including activation with a Lewis acid. I hypothesized that
formation of the corresponding iminium ion intermediate would increase the
electrophilicity of the a-carbon and enhance reactivity. Indeed, when 5-40 was treated
with methyl triflate to form methylated iminium ion 5-43, alkynylated product 5-44
was afforded in 41% vyield under standard conditions (Scheme 5.10). Notably,
iminium intermediate 5-43 required elevated temperatures to form (70 °C) and was
used without purification. Other methylating reagents such as methyl iodide and

dimethyl sulfate were ineffective at promoting this transformation.
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Scheme 5.10 Methylation and alkynylation of sulfonyl ketimine 5-40

10 mol % Cul Q.0
Q.0 Q.0 Ph—== (1.2 equiv) S,
S\N MeOTf (neat) S\N o] PraNEE (1.5 equiv) N-Me
/ —_— / —ivie ’
70°C, 3-4 h ® | PhMe (0.15 M), 1t, 24 h PR
Ph Ph
5-40 5-43 5-44, 41% Ph

Yield determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal

standard.

I then turned my attention towards the identification of a suitable chiral ligand
that would impart enantioselectivity in this reaction. Our group has shown that
bis(oxazoline) (Box) and pyridine bis(oxazoline) (PyBox) ligands are privileged
ligand architectures for copper-catalyzed alkynylations of cyclic iminium and
oxocarbenium ions. Preliminary screening efforts identified IndaBox ligand 5-45 as a
promising lead. However, upon extensive screening of various parameters such as
copper source, base, solvent, temperature, and concentration, alkynylated product 5-44
was only observed in 31% yield and 30% ee (Scheme 5.11, top). PHOX ligand 5-46

also demonstrated similar reactivity and selectivity, giving 35% yield and 33% ee.
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Scheme 5.11 Enantioselective alkynylations of sulfonyl ketimines 5-40 and 5-42
10 mol % Cul

o o 12 mol % L* 9/,0
2,0 2,0 Ph—=— (1.2 equiv) S,
S\N MeOTf (neat) -y BusN (1.5 equiv) N-Me
/ —_— / —Vie
70°C, 3-4 h © | PhMe (0.15 M), t, 24 h Ph \
Ph Ph
5-40 5-43 5-44  pp
5-45: 31%, 30% ee
5-46 (w/ PryNEt ): 35%, 33% ee
10 mol % Cul
12 mol % 5-48 o. L
O. /,E) O. ,f_) Ph—== (1.2 equiv) S=0
@R(&O MeOTf (neat) ©/\r$—0 iPr,NEt (1.5 equiv) N
_N B — e _N. »
o Me Ph
70°C, 3-4 h ® CHCl; (0.075 M), rt, 24h
Ph Ph 3 : N\
5-42 5-47 5-49, 76% Ph
32% ee
‘Bu
o) o) [\
WXD o_N
N N
@ PPh, Me Me
thp/v\A PPh,
5-45 5-46 5-48

Yields determined by 'H NMR analysis using 1,3,5-trimethoxybenzene as internal

standard. Enantiomeric excesses determined by chiral HPLC analysis

Simultaneously, 6-membered sulfonyl ketimine 5-42 was tested under similar
conditions. In this case, chiral bidentate phosphine ligand BDPP (5-48) was found to
afford the highest level of stereoinduction (Scheme 5.11, middle). Intense screening
efforts revealed that the use of a halogenated solvent such as CHCl; under dilute
conditions (0.075 M) afforded the desired product 5-49 in 76% yield and 32% ee.

Further efforts to increase the yields and ee’s are on-going in the group.
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Meanwhile, I focused my efforts towards the use of benzisoxazole substrate 5-
52, which can be synthesized in two steps from commercial reagents (Scheme 5.12,
top). Excitingly, the iminium intermediate is stable and can isolated as the
corresponding triflate salt. Upon treatment of benzisoxazole 5-52 with methyl triflate,
iminium salt 5-53 precipitates from solution and can be obtained as a white, crystalline

solid (Scheme 5.12, bottom).

