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ABSTRACT

The existence of the Higgs boson was predicted in the 1960’s. The discovery of

the Higgs boson in 2012 at the Large Hadron Collider (LHC) has been a remarkable

triumph of the Standard Model (SM) and particle physics. However, there are still

fundamental questions that cannot be answered by the SM. A variety of extensions

to the SM have been proposed to explain these mysteries. In this thesis we explore

the Higgs boson mass in several extensions to the SM. We first study the impact of

vectorlike fermions on the SM Higgs mass bounds. The presence of these fermions

significantly modifies the vacuum stability and perturbativity bounds on the mass of

the SM Higgs boson. The new vacuum stability bound in this extended SM is estimated

to be 117 GeV, to be compared with the SM prediction of about 129 GeV.

The non-minimal gravitational coupling ξH†HR between the SM Higgs doublet

H and the curvature scalar R opens up a very intriguing scenario for inflationary

cosmology. In the presence of this coupling, the effective ultraviolet cutoff scale is given

by Λ ≈ mP/ξ, where mP is the reduced Planck mass, and ξ & 1 is a dimensionless

coupling constant. In type I and type III seesaw extended SM, we investigate the

implications of this non-minimal gravitational coupling for the SM Higgs boson mass

bounds based on vacuum stability and perturbativity arguments. A lower bound on the

Higgs boson mass close to 120 GeV is realized with type III seesaw and ξ ∼ 10− 103.

Supersymmetry is by far the most compelling extension of the SM. We con-

sider extensions of the Next-to-Minimal Supersymmetric Standard Model (NMSSM)

in which the observed neutrino masses are generated through a TeV scale inverse see-

saw mechanism. The new particles associated with this mechanism can have sizable

couplings to the Higgs field which can yield a large contribution to the mass of the

xiv



lightest CP-even Higgs boson. With this new contribution, a 126 GeV Higgs is possible

along with order of 200 GeV masses for the stop quarks for a broad range of tan β.

Finally we study the implications of the inverse seesaw mechanism on the sparti-

cle spectrum in the Constrained Minimal Supersymmetric Standard Model (CMSSM)

and Non-Universal Higgs Model (NUHM2). Employing the maximal value of the Dirac

Yukawa coupling involving the up type Higgs doublet provides a 2-3 GeV enhancement

of the lightest CP-even Higgs boson mass. This effect permits one to have lighter col-

ored sparticles in the CMSSM and NUHM2 scenarios with LSP neutralino, which can

be tested at LHC14.
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Chapter 1

INTRODUCTION

Our picture of the universe is based on elementary particles and the interactions

between them. After efforts of several generations of physicists, they are summarized

in a theory called the Standard Model (SM) of particle physics [1]. The SM is based

on the gauge symmetry groups SU(3)C × SU(2)L × U(1)Y . In the SM, there are two

kinds of particles: fermions and gauge bosons. The fermions have spin 1
2
. They are

the elementary particles that matter is made of in nature. They fall into two different

categories: quarks and leptons. The fermions and their quantum numbers in the SM

are listed in Table 1.1. u, d, c, s, t and b stand for up-, down-, charm-, strange-, top-

and bottom-type quark. e, µ and τ stand for electron, muon and tau lepton. ν stands

for neutrino. The subscripts L and R stand for left- and right-handed.

Symbol Particle SU(3) SU(2)L U(1)Y

Quarks

qiL

 uL

dL

  cL

sL

  tL

bL

 3 2 1
6

uiR uR cR tR 3 1 −2
3

diR dR sR bR 3 1 1
3

Leptons
liL

 νe

eL

  νµ

µL

  ντ

τL

 1 2 −1
2

eiR eR µR τR 1 1 1

Table 1.1: Feimions and their quantum numbers in the SM.
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The gauge bosons are the force carriers that mediate the interactions between

the fermions in the SM. There are three kinds of interactions in the SM: electromag-

netic, weak and strong interactions. The corresponding gauge bosons are listed in

Table 1.2. The photon and gluons are massless. However, the W and Z bosons are

massive. Actually, they are very heavy compared to other particles in the SM. This

mystery was not well understood until the emergence of the Higgs mechanism. The

Higgs mechanism is a mathematical model proposed in the 1960’s by Higgs, Brout,

Englert, Guralnik, Hagen and Kibble [2]. By introducing a pair of complex scalar

fields, it provides an explanation for the masses of W and Z bosons in the SM through

spontaneous electroweak symmetry breaking (EWSB). The fermions in the SM also

receive masses through a Yukawa interaction with the Higgs field. A detailed review

on the Higgs mechanism in the SM can be found in Ref. [3].

