
HUMAN-CENTRIC TRAINING AND ASSESSMENT FOR CYBER SITUATION

AWARENESS

by

Zequn Huang

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Sciences

Fall 2015

c© 2015 Zequn Huang
All Rights Reserved



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

  
All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest 10014764

Published by ProQuest LLC (2016).  Copyright of the Dissertation is held by the Author.

ProQuest Number:  10014764



HUMAN-CENTRIC TRAINING AND ASSESSMENT FOR CYBER SITUATION

AWARENESS

by

Zequn Huang

Approved:
Kathleen F. McCoy, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Interim Vice Provost for Graduate and Professional Education



I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Chien-Chung Shen, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Adarsh Sethi, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
John Cavazos, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
John D’Arcy, Ph.D.
Member of dissertation committee



To my parents.

iv



ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisor, Dr. Chien-Chung Shen, for his support,

encouragement and inspiration. Over the past years, Dr. Shen has been providing so many

resources and help to accommodate my research and study. Also, Dr. Shen has been con-

stantly encouraging me to delve further into the problems at hand, as well as to keep an open

mind on future research topics. Moreover, Dr. Shen’s enthusiasm for research and his dedi-

cation to work have deeply influenced me since my first day at the University of Delaware.

Without the mentorship and help from Dr. Shen, my Ph.D. journey could have been longer

and harder.

I am also grateful to my committee members, Dr. Adarsh Sethi, Dr. John Cavazos

and Dr. John D’Arcy. Dr. Adarsh Sethi helped me with several thesis writing problems

and provided precious suggestions. Dr. John Cavazos and made valuable comments on my

proposal and dissertation. Dr. John D’Arcy provides valuable opinions about thesis topic,

focusing not only on the Cognitive Task Analysis issues but also on the challenges raised

from Team Cyber Situation Awareness.

I feel very fortunate to work with a group of talented research colleagues, Dr. Ke Li,

Dr. Yang Guan, and Dr. Rui Fang. We have been sharing knowledge together and helping

each other with research projects. It was my privilege of working with all of them. I also

greatly appreciate the assistance of our department staff, Teresa Louise, Krystal Proctor,

Samantha Fowle and T. Gregory Lynch, throughout my study at the University of Delaware.

Finally, I want to thank my parents for making many sacrifices that allowed me to get

to this point. They have respected every decision I made, been happy for every little thing

I achieved and supported me in every way they could. I could not have gone through the

process without the support from my parents.I thank my parents for being here for me, for

sharing my happiness and sadness, for being proud of every achievement I have made and

v



for all the sacrifices you made for our family. Your love will always be the motivation of my

work and life.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Effective Cyber Situation Awareness Training Methodology . . . . . . . . 3
1.3 Team Collaboration for Cyber Situation Awareness . . . . . . . . . . . . 4
1.4 Real-time Information Fusion for Cyber Situation Awareness . . . . . . . 5
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 LIVE-VIRTUAL-CONSTRUCTIVE BASED CYBER SITUATION
AWARENESS TRAINING AND ASSESSMENT SYSTEM FRAMEWORK 13

3.1 System View of Live-Virtual-Constructive Platform . . . . . . . . . . . . 13
3.2 Usage Examples of a Live-Virtual-Constructive Platform . . . . . . . . . 14
3.3 Cyber Situation Awareness Training and Assessment Framework

Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Functional View of Cyber Situation Awareness Training and Assessment

Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 COGNITIVE TASK ANALYSIS BASED LESSON PLANS FOR CYBER
SITUATION AWARENESS TRAINING AND ASSESSMENT . . . . . . . 22

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Cognitive Task Analysis based Approach . . . . . . . . . . . . . . . . . 23
4.3 Cyber Security Training Lesson Plans . . . . . . . . . . . . . . . . . . . 26

4.3.1 Port Scan Attack Lesson Plan . . . . . . . . . . . . . . . . . . . 26

vii



4.3.2 Denial Of Service Attack Lesson Plan . . . . . . . . . . . . . . . 27
4.3.3 Wireless Jamming Attack Lesson Plan . . . . . . . . . . . . . . 31

4.4 Performance Metrics and Scoring Algorithms . . . . . . . . . . . . . . . 33
4.5 Evaluate Cognitive Validity of Training . . . . . . . . . . . . . . . . . . 35
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 DIFFICULTY-LEVEL METRIC FOR CYBER SITUATION AWARENESS
TRAINING AND ASSESSMENT SYSTEM . . . . . . . . . . . . . . . . . 37

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Difficulty-Level Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Cycles in Attack Graph . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 Handling Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4 Calculating Probability of Achieving Attack Goal . . . . . . . . . 44

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 WEB-BASED FUZZY TEAM DECISION-MAKING FOR CYBER
SITUATION AWARENESS . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Team Collaboration for Cyber Situation Awareness . . . . . . . . . . . . 53

6.3.1 Team Structure and Roles for Cyber Analysts . . . . . . . . . . . 54
6.3.2 Communication among Cyber Analysts . . . . . . . . . . . . . . 55
6.3.3 Representation of Individual CSA . . . . . . . . . . . . . . . . . 56
6.3.4 Fuzzy Set based Decision-Making for Team CSA . . . . . . . . . 56

6.4 Web-based Team CSA Support System Experiment . . . . . . . . . . . . 62
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 REALTIME CONTEXT-BASED INFORMATION FUSION FOR
ADVANCED PERSISTENT THREATS INVESTIGATION . . . . . . . . . 68

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 69

viii



7.3 Review of Advanced Persistent Threats Characteristics and Countermeasure 71

7.3.1 Life Cycle of Advanced Persistent Threats . . . . . . . . . . . . 73
7.3.2 Advanced Persistent Threats Characteristics . . . . . . . . . . . . 74
7.3.3 Advanced Persistent Threats Security Challenges . . . . . . . . . 75
7.3.4 Advanced Persistent Threats Countermeasure Strategies . . . . . 76

7.3.4.1 Identify APTs Malware Signature . . . . . . . . . . . . 77
7.3.4.2 Leverage the State-of-Art Open-Source Tools . . . . . . 78

7.4 Realtime Context-based Information Fusion for Advanced Persistent Threats
Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.4.1 System Architecture and Information Flow . . . . . . . . . . . . 79
7.4.2 Run-time Data Collection and Monitoring . . . . . . . . . . . . . 82

7.4.2.1 Human-Process Purpose Sensor . . . . . . . . . . . . . 82
7.4.2.2 Process-Network Purpose Sensor . . . . . . . . . . . . 85
7.4.2.3 Third-party Network Analysis Alert . . . . . . . . . . 88

7.4.3 Data Pre-processing and Normalization . . . . . . . . . . . . . . 89
7.4.4 Analysis for Traffic Anomaly Detection . . . . . . . . . . . . . . 89

7.4.4.1 Characterization of Abnormal Traffic . . . . . . . . . . 90
7.4.4.2 Feature Vectors for Traffic Anomaly Detection . . . . . 91
7.4.4.3 Baseline Analysis for Traffic Anomaly Detection . . . . 93

7.4.5 Cloud-based Data Storage and Management . . . . . . . . . . . . 94
7.4.6 Context-based Threat Analytic . . . . . . . . . . . . . . . . . . 97

7.5 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.5.1 Slow Port Scan Attack . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.2 Bruce Force Password Attack . . . . . . . . . . . . . . . . . . . 103
7.5.3 Data Exfiltration Attack . . . . . . . . . . . . . . . . . . . . . . 105
7.5.4 Evaluation Result Discussion . . . . . . . . . . . . . . . . . . . 107

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



Appendix

A CYBER SITUATION AWARENESS SAGAT QUESTIONNAIRE . . . . . . 121
B ANALYSIS OF RECENT SOPHISTICATED ADVANCED PERSISTENT

THREATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
C APT DETECTION SYSTEM RUN-TIME DATA COLLECTION . . . . . 131

C.1 NetFlow Data Format for APT Detection . . . . . . . . . . . . . . . . . 131
C.2 Linux System Resource Exposure Sensor Record Normalization for APT

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.3 Windows System Resource Exposure Sensor Record Normalization for APT

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

x



LIST OF TABLES

4.1 DoS exercise watching list . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Weight of individual cyber analyst . . . . . . . . . . . . . . . . . . . 59

6.2 Linguistic terms for the comparison of criteria . . . . . . . . . . . . . 60

6.3 Linguistic terms for belief values on solution alternatives . . . . . . . . 61

7.1 Basic Accumulo table format . . . . . . . . . . . . . . . . . . . . . . 96

7.2 APT detection system Accumulo table example . . . . . . . . . . . . . 96

7.3 Slow port scan result . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Bruce force password attack result . . . . . . . . . . . . . . . . . . . . 105

7.5 Data exfiltration attack result . . . . . . . . . . . . . . . . . . . . . . 107

C.1 NetFlow data format . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.2 Linux auditing log attribute . . . . . . . . . . . . . . . . . . . . . . . 135

C.3 Windows auditing log attribute . . . . . . . . . . . . . . . . . . . . . 137

C.5 Host information ontology . . . . . . . . . . . . . . . . . . . . . . . . 140

C.4 APT detection system event object ontology . . . . . . . . . . . . . . 142

xi



LIST OF FIGURES

3.1 System view of Live-Virtual-Constructive platform . . . . . . . . . . . 14

3.2 Usage example of a Live-Virtual-Constructive (LVC) platform . . . . . 15

3.3 CSA training and assessment system infrastructure . . . . . . . . . . . 17

3.4 Functional view of Cyber Situation Awareness training framework . . . 18

4.1 Workflow for CSA training system . . . . . . . . . . . . . . . . . . . 25

4.2 Port/Network Scan Attack lesson scenario . . . . . . . . . . . . . . . . 27

4.3 DoS Attack lesson scenario . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Wireless Jamming Attack lesson scenario . . . . . . . . . . . . . . . . 31

4.5 Use memory usage metric to detect DoS . . . . . . . . . . . . . . . . 33

5.1 Example enterprise network . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Example attack graph . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Cycles in attack graphs . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Covering tree and equivalent tree of the attack graph . . . . . . . . . . 45

5.5 Chain attack network connectivity . . . . . . . . . . . . . . . . . . . . 46

5.6 Chain attack graph with probabilities . . . . . . . . . . . . . . . . . . 47

6.1 Team Communication Screen Example . . . . . . . . . . . . . . . . . 55

6.2 The procedure of the team decision-making . . . . . . . . . . . . . . . 58

6.3 Three attack type alternatives proposed by team members . . . . . . . . 63

xii



6.4 Solution criteria selection system . . . . . . . . . . . . . . . . . . . . 64

6.5 Criteria comparison matrix . . . . . . . . . . . . . . . . . . . . . . . 64

6.6 Belief level matrix filled by one cyber analyst . . . . . . . . . . . . . . 66

6.7 Alternatives rank based on coefficient value . . . . . . . . . . . . . . . 66

7.1 APT detection system architecture . . . . . . . . . . . . . . . . . . . . 79

7.2 APT detection information flow . . . . . . . . . . . . . . . . . . . . . 83

7.3 Process-Network purpose sensor architecture . . . . . . . . . . . . . . 86

7.4 Alert normalization format . . . . . . . . . . . . . . . . . . . . . . . 90

7.5 Typical features of abnormal traffic . . . . . . . . . . . . . . . . . . . 91

7.6 Dependency and Causality graph event chaining example 1 . . . . . . . 97

7.7 Dependency and Causality graph event chaining example 2 . . . . . . . 98

7.8 Dependency and Causality graph event chaining example 3 . . . . . . . 98

7.9 APT Profile for exfiltration attack . . . . . . . . . . . . . . . . . . . . 100

7.10 Threat Dependency and Causality graph exfiltration run-time pattern . . 101

7.11 APTs detection testbed connection diagram . . . . . . . . . . . . . . . 102

7.12 Brute force attack detection . . . . . . . . . . . . . . . . . . . . . . . 104

7.13 Data exfiltration attack detection . . . . . . . . . . . . . . . . . . . . 106

C.1 Linux auditing system architecture . . . . . . . . . . . . . . . . . . . 133

C.2 Linux auditing log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.3 Normalized Linux audit record of removing file . . . . . . . . . . . . . 136

C.4 Normalized Linux audit record of Internet connection . . . . . . . . . . 136

C.5 Windows audit record of deleting file . . . . . . . . . . . . . . . . . . 141

xiii



C.6 Normalized Windows audit record of deleting file . . . . . . . . . . . . 143

xiv



ABSTRACT

Cyber attacks have been increasing significantly in both number and complexity,

prompting the need for better training of cyber defense analysts. One issue with existing cy-

ber security training is that it relies mostly on lecture-style instructions without much hand-

on experience. Thus, need a training solution that provides a realistic, human-in-the-loop

environment for cyber analysts to explore, collaborate, and interact for effective learning.

Situation Awareness (SA) means the comprehension and perception of environmental

elements with respect to time and space. Cyber Situation Awareness (CSA) is SA extended

to the cyber domain. During CSA, the cyber analysts need to understand the meaning of

the observations and be able to project the impact of the observations to the system. In this

proposal, we describe a Cyber Situation Awareness training and assessment system with the

purpose of teaching and measuring individual and team cyber situation awareness within the

cyber defense context, as well as incorporating various technologies to enhance the cyber

analysts’ learning process.

To conduct effective cyber security training, it becomes essential to design realistic

exercise lesson plans. Accurate identification of experts’ cognitive processes through Cog-

nitive Task Analysis can be adapted into training materials to teach novice cyber analysts

(or trainees in this proposal) how to think and act like an expert during defense. In order to

solve the information overload challenge faced by trainees, we identify and design watch list

statistics, which allows trainees to tailor their own watch list statistics and triggering thresh-

old conditions in order to recognize cyber attacks faster. The speed with which a trainee can

recognize, analyze, and respond to attacks is critical as it will limit the damage and lower the

cost of recovery. Therefore, we evaluate trainees’ performance based on their response time

comparing with estimated attack ground truth timeline. We also devise scoring algorithms

xv



to calculate trainees’ performance scores according to the weighted functions combing all

performance metrics.

Then, as training is an iterative process, the assessment component not only assesses

the knowledge gained by the cyber analysts, but also adjusts the difficulty of training lessons

accordingly based on trainees’ performance. Nevertheless, quantifying difficulty level of

training lesson scenario is an important but difficult task. While standard techniques exist

for measuring the relative difficulty to exploit individual vulnerability, it is challenging to

answer the fundamental question whether one scenario containing several vulnerabilities is

more difficult than another one. Based on causal relationships between vulnerabilities in

attack graph, we apply Bayesian Reasoning to aggregate individual vulnerabilities into a

probabilistic value representing the attackers’ success likelihood to achieve the attack goal.

Based on the quantified probability of achieving attack goal, the lesson’s difficulty-level is

categorized accordingly.

Furthermore, complex and dynamically changing task such as cyber defense often

requires the effective coordination of a team of cyber analysts. Cyber analysts need to work

collaboratively as a team at different levels and different parts of system. Each team mem-

ber collects data, generates its own awareness for the cyber situation, and shares with other

team members to get the comprehensive understanding of the overall situation for the de-

cision making purpose. Since each team member may have his/her own personal expertise

knowledge, experience, and opinions, it is hard for the entire team to make consensus de-

cision when having conflicting judgments. Considering human cyber analysts tend to use

ambiguous linguistic language to express their own cyber situation awareness during the

team discussion process, we design a fuzzy set based method to facilitate cyber analysts to

quantify their thoughts and make consensus decision that is most acceptable by the entire

team.

Finally, we investigate real-time purpose sensors based information fusion for Ad-

vanced Persistent Threats (APTs) detection. As human cyber analysts have to examine huge

amount of data such as system logs, configuration files, traffic logs, IDS log, and audit logs

in order to identify potential threats. Thus, they would be soon overwhelmed by tremendous

xvi



data and forced to ignore potentially significant evidences introducing errors in the detection

process. Furthermore, cyber security attack and anomaly detection techniques suffer from

their reliance on known malicious signatures or unusual conditions that warrant further in-

vestigation. The use of signature-based detection cannot effectively eliminate false negatives

when dealing with Advanced Persistent Threats, since the financial resources and time avail-

able to APTs allows the use of previously unknown ‘zero-day’ attack vectors. The designed

information fusion system reduces an operator burden to handle false positives and reduces

time to detection while using noisy/high false positive inputs. We design and develop host-

and network- based purpose sensors and places them within the network and individual hosts

to provide real-time purpose and correlation inputs and then use this information combined

with network-specific knowledge to create a dynamic set of event threads that, when touched

by a given alert received from traditional intrusion detection systems (IDSs) such as Snort

and OSSEC, allows the immediate identification of the context surrounding the alert and thus

the automatic calculation of the alert’s legitimacy and severity.

xvii



Chapter 1

INTRODUCTION

1.1 Background and Motivation

Cyber attacks, which refer to any computer-to-computer attacks that undermine the

confidentiality, integrity, or availability of computer or information resident on it, have in-

creased significantly in both number and complexity in recent years. Typically, a cyber

attacker first exploits a system’s vulnerabilities and infiltrates its network and/or hosts. Once

the attacker gained entrance into the system, he/she may use it to monitor communications,

steal critical data, discover new avenues of attack in related systems, take control of assets

managed by the system or disable networks, computers, and associated systems. Harmful

outcomes of a successful attack include the attacker’s accessing sensitive data on the network

and controlling the hosts and network resources.

Situational Awareness (SA) involves perception of evolving status and attributes of

elements, comprehension of combined observations to evaluate the current situation, and

prediction of possible future outcomes based on past experience and knowledge [47]. Cyber

Situation Awareness (CSA) extends SA to the cyber domain, where cyber analysts collect

data and seek cues to form attack tracks, estimate the impact of observed attack tracks, and

anticipate the moves (actions, targets, time) of attackers. However, presently effective CSA

is hampered by the enormous size and complexity of the network, by the adaptive nature of

intelligent adversaries, by the high number of false alarms generated by Intrusion Detection

Systems (IDSs), by the lack of ground truth to assess defense performance, by organizational

stove-pipes thwarting collaboration, and by technologies that lack an adequate understanding

of the human needs.

In particular, in contrast to environments that are bounded by physical constraints

and/or geographical features, cyberspace possesses the following unique features, which

1



further impose extraordinary cognitive challenges on cyber analysts. First, while a cyber an-

alyst is fully aware of the boundaries of his/her managed networks, the external cyberspace

is boundless with minimal geographical features. As a result, the environment from which a

cyber analyst has to perceive salient cues is vastly larger and more difficult to comprehend.

Comprehending even a small segment of cyberspace is challenging. Second, the speed at

which the cyberspace changes is much faster, where new vulnerabilities and their corre-

sponding exploits are continuously emerging, and new offensive technologies are constantly

being developed. Furthermore, modern exploits are either employed via misdirection (e.g.,

a DDoS attack is conducted by a botnet of compromised computers) or delivered passively

via embedded malware. Third, everything a cyber analyst knows about the environment is a

virtual representation of the cyberspace in terms of digital information (e.g., intrusion alerts

and firewall logs). In addition, the cyber analyst only sees the information that his/her (soft-

ware) sensors are capable of detecting in a form that can be rendered on a monitor screen.

Because perception and comprehension of cyberspace is inherently constrained by technol-

ogy artifacts, cyber analysts’ ability to develop situation awareness is greatly limited by the

degree to which the network’s sensors are correctly configured and capturing data.

Furthermore, cyber analysts are faced with extraordinary amounts of information

(such as various IDS and audit logs) to sift through, and CSA demands that various pieces

of information be connected in both space and time. This connection necessitates team col-

laboration among cyber analysts working at different levels and/or on different parts of the

system. It is anticipated that team CSA can be carried out to systematize information coor-

dination and team collaboration for CSA effectiveness and resilience. As cyber attacks are

becoming more frequent and more complex, the need for more effective training of cyber

analysts and their collaborative efforts to protect critical assets and ensure system security

become more crucial and urgent. In this thesis, we address the following three closely related

topics.

2



1.2 Effective Cyber Situation Awareness Training Methodology

The dramatically increasing number and complexity of cyber attacks prompts the

need for more effective training of cyber analysts. However, most existing cyber security

training relies heavily on lecture-style instructions without enough hand-on experience. Cy-

ber security training could benefit significantly from empirical scenarios to let trainees prac-

tice deciphering ever-sophisticated attacks. Given that cyber security defense is a cognitive

process for human cyber analysts, we design training solutions that utilize the approach of

Cognitive Task Analysis (CTA).

CTA is the extension of traditional task analysis techniques to yield information about

the knowledge, thought processes and goal structures that underlie observable task perfor-

mance. The outcome of CTA describes the performance objectives, equipment, conceptual

knowledge, procedural knowledge and performance standards used by experts as they per-

form a task. Accurate identification of cyber security experts’ cognitive processes can be

adapted into training materials to teach novices how to perform like experts.

We adopt a CTA-based approach to gain insight into the cognitive demands and work-

flow of cyber analysts and design cyber security training lesson plans and training workflow.

We then evaluate cyber analysts’ performance during training and adjust the training scenar-

ios to first accommodate and then further improve their skills.

To conduct effective cyber security training, it becomes necessary to quantify the

“difficulty level” of different attack scenarios to accommodate a diverse group of trainees

with different skill levels. In the beginning, a trainee is given attack scenarios of appropriate

difficulty levels. As trainees improve their skills in cyber security training, more difficult sce-

narios could be given in succeeding training. While standard techniques exist for measuring

the relative difficulty of exploiting individual vulnerabilities, it is challenging to answer the

question of “whether one attack scenario involving multiple vulnerabilities is more difficult

than another attack scenario.” Naive ways of aggregating the difficulty levels of individual

vulnerabilities, such as taking the average or maximum values, may lead to misleading re-

sults.

3



In particular, we design a probabilistic metric to quantify the difficulty levels of at-

tack scenarios. Specifically, we apply Bayesian Reasoning to an adapted attack graph of an

attack scenario to aggregate the CVSS Exploitability sub scores of individual vulnerabili-

ties involved in the attack scenario into a probabilistic value representing the likelihood of

a successful attack. This aggregation is based on the causal relationships that exist between

vulnerabilities in an attack graph. However, one major constraint of using Bayesian Reason-

ing is that it does not work with cycles, which are common in attack graphs. To address this

issue, we identify different types of cycles in attack graphs and design an efficient algorithm

to remove cycles while preserving cyclic causality in the probability calculation. We use

empirical scenarios to evaluate our approach and present one case study.

1.3 Team Collaboration for Cyber Situation Awareness

Complex and dynamically changing task such as cyber defense often requires the ef-

fective coordination of a team of cyber analysts. Cyber analysts need to work collaboratively

as a team at different levels and different parts. Each team member collects data, generates

its own awareness for the situation, and shares with other members to get the comprehensive

understanding of the overall situation. Previous researches conclude the observation from

the Air Force Academy’s participation in the Cyber Defense Exercise (CDX) as the team of

cyber analysts does not work as expected. One major issue is that there is a lack of clear team

structure and role assignment, resulting in such a situation that an analyst would not know

who to ask for help and who is responsible for what. Another issue is that cyber analysts

tend to work independently with no communication. Analysts reported that they occasion-

ally worked on the same data set as other analysts, and only discovered this after the task

was completed.

The most critical issue for team collaboration is that each team member may have

his/her own personal expertise knowledge, experience, and opinions, which make it hard for

the whole team to make consensus decision when having conflicting judgments. Traditional

methods to achieve consensus decision such as through verbal discussion and whiteboard

session are not accurate and unpersuasive. Therefore, there is a need for a quantization

4



team decision-making technique to select the satisfactory solution that is most acceptable for

entire team of cyber analysts.

We utilize fuzzy set to let team members achieve consensus decision for the situation.

Fuzzy set has been well applied in the area of multi-criteria team decision-making to deal

with uncertain issues in generating consensus opinions. It can construct preference relation

between alternatives by evaluating different criteria, and select the best action from a set of

alternatives that is most acceptable by the entire team. In particular, we use fuzzy set to

facilitate a team of cyber analysts to make consensus decision when they have conflicting

judgements on the type of on-going attacks.

1.4 Real-time Information Fusion for Cyber Situation Awareness

From a cyber analyst’s perspective, there are several cyber security tools available.

Each of the tools generates various types of data about the current network status. Log data

from servers and hosts provide another incomplete picture of the current cyber situation.

Connection or flow data from Netflow, for instance, can only provide the communication

information between systems. Cyber analysts have to dig deeper into tremendous amount

of data manually to identify anomaly behavior. Besides, the data tends to have high false

alert rates. Thus, a better understanding needs to be developed through a suite of tools that

provides analysts with the necessary and sufficient information to maintain awareness of the

events that occur on the network. Unfortunately, the state-of-the-art cyber-security maintains

these tools separately, which forces cyber analysts to select and use them individually.

To address this critical need of enabling analysts to rapidly and accurately detect Ad-

vanced Persistent Threats (APTs), we design a novel non-signature based APTs detection

system that allows the proper identification, prioritization, and understanding of APTs at-

tacks. The key innovation of our approach is to design and develop host-and network based

purpose sensors and places them within the network and individual hosts to provide real-

time data and then use this information combined with network-specific knowledge to create

a dynamic set of event threads that, when touched by a given alert received from traditional

Intrusion Detection Systems (IDSs), will immediately identify the context surrounding the

5



alert and thus the automatic calculation of the alert’s legitimacy and severity. The result is

that much of the follow-up investigation of each alert is shifted into the prioritization process

that utilizes the gathered context for correctly prioritizing the analyzed alerts. The burden

on cyber analyst is largely reduced both by significantly improved prioritization and by pro-

viding a contextual picture of each identified potential attack. Hence, APTs attacks can

potentially be detected while still at a preparation stage and with an operationally relevant

level of accuracy.

1.5 Thesis Outline

The goal of the thesis work is to develop a training and assessment system for indi-

vidual and team cyber situation awareness. We have designed: (1) Live-Virtual-Constructive

based Cyber Situation Awareness Training and Assessment Framework; (2) Cognitive Task

Analysis based Lesson Plans for Cyber Situation Awareness Training and Assessment; (3)

Difficulty-Level Metric for Cyber Security Training and Assessment System; (4) Team Col-

laboration for Cyber Situational Awareness; and future research objective on (5) Realtime

Context-awareness based Information Fusion for Cyber Situation Awareness.

In Chapter 2, we first review related work. Besides teaching cyber security through

lecture-style instructions, several projects have pioneered the use of cyber defense compe-

titions as teaching method of learning through practice, such as Cyber Defense Exercise,

Capture The Flag competitions, and so forth.

In Chapter 3, Live-Virtual-Constructive (LVC) framework is introduced. LVC frame-

work has the advantages of combining real equipment running real applications, real peo-

ple operating on simulated systems, and simulated people operating on simulated systems.

Based on this framework, we design a cyber security training and assessment system that

delivers realistic hands-on exercises that enable trainees to experience cyber attacks in wired

and wireless networked environments, and to learn how various procedures and techniques

are more effective or less effective at recognizing and countering those attacks.

In Chapter 4, the technique of Cognitive Task Analysis is used to capture and repre-

sent knowledge used by experts to perform complex tasks. Accurate identification of experts’

6



cognitive processes can be adapted into training materials to teach novice cyber analysts how

to think and act like a security expert. After performing Cognitive Task Analysis, we identify

the steps necessary for designing cyber security lesson plans for cyber security training sys-

tem. Using these steps, we design three cyber security training lesson plans: port/network

scanning, denial of service, and wireless jamming. In these lesson plans, we specify the

lesson scenarios and design watch lists that cyber analysts should observe to detect ongoing

attacks. We also devise scoring algorithms to evaluate cyber analysts’ performance accord-

ing to weighted functions of performance metrics.