Scheme 5.12 Synthesis of 5-53

. HO..
e} cl N|[—\|j2aO|C-|ol-|C| N cl 0
2~~3 I KOBu N
> EEEE— /)
O O EtOH, reflux THF
Ph
5-50 5-51, quant. 5-52, 79%
o
(0]
MeOTf N—Me
70°C, 4 h 7®
Ph
5-53, 91%

With 5-53 in hand, I decided that this substrate was perfect for high-throughput
experimentation (HTE). A representative HTE plate is shown in Scheme 5.13. This
set-up enables rapid screening of a variety of parameters in a 96-well format using a
minimal amount of starting material (< 5 mg). I tested a number of chiral ligands
including diamines, diols, phosphines, phosphoramidites, amino alcohols, and P—N

ligands to identify a lead ligand class (See Appendix E for ligand structures).
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Scheme 5.13 Representative HTE plate

o O ph—= (12equiv) 0,
MNMe iPr,NEt (1.5 equiv) N-Me
Ph PhMe (0.1 M), 80 °C, 24 h Ph N\
5-53 554 “pp
1 2 3 4 5 6 7 8 9 10 11 12
A (149 (9 (29129} (9 9 () (29 (99 () (9 ()
B (9 () () (9 (29 (@) (@) (@) () () () &)
C (o e e
D
JCICI0 T CICISICICITIDIC
ACICICITICICICITICICITIT,
JOISICICISITITIC| O/ CISIE
¥ lcteteletelcleletlcle
cul Cu(MeCN),PF Zn(OTf),
- product formation = ee >10%

Upon screening a variety of chiral ligands, I identified phosphinooxazolines
(PHOX) as a promising ligand class. These ligands are highly tunable and can be

easily synthesized (Scheme 5.14).°% 3

The stereogenic center (R group) on the
oxazoline ring can be introduced from a chiral amino alcohol (5-56), which is often
derived from an amino acid (5-55). The R’ group on the aryl ring can be installed from

a substituted 2-bromobenzoyl chloride (5-57). Finally, the diarylphosphino group can
be obtained from the corresponding diarylphosphine or diarylphosphine chloride.
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Scheme 5.14 Synthesis of PHOX ligands

Br O
cl
557 Br O R
R -
)\[(OH NaBH,, I, R R N/k/OH
—_ OH > H
- O b HZN/k/ H “c'%f%
5-55 5-56 eeTE R 5-58
77%—quant.
B ArPH Ry
[\ Cul, DMEDA /\
TsCl @) 7 N 052003, PhMe _ @) ~ N
EtsN Br orAr,PCI, BuLi PAr2
CH,Cl, ELO
1 RI
5-59 5-60
73-90% 35-86%

(over 2 steps)

I synthesized a library of PHOX ligands to probe various steric and electronic
effects on the reactivity and selectivity of the alkynylation reaction (Scheme 5.15).
Upon testing a variety of substituents on the oxazoline ring, I found that a bulky fert-
butyl group (5-46) afforded the best reactivity and selectivity, compared to other
groups such as isopropyl (5-61) or phenyl (5-62). The incorporation of a number of
different diarylphosphines revealed that electron-donating groups on the aryl (OMe, 5-
65) increased the ee substantially compared to electron-withdrawing groups (CF3, 5-
66). Moreover, an ortho-substituent afforded increased yield (o-tolyl, 5-67). However,
further steric bulk lead to low ee (mesityl, 5-68). Finally, a bulky, electron-rich ortho-
substituent (O'Pr, 5-70) afforded excellent selectivity (97% ee). The electronic
character of the backbone aryl group was found to also influence selectivity. Again, an
electron-donating group resulted in increased levels of enantioselectivity (OMe, 5-71).
In combining these observations, ligand 5-74 afforded the desired product in >99% ee,

albeit in low yield.
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Scheme 5.15 Screening of various PHOX ligands®

