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ABSTRACT 

Marine sediments harbor a vast amount of Earth’s microbial biomass, yet little 

is understood regarding how cells subsist in these low-energy environments. Since 

growth in these environments is expected to be slow because the overall energy pool is 

low, cells may require additional methods for conserving energy. Gene regulation is a 

potential necessity due to the high energy requirements of transcription, and this 

process could be influenced by epigenetic modification via DNA methylation. In this 

study, changes in the methylation states of CpG sites were profiled within 

metagenomes from an estuarine sediment core using a next-generation sequencing 

strategy. Additionally, the presence of epigenetic patterns and conserved sequence 

structures within gene promoter and coding regions was determined for microbial 

genomes representative of metagenome target taxa to determine how widespread these 

signatures may be. The results of this study suggest the presence of dynamic shifts in 

CpG methylation within these sediment microbial communities, as well as conserved 

trends in DNA methylation target motif frequency and intrinsic DNA curvature within 

known bacteria. The analyses of these phenomena further highlight the dynamic roles 

of epigenetic modifications within microbial genomes. 
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Chapter 1 

COMPOSITION, FUNCTION, AND DNA METHYLATION OF BROADKILL 

RIVER SEDIMENT COMMUNITIES 

1.1 Introduction 

Marine sediments are some of the largest reservoirs of microbial biomass on 

Earth (Whitman et al. 1998; Kallmeyer et al. 2012), and describing the relationships 

between community structure, activity, and ecosystem function in these habitats 

remains a challenge (Fuhrman 2009; Orsi et al. 2013). The majority of sedimentary 

bacteria and archaea are unable to be successfully cultured in a laboratory setting, and 

if they are able to be cultivated, they likely do not exist in physiological states 

representative of those found within their natural habitats (Hoehler and Jørgensen 

2013). Next-generation sequencing technologies enable researchers to overcome the 

constraints of cultivation by directly analyzing environmental DNA and RNA. These 

technologies are employed in subsurface microbiology to provide information 

regarding community dynamics and ecological roles (Hua et al. 2014), classify rare or 

uncultured species (Albertsen et al. 2013; Seitz et al. 2016), and describe potential 

microbial activity (Orsi et al. 2013). 

Determining the drivers that govern activity in the subsurface is key to 

understanding the relationships between these microbes and their environments. 
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Models suggest that many marine subsurface cells should be sporulated due to the low 

availability of energy (Lomstein et al. 2012), yet metatranscriptome analysis of 

anaerobic sediments from the Peru Margin suggests that microbes may not express 

high levels of genes for spore formation (Orsi et al. 2013). Subseafloor metagenome 

analysis supports these findings, as endospore-specific genes were not frequent in 

deep-sea sediment communities off Japan and Peru (Kawai et al. 2015). This suggests 

that instead of forming spores, cells in the subsurface possibly suspend certain life 

processes though other means in order to survive, subsisting at low levels of activity, 

and growing on geological timescales. 

A positive relationship between microbial activity and gene or transcript 

abundance is often seen by previous studies (Muttray et al. 2001; Schippers et al. 

2005; DeAngelis et al. 2010; Gaidos et al. 2011; Hunt et al. 2013). The analysis of 

rRNA is a popular technique for determining growth or activity via gene expression, 

but one caveat of this method is the presence of DNA and RNA from inactive cells 

(Blazewicz et al. 2013). Of 415 studies in which abundances of genes or transcripts for 

carbon and nitrogen cycling enzymes were quantified, only 59 (14%) of these 

publications provided both abundance and corresponding process rates (Rocca et al. 

2014). The equation of abundance with activity is a possible false positive in many 

studies due to genes or transcripts being present, but not necessarily expressed, within 

a genome. In the deep biosphere, a large disconnect was seen between genes 

discovered via metagenomics, and genes detected via metatranscriptomics (Orsi et al. 
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2013). As such, we are interested in developing methods to examine potential genetic 

signals that affect expression in the deep biosphere and can possibly allow low cellular 

activity over geological timescales. 

 In less extreme sediment environments such as estuarine sediments, it is 

possible that microbes can regulate life processes to acclimate themselves to less-than-

favorable environmental conditions as the sediment ages. Epigenetic regulation is a 

potential microbial survival strategy within low-energy sediment, allowing for cell 

maintenance and rapid acclimation to environmental stressors (Bird 2002; Casadesús 

and Low 2006; Low and Casadesús 2008). While there are many mechanisms for 

genetic regulation, transcriptional silencing or activation by DNA methylation has 

been shown to act as a mode of epigenetic regulation in microbes (Kumar and Rao 

2012; Wion and Casadesus 2006; Low et al. 2001).  

DNA methylation is present in all domains of life (Singal and Ginder 1999; 

Clouet-d’Orval, Gaspin, and Mougin 2005; Brunet et al. 2011; Casadesús and Low 

2006; Heinrichs 2014), and involves the addition of a methyl group via a 

methyltransferase (MTase) to either the carbon 5 position of a cytosine ring (resulting 

in 5-methylcytosine (m5C)), the nitrogen 4 position of cytosine (resulting in N4-

methylcytosine (m4C)), or the nitrogen 6 position of adenine (resulting in N6-

methyladenine (m6A)) (Ratel et al. 2006). While m5C and m6A are found in many 

bacterial, protist, and fungal genomes, m4C is only known to occur in bacteria (Cheng 

1995). The methylated bases of a genome, known as a methylome (Murray et al. 
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2012), can differ greatly depending on life experiences and life stage (Szyf 2009; 

Suderman et al. 2012; Gonzalez et al. 2014). Methylation fulfills multiple functional 

roles within bacterial systems, the most widely known being an association with 

restriction-modification (RM) systems. Methylation-dependent RM systems are a 

critical component of bacterial defense mechanisms, as they allow for the 

identification of self vs. foreign (e.g. viral) DNA based on the presence or lack thereof 

of methylated bases at target sites (Fang et al. 2012). Most bacterial MTases are 

associated with RM systems, with MTases being partnered with a respective 

restriction endonuclease (RE) that cleaves at a non-methylated target sequence 

(Roberts et al. 2010). However, several MTases such as Dam and CCrM are 

categorized as ‘orphan’ MTases due to their lack of an associated RE (Løbner-olesen 

et al. 2005; Marinus and Casadesus 2009). Like their RE counterparts, 

methyltransferases also have respective DNA target sequences. Microbes methylate 

cytosines at 5’-CG-3’ (CpG) sequence contexts as is common in eukaryotes 

(Wojciechowski et al. 2012), but also perform methylation at highly diverse target 

sequences (e.g. Dam and CCrM methylate the N6 position of the internal adenine of 

5’-GATC-3’ and 5’-GANTC-3’, respectively; Dcm methylates the C5 position of the 

internal cytosine of 5’-CCWGG-3’) (Low et al. 2001). 

Aside from providing a means of defense against foreign DNA in microbes, 

methylation catalyzed by both RM-associated and orphan MTases is known to affect 

cell processes at the transcriptional level. Methylome analysis of 213 bacterial and 13 
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archaeal species from 19 different phyla and 37 different classes by Single Molecule, 

Real-Time (SMRT) sequencing has shown DNA methylation to be highly prevalent 

and evolutionarily conserved in microbes at diverse target sites, with widespread 

methylation by orphan MTases, suggesting a role for methylation in gene regulation 

across many microbial lineages (Blow et al. 2016).  

Methylated bases can influence the interactions between regulatory proteins 

and DNA through direct steric effects (i.e. steric hindrance) (Low et al. 2001) or 

indirect effects via the alteration of DNA curvature and thermodynamic stability 

(Diekmann 1987). Both types of effects act as signals for gene-protein interactions and 

transcriptional regulation (Low and Casadesús 2008). For instance, RNA polymerase 

and transcription factors are able to differentiate fully-methylated and hemimethylated 

DNA at promoter regions, and this discrimination of differentially methylated DNA 

acts as a method for determining which genes are transcribed at specific stages in the 

cell cycle (Low and Casadesús 2008; Gonzalez et al. 2014; Collier 2009). In 

Escherichia coli, two GATC sequences are present in the upstream regulatory region 

of the pap operon, and the differential methylation of these target sequences (i.e. one 

methylated and one non-methylated) acts as an “on/off” switch for phase variation 

between pilus expression and non-expression states (Braaten et al. 1994). The 

methylation states of target sites in populations of cells do not necessarily fall into 

binary “methylated” or “non-methylated” classifications, but undergo dynamic shifts 

(Marsh and Pasqualone 2014) that allow for a stable, efficient, and specific mode of 
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gene regulation through targeted silencing (Jeltsch et al. 2007). This system of genetic 

“switches” regulated by DNA methylation could potentially be a viable mechanism for 

both long and short-term transcriptional silencing for microbes inhabiting the 

sediments of dynamic environments such as estuaries.   

Estuaries are highly productive ecosystems whose microbial communities are 

responsible for significant geochemical turnover vital to global nutrient cycling (Bauer 

et al. 2013). Due to their roles as both sinks and sources of atmospheric carbon 

(Chmura 2013) and nitrogen (Moseman-Valtierra et al. 2011), estuarine environments 

are highly important for carbon and nitrogen cycle regulation. Dynamic relationships 

with tidal and riverine flow effects govern biotic and abiotic factors such as sediment 

geochemistry (Hardison et al. 2011) and deposition (Kemp et al. 2012), and these 

factors can act as stressors within the microbial communities that populate estuarine 

sediments.  

To better understand if sediment microbes can potentially acclimate to 

environmental stressors though DNA methylation-induced regulation, I utilized an 

Illumina sequencing-based assay to identify dynamic shifts in CpG methylation within 

sediment metagenomes from the Broadkill River estuary system. This assay has been 

previously used for analyzing CpG methylation at HpaII target sites (5’-CCGG-3’) 

within the Antarctic polychaete Spiophanes tcherniai (Marsh and Pasqualone 2014). 

While this assay has not been used prior for microbial analysis, we opted to utilize it 

due to the presence of cytosine methylation at CpG sites in microbes and the 
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anticipation of a heterogeneous, dynamic community. Since adenine methylation is 

considered to be more widespread than cytosine methylation in microbes (Ratel et al. 

2006), this choice of motif potentially serves to reduce signal saturation. To our 

knowledge, this is the first report on DNA methylation within metagenomic sequence 

data, and is the first to utilize this method of CpG methylation analysis in an 

environmental application.  

 

1.2 Materials and Methods 

1.2.1    Core collection 

Sediment cores were sampled from the Oyster Rocks site of the Broadkill 

River, Milton, DE, USA (38.802161, -75.20299) at low tide in July 2012 and 2014. 

The 2012 core was sectioned into 3 cm sections and immediately frozen at -80°C. 

Three cores were sampled from the same area, ~5 m from the riverbank in 2014: a 32 

cm radionuclide dating core (R), and 25 cm (S) and 30 cm (L) cores for DNA 

extraction and pore water ion chromatography, methane flame ionization gas 

chromatography, and porosity measurements. Cores L and S were sliced into 3 cm 

depth samples and immediately frozen at -80 °C, while Core R was immediately 

processed. 
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1.2.2    Radionuclide dating 

Core R was sectioned into 1 cm thick intervals from 0-10 cm, and 2 cm thick 

intervals from 10-32 cm. Samples were dried at 60 °C for 48 hours, and transferred to 

a 25 °C desiccation chamber for storage until further processing. Wet and dry sample 

weights were recorded and used in subsequent porosity calculations. Dried samples 

were crushed with a mortar and pestle, and ground into a fine powder with an IKA 

Werke M20 mill (IKA Werke, Staufen, Germany). Powdered samples were transferred 

to 60 ml plastic jars and compressed at 3.4x103 kPa with a manual hydraulic press. 

Radionuclide counting of compressed samples was performed for 24 hours on a 

Canberra Instruments Low Energy Germanium Detector (Canberra Industries, 

Meriden, CT, USA). Levels of 7Be (t1/2 = 53.22 days), 210Pb (t1/2 = 22.20 years), and 

137Cs (t1/2 = 30.17 years) activity were measured by gamma spectroscopy of the 478, 

46.5, and 662 kEV photopeaks, respectively (Igarashi et al. 1998; Cutshall et al. 1983; 

Wallbrink et al. 2002). 

 

1.2.3    Porosity 

Porosity was calculated as: 

𝜑 =   
𝑀!/𝜌!

𝑀!
𝜌!

+ (
𝑀𝑑 − 𝑆 ∗    𝑀!

1000
𝜌!"

)
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where Mw is the mass of the water lost on drying, Md is the mass of the dried 

sediment, ρw is the density of pure water (defined as 1 g/cm3), Pds is the density of dry 

sediment calculated as Md/πr2h, where r is the radius and h is the height of the core 

slice, and S is salinity in grams per kilogram (Lloyd et al. 2011). A constant salinity 

value of 26 g/kg was used.   

1.2.4    Porewater ion chromatography 

Porewater was extracted from 50 mL sediment samples by centrifugation at 

13,000 G for 30 minutes. Porewater ions were measured with a Metrohm 850 

Professional ion chromatograph (Metrohm, Herisau, Switzerland). Dilutions were 

measured to determine a standard curve. Samples were diluted to ensure signal within 

the standard curve. 

1.2.5    Methane 

Methane concentrations were determined for cores L and S as previously 

described (Biddle et al. 2012). Core subsamples (volume = 305 cm3) were extracted 

from each core slice using a 5 ml syringe whose top had been removed with a razor 

blade. Core subsamples were transferred into 20 mL amber glass vials. 1 mL 1 M 

NaOH was added to each vial to halt microbial activity. Vials were crimped, shaken, 

and stored for 10 days at 25°C.  
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  A standard curve was calculated from 500, 1000, and 5000 ppm standards. 

Methane headspace concentrations were measured via flame ionization gas 

chromatography using a 5890 Series II gas chromatograph equipped with a flame 

ionization detector (Hewlett-Packard, Palo Alto, California, USA). 100 µL gas 

extractions were run in triplicate to determine mean retention times.    