In Chapter 5, we describe difficulty-level metric for cyber security training System.

As cyber security training is an iterative process, the assessment component not only as-

sesses the knowledge gained by the cyber analysts, but also adjusts the difficulty of training

lessons accordingly based on the analysts’ performance. In this chapter, we present an at-

tack graph-based probabilistic metric to measure lesson scenarios’ difficulty levels. Based

on causal relationships between vulnerabilities in an attack graph, we apply Bayesian Rea-

soning to aggregate individual vulnerabilities into an probabilistic value representing the

attackers success likelihood to achieve the attack goal. However, one major complication of

using Bayesian Reasoning is that it does not allow for cycles, which exists in attack graphs.

We identify different types of cycles in attack graphs and propose an efficient algorithm to

remove cycles while keeping cyclic influence in the probability calculation.

In Chapter 6, a quantization method is described to resolve a team of cyber analysts’

conflicting judgements and make consensus decision. Faced with extraordinary amounts of

information and dynamically changing environment, cyber analysts need to work collabora-

tively as a team. Each team member collects data, generates the awareness for the situation,

and shares with other members to get the comprehensive understanding of the overall sit-

uation for decision making. Nevertheless, each individual may have his/her own personal

expertise knowledge, experience, and opinions. It is hard for the whole team to make con-

sensus decision when having conflicting judgments. Considering that human cyber analysts

tend to use ambiguous linguistic language to express their own cyber situation awareness

during team discussion, we describe a fuzzy set based method that allows cyber analysts

7



to quantify their preference and make consensus decision on the cyber attack types that are

most acceptable by the entire team.

Most of the existing cyber security attacks and anomaly detection techniques suffer

from their reliance upon known malicious signatures or unusual conditions. However, the

use of signature based detection technique cannot effectively eliminate false negatives when

dealing with Advanced Persistent Threats. In Chapter 7, we approach the problem by de-

ploying a “wide net” of network, host, and purpose sensors to collect the context surrounding

the alerts being generated at different levels throughout a network. In order to minimize the

burden on a cyber analyst’s limited capacity to correctly prioritize and act upon these alerts,

all alerts and sensor data are collected and stored in database and are then processed, corre-

lated, and prioritized into meaningful events that are presented to the analyst in the order of

importance. The designed APTs detection system is capable of effectively generating appro-

priate event contexts for each attack type and using this context to discern the legitimacy of

an alert type by calculating its similarity with the APTs profiles.

Finally, Chapter 8 summarizes the contributions of the dissertation and describes

future research directions.

8



Chapter 2

RELATED WORK

Besides teaching cyber security through lecture-style instructions, several projects

have pioneered the use of cyber defense competitions as a teaching method which empha-

sizes learning through practice. Cyber Defense Exercise (CDX [84, 4]) is an advanced cyber

skill building exercise that focuses on network security from a defensive point of view. The

exercise consists of several participants including the students who operate and secure net-

works, the red team acting in the role of attackers who attempt to exploit known vulnerabil-

ities, and the white team acting as the exercise controllers and score keepers. Motivated by

the competitive sprit of CDX, students can enhance their learning experiences.

Capture The Flag (CTF [100, 24]) competitions are also great tools to teach students

hands-on lessons about cyber security. Different from CDX which focuses on defense, CTF

also hones offensive techniques. The class was divided into two teams and both teams should

protect a set of hosts and hide a flag such as a secret file. In addition, each team had to attack

the other teams hosts and retrieve the flags for each of the attacked hosts. Hansen [33]

proposes a realistic cyberspace-training environment called Cyber Flag. It combines the best

practices of existing training (both military and civilian) with the most realistic cyberspace

threats and scenarios.

General reviews of current simulation-based security training systems are given in [74].

CyberProtect [34], developed by US DoDs Defense Information Systems Agency (DISA),

is developed as a training tool for novice network security analysts to familiarize them with

system security terminology, concepts, and policy. Through interactive security defensive

exercises, the trainees make practical decisions for allocating resources after risk analysis

and risk management. Duffy [23] proposes a network defense training system through Cy-

berOps network simulations. It is similar to an interactive video game in which the analysts

9



select the security defensive tools and solutions and then attack sequences generated by com-

puter that are launched to assess the effectiveness of the selected solutions.

The US Military Academy designs the Military Academy Attack/Defense Network

(MAADNET [90]) learning environment. This application is built on a client-server architec-

ture using the discrete events simulation paradigm. The exercise network can be constructed

with different network components such as switches, routers, workstations, wireless access

points, etc. Each of these components has one or more traffic generators associated with it.

The users can build their own networks, adopt polices, and employ different types of admin-

istrative iterations. Then, several attacks can be performed against the designed network to

see how well it performs during attacks. After the simulation, the built network is evaluated

in order to assess how well security was maintained.

CyberCIEGE [44] is a game-based cyber security teaching and learning environment.

Inspired by the success of games such as SimCity and RollerCoaster Tycoon at capturing

users attention, CyberCIEGE provides a similar game-style simulator for security training

purposes. The students are put in the position of the decision maker of an IT organization.

The aim of the game is to protect the system by using appropriate security measures involving

procedures, physical and technical security, while keeping the virtual users productive and

pleased. CyberCIEGE has the advantage of extensibility that allows educators to develop

scenarios tailored to their classes, while the open sharing model allows educators to share

and reuse scenarios.

A Reconfigurable Attack-Defend Instructional Computing Laboratory (RADICL [11])

aims to provide a flexible alterable laboratory environment. The objective is to prepare stu-

dents to understand attack scripts and other malware and to use defensive strategies and

tools. It is not based on the simulator environment. Instead, workstations are set up to enable

students to switch operating systems and reconfigure the network topology.

The Real-time Immersive Network Simulation Environment (RINSE [56]) is a highly

extensible simulator designed for large-scale, real-time cyber-security training and exercises.

It provides multi-resolution traffic modeling, efficient attack models, efficient routing simu-

lation, and CPU/memory resource models for large scale preparedness and training exercise.

10



It utilizes client-server architecture so that the client application Network Viewer allows the

users to monitor and control the simulated network from the client side. From there, the

user can issue several commands in order to influence the model behavior. There are five

different types of commands: attacks, defenses, diagnostic networking tools, device control,

and simulator data.

Network Security Simulator (NeSSi [13]) is an open source discrete event network

simulator that contains several security-related capabilities such as profile-based automated

attack generation, traffic analysis, and interface support for the plug-in of detection algo-

rithms. NeSSi has the extensibility advantage by adopting a plug-in mechanism. The plug-

in concept allows the functionality extension without changing the simulation core itself.

These extension mechanisms allow three different levels of abstraction: application, net-

work, model and device level.

R. J. Guild developed the Reconfigurable Cyber-Exercise Laboratory (RCEL [30]).

The aim of RCEL is to create a cyber laboratory environment with flexible collection of

equipment that can be quickly interconnected and configured. The lab configuration can be

quickly changed for different activities. In this case, the author proposes the use of Symantec

Ghost to create images of pre-configured stations that could then be rapidly deployed when

required. Several prototype cyber-exercise scenarios such as limited interaction attack, ex-

ternal network vulnerability, and aggressive cyber exercise are presented to supplement the

RCEL description.

CyberCog [76] is a synthetic task environment for understanding and measuring in-

dividual and team situation awareness, and for evaluating algorithms and visualization in-

tended to improve cyber situation awareness. CyberCog provides an interactive environment

for conducting human-in-the-loop experiments in which the participants perform the tasks

of a cyber analyst in response to a cyber attack scenario. CyberCog generates performance

measures and interaction logs for measuring individual and team performance. CyberCog

has been used to evaluate team-based situation awareness. CyberCog utilizes a collection

of known cyber defense incidents and analysis data to build a synthetic task environment.

Alerts and cues are generated based on emulation of real-world analyst knowledge. From

11



the mix of alerts and cues, trainees must react to identify threats (and vulnerabilities) indi-

vidually or as a team. The identification of attacks is based on knowledge about the attack

alert patterns.

Designed for better understanding of the human factor in a cyber-analysis task, id-

sNETS [62], built upon the NeoCITIES Experimental Task Simulator (NETS), is a human-

in-the-loop platform to study situation awareness for intrusion detection analysts. Similar

to CyberCog, NETS is also a synthetic task environment. The realistic scenarios are com-

pressed and written into scaled world definitions and the simulation engine can interpret them

in a simulated environment, run the simulation, and respond to user interaction. In [30], sev-

eral human subjects experiments have been performed using the NETS simulation engine

to explore human cognition in simulated cyber-security environments. The study indicates

that the teams who had more similar skill sets displayed a more cohesive collaboration via

frequent communication and information sharing.

In contrast to most existing cyber security training systems, such as CyberCog and

idsNETS that employ a synthetic task environment, we design a human centric training and

assessment system that is designed by using the Live-Virtual-Constructive (LVC [94]) frame-

work, which facilitates scalable, programmable, and realistic training and assessment for cy-

ber security. The LVC framework is based on actual simulation of the operational systems. A

synthetic task environment may rely on previous incidents to generate the sequence of alerts

and cues corresponding to those incidents, LVC framework is able to simulate previous in-

cidents as well as generate new simulated or emulated incidents on the fly. Thus, LVC is

useful as a war game rehearsal tool. The LVC framework also supports a hybrid network of

actual and virtual machines so that attacks can be launched from an actual or a virtual host,

targeting an actual or a virtual host. In essence, an LVC framework provides a real-time

hardware-in-the-loop capability for simulation of cyber threats to the entire infrastructure

where the impacts of cyber attacks can be tested on actual systems.

12



Chapter 3

LIVE-VIRTUAL-CONSTRUCTIVE BASED CYBER SITUATION AWARENESS
TRAINING AND ASSESSMENT SYSTEM FRAMEWORK

The goal of the proposed work is to develop training and assessment system to be

used for teaching and measuring individual and team cyber situation awareness within the

cyber defense context. The training system is based on Live-Virtual-Constructive (LVC)

framework because it can provide hands-on interactive scenario that realistically represent

network under cyber attacks.

3.1 System View of Live-Virtual-Constructive Platform

The LVC platform provides models for accurate cyber threat simulation at all layers

of the networking stack to include passive, active, coordinated and adaptive attacks on net-

works with hundreds to thousands of wired and wireless components. Besides, the platform

is open-ended and extensible as shown in Figure 3.1. It is configurable and may include any

combination of the following:

• Live: real equipments running real applications

• Virtual: real people operating on simulated systems

• Constructive: simulated people operating on simulated systems

There are many benefits of using an LVC platform:

• It can create realistic virtual network models without having to purchase expensive

equipments

• It adds realistic wired and wireless representations that can be used to assess vulnera-

bilities

13



Figure 3.1: System view of Live-Virtual-Constructive platform

• It integrates specific hardware components and applications; it is adaptive to different

operations environments

• It integrates with other constructive simulators

• It is easy to configure and reconfigure

• It is scalable to large network sizes and complexities

• The exercises are repeatable for training to achieve specific knowledge and skills

3.2 Usage Examples of a Live-Virtual-Constructive Platform

Figure 3.2 illustrates the usage examples of LVC emulator that combines physical

machines and virtual simulated hosts. On the emulation server, we execute the simulation

models of an enterprise network and a generic internet, separated by a DMZ node. The LVC

framework allows real (physical) hardware to be associated with simulated nodes. In the first

scenario of intrusion detection, we associate the real cyber attacker machine (at 128.4.66.1)

and the real DMZ machine (at 128.4.66.10) with the Cyber Attacker and the DMZ nodes

within the simulation model, respectively. Now, a human attacker could execute Metasploit

14



Figure 3.2: Usage example of a Live-Virtual-Constructive (LVC) platform

on the real machine to send port scans and other probes into the enterprise network. A hu-

man cyber analyst could execute SNORT on the real DMZ machine to conduct intrusion

detection. Here, the real port scan and probing packets, sent from a real attacker machine,

are forwarded hop-by-hop within the simulated network, and arrive at the real DMZ ma-

chine. In the second scenario of DDoS attack, we associate the real Source machine (at

128.4.66.4) and the real Destination machine (at 192.168.0.2) with the Source node and the

Destination node in the simulation model, respectively. Real video traffic is generated from

the Source machine, forwarded by simulated nodes, and played at the Destination machine.

A botnet,formed by nodes A,B and CyberAttacker,launches a DDoS attack,and the cyber

analysts at the Destination machine will observe the quality degradation of the video play-

back. With LVC, hundreds or thousands of nodes could be programmed to simulate large

scale DDoS attacks. As cyber analysts may directly interact with real systems and/or traffic

on real machines, they are immersed in realistic human-in-the-loop training by nature.

15



3.3 Cyber Situation Awareness Training and Assessment Framework Infrastructure

The goal of the thesis is to develop a training and assessment system for individual

and team cyber situation awareness. The system infrastructure is shown in Figure3.3. As

shown in the figure, lesson plan database contains different kinds of cyber attack lessons

with different difficulty levels. We apply Cognitive Task Analysis on a set of tasks and use

the information to generate scenarios for training purposes. For each task, we identify major

events and watch list items needed for decision making. The trainees are able to tailor their

watch list and triggering threshold conditions.

With the proceeding of training scenario, data such as IDS log, network flow, and

trainee specified trigger alerts will be reported to the trainee. After analyzing these data,

the trainee should think whether it is an attack or false alarm based on prior knowledge and

decide the type of attack through attack model matching. Interactions and team discussions

can be conducted through the Shared Events Viewer and team communication module. If the

team members still cannot achieve agreement, the fuzzy logic based team consensus decision

making module can help chose the most acceptable solution for the entire team.

The assessment metrics will include trainee response time with respect to critical cues

and evaluate the actions taken or decisions made to determine potential attacks. By compar-

ing trainees’ response time and estimated attack ground truth timeline, we can identify if the

response is fast or slow. The performance evaluation module can provide performance score

and feedback to trainees, as well as adjust the next training lesson’s difficulty level based

on trainees’ performance. Furthermore, Situation Awareness Global Assessment Technique

(SAGAT) is used to get feedback from trainees in order to evaluate training system usability

and effectiveness.

3.4 Functional View of Cyber Situation Awareness Training and Assessment Frame-

work

Based on the LVC framework, we design a human centric training and assessment

system, with high fidelity network simulation / emulation based training lessons, attack mod-

els and attack scripts, vulnerability database, performance assessment and decision support

16



Figure 3.3: CSA training and assessment system infrastructure

17



Figure 3.4: Functional view of Cyber Situation Awareness training framework

functions. Figure 3.4 shows the allocation of functions to each of the four main components:

(1) Simulation/Emulation Based Training Lessons, (2) Assessment Component, (3) Decision

Support Component, and (4) Human-In-the-Loop (HITL) Component:

• Simulation/emulation based training lessons: The main function of this component

is provide trainees with a high-fidelity network simulation/emulation environment for

conducting cyber attack and defense exercises.It contains high-fidelity network sim-

ulation models (including both protocol models and host models), a library of attack

models, sample attack scenarios and attack scripts, vulnerability database, and triggers

for events and logs. This network simulation/emulation approach differs from other

approaches (e.g., CyberCog and idsNETS) that rely on the availability of real-world

18



enterprise network traffic data for training purposes. However, it does not exclude the

use of historical data, if it is available. Using network simulation/emulation models

provide freedom and flexibility to explore a large variety of network conditions and

attack scenarios beyond pre-recorded incidents. From the human-in-the-loop interface

and interaction component, the instructor and/or trainee can select the training exer-

cises. The simulation/emulation component will then load the network configuration,

vulnerability specification, time-lined traffic profile and attack sequence to simulate

the behavior of the network. This component can also be connected to attack simula-

tion tools such as Metasploit and intrusion detection systems such as SNORT. In that

case, attacks launched using Metasploit will be detected by SNORT; the trainee can

experiment with the use of IDS systems to detect and identify attacks. Trainees can

also input the watch list he/she wants to observe and trigger conditions to the simu-

lation component. The system logs of the watchlist and alerts will be provided to the

decision making support component and made available to the trainees.

• Assessment Component: The main function of this component is to perform cog-

nitive analysis and assessment of trainees performance, effectiveness of the tool for

cognition (both individual and team), network performance, impact of cyber attacks,

and effectiveness of the counter-measures. The feedback provided to instructor and

trainees depend on the exercises. During the exercise, correct or failed detection of

attacks will be a form of feedback to both instructor and trainees. Another assessment

contains information on impact of attack (confidentiality, integrity, availability) and

percentage of affected network. Team communication (data flow, number of data ex-

changed), time to reach consensus for decision making are also assessed. For various

attacks, there might be other metrics defined for assessment. For example, for DDoS

attacks, we also record the correct classification of packets so we can determine the

percentage of malicious packets dropped versus the percentage of legitimate packets

delivered. As training is an iterative process, the assessment component not only as-

sesses the knowledge gained by the trainee, but also adjusts the difficulty of training

19



lessons accordingly based on the trainees performance.

• Decision Support Component: The main function of this component is to provide

trainees with at a glance system state, to aid trainees in situation awareness in order

to respond to predicted or ongoing cyber attacks. This component receives system

logs, alerts from the simulation/emulation component. From the selected exercise and

network configuration, it generates logical attack graph corresponding to the network

configuration and takes into consideration any existing vulnerabilities on the hosts.

In addition, it is synchronized with the network simulation to track progress of at-

tacks to provide an up-to-date attack path visualization to the trainees. The detection

of some cyber attacks may be automated by specifying certain rules and conditions.

In that case, the decision support component will generate alert and suggest possible

counter-measures. Situation awareness assessment is classified by three different lev-

els of information. At the lowest level, situation awareness level 1 (perception), the

information contains monitored raw data such as instrument readings, automated trig-

gering of alerts etc. At the next level, situation awareness level 2 (comprehension),

integration of various data elements may lead to pattern recognition and comprehen-

sion of the significance of objects and events. At the highest level, situation awareness

level 3 (projection), knowing the status and dynamics of the elements (or statistical

analysis) one may be able to predict future actions. The combined information visu-

alization and decision assistance is aimed to help the trainees to reach decisions and

take actions quickly.

• Human-In-the-Loop (HITL) Component: The main function of this component is to

facilitate human-computer interaction. This component contains interfaces to obtain

user input and to provide feedback to users as well as supporting human-computer

interactions influencing the control of the exercises. HITL is a vital part of LVC plat-

form. It is essential for training because it allows the trainees to immerse themselves

in a simulated / emulated environment where their actions directly influence the out-

come of events and system conditions. The trainees will interact with realistic models

20



and perform as they would in a real incident. The ability to train like you fight by

using realistic models in a mock up is extremely effective in equipping students with

knowledge, skills and experience relevant to real world proficiency at little to no risk.

There is limitation on what can be automated in cyber attack detection and prevention.

In most cases (of complex attacks), humans need to evaluate the information provided

by the system, observe correlations, and determine the next course of action based on

their judgment and experience. Intelligent systems and machine learning can only go

so far in automating reasoning; humans are still needed to make critical decisions.

21



Chapter 4

COGNITIVE TASK ANALYSIS BASED LESSON PLANS FOR CYBER
SITUATION AWARENESS TRAINING AND ASSESSMENT

4.1 Introduction

As cyber attacks are becoming more frequent and increasingly complex, the need for

better training of cyber analysts to protect critical assets and ensure system security is also

elevated. One issue with existing cyber security training is its relying heavily on lecture-style

instructions without enough hands-on experience. Thus, it needs a realistic cyber security

training system containing empirical scenarios to let cyber analysts practice deciphering so-

phisticated attacks.

Cyber security defense is a cognitive process for human cyber analysts. Although the

cognitive work of cyber security is similar in many ways to other work involving complex

systems, there are several features of cyber security that make it unique. First, the opera-

tional space is boundless with minimal geographical features. As a result, the environment

from which a cyber analyst has to perceive salient cues is vastly larger and more difficult to

comprehend. Second, the speed at which the cyberspace changes is much faster, where new

vulnerabilities and their corresponding exploits are continuously emerging, and new offen-

sive technologies are constantly being developed. Furthermore, modern exploits are either

employed via misdirection (e.g., a DDoS attack is conducted by a botnet of compromised

computers) or delivered passively via embedded malware.

Cognitive Task Analysis (CTA [59, 59]) is the extension of traditional task analysis

techniques to yield information about the knowledge, thought processes, and goal structures

that underlie observable task performance. The outcome of CTA describes the performance

22



objectives, equipment, conceptual knowledge, procedural knowledge and performance stan-

dards used by experts as they perform a task. Accurate identification of cyber security ex-

perts’ cognitive processes can be adapted into training materials to teach novices how to

perform like experts. In this chapter, we use the CTA approach to gain insight into the cog-

nitive demands and workflow of cyber analysts and design cyber security training lesson

plans and training workflow. Subsequently, we evaluate cyber analysts’ performance based

on their response time of detecting cyber attacks compared to an estimated attack ground

truth timeline.

The remainder of this chapter is organized as follows: Section 4.2 describes related

work. After performing Cognitive Task Analysis, we identified the steps necessary for de-

signing cyber security training exercises in Section 4.2. Section 4.3 describes three cyber

security training lesson plans. The scoring algorithm to evaluate the performance of cyber

defense analysts is presented in Section 4.4. To evaluate the usability of the training sys-

tem, Section 4.5 presents the questionnaire that cyber analysts are asked to answer. Finally,

Section 4.6 concludes the chapter.

4.2 Cognitive Task Analysis based Approach

We design realistic lesson plans for cyber security training and assessment based on

the LVC framework, which enables cyber analysts to experience cyber attacks and to learn

how to detect ongoing cyber attacks. Designing cyber security lessons to involve cyber

analysts in active learning requires careful planning. Cognitive Task Analysis technique [17]

is a prominent approach that captures knowledge representation used by experts to perform

complex tasks. We utilized a combination of three knowledge capture techniques: observing

cyber security competitions, examining critical incidents, and reviewing relevant papers of

structured interviews with cyber security experts and information assurance analysts [21].

We elicit the knowledge about how, when, where, and why, as we perform a cyber defense

task. This knowledge can be applied into design consideration for cyber security training

lesson plans.

23



Notice that human cyber analysts have to check thousands of events each day from

many sources such as system logs, configurations, traffic logs, IDS log, and audit logs in

order to determine whether there are real attacks or false positives present; therefore, they

could likely be soon overwhelmed by tremendous data and forced to ignore potentially sig-

nificant evidence introducing errors in the detection process. In order to solve the tremendous

cognitive demand faced by cyber analysts, we identify and design watch list items related to

cyber attacks. Cyber analysts can tailor their own watch list items and triggering thresholds

in order to detect cyber attacks faster.

Six steps necessary for building training lessons is as follows:

1. Previous related work review

2. Training objective definition

3. Training scenario creation

4. Cyber analyst watch-list definition

5. Cyber analyst response recording

6. Performance assessment

Based on the design steps, the training workflow is shown in Figure 4.1, which con-

tains the following steps:

Step 1: Instructor creates a lesson plan for the cyber security training that includes

a cheat sheet for the cyber attack/defense aspect based on the lesson objective. The Cheat

Sheet includes the watch list items critical to the cyber attack and the attack ideal timeline

denoting the attack start and success time. Cyber analyst should react to the cyber events

in simulation and perform certain actions that demonstrate his/her understanding of cyber

attacks.

Step 2: Instructor sets up training scenario with the tool providing the widgets to

enable the instructor to enter in the information from the cheat sheet.

24



Figure 4.1: Workflow for CSA training system

Step 3: When training scenario begins, the specified trigger alert and other log data

specified by cyber analyst will be sent to cyber analyst side. After analyzing these data,

cyber analyst should think whether it is an attack or false alarm based on prior knowledge

and decide the type of attack through attack model matching.

Step 4: During the training, with cyber analyst’s actions being logged continuously,

the training system can determine whether the response actions of cyber analyst are following

the ideal timeline enumerated by instructor in the cheat sheet.

Step 5: Based on cyber analyst’s response and the ideal timeline, the score for cyber

analyst will be computed using devised scoring mechanisms, and provided to cyber analyst

as part of after action review.

Step 6: After obtaining performance assessment report, cyber analysts should think

about selecting different watch list items or improving analysis capability for the next lesson.

Based on the tailored lesson plans, cyber analyst will learn the knowledge required

to monitor network conditions and identify ongoing attacks. After completing the cyber

25



security training, cyber analysts will be able to do the following with respect to a given set

of known attacks:

• List the relevant parameters to monitor and know the characteristics of these parame-

ters under normal and abnormal operations.

• Recognize symptoms of network attacks. Specifically, cyber analyst will be able to

isolate common characteristics of network under attack and be able to distinguish the

characteristics that are particular to each attack.

• Given a particular set of current conditions (monitored parameters), be able to analyze

what kind of attack is occurring and how the attack was launched.

• Demonstrate proper procedure of remedial actions, including selection of countermea-

sures to apply and where in the network to apply them.

4.3 Cyber Security Training Lesson Plans

Guided by the lesson design steps and goals of cyber security training, we describe

three cyber security lesson plans [40]: port/network scanning, denial of service, and wireless

jamming.

4.3.1 Port Scan Attack Lesson Plan

Usually an attacker may attempt to obtain information concerning a network in order

to choose its course of malicious actions against the network. The lesson goal is to familiar-

ize cyber analysts on how to detect network and port scan attack. Specifically, after network

scan, an attacker is able to discover the number of hosts, the IP addresses and the network

topology. The next step an attacker may take is to perform a port scan [73] to discover which

hosts are critical and what services are running on the various hosts. The obtained informa-

tion can be used by an attacker to plan attack attempts targeting various vulnerabilities.

An example of lesson scenario on how to perform network and port scan is illus-

trated in Figure 4.2. Initially, the core gateway router is configured without firewall. Before

26



Figure 4.2: Port/Network Scan Attack lesson scenario

performing a network scan, the “inside” network is not visible to the outside world. The

attacker then attempts to obtain information on the internal network by launching a network

scan. Without firewall protection at the router, the network scan is able to discover the num-

ber of hosts, IP addresses and the network topology by sending a bunch of probe packets.

Once an attacker learns the IP addresses of hosts and network connectivity, he/she can launch

port scan to discover applications such as web server, FTP server running on the hosts and

other devices connected to the hosts such as printer.

For the purposes of facilitating cyber analysts’ analysis, we define network scan as a

procedure for identifying active hosts on a network [1]. After observing the network traffic

that contains certain numbers of distinct probes within several seconds from a single anoma-

lous source, it might be a potential network scan attack. The port scan is defined as an attack

that sends client requests to a range of server port addresses [8] on a host with the goal of

finding open ports and corresponding services running on the ports. By observing several

requests to a range of port addresses, it might be a potential port scan attack.

4.3.2 Denial Of Service Attack Lesson Plan

Denial of service (DoS [86]) attacks are characterized for attacking with the purpose

of preventing victim computing systems or networks from providing services to legitimate

27



users. Such attacks aim at stopping the system from working properly through the recruit-

ment of a large number of “zombie” machines to send high volumes of ordinary traffic to a

target machine or network. The DoS lesson objective is to train cyber analysts to understand

DoS attacks and their detection methods. The issue of DoS protection and mitigation will be

discussed in the lesson on Firewall. In this lesson, we will study three types of DoS attacks:

• Basic DoS attack: the attackers send large volume of UDP traffic to the victim host or

network. Such traffic consumes network bandwidth, buffer memory as well as CPU

resources.