Gauge boson Symbol

Electromagnetic interactions photon γ

Weak interactions
W boson W+, W−

Z boson Z

Strong interactions gluon g

Table 1.2: Gauge bosons and their quantum numbers in the SM.

The SM has been the most successful theory in human’s history. However,

it is not a complete theory of elementary particles. There are fundamental physical

phenomena in nature that the SM cannot explain. Below I list several deficiencies of

the SM:

1. Neutrino masses:

Neutrinos are massless in the SM. However, solar and atmospheric neutrino oscil-
lation experiments have established that at least two neutrino states are massive
[4]. Adding neutrino mass terms in the SM will spoil the gauge symmetries of the
theory. The seesaw mechanism is a simple and promising extension of the SM to
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incorporate the neutrino masses and mixings observed in solar and atmo-spheric
neutrino oscillations. A detailed review on seesaw mechanims can be found in
Ref. [5].

2. Gravity:

Although the SM has explained three fundamental interactions between elemen-
tary particles very well, it has failed to include another fundamental interaction:
gravity. The most successful theory of gravity to date is Einstein’s general rel-
ativity. However, the SM is a theory based on quantum mechanics, which is
unfortunately incompatible with general relativity. This conflict is actually a
central problem of modern physics. Numerous attempts have been made to re-
solve this conflict, and a number of theories have been proposed. For example,
string theory, loop quantum gravity, group field theory, etc.

3. Dark matter and dark energy:

Cosmological observations have provided strong evidence for the existence of dark
matter and dark energy. It turns out that the fermions in the SM only accounts
for 4.9% of the matter/energy of the universe [7]. Determining the nature of dark
matter and dark energy is one of the challenges in particle physics.

Supersymmetry is by far the most compelling extension of the SM. The study

of supersymmetry is motivated by solving the hierarchy problem in the SM. Supersym-

metry also offers gauge coupling unification and a dark matter candidate. A compre-

hensive review on supersymmetry can be found in Ref. [6].

In this chapter I will present a brief introduction to the Higgs mechanism, seesaw

mechanism and supersymmetry, which are most relevant to my research.

1.1 The Higgs Mechanism

Let us start with a complex scalar field φ with the following Lagrangian

L = (∂µφ )∗ (∂µφ)− V (φ) , V (φ) = −µ2 (φ∗φ) +
1

2
λ (φ∗φ)2 (1.1)

This Lagrangian is invariant under the global U(1) phase transformation

φ→ eiαφ. (1.2)
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If µ2 < 0, If µ2 > 0, the field φ acquires a non-zero vacuum expectation value

(VEV), and the U(1) symmetry is spontaneously broken. The minimum of the potential

occurs at

〈φ2〉 =
µ2

λ
. (1.3)

The potential is illustrated in Fig.(1). Let us expand the Lagrangian about a

particular ground state

Re(φ) =

√
µ2

λ
, Im(φ) = 0. (1.4)

If we define

η√
2
≡ Re(φ)−

√
µ2

λ
,

ξ√
2
≡ Im(φ), (1.5)

The Lagrangian can be rewritten as the following:

L =

[
1

2
(∂µη) (∂µη)− µ2η2

]
+

[
1

2
(∂µξ) (∂µξ)

]
+

[
−
√

2

2
µ
√
λη3 −

√
2

2
µ
√
ληξ2 − 1

8
λη4 − 1

4
λη2ξ2 − 1

8
λξ4 +

1

2

µ4

λ

]
. (1.6)

The scalar field η acquires a mass term mη =
√

2µ, but the other scalar field

ξ is massless. It has been shown that for every spontaneously broken continuous

symmetry, the theory must contain a massless particle. These massless particles are

called Goldstone bosons.