10 mol % Cu(MeCN),PFg

8Tf 12 mol % L*
o) Ph—= (1.2 equiv) 0
, @Me iPr,NEt (1.5 equiv) N-Me
Ph DCE (0.1 M), 80 °C, 24 h Ph N\
5-53 5-54 “pp
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Pr JBu Me  Jpr / :
K \' Me < ; R O__N
O__N O.__N O__N O.__N
- PPh,
PPh, PPh, PPh, PPh, Fe
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JBu JBu JBu
Arom) LA o) s
2 2 2
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*Conditions: 5-53 (0.10 mmol), [Cu] (10 mol %), L* (12 mol %), alkyne (1.2 equiv),
base (1.5 equiv), DCE (0.1 M), 80 °C, 24 h. Yield and enantiomeric excess determined

by chiral SFC analysis using 1,3,5-trimethoxybenzene as internal standard.

Having identified a suitable ligand, I then turned to examine the temperature
dependence of this reaction (Table 5.1). Typically for an enantioselective reaction,
lower reaction temperatures can lead to increased ee’s. Unfortunately, the yield may
be lower due to a slower rate of reaction. Surprisingly, at lower reaction temperatures
(70 and 60 °C), the ee’s of desired product dropped substantially (entries 2 & 3).
However, an improvement in yield was observed at these lower temperatures. Since
these results are somewhat counterintuitive, I wanted to probe if another reaction
pathway may be operational under these reaction conditions. No reaction was

observed at room temperature (entry 4).

Table 5.1 Temperature dependence of the alkynylation reaction®
10 mol % Cu(MeCN),PFq
o 12 mol % 5-70
0} Ph—— (1.2 equiv) o)
NMe iPr,NEt (1.5 equiv) N-Me
Ph PhCF, (0.1 M), 24h Ph N\
5-53 5-54 “pp
Entry Temperature (°C) Yield (%)" ee (%)°

1 80 28 97
2 70 32 57
3 60 46 27
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4 rt <5 4

*Conditions: 5-53 (0.10 mmol), [Cu] (10 mol %), 5-70 (12 mol %), alkyne (1.2
equiv), base (1.5 equiv), PhCF; (0.1 M), 24 h. ®Determined by 'H NMR analysis
using 1,3,5-trimethoxybenzene as internal standard. “Determined by chiral HPLC

analysis.

With these odd results in hand, I first wanted to test if the alkynylated product
5-54 was stable under the reaction conditions. I subjected racemic product 5-54
(synthesized independently via addition of lithium phenylacetylide to 5-53) to the
standard reaction conditions (Table 5.2, entry 1). Interestingly, product decomposition
was observed, and 5-54 was recovered in only 46% yield. Surprisingly, the recovered
starting material was determined to be 96% ee, a value similar to that observed in the
copper-catalyzed reaction. This result suggests a highly efficient kinetic resolution,
giving high ee’s and yields (50% maximum theoretical yield). This result also implies
that there may be a resolution event of alkynylated product 5-54 that is occurring
under the alkynylation conditions. Additionally, it is plausible that the copper-
catalyzed reaction proceeds to give 5-54 that is racemic or with lower ee, and selective

decomposition of one enantiomer then leads to highly enantioenriched product.
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Table 5.2 Decomposition of alkynylated product 5-54°
10 mol % Cu(MeCN)4PFg
12 mol % 5-70

0} Ph——=— (1.2 equiv) o)
N-Me iPr,NEt (1.5 equiv) N-Me
Ph N\  PhCF; (0.1 M), 80 °C, 24 . Ph X\
5(_?4 Ph 5-54 Ph
Entry Deviation from above Yield (%)" ee (%)°

1 none 46 96
2 no [Cu] 98 0
3 no L* quant. 0
4 no alkyne <5 n.d.
5 no base <5 n.d.