• TCP SYN DoS attack: the attackers send TCP SYN packets to the victim host. Each

TCP SYN packet opens a new TCP connection at the victim computer, thus consuming

transport-layer buffer memory.

• IP Fragmentation DoS attack: the attackers send partially fragmented IP packets to

the victim host. The victim computer buffers these fragmented packets and wait for

remaining segments, thus consuming network-layer buffer memory.

To identify DoS attacks, cyber analysts need to first differentiate attacks from normal

bursts of network requests in order to reduce rate of false positive.Therefore, we need to com-

pare it with behaviors of normal requests burst, analyzing information via system/network

logs for determination. It is important to know what kind of information are being request

for and what type of requests they are. Generally, requests from DoS attacks share the same

target. For example, a great many of requests, possibly tens of thousands or more, are trying

to access a specific URL or port. Although sometimes under DDoS attacks there could be

multiple targets. It is still possible to find that portions of the requests are aiming for same

target.

Once cyber analysts identify the incoming requests are indeed results of DoS attacks,

the next information cyber analysts need to acquire is what kind of DoS attack it is and what

attack techniques it is employing. Since cyber analysts already know about the details of the

requests from the system logs, cyber analysts can generally determine the type of DoS attacks

28



Figure 4.3: DoS Attack lesson scenario

and then take corresponding defending actions. As introduced previously, cyber analysts are

considering three DoS attack scenarios, utilizing basic UDP traffic, TCP SYN requests, and

IP fragmentation separately.

Basic DoS attacks involve sending a large volume of traffic to the host, exhausting

the host’s processing and memory resources and making unable to serve more normal traffic.

As a result, there is a sharp increase in the memory and CPU usage of server hosts.

TCP SYN attack happens when attackers send a flood of TCP/SYN packets with

faked sender addresses. Each packet is treated as a connection request and the server main-

tains a half-open connection for each request. The server send TCP/SYN ACK packets back

to the faked senders and waits for the responses. Since the sender addresses are faked, the

responses will never come. And the number of half-open connections quickly saturate the

buffer resources of the server, rendering it unable to serve future legitimate requests.

Another technique of DoS attack is via IP fragmentation. As we know, the packet

size must not be larger than the network’s Maximum Transmission Unit (MTU). If the data

to transmit is larger than the size of MTU, then it has to be fragmented into multiple pieces

of small packets, each of which contains a portion of the data. And these packets will be

reassembled at the receiver. The attackers, however with the help of softwares, could force

the system to send packets size larger than the network’s MTU and crash victim hosts.

29



Figure 4.3 shows an example DoS exercise scenario, which includes nine “zombie”

machines that can send high volumes of ordinary traffic to the target victim machine. An

attack targeting at the HTTP server typically involves sending a large number of requests,

each of which consumes significant resources. This then limits the ability of the server to

respond to requests from other users. Besides, Web requests may make database queries. If

costly query can be constructed, then a large number of requests could trigger these queries

that would severely overload the server and limit its ability to respond to legitimate requests.

The attackers starts either one of the three types of DoS attacks. The magnitude and difficulty

of the exercise scenario can be controlled by the number of “zombie” machines as well as

traffic volume.

To perform DoS attack detection [26, 51], traffic flow monitoring is the key. Such

traffic flows are characterized by a set of watch list. Example watch list items include CPU

and memory resource usage, number of incoming flows, aggregated traffic rate as shown in

Table 4.1.

Table 4.1: DoS exercise watching list

CPU Utilization
CPU utilization is calculated by CPU
load as a percentage of the CPU capacity

Memory Usage Memory consumed during certain period

Network Traffic

- Network-FIFO,Total packets queued
- Network-FIFO,Total packets dropped
- Network-FIFO,Average queue length
- Network-FIFO,Peak queue size
- Network-FIFO,Longest time in queue
- IP,Number of IP Fragments received
- IP,Number of IP Fragments dropped
- UDP, Number of packets received
- UDP, Number of bytes received
- TCP, Number of packets received
- TCP, Number of bytes received

30



Figure 4.4: Wireless Jamming Attack lesson scenario

4.3.3 Wireless Jamming Attack Lesson Plan

Wireless jamming attacks [108] can be accomplished by an adversary emitting radio

frequency signals that do not follow an underlying MAC protocol. Wireless Jamming attacks

can be viewed as a special case of DoS attacks, which prevent or inhibit the normal use

through flooding a wireless network with useless information. The lesson objective is to

train cyber analysts to understand the jamming attacks and their detection.

Figure 4.4 depicts an example wireless jamming lesson scenario, which includes five

pairs of senders and receivers with different MAC protocols. The jammer is host 15 who can

transmit random radio signals to increase the background noise in the channel. Thus, when

packets reached at the receiver side, they cannot be correctly decoded and hence are dropped.

Another jamming type is to constantly emit random semi-valid packets to keep the medium

busy all the time, preventing the honest nodes from switching from the listening mode to the

transmitting mode. The magnitude of the exercise scenario can be controlled by the number

of jammers and their jamming frequency.

The complexity of detecting jamming attack is the fact that there might be multiple

reasons which cause decreased performance of wireless network except intentional attacks

driven by adversaries. Thus, it is critical to distinguish between poor network conditions due

31



to natural environmental influences and intentional jamming attacks. No single measurement

is capable of detecting all kinds of jamming attacks [93, 32], thus, we teach cyber analysts

to combine several metrics to detect jamming attacks as following:

• Signal Strength: If jamming attack exists in communication channel, the signal-to-

noise ratio (SNR) decreases and frame decoding at receiver node becomes error prone.

By gathering enough noise level measurements during a time period prior to jamming,

cyber analysts can identify normal SNR levels in the network.

• Carrier Sensing Time: The jamming attacks can keep channel busy that results in

longer channel waiting time at the sending side. Carrier sensing time denotes the

amount of time it spends waiting for the channel to become idle. By keeping track

of carrier sensing time during normal traffic operations, cyber analysts can determine

normal carrier sensing time range.

• Packet Send Ratio: A jammer can interfere with legitimate wireless communications

by preventing a real traffic source from sending out packets. The packet send ratio can

be defined as the ratio of packets that are successfully sent out by a legitimate traffic

source compared to the number of packets it intends to send out at the MAC layer.

• Packets Delivery Ratio: The packet deliver ratio can be calculated as the ratio of pack-

ets that are successfully delivered to a destination compared to the number of packets

that have been sent out by the sender. Another measure method is calculating the ratio

of the number of packets that pass the Cyclic Redundancy Check (CRC) check with

respect to the number of packets received.

• Energy Consumption Amount: The victims may receive large volume flooding pack-

ets with useless information from jamming attackers. It consumes valuable energy

resources in sensing the channel and processing the traffic in the channel. The energy

consumption amount can be defined as the approximate amount of energy consumed

in a period of time.

32



Figure 4.5: Use memory usage metric to detect DoS

• Mobility: For wireless communication, the signal strength is fading with a power of

two with respect to the distance between sender and receiver. Thus, node’s mobility

can also cause performance deterioration beside jamming attacks.

4.4 Performance Metrics and Scoring Algorithms

To monitor the activities of and provide feedback to a cyber analyst during training

sessions, we adapt the method of timeline analysis. The ideal timeline of a training exercise is

gauged based on the specific attack scenario and its configuration. After a training exercise

starts, all of a cyber analyst’s actions are continuously logged so that the training system

can determine whether actions taken by the analyst follow the ideal timeline and match the

expected activities. This evaluation can be provided as feedback to the cyber analyst during

training. For instance, if an analyst fails to identify attacks in time, the system can proactively

provide hints to the analyst, or share the views of other cyber analysts. Trainees may also

ask for a hint from the instructor. The training performance of a cyber analyst is evaluated

based on his/her response time of correctly identifying specific cyber attacks.

Figure 4.5 depicts how the measurement of memory usage can be used to characterize

the ideal timeline for a DoS attack. Two memory usage thresholds divide the time period into

three phases: before attack, during attack, and after a successful DoS attack. Based on the

pre-defined memory usage thresholds and the DoS training lesson’s configuration (such as

the number of packets to be sent, the frequency of sending packets, the start and end times),

33



a DoS attack’s start time and its time of successful attack can be determined. Similarly,

the method can be applied to other DoS metrics such as CPU usage, number of incoming

flows, and aggregated traffic rate to generate their corresponding timelines. By combining

the timelines together, an ideal timeline for the DoS attack can be generated.

Based on the response of cyber analysts and the ideal timeline, scores for the perfor-

mance of cyber analysts can be computed using the devised scoring mechanisms, and they

can be provided to the cyber analysts as one component of their after action review. By com-

paring cyber analysts’ response times against the ideal timeline, we can determine whether

a cyber analyst responds in a timely manner. For instance in Figure 4.5, assuming a DoS

attack starts at a time of 10 seconds and sustains for 35 seconds, and the victim host shuts

down at a time of 45 seconds, a cyber analyst has a time window of 35 seconds to identify the

ongoing DoS attack. If a cyber analyst identifies this DoS attack at the 20 second mark, the

cyber analyst’s response is considered fast enough to score high on the exercise. In contrast,

if a cyber analyst does not identify the DoS attack until the victim host shuts down, no points

will be given.

To evaluate the performance of cyber analysts, a set of performance metrics has been

adopted:

• Lesson magnitude and difficulty levels (WD): stands for the severity of attacking or

the difficulty of achieving an attack goal. A scenario’s difficulty level is specified in

one of three categories: High, Medium, or Low.

• Response time (WT ): measures cyber analysts’ responsiveness to correctly recogniz-

ing cyber attacks.

• Correct detection of attacks (WC): identifies the existence of a real attack and its type.

• Damage impact (WI): measures attacks’ impact on victim’s confidentiality, integrity,

and/or availability.

34



Based on the performance metrics, the score of cyber analysts can be calculated by

the following formula:

Score = WD ∗ (
∑

k∈{T,C,I}

Wk ∗Kk)

where Kk, k ∈ {T,C, I} is the weight factor for each performance metric. Notice that the

lesson difficulty level WD is separated from other performance metric during score calcula-

tion. This is because the more difficult of the lesson, the higher score is given since trainees

have to spent more time and effort to performance the defense task. For the purpose of con-

sistent computation, each weight factor is normalized to the value between 0 and 1. Take

difficulty level WD as an example, training lesson labeled with “Low” difficulty has weight

factor value 0.4 and “Medium” difficulty training lesson is given weight value 0.7.

4.5 Evaluate Cognitive Validity of Training

In order to evaluate the usability of the training system and its effectiveness, Situa-

tion Awareness Global Assessment Technique (SAGAT) is used. SAGAT covers the three

levels of CSA including Level 1 (perception of data), Level 2 (comprehension of meaning),

and Level 3(projection of the near future). Typically, a set of CSA queries regarding the

current situation is asked and participants are required to answer each query therein based

upon their knowledge and understanding of the situation at that point. The detail of SAGAT

questionnaire is in Appendix A and the example questions to be asked are as follows:

1. CSA related queries

(a) An IDS alert based on traffic from 192.168.2.42 destined to 192.168.1.252 is best

classified as?

(b) Which watch list item is abnormal?

(c) Is it an attack or false alarm?

(d) What is the impact for the current attack? Any confidentiality, integrity, or avail-

ability loss?

(e) What actions should be performed to stop this attack?

35



2. Participant satisfaction

(a) Is the training tool easy to use?

(b) Is the information displayed in a way that is easy to comprehend?

(c) Does the tool provide information needed to achieve lesson goals?

(d) Are the lesson contents at the appropriate difficulty level for the cyber analysts?

(e) Are the hints useful?

3. Knowledge acquisition

(a) Does the cyber analysts grasp the main objectives of the lesson?

(b) Does the lesson learned lead to intended decision-making skills?

4. Behavior changes

(a) How does the acquired knowledge affect the cyber analysts in future operations?

(b) Will the cyber analysts be able to detect and identify DoS attacks faster?

4.6 Conclusion

Accurate identification of experts’ cognitive processes can be adapted into train-

ing materials. In this chapter, we described three cyber security training lesson plans:

port/network scanning, denial of service, and wireless jamming after performing cognitive

task analysis. We also defined the metrics for performance evaluation and the corresponding

scoring algorithms.

36



Chapter 5

DIFFICULTY-LEVEL METRIC FOR CYBER SITUATION AWARENESS
TRAINING AND ASSESSMENT SYSTEM

5.1 Introduction

In order to conduct effective cyber security training, it is critical to differentiate attack

scenarios of various difficulty levels in order to accommodate defense analysts’ skill levels.

While standard techniques exist for measuring the relative difficulty to exploit an individual’s

vulnerability, it is challenging to answer the fundamental question “whether one scenario

containing several vulnerabilities is more difficult than another one.”

Simple ways of aggregating individual vulnerabilities, such as taking the average

or maximum values, may foster misleading results. An attack graph [57] can be used to

represent a collection of possible penetration steps in attack scenarios. Each penetration step

is a sequence of actions taken by an intruder aiming to achieve a particular goal. An attack

graph for a network shows all the hosts that can be compromised by an attacker starting at

a specific location and the sequences of actions that can exploit the vulnerabilities in the

network. Therefore, attach graphs can reflect the casual relationship between vulnerabilities.

In this chapter, we describe a probabilistic metric for measuring the aggregation

effect of individual vulnerabilities and producing quantitative difficulty levels for attack

scenarios[41]. More specifically, we adapt the existing work of attack graphs by apply-

ing Bayesian Reasoning to combine the individual vulnerabilities into a probabilistic value

that represents the attack success likelihood. This combination is based on the causal rela-

tionships between vulnerabilities in an attack graph. One major limitation of using Bayesian

Reasoning is that it does not allow cycles, which are common in attack graphs. We iden-

tify different types of cycles in attack graphs and design an efficient algorithm to remove

37



them while keeping cyclic influence in the probability calculation. Finally, we use empirical

scenarios to evaluate our metric calculation method.

This chapter proceeds in Section 5.2 with a review of the related work. Section 5.3

introduces a motivating example and examines how to handle cycles in attack graphs. Then,

the cycles removing algorithms and the proposed difficulty level metric are defined. Sec-

tion 5.4 presents the empirical evaluation. Finally, Section 5.5 summarizes this chapter.

5.2 Background and Related Work

Attack graphs [87, 2] have been used to represent all possible paths an attacker can

take to achieve certain goals by exploiting system vulnerabilities. Much work has already

been done in analyzing network configurations and identifying network vulnerabilities to

construct attack graphs [43, 46].

Early efforts on building attack graphs are presented by Network Security Planning

Architecture (NetSPA [3]). The authors use attack graphs to model adversaries and the effect

of simple counter measures. It creates a network model using firewall rules and network vul-

nerability scans. It then uses the model to compute network reachability and attack graphs

representing potential attack paths for adversaries exploiting known vulnerabilities. This dis-

covers all hosts that can be compromised by an attacker starting from one or more locations.

NetSPA typically scales as O(nlogn) as the number of hosts increases.

In [88], an attack graph is generated based on a model checking method. In this type

of attack graph, each vertex represents the network state and each edge represents a transition

from one network state to another state when attacking actions are applied. The central idea

is to use an exploit dependency graph to represent the pre and post conditions for an exploit.

Then a graph search algorithm is used to chain the individual vulnerabilities and find attack

paths that involve multiple vulnerabilities. The drawback is that it is not very scalable with

respect to the number of nodes in the network.

A logic programming-based attack graph called MulVAL is introduced [72]. The

key idea is that most configuration information can be represented as Datalog tuples, and

most attack techniques and OS security semantics can be specified using Datalog rules. After

38



performing analysis, the trace of the evaluation is recorded and sent to a graph builder, where

the logical attack graph is generated automatically.

General reviews of security metrics are given in [48, 98]. Phillips et al. [75] utilize

graph path metrics such as the shortest path, the number of paths, and the mean of path

lengths to quantifiably rate network security. Idika and Bhargava [42] observe the short-

comings of these path metrics and describe a complimentary path metrics suite, such as

normalized mean of path lengths, standard deviation of path lengths, and median of path

lengths. Noel and Jajodia [68] present a suite of metrics for measuring network-wide cyber

security risk including the size of the attack graph, the topology graph theoretic properties

such as connectivity, cycles, and depth of the attack graph.

The Common Vulnerability Scoring System (CVSS [83]) has been designed to pro-

vide a standard way to rate individual vulnerabilities. The vulnerabilities are assigned nu-

merical scores based on their exploitability and potential impact on confidentiality, integrity,

and availability. The key limitation of such individual vulnerability scores is that it is not

possible to capture the cumulative effect of these vulnerabilities in network.

Since attack graphs represent the logical relationship among possible attack steps,

it is natural to integrate attack graphs with CVSS scores to calculate the network security

metrics. Frigault et al. [28] model attack graphs as special Bayesian Networks (BN). Based

on the individual probabilities and Conditional Probability Tables (CPT) for each node, it can

calculate the attack success likelihood. The drawback is that cycles exist in attack graphs

and the BN method cannot be applied directly to it. Wang et al. [101] define the basic

metric and give a meaningful interpretation to the metric. Then, the authors identify the

presence of cycles in the attack graphs and extend the definition accordingly to propagate

probability over cycles. In [38, 110], the authors utilize existing MulVAL attack graphs and

apply probabilistic reasoning to produce an aggregation metric. It is similar to our work

except that they only use CVSS’s Access Complexity as node’s metric and map them to

three fixed probability such as low to 0.9, medium to 0.6, and high to 0.2. Besides, their

approach utilizes the concept of d-separation in BN inference instead of BN reasoning.

Besides the attack graph-based metrics, Manadhata has brought a new concept called

39



Attack Surface [60, 61]. A general analysis of a system can determine the system’s attack

surface based on the tuple 〈methods, channel, data〉. The larger the attack surface, the less

secure the system. However, this kind of analysis is often not feasible due to required source

codes and expert knowledge of the system. However, in the real world, it is hard to get the

source codes and resource constraints may preclude such kind of expert knowledge.

5.3 Difficulty-Level Metric

Due to the scalability advantage of a MulVAL attack graph [71], we utilize it as the

structural basis for aggregating individual vulnerability into an attacker’s success likelihood

of achieving attack goal. Our approach could be easily adapted to other tools that produce

attack graphs with similar semantics.

5.3.1 Motivating Example

Figure 5.1 depicts an example enterprise network [37], which includes a Demilita-

rized Zone (DMZ) and internal servers. The Web Server and VPN Server are directly ac-

cessible from the Internet through the firewall. The Web Server can access the File Server

through the NFS file-sharing protocol. The Database Server contains enterprise information,

which can only be reached through the Web Server and internal servers.

The Web Server contains vulnerability CVE-2006-3747 in the Apache HTTP Server.

Depending on the way in which Apache was compiled, this vulnerability can be triggered by

remote attackers to potentially allow execution of arbitrary code. Internet Explorer (IE) has

vulnerability CVE-2009-1918, by which user workstations could be compromised if users

access malicious online content through IE. MySQL in the Database Server has vulnerabil-

ity CVE-2009-2446, where attackers can exploit this vulnerability by formulating specially

crafted SQL commands to gain administrator privilege to execute arbitrary code.

Based on this network configuration and host vulnerabilities, the corresponding logi-

cal attack graph generated by MulVAL is presented in Figure 5.2. The MulVAL attack graph

consists of two types of nodes: the privilege nodes and the attack step nodes. The privilege

nodes are represented in the graph as square shaped OR-nodes. Each node describes a single

40



Figure 5.1: Example enterprise network

Figure 5.2: Example attack graph

41



network privilege, which is acquired based on the current network configuration or achieved

by any one of its predecessors attack steps. The attack step nodes, represented in the graph

as oval shaped AND-nodes, show the attack step that can be performed only when all of its

predecessors are satisfied. Notice that an attack step AND-node is only preceded by privilege

OR-nodes and always has exactly one successor OR-node. An OR-node, however, may have

multiple successor AND-nodes, representing different attack steps requiring this privilege as

a preceding condition. Labels of the nodes have a generic format of predicate(parameters).

Take attacking goal as an example, node 1 is labeled “execCode(dbServer,root)”, where “ex-

ecCode” is a predicate and “dbServer” and “root” are two parameters, meaning that an at-

tacker can execute arbitrary code with root privilege on host dbServer.

As shown in the attack graph, there exist alternative sequences of attacks in order

to achieve the goal of gaining privileges to execute arbitrary code on the Database Server.

For example, as denoted in Node 12 “remote exploit of CVE-2009-1918”, an attacker can

compromise workstation by exploiting this vulnerability when the users access malicious

online data through Internet Explorer. Using it as a stepping stone, the attacker can launch

an attack to exploit Web Server’s vulnerability. Finally, the attacker can attack the database

server to gain administrator privilege from there.

5.3.2 Cycles in Attack Graph

One major complication of applying Bayesian Reasoning [6] on Attack Graphs to de-

fine cumulative metric is that Bayesian Reasoning does not allow directed cycles. However,

cycles naturally exist in attack graphs. Take the attack graph in Figure 5.2 as an example, it

contains one cycle 6-21-14-12-11-9-8-7-6.

To illustrate the different types of cycles in MulVAL attack graphs, we use a small

hypothetical attack graph as shown in Figure 5.3. The attack graph on the left shows the

type of cycle that can be completely removed. Cycle A1-P2-A2-P3-A1 is formed through

semantic reasoning, but, none of the states on the cycle can ever be reached by attackers.

Specifically, attack step A1 can only be carried out when both predecessors P1 and P3 are

satisfied. However, privilege P3 can only be achieved through attack step A2, which relied

42



Figure 5.3: Cycles in attack graphs

on P2 as the precondition that can only be obtained through attack step A1. In other words,

attack step A1 and privilege P3 relies on each other as preconditions. Therefore, neither A1

nor P3 can ever be successfully executed. This type of cycle can be completed removed from

the attack graph when calculating the cumulative scores.

The attack graph on the right of Figure 5.3 shows that some cycles cannot be removed

due to the fact that some states on the cycle can indeed be reached. Take cycle P2-A3-P3-A4-

P2 as an example, every node can be reached. Since privilege P2 is an OR-node, it can be

achieved by either attack step A1 or A4. Similarly, privilege P3 can also be obtained by two

different attach paths P1-A1-P2-A3-P3 and P1-A2-P3. This kind of cycle cannot be directly

removed, as it can influence the result of probability calculation.

5.3.3 Handling Cycles

In order to utilize Bayesian Reasoning [6] to calculate attack success likelihood, we

design an algorithm to convert a general attack graph to an directed acyclic graph. To do so,

we first formalize the MulVAL attack graph with the following definition:

Definition 1. An attack graph is a directed graph G = (GE ∪ GP , EA ∪ EO), where GE is

the set of attack step nodes, and GP is the set of privilege nodes. EA ⊆ GP × GE is the set

of edges denoting the AND relation and EO ⊆ GE ×GP is the set of edges denoting the OR

relation.

Typically an attack graph contains several privilege nodes as an attacker’s starting

points. For the purpose of computational efficiency, we add a virtual privilege node GR as

43



the parent of all the attack starting points and starts computation only from this super source.

Cycles in the graph are identified using Tarjan’s algorithm [35] for strongly connected com-

ponents. Given the cycle path sets, if a path starts from an attack step node and ends at the

same attack step node, we can judge that this cycle can be removed completely. Otherwise,

the cycle cannot be directly removed.

We describe a straightforward approach to unfolding a directed cyclic graph into an

equivalent tree. As described in Algorithm 1, it starts from extracting a covering tree from

the super source node GR. Then each edge that is not included in the covering tree is added

as a clone edge to generate the equivalent tree. Take attack graph in right side of Figure 5.3

as an example, the corresponding covering tree and equivalent tree of attack graph are shown

in Figure 5.4.

Algorithm 1: REMOVE CYCLES IN ATTACK GRAPH

Input: The directed cycle attack graph G = (GR, GE ∪GP , EA ∪ EO)
Output: The corresponding attack graph G’ without cycles

n← GR {Begin with super source node}
Extract a covering-tree TC = (GR, GE ∪GP , EC) having GR as the start
V0 ← GR ∪GE ∪GP

E0 ← EC

ER ← EA ∪ EO − EC

while ER 6= {} do
〈v1, v2〉 ← ER.pop()
vnew ← a new clone for v2
V0 ← V0 ∪ vnew
E0 ← E0 ∪ 〈v1, vnew〉

return T0 ← (V0, E0)

5.3.4 Calculating Probability of Achieving Attack Goal

In order to calculate the likelihood of an attacker achieving certain attack goal, first,

the probability of individual vulnerability associated with each attack step node is calculated

44



Figure 5.4: Covering tree and equivalent tree of the attack graph

according to the CVSS exploitability score. Second, applying Bayesian Reasoning on acylic

attack graph to compute the probability of likelihood to achieve the attack goal.

CVSS provides an open framework for rating vulnerabilities. The CVSS basic score

is calculated based on exploitability metrics such as Access Vector, Access Complexity,

and Authentication.We take the exploitability score in CVSS and map it to a conditional

probability of exploit success. For example, vulnerability CVE-2009-2446 in node 2 of

Figure5.2 has a CVSS score of 8.5. We convert this score into a probability by dividing it by

10. Each vulnerability’s preconditions, which are privilege nodes without predecessor in an

attack graph, are assigned probability 1.

Since an attack graph has been remodeled as a directed acyclic graph and each node is

assigned with probability value, the Bayesian Reasoning method [6] can be directly applied

to calculate the probability of attaining the final attack goal. The Bayesian Networks full

join distribution is calculated as the product of the local conditional distributions:

P (X1, X2, ..., Xn) = P (X1|X2, ..., Xn)P (X2|X3, ..., Xn)...P (Xn)

After obtaining the probability of achieving an attack goal, we rank a scenario’ dif-

ficulty level into three categories: High, Medium, and Low. Scenarios are labeled “High”

45



Figure 5.5: Chain attack network connectivity

difficulty if they have a probability of 0.0-0.39. Scenarios will be labeled “Medium” diffi-

culty if they have a probability of 0.4-0.69. Scenarios will be labeled “Low” difficulty if they

have a probability of 0.7-1.0.

5.4 Evaluation

We have implemented our algorithm in the Python language and evaluated its effec-

tiveness using a chain attack scenario to gain empirical experience of the metric model. As

shown in Figure 5.5, the scenario contains two interconnected subnets. The objective of

the exercise is to simulate multi-stage attacks. There are ten hosts in this scenario. Hosts

1 through 5 belong to subnet-1; hosts 7 through 10 belongs to subnet-2. Host 6 is a router

that connects to both subnets.The network is pre-configured such that hosts 7 and 9 have the

following vulnerabilities: application vulnerability, authentication leak, web server vulnera-

bility, improper access control vulnerability.

By putting all the configuration files into our algorithm, we generate the attack graph

with probability corresponding to the chain attack scenario as shown in Figure 5.6. Figure

5.6(a) shows the originally generated MulVAL attack graph with cycles and Figure 5.6(b)

presents the trimmed attack graph with probabilities after applying our algorithm. The prob-

ability of achieving the attack goal is 0.7132, which indicates this scenario has low difficulty

46



a

b

c

Figure 5.6: Chain attack graph with probabilities

47



level. Assume as time passes, there might be a new patch for the vulnerability on node 12.