If the scalar filed φ is coupled to a massless gauge field Aµ, the Lagrangian can

be made invariant under the local U(1) transformation

φ→ eiα(x)φ, (1.7)

by introducing the covariant derivative:

Dµ = ∂µ + iqAµ, (1.8)

where q is the conserved charge. The Lagarangian involving the scalar field φ and the

gauge field Aµ is

L = (Dµφ )∗Dµφ− V (φ)− 1

4
F µνFµν , (1.9)
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where Fµν ≡ ∂µAnu − ∂νAmu. We can rewrite the Lagrangian in terms of the scalar

fields η and ξ as before:

L =

[
1

2
(∂µη) (∂µη)− µ2η2

]
+

[
1

2
(∂µξ) (∂µξ)

]
+

[
−1

4
F µνFµν +

q2µ2

λ
AµAµ

]
+

[
−
√

2

2
µ
√
λη3 −

√
2

2
µ
√
ληξ2 − 1

8
λη4 − 1

4
λη2ξ2 − 1

8
λξ4 +

1

2

µ4

λ

]

+
√

2qAµ
[
µ√
λ
∂µξ +

1√
2

(η∂µξ − ξ∂µη)

]
+ q2AµA

µ

[√
2
µ√
λ
η +

1

2

(
η2 + ξ2

)]
. (1.10)

As in Eq.(1.6), the first two lines represent a massive scalar particle and a

massless Goldstone boson. However, the third line shows that the gauge field has

acquired a mass term m2
A = 2q2µ2

λ
after the local U(1) symmetry is spontaneously

broken.

The other terms describe couplings between the fields η, ξ and Aµ.

1.2 The Higgs Mechanism in the Standard Model

The Standard Model is based on the gauge symmetry groups SU(3)C×SU(2)L×

U(1)Y . The symmetry group SU(2)L × U(1)Y will be spontaneously broken once we

introduce a complex doublet under SU(2)L:

φ =

 φ†

φ0

 , (1.11)

and the following terms in the Lagrangian:

L = (Dµφ )† (Dµφ)− V (φ) , V (φ) = −µ2
(
φ†φ
)

+
1

2
λ
(
φ†φ
)2
, (1.12)

where

Dµ = ∂µ − ig2W
a
µ τ

a − i1
2
g1Bµ

=

 ∂µ − i
2
(g2W

3
µ + g1Bµ) − i

2
g2(W 1

µ − iW 2
µ)

− i
2
g2(W 1

µ + iW 2
µ) ∂µ + i

2
(g2W

3
µ − g1Bµ)

 (1.13)
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HereW a
µ and Bµ are SU (2) and U(1) gauge bosons, and g2 and g1 are the corresponding

coupling constants.

The symmetry of the system is spontaneously broken when the field φ acquires

the following VEV:

〈φ〉 =
1√
2

 0

v

 . (1.14)

The field φ can be parametrized around the VEV in the following way:

φ = e−iθaτ
a 1√

2

 0

v + h

 (1.15)

We can use a gauge transformation to eliminate the phase factor from φ:

φ→ eiθaτ
a

φ =
1√
2

 0

v + h

 (1.16)

This is called the Unitary Gauge.

Let us expand (Dµφ )† (Dµφ) and the potential in the Unitary Gauge:

(Dµφ )† (Dµφ) =
1

2
(∂µh)2 +

1

8
g2

2(v + h)2
[
(W 1

µ)2 + (W 2
µ)2
]

+
1

8
(v + h)2(g2W

3
µ − g1Bµ)2. (1.17)

V = µ2h2 + λvh3 +
1

4
λh4. (1.18)

The Lagrangian then becomes

L = (Dµφ )† (Dµφ)− V (φ)

=
1

2
(
1

2
g2v)2

[
(W 1

µ)2 + (W 2
µ)2
]

+
1

2
(
1

2

√
g2

1 + g2
2v)2

[
(W 1

µ)2 + (W 2
µ)2
]