*Conditions: 5-54 (0.10 mmol), [Cu] (10 mol %), 5-70 (12 mol %), alkyne (1.2
equiv), base (1.5 equiv), PhCF; (0.1 M), 80 °C, 24 h. ®Determined by 'H NMR
analysis using 1,3,5-trimethoxybenzene as internal standard. “Determined by chiral

HPLC analysis.

To investigate this phenomenon further, I ran a series of control reactions to
elucidate what was required for the decomposition event. In the absence of either
copper or chiral ligand, no product decomposition was observed (entries 2 & 3).
Interestingly, in the absence of alkyne or base, no remaining starting material 5-54 was
recovered (entries 4 & 5). These results indicate that all the components of the reaction
(copper, ligand, alkyne, and base) are required to promote the kinetic resolution, but

also prevent complete decomposition of the alkynylated product.
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Future efforts should be focused on identifying the decomposition products of
this resolution reaction. Perhaps one enantiomer of alkynylated product 5-54 reacts
with the chiral copper catalyst to afford some type of ring-opened or rearranged
product. We are extremely interested in probing this possibility further. Unfortunately,
we do not yet have a deep mechanistic understanding of this resolution event. With
more evidence and mechanistic insight, I believe that this can be turned into a useful

method for the kinetic resolution of related substrates.

5.3 Conclusion

I have described my efforts towards a copper-catalyzed enantioselective
alkynylation of cyclic iminium ions bearing a removable tether, en-route to acyclic
amines bearing an o-diaryl tetrasubstitued stereocenter. Promising results have been
obtained for both 5- and 6-membered cyclic N-sulfonyl ketimine substrates.
Interestingly, in the case of the benzisoxazolidine product, there appears to be a kinetic
resolution event occurring under the optimized reaction conditions. Further
mechanistic insight may lead to the development of this method as a kinetic resolution

to deliver highly enantioenriched products.
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5.4 Experimental
5.4.1 Enantioselective Alkynylation of Iminium Ions

5.4.1.1 General Procedure A: Reaction Optimization of /N-sulfonyl Ketimines

In a Ny-filled glovebox: To an oven-dried 1-dram vial was added substrate
(0.10 mmol, 1.0 equiv). The vial was then equipped with a micro stir bar, capped with
a pierceable Teflon-coated cap, and removed from the glovebox. Methyl triflate (0.11
mmol, 1.1 equiv) was added into the vial via a N»-purged microsyringe. The mixture
was heated at 70 °C for 4 h. To a separate oven-dried 1-dram vial was added [Cu]
(0.010 mmol, 10 mol %), ligand (0.012 mmol, 12 mol %), and solvent. The vial was
equipped with a micro stir bar, and the resultant solution was stirred for 30 min at rt.
Alkyne (0.12 mmol, 1.2 equiv) and base (0.15, 1.5 equiv) were added. The vial was
removed from the glovebox, and the copper acetylide mixture was transferred to the
substrate vial via a N»-purged syringe. The resulting mixture was stirred vigorously at
room temperature for 24 hours. The mixture was then diluted with Et,O (1.5 mL) and
filtered through a short plug of silica gel. The filter cake was washed with Et,O (10
mL), and the filtrate was concentrated. 1,3,5-Trimethoxybenzene (internal standard)
and CDCl; were added, and the yield was determined by 'H NMR analysis. An
analytical sample of the product was prepared via preparatory thin layer
chromatography, and the ee of this sample was determined by HPLC using a chiral

stationary phase.
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2-Methyl-3-phenyl-3-(phenylethynyl)-2,3-dihydrobenzo|d]isothiazole 1,1-dioxide
(5-44). '"H NMR (400 MHz, CDCl3) & 7.93 — 7.83 (m, 1H), 7.72 — 7.64 (m, 2H), 7.60 —
7.47 (m, 4H), 7.44 — 7.30 (m, 6H), 7.24 — 7.18 (m, 1H), 2.83 (s, 3H); °C NMR (101
MHz, CDCls) § 140.9, 138.1, 133.5, 132.9, 132.0, 129.7, 129.2, 129.1, 128.9, 128.4,
127.3,125.2, 121.5, 121.2, 90.2, 84.0, 66.8, 24.7.