As shown in Figure 5.6(c), the node 12 probability changes from previous 0.6 to current 0.3

because it is now harder to exploit. Corresponding by, the probability of achieving the attack

goal changes to 0.4259, medium probability indicate medium difficulty level.

Possible sequence of attacks launched by host 1 to victimize host 9 are as follows:

• Host 1 launches an attack on host 7 trying to exploit improper access control vulnera-

bility. Since host 7 has this vulnerability, the attack is successful.

• Host 1 tries to exploit authentication leak vulnerability on host 7; host 7 has this vul-

nerability and the attack is successful.

• Host 1 tries to attack host 9 via host 7’s authentication leak vulnerability, host 1 was

able to gain access to host 7. Then host 1 tries to exploit application vulnerability

on host 9, attacking from host 7. The attack is successful; host 1 is able to obtain

information on the application(s) running on host 9.

• Host 1 attacks host 9 by shutting down its application. The attack is successful.

5.5 Conclusion

We have presented a graph-based approach to calculating an attacker’s success likeli-

hood of achieving attack goal, which can be used as a metric to evaluate the difficulty levels

of training exercise scenarios. Due to the causal relationships between vulnerabilities in an

attack graph, we apply Bayesian Reasoning to calculate the final probability. We confirmed

the metric’s effectiveness by evaluating it in empirical scenarios.

In this chapter, we design efficient algorithms to remove cycles in the attack graph

while keeping their influence on the final probability calculation. Since we can differentiate

the difficulty levels of penetration exercises in training system, it is desirable to devise al-

gorithms to compute cyber defense analysts performance scores. Varied mission goals will

place different priorities on security requirements, and hence different metrics and scoring

algorithms. As an example, for a banking institution, it is more important to protect con-

fidentiality and integrity of customer information, so any attacks compromising these will

48



be weighted higher. For a public library where the information is free to the public, it is

less important to guard against confidentiality and integrity, however, more weights will be

assigned to protecting the availability of its services.

49



Chapter 6

WEB-BASED FUZZY TEAM DECISION-MAKING FOR CYBER SITUATION
AWARENESS

6.1 Introduction

Situational Awareness (SA) involves perception of evolving status and attributes of

elements, comprehension of combined observations to evaluate the current situation, and

prediction of possible future outcomes based on past experience and knowledge [47]. Cyber

Situation Awareness (CSA) extends SA to the cyber domain, where cyber analysts collect

data and seek cues to form attack tracks, estimate the impact of observed attack tracks, and

anticipate the moves (actions, targets, time) of attackers.

CSA is a cognitive process of human cyber analysts. Although the cognitive work of

CSA is similar in many ways to other work in complex systems, there are several features of

cyber security that make CSA unique [94, 95]. First, the operational space of CSA is bound-

less with minimal geographical features. As a result, the environment from which a cyber

analyst has to perceive salient cues is vastly larger and more difficult to comprehend. Second,

the speed at which the cyberspace changes is much faster, where new vulnerabilities and their

corresponding exploits are continuously emerging, and new offensive technologies are con-

stantly being developed. Furthermore, modern exploits are either employed via misdirection

(e.g., a DDoS attack is conducted by a botnet of compromised computers) or delivered pas-

sively via embedded malware. Third, everything cyber analysts know about the environment

is a virtual representation of the cyberspace in terms of digital information (e.g., intrusion

alerts and firewall logs). In addition, the cyber analyst only sees the information that his/her

(software) sensors are capable of detecting in a form that can be rendered on monitor screen.

50



Because perception and comprehension of cyberspace is inherently constrained by technol-

ogy artifacts, cyber analysts’ ability to develop situation awareness is greatly limited by the

degree to which the network’s sensors are correctly configured and capturing data.

When confronted with sheer amount of situation information and dynamically chang-

ing environments, cyber analysts, at different levels and/or in different parts of the system,

need to work collaboratively as a team. Typically, each team member forms his/her own

CSA and shares it with other team members in order to create team CSA. However, each

individual cyber analyst may have his/her own personal expertise, experience, and opinions,

so that conflicts often occur in team decision making on, for instance, whether there exists

a cyber attack, or it is a false alarm or not, as well as the types of detected cyber attacks.

Therefore, how to resolve conflicts among team members becomes a critical issue. Observa-

tion from the previous “Capture The Flag” cyber competitions show that traditional methods

to achieve consensus decision, such as verbal discussion and whiteboard session, are not

accurate and unpersuasive.

In this chapter, we investigate a fuzzy set [22] based approach that can quantify cyber

analysts’ preference and aggregate uncertain information to generate consensus of CSA for

the entire team. Considering the collaboration among team cyber analysts may be across

physical distances and need web-based technology to facilitate, we also design a web-based

team CSA decision-making system based on the fuzzy set method.

The remainder of the chapter is organized as follows: Section 6.2 describes the back-

ground, the related work, and the motivation for utilizing fuzzy set method to process un-

certain information. Section 6.3 describes the designed methodology for team CSA, which

includes team structure and roles of cyber analysts, communication among cyber analysts,

individual CSA representation, and fuzzy set based decision support for team CSA. In Sec-

tion 6.4, we present the web-based team CSA decision-making system that utilizes the fuzzy

set approach. Section 6.5 concludes the chapter.

51



6.2 Background and Related Work

Whenever a security incident occurs, the top three questions that any cyber analyst

will ask are: what had happened, why did it happen, and what should I do. Answers to

these questions lie in the core of Cyber Situation Awareness [27, 55, 69], which is a cog-

nitive recognition and realization process of identifying critical security information in the

environment. It has long been acknowledged that CSA or the ability to assess situations and

prepare timely responses is an important aspect for cyber security defensive purposes.

According to the Situation Awareness (SA) reference model proposed by Endsley

[25], SA is a three phases process: perception, comprehension, and projection. SA begins

with perception that provides information about the status, attributes, and dynamics of rel-

evant elements within the environment. Perception also includes classifying information

into understood representations and provides the basic building blocks for comprehension

and projection. Comprehension of the situation encompasses how people combine, inter-

pret, and correlate information, which yields an organized picture of the current situation by

determining the significance of objects and events. Furthermore, as a dynamic process, com-

prehension must combine new information with already existing knowledge to produce a

composite picture of the situation as it evolves, which is projection. Cyber Situation Aware-

ness (CSA) is SA extended to the cyber domain. Similarly, CSA also has three phases:

collecting data, estimating the impact of observed cyber attacks, and anticipating the next

moves.

A team is defined as a group of heterogeneous people working together towards a

common goal. The heterogeneity could be based on their individual skill, information they

know, or the resources they have. Team CSA is defined in [12] as the degree to which every

team member possesses the CSA required for his or her responsibilities. The team members

through team interactions transform individual knowledge to collective knowledge and in

the process achieve team situation awareness [12, 16]. However, team situation awareness

is more than the sum of situation awareness of the individuals in the team [77]. Since each

team member may have his/her own personal expertise knowledge, experience, and opinions,

it is hard for them to make consensus decision. Besides, cyber analysts often describe the

52



situation with imprecise or ambiguous information, which exacerbates the uncertainty of

shared situation awareness.

CyberCog [76] is a synthetic task environment for understanding and measuring team

situation awareness, as well as for evaluating algorithms intended to improve cyber situation

awareness. CyberCog provides an interactive environment for conducting human-in-the-

loop experiment in which the participants of the experiment perform the tasks of cyber an-

alysts in response to cyber attack scenarios. CyberCog utilizes a collection of known cyber

defense incidents and analysis data to build a synthetic task environment. Alerts and cues

are generated based on emulation of real-world analyst knowledge. From the mix of alerts

and cues, cyber analysts have to identify threats and vulnerabilities as a team.

In the scenarios developed by CyberCog, cyber analysts work together as a team. For

instance, each cyber analyst receives individualized training on his/her specific role, such as

Malware specialist, Denial of Service specialist or Phishing attack specialist. During train-

ing, if one cyber analyst encounters alerts that he/she is not very familiar with, he/she can

share the alerts with the rest of the team to ask other cyber analysts for help. CyberCog pro-

vides a team collaboration tool through which team members could share event information

to get help with unfamiliar event patterns. Other team members may reply to a shared event

with details and information on what needs to be done and how to carry out an investiga-

tion process for this event pattern. This interaction is very similar to the interaction patterns

among cyber analysts in the real world. However, one major limitation of CyberCog’s team

CSA is that it is achieved via verbal discussion and lacks a quantification method to aggregate

individual CSA to create team consensus.

6.3 Team Collaboration for Cyber Situation Awareness

Team CSA typically includes collaboration, information sharing or communication,

and CSA aggregation/integration among team cyber analysts. To develop more effective

team CSA, three main issues should be considered: (1) Uncertain information of CSA: in

real world scenarios, after collecting related data, human cyber analysts tend to use imprecise

or ambiguous terms to present it, for example, ‘extremely large’, ‘very high’ and ‘very low’

53



[99, 24]. (2) Inconsistent CSA among team members: each individual cyber analyst may

have his/her own personal expertise, preference, and opinions, so that conflicts may occur

during team decision making. (3) Distributed operation environment: when team cyber

analysts collaborate in a face-to-face environment, it is easy for them to share information

between each other. However, in real word scenarios, cyber analysts may be located in

different physical locations or be involved in different parts of the system. In this case,

communication is the key for team CSA to reduce the occurrence of discrepancies in shared

CSA.

In this section, we introduce the designed methodology for team CSA to address these

identified issues, which includes: team structure and roles for cyber analysts, communication

among cyber analysts, individual CSA representation, and fuzzy set based decision-making

for Team CSA.

6.3.1 Team Structure and Roles for Cyber Analysts

A team of interdependent cyber analysts is not able to function well without a clear

team structure or well assigned roles in a team. There are some critical questions such as

“who knows what? who takes what action? who needs to know this? ” that should be

answered. However, team structure and roles may be inconsistent across organizations. In

CyberCog, each team member is assigned with an attack-based role, such as Malware spe-

cialist, Denial of Service specialist and Phishing attack specialist, etc. In [20], the authors

concluded through Cognitive Task Analysis (CTA) for the US Air Force that there are six

roles of the cyber analysis task: triage, escalation analysis, correlation analysis, threat anal-

ysis, incident response, and forensic analysis. A study conducted by the U.S. Government

Accountability Office concluded that there were many conflicts regarding role positions,

responsibilities and implementations across organizations. For our system, team members

organize themselves and split work in an ad hoc manner while responding to attacks. All

team members are trained for recognizing all types of cyber attacks. After the training, a

performance test is given to examine their proficiency in identifying different types of cyber

54



Figure 6.1: Team Communication Screen Example

attacks. Such individual performance will be considered as the ‘weight’ of their opinions on

the following team decision-making process.

6.3.2 Communication among Cyber Analysts

Previous observations of the Air Force Academy’s participation in the Cyber Defense

Exercise (CDX [4, 85]) concluded that a team of cyber analysts does not work well as ex-

pected. One major issue is that cyber analysts tend to work independently without enough

communication among them. In addition, the competition between team members often lead

to ‘silence’ in order to appear more prestigious if they were the ones to report a security

breach alone. Analysts also reported that they occasionally worked on the same data set as

other analysts, and only realized the fact after the task was completed. Therefore, team mem-

bers with distinct expertise/knowledge should help one another to correctly identify attacks

so as to enhance the whole team’s performance. As depicted in Figure 6.1, cyber analyst can

post their suspicious events and other team members can discuss them through video chat,

file sharing, or whiteboard among themselves.

55



6.3.3 Representation of Individual CSA

Usually, cyber analysts detect incoming attacks by collecting and analyzing network

traffic and suspicious or unexpected behavior. Such information is represented as events

combining (1) alerts specified by cyber analysts when watch list items exceed certain trig-

gering thresholds and (2) alerts from Intrusion Detection System (IDS), such as snort, virus

scanning software reports, and operating system, service and application logs.

Typically, cyber analysts tend to transform observed events into their own cyber situ-

ation awareness with descriptions such as follows:

• High memory usage on host A

• Very low CPU utilization on host B

• Unusually large data uploads from host C

• Excessive failed logins from a remote source IP

• Host D receives UDP packets with extremely large payloads

• The large number of IP fragmentations on Host E indicates a potential DoS IP Frag-

mentation Attack

• From my experience, it might be Wireless Jamming Attack

Notice that human cyber analysts are often only imprecisely or ambiguously aware

of a situation so that uncertain terms, such as ‘excessive’, ‘high’ , ‘very low’ and ‘my experi-

ence’ are used to quantify such situation. As team CSA has to be created through aggregating

such imprecise information and opinions, fuzzy set [22] based decision-making approach be-

comes suitable to quantify cyber analysts’ opinions and generate team CSA.

6.3.4 Fuzzy Set based Decision-Making for Team CSA

We use fuzzy set based method to achieve team CSA by letting team members make

consensus decisions on the types of cyber attacks. Fuzzy set has been applied in the area

56



of multi-criteria team decision-making to address the uncertainty issue in generating con-

sensus opinions, such as the problem of facility location selection [53, 36, 9]. Such method

constructs preference relation between solution alternatives by evaluating different criteria,

and selects the best solution from a set of alternatives that is most acceptable by the entire

team. Specifically, we use fuzzy set to facilitate a team of cyber analysts to make consensus

decision when they have conflicting judgements on the types of on-going attacks. First, we

present the notations used.

Let P = {P1, P2, ..., Pn}, n ≥ 2, be a finite set of at least two decision makers (cyber

analysts) to select satisfactory solutions from alternatives; S = {S1, S2, S3, ..., Sm},m ≥

3, be a finite set of at least three solution alternatives for a given decision problem; C =

{C1, C2, C3, ..., Ct}, t ≥ 2 be a finite set of at least two selection criteria for the solution

alternatives. The procedure of fuzzy set based team decision making consists of eight steps

as shown in Figure 6.2.

Step 1: Determine the solution alternatives

When a decision problem of identifying the type of an on-going cyber attack is pre-

sented to a CSA team, cyber analysts may propose different alternatives regarding the type of

the on-going cyber attack. After collecting all the possibilities, the alternatives set is defined

as S = {S1, S2, S3, ..., Sm},m ≥ 3.

Step 2: Choose selection criteria

Each team member can also propose several solution criteria for assessing solution

alternatives. Criteria proposed by all the team members are put into a criteria pool. If the cri-

teria pool becomes too big, only the top-t criteria, C = {C1, C2, C3, ..., Ct}, will be chosen

through voting for the purpose of computational efficiency.

Step 3: Determine the weights of decision makers

Based on their individual ability, experience, and other factors, team members may

have different degrees of influence on decision-making, and hence should be assigned dif-

ferent ‘weights’. Each cyber analyst will be evaluated to determine his/her own ‘weight’

57



Figure 6.2: The procedure of the team decision-making

58



based on his/her ability, experience, etc., which determines his/her his/her influence on de-

cision making. Example weights assigned to cyber analysts are presented in Table 6.1. The

normalized weights of all the decision makers from the normalized decision maker weight

vector v as follows.

v = (v1, v2, ..., vn) and
n∑

k=1

vk = 1 (6.1)

Table 6.1: Weight of individual cyber analyst

Individual Performance Weight
Excellent 4.0

Great 3.7
Good 3.3

Normal 3.0
Not Good 2.0

Step 4: Determine the weights of selection criteria

In the process of decision making, decision makers are required to express their pref-

erences on selection criteria through pairwise comparison. The linguistic terms of compar-

ison between selection criteria are shown in Table 6.2. The comparison scale ranges from

1 to 9, representing the concepts of: 1 - equally important; 3 - slightly more important; 5 -

more important; 7 - strongly more important; 9 - absolutely more important. Values 2, 4, 6

and 8 are intermediate values between adjacent judgments. We adopt the pairwise compari-

son method of the Analytic Hierarchy Process (AHP) [79]. For decision maker, the pairwise

comparison of t criteria generates a t × t criteria matrix wk, where entry wij represents the

importance of the ith criterion with respect to that of the jth criterion. If wij > 1, the ith

criterion is more important than the jth criterion, while if wij < 1, the ith criterion is less

important than the jth criterion. If two criteria are equally important, entry wij is 1. The

entries wij and wji satisfy the relation of wij · wji = 1.

59



After the initial pairwise comparison, the weight for every criterion i can be deter-

mined by calculating the geometric mean1 of the ith row in the criteria comparison matrix.

The normalized criteria weight vector wk of decision maker Pk is denoted as:

wk = (wk
1 , w

k
2 , w

k
3 , ..., w

k
t ) and

t∑
i=1

wk
i = 1 (6.2)

Table 6.2: Linguistic terms for the comparison of criteria

Linguistic terms Comparison Scale
Equally important 1
Slightly more important 3
More important 5
Strongly more important 7
Absolutely more important 9

Step 5: Construct the belief level matrix

Given selection criterion Ci (i = 1, 2, .., t), belief value bkij specifies the preference

of choosing solution alternative Sj (j = 1, 2, ..,m) by decision maker Pk (k = 1, 2, .., n).

[bkij] forms the t ×m belief matrix for decision maker Pk. Such belief values refer to a set

of linguistic terms denoting various degrees of preference specified by the decision makers,

as shown in Table 6.3, and the normalized belief values simply reflect decision makers’

preferences on choosing solution alternations. Notice that the belief value corresponding to

linguistic term ‘Highest,’ for instance, does not have to be 0.36, as long as it is larger than

the value of ‘High,’ and similarly for other terms.

For each decision maker Pk, elements bkij in the jth column of its belief level matrix

can be aggregated into bkj by multiplying them with the corresponding normalized criteria

weight vector wk, which stands for decision maker Pk’s belief on the jth solution alternative

1 The geometric mean of a group of n numbers indicates their central tendency or typical value by calculating
the nth root of the product of these n numbers.

60



Table 6.3: Linguistic terms for belief values on solution alternatives

Linguistic terms Belief Values
Highest 0.36

High 0.28
Medium 0.20

Low 0.12
Lowest 0.04

as:

bkj =
∑t

i=1 w
k
i ∗ bkij

j = 1, 2, ...,m; k = 1, 2, ..., n

(6.3)

The belief vector bk for decision maker Pk is expressed as:

bk = (bk1, b
k
2, b

k
3, ..., b

k
m) (6.4)

Step 6: Construct the aggregated weighted team fuzzy decision matrix

Using the normalized decision maker weight vector v and the belief matrix bkj , we

can construct a weighted fuzzy decision vector.

(r
′

1, r
′

2, ..., r
′

m) = (v1, v2, ..., vn)


b11 b12 · · · b1m

b21 b22 · · · b2m
...

... . . . ...

bn1 bn2 · · · bnm

 (6.5)

The weighted normalized fuzzy decision vector is denoted as r = (r1, r2, ..., rm) and

each element rj is normazlied as:

rj =
r
′
j∑m

j=1 r
′
j

(6.6)

61



Step 7: Obtain fuzzy positive-ideal solution and fuzzy negative-ideal solution

The basic principle is that the chosen solution alternative should have the shortest

distance from the positive-ideal solution and the longest distance form the negative-ideal

solution. In the weighted normalized fuzzy decision vector, each rj belongs to the close

interval [0, 1]. We then define a fuzzy positive-ideal solution r+ to be 1 and a fuzzy negative-

ideal solution r− to be 0. The distance between rj and the positive-ideal r+ toward d+j and

the distance between rj and the negative-ideal r− toward d−j are calculated as:

d+j = d(rj, r
+), j = 1, 2, ...,m (6.7)

d−j = d(rj, r
−), j = 1, 2, ...,m (6.8)

where d(·, ·) is the difference between two fuzzy numbers.

Step 8: Calculate the closeness coefficient and rank the alternatives

A closeness coefficient is defined to determine the ranking order of all the solution

alternatives once d+j and d−j of each solution alternative Sj (j = 1, 2, ..,m) are obtained. The

closeness coefficient of each solution is calculated as:

CCj = (d+j + (1− d−j ))/2, j = 1, 2, ...,m (6.9)

The alternative Sj that corresponds to argmaxi(CCi) is the most acceptable solution

for the team decision.

6.4 Web-based Team CSA Support System Experiment

Considering collaboration among team cyber analysts may take place in a distributed

manner, we design a web-based team CSA support system based on the proposed fuzzy set

method. We use the following example to illustrate the operations of the web-based team

CSA support system.

62



Figure 6.3: Three attack type alternatives proposed by team members

Suppose a distributed team of three cyber analysts are collaboratively observing an

enterprise network. Each cyber analyst collects data and observes the different system in-

formation. When team members have conflicting judgment about the type of current cyber

attack, they can login to the system and set up the assessment environment.

In the first step, all the team members submit their own suggestion of possible al-

ternative types of cyber attacks. As shown in Figure 6.3, three cyber attack types: Basic

DoS Attack, TCP SYN DoS Attack, and Wireless Jamming Attack are suggested as possible

attack types.

Next, the process of choosing criteria can be done via team discussion or voting

among team members as shown in Figure 6.4. Each team member proposes some criteria

for assessing these cyber attack alternatives. Some cyber analysts think CPU and memory

usage metrics should be considered in judging the current cyber attack type. Others believe

packet send ratio is more important. Criteria proposed by all the team members are put into

a criteria pool. If the criteria pool becomes too big, only the top-t criteria are chosen for the

purpose of computational efficiency.

Based on the criteria proposed, each team member completes a pairwise comparison

63



Figure 6.4: Solution criteria selection system

Figure 6.5: Criteria comparison matrix

64



to choose the relative importance of these four selected criteria as shown in Figure 6.5. By

pairwise-comparing the relative importance of these selection criteria, the criteria compari-

son matrix W k = [wk
ij] for decision maker Pk (k = 1, 2, ..., n) is generated. The example

criteria comparison matrix for decision maker P1 corresponding to Figure 6.5 is as follows:

W 1 =


1 1 3 1

1 1 1 1

1/3 1 1 5

1 1 1/5 1


To generate consistent weights for all the selection criteria, the geometric mean of

each row of the criteria comparison matrix is calculated and then the results are normalized.


(1× 1× 3× 1)1/4

(1× 1× 1× 1)1/4

(1/3× 1× 1× 5)1/4

(1× 1× 1/5× 1)1/4

⇒

1.31607

1.0

1.13622

0.66874

⇒

1.31607/4.12103

1.0/4.12103

1.13622/4.12103

0.66874/4.12103

⇒

0.3194

0.2427

0.2757

0.1622


In the GUI depicted in Figure 6.6, each cyber analyst fills up a belief level matrix to

express his/her preference to the three solution alternatives under the four selected criteria.

For instance, one cyber analyst thinks for the Basic DoS attack, Memory Usage metric is

more important than the Packet Send Ratio metric as the Memory Usage is marked with a

‘High’ weight and Packet Send Ratio is given a ‘Low’ weight.

By combining all the matrices and calculating through Equation (5), the closeness

coefficient of each alternative can be calculated. As shown in Figure 6.7, based on the

calculated coefficient values, the consensus team CSA decision is that the on-going attack is

a TCP SYN DoS Attack since it has the maximum coefficient value of 0.617272.

65



Figure 6.6: Belief level matrix filled by one cyber analyst

Figure 6.7: Alternatives rank based on coefficient value

66



6.5 Conclusion

Team CSA is a complex process requiring cyber analysts to work collaboratively at

different levels and in different parts of the system. By taking into account three major issues

that affect team CSA, CSA uncertain information, inconsistent CSA between team members,

and distributed operational environment, we propose a fuzzy set based method to aggregate

individual CSA into team CSA so as to make consensus decisions on the types of on-going

cyber attacks. Besides, we design a web-based team CSA support system to demonstrate

how the proposed approach can provide support for generating team CSA in a distributed

manner with the ability of handling uncertain information.

67



Chapter 7

REALTIME CONTEXT-BASED INFORMATION FUSION FOR ADVANCED
PERSISTENT THREATS INVESTIGATION

7.1 Introduction

Cyber attacks, which refer to any computer-to-computer attacks that undermine the

confidentiality, integrity, or availability of a computer or information resident on it, have in-

creased significantly in number and in complexity in recent years. Typically, a cyber attacker

first exploits a system’s vulnerabilities and infiltrates its network and/or hosts. Once the at-

tacker gains entrance into the system, he may use it to monitor communications, steal critical

data, discover new avenues of attack in related systems, take control of assets managed by

the system or disable vulnerable networks, computers, and associated systems. Harmful

outcomes of a successful attack include the attacker’s ability to access sensitive data on the

network and to control the hosts and network resources.

Cyber attack and anomaly detection techniques suffer from their reliance on prede-

fined signatures of known malicious events or unusual conditions that warrant further inves-

tigation. The use of signature-based detection cannot effectively eliminate false negatives

when dealing with Advanced Persistent Threats (APTs) since the financial resources and

time available to APTs allows them to hide for a prolonged period and to use previously un-

known “zero-day” attack. Furthermore, reliance upon signatures may unintentionally assist

APTs in avoiding detection if the criteria for detection are well known.

In this chapter, to address this critical need of enabling analysts to rapidly and accu-

rately detect APTs attacks, we design a novel non-signature based APTs investigation system

that allows the proper identification, prioritization, and understanding of APTs attacks. The

key innovation of our approach is to design and develop host-and network based purpose sen-

sors and places them within the network and individual hosts to provide real-time data and

68



then use this information combined with network-specific knowledge to create a dynamic set

of event threads that, when touched by a given alert received from traditional intrusion de-

tection systems (IDSs), will immediately identify the context surrounding the alert and thus

the automatic calculation of the alert’s legitimacy and severity [39]. The result is that much

of the follow-up investigation of each alert is shifted into the prioritization process that uti-

lizes the gathered context for correctly prioritizing the analyzed alerts. The burden on cyber

analyst is largely reduced both by significantly improved prioritization and by providing a

contextual picture of each identified potential attack. Hence, APTs attacks can potentially be

detected while still at a preparation stage and with an operationally relevant level of accuracy.

The remainder of the chapter is organized as follows: Section 7.2 describes back-

ground and related work. Section 7.3 reviews the Advanced Persistent Threats characteristics

and countermeasures. Section 7.4 introduces the designed Advanced Persistent Threats In-

vestigation System Using Purpose and Network Correlators including the System Architec-

ture and Information Flow, Run-time Data Collection and Monitoring, Data Pre-processing

and Normalization, and APTs Threat Analytic. In Section 7.5, we implemented and deployed

an APTs investigation system on a cloud-based testbed and have tested its performance with

three different types of APTs behaviors. Finally, Section 7.6 concludes the chapter.

7.2 Background and Related Work

Human cyber analysts have to examine huge amounts of data such as system logs,

configurations, traffic logs, IDS logs, and audit logs in order to identify potential threats.

Thus, they would likely be soon overwhelmed by tremendous data and forced to ignore po-

tentially significant evidence introducing errors in the detection process. Information fusion

is considered to be an effect technique that obtains more relevant and qualitatively superior

information out of the huge amount of data produced by various sources, thus emphasizing

the information reduction properties of information fusion, and the relative improvement in

obtained information quality.

We believe that alert reduction is critical to cyber analysts in four ways: (a) data may

be collected from multiple sources. The computer network may consist of interconnected

69



routers, switches, and heterogeneous hosts with different hardware platforms, operating sys-

tems and application software; (b) relevant data are presented at multiple abstraction levels,

such as Ethernet protocol, IP, TCP, HTTP, Application layer, etc. (c) data have to be ana-

lyzed and correlated to form meaningful information, and (d) this information needs to be

represented at the human level of understanding.