Methane concentrations were calculated as: 

 

𝐶𝐻! =   
𝑃!"! ∗ 𝑉!!"#$%"&!
𝑅𝑇𝑉!"#1000

 

 

Where 𝑃!"! is the partial pressure of methane in ppm, Vheadspace is the volume of the 

headspace, R is the universal gas constant, T is the temperature in Kelvin, and Vsed is 

the volume of the sediment added to the vial. 

1.2.6    Illumina library preparation 

Illumina libraries were prepared from the 2012 core sections. Sediment 

genomic DNA was extracted from 0.5 g of sediment with a MoBio PowerSoil 

(MoBio, Valencia, CA) kit according to the manufacturer’s instructions. Purified 

gDNA was digested with the methylation-sensitive RE HpaII, which cleaves at the 

unmodified internal cytosine of a 5’-CCGG-3’ motif. Digested DNA was cleaned with 

a QIAquick PCR purification kit (Qiagen, Hilden, Germany), sheared to a median size 

of 300 bp using a Covaris focused-ultrasonicator (Covaris, Woburn, MA, USA), and 
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cleaned again with QIAquick. Digested extracts were immediately transferred to -

20°C until Illumina library preparation. Illumina libraries were prepared using the 

NEBNext Ultra Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA, 

USA).  

Illumina libraries were sequenced with an Illumina Hi-Seq 2500 (Illumina, San 

Diego, California, USA) at the Delaware Genomics and Biotechnology Institute 

(Newark, DE, USA). Single-read sequencing was performed for all samples, with 150-

cycle sequencing for the 3-6 cm and 12-15 cm samples, and 50-cycle sequencing for 

the 24-27 cm sample. 

1.2.7    16S rRNA gene amplicon sequencing 

DNA was extracted, purified, and digested using the previously described 

method for Illumina libraries. Purified DNA was quantified and tested for successful 

PCR reactions for the bacterial 16S rRNA gene. 16S rRNA gene amplicon library 

preparation and Ion Torrent PGM sequencing were performed by Molecular Research, 

LP (Clearwater, Texas, USA). The V4 variable region 515F/806R (Caporaso et al. 

2011) PCR primers were used to perform single-step, 30-cycle PCR using the 

HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94°C 

for 3 minutes, followed by 28 cycles (5 cycle used on PCR products) of 94°C for 30 

seconds, 53°C for 40 seconds and 72°C for 1 minute, after which a final elongation 

step at 72°C for 5 minutes was performed. Libraries were sequenced on an Ion Torrent 
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PGM (Thermo-Fisher Scientific, USA).16S rRNA gene analysis was performed with 

QIIME 1.8.0 (Caporaso et al. 2010). Dereplication, abundance sorting, and discarding 

reads < 2 bp was performed with the USEARCH7 algorithm (Edgar 2013). Chimeras 

were filtered with UCHIME (Edgar et al. 2011) using the RDP Gold Classifier 

training database v9 (Cole et al. 2014). Operational taxonomic unit (OTU) picking 

was performed at 97% similarity with the UCLUST algorithm (Edgar 2010). Non-

chimeric sequences were chosen as the representative set of sequences for taxonomic 

assignment and alignment. Taxonomic assignments were performed with the 

UCLUST algorithm (Edgar 2010) using the Greengenes V13.8 database for 97% 

OTUs (DeSantis et al. 2006). OTU tables were rarefied by QIIME from 2000 to 9500 

sequences per sample by steps of 100, with 10 iterations performed at each step. 

 

1.2.8    Metagenome assembly and annotation 

All metagenome sequence reads were trimmed to 51 bp and quality controlled 

with a custom Python script by Dr. Adam G. Marsh. Reads with Phred score 

nucleotide confidence < 95% were removed. Quality-controlled reads were assembled 

in IDBA (Peng et al. 2010) with kmer sizes ranging from 18 to 36 and increasing by 2 

with each iteration, with 97% similarity for alignment (Supplementary Table 2).  

Phylogenetic annotation was performed with PhymmBL (Brady and Salzberg 

2009; Brady and Salzberg 2011) and Kraken (Wood and Salzberg 2014). PhymmBL 

combines the Phymm (Brady and Salzberg 2009) with BLAST (Altschul et al. 1990) 
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algorithms for increased accuracy.  Aside from aligning and annotating contigs, 

PhymmBL provides identity confidence scores. A 65% identity confidence score 

threshold was imposed for Order-level assignments. Comparative taxonomic 

classifications were performed with Kraken (Wood and Salzberg 2014) using the 

standard database comprised of complete RefSeq bacterial, archaeal, viral, and fungal 

genomes. Contigs assigned to viral or fungal genomes were considered contaminants 

and were removed for downstream analyses. Marker gene annotation of filtered 

contigs was performed with Phylosift (Darling et al. 2014).  

Open reading frame (ORF) prediction was performed in six reading frames with 

MetaGene (Noguchi et al. 2006). ORFs were annotated for KEGG Orthology (KO) 

families (Kanehisa et al. 2016) in HMMER 3.0 (Eddy 2011) using the Functional 

Ontology Assignments for Metagenomes (FOAM) hidden Markov model database 

(Prestat et al. 2014). An e-value acceptance threshold of 1e-4 was enforced. In the case 

of multiple KO assignments per contig, the result with the best e-value and bitscore 

was chosen to represent that contig. Contigs that did not receive a protein annotation 

from these software were manually annotated with BLASTX (Altschul et al. 1997). 

Alignments were performed against the non-redundant protein database and scored 

with the BLOSUM62 matrix (Henikoff and Henikoff 1992), with a maximum 

expectation value of 1e-4 and a word size of 3. 
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1.2.9    Methylation scoring 

CpG methylation was calculated with a proprietary Python pipeline designed 

by Dr. Adam G. Marsh. A combined assembly of IDBA-assembled contigs was 

performed to identify CpG sites that could be directly compared between all depths. 

Methylated (met) and unmethylated (umt) continuous score metrics were derived for 

each CpG site based on the proportional representation of methylated and non-

methylated copies within an aligned assembly. These two metrics allow for the 

quantitative scoring of methylation states relative to (x,y) positions on a 2D coordinate 

plane. The magnitude of a site’s shift in methylation state (Mshift) between samples was 

measured as the Euclidean distance, as follows: 

 

𝑀!!!"# =    (𝑢𝑚𝑡! − 𝑢𝑚𝑡!)! + (𝑚𝑒𝑡! −   𝑚𝑒𝑡!)! 

 

1.2.10    Statistical analysis 

Statistical analyses were conducted with R. The presence of outlier contigs 

from IDBA assemblies was determined with Bonferroni outlier tests. Further tests 

were conducted for met and umt CpG methylation scores of abundant phyla 

(Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, and Proteobacteria). 

Modalities of met and umt scores were tested with Hartigans’ dip test for unimodality 

(Hartigan and Hartigan 1985) using the diptest package. Bootstrap standard errors 

(SE) and coefficients of variation (CV) were estimated (n = 10,000) for met and umt 
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score metrics. Random sampling with replacement was performed with the dplyr 

package, with the randomization seed set at 2016. Variances of met and umt were 

tested with a Brown-Forsythe Levene-type test (Brown and Forsythe 1974) using the 

lawstat package. Two-tailed Jonckheere-Terpstra trend tests (Jonckheere 1954; 

Terpstra 1952) with 1000-permutation reference distributions were performed with the 

clinfun package to determine down-core trends in met and umt scores. 

 

1.3 Results 

1.3.1    Sediment properties 

Sediment dating constraints of core R via 7Be, 210Pb, and 137Cs show that the 

Oyster Rocks site is comprised of a top layer of recently deposited tidally mixed or 

bioturbated sediment (~ 4 cm, sediment age < 106 days) situated above older sediment 

(50-100+ years old) (Supplementary Table 1). Sulfate concentrations were more 

varied between 0-3 cm and 3-6 cm (Figure 1.1 A) for Core L, but concentrations were 

higher in deeper samples from 6-9 cm to 27-30 cm. Methane concentrations of Core L 

were shown to increase with depth, with higher variance between 0-12 cm and lower 

variance from 15-30 cm (Figure 1.1 B). Porosity for Core R was shown to be far lower 

within older sediments (Figure 1.1 C). The higher variability of SO4
-2 and CH4 in more 

recently deposited sediments could be due to bioturbation and tidal forcing.  
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1.3.2    16S rRNA gene analysis 

16S rRNA gene Chao1 diversity index was generally higher at 3-6 cm than the 

12-15 cm and 24-27 cm samples (Figure 1.2). The 12-15 cm and 24-27 cm samples 

had similar profiles for rarefied Chao1 diversity and observed OTU counts. The 12-15 

cm and 24-27 cm samples had a higher presence of Dehalococcoidetes and sulfate-

reducing Deltaproteobacteria, as well as Marine Crenarchaoetal Group and Marine 

Hydrothermal Vent Group archaea (Figure 1.3). OTUs are clearly shared between the 

three depths, with corresponding abundance changes suggesting taxa which prefer 

anaerobic conditions inhabit the deeper depths (Figure 1.3). 

 

1.3.3    Metagenome taxonomic composition and function  

Sulfate-reducing Deltaproteobacteria were in all three metagenome samples, 

although relative abundances increased within the 12-15 cm and 24-27 cm samples 

(Figure 1.4). Common soil-inhabiting bacteria such as the Actinomycetales were 

present in high abundance at all depths. The most abundant classes seen in all three 

samples were the Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, 

Clostridia, Deinococci, Deltaproteobacteria, and Gammaproteobacteria (Figure 1.4, 

1.5). Contigs with both higher-scoring PhymmBL annotations and Kraken annotations 

further indicate a prevalence of anaerobic taxa within the 12-15 and 24-27 cm 

samples. These annotations show an increased presence of obligate anaerobes such as 

Clostridiales and Synergistales, as well as anaerobic halorespirers such as the 
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Dehalococcoidales (Figure 1.5). Both Kraken and PhymmBL annotations show a 

presence of methanogenic archaea at the 12-15 cm and 24-27 cm depths. Kraken will 

not classify a sequence if sufficient evidence does not exist, and this allows for higher 

precision at default settings compared with PhymmBL (Wood and Salzberg 2014). 

This is intended as a control for false positives assigned by PhymmBL.  

Phylosift marker gene annotations support the presence and higher relative 

abundance of Dehalococcoidia within sediments at 12-15 cm and 24-27 cm (Figure 

1.6). These annotations also support the presence of methanogenic archaea with high 

similarity to the Methanomicrobiales and Methanosarcinales at these depths. 

Additionally, KEGG Orthology annotations obtained from the FOAM database 

suggest that the deeper communities have the genetic potential to perform anaerobic 

metabolic processes (Figure 1.7). Genes involved in sulfate reduction (formate 

dehydrogenase, adenylyl sulfate kinase, NADH dehydrogenase, and heterodisulfide 

reductase) and methanogenesis (trimethylamine corrinoid protein co-

methyltransferase) were present.  

 

1.3.4    Metagenome CpG methylation 

From these metagenome data, a total of 6254 CpG sites that could be directly 

compared between all three samples were mapped to 3743 contigs (4.33% of all three 

unprocessed IDBA assemblies). Differential methylation states were observed in 1173 

sites, while the remaining 5081 had equivalent methylation states. Of these CpG sites, 
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4235 (67.7%) were identified within contigs with PhymmBL annotation Order 

confidence scores greater than or equal to 0.650. CpG methylation states at the phylum 

level show that the majority of sites are either highly methylated (MET) or 

unmethylated (UMT). An overall trend of CpG site shifts to lower methylation states 

with depth can be seen in the Proteobacteria (Figure 1.10), Firmicutes (Figure 1.11), 

and Actinobacteria (Figure 1.12). Most differential shifts are from MET to UMT states 

and vice versa (Table 1.1). The presence or shifts to unknown (UNK) states is mostly 

due to coverage being too low (< 5 fold).  

The methylation shift behaviors of individual CpG sites are varied and highly 

dependent upon their original states. Comparable CpG sites exhibit both differential 

and non-differential methylation shifts across the three samples (Figure 1.13, 1.14, 

1.15). The CpG sites represented in these figures comprise the six most numerous 

shifts from 3-6 cm to 12-15 cm, excluding those to or from UNK states. Shift 

behaviors between 12-15 cm to 24-27 cm of the same sites that are not to UNK states 

are displayed. Sites that evidence non-differential shifts within highly methylated 

states (MET:MET) tend to cluster at specific positions on the coordinate plane, with 

the majority of shifts occurring between similar methylation proportions and being of 

low magnitude (Figure 1.13, 1.14, 1.15: A, G). The low spread and magnitude of these 

shifts indicates a preference for methylated CpG sites to remain at highly similar 

methylation states. CpG sites that shift from MET to UMT states are also shown to 

cluster together in the MET state, but these methylated groupings shift into a variety of 
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UMT states (Figure 1.13, 1.14, 1.15: C, I). Inversely, multiple UMT CpG sites of 

varying methylation scores shift to highly similar MET states (Figure 1.13: E, K; 

Figure 1.14, 1.15: D, L). A change from 100% of a CpG site’s copies being 

methylated to 100% of them being unmethylated (and vice versa) is indicative of 

greater cellular responses. This relationship also indicates that similarly methylated 

CpG sites can experience varying degrees of methylation loss, but cluster at similar 

methylation proportions when shifting from UMT to MET states. CpG sites can also 

have mixed states of methylation prominence (MIX) resulting from partial 

methylation gains or losses. Proteobacteria and Actinobacteria were observed to have 

higher instances of shifts from MET to MIX states, indicating that these CpG sites 

undergo partial methylation losses (Figure 1.13, 1.15: B, H). Partial methylation gains 

of unmethylated CpG sites (UMT:MIX) were also observed in the Proteobacteria from 

12-15 to 24-27 cm (Figure 1.13 M). 