3-Methyl-4-phenyl-4-(phenylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-
dioxide (5-49). '"H NMR (400 MHz, CDCls) & 7.80 — 7.73 (m, 2H), 7.62 — 7.57 (m,
2H), 7.48 — 7.35 (m, 6H), 7.34 — 7.27 (m, 1H), 7.16 — 7.08 (m, 3H), 2.90 (s, 3H); °C
NMR (101 MHz, CDCls) & 147.5, 140.9, 132.0, 130.3, 129.6, 129.2, 129.0, 128.8,
128.4,127.6, 127.0, 126.1, 121.7, 118.8, 90.6, 84.4, 68.9, 31.3.

5.4.1.2 General Procedure B: Reaction Optimization of Benzisoxazole 5-53

In a Ny-filled glovebox: To an oven-dried 1-dram vial was added [Cu] (0.010
mmol, 10 mol %), ligand (0.012 mmol, 12 mol%), and solvent. The vial was equipped
with a micro stir bar, and the resultant solution was stirred for 30 min at rt. Alkyne

(0.12 mmol, 1.2 equiv), base (0.15, 1.5 equiv), and 5-53 (0.10 mmol, 1.0 equiv) were
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added. The vial was removed from the glovebox, and the resulting mixture was stirred
vigorously at 80 °C for 24 h. The mixture was then diluted with Et,0O (1.5 mL) and
filtered through a short plug of silica gel. The filter cake was washed with Et,O (10
mL), and the filtrate was concentrated. 1,3,5-Trimethoxybenzene (internal standard)
and CDCl; were added, and the yield was determined by 'H NMR analysis. An
analytical sample of the product was prepared via preparatory thin layer
chromatography, and the ee of this sample was determined by SFC or HPLC using a

chiral stationary phase.

N-Me

Ph N\
Ph

2-Methyl-3-phenyl-3-(phenylethynyl)-2,3-dihydrobenzo[d]isoxazole (5-54).

'H NMR (600 MHz, CDCl3) § 7.70 (d, J = 7.5 Hz, 2H), 7.45 — 7.40 (m, 2H), 7.35 —
7.31 (m, 2H), 7.31 — 7.22 (m, 4H), 7.18 — 7.12 (m, 1H), 6.95 (d, J = 7.5 Hz, 1H), 6.86
(t,J=7.5Hz, 1H), 6.79 (d, J= 8.1 Hz, 1H), 2.96 (s, 3H).

5.4.2 Preparation of Substrates

"NH PhLi ‘N
THF, -78 °C 7
O Ph

3-Phenylbenzo[d]isothiazole 1,1-dioxide (5-40). Prepared according to the literature

35
procedure.
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O\ /O
OH O ~g’

0
N ﬁo O\ //—
cl” N=CTT $=0
O O PhMe, 105 °C N

4-Phenylbenzo[e][1,2,3]oxathiazine 2,2-dioxide (5-42). Prepared according to the

. 36
literature procedure.