General reviews of current alert correlation algorithms and techniques are given in [80,

65, 82]. Alert correlation algorithms can be separated into two major categories based on

their characteristics: similarity-based and knowledge-based algorithms. In [96] the author

proposed that the similarity between alerts can be estimated based on similarity between re-

spective alert attributes such as IP, port, time, attack class, etc. Similarity between alert types

are defined in a static matrix which express the probability of an alert of type x be followed

by an alert of type y. Klaus Julisch proposes an alert root cause analysis method [52]. The

author observed that over 90% of the alerts that the intrusion detection system generated

are caused by a few dozens of persistent root causes. The main idea of the proposed clus-

tering technique is establishing the hierarchy structures, which decompose the attributes of

the alerts from the most general values to the most specific. Furthermore, statistical-based

techniques have been used in [19, 111] to estimate the similarity between alert pairs.

Knowledge-based alert correlation algorithms are usually based on attack scenarios’

pre-requisite and possible occurring results. Then, each incident is chained with other in-

cidents to form the attacking paths. Several researchers [109, 67, 10, 92] have proposed

mechanisms of identifying causal relationships between alerts by chaining pre-requisite and

post conditions. Although some knowledge-based algorithms claim to be able to correlate

alerts in real-time, they heavily rely on network scenario knowledge since they have to model

each network state’s pre and post conditions in advance.

In the Cyber Situation Awareness reference model [47], a Joint Directors of Labo-

ratories (JDL [55, 69]) Data Fusion model is adopted in different CSA levels. JDL Level

1 deals only with the tracking and identification of individual objects, while JDL Level 2

is the aggregation of the objects into groups or units through the identification of relation-

ships between the objects. Although JDL has been accepted in several SA frameworks, it is

70



not suitable in cyber domain. The JDL method does not seriously take into account context

information such as acquisition time, location, source and destination of communication,

and service. However, all these factors are critical for correctly detecting threats. Take data

acquisition time as an example, assuming cyber analysts detect multiple TCP connection

requests on the same port 22, but if they are directed to different machines in a very short

time, they may assume that an attacker is trying to check whether the SSH server is active

and finding the attack entrance. On the other hand, if the port probes happen once a week, it

might be just the system’s probing behavior.

7.3 Review of Advanced Persistent Threats Characteristics and Countermeasure

Advanced Persistent Threats (APTs [15, 45]) are stealth attacks that gain access to

defense, financial, and other targeted information from governments, corporations, and indi-

viduals. Unlike other cyber attacks aiming at immediate financial gain or information leaks,

APTs require a high degree of stealth over a longer duration and maintain a foothold in these

environments for future use and control. These APTs’ characteristics make them difficult to

be detected by the current tool such as Intrusion Detection System. Several researchers have

proposed APTs investigation mechanisms [91, 81, 29], nevertheless, most of them focus

more on the APTs traffic pattern rather than holistic APTs investigation mechanism.

An advanced persistent threat (APT) is a targeted intrusion effort that uses multi-

ple attack steps to break into a network or system over a prolonged duration of operation.

Compared with other existing cyber attacks, APTs are more severe due to the multi-stage

(and silent) intrusions that are usually launched by determined, well-funded adversaries. In

order to obtain valuable information while avoiding detection, APTs require a high degree

of stealthiness over a prolonged duration, which makes it hard for them to be detected by

traditional intrusion detection systems (IDSs).

Briefly speaking, APTs have the following properties:

• Advanced: Attackers can utilize the full spectrum of computer intrusion technologies

and techniques. They may combine multiple attack methodologies and tools in order

to reach and compromise their target.

71



• Persistent: Attackers give priority to a specific task, rather than opportunistically seek-

ing immediate gain. Through a low-and-slow approach, APTs attacks continuously

monitor a computer network or system and its interactions to achieve the defined ob-

jectives.

• Threat: There is a level of coordinated human involvement in the attack, rather than

a mindless and automated piece of code. Attackers usually have a specific objective,

and are skilled, motivated, organized and well-funded in most cases.

APTs attacks can penetrate enterprises through a wide variety of vectors, without

necessarily breaching perimeter security controls from an external perspective. They can

leverage both “insider threat” and “trusted connection” vectors to access and compromise

targeted systems. A key requirement for APTs is to remain invisible for as long as possible.

Therefore, APTs technologies tend to focus on “low and slow” attacks. They attempt to

stealthily propagate from one compromised host to another, without generating irregular or

predictable network traffic.

Tremendous effort has been invested to ensure that legitimate operators of the sys-

tems cannot observe malicious actions. For instance, malware is a key ingredient in suc-

cessful APTs operations, as it includes all of the required features and functionalities to

“invisibly” infect digital systems, hide from IDSs, navigate targeted networks, capture and

extract valuable data, and remain silent with covert channels for remote control.

The remote control channel is the key and foundation of APTs. Without it, attack-

ers cannot effectively navigate to specific hosts within a target organization, or exploit and

manipulate local systems to gather critical information. This also gives security analysts an

opportunity to detect APTs, since their malware remains stealthy at the host level and their

network activities associated with the remote control are more easily identified, contained,

and disrupted at the network level. The detail analysis of recent sophisticated Advanced

Persistent Threats is described in Appendix B.

72



7.3.1 Life Cycle of Advanced Persistent Threats

Typically, the APTs lifecycle or its infiltration path consists of the following major

phases:

1. Reconnaissance: Attackers search for points of entry, vulnerabilities, key individuals

and critical assets.

2. Launch: Attackers attempt to gain access to a privileged host, using targeted attacks or

spear phishing to evade detection. The most popular methods used in this attack phase

include:

• Email lures with embedded links to websites with zero-day malware downloads.

• Emails with file attachments in common formats (e.g., Office, PDF) that include

zero-day attack code.

• Infected websites of interest to key individuals identified by social media profiles.

• Social engineering to gain access to privileged user account credentials.

3. Infect: In this stage, malicious code (custom/zero-day attack code in most cases) is

installed onto a privileged host. This code reports back to a command-and-control

(C&C) location with network and other useful data to help attackers execute further

attacks.

4. Control: Attackers remotely control infected hosts with a C&C service, typically on a

dynamic DNS host. The C&C allows attackers to remotely update/renew malware and

send commands to the compromised host. Note that in this stage commonly available

toolkits are frequently used for C&C, which gives security analysts a good opportunity

to detect APTs attacks at this stage.

5. Discover: Infected hosts download additional components to discover target data through

the infected hosts, mapped network drives, and/or other network locations. Target data

may include Active Directory (AD), certificate PKI servers, or cloud-based storage.

73



Common discovery methods used in this stage include: (i) monitoring data-in-use

once a user accesses it with its credentials, (ii) breaking into systems where users have

administration rights, (iii) discovering additional hosts within the target network, and

(iv) using network or system vulnerabilities to infect other hosts. Note that most tools

used in this stage are standard network tools, such as gsecdump [103], Cain and Abel

(to crack passwords) [104], SSH [106], and RDP [105].

6. Persist: Unlike traditional malware (which will be removed by itself or an antivirus

program once identified), an APTs is designed to go unnoticed. It can persist by calling

back to C&C centers for updates or download new undetected (zero-day) code to avoid

detection by updated antivirus solutions.

7. Extract: After attackers have taken control of one or more hosts within the target net-

work, established access credentials to expand their reach, or have identified target

data, they will send the collected data back to either the C&C server or a previously

unused server. This phase can go on for a long time if the target data continues to

become available (e.g., updated or new customer records) and holds value for the at-

tacker.

8. Further Actions: Even for an attack that is eventually stopped (e.g., attackers achieved

their goal, the victim noticed and cut off the attack), some long-term consequences can

still result. For example, attackers may ask for a ransom, share or sell attack methods,

sell the extracted data, or publicly disclose the theft.

7.3.2 Advanced Persistent Threats Characteristics

APTs attackers often use a variety of email-based techniques to create attacks, sup-

ported by other physical and external exploitation techniques. Typical characteristics of

APTs attacks that are not found in other forms of attacks can be briefly summarized as fol-

lows:

• Recon: APTs attackers typically have reconnaissance intelligence and know some-

thing about their target. For example, who is the specific user they target? What

74



systems can help them achieve their goals? This information is often gathered on the

first step of the life cycle of an APTs attack, through social engineering, public forums,

and/or nation-state security intelligence.

• Time-to-live: APTs attackers usually employ techniques to avoid detection over a pro-

longed duration of operation. They attempt to clean up their trail and usually perform

their functions during non-business hours, and always leave backdoors so that they can

reenter the system in case their original access is detected. This allows them to remain

persistent.

• Advanced Malware: APTs attackers usually have the ability to use the full spectrum

of known and available intrusion techniques, and combine various methodologies to

reach their goal. Many APTs attackers do use commercial malware and toolkits, but

some of them also have the technology and expertise to create their own custom attack

tools.

• Phishing: Most APTs employ internet-driven exploitation techniques and start with

social engineering and spear-phishing. Once a target machine is compromised or net-

work credentials are given up, the attackers can actively take steps to deploy their

own tools to monitor and spread through the network as required, from machine-to-

machine, and network-to-network, until they find the valuable information they are

looking for.

• Active Attack: Rather than fully automatically sends back data using automated mal-

ware, human coordination is often involved in APTs attacks. These well-funded, mo-

tivated, skilled, and highly directed attackers making APTs attack approach and re-

sponse extremely active.

7.3.3 Advanced Persistent Threats Security Challenges

APTs have become a menace to todays enterprises as they can circumvent traditional

security safeguards. The reason why APTs attacks can avoid detection of existing security

75



monitoring tools and intrusion detection/prevention technologies is that APTs attacks start

with convincing social engineering tactics. To penetrate a specific organization, attackers

first gather intelligence on a few key employees by conducting web-based research and using

social networking sites, such as Facebook and LinkedIn. Then attackers use this information

to personalize their social engineering attacks in order to establish trust with a victim so

they may download malicious code, open an attachment, or double click on a malicious link

without questioning the source.

Endpoint security tools are not used effectively. Although enterprise endpoint sys-

tems are instrumented with security software, some are not configured for maximum security

protection due to various reasons. For instance, some users may think that security protection

will adversely impact their systems’ performance, or they just do not have time or resources

to learn how to use or update endpoint security tools effectively.

APTs exploit gaps between multiple security defenses. APTs are designed to take

advantage of the limitations of islands of security within IT. For example, many enterprises

use different tools for endpoint security, e-mail security, and web security, and there is no

overall policy management or oversight across all of them. These kinds of security gaps

can be utilized by APTs to monitor network openings and squeeze their way into the victim

organizations.

APTs attempt to make malicious intrusions look like normal network behaviors to

monitoring tools. Once an initial endpoint is infected, APTs will conduct multiple types

of activities within the network, such as compromising other systems, harvesting user or

administrator credentials, locating and copying sensitive data, and finally transferring the

valuable data to their web-based servers. Since these activities are purposely hidden within

typical day-to-day communications and network activities, most existing monitoring tools

cannot reliably find them.

7.3.4 Advanced Persistent Threats Countermeasure Strategies

Obviously, there is no simple way to protect enterprises against APTs attacks, as they

remain persistent once they penetrate a network or system. According to the 2013 Verizon

76



Data Breach Investigations Report, about 95% of targeted threats and APTs use some form

of spear phishing as their starting point of the attack. Therefore, effective APTs defense

strategies must include a detection solution that can identify targeted threats in emails. For

example, security analysts can rewrite the embedded URLs in suspicious emails, and then

maintain a constant watch on that URL for malicious behavior. By analyzing its unusual

patterns in traffic, this approach could potentially identify/detect such APTs attacks, and

analyze which users have been compromised, when, and how.

The key strategy to effectively detect APTs attacks is utilizing a combination of de-

tection technologies that can triangulate logs and identify abnormal behaviors within an en-

terprise network. To apply this defense strategy, security analysts need to find (or develop)

a number of specific APTs activity and/or event detection solutions that can work together

(at different layers) to provide intelligence on the targets, the applied attack methods, the

frequency of attack activities, the origination of the attack, and the potential risks.

In this section, we will briefly introduce some potential countermeasures against

APTs attacks. They may give us a precise understanding of the state-of-the-art counter-

measures and provide a firm starting point to build the designed system. Note that none of

the individual countermeasures are perfect and ideal to detect most APTs. Most countermea-

sures are effective at combating a subset of APTs, however, further investigation is required

to better utilize the countermeasures to bolster detection accuracy and the overall efficiency

of APTs detection mechanisms.

7.3.4.1 Identify APTs Malware Signature

Note that APTs malware usually has the following characteristics: (i) hides in plain

sight, (ii) initiates outbound network connections, (iii) avoids anomaly detection through

outbound HTTP connections, process injection, and service persistence, (iv) 100% of APTs

backdoors made only outbound connections, (v) 83% of APTs communications used TCP

port 80 or 443, and (vi) simple malware signatures, such as MD5 hashes, filenames, and

traditional anti-virus methods, usually yield a low rate of true positives.

77



According to these characteristics, we can identify a number of factors associated

with APTs attacks:

- Sudden increases in network traffic, outbound transfers

- Unusual patterns of activity, such as large transfers of data outside normal office

hours or to unusual locations

- Repeated queries to dynamic DNS names

- Unusual searches of directories and files of interest to an attacker, e.g., searches of

source code repositories

- Unrecognized, large outbound files that have been compressed, encrypted password-

protected

- Detection of communications to/from bogus IP addresses

- External accesses that do not use local proxies or requests containing API calls

- Unexplained changes in the configurations of platforms, routers or firewalls

- Increased volume of IDS events/alerts

7.3.4.2 Leverage the State-of-Art Open-Source Tools

As we mentioned previously, APTs attacks highly depend on remote access and con-

trol. Their network activities associated with the remote control could be identified, con-

tained and disrupted through the analysis of internal and outbound network traffic. This

kind of APTs detection techniques can be implemented and extended through existing open-

source software tools. Below is a short list of some of those available open source tools:

- Snort: an open source network-based intrusion prevention and detection system

(IPS/IDS) that employs signature and protocol, as well as anomaly-based inspection.

- Scapy: a packet manipulation tool that can create packets for a wide range of proto-

cols. It can send and receive packets and match requests and replies. Scapy is extensible via

Python scripts and can be used for a variety of detective measures.

- OSSEC: a host-based open-source IDS. Its correlation and analysis engine provides

log analysis, file integrity checking, Windows registry monitoring, rootkit detection, and

time-based alerting, as well as active response. OSSEC can support most operating systems.

78



- Splunk: a search, monitoring and reporting tool that integrates logs and other data

from applications, servers and network devices. Splunk data repository is indexed and can

be queried to create graphs, reports and alerts.

- Sguil: facilitating the practice of network security monitoring and event driven

analysis using an intuitive GUI that provides access to real-time events, session data, and

raw packet captures.

- Squert: a web application used to query and view event data stored in a Sguil

database. It can provide additional context to events through the use of metadata, time series

representations, weighted and logically grouped result sets

7.4 Realtime Context-based Information Fusion for Advanced Persistent Threats De-

tection

7.4.1 System Architecture and Information Flow

Figure 7.1: APT detection system architecture

79



APTs detection system is a novel signature-less system for APTs detection that al-

lows the proper prioritization and correlation of alerts and facilitates the identification and

understanding of continuous and persistent attacks. Purpose sensors are placed within the

target network and individual hosts to provide real-time purpose and correlation inputs. It

continually captures and analyzes attributes of potential attacks which are typically manually

measured and verified only in response to highly credible alerts. Figure 7.1 shows a main

diagram of the overall multi-layer system architecture that is composed of:

• Purpose Sensor - has four types of purpose sensors: (i) human interaction sensors

(e.g., USB access, keyboard input, etc.) that determine which actions done by human-

generated events (e.g., user initiated data transfer vs. data exfiltration), (ii) process

reputation sensors that track the interactions between processes within a host, (iii)

resource exposure sensors that provide information on the actions of each process,

and (iv) information flow sensors that monitor which processes are communicating

via the network. Based on the extended APTs behavior analysis at different stages, the

following additional sensors to detect APTs at multiple stages are recommended:

- DLP sensors use contextual relationship among data (e.g., ontology, context graph,

etc.) and sensitive and monitor outbound and internal traffics to detect APTs in Stage

4, Stage 5, Stage 6 and Stage 7.

- Behavior sensors use real-time network device monitoring at each host and log/statistics

(e.g., netflow, sflow, SNMP, etc) from network device to monitor abnormal activi-

ties/traffic patterns at network and host level. These sensors are most effective for

APTs in Stage 4, Stage 5, Stage 6 and Stage 7.

- Suspicious content sensors that monitor suspicious web links/attachments in email,

web traffic, and their application content to detect APTs in Stage 1, Stage 3, and Stage

3. The correlation of purpose sensor outputs with existing IDS alerts will significantly

reduce false positives.

• Context Information Rather than trying to reach security decisions based on analyt-

ics working independently, it will make contextual decisions based on information

80



derived from multiple analytics. This context awareness is the key to detecting com-

plex APTs that are particularly designed to evade standalone content analytics like an-

tivirus. Specifically, it will combine real-time IDS alerts, purpose sensor outputs, and

the mission-, system- and network- specific aspects of the context to generate a com-

plete picture that is needed to correctly detect potential APTs attacks. Example con-

text information includes: mission importance/dependencies among hosts, system/user

profile and role, vulnerability vectors describing abstract paths attacks may take (e.g.

the firewall allows node A to connect to node B), hosts that should be communicating,

potential attack targets, etc. We believe the derived context data can significant reduce

the false positives and increase APTs detection efficiency and accuracy.

• Sensitive Data Identification Data theft is a common behavior in APTs and creates arti-

facts for the outbound traffic stream. Users need to identify data types of interest (e.g.,

documents, pdf, etc.) and location/folder names (e.g., program files, windows registry,

etc.). For example, we can remove data from insecure or unnecessary locations, en-

sure that appropriate access control and attack prevention systems are deployed in all

areas where sensitive data is stored, and real-time monitor and prevent data theft at

email/web gateways and critical hosts. Due to the practical considerations for provid-

ing this data, this component is optional and the system will be evaluated with and

without it running.

• Multi-level Correlation When suspected attacks occur, an operator normally manually

looks at each alert to determine both the cause of the attack (i.e. the purpose behind

the alerts) and the true severity of an attack that may be present. However, the system

correlates threat alerts at a low level. The threat analysis output is then further corre-

lated among different types of sensor data to even further reduce false positives. For

example, to detect Stuxnet [107], the system correlate network traffic analysis output

with purpose sensor data. Once network data analysis detects the potential threat, it

is correlated with purpose sensor output/analysis (i.e., user input cue data) to decide

whether such traffic was generated by users or bots.

81



• Event Context Graphs In addition to providing a more appropriate prioritization of

events, the information used internally by the system is delivered to the operator as

part of each notification of a potential attack. This contextual knowledge provides the

operator insight into why each event was deemed important, allows the operator to

more quickly determine the validity and scope of the event, and gives the operator a

significant head start in determining the correct response.

Figure 7.2 shows an information flow of the designed APTs Detection System. The

run-time information that arrives at system in form of raw alerts from purpose sensors and

third-party network analysis tools such as Intrusion Detection/Prevention Systems (IDSs/IPSs),

Netflow formatted network traffic data are collected. Then, each raw alert is translated into

a standardized alert format of source object, action, and sink object. Each record is assigned

with a standardized name, and its attributes are copied to the appropriate fields of the alert as

defined by the attribute mappings in the cloud-based database. Notice that certain important

alerts generated by purpose sensors will trigger corresponding threat analytic service. The

analytic service can query the database to retrieve relevant events and store the generated

analysis result back into database if necessary. When triggered by certain alerts from pur-

pose sensor, the threat analytic service is capable of generating appropriate event contexts for

each attack type by applying backward tracking method. Then, using this context to assess

the probability of APTs presence through inexact matching with APTs profiles.

7.4.2 Run-time Data Collection and Monitoring

The designed APTs detection system collects run-time data from the Human-Process

purpose sensors, Process-Network Purpose Sensor and third-party network analysis tool such

as Netflow, Snort, and OSSEC.

7.4.2.1 Human-Process Purpose Sensor

The keyboard and mouse are the basic components that link the human and the com-

puter. We monitor keyboard and mouse events of the host to understand which program has

human activity/interaction. To do this, our event sensor hooks into Windows system calls

82



Figure 7.2: APT detection information flow

related to keyboard and mouse events and then determines which program received those

events based on the current window focus.

Some previous studies [18] also apply function hooking to capture automated pro-

cesses. We differentiate from that approach in several aspects. Previous approaches suffer

if malware simply imitates human behaviors and creates fake mouse/keyboard events from

virtual devices to confuse the sensor. To address this problem, we employ two more robust

approaches. First, our sensor digs into the sources of the events. If they are from physical

devices connected via the PS2 or USB interface, it trusts them; otherwise it regards them as

suspicious. Second, the module investigates whether a process receiving events is running

in the foreground or not. We assume that if a person legitimately produces mouse or key-

board events, a process related to the events is shown on the current screen with an activate

window (i.e., running in foreground). Thus, if a process producing events is running in the

foreground, we trust the process; otherwise we regard it as suspicious.

83



Note that in the current implementation, we trust the operating system and we be-

lieve it provides true information, a common assumption widely used in this line of re-

search [18, 54]. Of course, some malware (e.g., a rootkit) may infect the operating system

and deliver fake information, and it may even disable our sensors. This issue could be solved

by employing hardware/TPM [31] or Hypervisor-based introspection and protection [5, 50].

Our human-process-network purpose sensor captures the mouse and keyboard events

using Windows system functions. Basically, Windows provides functions to capture the

events from external devices [64]. Using these APIs, we implement the event sensor, which

identifies which process generates the events. The event sensor investigates whether the

events are generated from real physical devices and checks to see if the process is running in

the foreground with the help of Windows system functions. We store captured information

(process, event time) to shared memory.

To capture the outgoing DNS queries, TCP SYN, and UDP packets, we use the Win-

Pcap library to build the connection sensor. WinPcap provides functions to collect raw level

network packets on the Windows OS with little overhead. Moreover, the connection sensor

does not monitor all network packets, but monitors only DNS, TCP SYN and UDP pack-

ets. This approach reduces the overhead, since those packets comprise a small portion of all

network packets.

Whenever there are network events to capture, the module identifies which process

produces them and verifies whether the process is related to the human actions or not. How-

ever, if a process uses a helper process for a DNS query, we could not directly use it. To

address this problem, we check the process that produces the DNS query and if it is a helper

process (e.g., svchost.exe), the module awaits a DNS reply, which contains the IP address

of the domain. Then, if there is an automatic connection from the process to that IP address

after the DNS query, the module knows which process triggered the DNS query. We then use

GetExtendedTcpTable and GetExtendedUdpTable functions to recognize which process cre-

ated the connections. If we observe a new TCP or UDP connection, we call these functions

to identify which process has the source port number of the connection.

84



7.4.2.2 Process-Network Purpose Sensor

Advanced Persistent Threats (APTs) typically use malware to achieve their stealthy,

persistent, and advanced features. These malware programs usually work automatically

without requiring human-driven activities. The purpose sensor is capable of analyzing the

interaction and correlation between human activity and system processes. For example, if a

computer screen capture is detected, the sensor creates an alert and searches for correspond-

ing key strokes, otherwise it tries to find newly created or updated files that might correlate

to the screen capture or newly created outgoing connection which may indicate a potential

data exfiltration.

Purpose sensors also record correlated clues between system processes and outgoing

network connections. They can determine whether a network connection is human-initiated

or software-initiated. As a result of such correlation analysis, an alert might be generated

and sent to the APTs detection system Analytics Server. For example, the sensor is used

to identify the list of network connections that are not a result of human interaction on the

system. It monitors network connections made by different processes, and through an anal-

ysis of mouse and keyboard events, it can detect network connections made with no human

interaction and can identify that system processes that generated those connections. The

module then monitors the outgoing network connections through the DNS queries issued by

the correlated processes.

The overall purpose sensor components is shown in Figure 7.3, which contains two

modules: M1 is System Resource Exposure Sensor and M2 is Process Reputation Sensor.

• System Resource Exposure Sensor - resides at each host to monitor the resource access

activities of a suspicious process. This sensor monitors how critical resources such as

files, registries, and network sockets are exposed to the target process. Currently, we

utilize the SysInternals Utilities Suite [63] from Microsoft such as procmon, sysmon,

and system log auditing to acquire these information.

• Process Reputation Sensor - resides at each host and consists of several modules that

85



Figure 7.3: Process-Network purpose sensor architecture

gather online data on the domains contacted by each process and determines the rep-

utation of the domains contacted by each process. The reputation of each process is

therefore roughly determined from the reputation of the domains that it communicates

with. It includes three sub-sensors:

- Whois Sensor: extracts top domain names used by processes for DNS queries and in

the HTTP traces, from the received raw data, and collects domain registration infor-

mation, such as domain creation time, domain expiration time, and number of domain

registration servers. These domain registration features are critical in judging whether

the domain is malicious or not since most malicious domains registered in the near

time and has few domain registration servers.

- Blacklist Sensor: extracts domain names and IP addresses used for DNS queries and

in the HTTP traces, from the received raw data, and determined whether a domain

name or an IP address has been listed in a publicly distributed blacklist. The blacklist

sensor uses the SpamHaus blacklist web service. This is a basic DNS translation

service. For each IP address or domain name, the sensor appends .zen.spamhaus.org

and performs a DNS IP translation. If a proper IP address is returned, then the given

86



host IP address or domain name is blacklisted. If no translation can be performed, then

the host is not blacklisted.

- SearchEngine Sensor: apply the “xgoogle” google search engine to get another

feature by leveraging Internet community-based knowledge. The sensor simulates a

google search with the domain name as the searching keyword and parses the top 10 re-

sults returned from google. Then, checking whether the returned search result contains

any malicious keywords such as “malicious”, “botnet”, “malware”, “spam”, “ddos”,

“identity theft”, “IRC channel”, “command and control”, “C&C”, “IRC server”, “irc”,

“ircserver”. If the matching value exceeds certain threshold, we assume that the do-

main is malicious.

Purpose Sensor analysis is conducted through examining the content of raw data

received from the Purpose Sensors. The Content-based Analytics Service performs the fol-

lowing activities:

• Extracts domain names and IP addresses used for DNS queries and in the HTTP traces,

from the received raw data, and determined whether a domain name or an IP address

has been listed in a publicly distributed blacklist.

• Extracts top domain names used by processes for DNS queries and in the HTTP traces,

from the received raw data, and collects domain registration information.

• Gathers information on the keywords returned by search engines for searches on the

extracted domain names.

• Looks for Indicator of Compromise in the captured NetFlow traces in form of Flag

Text. Flag text refers to a defining piece of text that is present in malicious network

traffic (often a preamble) that ties it into a specific family or type of malware. For

instance the Gh0st RAT family of malware will commonly use Gh0st as the flag text

in its network traffic.

• Issues alerts based on results of above described analysis steps.

87



The purpose sensors using a set heuristics rules, examines the event content and might

issue its own alerts that along with examined events are submitted into the system database

for storage and further processing. If any alert is generated, the request for alert aggregation

is issued to the Context-based Analytics Service.

7.4.2.3 Third-party Network Analysis Alert

Intrusion Detection Systems (IDS [66, 97]) are applications that monitor and assess

network or system host activities for malicious, irregular, anomalies, and policy violations.