− µ2h2 − λvh3 − 1

4
λh4

+
1

8
g2

2(v2 + 2vh)
[
(W 1

µ)2 + (W 2
µ)2
]

+
1

8
(v2 + 2vh)(g2W

3
µ − g1Bµ)2 (1.19)

We can define three new gauge fields W±
µ and Zµ in the following way:

W±
µ =

1√
2

(W 1
µ ∓ iW 2), Zµ =

1√
g2

1 + g2
2

(g2W
3
µ − g1Bµ), (1.20)

6



and a gauge field Aµ orthogonal to Zµ

Aµ =
1√

g2
1 + g2

2

(g2W
3
µ + g1Bµ). (1.21)

Substituting these new fields in the Lagrangian, we obtain

L =
1

2
m2
WW

+µW+
µ +

1

2
m2
WW

−µW−
µ +

1

2
m2
ZZ

µZµ

− µ2h2 − λvh3 − 1

4
λh4

+ · · · (1.22)

where mW = 1
2
g2v, mZ = 1

2

√
g2

1 + g2
2v, and mh =

√
2µ. After the symmetry breaking,

the gauge fields W±
µ and Zµ acquire masses, while Aµ remains massless. We also obtain

a massive scalar field h. This is the Higgs boson in the SM.

It is conventional to define the weak mixing angle θw:

cos θw =
g2

g2
1 + g2

2

(1.23)

The fermions in the SM also receive masses from the spontaneous symmetry

breaking. We can introduce the following gauge invariant Yukawa terms in the La-

grangian:

LY ukawa = −yeLφeR − yuQLφ
†uR − ydQLφdR (1.24)

After the Higgs field φ acquires a VEV, the Yukawa terms become

LY ukawa = − 1√
2
yeveLeR −

1√
2
yuvuLuR −

1√
2
ydvdLdR + h.c.+ · · · (1.25)

The fermions receive standard mass terms:

me =
1√
2
yev, mu =

1√
2
yuv, md =

1√
2
ydv. (1.26)

The Higgs mechanism has generated the masses of the weak bosons W±, Z and

all the fermions in the SM. The gauge symmetries SU(2)L × U(1)Y are spontaneously

broken, while the eletromagnetic symmetry U(1)EM and color symmetry SU(3)C stay

unbroken.
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1.3 Theoretical Constraints on the Higgs Boson Mass

The mass of the Higgs boson is an unknown parameter in the SM. However,

there are some theoretical constraints on the Higgs mass. Below I outline the most

relevant constraints to my research.

1.3.1 Vacuum Stability Bound

As we have seen in the Higgs potential, if the quartic coupling λ is negative, the

vacuum is not stable since it has no minimum. In order to keep the Higgs potential

bounded from below, λ must remain positive up to the cut-off scale Λ at which SM

breaks down. This puts a lower bound on the Higgs boson mass, which depends on

the cut-off scale. This is called the vacuum stability bound. If one adopts the reduced

Planck scale (MP ' 2.4 × 1018 GeV) as the cut-off scale, the vacuum stability bound

is about 129 GeV.

1.3.2 Perturbativity Bound

On the other hand, the quartic coupling λ cannot be arbitrarily large since it

may spoil the perturbation theory in the SM. This has seen discussed with different

Higgs decays [8, 9]. For example, the partial Higgs decay width into gauge bosons is

given by [8]

Γtotal ' ΓBorn

[
1 + 3λ̂+ 62λ̂2 +O(λ̂3)

]
, (1.27)

where λ̂ = λ/(4π)2. If λ is too large so that the one loop term becomes close to the

Born term, i.e. 3λ̂ ∼ 1, the perturbative series will not converge.