@?N MeOTf 0 om
& e (s

Ph
3-Phenylbenzo[d]isoxazole (5-52). Prepared according to the literature prodecure.”’
2-Methyl-3-phenylbenzo|d]isoxazol-2-ium trifluoromethanesulfonate (5-53). To
an oven dried 25 mL round-bottomed flask was added benzisoxazole 5-52 (600 mg,
3.0 mmol, 1.0 equiv) and methyl triflate (0.37 mL, 3.3 mmol, 1.1 equiv). The resulting
mixture was heated in an oil bath at 70 °C for 4 h. The mixture was allowed to cool to
room temperature, and 2 mL of CH,Cl, was added to dissolve the crude material. The
solution was diluted with Et,O and vigorously stirred to induce trituration. The
resultant solid was filtered and washed with Et,O to give 5-53 (1.0 g, 91%) as a white
solid: "H NMR (600 MHz, CDCl;) & 8.07 (t, J = 7.9 Hz, 1H), 7.99 — 7.92 (m, 3H),
7.86 —7.79 (m, 2H), 7.77 (t,J = 7.5 Hz, 2H), 7.72 (t,J = 7.7 Hz, 1H), 4.60 (s, 3H); °C
NMR (151 MHz, CDCls) & 159.9, 156.4, 137.5, 134.1, 130.4, 130.1, 128.3, 124.8,
121.3, 119.7, 110.7, 40.5.
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5.4.3 Preparation of PHOX Ligands
R

Ar,PH R
Cul, DMEDA [\
O N Cs,CO3, PhMe O N
Br or Ar,PCl, BuLi PAry
Et,0
R R
5-59 5-60

The PHOX ligands can be prepared according to a procedure adapted from the
literature using the corresponding diarylphosphine.” In a Ny-filled glovebox: To an
oven-dried 10 mL round-bottomed flask was added Cul (8.4 mg, 0.044 mmol, 12.5
mol%), diarylphosphine (0.67 mmol, 1.88 equiv), DMEDA (33uL, 0.31 mmol, 0.875
equiv), and toluene (1.5 mL). The resulting mixture was stirred at rt for 20 min. Aryl
bromide (5-59) (0.35 mmol, 1.0 equiv) and Cs,COs3 (433 mg, 1.33 mmol, 3.75 equiv)
were added along with an additional aliquot of toluene (1.5 mL). The resulting mixture
was sealed, removed from the glovebox, and heated in an oil bath at 110 °C for 2 h.
The reaction was then allowed to cool to rt. The crude mixture was filtered, washed
with CH,Cl,, and concentrated. The desired PHOX ligand 5-60 was then purified via
silica gel chromatography.

For sterically encumbered diarylphosphino groups, the PHOX ligands can be
prepared according to a procedure adapted from the literature using the corresponding
diarylphosphine chloride.* To an oven-dried 10 mL round-bottomed flask was added
aryl bromide (5-59) (0.35 mmol, 1.0 equiv) and anhydrous Et,O (2.5 mL). The
resulting solution was cooled to —78 °C. tert-Butyl lithium (0.43 mmol, 1.2 equiv) was
added dropwise at this temperature. The solution was stirred for an additional 1 h at
—78 °C. Diarylphosphine chloride (0.43 mmol, 1.2 equiv) was added. The reaction was
warmed to rt and stirred for an additional 1 h. The crude reaction was poured into an

aq. NH4Cl solution and extracted with Et,O (x 3). The combined organic layers were
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dried with magnesium sulfate and concentrated. The desired PHOX ligand 5-60 was

then purified via silica gel chromatography.

JBu
[\

O__N iPrO
P
2

(8)-2-(2-(Bis(2-isopropoxyphenyl)phosphaneyl)phenyl)-4-(tert-butyl)-4,5-
dihydrooxazole (5-70). "H NMR (400 MHz, CDCl3) & 7.92 — 7.84 (m, 1H), 7.33 (td, J
=7.6, 1.3 Hz, 1H), 7.25 - 7.19 (m, 3H), 7.09 — 7.02 (m, 1H), 6.86 — 6.73 (m, 6H), 4.53
— 438 (m, 2H), 4.17 — 4.01 (m, 2H), 4.00 — 3.90 (m, 1H), 1.10 (dd, J = 13.9, 6.0 Hz,
9H), 0.99 — 0.88 (m, 3H), 0.75 (s, 9H); °C NMR (101 MHz, CDCl5) § 159.5, 159.4,
134.8, 134.4, 129.8, 129.3, 129.3, 129.2, 129.1, 127.6, 120.2, 120.0, 111.3, 70.2, 69.6,
68.4,33.8,25.8,21.9,21.8, 21.6; *'P NMR (162 MHz, CDCl;) § —24.44.
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TH NMR (600 MHz, CDCl,)
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Compound 1-54, racemic (254 nm)