Since detection is the main goal, these systems focus on identifying possible incidents and

logging this information for further analysis in order to identify unauthorized or unapproved

activity within a network. Network Intrusion Detection Systems (NIDS) and Host Intrusion

Detection Systems (HIDS) provide the typical level of defense for computers and networks.

For our system, we incorporate both of these two IDS: snort and OSSEC.

Snort [89] is a network based intrusion detection and prevention system. It performs

real-time traffic analysis and alert reporting. Snort has rules to detect behaviors such as

fingerprinting and port scans. These rules may be triggered as part of an APTs attack, but

often generate too many false positives to be used effectively. Snort does not have any native

paths to send data to our database, so we are using Barnyard to import data, which is an open

source data interpreter built exclusively for Snort. .

Like Snort, OSSEC [70] is a scalable, multi-platform, real time open source IDS.

The fact that it is cross-platform software that can be used throughout the network, allows

network administrators to have a one-stop solution for implementing, collecting, and ana-

lyzing their networks from a host perspective. OSSEC has vast capabilities that include log

analysis, file integrity checking, policy monitoring, rootkit detection, and real time active re-

sponse. These characteristics complement Snort very well from the Host based perspective.

OSSEC has its own built-in internal functions to send reporting data to the database.

Cisco’s NetFlow [14] protocol is used to collect real-time IP network traffic as it

enters or exits interfaces on each network node/hosts. The designed system builds a summary

of distinguishable flow of communications between sources and destinations on a network

88



including source and destination IP addresses, source and destination ports, the protocol type,

the type of service, interfaces on the router/firewall, if applicable. Multiple packets might

be grouped or aggregated together under a common flow ID based on configurable timing

threshold. The ID’s context may also include some statistics such as number of packets

covered by the flow, the total number of bytes, and duration and timing of those packets,

The flow summary information is stored together with the packet payload content inside

the database. Each parameter is provided to the APTs detection system Analytics Services

to incorporate any abnormal traffic behaviors into the event correlation and APTs detection

process.

7.4.3 Data Pre-processing and Normalization

Since the APTs detection system collects alerts from different sensors, and these

alerts are encoded in different formats, we have to translate all attributes of each sensor alert

into a common format. This translation requires that the syntax and semantics of a sensor

alert are recognized. In order to express the causal dependency relationship between two

collected system objects, such as processes, connections, files, etc., the alerts are normalized

into the Source Object, the Sink Object, and the Action format as shown in Figure 7.4.

This kind of object-oriented design is able to express relationships between alerts, which

are an essential requirement of alert correlation. The detail information about run-time data

collection and pre-processing is described in Appendix C.

7.4.4 Analysis for Traffic Anomaly Detection

Anomaly detection can be used to detect malicious or suspicious activities caused

by intentionally or unintentionally induced attacks or defects in a network. Compared with

signature-based intrusion detection systems (IDSs), the main advantage of anomaly detection

techniques is their ability to spotlight previously unknown attacks. The majority of anomaly

detection methods use some form of machine learning techniques to build a model of normal

behavior from the observed normal traffic or activities, and then they measure the conformity

89



Figure 7.4: Alert normalization format

of new objects compared to the learned model of normality. Therefore, the effectiveness of

anomaly detection crucially depends on the choice of features and careful analysis.

Various features have been studied in literature for general network intrusion detec-

tion, such as raw values of IP and TCP protocol headers, time and connection windows, and

byte histograms. In this performance period, we particularly focus on determining network

traffic features that can be feasibly extracted from industry standard network monitoring

protocols such as NetFlow. By characterizing typical normal and abnormal traffic in an en-

terprise network, a set of reliable and sufficient traffic features have been identified. Using

these features to build a baseline for each critical host, server, or subnet, the system can

effectively detect the violations (i.e., abnormal traffic or activities) in a timely manner.

7.4.4.1 Characterization of Abnormal Traffic

Based on our initial study, most cyber attacks and system failures in an enterprise

network will eventually generate some abnormal traffic (measured by volumes, durations,

time of occurrences, and communication patterns, etc.), causing network protocol failures or

error messages (e.g., HTTP, TCP, ICMP, DNS errors or failures), and/or execute a group of

suspicious operating system (OS) level actions on a host in a short time period (e.g., adding

an AutoRun key in the Registry, creating some .EXE files in the system directory, opening a

number of TCP/UDP ports on the host, etc.). If the unique features and characteristics behind

90



the typical abnormal traffics can be identified, the accuracy and effectiveness of anomaly

detection mechanisms can be improved significantly.

Traffic anomalies can be observed by processing traffic flows collected at the net-

work level. The distributions of packet features (IP addresses and ports) observed in traffic

flows can reveal both the presence and the structure of a wide range of anomalies. Figure

3 lists some unique features of traffic anomalies caused by typical attacks or system faults

in an enterprise network. It shows that simple features can capture most anomalies/attacks.

For instance, certain worms (e.g., NetBIOS) only propagate via specific ports (e.g., Port

139). Based on this observation, statistical models such as baseline analysis can be further

developed to detect those traffic anomalies.

Figure 7.5: Typical features of abnormal traffic

7.4.4.2 Feature Vectors for Traffic Anomaly Detection

Based on the traffic characteristics identified, a set of feature vectors can be defined

to help security analysts effectively detect traffic anomalies and identify the corresponding

threats in an enterprise network. In our work, a feature vector is defined as a vector that

91



contains information to describe an objects important characteristics. The raw data we first

considered is the Cisco NetFlow data, which consists of flow records that have been ex-

ported by NetFlow enabled routers or network monitors. We transform NetFlow records into

datasets with a small number of features for predefined time intervals and service-specific

port numbers. Our goal here is to identify a set of sufficient features and use this feature

vector to build a baseline for each critical host, server, service, or subnet in a network, based

on the observed historical data. Using this baseline as the prior knowledge, abnormal traffic

can be quickly detected when any violation has to be observed. To further reduce the false

positive, this anomaly detection result is correlated with detection results of other sensors

(e.g., Snort, OSSEC, and purpose sensors). The validated detection result is aggregated,

prioritized, and notated to provide users an accurate, clear and deep understanding of cyber

situational awareness in their network.

We first define a set of feature vectors to build a baseline for each critical host and

subnet in a target enterprise network. For the granularity, we start with one hour for each

day of a week. The historical data used to build a baseline is one week. We merge/aggregate

the back log with another set of newly accumulated data on a weekly basis. Essentially, for

the egress traffic collected at the edge routers or firewalls, each host (identified by a source

IP address in a NetFlow record), in each hour in each day of a week, we calculate:

• Number of unique connections.

• Duration (or connection time) of each connection.

• Distribution of connection duration.

• Total traffic volume (e.g., number of packets or bytes) for each connection.

• Average traffic volume (e.g., number of packets or bytes) for each connection.

• Distribution across connections.

• Protocol/port distribution (e.g., TCP, UDP, ICMP) across connections in traffic vol-

umes.

92



• Protocol/port distribution across connections in number of connections.

At the network level, we also need to build a baseline for network level traffic anomaly

detection, based on the statistics of the traffic flows and connections generated by critical

hosts in a network. Essentially, in order to model the network behaviors at different time

(e.g., each hour of each day in a week, including the business hours, after hours, holidays,

weekends, etc.), we need to consider the following feature for the entire network or each

subnet in a network:

• List of top Source IP addresses that generate the most traffic volumes in bytes or packet

numbers.

• List of top Destination IP addresses that generate the most traffic volumes in bytes or

packet numbers.

• List of top conversations (SIP/Sport-DIP/Dport pairs) that generate the most traffic

volumes in bytes or packet numbers.

• List of top protocols that generate the most traffic volumes in bytes or packet numbers.

• The overall total amount of bytes generated by a subnet or network.

• The overall total amount of packets generated by a subnet or network.

7.4.4.3 Baseline Analysis for Traffic Anomaly Detection

Baseline network traffic is watching network traffic and figuring out what is normal

in everyday traffic, and knowing when the traffic pattern of any internal host changes. By

setting a network traffic baseline, network administrators can define what is normal for en-

terprise networks and identify patterns that indicate anomalies. In enterprise networks, each

internal host is either a consumer or producer of traffic. They are known to normally down-

load files from a shared drive on a typical day, upload files, or a mixture of both. Security

analysts need to know when the host changes its regular traffic patterns. For example, when

93



a host is normally a consumer of data and becomes a producer of data, this could be an

indication that it may be an infected host that is starting to exfiltrate data.

In the simplest terms, a network traffic and performance baseline is a set of metrics

used in network traffic monitoring to define the normal working conditions of an enterprise

network infrastructure. These baselines can be used by security analysts for comparison to

catch changes in traffic that could indicate a problem. In this effort, we focus on identifying

the time intervals that show anomalous traffic behavior that could be caused by network

malfunctions or malicious attacks.

The processing steps of our approach can be summarized as training data containing

flow records of both normal and anomalous traffic that are transformed into feature datasets,

then the datasets are divided into different clusters for normal and anomalous traffic using

advanced clustering algorithm, and the resulting cluster centroids are deployed for fast de-

tection of anomalies in new monitoring data based on simple distance calculations.

Algorithm 2 shows the baseline analysis algorithm for traffic anomaly detection. Us-

ing the identified baseline of each individual host (or subnet) and the real-time traffic patterns

as the inputs, we can calculate the suspicious level for each critical host. If the accumulated

suspicious level exceeds the pre-defined threshold, an alarm will be raised and reported to the

security analysts. Correlating this analysis result with detection results generated by other

sensors, such as Snort, OSSEC, and purpose sensors, the detection rate and accuracy could

be significantly improved.

7.4.5 Cloud-based Data Storage and Management

The APT detection storage utilizes the cloud-based Accumulo database technology

that uses indexing, normalization, and tagging for effective data storage, querying, and anal-

ysis. Apaches Accumulo is an open-source, distributed, column-oriented store modeled after

Googles Bigtable. Accumulo provides random, real-time, read/write access to large datasets

atop clusters of commodity hardware. Accumulo leverages Apache Hadoop Distributed File

System, the open source implementation of the Google File System. In addition to Google

94



Algorithm 2: Baseline Analysis Algorithm for Traffic Anomaly Detection
Input:
- Baseline of Host (or Subnet) i:

BaseLine(Hosti) = [b1, b2, ..., bn]

- Current behavior of Host (or Subnet) i:

CurrentBehavior(Hosti) = [f1, f2, ..., fn]

Output:
- Suspicious Level of Host i from 0 to N : 0 is normal, N stands for extremely
abnormal.

Result:
- For each feature/property, compare its baseline value and current value

- index++, if there is a violation on property i

- Suspicious Level = index

- if (Suspicious Level >Threshold), then raise an alarm (e.g., “Host i’s behavior
is abnormal, the suspicious level is X!”)

Bigtable features, Accumulo features automatic load balancing and partitioning, data com-

pression, and fine grained security labels.

Accumulo is a sorted, distributed key/value store, which provides robust, scalable,

high performance data storage and retrieval system. Each key is composed of (Row ID,

Column, Timestamp) as shown in Table 7.1. Rows in the table are stored in contiguous

ranges (sorted by key) called tablets. Tablets are managed by tablet servers, with a tablet

server running on each node in a cluster. Accumulo provides a server side Iterator model

that helps increase performance by conducting large computing tasks directly on the servers

and not on the client machine, thus avoiding the need to send large amounts of data across

the network. Accumulo also provides a Batch Scanner client API that allows it to reduce

multiple range scans into one merged client request. The Batch Scanner is used to process

a large number of range scans quickly, by merging all the scans into the smallest number of

scans possible to return the correct data set.

95



Table 7.1: Basic Accumulo table format

Key
Value

Row ID
Column

TimeStamp
Family Qualifier Visibility

... ... ... ...

Table 7.2: APT detection system Accumulo table example

Key
Value

Row ID
Column

TimeStamp
Family Qualifier Visibility

EntityID1 Source:Process ProcessGuid:1029 Time1
EntityID1 Source:Process ProcessId:12 Time1
EntityID1 Source:Process User:IAI02 Time1
EntityID1 Source:Process CurrentDirectory:”C:” Time1
EntityID2 Sink:Endpoint L3Protocol:IP Time2
EntityID2 Sink:Endpoint L4Protocol:udp Time2
EntityID2 Sink:Endpoint IP:10.7.200.1 Time2
EntityID2 Sink:Endpoint Port: 80 Time2
EntityID2 Sink:Endpoint IsIPv6:No Time2
EntityID2 Sink:Endpoint Interface:”eth0” Time2

... ... ... ...

... ... ... ...

Alert data are originated from diverse 3rd party IDS/HIDS systems. The Data Pre-

processing Service extracts standard (for each alert reporter) fields. Accumulo tables can

support any number of columns without specifying them beforehand. In order to support

lookups via more than one attribute of an entity, additional indexes can be built. Raw Alerts

are also stored in the database for history analysis and the training purpose. Both raw data

and conditioned (normalized) data are stored together, whereas raw data is represented as

an additional column containing ASCII text. The system also supports alert aggregation,

correlation and annotation. It creates custom built Iterators for alert aggregation, and uti-

lizes specialized Combiners and MapReduce jobs for alert correlation and annotations. The

example database table design is shown in Table 7.2.

96



7.4.6 Context-based Threat Analytic

When a new alert is reported by the purpose sensor, the Threat Analytic Service is

triggered and will query the Database to retrieve relevant events that have similar “Source”

or “Sink” Objects within certain time threshold, and creates an event relationships in the

form of Dependency and Causality (D&C) graphs by connecting with the same Source Ob-

ject or Sink Object. D&C graphs are collections of system-level causal events that connect

the collected system objects, like processes, connections, files, etc as shown in Figure 7.6.

The events chains form the links that allow for deducing timelines and context relationships

of events connecting various objects, since each event action has a time threshold associated

with it, which is the maximum time that an event can occur and be considered relevant for

that pair of objects. The starting or detection point for the linking process is an alert gen-

erated by either the third-party IDS/HIDS software or by the Purpose Sensors. The term

“detection point” here refers to the state on the local computer system that alerts the admin-

istrator to the potential intrusion or compromise. For example, a detection point could be a

deleted, modified, or additional file, or it could be a process that is behaving in an unusual

or suspicious manner. Time based Backward Event Tracking: performing backward event

chain tracking for each event chain within the specified historic time period, starting from

the specified time. As shown in Figure 7.7 and Figure 7.8, we correlate the corresponding

objects into a “wide net” step by step that reflect the context events of the triggering alert.

Figure 7.6: Dependency and Causality graph event chaining example 1

97



Figure 7.7: Dependency and Causality graph event chaining example 2

Figure 7.8: Dependency and Causality graph event chaining example 3

APT narratives are viewed as graphs of behavior primitives that capture aggregate

description of threat agents. These threat narratives can represent characteristics that are

shared between a group of hosts and across the target network. We represent each threat as

a set of events (behavior primitives) with corresponding extracted features. The events that

represent threat behavior primitives are chained together to form dependency and causality

(D&C) graph. Each threat, hence, is defined as a D&C graph or an event chain as shown in

Figure 7.6. Each Object and Action in the graph is assigned a set of attributes to represent

“extractable” feature sets. We use APT Profiles to perform assessment a probability of APT

98



presence on the target network.

APT Profiles comprise the Actions that describe the source-to-sink object relationship

effect as either affecting or controlling. For example, changing the contents of a file or

creating a child process are examples of controlling effect. In context of APT an attacker

installs a backdoor by modifying an executable file, then creates a process that executes it.

Some examples of affecting effects are changing a file’s access time, creating a filename in

a directory, or enumerating a registry key. Typical APT pattern combines the event with

affecting and with controlling action types. Using APT patterns with a higher percentage

of controlling events for probability of occurrences computation against constructed event

chains would result in a higher similarity score.

APTs Profiles is also represented as a D&C graph of behavior primitives that capture

aggregate description of threat agents. These threat narratives can represent characteristics

that move between a group of hosts and across the target network. APTs Profiles comprise

the actions that describe the source-to-sink object relationship effect as either affecting or

controlling. For example, changing the contents of a file or creating a child process are ex-

amples of controlling effect. In context of APT, an attacker installs a backdoor by modifying

an executable file, and then creates a process that executes it. Some examples of affecting

effects are changing a file’s access time, creating a filename in a directory, or enumerating

a registry key. Typical APTs pattern has a combination of the event with affecting and with

controlling action types. Figure 7.9 show the example D&C graph.

We follow object-oriented paradigm for Events, Objects and Actions. This allows

extending the set of original APT Profiles by deriving new Objects and Actions from existing

templates. Using parent-child object relationship allows applying generalization principle

for object comparison during D&C graph traversal and inexact event matching. The system

provides an option for a user to create custom APT Profiles. A new APT profile is derived

from existing APT profile templates.

The Context-based Analytics Service performs assessment of a probability of APTs

presence on the target network. The probability assessment is implemented by iterating

through the list of constructed D&C graph/event chains (built using one or more aggregated

99



Figure 7.9: APT Profile for exfiltration attack

alerts as a starting point), traversing of each graph, and performing inexact matching and

computing distance metrics between a generated alert D&C graphs and an available APTs

profile. The aggregate similarity score is calculated for each combination of an event chain

and an APTs profile. Both the Object Attributes and Action Attributes for each Event are

utilized to form feature vector sets used for Jaccard similarity distance calculations. The

Jaccard distance measures subset similarity as the ratio of the number of feature elements in

the intersection and the union as shown in the following formula.

dj(A,B) = 1− |A
⋂
B|

|A
⋃
B|

(7.1)

7.5 Evaluation and Results

In order to perform functional testing, obtain realistic results, and evaluate the perfor-

mance of the designed system, we leveraged the hardware and cloud based testbed platform

as shown in Figure 7.11. It consists of APTs cluster, Intranet Service cluster, DMZ server,

Workstation cluster, and the analysis cluster. The APTs cluster is used to model various

APTs scenarios based on discovered attack vectors and known adversarial attacks. We have

100



Figure 7.10: Threat Dependency and Causality graph exfiltration run-time pattern

simulated three representative APTs attack to consider are a slow port scan attack, a brute

force password attack, and data exfiltration attack.

7.5.1 Slow Port Scan Attack

The port scan [102] is the most popular way for someone to conduct reconnaissance

of a network, making its detection critical. While a very intrusive and quick scan can be

easy to detect, a common APTs tactic is to slow down the rate of the port scan below the

target network’s detection threshold since time is not a critical resource to the attacker. This

behavior cannot be easily detected since an individual port scan packet by itself is not neces-

sarily malicious and may instead be simply a mistaken attempt to connect to a non-existent

service. An IDS uses a threshold to determine whether to generate an alert, forcing opera-

tors to choose between either receiving no alerts for an APT’s port scan or receiving a huge

volume of alerts, nearly all of which are false positives. To mimic the behavior of a realistic

APTs attack, we used NMAP to port scan the target host at a slow rate to avoid detection by

the IDS. For testing purposes, we used a max rate of one packet every 10 seconds. This was

detected and reported by Snort via custom and standard rules. The data provided by Snort

was collected and stored in database.

101



Figure 7.11: APTs detection testbed connection diagram

In order to detect the slow port scan attack, APTs detection system takes the data

provided by Snort related to port scans. Under normal conditions, this Snort data has a very

high false positive rate and so it is typically ignored or disabled. To solve this problem, APTs

detection system combines received Snort data with our human input sensor data. The data is

combined by looking at every alert from Snort and then checking to see if the user was active

during the 6 seconds before and 3 seconds after (we are doing this to account for a timestamp

error). Once APTs detection system correlates the data together, it is straightforward to see

if the user triggered the process that requested each connection. If not, then APTs detection

system annotates the Snort data as an actual port scan. The correlated event is saved and

passed to the investigation engine to be grouped and prioritized before being displayed to the

user.

102



Table 7.3 shows the result of a slow port scan attack. In total there were 328,665 data

points collected from Snort containing two actual slow port scan attacks. As shown in the

table, both slow port scan attacks were detected. The 2 port scan attacks were found to be

malicious based on our detection approach described earlier in this section. Due to the long

duration of a slow port scan, there were a lot of other legitimate noise packets sent out and

captured within the dataset which is why there are a lot of data points for this attack scenario.

Table 7.3: Slow port scan result

Metric Value
Total Slow Port Scans 2

Total Detected Slow Port Scans 2
Total Data Points 328,665

7.5.2 Bruce Force Password Attack

The second attack that we used for evaluation is the brute force password attack [49,

78]. In a brute force password attack, an attacker guesses many passwords quickly using a

dictionary of possible passwords. As with a port scan attack, in a standard brute force attack,

there are very many incorrect password attacks within a short period of time, making it easy

for an IDS to employ threshold-based detection. An APTs will instead slow down the guess

rate to the point that it is indistinguishable from the rate at which users accidentally enter

invalid passwords due to simply pressing the wrong key. OSSEC, our host-based IDS, can

create an alert for each individual attempt at a failed login. Such an alert is not typically

generated due to the very high false positive rate that would result.

For our simulation, we use remote desktop to simulate logging into a machine via

a password. We manually input the wrong password to create failed login attempts. Since

failed logins are a very common occurrence within a network, most of the alerts received

from OSSEC are false positives. To eliminate the false positives, APTs detection system

correlates the raw OSSEC alerts with the human input sensor to see if the computer was

actively being used by a human. APTs detection system can then reliably determine which

of the many OSSEC alerts are false positives.

103



Figure 7.12: Brute force attack detection

Figure 7.12 shows the detection of a brute force attack. The raw OSSEC alerts are

grouped by rule id. These grouped OSSEC alerts are then correlated with the purpose sensor

data to create the OSSEC and Sensor annotated table. This table information becomes the

Alert History data used for subsequent processing. Based on the input from the human

purpose sensor and process reputation sensor APTs detection system determines whether

received alerts from OSSEC are malicious. The established context provides the data that

allows an operator to look closer at the potentially malicious event and determine whether a

brute force attack is occurring and whether further action is required.

Table 7.5 shows the overall result summary of executed test scenarios. The total data

points within the considered data set is 352,993 points. Out of a total of 240 sign on errors

104



40 were actual malicious errors and all of them were correctly detected by APTs detection

system with no false positives. Furthermore, all 40 malicious login errors were correctly

grouped into four brute force attacks.

Table 7.4: Bruce force password attack result

Metric Value
Total Sign On Errors 240

Total Malicious Login Errors 40
Total Grouped Brute Force Attacks 4

Total Data Points 352,993

7.5.3 Data Exfiltration Attack

Many APTs attacks are designed with a goal of getting information from within the

network back to the attacker. Based on this observation, the third type of APTs behavior

we considered is a data exfiltration attack [58, 7]. When an attacker tries to exfiltrate data

out of a network, it is very unwise to send many files out. The attacker wants to be stealthy

and leave as small of a footprint as possible, especially while they are still in the system.

A common way to exfiltrate data is to compress the data into a common file type, possibly

encrypt the data to evade higher levels of detection, and then send it out of the network. To

conduct a simulation of this attack, we wrote python scripts to compress, send, and receive a

data file using the RAR file compression format. We then created a Snort rule to detect any

outbound RAR files. This rule by itself has a high very false positive rate, as any legitimate

RAR file, not only those sent by an APT, will trigger the rule.

Figure 7.13 shows how APTs detection system detects a data exfiltration attack. A

Snort rule is used to detect .rar files. These Snort events are then correlated with APTs

detection system’s process reputation sensor and the human input data to determine whether

the data exfiltration was malicious or not. If the data exfiltration is not performed by a human

action but instead by an automated process with low reputation score, APTs detection system

annotates the event accordingly.

105



Figure 7.13: Data exfiltration attack detection

106



Table 7.5 shows the overall result summary of executed test scenarios. Out of a total

of 6 exfiltration alerts within the considered data set only two were actually malicious ex-

filtration attacks. the system was able to successfully detect these two malicious exfiltration

attacks. The total data points within the considered data set was 529,235 points, thus demon-

strating clear effectiveness of the designed system to reduce the number of false positives.

Table 7.5: Data exfiltration attack result

Metric Value
Total Exfiltration Alerts 6

Total Malicious Exfiltration Attacks 2
Total Detected Malicious Alerts 2

Total Data Points 529,235

7.5.4 Evaluation Result Discussion

When we first defined the requirements for the APT detection system, we focused

on attacks that are very common steps for APTs. Since APTs are very sophisticated and

require many working parts to pull off such an attack, we set our sights on demonstrating the

detection of the parts of the APT attacks that are both very important to the attackers mission

and difficult for current techniques to detect without generating many false positives. We

observe that many APT behaviors are detectable in some way, however due to the high false

positive rate these detectors are turned off or set to thresholds that do not catch an APTs

actions.

From our tests, we demonstrated the feasibility of the detection system. First, the

system is able to successfully discern whether OSSEC failed login triggers are malicious

or are due to a user signing onto a computer incorrectly. The purpose sensors give the

ability to know when a false positive has occurred, allowing this data to be removed from the

final output provided to the user. We have also included Snort IDS triggers into the system

to detect malicious actions including port scans of various scopes and intensities. Finally,

our system leverages high false positive Snort rules to detect any possible data leaving the

network without human interaction. The current results show that we can detect three steps

107



in an APT attack process, 1) understanding the network, 2) getting access to a machine, and

3) exfiltrating data.

Each of the behaviors chosen are representative of larger classes of attacks, and the

system can similarly reduce the false positive rates for related attacks. It is important to note

that reducing the false positive rate does not only reduce operator burden. In our results, we

have shown that the systems ability to take high false positive data as input and filter out only

the true positives makes many sources of raw data which have been previously unusable now

become reliable detectors of APTs. This change allows a corresponding decrease in the false

negative rate, meaning that more APTs will be detected.

7.6 Conclusion

We have developed a novel non-signature based system for Advanced Persistent

Threat (APT) detection. By parsing the raw alerts from Purpose Sensors and third-party

network analysis tools into Source Object, Action, and Sink Object format, we can create a

Dependency and Causality graph containing all relevant events within a certain time thresh-

old. Through calculating the Jaccard distance between the alert Dependency and Causality

graph and APTs profiles, we can evaluate whether the suspicious alert is a real APTs attack

or a false alarm. Through simulation in a cloud-based testbed, we demonstrated that the de-

signed system could effectively detect important types of APTs behaviors such as slow port

scan attacks, slow brute force attacks, and data exfiltration attacks, as well as significantly

reduce the amount of false positives that are reported to the cyber analysts.

108



Chapter 8

FUTURE WORK

In the future, we are going to implement dynamic assessment techniques to evalu-

ate trainees’ performance on CSA. We also plan to use the security training lesson plans in

undergraduate cyber security courses to validate the effectiveness of cyber security training

systems and design more effective training scenarios based on trainees’ reflection. Further-

more, how to evaluate team CSA performance remains a critical issue.

For the APT detection part, we are going to expand the current APT detection testbed

to include hundreds or thousands of diverse network machines to create a realistic enter-

prise level test environment and emulate more complex APT attacks to validate the proposed

system. Such a testbed will also significantly contribute to analysis and research of new

advanced APT attacks and also enable us to develop new components that will further ad-

vance the capabilities of APT detection such as using forward tracking analysis for impact

assessment.