Hartigans’ dip test for unimodality was used to test the null hypothesis that the 

distribution of a variable is unimodal, with an alternative hypothesis that the 

distribution is at least bimodal. Results for met and umt scores support a non-unimodal 

distribution for most target Phyla (Supplementary Table 4). P-values for Bacteroidetes 

met scores are highly non-significant, indicating a unimodal score distribution for this 

phylum. Met scores for Chloroflexi CpG sites are also unimodal at 24-27 cm (p = 0. 

5416). P-values for met scores are consistently higher with depth across all five phyla 

in accordance with the overall trend towards unimodality (Figure 1.9 A). In contrast, 
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p-values for umt scores decrease with depth, indicating less unimodal distributions that 

are supported by overall trends towards distinct peaks (Figure 1.9 B).  

Bootstrap SE and CV of CpG site met and umt were lowest overall for the 

Actinobacteria. An overall trend of increasing SE for met scores with depth was seen 

in all analyzed Phyla. SE for umt scores did not follow this trend, as the SE for 12-15 

cm scores was highest overall amongst all Phyla. Met SE was highest for 24-27 cm 

scores, while umt SE was highest for 12-15 cm scores. CV was shown to be generally 

higher for 3-6 cm and 12-15 cm scores, with a trend of decreasing CV with depth 

(Supplementary Table 3). 

The Brown-Forsythe test compares group variances using the median as 

opposed to the mean used in the classic Levene’s test. Met and umt variances were 

tested against the null hypothesis H0: variances of two or more groups are equal. 

Results reject the null hypothesis and support the alternative hypothesis that variances 

are unequal across depths (p < 0.01165), supporting the presence of dynamic shifts in 

methylation states (Supplementary Table 5).  

Jonckheere-Terpstra trend tests were used to compare score metric medians 

across all three samples against the null hypothesis H0: θ1 = θ2 = . . . = θk, where θi is 

the population median for the ith population. The alternative hypothesis is that the 

population medians have an a priori ordering with at least one strict inequality, e.g. 

Ha: θ1 ≤ θ2 ≤ . . . ≤ θk. The a priori ordering of these sample depths gives the 

Jonckheere-Terpstra test more statistical power than the Kruskall-Wallis H test. 
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Results show that umt scores for Bacteroidetes did not change consistently with depth 

(p = 0.47), while met scores did (p = 0.002). Results for Chloroflexi show that both 

umt and met scores decreased with depth (p = 0.008, p = 0.002, respectively). Both 

met and umt scores for the other four phyla decreased with depth (p = 0.002) 

(Supplementary Table 5).  

Only 35 CpG sites were traced back to contigs receiving a KEGG Orthology 

annotation. Chitinase gene annotations were recovered for 14 comparable CpG sites 

that could be traced back to six contigs with PhymmBL annotation Order confidence 

scores greater than or equal to 0.650 (Figure 1.16, 1.17). While the number of 

recovered CpG sites for chitinase-annotated contigs is low, it should be noted that 12 

quantifiable CpG sites were identified at several positions within contigs assigned to 

Actinomycetales and Thermoanaerobacterales. These sites exhibit both methylation 

gains and losses with depth. Quantifiable states of 73 CpG sites were recovered for 

transposase genes identified by BLASTX alignments (Figure 1.18, 1.19). Transposase 

CpG sites tended to mostly remain in unmethylated states between both depth shifts. 

However, several CpG sites had highly weighted shifts from UMT to MET states, or 

vice-versa.  
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Table 1.1: Recovered CpG site methylation state shifts 
 
 

Shift Overall Proteobacteria Actinobacteria Firmicutes Bacteroidetes Chloroflexi 

MET:MET 
1491 690 277 150 20 53 

657 311 129 65 9 21 

MET:MIX 
26 9 9 2 2 - 
36 21 4 2 1 4 

MET:UMT 
472 204 90 59 5 15 
913 399 169 105 14 40 

MET:UNK 
159 66 25 24 6 6 
291 147 49 26 3 12 

MIX:MET 
10 7 1 1 - 1 
15 6 3 3 - - 

MIX:MIX 
5 3 1 1 - - 
2 1 9 - - - 

MIX:UMT 
3 1 1 - - - 

26 11 2 2 - - 

MIX:UNK 
- - - - - - 
3 - - - - - 

UMT:MET 
282 136 46 34 6 16 
294 128 58 36 6 8 

UMT:MIX 
12 5 3 2 - - 
23 9 1 6 - 2 

UMT:UMT 
1336 622 232 127 28 45 
1376 640 241 137 21 47 

UMT:UNK 
44 21 9 5 - 1 

156 65 31 15 6 5 

UNK:MET 
114 45 27 13 1 7 

96 43 23 14 - 2 

UNK:MIX 
3 1 1 - - - 
7 4 1 1 - - 

UNK:UMT 
38 15 8 8 - 2 

121 49 19 19 5 2 

UNK:UNK 
240 101 51 29 6 3 
219 92   42 24 7 6 

SUM 4235 1926 781 455 141 149 
 
 
Shaded rows indicate methylation state shift counts between the 3-6 cm to the 12-15 
cm sample. Non-shaded rows indicate counts for the 12-15 cm to 24-27 cm shift. 
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Figure 1.1: Sediment core sulfate, methane, and porosity. Sulfate (Panel A, purple 
squares = 1:6 dilution, orange triangles = 1:11 dilution) and methane (Panel B) 
concentrations are displayed for Core L. Porosity (Panel C) is displayed for Core R. 
Shaded bars are representative of radionuclide age constraints along the depth of Core 
R (peach = youngest sediment, age < 106 days; pink = extent of 210Pb from 0 cm to 
transition zone; blue = sediment 50-100+ years old).  
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Figure 1.2: Chao1 alpha diversity for rarefied 16S rRNA gene OTU tables. Alpha 
diversity was calculated for rarefied OTU tables using the Chao1 index (Chao 1984). 
Community diversity is higher within recently deposited surface sediments (3-6 cm) 
and lower within older, established sediments (12-15 cm, 24-27 cm). 
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Figure 1.3:  OTU class relative abundance of 16S rRNA gene amplicons. Analysis of 
16S rRNA gene amplicons shows a drastic shift in community diversity between the 
shallow (3-6 cm) sample and deeper (12-15, 24-27 cm) samples. This drastic shift can 
be associated with the differences in sediment age between the shallow and deep 
samples. The shallow sample is host to a wide variety of microbes, both aerobic and 
anaerobic, while anaerobic taxa such as Deltaproteobacteria and Dehalococcoidetes 
have greater abundance in the deeper samples. 
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Figure 1.4: Taxonomic abundances of PhymmBL-annotated metagenome contigs. 
Annotated contigs have an Order confidence score greater than or equal to 0.650. 
Members of Actinomycetales are common in soils and sediments, and were present at 
all depths. 
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Figure 1.5: Taxonomic abundances of metagenome contigs with both Kraken and 
higher-confidence PhymmBL assignments. PhymmBL annotations were paired with 
Kraken annotations to select against potential false positives annotated by PhymmBL. 
These annotations suggest a presence of Actinomycetales at all depths, and an 
increased abundance of anaerobic Orders (Clostridiales, Dehalococcoidales). 
Methanogenic archaea (Methanosarcinales) are present in the 12-15 cm and 24-27 cm 
samples. 
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Figure 1.6: Class-level abundance of marker genes annotated with Phylosift. Marker 
gene annotation suggests an increased abundance of several anaerobic classes in 
deeper samples, which could be indicative of a more anaerobic sediment environment 
at 12-15 cm and 24-27 cm.   
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Figure 1.7: Abundance of KEGG Orthology functional assignments across sample 
depths. KEGG Orthology annotation results show that Oyster Rocks sediment 
communities at 12-15 cm and 24-27 cm have higher enzymatic potential for anaerobic 
metabolism.  
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Figure 1.8: Overall CpG methylation score profile for 3-6 cm sample. Each point is 
representative of a single CpG site. Methylated (y-axis) and unmethylated (x-axis) 
score metrics are determined for each site by the proportional representation of 
methylated and non-methylated copies. An algorithm within the methylation scoring 
software divides the data into response groups, thus imparting multi-modality. The 
gray lines determine the boundaries set for grouping points into methylated (MET), 
mixed methylation (MIX), unmethylated (UMT), or unknown or resolved (UNK) 
categories based on their methylation scores. Orange circles = methylated sites, green 
triangles = mixed methylation sites, blue squares = unmethylated sites, purple crosses 
= unknown or unresolved sites.  
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Figure 1.9: Density distributions of pan-metagenomic methylation scores. Score 
distributions for comparable CpG sites are multimodal and shift between samples, 
although methylated score metrics become increasingly unimodal with depth. Panel A 
shows density distributions of the methylated score metric (met), while Panel B shows 
the unmethylated score metric (umt).  
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Figure 1.10: Proteobacteria CpG methylation across depths. A total of 1,926 CpG 
sites were recovered that could be compared between the three depths. 
Gammaproteobacteria represented 46.08% of these sites, with Alphaproteobacteria, 
Deltaproteobacteria, and Betaproteobacteria comprising 21.24%, 16.82%, and 15.32% 
of these sites, respectively. The vast majority of CpG sites shift between methylated 
and unmethylated states from the 3-6 cm sample (Panel A) to the 12-15 cm sample 
(Panel B), suggesting binary “on/off” shifts. There appears to be an increase in mixed 
methylation states with depth, indicating that some CpG sites shift towards fractional 
methylation. There is noticeable loss of methylated sites in the transition from 12-15 
cm to 24-27 cm sample (Panel C), and an increase in unmethylated sites. Squares = 
methylated sites, triangles = unmethylated sites, circles = mixed methylation sites, 
diamonds = unknown or unresolved sites.  
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Figure 1.11: Firmicutes CpG methylation across depths. A total of 455 CpG sites 
were recovered from Firmicutes. The majority of these CpG shifts occur from highly 
methylated to unmethylated states, which is suggestive of binary “on/off” switches. 
The most prominent orders comprising these data include members of Clostridia 
(Clostridiales, Thermoanaerobacterales), Bacilli (Bacillales, Lactobacillales) and 
Negativicutes (Selenomonadales). Squares = methylated sites, triangles = 
unmethylated sites, circles = mixed methylation sites, diamonds = unknown or 
unresolved sites.  
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Figure 1.12: Actinobacteria CpG methylation across depths. Of the total 781 CpG 
sites recovered for Actinobacteria, 696 (89.11%) were mapped to contigs annotated as 
Actinomycetales. Remaining CpG sites were mapped to Coriobacteriales, 
Rubrobacterales, and Bifidobacteriales. While most sites shift towards unmethylated 
states downcore, it should be noted that many UMT sites congregate into a high-
density region (Panel C). Squares = methylated sites, triangles = unmethylated sites, 
circles = mixed methylation sites, diamonds = unknown or unresolved sites. 
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Figure 1.13: Proteobacteria CpG site methylation shift dynamics. Scores for 
individual CpG sites are linked by a line and separated into differential and non-
differential methylation state shifts based on coordinate positions. Each point is a CpG 
site that has evidenced a change in methylation state between samples while 
maintaining coverage > 5x. The larger, colored point represents the quantitative state 
within the shallower sample, with higher opacity indicating multiple CpG sites with 
similar methylation proportions. The line extends to the state of the same CpG site 
within the deeper sample, represented by a smaller black point. The shading of the 
smaller black point is dependent upon the magnitude of the shift (Mshift) between 
depths, with greater shifts being darker. More intense line coloration indicates multiple 
similar shifts, and the length of the line is determinant upon the magnitude of the shift.  
 



 
 
 
 
 

36 

 
 
Figure 1.14:  Firmicutes CpG site methylation shift dynamics. See description of 
Figure 1.13 for interpretation guidelines. A greater number of CpG sites shift from 
methylated to unmethylated states or remain in unmethylated states between these 
depths.  
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Figure 1.15: Actinobacteria CpG site methylation shift dynamics. See description of 
Figure 1.13 for interpretation guidelines. Actinobacteria had the lowest CV for met 
and umt scores, which is attributed to the tendencies of CpG sites to cluster at similar 
states.  
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Figure 1.16: CpG methylation shifts for chitinases, 3-6 vs 12-15 cm. Genes were 
assigned to KO within the FOAM database. Actinobacteria experienced more drastic 
methylation losses as opposed to methylation gains. The points in this graph represent 
the same CpG sites represented in Figure 1.15 (12-15 vs. 24-27 cm), with the smaller 
point representing the same coordinate position as the larger point in the later figure. 
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Figure 1.17: CpG methylation shifts for chitinases, 12-15 vs 24-27 cm. CpG sites are 
the same as those seen in Figure 1.14 (3-6 cm vs 12-15 cm), except displaying their 
shifts in methylation state from 12-15 cm to 24-27 cm depths, with the larger point 
representing the same coordinate position as the smaller point in the previous figure. 
CpG sites seen within the Actinomycetales are generally less methylated. The 
Chloroflexales CpG site has higher-magnitude binary shifts between high and low 
methylation states.   
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Figure 1.18: Transposase CpG methylation state shifts by class. Figure interpretation 
guidelines are the same as for Figures 1.13-1.17. CpG sites that shift to and from UNK 
states are excluded in this figure. Higher-magnitude shifts from methylated to 
unmethylated states are seen in the Chloroflexi and Betaproteobacteria. 
Gammaproteobacteria CpG sites remain in high or low-methylation states. Shifts to 
other states are more binary, with higher-magnitude shifts from fully methylated to 
unmethylated states, and vice-versa.  
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1.4 Discussion 

 
DNA methylation is widespread in bacteria (Blow et al. 2016), and plays 

important roles in the protection of DNA in RM systems (Casadesús and Low 2006). 

Growing evidence indicates that many bacteria use methylation as a means of 

regulating gene expression (Marinus and Casadesus 2009; Løbner-olesen, Skovgaard, 

and Marinus 2005; Wion and Casadesus 2006; Reisenauer and Shapiro 2002; 

Srikhanta et al. 2005; Srikhanta et al. 2009; Low et al. 2001; Collier 2009; Brunet et 

al. 2011;Casadesus and Low 2008). The ability of DNA methylation to rapidly 

regulate gene expression makes it a potential acclimation mechanism for subsurface 

microbes faced with environmental stressors. Methylation would not require any 

evolution of gene regulators and could allow organisms that grow under surface 

conditions to adapt to the purported slow growth in deeper sediments. This study 

provides the first glimpse into dynamic CpG methylation of sediment microbial 

communities using an Illumina-based method that allows for total metagenome 

descriptions and changes in methylation.  

