An optimized protocol for the analysis of time-resolved elastic scattering experiments

Date
2016-01-12
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Abstract
A deconvolution protocol is developed for obtaining material responses from time-resolved small-angle scattering data from light (SALS), X-rays (SAXS), or neutrons (SANS). Previously used methods convolve material responses with information from the procedure used to group data into discrete time intervals, known as binning. We demonstrate that enhanced signal resolution can be obtained by using methods of signal processing to analyze time-resolved scattering data. The method is illustrated for a timeresolved rheo-SANS measurement of a complex, structured surfactant solution under oscillatory shear flow. We show how the underlying material response can be clearly decoupled from the binning procedure. This method greatly reduces the experimental acquisition time, by approximately one-third for the aforementioned rheo-SANS experiment.
Description
Publisher's PDF
Keywords
Citation
Soft Matter, 2016, 12, 2301