We may integrate more advanced mission data and contextual information. Leverag-

ing more advanced mission information will improve the functionality of the APT detection

system. We have already developed extensive experience in this area of research during our

work on the CREACT (Advanced Network Security Metrics for Cyber Resilience and Asset

Criticality Measurement in Mission Success) project. The CREACT project has considered

the problem of efficiently evaluating the networks health and ability to achieve the overall

mission success given that available network assets support different missions with different

priorities. This background will contribute advanced, value-based goal models and efficient

mission-to-asset mapping, resource allocation, vulnerability assessment, threat analysis and

impact mitigation techniques for cyber resilience and asset criticality modeling, evaluation

and measurement. These capabilities will significantly enhance the current mission related

109



context input and will enable the detection system to effectively evaluate, prioritize, iden-

tify and allocate critical cyber assets to ensure mission success and provide more focused

detection against sophisticated attacks.

The current correlation engine provides an effective means of annotating received

alerts with purpose sensor information to create meaningful event contexts which enable the

cyber security operator to quickly identify and focus efforts on the most critical attacks. Our

future efforts will focus on enhancing the existing rules by integrating additional information

obtained from new network and purpose sensors, advanced mission data, and by allowing

an operator’s and/or cyber analyst’s feedback to customize the system’s presentation and

handling of data to best meet their needs.

We are also going to build real-time network status visualization GUI for the APT

detection system. The visualization engine periodically (using configurable time intervals)

checks the database for the outputs/updates of the corresponding analytic services, and then

displays/updates the events on the topology and swim-lane views. Cyber analysts can receive

a prioritized set of new alerts; query the history of cyber threats with diverse attributes (e.g.,

time interval, priority, annotation, etc.) to gain additional contextual knowledge.

110



BIBLIOGRAPHY

[1] Mansour Alsaleh and P. C. Oorschot. Network Scan Detection with LQS: a
Lightweight, Quick and Stateful Algorithm. In Proceedings of the 6th ACM Sympo-
sium on Information, Computer and Communications Security, ASIACCS ’11, pages
102–113, Hong Kong, China, 2011. ACM.

[2] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, Graph-based Net-
work Vulnerability Analysis. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, CCS ’02, pages 217–224, New York, NY, USA, 2002.

[3] Michael Lyle Artz. NetSPA : a Network Security Planning Architecture. Master’s
thesis, Massachusetts Institute of Technology, Boston, MA, USA, 2002.

[4] Thomas Augustine and Ronald C. Dodge. Cyber Defense Exercise Meeting Learning
Objectives thru Competition. In In Proceedings of the 10th Colloquium for Informa-
tion Systems Security Education, 2006.

[5] Fatemeh Azmandian, Micha Moffie, Malak Alshawabkeh, Jennifer Dy, Javed Aslam,
and David Kaeli. Virtual machine monitor-based lightweight intrusion detection.
SIGOPS Oper. Syst. Rev., 45(2):38–53, July 2011.

[6] David Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

[7] Elisa Bertino and Gabriel Ghinita. Towards mechanisms for detection and prevention
of data exfiltration by insiders: Keynote talk paper. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ASIACCS ’11,
pages 10–19, New York, NY, USA, 2011. ACM.

[8] Monowar H Bhuyan, D.K Bhattacharyya, and J.K. Kalita. Surveying port scans and
their detection methodologies. Comput. J., 54(10):1565–1581, October 2011.

[9] Fatih Emre Boran, Serkan Genc, Mustafa Kurt, and Diyar Akay. A multi-criteria
intuitionistic fuzzy group decision making for supplier selection with topsis method.
Expert Syst. Appl., 36(8):11363–11368, October 2009.

[10] Stephen R. Byers and Shanchieh J. Yang. Real-time fusion and projection of network
intrusion activity. In Information Fusion, 2008 11th International Conference on,
pages 1–8. IEEE, 2008.

111



[11] Sergio Caltagirone, Paul Ortman, Sean Melton, David Manz, Kyle King, and Paul
Oman. A Rapidly Reconfigurable Computer Lab for Software Engineering Security
Experiments and Exercises. In 19th Conference on Software Engineering Education
and Training Workshops, CSEETW ’06, 2006.

[12] Michael A. Champion, Prashanth Rajivan, Nancy J. Cooke, and Shree Jariwala.
Team-Based Cyber Defense Analysis. In 2012 IEEE International Multi-Disciplinary
Conference onCognitive Methods in Situation Awareness and Decision Support
(CogSIMA), 2012.

[13] Joel Chinnow, Rainer Bye, Stephan Schmidt, Karsten Bsufka, Seyit Ahmet Camtepe,
and Sahin Albayrak. An Extensible Simulation Framework for Critical Infrastructure
Security. In AI Laboratory, School of Electrical Engineering and Computer Science
of the Berlin Institute of Technology, Technical Report: TUB-DAI 09/09-1, 2009.

[14] Cisco. NetFlow Analyzer User Guide - ManageEngine.

[15] Eric Cole. Advanced Persistent Threat: Understanding the Danger and How to Pro-
tect Your Organization. Syngress Publishing, 1st edition, 2013.

[16] Nancy J. Cooke, Michael Champion, Prashanth Rajivan, and Shree Jariwala. Cyber
situation awareness and teamwork. In EAI Endorsed Transactions on Security and
Safety, 2013.

[17] Nancy J. Cooke, Anita DAmico, Mica R. Endsley, Emilie Roth, and Eduardo Salas.
Perspectives on the Role of Cognition in Cyber Security. In in Proceedings of the
Human Factors and Ergnomics Society 56th Annual Meeting, 2011.

[18] Weidong Cui, R.H. Katz, and Wai tian Tan. Binder: An extrusion-based break-in
detector for personal computers. In Computer Security Applications Conference, 21st
Annual, 2005.

[19] Oliver Dain and Robert K. Cunningham. Fusing a heterogeneous alert stream into
scenarios. In In Proceedings of the 2001 ACM workshop on Data Mining for Security
Applications, pages 1–13, 2001.

[20] Anita D’Amicoa, Kirsten Whitleyb, Daniel Tesonea, Brianne O’Briena, and Emilie
Rothc. Acheiving cyber defense situational awarness: A cognitive task analysis of
information assurance analysts acm. In In Proceedings of the Human Factors and
Ergonomics Society 49th Annual Meeting, 2005.

[21] Anita D’Amicoa, Kirsten Whitleyb, Daniel Tesonea, Brianne O’Briena, and Emilie
Rothc. Achieving cyber defense situational awareness: A cognitive task analysis of
information assurance analysts. In In Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting, 2005.

112



[22] Irfan Delia and Naim agmanb. Intuitionistic fuzzy parameterized soft set theory and
its decision making. In in Applied Soft Computing, pages 109–113, 2015.

[23] Brian Duffy. Network Defense Training through CyberOps Network Simulations. In
In Proceedings of the Modeling, Simulation, and Gaming Student Capstone Confer-
ence, 2008.

[24] Chris Eagle and J. L. Clark. Capture-the-Flag: Learning Computer Security Under
Fire. In In Proceedings of the Sixth Workshop on Education in Computer Security
(WECS), 2004.

[25] M. R. Endsley. Toward a theory of situation awareness in dynamic systems. In in
Human Factors, 1995.

[26] L. Feinstein and D. Schnackenberg. Statistical Approaches to DDoS Attack Detection
and Response. In In Proceedings of the DARPA Information Survivability Conference
and Expostion(DISCEX), 2003.

[27] Ulrik Franke and Joel Brynielsson. Cyber situational awareness e A systematic review
of the literature. Computers & Security, 2014.

[28] Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring Net-
work Security Using Dynamic Bayesian Network. In Proceedings of the 4th ACM
Workshop on Quality of Protection, QoP ’08, pages 23–30, New York, NY, USA,
2008.

[29] Paul Giura and Wei Wang. A context-based detection framework for advanced persis-
tent threats. In Proceedings of the 2012 International Conference on Cyber Security,
CYBERSECURITY ’12, pages 69–74, Washington, DC, USA, 2012. IEEE Computer
Society.

[30] R. J. Guild. Design and Analysis of a Model Reconfigurable Cyber-Exercise Labora-
tory (RCEL) for Information Assurance Education. Master’s thesis, Naval Postgrad-
uate School, Monterrey, California, USA, 2004.

[31] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis, and Sylvia Ratnasamy.
Not-a-bot: Improving service availability in the face of botnet attacks. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI’09, pages 307–320, Berkeley, CA, USA, 2009. USENIX Association.

[32] Ali Hamieh and Jalel Ben-Othman. Detection of jamming attacks in wireless ad hoc
networks using error distribution. In Proceedings of the 2009 IEEE International
Conference on Communications, ICC’09, pages 4831–4836, Piscataway, NJ, USA,
2009.

113



[33] Andrew P. Hansen. Cyber Flag A Realistic Cyberspace Training Construct. Master’s
thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio,
USA, 2008.

[34] Paul Harrison. IA Education, Training and Awareness Online Training Catalog of the
Information Assurance Support Environment (IASE) of the US DoD Defense Infor-
mation Systems Agency (DISA). http://iase.disa.mil/eta/online-catalog.html.

[35] Paul Harrison. Robust topological sorting and tarjan’s algorithm in python.
http://www.logarithmic.net/pfh/blog/01208083168/.

[36] F. Herrera, E. Herrera-Viedma, and J. L. Verdegay. A model of consensus in group
decision making under linguistic assessments. Fuzzy Sets Syst., 78(1):73–87, February
1996.

[37] John Homer, Ashok Varikuti, Xinming Ou, and Miles A. Mcqueen. Improving attack
graph visualization through data reduction and attack grouping. In Proceedings of
the 5th International Workshop on Visualization for Computer Security, VizSec ’08,
pages 68–79, Berlin, Heidelberg, 2008.

[38] John Homer, Su Zhang, Xinming Ou, David Schmidt, Yanhui Du, Raj S. Rajagopalan,
and Anoop Singhal. Aggregating Vulnerability Metrics in Enterprise Networks Using
Attack Graphs. J. Comput. Secur., 21(4):561–597, July 2013.

[39] Zequn Huang and Chien-Chung Shen. Context-aware alert correlation for advanced
persistent threat detection. In the Fourth International Conference on Cyber Security,
Cyber Warfare, and Digital Forensic (CyberSec 2015), 2015.

[40] Zequn Huang, Chien-Chung Shen, Sheetal Doshi, Nimmi Thomas, and Ha Duong.
Cognitive task analysis based lesson plans for cyber situation awareness training and
assessment. In 9th World Conference on Information Security Education (WISE 9),
2015.

[41] Zequn Huang, Chien-Chung Shen, Sheetal Doshi, Nimmi Thomas, and Ha Duong.
Difficulty-level metric for cyber security training. In 2015 IEEE International Multi-
Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision
Support (CogSIMA), 2015.

[42] Nwokedi Idika and Bharat Bhargava. Extending Attack Graph-Based Security Met-
rics and Aggregating Their Application. IEEE Trans. Dependable Secur. Comput.,
9(1):75–85, January 2012.

[43] Kyle Ingols, Matthew Chu, Richard Lippmann, Seth Webster, and Stephen Boyer.
Modeling Modern Network Attacks and Countermeasures Using Attack Graphs. In
Proceedings of the 2009 Annual Computer Security Applications Conference, ACSAC
’09, pages 117–126, Washington, DC, USA, 2009.

114



[44] Cynthia E. Irvine., Michael F. Thompson, and Ken Allen. Cyberciege: Gaming for
information assurance. IEEE Security and Privacy, 3(3):61–64, May 2005.

[45] Isaca. Advanced Persistent Threats: How to Manage the Risk to Your Business. ISA,
2013.

[46] Sushil Jajodia. Topological Analysis of Network Attack Vulnerability. In Proceedings
of the 2Nd ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’07, pages 2–2, New York, NY, USA, 2007.

[47] Sushil Jajodia, Peng Liu, Vipin Swarup, and Cliff Wang. Cyber Situational Aware-
ness: Issues and Research. Springer, 2010.

[48] Andrew Jaquith. Security Metrics: Replacing Fear, Uncertainty, and Doubt. Addison-
Wesley Professional, 2007.

[49] Mobin Javed and Vern Paxson. Detecting stealthy, distributed ssh brute-forcing. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer &#38; Communica-
tions Security, CCS ’13, pages 85–96, New York, NY, USA, 2013. ACM.

[50] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection through
vmm-based ”out-of-the-box” semantic view reconstruction. In Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS ’07, pages
128–138, New York, NY, USA, 2007. ACM.

[51] Shuyuan Jin and Daniel S. Yeung. A covariance analysis model for ddos attack detec-
tion. In in IEEE International Conference on Communications, 2004.

[52] Klaus Julisch. Clustering intrusion detection alarms to support root cause analysis.
ACM Trans. Inf. Syst. Secur., 6(4):443–471, November 2003.

[53] Cengiz Kahraman, Da Ruan, and Ibrahim Dogan. Fuzzy group decision-making for
facility location selection. Inf. Sci. Inf. Comput. Sci., 157(1-2):135–153, December
2003.

[54] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, Xi-
aoyong Zhou, and XiaoFeng Wang. Effective and efficient malware detection at the
end host. In Proceedings of the 18th Conference on USENIX Security Symposium,
SSYM’09, pages 351–366, Berkeley, CA, USA, 2009. USENIX Association.

[55] Alexander Kott, Cliff Wang, and Robert Erbacher. Cyber Defense and Situational
Awareness. Springer, 2014.

[56] Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan, and Chris
Grier. Rinse: The real-time immersive network simulation environment for network
security exercises (extended version). Simulation, 82(1):43–59, January 2006.

115



[57] R. P. Lippmann and K. W. Ingols. An annotated review of past papers on attack
graphs. Technical report, MIT Lincoln Laboratory, 2005.

[58] Yali Liu, Cherita Corbett, Ken Chiang, Rennie Archibald, Biswanath Mukherjee, and
Dipak Ghosal. Detecting sensitive data exfiltration by an insider attack. In Pro-
ceedings of the 4th Annual Workshop on Cyber Security and Information Intelligence
Research: Developing Strategies to Meet the Cyber Security and Information Intelli-
gence Challenges Ahead, CSIIRW ’08, pages 16:1–16:3, New York, NY, USA, 2008.
ACM.

[59] Samuel Mahoney, Emilie Roth, Kristin Steinke, Jonathan Pfautz, Curt Wu, and Mike
Farry. A Cognitive Task Analysis for Cyber Situational Awareness. In In Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, 2010.

[60] Pratyusa Manadhata, Jeannette M. Wing, Mark Flynn, and Miles McQueen. Mea-
suring the Attack Surfaces of Two FTP Daemons. In Proceedings of the 2Nd ACM
Workshop on Quality of Protection, QoP ’06, pages 3–10, New York, NY, USA, 2006.

[61] Pratyusa K. Manadhata and Jeannette M. Wing. An Attack Surface Metric. IEEE
Trans. Softw. Eng., 37(3):371–386, May 2011.

[62] V. Mancuso, D. Minotra, N. Giacobe, M. McNeese, and M. Tyworth. idsNETS: An
Experimental Platform to Study Situation Awareness for Intrusion Detection Ana-
lysts. In IEEE International Multi-Disciplinary Conference on Cognitive Methods in
Situation Awareness and Decision Support, 2012.

[63] Microsoft. SysInternals Utilities Suite.

[64] MicroSoft. MicroSoft MSDN. Windows hook functions, 2015.

[65] Seyed Ali Mirheidari, Sajjad Arshad, and Rasool Jalili. Alert correlation algorithms:
A survey and taxonomy. In Cyberspace Safety and Security, volume 8300 of Lecture
Notes in Computer Science, pages 183–197. Springer International Publishing, 11
2013.

[66] Robert Mitchell and Ing-Ray Chen. A survey of intrusion detection techniques for
cyber-physical systems. ACM Comput. Surv., 46(4):55:1–55:29, March 2014.

[67] Peng Ning, Yun Cui, and Douglas S. Reeves. Analyzing intensive intrusion alerts via
correlation. Technical report, Raleigh, NC, USA, 2002.

[68] Steven Noel and Sushil Jajodia. Metrics Suite for Network Attack Graph Analytics. In
Proceedings of the 9th Annual Cyber and Information Security Research Conference,
CISR ’14, pages 5–8, New York, NY, USA, 2014. ACM.

[69] Cyril Onwubiko and Thomas Owens. Situational Awareness in Computer Network
Defense: Principles, Methods and Applications. IGI Global, 2012.

116



[70] Open Source Security. OSSEC Manual. OSSEC V2.7.0 Documentation, 2013.

[71] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A Scalable Approach to
Attack Graph Generation. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS ’06, pages 336–345, New York, NY, USA, 2006.
ACM.

[72] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. MulVAL: A Logic-
based Network Security Analyzer. In Proceedings of the 14th Conference on USENIX
Security Symposium - Volume 14, SSYM’05, pages 8–8, Berkeley, CA, USA, 2005.
USENIX Association.

[73] Susmit Panjwani, Stephanie Tan, and Keith M. Jarrin. An experimental evaluation to
determine if port scans are precursors to an attack. In Proceedings of the 2005 Interna-
tional Conference on Dependable Systems and Networks, DSN ’05, pages 602–611,
Washington, DC, USA, 2005. IEEE Computer Society.

[74] Vicente Pastor, Gabriel Diaz, and Manuel Castro. State-of-the-art simulation systems
for information security education, training and awareness. In 2010 IEEE Education
Engineering (EDUCON), 2010.

[75] Cynthia Phillips and Laura Painton Swiler. A Graph-based System for Network-
vulnerability Analysis. In Proceedings of the 1998 Workshop on New Security
Paradigms, NSPW ’98, pages 71–79, New York, NY, USA, 1998. ACM.

[76] Prashanth Rajivan. CyberCog:A Synthetic Task Environment for Measuring Cyber
Situation. Master’s thesis, Arizona State University, Tempe, AZ, USA, 2011.

[77] Prashanth Rajivan, Michael Champion, Nancy J. Cooke, Shree Jariwala, Genevieve
Dube, and Verica Buchanan. Effects of Teamwork versus Group Work on Signal
Detection in Cyber Defense Teams. In In Proceedings of HCI (24), 2013.

[78] Mudassar Raza, Muhammad Iqbal, Muhammad Sharif, and Waqas Haider. A survey
of password attacks and comparative analysis on methods for secure authentication.
pages 439–444. World Applied Sciences Journal, 2012.

[79] Thomas L. Saaty and Kirti Peniwati. Group decision making: Drawing out and rec-
onciling differences. In RWS Publications, 2008.

[80] Reza Sadoddin and Ali Ghorbani. Alert correlation survey: Framework and tech-
niques. In Proceedings of the 2006 International Conference on Privacy, Security and
Trust: Bridge the Gap Between PST Technologies and Business Services, PST ’06,
pages 37:1–37:10, New York, NY, USA, 2006. ACM.

[81] SANS Technology Institute. Assessing Outbound Traffic to Uncover Advanced Per-
sistent Threat.

117



[82] Zainab Saud and Hasan M. Islam. Towards proactive detection of advanced persistent
threat (apt) attacks using honeypots. In Proceedings of the 8th International Confer-
ence on Security of Information and Networks, SIN ’15, pages 154–157, New York,
NY, USA, 2015. ACM.

[83] Karen Scarfone and Peter Mell. An Analysis of CVSS Version 2 Vulnerability Scor-
ing. In Proceedings of the 2009 3rd International Symposium on Empirical Software
Engineering and Measurement, ESEM ’09, pages 516–525, Washington, DC, USA,
2009. IEEE Computer Society.

[84] W.J. Schepens and J.R. James. Architecture of a Cyber Defense Competition. In
In Proceedings of IEEE International Conference on Systems, Man and Cybernetics,
2003.

[85] W.J. Schepens and J.R. James. Architecture of a cyber defense competition. In in
Proceedings of IEEE International Conference on Systems, Man and Cybernetics,
2003.

[86] Vyas Sekar, Nick Duffield, Oliver Spatscheck, Jacobus Merwe, and Hui Zhang. Lads:
Large-scale automated ddos detection system. In Proceedings of the Annual Confer-
ence on USENIX ’06 Annual Technical Conference, ATEC ’06, pages 16–16, Berke-
ley, CA, USA, 2006. USENIX Association.

[87] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M.
Wing. Automated Generation and Analysis of Attack Graphs. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, SP ’02, pages 273–, Washington,
DC, USA, 2002. IEEE Computer Society.

[88] Oleg Mikhail Sheyner. Scenario Graphs and Attack Graphs. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 2004.

[89] Snort.org. The Snort Project. SNORT Users Manual 2.9.3., 2013.

[90] John R. Surdu, John M. D. Hill, Scott Lathrop, and Curt A. Carver. Military Academy
Attack/Defense Network Simulation. In Advanced Simulation Technology Confer-
ence: Symposium on Military, Government, and Aerospace Simulation, 2003.

[91] Colin Tankard. Advanced persistent threats and how to monitor and deter them. Net-
work Security, DOI: 10.1016/S1353-4858(11)70086-1, 2011.

[92] Gianni Tedesco and Uwe Aickelin. Real-time alert correlation with type graphs.
CoRR, abs/1004.4089, 2010.

[93] Geethapriya Thamilarasu, Sumita Mishra, and Ramalingam Sridhar. A cross-layer
approach to detect jamming attacks in wireless ad hoc networks. In Proceedings of
the 2006 IEEE Conference on Military Communications, MILCOM’06, pages 753–
759, Piscataway, NJ, USA, 2006. IEEE Press.

118



[94] M. Tyworth, N.A. Giacobe, V. Mancuso, and C. Dancy. The distributed nature of
cyber situation awareness. In IEEE International Multi-Disciplinary Conference on
Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2012.

[95] Michael Tyworth, Nicklaus A. Giacobe, and Vincent Mancuso. Cyber situation aware-
ness as distributed socio-cognitive work. In in Cyber Sensing, 2012.

[96] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. In Proceedings of
the 4th International Symposium on Recent Advances in Intrusion Detection, RAID
’00, pages 54–68, London, UK, UK, 2001. Springer-Verlag.

[97] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias
Fischer. Taxonomy and survey of collaborative intrusion detection. ACM Comput.
Surv., 47(4):55:1–55:33, May 2015.

[98] Vilhelm Verendel. Quantified Security is a Weak Hypothesis: A Critical Survey of
Results and Assumptions. In Proceedings of the 2009 Workshop on New Security
Paradigms Workshop, NSPW ’09, pages 37–50, New York, NY, USA, 2009.

[99] G. Vigna. Teaching network security through live exercises. In in Cynthia Irvine and
Helen Armstrong, Security Education and Critical Infrastructures, 2003.

[100] Giovanni Vigna. Teaching network security through live exercises. In Cynthia Irvine
and Helen Armstrong, editors, Security Education and Critical Infrastructures, pages
3–18. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[101] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. An Attack
Graph-Based Probabilistic Security Metric. In Proceeedings of the 22Nd Annual IFIP
WG 11.3 Working Conference on Data and Applications Security, pages 283–296,
Berlin, Heidelberg, 2008. Springer-Verlag.

[102] Weijie Wang, Baijian Yang, and Yingjie Victor Chen. Detecting subtle port scans
through characteristics based on interactive visualization. In Proceedings of the 3rd
Annual Conference on Research in Information Technology, RIIT ’14, pages 33–38,
New York, NY, USA, 2014. ACM.

[103] Wikipedia.org. Advanced persistent threat, 2015.

[104] Wikipedia.org. Cain Abel, 2015.

[105] Wikipedia.org. RDP, 2015.

[106] Wikipedia.org. Secure Shell, 2015.

[107] Wikipedia.org. Stuxnet, 2015.

119



[108] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. The feasibility of
launching and detecting jamming attacks in wireless networks. In Proceedings of the
6th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc ’05, pages 46–57, New York, NY, USA, 2005. ACM.

[109] Zeinab Zali, Masoud Reza Hashemi, and Hossein Saidi. Real-time intrusion detection
alert correlation and attack scenario extraction based on the prerequisite-consequence
approach. In In: The ISC International Journal of Information Security, 2013.

[110] Su Zhang, Doina Caragea, and Xinming Ou. An empirical study of using the na-
tional vulnerability database to predict software vulnerabilities. In 22nd International
Conference on Database and Expert Systems Applications, Toulouse, France, 2011.

[111] Bin Zhu and Ali A. Ghorbani. Alert correlation for extracting attack strategies. In
International Journal of Network Security, page 244258, 2006.

120



Appendix A

CYBER SITUATION AWARENESS SAGAT QUESTIONNAIRE

In order to evaluate the usability of the training system and the effectiveness of train-

ing, Situation Awareness Global Assessment Technique (SAGAT) is used. SAGAT covers

the three levels of CSA including Level 1 (perception of data), Level 2 (comprehension of

meaning), and Level 3(projection of the near future). Typically, a set of CSA queries regard-

ing the current situation is asked and participants are required to answer each query based

upon their knowledge and understanding of the situation at that point. The questions to be

asked are shown in following:

1. In this scenario, the IP Address 10.7.200.2 represents

• a Web Server

• a Mail Server

• a DNS Server

• a FTP Server

2. A reasonable value for a NESSUS scan (summation of CVSS base scores for a single

host) should be around

• 0

• between 0 and 100

• larger than 100

• None of the above

3. Can the outside user access the Nagios Server directly at 10.7.100.202?

121



• Yes

• No

4. DNC query to www.techcrunch.com is malicious or benign?

• Malicious

• Benign

5. If 10.7.100.102 and 10.7.100.205 were to communicate directly with each other, this

behavior would be allowed or not?

• Allowed

• Not allowed

6. High volumes of traffic between hosts are allowed between:

• Between 10.5.2.5 and 10.7.100.205

• Between 10.5.1.3 and 10.5.2.4

• Between 10.5.2.3 and 10.7.100.2

• None of the above

7. Between 10.5.2.5 and DNS Server 10.7.100.2, there have 20 DNS query in the past 10

minutes, is it normal or not?

• Normal

• Not normal

8. An Snort IDS alert have been reported based on the connection from Nagios Server at

10.7.100.202 to DHCP Server at 10.7.100.3. Should this alert be reported?

• No, it might be just regular network scanning activity

• Yes, it might be a denial of service attack

122



• Yes, it might be a port scanning attack

• None of the above

123



Appendix B

ANALYSIS OF RECENT SOPHISTICATED ADVANCED PERSISTENT THREATS

In order to better understanding Advanced Persistent Threats (APTs), we analyzed

the most recent sophisticated APTs that have huge impact. The specific details of each of

these APTs attack are elaborated in the following. After analyzing all the APTs, traffic-based

APT detection mechanisms are identified. In particular, the major focus of traffic-based

analysis is to detect C&C traffic, as many APTs require C&C to configure and plan their

sophisticated attacks

Cosmic Duke - Cosmic Duke is an information-stealing Trojan that includes code

from both the Mini Duke APT Trojan, and Cosmu. Data is exfiltrated through various types

of network connections, which include uploading data via FTP and three various variants

of HTTP communication mechanisms. Credentials and other FTP details were found to be

contained within the malware samples analyzed by F-Secure.

Mini Duke - Mini duke is a group of actors conducting a campaign of espionage

using custom malware. These actors used an Adobe Reader 0-day to infiltrate target systems.

Mini duke also employs a very small backdoor program written in assembly. This backdoor

checks if the system is a relevant target, and then proceeds to communicate with C2 servers.

Instructions are spread via twitter for further malware downloading. This malware has also

been used as a base for the Cosmic Duke malware campaigns.

Dark hotel - Dark hotel is a name given to a group of threat actors that have targeted

high profile targets via spear-phishing and P2P networks primarily during the target’s hotel

stay. They have also been known to use kernel-level key loggers, and zero-day exploits to

infiltrate target systems.