Sediment populations observed through 16S rRNA gene and metagenomic 

gDNA sequencing do not appear to be governed highly by factors such as porosity and 

sediment porewater geochemistry, and this notion is supported by previous research of 

the Broadkill River (Cheng 2013) and other estuarine microbe communities (Koretsky 

et al. 2005). However, this study suggests there are shifts in community composition 
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more closely related to the drastic change in sediment age suggested by radionuclide 

constraints. 16S rRNA gene amplicons suggest that the 3-6 cm sample contains greater 

diversity than the deeper samples. It is likely that surface sediments are more aerobic 

than deeper sediments due to regular cycling and deposition, and these higher oxygen 

levels could be a factor in this higher diversity. Obligate anaerobes and facultative 

aerobes were observed in the shallow sample as well, suggesting communities poised 

to increase once environmental variables stabilize. The 3-6 cm sample also 

encompasses the transition zone from young, fresh sediment to older, established 

sediment at 4-5 and 5-6 cm, so overlap in communities was expected. Our data clearly 

shows increases in age from 3-6 to 12-15 cm, and the deeper depth of 24-27 cm is 

certainly older although our tests could not measure an exact age between 15-24 cm. A 

consideration to be taken into account is that sediment cores for geochemistry and 

radionuclide activity were not sampled concurrently with the core used for DNA 

extraction and sequencing. However, results from these cores support the presence of 

a drastically shifting downcore age gradient with higher anaerobic community 

potential at depth. Methane and porewater ion profiles are more varied within surface 

sediments, suggesting a bioturbated or tidally mixed region of fresh sediment in line 

with 7Be and 210Pb activity constraints. 

A discrepancy in the relative abundance and dispersion of Actinobacteria 

sequences exists between 16S rRNA gene amplicon and metagenome results. 

Actinobacteria are shown to have high relative abundance through all three depths in 
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the metagenome results, yet 16S rRNA gene results show Actinobacteria present only 

in the 3-6 cm sample and existing at lower abundances. This could be due to HpaII-

digested DNA being used in 16S gene amplicon libraries. Actinomycetes have been 

shown to possess multiple HpaII target sites within their 16S genes (Tolba et al. 2013), 

and this digestion could have affected PCR gene amplificiation resulting in a lack of 

reliable signatures. However, it should be noted that this is likely true for several taxa. 

16S rRNA gene results indicate that anaerobic taxa increase with depth, but do not 

reliably indicate exact abundances or lack of signal. Due to this, Phylosift annotations 

are a more reliable indicator of marker gene-based taxonomic abundances.  

Based on functional annotations in the assembled metagenome and community 

composition, the sediment community clearly transitions to a mostly anaerobic 

environment with increasing depth. The presence of methanogenic archaea and 

sulfate-reducing Deltaproteobacteria within the 12-15 and 24-27 cm samples suggest 

these communities support active anaerobic lifestyles (Oremland and Polcin 1982). 

The majority of taxa shifted by the 12-15 cm depth, but a few taxa were shared across 

all depths tested. 

Methylation scoring results show that 82% of CpG sites had equivalent 

methylated or unmethylated states between depths. The majority of CpG sites 

remained in MET or UMT states for the Proteobacteria, Firmicutes, and 

Actinobacteria. Two possible explanations are presented here. First, DNA sequences 

with methylated CpG sites are propagated in the methylated state due to maintenance 
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methylation, leading to a higher number of conserved methylated sites. Second, non-

methylated CpG sites are not substrates for maintenance DNA methylases, and as such 

tend to remain non-methylated (Casadesús and Low 2006). These results suggest a 

prevalence of conserved CpG methylation states across depths. Of the remaining 18% 

of CpG sites that were different, the majority occurred between high-methylation and 

low-methylation states. This is representative of the standard binary response 

associated with the concept of an epigenetic on/off switch (Marsh and Pasqualone 

2014). Shifts between highly methylated (MET) and fractionally methylated (MIX) 

states suggest the presence of dynamic CpG sites that result in a mixed population of 

methylation states (Marsh and Pasqualone 2014). However, we cannot rule out the 

potential effect of whole genome duplication on methylation scoring, as newer 

genomes would contain fewer methylated bases. This ability to score fractional 

methylation of CpG sites within metagenomic DNA opens up future possibilities for 

better understanding how microbes in the environment can respond to various 

conditions and stressors, and for also potentially assessing the genomic age of intact 

cells from sediments. Assay results also provide evidence of dynamic CpG 

methylation shifts at the phylum level. 

The methylation dynamics of individual CpG sites were analyzed for the 

Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Chloroflexi. 

Actinobacteria CpG sites were shown to cluster together at higher densities in the 

UMT state at 24-27 cm, which explains in part why this phylum has the lowest 
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bootstrapped CV and SE. It should be noted, however, that 696 of 781 (89.11%) 

recovered CpG sites representative of this phylum were mapped to Actinomycetales, 

which is present in considerable abundance within all samples. The high 

representation of this order also accounts for a lower CV within the Actinobacteria 

population for each depth. However, when variances of the three depths are compared, 

Brown-Forsythe test results show the Actinobacteria exhibiting the highest variation 

between the three samples. Representative CpG sites for Proteobacteria and Firmicutes 

were from more diverse taxa, and potentially account for higher CV and SE within 

these phyla. There is a general trend of decreasing CV for both met and umt scores 

with depth, and this is influenced by the overall trends towards bimodal score 

distributions. The vast majority of methylation shifts between MET and UMT states 

for Actinobacteria, Proteobacteria, and Firmicutes were small. Multiple CpG sites 

experience these low-magnitude shifts to shared states of methylation loss and gain. 

These shared behaviors in methylation shifts are potentially due to the increasing age 

of genomes with sediment depth. More normal distributions of met scores indicate 

hemimethylation within the 3-6 cm sample, which is indicative of cell growth and 

newer genomes. Shifts towards binary methylation distributions are likely due to 

decreased hemimethylation, resulting in most methylation being attributed to 

maintenance factors.    

 CpG methylation states were also shown to vary for specific genes, including 

chitinase and transposase. Chitin, the long-chain polymer of the glucose derivative N-



 
 
 
 
 

46 

acetylglucosamine, is a highly abundant renewable polymer in marine ecosystems 

present in bivalves, cephalopods, arthropods, fungi (Bhattacharya et al. 2007) and 

diatoms (Durkin et al. 2009). There are no reports of quantitatively significant long-

term accumulation of chitin in nature, implying efficient degradation and turnover 

(Tracey 1957; Gooday 1990). Most chitin is produced at or near the surface of aquatic 

environments (Gooday 1990), and previous studies provide evidence of 

bacterioplanktonic chitinase presence and activity within the coastal estuarine waters 

of Delaware Bay (Cottrell et al. 1999; Cottrell et al. 2000). Chitin hydrolysis rates are 

higher within the water column than in the sediment, and sediments only contain 

traces of chitin (Souza et al. 2011). However, chitinolytic bacteria such as the 

Actinomycetes are widely distributed in sediment environments  (Bhattacharya et al. 

2007; Souza et al. 2011) and are responsible for converting this insoluble source of 

carbon and nitrogen into a form that can be utilized by the entire marine food web 

(Gooday 1990; Gooday et al. 1991). It has been previously noted that within the first 

10 cm of sediment, chitin is rapidly removed from an estuary (Gooday 1990).  CpG 

site methylation was characterized in chitinase genes. From the shallow depth to 12 

cm, the most abundant shifts are from methylated to unmethylated states. Notably, 

these changes are occuring in lineages of Actinobacteria and Thermoanaerobacter, 

both known as anaerobic lineages that utilize chitin. While some chitinases also 

annotated for these groups remain methylated, other CpG sites certainly shift. I 

interpret the variations in these signals to suggest regulation, and not just a signature 
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of cellular replication, considering that methylation losses are greater as these genes 

enter the anaerobic, 12-15 cm environment. These same CpG sites are again 

methylated within the 24-27 cm depth as they leave the assumed zone of available 

chitin. While I did not concurrently measure chitin, the often noted correlation 

between cultivable chitinolytic bacteria and chitin abundances suggests that this 

process is one that would not be maintained if chitin were not present. The evidence 

for anaerobic organisms only removing methylation from chitinase CpG sites within 

the anaerobic sedimentary horizons suggests that this is a valid glimpse into 

methylation-based regulation of an energetically costly process. This study has 

provided an initial glimpse into how marine sediment microbes potentially utilize 

DNA methylation to regulate biogeochemical processes that are vital for nutrient 

cycling.  

While DNA methylation can silence gene transcription, its can also regulate 

transposons and the expression of associated transport genes. Transposons are 

common within microbes, and usually consist of sequences < 2000 bp known as 

insertion sequences (IS) (Voet et al. 2008). An IS usually contains a transposase (Nagy 

and Chandler 2004), which binds to the end of the transposon and catalyzes its 

movement within a genome (Voet et al. 2008). Transposition is regulated due to its 

potential to activate genes upon upstream insertion, as well as damage the integrity of 

a genome (Nagy and Chandler 2004). DNA methylation has been shown to regulate 

transposition in bacteria, and differential N6-adenine methylation at GATC sites is 
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known to regulate IS expression and DNA binding in E. coli (Casadesús and Low 

2006). While much of the literature concerning bacterial transposase regulation by 

DNA methylation is focused on Dam MTase methylation at GATC sites in E. coli 

(Dodson and Berg 1989; Reznikoff 1993; Roberts et al. 1985; Yin et al. 1988; 

Spilemann-Ryser et al. 1991), the regulatory mechanisms of one model organism do 

not necessarily apply to the entire bacterial domain. CpG methylation has been shown 

to silence plant transposons (Miura et al. 2001), and could potentially do the same in 

microbes due to the conservation of this methylation pattern. There is evidence for 

differential methylation of multiple CpG sites within sediment bacteria transposases. 

A lack of methylation within CpG sites or shifts into hemimethylated states could also 

hint at the potential activity of transposases. The regulation of intracellular 

transposases and transposon mobility could play a role in rapid acclimation responses 

by influencing transcriptional activity and acting as mobile genes that can be inserted 

into a genome. Horizontal gene transfer is speculated to occur in estuarine sediment 

microbes (Angermeyer et al. 2016), and extracellular transposases could play a 

potential role in this process due to substantial numbers of horizontally-transferred 

genes in several bacteria species being attributed to foreign DNA such as transposons 

(Ochman et al. 2000). Due to the known influence of DNA methylation within 

transposons and the results of this study, we speculate that DNA methylation could 

potentially act as a regulator of transposition within the subsurface.  
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The Illumina-based methylation-scoring assay utilized in this study was 

originally designed for determining DNA methylation in eukaryotes, and has been 

used to identify dynamic CpG shifts in the Antarctic polychaete Spiophanes tcherniai 

(Marsh and Pasqualone 2014). While this approach does not give a complete view of 

bacterial and archaeal DNA methylation due to the high diversity of MTase target 

sequences and methylated nucleotides in bacteria and archaea, it does provide 

community-level insight into the dynamic behavior of a well-known and conserved 

methylation site. Since adenine methylation is considered to be a main driver in 

bacterial gene regulation (Ratel et al. 2006), the environmental microbiology 

application of this assay could be augmented by methods to quantify adenine 

methylation. Proportions of N6-adenine methylation at GATC sites could be attained 

by digesting extracted DNA with DpnI restriction endonuclease, which cuts at the 

recognition site Gm6A^TC (Lacks 1980). DpnI differs from most restriction 

endonucleases in that it cleaves at a methylated instead of a non-methylated 

recognition site. Modifying the assay for use with paired-end sequences would aid in 

assembly and alignment, and would improve the overall quality of the data set. 

Modern sequencing and computing methods allow for the reconstruction of genomes 

obtained from the environment (Baker et al. 2016; Baker et al. 2015; Seitz et al. 2016; 

Eisen et al. 2002; Singer et al. 2013; Tully et al. 2014), allowing for detailed insights 

into the mechanisms that drive microbial communities and individuals alike. A benefit 

of this Illumina assay is that it requires less DNA than single-molecule approaches. 

Future modifications tailored for metagenomic DNA could pave the way for the 

reconstruction of dynamic methylation profiles within genomes obtained from the 

environment. 
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Chapter 2 

TRENDS IN EPIGENETIC REGULATORY SIGNALS FOR KNOWN 

BACTERIAL GENOMES 

 
2.1 Introduction 

Transcription initiation and gene expression are heavily influenced by the 

interactions between DNA regulatory sequences and transcription factors. These 

interactions are not governed solely by the recognition of particular nucleotide motifs, 

but are also affected by multiple processes that affect the conformation and 

intermolecular forces of a DNA sequence. DNA methylation and DNA curvature are 

two conserved epigenetic processes that play important roles in microbial gene 

structure and transcriptional regulation.  