mAU
125+ 3 DetA Chi
i o] >
-1 BocHN
1007 B0C Ot-Bu Si(-Pr);
] Z
75 g
50 1-54, racemic
25+
0: 1
00 o5 50 75 100 125 150
min
Peakd Ret. Time Area Height Area % Height %
1 9.656 2833525 119647 50.307 66.357
2 14.389 2798895 60660 49.693 33.643
Total 5632419 180307 100.000 100.000
Compound 1-54, 29% ee (254 nm)
mAU
50 R Det A Chf
] O P <
1 BocHN
40 B¢ Ot-Bu Si(-Pr)s
z Z
30
20 1-54, 29% ee
10
0] T T
0.0 25 50 75 10.0 125 15.0 .
min
Peak# Ret. Time Area Height Area % Height %
1 9.777 1180374 49751 35.522 51.983
2 14.518 2142537 45955 64.478 48.017
Total 3322911 95706 100.000 100.000
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Compound 1-54, 81% ee (254 nm), reaction with 4-(trifluoromethyl)phenol

additive
mAU
IImet.A Ch1
0]
| BochN Ot-Bu Si(-Pr)g
20—_ 4
104 1-54, 81% ee .
O_ /L/\jk A T 4
0.0 ‘25 50 75 100 125 150
min
Peak# Ret. Time Area Height Area % Height %
1 9.839 137403 5876 9.510 17.224
2 14.573 1307395 28238 90.490 82.776
Total 1444798 34114 100.000 100.000
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Compound 1-72, racemic (254 nm)

mAU

Me

] OMe
20+

| Mem

i 4

31.572
33.123

Det.A Ch1

104
1 1-72, racemic
o 5 10 15 20 25 ‘3|0H”3|5'H'4|0'H'45
min
Detector A Chl 254nm
Peak# Ret. Time Area Height Area % Height %
1 31.572 850548 22514 48.386 51.255
2 33.123 907290 21411 51.614 48.745
Total 1757837 43925 100.000 100.000
Compound 1-72, 0% ee (254 nm), from cross-coupling reaction
mAU
501 OMe Det.A Chi
MGW\KQ/
] 4
2.5+ Me
1-72, 0% ee
0.0
0 5 10 15 20 25 40 s
min
Detector A Chl 254nm
Peak# Ret. Time Area Height Area % Height %
1 31.318 212990 5277 49.079 51.202
2 32.845 220984 5029 50.921 48.798
Total 433974 10306 100.000 100.000
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Appendix B

SPECTRAL AND CHROMATOGRAPHY DATA FOR CHAPTER 2
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Compound 4-56, racemic (210 nm)

mAU
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| Me . De @ Ch2

50 Y

min
Detector A Ch2 210nm
Peak# Ret. Time Area Height Area % Height %
1 103.752 18566299 105683 49.739 48.610
2 111.853 18761296 111728 50.261 51.390
Total 373275% 217412 100.000 100.000
Compound 4-56, >99% ee (210 nm)
mAU
100i N Me g Det.A Ch2
S I5e]
1 =
] Y
504 °N
1 Boc
1 4-56, >99% ee
O—ﬁg%_/\_lg
l T [
0 25 50 75 100
min
Detector A Ch2 210nm
Peak# Ret. Time Area Height Area % Height %
1 103.016 19309963 100587 100.000 100.000
Total 19309963 100587 100.000 100.000
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Appendix E

SPECTRAL AND CHROMATOGRAPHY DATA FOR CHAPTER 5
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Chiral ligands used in HTE (Scheme 5.13)
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