Kimsuky - Kimsuky is focused solely on South Korean entities. This backdoor is

believed to be spread via spear-phishing emails to vulnerable Windows systems. After initial

124



infection a Trojan dropper acts as a loader for other malware. As part of the infection process

the software disables the firewall and the Windows Security Service Center notifications. It

has a rudimentary keystroke logger but its main goal is to steal HWP documents, a similar

format to MS Word but supported by a South Korean word processing application. It also

downloads a modified version of a legitimate Remote Administration Tool, TeamViewer,

which can grant the attacker deeper control of the infected system.

Stuxnet - Stuxnet is a nation-state backed cyber-attack campaign specifically target-

ing the Iranian nuclear fuel production systems, in order to slow their efforts in creating an

atomic bomb. This was reported to be a joint effort by the United States and Israel.

Epic Turla - Epic Turla is a sophisticated espionage and data theft campaign charac-

terized by a backdoor apparently controlled by Russian actors. Targeting EU governments,

embassies, and the military it also has targeted research agencies, academia and pharmaceu-

tical corporations. It makes use of several 0-day and known exploits propagated via spear

phishing e-mails and watering hole attacks to gain a foothold in the target systems and then

begins installing the backdoor and other programs as needed. The backdoor can monitor for

network sniffing programs and will terminate itself if these are found. It has access to huge

network of hacked servers for C2 and exploitation and was still active late last year.

Crouching Yeti - Crouching Yeti uses spear phishing techniques with embedded flash

exploits within PDFs, as well as trojanized software installers. Methods of exploitation are

considered rudimentary for this threat, as widely available exploits (such as those available

in the Metasploit framework) are used in attack campaigns. Generally, the actors focus their

efforts on targeting the Industrial/machinery, Manufacturing, Pharmaceutical, Construction,

Education, and Information Technology industries. The most prevalent attacks are against

the Industrial/machinery sector.

Duqu - Duqu is considered as a possibly either a precursor or new generation of the

Stuxnet malware. The Duqu codebase is very similar to Stuxnet. The language used to

program Duqu was challenging for researchers to uncover, but has since been considered an

object oriented version of C. Duqu is designed to gather data to mount an attack like Stuxnet.

Shamoon - Shamoon was a virus designed to destroy data on target hosts. Most

125



security experts believe that the malware was designed by politically motivated threat actors.

The malware infected 30,000 Aramco computer systems, and was capable of wiping the data

contained on the hard drive, as well as partition information in the MBR. The malware can

then report infection information back to the attackers.

Flame - Flame is believed to be a state-run cyber espionage operation due to the

sophistication and complexity of the attack, Flame may have also been contracted out by

the same nation-state behind Stuxnet and Duqu. It is designed to steal documents, recorded

conversations, and keystrokes, and also opens a backdoor to allow attackers to tweak and

add new functionality. The tools leverage Bluetooth to collect data from nearby Bluetooth-

enabled devices. It also has the ability to sniff traffic visible from the target.

NetTraveler - NetTraveler is a cyber-espionage toolkit that targets Tibetan/Uyghur

activists, and more recently the space exploration, nanotechnology, energy production, nu-

clear power, lasers, medicine and communications industries. Thought to be of Chinese

origin, the attackers gain a foothold via spear phishing campaigns with malicious MS Office

documents, using two well-known (and patched) vulnerabilities. Nevertheless, these attacks

were very successful, even against the high-profile targets. After a successful exploitation

NetTraveler is designed to extract large amounts of private information from the victims sys-

tem over long periods of time. The malware uses compression techniques and a fail-safe

protocol to ensure that target data is transferred to the attackers C2 servers.

Regin - Regin is a cyber-attack platform, thought to be created and controlled by

a nation-state actor, which the attackers deploy in the victim networks for ultimate remote

control at all possible levels. It targeted telecoms, government entities, multi-national politi-

cal bodies, financial institutions, academia/research, specific individuals involved in crypto-

graphic research in Russia, Central Asia and other parts of the world. Its main purpose was

intelligence gathering and facilitating other forms of attack across networks. It was also the

first cyber-attack platform known to penetrate and monitor GSM networks in addition to its

other abilities. It is a modular, sophisticated platform with very advanced capabilities.

TeamSpy - From 2004 to 2013 the TeamSpy group of actors used a malicious version

126



of TeamViewer, a legitimate Remote Administration Tool to monitor activists and steal sen-

sitive data, crypto keys and passwords and other data from intelligence agencies and heavy

industry manufacturers in the Commonwealth of Independent States (CIS) and other East-

ern European nations. This covert cross-nation, cyber surveillance data theft and monitoring

operation made use of legitimate, signed software packages in addition to custom made soft-

ware, including DLL path hijack tricks and allowed the threat actor to conduct effective

operations targeting hundreds of victims, including high level/high value individuals. Al-

though it was not a particularly advanced campaign, using simple encryption techniques and

lazy software choices, it was very effective for many years.

Wiper - In 2012 businesses in Iran specializing on energy, oil and gas production

as well as government entities were reportedly victims of a data wiping program known as

Wiper. This program was so well written that no known copies were ever recovered; once

activated no data that could be used to recreate it survived. Its purpose was solely to destroy

data on hard disks using an extremely efficient wiping algorithm. There is some thought that

it was an extension of the Stuxnet or Duqu code but this cannot be ascertained.

Winnti - Winnti is a cybercriminal entity waging an IP theft campaign against online

gaming companies and game developers in Southeast Asia and other areas. Using a ma-

licious DLL to infect a companys servers gives the actors access to potentially millions of

computers but the main aim was to steal intellectual property, digital certificates, source code

and system design. During the course of the campaign other Remote Administration Tools

are downloaded as needed.

SabPub - SabPub is a backdoor targeting the Dalai-Lama and activists in the Tibetan

community on the OS X platform. It is almost certainly of Chinese origin. It uses social

engineering to get users to open exploited MS Word documents and install the software. A

second version was created that uses Java exploits to infect target machines.

FinSpy - FinSpy, created by Gamma International (UK), is another example of Business-

to-government malware marketed towards government and law enforcement agencies for the

purpose of monitoring criminals and activists. It has characteristics of several different types

127



of malware including backdoors, Trojans, rootkits and bootkits. It has several versions tar-

geting nearly every platform an available; Windows, OS X, Linux, Android, iOS, Windows

Mobile, Symbian and BlackBerry. It was developed to focus mainly on smartphones and

other mobile devices and gives its controllers the ability to log incoming and outgoing calls,

makes concealed calls to eavesdrop on the target’s surroundings, steal information (call logs,

text and media messages, and contacts) and track coordinates.

BlackEnergy - First observed back in 2007, BlackEnergy was originally a simple

DDoS Trojan that has become a much more extensive tool capable of sending spam and

aiding in the committal of banking fraud. It also increases the feasibility of more advanced

targeted attack activities. In 2010, the second version of BlackEnergy was observed to fea-

ture rootkit techniques. Recent targeted attacks using this Trojan have created awareness in

the fact that this is an active force requiring defensive action.

Hacking Team RCS - Remote Control System (RCS) is a spyware program developed

by the Italian company HackingTeam specifically for sale to law enforcement and govern-

ment agencies. RCS not only has backdoor, rootkit and Trojan features but can compromise a

variety of systems and operating systems including Windows, OS X, BlackBerry, Windows

Mobile, Android and iOS. It is a self-replicating program designed to steal and exfiltrate

personal data to a remote server. It intercepts data from web browsers, email clients and

instant messaging services as well as video and audio streams and geolocation data. It uti-

lizes known exploits as well as 0-day code for Microsoft Office documents, Adobe Flash and

others.

Madi - Madi is a Trojan campaign directed at critical infrastructure engineering firms,

government agencies, financial organizations, and academia in the Middle East and Israel.

Cyber-espionage oriented, it used relatively simple social engineering approaches to get vic-

tims to install the malicious code. Religious and political distraction documents and images

were used to trick users. Programming was apparently written by inexperienced program-

mers using Delphi and applying rudimentary approaches; no 0-day or elegant exploits were

used. After clicking on what appeared to be a PPT or jpg file the Trojan automatically in-

stalled and provided several functions to controllers including; key logging, file retrieval,

128



retrieve disk structures, record audio and screenshot capture for specific events.

Machete - Machete was a cyber-espionage/data theft campaign targeted at South

American embassies, government organizations and intelligence agencies from 2013 to 2014,

that may still be active. Using known exploits for Windows Office documents via a dedicated

spear phishing campaign and a fake blog threat actors are able to install a multi-function pro-

gram that can log keystrokes, capture screenshots, web cam photos and microphone audio,

geolocation data and copying files to USB drives and remote servers. It appears the attackers

used Python embedded into Windows executables for ease of coding.

Cloud Atlas - Cloud Atlas is a rebirth of the Red October series of attacks. After

discovery by Kaspersky in 2013 the Red October campaign was promptly shuttered and the

group vanished for several months. Cloud Atlas shares several similarities with the Red

October campaign, including the same types of targets (in some instances the exact same in-

dividuals were targeted), shellcode markers in malicious documents, compression algorithm

and C&C servers. In both cases the top 5 countries targeted matched exactly and some of the

spear phishing documents had the same name. The Cloud Atlas campaign is currently still

active.

Red October - Red October was a series of attacks against diplomatic, governmen-

tal and scientific research targets in Eastern Europe and Central Asia. Actors focused on

gathering intelligence from target organizations it began as early as 2007 and lasted until

2013. Initial infection was enabled via known exploits for MS Office documents and Adobe

PDF files. Attackers crafted a multi-function kit that enabled them to steal data from not

only workstations but smartphones, Cisco network devices and removable disk drives. This

particular kit had more than 30 modules the attackers could leverage.

IceFog - When discovered in 2013 Icefog represented a relatively new trend; small

groups of highly skilled attackers targeting supply chain targets. Icefog targeted govern-

ment institutions, military contractors, maritime and ship-building groups, telecom opera-

tors, satellite operators, as well as industrial and high technology companies in South Korea

and Japan for cyber-espionage. Using custom-made tools for Mac OS X and MS Windows,

they relied on spear-phishing and exploits for known vulnerabilities to initially infect their

129



victims. After gaining a foothold they moved laterally throughout the victims network and

focused on very specific data; company plans, sensitive documents and the like. After exfil-

trating the data they abandoned the infection and moved on.

130



Appendix C

APT DETECTION SYSTEM RUN-TIME DATA COLLECTION

C.1 NetFlow Data Format for APT Detection

In APT reconnaissance stage, most of the abnormal behaviors can be feasibly de-

tected by NetFlow-based traffic analysis. Originally developed by Cisco Systems, NetFlow

is an open source traffic profile monitoring technology and a de facto industry standard to

describe the method for a router to export statistics about the routed socket pairs. When Net-

Flow is enabled on a router interface, traffic statistics of packets received on that interface

will be counted as flow and stored into a dynamic flow cache. There is no packet payload

information in the flow field, and it is one of the major differences between NetFlow and the

traditional IDS. Paying no attention to packet payloads greatly reduces the processing over-

head and makes NetFlow an extraordinarily good fit for real-time analysis of high-volume

network traffic in large-scale operational environments. Be default, NetFlow records can be

exported to a user-specified monitoring station using UDP packets, if one of the following

conditions occurs:

• The transport protocol indicates that the connection is completed (TCP FIN), and there

is a small delay to allow for the completion of the FIN acknowledgment handshaking;

• Traffic inactivity exceeds 15 seconds;

• For flows that remain continuously active, flow cache entries expire every 30 minutes

to ensure periodic reporting of active flows.

Note that the NetFlow record represents the packets in an aggregated format. Each

line does not represent the information of a packet. Instead, each line represents the infor-

mation of all packets in a flow (which is defined as a series of packets sent from a source IP

131



address to a destination IP address over a period of time). The NetFlow data format is show

in the following:

Table C.1: NetFlow data format

Column number Contents Description
1 start Flow start time
2 start msec Residual milliseconds of flow start time
3 end Flow end time
4 end msec Residual milliseconds of flow end time
5 srcaddr Source IP address
6 srcport Source port number
7 src as Source AS
8 dstaddr Destination IP address
9 dstport Destination port number

10 dst as Destination AS
11 prot Protocol
12 tcp flags TCP flags
13 tos Type of service
14 dPkts Number of packets
15 dOctets Number of bytes
16 nexthop Next hop IP address (0 if null)
17 input Input Interface
18 output Output interface
19 engine id Switching Engine ID

C.2 Linux System Resource Exposure Sensor Record Normalization for APT Detec-

tion

As part of the APT detection system, we developed the auditing sensor in the Linux

platform. The auditing sensor resides at each host to monitor the resource access activities

and interactions of all processes on the host. The sensor monitors how critical resources

such as files, registries, and network sockets are exposed to the target process. Furthermore,

the sensor collects and combines various heuristics such as processes accessing files in other

users folders and system directories, processes modifying critical registries, creating a large

number of sockets during a short period of time.

132



To comprehensively log and track access to files, directories, and resources of Linux

system, as well as trace system calls, we leverage the Linux Auditing System called auditd.

By creating a sophisticated set of rules including file watches and system call auditing, the

sensor will be able to report suspicious activities that violating the security policies, for

example, tracking any unauthorized change in critical system configuration files such as

/etc/passwd. Then, the audit records are analyzed periodically, normalized, and streamed

through Kafaka messaging system in real-time.

Figure C.1: Linux auditing system architecture

The auditing sensor system architecture is illustrated in Figure C.1. Auditd is au-

diting daemon located in the kernel that keeping monitoring the applications behavior. The

behavior of the auditd server can be controlled through auditctl tool dynamically. With au-

ditctl, we can turn auditing on or off, check the status and add audit rules for specific events.

Audisp is the Audit dispatcher daemon interacts with the Audit daemon and sends events in

real-time through Kafka messaging system for further processing.

To use auditing sensor, use the following steps:

133



1. Configure the audit daemon.

2. Add audit rules and watches to collect desired data such as to monitor certain system

calls as well as monitor the read, write, and execute change on some system critical

files and folders.

3. Start the daemon, which enables the Linux Auditing System in the kernel and starts

the logging.

4. Periodically analyze data by normalizing audit record into object-oriented format.

5. Stream the normalized records through Kafaka messaging system in real-time for fu-

ture processing.

Figure C.2: Linux auditing log

The above auditing log event shown in Figure C.2 consists of four records (each

starting with the type= keyword), which share the same time stamp and serial number. Each

record consists of several name=value pairs separated by a white space or a comma. A

detailed description of log file attributes are elaborated in Table C.2.

Since the APT detection system collecting alerts from different sensors and these

alerts are encoded in different formats, we have to translate all attributes of each sensor alert

into a common format. This translation requires that the syntax and semantics of a sensor

alert are recognized. In order to express the causal dependency relationship between two

collected system objects, such as processes, connections, files, etc, the alerts are normalized

into the Source Object, the Sink Object and the Action format. This kind of object-oriented

134



Table C.2: Linux auditing log attribute

Name Description
type The type field contains the type of the record, which may be SYSCAL, CWD, PATH.
msg The msg field records include a time stamp and a unique ID of the record.
arch The arch field contains information about the CPU architecture of the system.
syscall The syscall field records the type of the system call that was sent to the kernel.
success The success field records whether the system call recorded succeeded or failed.
exit The exit field contains a value that specifies the exit code returned by the system call.
a0a3 The a0 to a3 fields record the first four arguments of the system call in this event.
items The items field contains the number of path records in the event.
ppid The ppid field records the Parent Process ID (PPID).
pid The pid field records the Process ID (PID).
auid The auid field records the Audit user ID, that is the loginuid.
uid The uid field records the user ID of the user who started the analyzed process.
gid The gid field records the group ID of the user who started the analyzed process.
euid The euid field records the effective user ID who started the analyzed process.
suid The suid field records the set user ID of the user who started the analyzed process.
fsuid The fsuid field records the file system user ID of the user who started the process.
egid The egid field records the effective group ID of the user who started the analyzed process.
sgid The sgid field records the set group ID of the user who started the analyzed process.
fsgid The fsgid field records the file system group ID of the user who started the process.
tty The tty field records the terminal from which the analyzed process was invoked.
ses The ses field records the session ID of the session.
comm The comm field records the command-line name of the command.
exe The exe field records the path to the executable used to invoke the analyzed process.
key The key field records the administrator-defined string associated with the rule.
cwd The cwd field records the current working directory

design is able to express relationships between alerts which is an essential requirement of

alert correlation.

After aggregating the auditing log records with same serial number, the records are

normalized into Source Object, Action, and Sink Object with json format as shown in Figure

C.3 and Figure C.4. Notice that Figure C.3 illustrates the audit record when unauthorized

rm action was performed on the monitored directory /root/test. Figure C.4 shows the audit

record when an outside connection to IP address 116.109.112.47 and port 47 is captured by

the audit daemon.

135



Figure C.3: Normalized Linux audit record of removing file

Figure C.4: Normalized Linux audit record of Internet connection

C.3 Windows System Resource Exposure Sensor Record Normalization for APT De-

tection

Security auditing is a powerful tool to help maintain the security of a system. Win-

dows security and system logs record the potentially harmful behaviors, such as changes to

user account and resource permissions, failed attempts by users to log on, failed attempts to

access resources, and changes to system files. Windows auditing system also provide op-

tions to monitor the read, write, and execute change on some system critical files, folders,

136



and registry.

Windows auditing system also provide options to monitor the read, write, and execute

change on some system critical files and folders. The auditable actions for files and folders

are described in Table 4. In order to turn on these audit actions, you have to right-click the

document or file that need to be kept track of, and then click Properties, click the Security

tab, click Advanced, and then click the Auditing tab. Then choose the corresponding audit

actions. The auditable actions for files and folders are described in Table C.3

Table C.3: Windows auditing log attribute

Name Description
Traverse folder/execute file Keeps track of when someone runs a program file.
List folder or read data Keeps track of when someone views the data in a file.
Read attributes Keeps track of when someone views the attributes.
Read extended attributes Keeps track of when someone views the extended attributes.
Create files or write data Keeps track of when someone changes the contents of a file.
Create folders or append data Keeps track of when someone adds data to the end of a file.
Write attributes Keeps track of when someone changes the attributes of a file.
Delete subfolders and files Keeps track of when someone deletes a folder.
Delete Keeps track of when someone deletes a file.
Read permissions Keeps track of when someone reads the permissions on a file.
Change permissions Keeps track of when someone changes the permissions on a file.
Take ownership Keeps track of when someone takes ownership of a file.

For a single operation such as delete an audited file, it will generate three events:

Windows 4656, Windows 4663, and Windows 4658. These three events can be associated

through the same HandleId.

1. Windows 4656: A handle to an object was requested.

When enable auditing on an object (e.g. file or folder), this is the first event recorded

when an application attempts to access the object in such a way that matches the audit

policy defined for that object in terms of who is requesting the access and what type

of access is being requested.

2. Windows 4663: An attempt was made to access an object

137



This event documents actual operations performed against files and other objects. It is

logged between the open (4656) and close (4658) events for the object being opened

and can be correlated to those events via Handle ID. While event 4656 tells you when

the object is initially opened and what type of access was requested at that time; 4656

doesn’t give you positive confirmation any of the access permissions were actually

exercised.

3. Windows 4658: The handle to an object was closed

After successfully opening an object, a program eventually closes it.

Name Description

Mission A combination of tasks to achieve a common goal.

Task A usually assigned piece of work often to be finished within a certain time.

Activity
A unit, organization, or installation performing a function or mission, e.g.,

reception center, redistribution center, naval station, naval shipyard.

Essential

Task

A specified or implied task that an organization must perform to accomplish

the mission. An essential task is typically included in the mission statement.

Specified

Task

In the context of joint operation planning, a task that is specifically assigned

to an organization by its higher headquarters.

Implied

Task

In the context of joint operation planning, a task derived during mission

analysis that an organization must perform or prepare to perform to

accomplish a specified task or the mission, but which is not stated in the

higher headquarters order.

138



Cyber

Capability

An ability to execute a specified course of action. A combination of network

services and assets that provide users with the ability to perform an action.

The term “cyber capability” is at a higher level of abstraction than device,

asset, service, or resource. It expresses an operational need in cyber terms.

Examples: Near real-time communication is a cyber capability enabled by

VoIP, instant messaging, email, and texting. File transfer is a cyber

capability enabled by FTP, email attachment, or instant message attachment.

Site
An installation, together with its personnel and equipment, organized as an

operating entity.

User Individual or (system) process authorized to access an information system.

Cyber

Asset

Programmable electronic devices and communication networks. It includes

hardware (e.g. workstations, servers, switches), software (e.g. operating

systems, applications), and data (e.g. document files, images). A broad term

that denotes something of value on a computer network.

Cyber

Resource

A general term that incorporates a wide variety of components of a cyber

infrastructure. It includes cyber assets, network services, storage media,

and,physical connections.

Network

Service

Combination of one or more ports open to incoming connections to provide

a service to clients. Examples: email, printing, Domain Name Service

(DNS), File Transfer Protocol, etc.

Node
In network topology, a terminal of any branch of a network or an

interconnection common to two or more branches of a network.

Host

Almost any kind of computer, including a centralized mainframe that is a

host to its terminals, a server that is host to its clients, or a desktop personal

computer (PC) that is host to its peripherals. In network architectures, a

client station (user’s machine) is also considered a host because it is a source

of information to the network.

139



Network

Device

Network device refers to an active device on the network that connects or

manages network traffic, such as repeaters, hubs, switches, bridges, routers,

and gateways. Hardware or software (virtual machine) with an IP address.

It is a type of cyber asset.

Application

Software program that performs a specific function directly for a user and

can be executed without access to system control, monitoring, or

administrative privileges.

Data
Distinct pieces of digital information that have been formatted in a specific

way.

File
A collection of information logically grouped into a single entity and

referenced by a unique name, such as a filename.

Process
A process is an instance of a computer program that is being executed.

It contains the program code and its current activity

Table C.5: Host information ontology

The default audit event is shown in Figure C.5

In order to express the causal dependency relationship between two collected system

objects, such as processes, connections, files, etc., the alerts are normalized into the Source

Object, the Sink Object and the Action as we did in Linux auditing sensor. Figure C.6 shows

the normalized windows audit record when an unauthorized DELETE action was performed

on the monitored directory.

140



Figure C.5: Windows audit record of deleting file

141



Table C.4: APT detection system event object ontology

File

SequenceNumber
UtcTime
ProcessGuid
ProcessId
Image
TargetFilename
CreationUtcTime
PreviousCreationUtcTime

Process

SequenceNumber
UtcTime
ProcessGuid
ProcessId
Image
CommandLine
CurrentDirectory
User
LogonGuid
LogonId
TerminalSessionId
IntegrityLevel
Hashes
ParentProcessGuid
ParentProcessId
ParentImage
ParentCommandLine

Network Connection

SequenceNumber
UtcTime
ProcessGuid
ProcessId
Image
User
Protocol
Initiated
SourceIsIpv6
SourceIp
SourceHostname
SourcePort
SourcePortName
DestinationIsIpv6
DestinationIp
DestinationHostname
DestinationPort
DestinationPortName

142



Figure C.6: Normalized Windows audit record of deleting file

143


	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction 
	1.1 Background and Motivation
	1.2 Effective Cyber Situation Awareness Training Methodology
	1.3 Team Collaboration for Cyber Situation Awareness
	1.4 Real-time Information Fusion for Cyber Situation Awareness
	1.5 Thesis Outline 

	2 Related Work
	3 Live-Virtual-Constructive Based Cyber Situation Awareness Training and Assessment System Framework
	3.1 System View of Live-Virtual-Constructive Platform
	3.2 Usage Examples of a Live-Virtual-Constructive Platform
	3.3 Cyber Situation Awareness Training and Assessment Framework Infrastructure
	3.4 Functional View of Cyber Situation Awareness Training and Assessment Framework

	4 Cognitive Task Analysis Based Lesson Plans for Cyber Situation Awareness Training and Assessment
	4.1 Introduction
	4.2 Cognitive Task Analysis based Approach
	4.3 Cyber Security Training Lesson Plans
	4.3.1 Port Scan Attack Lesson Plan
	4.3.2 Denial Of Service Attack Lesson Plan
	4.3.3 Wireless Jamming Attack Lesson Plan

	4.4 Performance Metrics and Scoring Algorithms
	4.5 Evaluate Cognitive Validity of Training
	4.6 Conclusion

	5 Difficulty-Level Metric for Cyber Situation Awareness Training and Assessment System
	5.1 Introduction
	5.2 Background and Related Work
	5.3 Difficulty-Level Metric
	5.3.1 Motivating Example
	5.3.2 Cycles in Attack Graph
	5.3.3 Handling Cycles
	5.3.4 Calculating Probability of Achieving Attack Goal

	5.4 Evaluation
	5.5 Conclusion

	6 Web-Based Fuzzy Team Decision-Making for Cyber Situation Awareness
	6.1 Introduction
	6.2 Background and Related Work
	6.3 Team Collaboration for Cyber Situation Awareness 
	6.3.1 Team Structure and Roles for Cyber Analysts
	6.3.2 Communication among Cyber Analysts
	6.3.3 Representation of Individual CSA
	6.3.4 Fuzzy Set based Decision-Making for Team CSA

	6.4 Web-based Team CSA Support System Experiment 
	6.5 Conclusion

	7 Realtime Context-based Information Fusion for Advanced Persistent Threats Investigation
	7.1 Introduction
	7.2 Background and Related Work
	7.3 Review of Advanced Persistent Threats Characteristics and Countermeasure
	7.3.1 Life Cycle of Advanced Persistent Threats
	7.3.2 Advanced Persistent Threats Characteristics
	7.3.3 Advanced Persistent Threats Security Challenges
	7.3.4 Advanced Persistent Threats Countermeasure Strategies
	7.3.4.1 Identify APTs Malware Signature
	7.3.4.2 Leverage the State-of-Art Open-Source Tools


	7.4 Realtime Context-based Information Fusion for Advanced Persistent Threats Detection
	7.4.1 System Architecture and Information Flow
	7.4.2 Run-time Data Collection and Monitoring
	7.4.2.1 Human-Process Purpose Sensor
	7.4.2.2 Process-Network Purpose Sensor
	7.4.2.3 Third-party Network Analysis Alert

	7.4.3 Data Pre-processing and Normalization
	7.4.4 Analysis for Traffic Anomaly Detection
	7.4.4.1 Characterization of Abnormal Traffic
	7.4.4.2 Feature Vectors for Traffic Anomaly Detection
	7.4.4.3 Baseline Analysis for Traffic Anomaly Detection

	7.4.5 Cloud-based Data Storage and Management
	7.4.6 Context-based Threat Analytic

	7.5 Evaluation and Results
	7.5.1 Slow Port Scan Attack
	7.5.2 Bruce Force Password Attack
	7.5.3 Data Exfiltration Attack
	7.5.4 Evaluation Result Discussion

	7.6 Conclusion

	8 Future Work
	Bibliography
	A Cyber Situation Awareness SAGAT Questionnaire
	B Analysis of Recent Sophisticated Advanced Persistent Threats
	C APT Detection System Run-time Data Collection
	C.1 NetFlow Data Format for APT Detection
	C.2 Linux System Resource Exposure Sensor Record Normalization for APT Detection
	C.3 Windows System Resource Exposure Sensor Record Normalization for APT Detection