DNA methylation is conserved within bacteria and archaea, and involves the 

modification of adenine or cytosine by a DNA methyltransferase (MTase) into N6-

methyladenine (n6A), 5 methylcytosine (m5C), and/or N4-methylcytosine (n4C) 

within a specific target sequence (Kumar and Rao 2012). Although DNA methylation 

is conserved, the target sequences of n6A, m5C, and n4C-specific MTases vary greatly 

among different taxa (Wion and Casadesus 2006; Casadesús and Low 2006; Butkus et 

al. 1987; Klimasauskas et al. 1990; Klimasauskas et al. 1989; Cheng 1995; Blow et al. 
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2016, Murray et al. 2012). These target sequences are generally scarce in microbial 

genomes due to their length and complexity (Wojciechowski et al. 2012). While many 

MTases are associated with restriction-modification (RM) systems, methylation 

activity by non-RM-associated MTases (orphan MTases) is shown to have a 

significant presence in microbes (Blow et al. 2016). Since methylation is known to 

occur in or around regulatory regions (Casadesús and Low 2006), characterizing 

spatial motif frequency highs and lows could aid in identifying potential regulatory 

sites. Methylome analysis of 213 bacterial genomes via single molecule, real-time 

sequencing shows a significant enrichment of unmethylated MTase target sites within 

regulatory regions, supporting the involvement of these sites in regulatory processes 

(Blow et al. 2016). While methylation is associated with an “on/off” transcriptional 

switch (Low et al. 2001, Casadesús and Low 2006), the secondary effects imparted 

upon DNA by methylation highly influence transcription. Methylation can induce or 

increase the curvature of DNA (Kravatskaya et al. 2011; Ratel et al. 2006; Wion and 

Casadesus 2006; Asayama and Ohyama 2005; Diekmann 1987; Engel and von Hippel 

1978), and this can affect the binding of regulatory proteins due to steric hindrance or 

alteration of the DNA structure (Casadesús and Low 2006). 

DNA curvature is caused by the intrinsic intermolecular forces of the 

nucleotide sequence itself, or by external forces such as protein binding (Asayama and 

Ohyama 2005). Several methods exist for analyzing the curvature of a DNA sequence, 

including X-ray diffraction (Dlakic et al. 1996), FRET (Parkhurst et al. 1996), LRET 
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(Heydun et al. 1997), and TEB (Vacano and Haerman 1997) spectroscopies, and 

electrophoretic ligation ladder assays (Ross et al. 1999). Intrinsic curvature is 

determined by the nucleotide sequence, and certain patterns can have greater effects 

on curvature. Fourier analysis has shown a correlation between intrinsic curvature and 

pattern periodicity (Gabrielian and Pongor 1996). Statistical analysis of laboratory 

results has led to the development of several DNA curvature models based on 

nucleotide periodicities and the presence of features such as dinucleotide stacks 

(Bolshoy et al. 1991; Goodsell and Dickerson 1994). The periodicity of stretches of 

adenines or thymines (termed A-tracts or T-tracts) is assumed to influence how planar 

or curved a DNA strand is. A-tract and T-tract periodicities < 10.5 bp induce left-

handed superhelical conformations, while periodicities > 10.5 bp result in right-

handed conformations. Periodicities equal to 10.5 bp result in a planar curvature 

conformation (Asayama and Ohyama 2005). The axial path of a DNA strand is further 

determined by the presence of dinucleotide stacks that influence three Eulerian angles: 

the deflection angle (wedge angle), the helical twist, and the direction of the 

deflection. The dinucleotide stacks AA/TT, AG/CT, CG/CG, GA/TC, and GC/GC are 

estimated to have large wedge angles, and are considered to have greater effects on the 

deflection of the DNA helical axis and curvature of the sequence (Bolshoy et al. 

1991). 

Intrinsic curvature imparted by the presence or absence of A-tracts, T-tracts, 

and certain dinucleotide stacks can enhance or inhibit transcription by altering 
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interactions with transcription factors (Asayama and Ohyama 2005). The presence and 

conservation of curved DNA structures in or around promoters and origins of 

replication suggest that curvature plays an important role in the regulation of basic 

genetic processes within microbes (Jauregui et al. 2003; Asayama and Ohyama 2005; 

Kanhere and Bansal 2005; Meysman et al. 2014). Heightened DNA curvature within 

promoter regions has shown to raise the efficiency and DNA binding of an RNA 

polymerase (RNAP) (Matsushita et al. 1996) by increasing the number of contacts 

between RNAP and promoter DNA (Pérez-Martín and Espinosa 1994), an important 

step in transcription initiation (Asayama and Ohyama 2005). The structure of a DNA 

sequence is not necessarily optimal for the surface of an RNA polymerase, but RNAP 

counters this by altering promoter DNA curvature into a left-handed superhelical 

conformation as it wraps around RNAP upon binding (Coulombe and Burton 1999). 

Aside from the core promoter region, upstream and downstream structural features 

also influence interactions with transcription factors. While the curvature of the core 

promoter region is linked to its transcriptional activity and efficiency, previous studies 

have shown that intrinsic DNA curvature upstream of promoters is related to the 

activity of the promoter region (Perez-Martin et al. 1994; Katayama et al. 1999; 

Bracco et al. 1989; McAllister and Achberger 1989; Travers 1989; Liu-Johnson et al. 

1986; Matsushita et al. 1996). Intrinsic curvature is lower downstream of the core 

promoter, and this is linked to curvature being more dependent upon external forces 

such as protein binding within these regions (Asayama and Ohyama 2005).  
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Due to the known relationships between DNA methylation and curvature, a 

question arises concerning the widespread prevalence of these phenomena in relation 

to potential regulatory regions. Since heightened MTase motif frequency and 

curvature are known to occur near regulatory regions, identifying spatial highs and 

lows on a large scale can provide insight into conserved epigenetic trends. In this 

study we identify global trends in CpG and GATC site frequency, as well as intrinsic 

curvature, for intergenic upstream and intragenic downstream regions of known genes 

within sequenced bacterial reference genomes. 

 

2.2 Materials and Methods 

 
2.2.1    TBLASTN alignments of DNA methyltransferase orthologs 
 

A total of 1010 complete RefSeq bacterial genomes representative of classes 

abundant within the metagenome described in Chapter 1 were obtained from NCBI for 

analysis of structural patterns within promoter and coding regions, as well as the 

identification of potential methyltransferase orthologs. Escherischia genomes were 

excluded since methylation and methyltransferases are well documented in this genus. 

All genomes were derived from chromosomal replicons. Genomes were formatted into 

a nucleotide BLAST database for local alignment with BLAST+ (Camacho et al. 

2009). Amino acid sequences for 151 bacterial C5-cytosine, N4-cytosine, and N6-

adenine-specific DNA methyltransferases were obtained from RefSeq, SwissProt, 

European Molecular Biology Laboratory, GenBank, and Protein Data Bank databases. 

Recognition sites for these proteins were parsed from the REBASE database (Roberts 
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et al. 2010). Taxonomic lineages for methyltransferase origin organisms and complete 

genomes were parsed from the NCBI Taxonomy database (Sayers et al. 2009; Benson 

et al. 2009). Local alignments of subject genomes and methyltransferase queries were 

performed with the BLAST+ suite v.2.2.30 (Camacho et al. 2009) using TBLASTN 

(protein compared against nucleotide subject sequence translated in six reading 

frames) with the BLOSUM62 substitution matrix (Henikoff and Henikoff 1992). An 

e-value threshold of 1e-4 was imposed during alignment. Results were filtered to 

exclude hits of genus-level similarity between the genome subject and the 

methyltransferase organism of origin.  

 
Table 2.1: Representative genomes and extracted gene fragments 
 
 
Class Number of genomes Gene fragments 
Actinobacteria 119 342,868 
Alphaproteobacteria 155 290,146 
Bacilli 192 336,988 
Betaproteobacteria 133 278,505 
Clostridia 82 163,380 
Deinococci 14 22,641 
Deltaproteobacteria 37 103,613 
Gammaproteobacteria 278, 212✶ 630,659, 536,392✶ 

Total 1010 

944✶ 

2,168,800 

2,074,533✶ 

✶	
  Indicates number of genomes and gene fragments for motif and curvature analysis. 
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2.2.2 Methylation motif frequency and intrinsic curvature of gene upstream 
and coding regions 

 
I utilized a series of custom Perl, Python, and R scripts to perform a class-level 

analysis of global trends in DNA methylation-associated motif frequency and intrinsic 

curvature for gene upstream promoter regions and coding sequences (CDS). The 

density of methyltransferase target sites was used to identify spatial increases and 

decreases in target site composition along upstream promoter and downstream coding 

regions. Gene fragments include a -200 bp upstream promoter and a coding sequence 

(CDS) +350 bp downstream from the transcriptional start site (TSS). These data only 

include fragments that do not overlap with other CDS sequences, meet a required 

length (550 bp), and whose first three nucleotides of the CDS are not a stop codon 

(TAA, TAG, TGA).  

GATC, CpG and mirror GpC motif frequencies were calculated for 500 bp 

sequences extending -175 bp upstream and +325 bp downstream from the TSS 

(position 0) for each gene fragment. Calculations utilized a standard weighted moving 

average with a 51 bp window. Within each window, the score attributed to a CpG, 

GpC, or GATC motif was weighted based on the motif’s position relative to the 

central nucleotide in the window.  

CpG or GpC motif frequencies weighted to their position within a window of 

size 𝜛  were calculated as: 

𝐶𝑝𝐺|𝐺𝑝𝐶!"#$ =   
1

1 + | 𝜛
2 +    𝐶𝐺 𝐺𝐶 !"#|
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[CG|GC]pos is the position of the CpG or GpC motif within the window nucleotide 

string.  

GC content was calculated as: 

𝐺𝐶 =   
𝐺!"#$ +   𝐶!"#$

𝜛
 

 
where Gfreq and Cfreq are the frequencies of guanine and cytosine, respectively. 

CpG frequency normalized to GC content was calculated as: 

 
𝐶𝑝𝐺!"#$ = (

𝐶𝑝𝐺!"#$
𝜛

)/(𝐺𝐶 +   1𝑒!!) 
 
Expected GATC motif frequency was calculated as: 
 

𝐺𝐴𝑇𝐶!"#   =
𝐺𝐴!"#$ ∗ 𝐴𝑇!"#$ ∗ 𝑇𝐶!"#$
𝐺!"#$ ∗ 𝐴!"#$ ∗ 𝑇!"#$ ∗ 𝐶!"#$

∗ (𝜛 − GATC!"# + 1) 

 
where 𝜛 is the window size, 𝐺𝐴𝑇𝐶!"#   ==   4  (aka the length of sequence GATC), and 

[GATC]freq is the nucleotide or dinucleotide frequency.   

DNA curvature was calculated for gene fragments using the nearest-neighbor 

dinucleotide wedge model (Bolshoy et al. 1991). 

Results were structured into Hierarchical Data Format, version 5 (HDF5) using 

a custom Python script. In the case of this project, being able to select certain data sets 

allowed for this large quantity of data to be worked with in R, especially since R stores 

files in memory. Data sets were organized by taxonomic rank (phylum to NCBI 

accession number), with a data set for each CDS.  

 

 



 
 
 
 
 

58 

2.3 Results 

 
2.3.1 TBLASTN alignments of DNA methyltransferase orthologs 
 

A total of 4065 TBLASTN alignments passing selection criteria were obtained 

for both orphan and RE-paired DNA methyltransferases. Potential orthologs of the 

m5C-specific orphan methylase Dcm were observed within all classes except the 

Deinococci. Overall results for m5C-specific MTase alignments show that query 

coverage was higher within Actinobacteria, Gammaproteobacteria, 

Betaproteobacteria, and Bacilli, although percent similarity ranged from 21.07% to 

100% (Figure 2.1). Mean alignment coverage of Dcm hits was high, with a range of 

93% to 98%. Amino acid similarity for these classes was lower, with a range of 

53.28% to 68.62%. These alignments suggest that m5C methylation activity at 5’-

CCWGG-3’ sites is conserved among these classes. Potential Dam orphan methylase 

orthologs were observed in all classes other than the Deinococci. While alignment 

coverage was high (> 93%), amino acid similarity was generally lower (between 47-

64%). These scores were higher within the Gammaproteobacteria, and could be due to 

the prominence of Dam GATC methylation within this class. The RE-paired type II 

MTases M.MboIA and M.MboIB, which also methylate GATC motifs, were seen to 

have significant alignments within the Clostridia and Gammaproteobacteria 

(Supplementary Table 5). Overall, there appears to be potential for N6-adenine 

methylation at GATC sites within these seven classes based on these significant 
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alignments. N4-cytosine specific MTase alignments were seen in Actinobacteria, 

Alphaproteobacteria, Bacilli, Betaproteobacteria, Clostridia, and 

Gammaproteobacteria. Most of these alignments had low similarities. M.ScaI aligned 

to members of Actinobacteria, Bacilli, and Clostridia, although these alignments had 

low similarity. M.PvuII was shown to have higher similarity and coverage in the 

Betaproteobacteria and Gammaproteobacteria (Supplementary Table 8). 

 

2.3.2 Methylation motif frequency and intrinsic curvature of gene upstream 
and coding regions 

 
A total of 2,168,800 gene fragments were extracted from 3,248,452 genes 

specified within general feature format (GFF) files. Of the gene fragments excluded 

from analysis, 580,720 (53.79%) were ignored due to overlaps with a previous CDS, 

while 458286 (42%) were shorter than 550 bp and 40,646 (4%) contained invalid start 

codons. It should be noted that the number of extracted Gammaproteobacteria gene 

fragments was reduced to only include those from orders present within the Oyster 

Rocks metagenome (Acidithiobacillales, Aeromonadales, Alteromonadales, 

Chromatiales, Enterobacteriales, Methylococcales, Oceanospirillales, 

Pseudomonadales, Thiotrichales, and Xanthomonadales) (Table 2.1). Motif frequency 

and intrinsic curvature suggest conserved structural features within these eight classes. 

However, these features are highly dependent upon nucleotide position. Certain trends 

were seen upstream of the core promoter, within the core promoter region, and in the 

downstream CDS. 



 
 
 
 
 

60 

2.3.2.1    Upstream of the core promoter 

Regions upstream of the core promoter region (-175 to -35 bp) are 

characterized by gradually increasing curvature (Figure 2.9). GATC tetranucleotide 

frequency appears to remain steady or decrease (Figure 2.4). GATCexpected (determined 

by GA/AT/TC dinucleotide frequencies) appears stationary at the upstream region 

while sharply increasing close to the core promoter (Figure 2.2). GC content decreases 

in this region until it reaches a minimum within the core promoter region. However, 

GC content increased near the core promoters of Bacilli and Clostridia (Figure 2.8). 

This increased GC content, but lack of GA/AT/TC motifs, could signify a higher 

prevalence of A-tracts or T-tracts, as well as other influential dinucleotide stacks 

within this upstream region that promote increased curvature. The directional angles 

of GA and AT dinucleotides are 0 ° and 120 °, which could result in a more bent 

conformation. CpG frequency normalized to GC content is higher further upstream, 

but decreases closer to the core promoter (Figure 2.6). The coefficient of variation 

(CV) for GATC and CpG motif frequencies is generally higher or gradually increases 

(Figure 2.5, 2.7), suggesting that there is higher variability in the potential DNA 

methylation motifs present within this region.  

 

2.3.2.2    Core promoter region 

An increased frequency of GA/AT/TC dinucleotides likely accounts for the 

rise in curvature within the core promoter region (-35 to 0 bp (transcription start site)), 
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as the GA/TC dinucleotide stack has a large wedge angle. There is a dip in GC content 

for all classes except the Clostridia and Bacilli, and this increase in AT content could 

increase the probability of A-tracts or T-tracts occurring along with AA/TT 

dinucleotide stacks. The increase of these features could account for the peak in 

curvature seen within this region. The higher curvature of this region can also be 

attributed to the preferential binding of RNAP to curved DNA. 

 

2.3.2.3    Downstream coding region 

The downstream CDS region spanning from 0 to +150 bp appears to have 

conserved spatial patterns. Frequency of GA/AT/TC dinucleotides is highest around 

+35. CpG frequency and GC content are higher within the +35 to +150 bp substring, 

and GA/AT/TC dinucleotide frequency decreases. Intrinsic curvature also dips 

drastically in this region, resulting in a more planar region. The increased GC content 

at this site likely contributes to a decrease in the probability of A-tracts and/or T-tracts, 

and an increased probability of CG/CG and GC/GC dinucleotide stacks. These 

dinucleotide stacks are considered to have greater effects on the deflection of the DNA 

sequence due to their higher wedge angles (Bolshoy et al. 1991). The directional 

angles of the CG and GC dinucleotides are respectively 0° and 180°, and these angles 

result in a more planar DNA conformation. The CpG normalized CV is lower overall 

within the CpG valley, suggesting that individuals within these classes have more 

conserved CpG frequencies within this region. Higher GC content could result in 
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decreased A and T-tract periodicity due to a more balanced nucleotide distribution 

within the downstream region.  

There is a reduced probability of matching a CpG site in the +35 to +150 

region due to lower GC content, and this would decrease the prevalence of CpGs 

located closer to the central nucleotide of the sliding window. Inversely, GC content 

increases within the valley and the CV for CpG normalized to GC content is lower 

(Figure 2.8 and 2.7). This would impart a greater chance of matching a CpG site with 

consistently higher weight, as an increase in CpG frequency would allow for more 

sites closer to the center of the sliding window.  

A structural feature is seen around +150 bp characterized by a sharp increase 

in curvature, a slight increase in GA/AT/TC nucleotide frequency, a sharp decrease in 

CpG frequency, a sharp peak in weighted GATC tetranucleotide motif frequency, and 

a decrease in GC content. These features potentially indicate the presence of a 

conserved downstream regulator containing a GATC site. Downstream GATC sites 

are methylated in E. coli and as a result increase the efficiency of transcription factor 

DNA binding (Casadesús and Low 2006). A similar pattern at this conserved site 

could act to regulate RNAP. Decreasing curvature and increasing GC content 

characterize gene sequences downstream of the +150 peak to the +325 position. CpG 

frequency also gradually increases within this region. 

 

 



 
 
 
 
 

63 

2.3.2.4    Actinobacteria 

Actinobacteria has the highest GC content among the eight classes analyzed 

(Figure 2.8). They had one of the highest normalized CpG frequencies, as well as 

having consistently low CV for this metric, indicating a higher similarity of CpG 

frequency among members of this class (Figure 2.6). Actinobacteria displayed the 

lowest mean GA/AT/TC dinucleotide frequency of classes containing a large number 

of genomes. There was a higher GATCexpected CV, due to potentially higher probability 

of CpG or GpC dinucleotides imparted by higher overall GC content. While this class 

followed conserved trends in curvature structure, it had the lowest overall intrinsic 

curvature (Figure 2.9).  

 

2.3.2.5    Alphaproteobacteria 

The Alphaproteobacteria had higher GATCexpected, and was only surpassed by 

the AT-rich Clostridia and Bacilli. The GATCexpected mean based off dinucleotide 

frequency is high, and the GATCexpected CV at the core promoter region is lowest of all 

classes. This class also had the highest GATC motif frequency and the lowest GATC 

motif CV, especially within the core promoter region. Overall GC content is higher, 

~60%. This could account for lower overall intrinsic curvature, potentially due to 

decreased A and T-tract periodicities that result from more even nucleotide 

frequencies.  
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2.3.2.6    Bacilli 

Bacilli were observed to have AT-rich genomes with high intrinsic curvature. 

This class had the highest expected GATC frequency based off GA/AT/TC 

nucleotides, and followed conserved trends by having a peak in this metric within the 

core promoter region. Frequency of the GATC tetranucleotide was lower overall, 

however. TBLASTN alignments suggest that the Bacilli have potential orthologs for 

Dam, M.FokI, and M.KpnI MTases, with respective recognition sites of GATC, 

GGATC, and GGTACC. The presence of the latter two MTases suggests that the 

Bacilli might utilize these target motifs in transcriptional regulation, and their presence 

within the core promoter region could account for the increased GATCexpected 

frequency. It should be noted that CV increases for GATCexpected in the core promoter 

region, signifying that dinucleotide frequencies are more varied overall in the -35 to 0 

region. 

 

2.3.2.7    Betaproteobacteria 

Representative genomes of the Betaproteobacteria had lower intrinsic 

curvature and higher GC content. Members of this class displayed higher GATC 

tetranucleotide frequencies compared to more AT-rich classes. The potential 

conservation of Dam orthologs within this class based on TBLASTN alignments could 

explain the higher GATC tetranucleotide frequency. Average GATCexpected frequencies 
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have a much higher peak at the core promoter region, indicating that GATC could be a 

common regulatory motif within this site. 

 

2.3.2.8    Clostridia 

The Clostridia were observed to have a higher GATCexpected frequency within 

the core promoter region, but the CV for this class was shown to increase at this site. 

GATC tetranucleotide frequencies were lowest for this class, and the CV for this 

metric was highest overall at the core promoter region and potential +150 bp 

regulatory site. This could indicate that the Clostridia methylate a variety of target 

motifs at the core promoter region, and TBLASTN analysis suggests that several N6-

adenine-specific MTase orthologs are present within this class (Supplementary Table 

5). CpG methylation was shown to be lowest overall within this class. This class has 

the highest intrinsic curvature, and is likely related to AT-rich genomes. 

 

2.3.2.9    Deinococci 

GA/AT/TC dinucleotide frequency was lowest within the Deinococci, and is 

possibly linked to the lack of alignments to N6 adenine-specific MTases targeting 

GATC motifs (Supplementary Table 5). Based off these results, it is possible that the 

Deinococci tend to utilize other methylation motifs within their genomes aside from 

GATC. High-scoring significant alignments were seen for M.AbrI, M.BstVI, and 

M.XhoI, all of which have a 5’-CTCGAG-3’ target sequence. Increases in this target 
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sequence at the core promoter region could partially account for the increase in 

GA/AT/TC dinucleotide frequency, as it contains the dinucleotides GA and TC. This 

class has one of the highest mean GC contents (Figure 2.8) and lowest intrinsic 

curvatures (Figure 2.9), which could be due to a lack of A-tracts, T-tracts, and/or 

AA/TT dinucleotide stacks. It should be noted that the GATCexpected CV is highest for 

the Deinococci (Figure 2.3) and is likely caused by a lower number of genomes (Table 

2.1). However, the dip in GATCexpected CV mirrors the increased GATCexpected 

frequency at the core promoter region (Figure 2.2), suggesting that members of this 

class have more similar GA/AT/TC dinucleotide frequencies at this site.  

 

2.3.2.10   Deltaproteobacteria 

Deltaproteobacteria were shown to have lower CpG and GATC motif 

frequency than the Alphaproteobacteria, although their GC contents are very similar. 

N6-adenine-specific orthologs were present for Dam methylase, but the majority of 

high-scoring TBLASTN hits for this MTase family were for RE-paired MTases 

having 5’-CTCGAG-3’ target motifs (Supplementary Table 5). It is possible that 

GATC is a utilized methylation motif in this class, although other adenine methylation 

motifs might be prevalent.  
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2.3.2.11    Gammaproteobacteria 

The Gammaproteobacteria had the highest intrinsic curvature of all the 

Proteobacteria classes examined in this study. GATC methylation is well documented 

in this class; however, GATC tetranucleotides were less frequent compared to the 

Betaproteobacteria and Alphaproteobacteria. TBLASTN analysis shows that potential 

orthologs for several N6-adenine, m5-cytosine, and N4-cytosine specific MTases are 

seen within this class. Due to this, the methylation specificities of this class are likely 

to be far more varied than Dam GATC methylation. 
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Figure 2.1: TBLASTN DNA methyltransferase alignment results. Hits were selected 
for those with alignment lengths greater than or equal to 90% of the query length. The 
majority of n6A MTases are highly conserved in the Gammaproteobacteria, 
potentially due to many known n6A MTases originating from class members such as 
E. coli. M5C MTases had higher coverage and similarities for Actinobacteria, Bacilli, 
and Gammaproteobacteria. Alignments to n4C MTases had generally lower similarity 
and query coverage.  
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Figure 2.2: Overall mean gene fragment expected GATC. The transcription start site 
(TSS) is at point 0. Expected GATC motif frequency was calculated as a measure of 
the frequency of GA/AT/TC dinucleotides within a 51 bp sliding window. There is a 
conserved increase in the frequency of these dinucleotides from -35 to +35 bp.   
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Figure 2.3: Coefficient of variation for expected GATC. The transcription start site 
(TSS) is at point 0. A higher coefficient of variation (CV) indicates that there is more 
variability in expected GATC frequency at a site, while a lower CV means that 
expected GATC frequency is more consistently the same amongst members of a class. 
There appears to be a lower CV at the core promoter region, indicating that the 
increase in expected GATC at this site is more consistently the same among members 
of a class.  
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Figure 2.4: Overall mean gene fragment weighted GATC frequency. The transcription 
start site (TSS) is at point 0. The score attributed to a GATC site is weighted based on 
its position relative to the central nucleotide of a 51 bp sliding window. These are 
exact pattern matches, as opposed to a score based on dinucleotide frequencies.  
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Figure 2.5: Coefficient of variation for gene fragment GATC frequency. The 
transcription start site (TSS) is at point 0. There is a lower CV within the downstream 
region associated with an increase in GATC tetranucleotide motif frequency (Figure 
2.4). GATC motifs are far less prevalent than CpG motifs (Figure 2.6), which also 
increase in this region.  
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Figure 2.6: Overall mean gene fragment CpG normalized to GC content. CpG motif 
frequency is lower within the core promoter region (around -35 bp until the TSS at 
position 0). However, there is an increase in frequency downstream of the TSS. This 
increase and plateau in CpG motif frequency coincides with increases in GC content 
(Figure 2.8) and decreases in curvature (Figure 2.9). 
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Figure 2.7: Coefficient of variation for CpG normalized to GC content. The 
transcription start site (TSS) is at point 0. Nucleotide positions within the plateau of 
higher normalized CpG motif frequency (Figure 2.6) and valley of decreased 
curvature (Figure 2.9) spanning from ~ +35 bp to +150 bp have a lower CV for CpG 
motif frequency, indicating that higher CpG frequency is a consistent and conserved 
pattern at this site, and likely influences curvature.  
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Figure 2.8: Overall gene fragment mean GC content. The transcription start site (TSS) 
is at point 0. The downstream region ~ +35 to +150 has higher GC content, and this 
accounts for lower curvature in this region (Figure 2.9) due to a decrease in the 
probability of A-tracts and T-tracts. 
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Figure 2.9: Overall mean gene fragment intrinsic DNA curvature. The transcription 
start site (TSS) is at point 0. Curvature was calculated for 2,168,800 gene fragments 
using the nearest-neighbor dinucleotide wedge model (Bolshoy et al. 1991). Higher 
curvature is conserved within the core promoter region starting ~ -35 bp upstream. 
Curvature decreases as the TSS is approached, but increases again immediately 
downstream of the TSS. There is a noticeable decrease in curvature downstream of the 
core promoter from ~ +35 to +150 bp across these classes.  
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2.4 Discussion 

Microbes are able to regulate transcriptional activity through the direct 

interaction of transcription factors with specific nucleotide sequences, yet a host of 

epigenetic phenomena can further influence enzymatic DNA binding and efficiency 

within a genome. Epigenetic regulation in microbes is not governed by a single 

biological phenomenon, but is a dynamic system involving the interplay of multiple 

processes that act upon and influence each other. DNA methylation and DNA 

curvature act as important transcriptional regulators within genes, and this study has 

identified conserved sites associated with these phenomena on a large scale.   

 N6-methyladenine, 5-methylcytosine, and N4-methylcytosine-specific DNA 

methyltransferase orthologs were present within all target classes. A higher proportion 

of N6-adenine specific MTase orthologs were aligned within the 

Gammaproteobacteria, which could be attributed to the prevalence of known 

methyltransferases isolated from members of this class, particularly E. coli. Overall 

alignment results suggest that the Actinobacteria contain orthologs for several m5-

cytosine specific MTases (Figure 2.1, Supplementary Table 4). A preference for this 

type of methylation could be due to the lower GC content of this Class.  

There appear to be conserved global trends in methylation motif spatial highs 

and lows across the eight bacterial classes analyzed in this study. Low frequencies of 

GATC motifs were observed, but this scarcity is common in microbial genomes 

(Wojciechowski et al. 2012). A higher frequency of expected GATC sites is conserved 
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within and immediately downstream of the core promoter region across these classes 

(Figure 2.2), and could signify that a higher number of genes utilize GATC 

methylation or other methylation motifs with GA/AT/TC dinucleotides at promoter 

regions to regulate transcription. It should be noted, however, that these sites were 

generally scarce. Along with conserved trends of increased GATC motif and 

GATCexpected content within core promoter regions, there is also an increase in 

curvature within the core promoter region (Figure 2.9) that is consistent with previous 

studies (Asayama and Ohyama 2005).  

CpG site frequency normalized to GC content appears to increase and plateau 

from +35 to +150 bp downstream from the TSS, with low frequencies within the core 

promoter region (Figure 2.6). This contrasts with heightened GATC frequency within 

core promoter regions, and suggests that methylation at CpG sites or CpG-containing 

motifs could play a greater role within downstream gene coding sequences. A sharp 

decrease in CpG site frequency also coincides with an increase in curvature (Figure 

2.9) and a relative increase in GATC frequency (Figure 2.4) around 150+ bp 

downstream, suggesting a potential regulatory site. 

The CpGnorm metric provides insight into CpG representation amongst these 

Classes due to its dependency on both CpG density and GC content. Clostridia are 

shown to exhibit CpG underrepresentation on the basis of exhibiting the lowest GC 

contents (Figure 2.8) and CpG site frequencies (Figure 2.6) of these eight Classes. 

These lower mean CpGnorm scores indicate reduced CpG density if GC contents are 
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low as well. Clostridia were also shown to have the highest CV for CpGnorm, as the 

presence of a CpG site would be less probable and result in a higher CpGnorm score 

within a low GC genome. Genome-wide CpG underrepresentation is exhibited in 

Clostridium perfringens (Wojciechowski et al. 2012), and the results of this study 

support CpG depletion within the Clostridia. Another explanation for CpG 

underrepresentation in Clostridia is due to the possibility that cytosine 

methyltransferases with 5’-CG-3’ or 5’-CCGG-3’ target sequences can shape 

dinucleotide frequencies. Significant BLAST alignments to the MTases M.SssI and 

M.HhaI were observed within the Clostridia, which respectively target 5’-CG-3’ and 

5’-CCGG-3’ (Supplementary Table 6). The lack of CpG sites is also related to the 

spontaneous deamination of m5C to thymine. Since m5C deamination forms thymine 

and not uracil (an illegitimate DNA base), it is not corrected during DNA repair 

(Wojciechowski et al. 2012) and can lead to potentially deleterious transition 

mutations (Chahwan et al. 2010). Thus, reduced frequencies of CpG sites could lessen 

the chance of mutations caused by m5C deamination.  

GATC motif frequency increased around 150+ bp downstream from the TSS 

in the Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and 

Deltaproteobacteria. These increases coincide with increased curvature at this site 

(Figure 2.9). The higher probability of GA/AT/TC dinucleotides could be due to A-

tracts, T-tracts, AA/TT stacks, or GA/TC stacks, all of which highly influence intrinsic 

curvature (Asayama and Ohyama 2005). 
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Curvature increases are not nearly as profound for the Bacilli and Clostridia. 

This could be due to the generally higher intrinsic curvature of genes within these 

classes, as well as less drastic increases in curvature at 150+ as opposed to the other 

classes (Figure 2.9). The Bacilli and Clostridia appear to have a higher frequency of 

GA/AT/TC dinucleotides within the core promoter region (Figure 2.2), but a lower 

frequency of GATC tetranucleotides when compared with the other classes (Figure 

2.4). Based on TBLASTN alignments, other N6-adenine-specific motif sites aside 

from GATC could be present within the promoter regions of these two classes 

(Supplementary Table 5). High-quality alignments for M.EcoRV and M.MunI were 

present in the Clostridia (target sites GATATC and CAATTG, respectively), as well 

as alignments for M.FokI (GGATG). The presence of these target motifs would 

increase GATCexpected at the site due to GA/AT/TC dincueltodies contained within 

these motifs, and high wedge angle dinucleotides (GA, AA, GG) and AA/TT 

dinucleotide stacks could be responsible for higher curvature.  

 A curvature peak at the core promoter region could be due to the presence and 

periodicity of A-tracts, T-tracts, or AA/TT dinucleotide stacks that cause the formation 

of a more highly curved region with a right-handed superhelical conformation 

(Asayama and Ohyama 2005). Formation of a right-handed curvature conformation 

within the promoter could aid in RNAP binding; for instance, E. coli RNAP favors 

DNA with a right-handed superhelical conformation when binding (Hirota and 

Ohyama 1995). Based on these results, there is likely a conserved increase in 
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methylation-associated motif frequency and intrinsic curvature at the core promoter 

region that would aid in RNAP binding. 

Several additions can be made to expand the scope of this study. The variety 

and complexity of bacterial MTase target sequences expands far beyond CpG and 

GATC, and furthering this global motif identification approach for shared, high-

scoring MTase ortholog target sites such as 5’-CCWGG-3’ (Dcm and M.MvaI) would 

give a better picture of conserved methylation motif trends. Stressors such as 

temperature can affect DNA curvature (Kozobay-avraham et al. 2008), and tying 

global motif frequency and curvature trends to these metadata could allow for a better 

understanding of microbial epigenetic regulation based on stressors.  

DNA methylation has been considered to play a role in microbial gene 

regulation for over 40 years (Holliday and Pugh 1975), yet our understanding of this 

phenomenon and its effects on other epigenetic processes such as curvature is 

undergoing a paradigm shift due to the advent of next-generation sequencing 

technologies and big data analysis techniques. While this study provides a class-level 

overview of intrinsic curvature and CpG and GATC motif frequencies for a portion of 

known bacterial genomes, it does further the connections between epigenetic 

phenomena supporting the notion of dynamic genomes that are regulated by multiple 

factors outside of the nucleotide sequence itself. The further development of holistic –

omics methodologies that account for these phenomena will vastly improve our 

understanding of these complex epigenetic systems.  
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Chapter 3 

CONCLUSIONS 

While not generally regarded as a widespread mechanism for gene regulation 

in bacteria, this thesis shows the widespread potential for epigenetic regulation in 

microbes. Epigenetic regulation incorporates a variety of biological processes that 

alter both the chemical composition and structure of DNA. This study has provided 

evidence of microbial regulatory potential by dynamic CpG methylation at a 

community level, as well as identified conserved curvature and DNA methylation 

motif trends within known bacterial genomes. While epigenetic regulators such as 

DNA methylation and curvature have been studied in bacteria since the late 1970s, 

laboratory techniques for analyzing these phenomena are being rapidly supplemented 

by sequencing technologies capable of detecting base alterations (Blow et al. 2016; 

Burgess 2013). These phenomena may help explain microbial activities in complex, 

slow-growing environments such as estuary sediments.  

This study utilized a methylation-sensitive assay based on Illumina Hi-Seq 

sequencing to identify dynamic shifts in m5C at 5’-CCGG-3’ sites. While this method 

identifies base modifications at a single target site and was developed for single 

genome analysis, we show it can be adapted to the uneven read depths and complex 

community compositions associated with metagenomic sequence data. The ability to 
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utilize this assay with comparatively low concentrations of DNA makes it well suited 

for environmental applications. These features have enabled us to provide a first 

glimpse into dynamic microbial methylation at a community scale. While this 

approach could be modified for different target sites and paired-end sequencing, the 

proprietary nature of the DNA methylation analysis pipeline may possibly inhibit the 

future development of this assay for metagenomics. Since current single-molecule 

sequencing methods provide researchers with means of accurately determining 

methylomes for pure-culture organisms, and these methods can also be adapted for 

metagenomics.  

Pacific Biosciences single-molecule, real-time (SMRT) sequencing has been 

used to map the methylomes of several bacterial species (Murray et al. 2012; Fang et 

al. 2012), yet these studies were performed on pure culture organisms raised in a 

laboratory setting. Utilizing SMRT sequencing for methylome analysis requires a high 

concentration of clean, high molecular weight DNA, which can be difficult to obtain 

in sediment and soil environments. Another caveat of this method lies in the 

determination of base modifications by measuring nucleotide addition rates by DNA 

polymerase along a single strand of DNA. DNA polymerase is inhibited by several 

contaminants common to soils and sediments such as humic acid, and the effects of 

these inhibitors could be detrimental to the accuracy of nucleotide incorporation 

kinetic data. Aside from SMRT sequencing, Oxford Nanopore MinION is a recently 

introduced single-molecule DNA sequencing technology potentially offering read 
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lengths of tens of kilobases (Laver et al. 2015). Proof-of-principle experiments have 

demonstrated the ability of Nanopore sequencing to detect 5-methylcytosine within 

DNA strands (Schreiber et al. 2013; Laszlo et al. 2013), yet its performance in 

bacterial methylome and metagenomic applications has not been thoroughly tested. 

The current ability to reconstruct complete or nearly complete genomes from 

environmental sequence data is a testament to the enormous strides made in both 

sequencing and computational technologies over this past decade, and now we are able 

to develop methods that look deeper into the regulatory mechanisms governing 

microbial activity in the environment. Developing a better understanding of 

community epigenetic dynamics influenced by factors such as seasonality can further 

explain biogeochemical fluxes vital to nutrient cycling and atmospheric composition. 

However, the limited and generally unfavorable options for analyzing these 

phenomena in environmental sequence data present a current hurdle for researchers. 

Future developments of Illumina or Nanopore-based methods for environmental DNA 

methylation analysis could allow for researchers to not only reconstruct the genomes 

of uncultured microbes, but to construct their methylomes as well, and ideally tie these 

with metatranscriptomes and metaproteomes to show true regulation of function. The 

identification of conserved sequence structural features could also be used to better 

determine epigenetic regulation shared across bacterial, archaeal and eukaryotic 

domains. 
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 This study has also taken a large-scale approach to the determination of 

conserved structural patterns related to DNA curvature and methylation motif 

frequency and their relationship to anticipated transcriptional start sites. Similar 

approaches have been used for gene calling software such as MetaGene (Noguchi et 

al. 2006), which utilizes di-codon frequencies based on GC content. The results of this 

study show that trends are seen in curvature, motif frequency, and GC content across 

bacterial classes, and the identification of these trends could be utilized in more robust 

software for gene calling in environmental sequence data, potentially including an 

epigenetic basis. 

 Sequencing technologies revolutionized life science as we know it, and their 

development has rapidly increased our knowledge of what phenomena lay beyond the 

genome itself. Emerging technologies that characterize epigenetic shifts in microbes 

are shedding new light on the genetic mechanisms that influence microbial systems 

such as DNA methylation. Due to the widespread presence of DNA methylation in 

microbes and its likely role in gene regulation, gaining a better understanding of this 

phenomenon and its dynamic interplay with curvature and transcriptional regulation 

will benefit numerous fields such as healthcare and environmental remediation.  
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Appendix A  

CHAPTER 1 SUPPLEMENTARY MATERIAL 

Table A1: Radionuclide activity in Core R 
 
 
Sample Depth (cm) xs210Pb (mBq/g) 7Be (mBq/g) 137Cs (mBq/g) 

0-1 18.89 8.59 0.00 
1-2 40.60 7.34 0.00 
2-3 60.86 5.73 0.00 
3-4 37.91 3.38 0.00 
4-5 8.21 0.00 0.00 
5-6 0.00 0.00 0.00 
6-7 0.00 0.00 0.00 
7-8 0.00 0.00 0.00 
8-9 0.00 0.00 0.00 
9-10 0.00 0.00 0.00 
10-12 0.00 0.00 0.00 
12-14 0.00 0.00 0.00 
14-16 0.00 0.00 0.00 
16-18 0.00 0.00 0.00 
18-20 0.00 0.00 0.00 
20-22 0.00 0.00 0.00 
22-24 0.00 0.00 0.00 
24-26 0.00 0.00 0.00 
26-28 0.00 0.00 0.00 
28-30 0.00 0.00 0.00 
30-32 0.00 0.00 0.00 

 
 
The 0-4 cm section is comprised of recently deposited tidally mixed or bioturbated 
sediment. 4-5 cm presents a discontinuity in beryllium-7, but excess lead-210 indicates 
sediment deposited 44.40 years ago at most. The lack Cs-137 and all other 
radionuclide signatures suggest that 6-32 cm is comprised of sediment deposited 50-
100+ years ago.  
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Table A2: IDBA assembly statistics 
 
 

 Total 
High 

Abundance 
Low 

Abundance Singletons 
Viral 

contigs 

3-6 cm      

Number of contigs 18800 4617 191 13647 345 

Number of bases 2,493,769 1,214,155 283,733 917,933 77,948 

Minimum length 34 200 200 34 34 

Maximum length 5808 3919 342 199 5808 

Median length 73 279 248 54 162 

Mean length 132 314 252 67 226 

N50 contig length 251 299 249 75 336 

N80 contig length 79 251 238 45 250 

12-15 cm 
     

Number of contigs 49214 13815 3386 31538 475 

Number of bases 8,218,771 4,841,641 900,041 2,319,312 157,777 

Minimum length 34 200 200 34 35 

Maximum length 5419 2782 484 281 5419 

Median length 95 309 258 65 296 

Mean length 167 350 266 73 332 

N50 contig length 276 346 261 83 334 

N80 contig length 112 267 241 50 264 
 
 
Assemblies were performed with settings --mink 18 --maxk 36 --step 2 --similar 0.97. 
Viral and fungal contigs were identified with Kraken, while potential outlier contigs 
with high coverage were identified with Bonferroni outlier tests. Table continues on 
next page. 
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Table A2, continued 
 
 

24-27 cm 
 

    

Number	
  of	
  contigs 18361 4010 1114 13105 132 

Number	
  of	
  bases 2,474,539 1,238,974 295,037 893,040 47,488 

Minimum	
  length 34 200 201 34 35 

Maximum	
  length 5419 995 429 259 5419 

Median	
  length 76 282 256 53 287 

Mean	
  length 134 309 265 68 360 

N50	
  contig	
  length 250 301 260 76 328 

N80	
  contig	
  length 83 252 241 46 269 
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Table A3: CpG met and umt bootstrap standard errors and coefficients of variation 
 
 

Phylum Depth	
  (cm) met	
  SE umt	
  SE met	
  CV umt	
  CV 

Actinobacteria 
 

3-­‐6 2.0161 2.0798 0.0178 0.0126 
12-­‐15 2.2221 2.1513 0.014 0.0094 
24-­‐27 2.6162 1.5361 0.0137 0.0068 

Bacteroidetes 
 

3-­‐6 6.321 5.568 0.0565 0.0297 
12-­‐15 6.8338 8.6293 0.0487 0.0355 
24-­‐27 7.312 4.5488 0.042 0.0182 

Chloroflexi 
 

3-­‐6 6.3055 5.5369 0.0566 0.0313 
12-­‐15 8.1568 8.1293 0.0584 0.0333 
24-­‐27 9.8981 5.0229 0.0569 0.0182 

Firmicutes 
 

3-­‐6 5.6114 5.6426 0.0503 0.0315 
12-­‐15 7.3147 7.6035 0.0526 0.0316 
24-­‐27 8.7326 6.6896 0.0505 0.0264 

Proteobacteria 
 

3-­‐6 6.4639 5.4965 0.0549 0.0310 
12-­‐15 7.6221 6.9012 0.0509 0.0286 
24-­‐27 8.3157 6.1184 0.0478 0.0240 

 
Values were calculated from 10,000 bootstrap replicate estimates. 
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Table A4: Hartigans’ dip test for unimodality results 
 
 

Phylum Depth (cm) 
met umt 

D statistic p-value D statistic p-value 
Actinobacteria 3-6 0.049296 < 2.2e-16 0.051216 < 2.2e-16 

12-15 0.038012 < 2.2e-16 0.042741 < 2.2e-16 
24-27 0.028809 0.0001099 0.079759 < 2.2e-16 

Bacteroidetes 3-6 0.036251 0.7084 0.058167 0.05443 
12-15 0.042867 0.4047 0.080687 0.000598 
24-27 0.031532 0.8958 0.094608 1.201e-05 

Chloroflexi 3-6 0.04698 0.01705 0.052203 0.004281 
12-15 0.057596 0.0008166 0.050336 0.007174 
24-27 0.028701 0.5416 0.085675 < 2.2e-16 

Firmicutes 3-6 0.051648 < 2.2e-16 0.061538 < 2.2e-16 
12-15 0.040966 1.539e-05 0.051472 < 2.2e-16 
24-27 0.019763 0.2671 0.084154 < 2.2e-16 

Proteobacteria 3-6 0.041409 < 2.2e-16 0.044161 < 2.2e-16 
12-15 0.038322 < 2.2e-16 0.046205 < 2.2e-16 
24-27 0.018309 0.0001406 0.086463 < 2.2e-16 

 
 
H0: distribution is unimodal. Ha: distribution is at least bimodal. 
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Table A5: Two-tailed Jonckheere-Terpstra trend test and Brown-Forsythe variance 
test results 
 
 

Phylum Metric 
Jonckheere-Terpstra Brown-Forsythe 

Test statistic p-value Test statistic p-value 

Actinobacteria met 723680 0.002 68.286 < 2.2e-16 

umt 1014800 0.002 116.34 < 2.2e-16 

Bacteroidetes met 6662 0.002 4.5444 0.01165 

umt 8599.5 0.47 5.6229 0.004156 

Chloroflexi met 26873 0.002 16.35 1.408e-07 

umt 37382 0.008 17.643 4.235e-08 

Firmicutes met 253740 0.002 40.351 < 2.2e-16 

umt 345770 0.002 57.716 < 2.2e-16 

Proteobacteria met 4449700 0.002 140.98 < 2.2e-16 

umt 6127000 0.002 195.9 < 2.2e-16 
 
 
Explanations of null and alternative hypotheses for these tests can be found in the 
Chapter 1 Results section Metagenome CpG methylation. 
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Appendix B 

CHAPTER 2 SUPPLEMENTARY MATERIAL 

Table B1: TBLASTN results for DNA methyltransferase alignments, 5- 
methylcytosine specific 
 
 

Class Target	
  sequence MTase 
Mean	
  %	
  
positive	
  
matches 

Mean	
  
query	
  

coverage 

Actinobacteria ACCGGT M.AgeI 48.06 99.00 

Actinobacteria AGCT M.AluI 55.85 96.00 

Actinobacteria CCNGG M.SsoII 67.48 92.33 

Actinobacteria CCWGG Dcm 60.21 95.16 

Actinobacteria CTNAG M.DdeI 46.43 94.00 

Actinobacteria GAGCTC M.SacI 77.31 96.50 

Actinobacteria GCCGGC M.NaeI 73.53 99.33 

Actinobacteria GGCC M.FnuDI 79.17 95.00 

Actinobacteria GRCGYC M.HgiDI 70.05 94.50 

Actinobacteria GTGCAC M.ApaLI 47.96 90.00 

Alphaproteobacteria ACCGGT M.AgeI 46.51 98.00 

Alphaproteobacteria AGCT M.AluI 45.41 91.50 

Alphaproteobacteria CCWGG Dcm 54.93 93.50 

Alphaproteobacteria GRCGYC M.HgiDI 36.98 78.00 
 
 
Results are for alignments whose alignment lengths are greater than or equal to 90% 
of the MTase query length. MTases with an “M” prefix are associated with a 
respective restriction endonuclease, while those without a prefix are orphan MTases.  
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Table B1, continued 
 

 

Class 
Target sequence MTase Mean % 

positive matches 
Mean query 

coverage 

Bacilli ACCGGT M.AgeI 45.52 99.00 

Bacilli CCNGG M.SsoII 80.26 98.67 

Bacilli CCWGG Dcm 55.93 98.00 

Bacilli CTNAG M.DdeI 52.61 91.00 

Bacilli GCAGC M.BbvI 69.19 94.00 

Bacilli GCNGC M.Bsp6I 73.94 92.00 

Bacilli GGCC M.BspRI 39.95 81.00 

Bacilli GGCC M.BsuRI 78.39 99.00 

Bacilli GGNCC M.Sau96I 73.15 97.00 

Bacilli RGCGCY M.NgoBI 59.56 97.00 

Betaproteobacteria CCGG M.HpaII 74.02 97.00 

Betaproteobacteria CCWGG Dcm 68.62 93.91 

Betaproteobacteria CGCG M.BepI 70.56 99.00 

Betaproteobacteria CTNAG M.DdeI 45.03 88.00 

Betaproteobacteria GCAGC M.BbvI 57.22 98.00 

Betaproteobacteria GGCC M.FnuDI 81.96 97.00 

Betaproteobacteria GRCGYC M.HgiDI 69.37 97.00 

Betaproteobacteria GRCGYC M.HgiGI 72.95 97.00 

Clostridia ACCGGT M.AgeI 43.06 99.00 

Clostridia CCGG M.HhaI 84.83 98.00 

Clostridia CCWGG Dcm 53.28 93.33 

Clostridia CG M.SssI 49.51 97.00 
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Table B1, continued 
 

Class 
Target	
  

sequence MTase 
Mean	
  %	
  
positive	
  
matches 

Mean	
  query	
  
coverage 

Clostridia CTNAG M.DdeI 52.69 89.50 

Clostridia GGCC M.FnuDI 81.52 95.00 

Clostridia GGNCC M.Sau96I 74.77 99.00 

Clostridia GRCGYC M.HgiDI 67.68 95.00 

Clostridia GRCGYC M.HgiGI 73.91 90.00 

Clostridia GTGCAC M.ApaLI 45.06 82.50 

Deinococci GGCC M.FnuDI 43.31 78.00 

Deltaproteobacteria ACCGGT M.AgeI 44.60 99.00 

Deltaproteobacteria CCWGG Dcm 65.06 96.30 

Deltaproteobacteria GAGCTC M.SacI 51.02 98.00 

Gammaproteobacteria ACCGGT M.AgeI 47.76 99.00 

Gammaproteobacteria AGCT M.AluI 60.28 97.00 

Gammaproteobacteria CCGG M.HpaII 49.54 93.70 

Gammaproteobacteria CCGG M.MspI 62.68 96.00 

Gammaproteobacteria CCWGG Dcm 58.84 96.95 

Gammaproteobacteria CGCG M.BepI 68.22 99.00 

Gammaproteobacteria GAGCTC M.SacI 42.21 98.00 

Gammaproteobacteria GGCC M.BsuRI 41.44 88.00 

Gammaproteobacteria GGCC M.FnuDI 83.02 95.00 

Gammaproteobacteria GGNCC M.PspPI 75.12 96.50 

Gammaproteobacteria GGWCC M.SinI 77.71 97.50 

Gammaproteobacteria GRCGYC M.HgiDI 69.90 96.00 

Gammaproteobacteria GRCGYC M.HgiGI 73.39 98.00 
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Table B2: TBLASTN results for DNA methyltransferase alignments, N6-adenine 
specific 
 
 

Class 
 

Target sequence 
 

MTase 

Mean % 
positive 
matches 

Mean 
query 

coverage 

Actinobacteria CTGCAG M.BsuBI 60.81 91.00 

Actinobacteria CTGCAG M.PstI 62.5 97.00 

Actinobacteria GATC Dam 62.32 99.00 

Alphaproteobacteria CAATTG M.MunI 42.53 92.00 

Alphaproteobacteria CTCGAG M.XhoI 66.67 99.00 

Alphaproteobacteria GANTC M.HhaII 41.55 96.67 

Alphaproteobacteria GATC Dam 55.49 93.17 

Alphaproteobacteria GTTAAC M.HpaI 47.54 83.00 

Bacilli GATC Dam 59.91 96.03 

Bacilli GGATG M.FokI 65.50 97.67 

Bacilli GGTACC M.KpnI 49.65 88.50 

Betaproteobacteria GATC Dam 47.33 97.39 

Clostridia CAATTG M.MunI 70.43 92.00 

Clostridia CTCGAG M.BstVI 44.25 99.00 

Clostridia GATATC M.EcoRV 47.04 98.00 

Clostridia GATC Dam 64.64 97.71 

Clostridia GATC M.MboIA 62.21 99.00 

Clostridia GATC M.MboIB 69.05 93.00 

Clostridia GGTACC M.KpnI 47.17 85.00 

Clostridia GGTNACC M.EcaI 43.37 86.00 
 
 
Results are for alignments whose alignment lengths are greater than or equal to 90% 
of the MTase query length. MTases with an “M” prefix are associated with a 
respective restriction endonuclease, while those without a prefix are orphan MTases.  
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Table B2, continued 
 
 

Class Target sequence MTase 
Mean % 
positive 
matches 

Mean 
query 

coverage 

Deinococci CTCGAG M.AbrI 80.00 96.00 

Deinococci CTCGAG M.BstVI 61.11 99.00 

Deinococci CTCGAG M.XhoI 64.67 99.00 

Deltaproteobacteria CTCGAG M.AbrI 81.78 100 

Deltaproteobacteria CTCGAG M.BstVI 61.47 95.50 

Deltaproteobacteria CTCGAG M.XhoI 68.69 99.00 

Deltaproteobacteria CTGCAG M.BsuBI 68.71 98.00 

Deltaproteobacteria CTGCAG M.PstI 60.82 98.25 

Deltaproteobacteria GATC Dam 58.25 94.67 

Gammaproteobacteria CAATTG M.MunI 48.25 84.00 

Gammaproteobacteria CTCGAG M.AbrI 82.86 100 

Gammaproteobacteria CTCGAG M.BstVI 61.62 98.50 

Gammaproteobacteria CTGCAG M.BsuBI 64.44 97.33 

Gammaproteobacteria CTGCAG M.PstI 61.50 96.00 

Gammaproteobacteria GANTC M.HhaII 70.79 93.00 

Gammaproteobacteria GATATC M.EcoRV 75.25 99.00 

Gammaproteobacteria GATC Dam 86.15 99.11 

Gammaproteobacteria GATC M.MboIA 49.44 99.87 

Gammaproteobacteria GATC M.MboIB 46.29 96.00 

Gammaproteobacteria GGTACC M.KpnI 64.35 93.50 
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Table B3: TBLASTN results for DNA methyltransferase alignments, N4-cytosine 
specific 
 
 

Class Target	
  sequence MTase 
Mean	
  %	
  
positive	
  
matches 

Mean	
  query	
  
coverage 

Actinobacteria AGTACT M.ScaI 41.34 82.00 

Actinobacteria GGCCNNNNNGGCC M.SfiI 44.02 89.00 

Alphaproteobacteria CCWGG M.MvaI 51.03 93.00 

Bacilli AGTACT M.ScaI 38.49 80.00 

Bacilli CCWGG M.MvaI 48.91 99.00 

Betaproteobacteria CAGCTG M.PvuII 79.69 93.00 

Betaproteobacteria GGCCNNNNNGGCC M.SfiI 43.97 88.00 

Clostridia AGTACT M.ScaI 39.67 85.00 

Clostridia CCWGG M.MvaI 56.55 93.83 

Gammaproteobacteria CAGCTG M.PvuII 87.43 94.00 
 
 
Results are for alignments whose alignment lengths are greater than or equal to 90% 
of the MTase query length.  
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Appendix C 

PROPRIETARY RELEASE STATEMENT 

 

C.1     Proprietary release statement for use of methylation profiling platform 

I (Adam Marsh) hereby grant permission to you (Ian Rambo) to utilize the data 

and analytics derived from my proprietary methylation profiling platform currently 

under license by University of Delaware to Genome Profiling LLC. You may utilize 

the data and analytic results in any fashion or form that you deem necessary for your 

thesis and for the publication of your work. All components of the methylation work 

that you have compiled into your thesis to date are expressly provided by myself for 

your open academic use.    

This release only encompasses academic uses of the data and analytics 

consistent with the open dissemination and publication of your current thesis work. 

Nothing contained in this release statement shall be deemed to grant any right in or to 

or license under any ideas, know-how, technology, inventions or intellectual property 

for DNA methylation profiling owned by the University of Delaware and currently 

under license to Genome Profiling LLC. 

 

 