Following Ref. [10], the perturbativity bound on the Higgs boson mass can be

calculated using the condition λ(Λ) = 4π, which corresponds to a two-loop correction

to βλ of about 50%. If one adopts the reduced Planck scale (MP ' 2.4× 1018 GeV) as

the cut-off scale, the perturbativity bound is about 175 GeV.
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1.4 Seesaw Mechanism

One problem in the SM is that neutrinos are massless. However, solar and at-

mospheric neutrino oscillation experiments have established that at least two neutrino

states are massive [4]. The seesaw mechanism is a simple and promising extension of

the SM to incorporate the neutrino masses and mixings observed in solar and atmo-

spheric neutrino oscillations. The key idea is to introduce a dimension-five operator

[11]:
y5LLφφ

MR

. (1.28)

This operator violates lepton number by two units, and generates Majorana masses

for neutrinos in the SM after spontaneous symmetry breaking. To achieve the correct

neutrino mass, the seesaw scale MR is required to be ∼ O(1015 GeV), if the Yukawa

coupling y5 is assumed to be of order 1. There are three main seesaw extensions

of the SM, type I [12], type II [13], and type III [14], in which singlet right-handed

neutrinos, SU(2) triplet scalar, and SU(2) triplet right-handed neutrinos, respectively,

are introduced to form a dimension-five operator. Below I outline type I and type III

seesaw mechanisms which are relevant to my research.

1.4.1 Type I Seesaw

The simplest way to form a dimension-five operator is to introduce right-handed

singlet fermions νR. The relevant terms in the Lagrangian are given by

Lν = −YνLφνR −MRνcRνR (1.29)

For simplicity, we can assume the three right-handed neutrinos are degenerate

in mass (MR). At energies below MR, the heavy right-handed neutrinos are integrated

out and the effective dimension-five operator can be generated. After electroweak

symmetry breaking, the light neutrino mass matrix is obtained as

Mν = mDM
−1
R mT

D, (1.30)

where mD = Yνv/
√

2 is the Dirac mass matrix for the neutrinos after the Higgs field

gets the VEV v. If one assumes MR � mD, the eigenvalues of Mν can be very small.

9



Therefore, the presence of heavy right-handed neutrinos will generate the light neutrino

masses in the SM, and this mechanism is called the seesaw mechanism. The scenario

where heavy right-handed singlet fermions are introduced is called the Type I seesaw.

1.4.2 Type III Seesaw

The basic structure of type III seesaw is similar to type I seesaw, except that

instead of the singlet right-handed neutrinos, three generations of fermions which trans-

forms as (3,0) under the electroweak gauge group SU(2)L × U(1)Y are introduced:

ΣR =
σi

2
Σi
R =

 Σ0
R/
√

2 Σ†R

Σ−R −Σ0
R/
√

2

 . (1.31)

With canonically normalized kinetic terms for the triplet fermions, we replace the SM-

singlet right-handed neutrinos of type I seesaw in Eq. (3.3) by these SU(2) triplet

fermions. The relevant terms in the Lagrangian are given by

LΣ = −L
√

2Y †ΣΣφ̃− φ̃Σ
√

2YΣL−
1

2
Tr
[
ΣMΣΣ

]
(1.32)

The light neutrino mass matrix via type III seesaw mechanism is obtained as

Mν = mDM
−1
Σ mT

D, (1.33)

where mD = YΣv/
√

2 is the Dirac mass matrix for the neutrinos after the Higgs field

gets the VEV v. Eq. (1.33) has the same form as Eq. (1.30). Therefore, the light

neutrino masses can be obtained if MΣ � mD. This is known as the Type III seesaw

mechanism.

1.5 Supersymmetry

The study of supersymmetry is motivated by solving the hierarchy problem in

the SM. The SM Higgs boson mass is subject to large quantum corrections due to its

interactions with other particles in the SM. For example, the correction from a fermion

is given by

∆m2
h = −

λ2
f

8π2
Λ2 + · · · , (1.34)
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where Λ is the cutoff scale at which SM breaks down and new physics appears to modify

the behavior of the theory. If Λ is the Planck mass MP , this quantum correction is

much larger the required Higgs boson mass mh ∼ O(100 GeV). One solution to this

problem is to propose there exists a scalar particle that couples to the Higgs field with

the term −λSh2S2. The Higgs boson mass will receive a correction from the scalar:

∆m2
h =

λS
16π2

[
Λ2 − 2m2

S ln

(
Λ

mS

)]
+ · · · (1.35)

If for each fermion in the SM, there exist two corresponding complex scalars with

λS = λ2
f , the terms proportional to Λ2 in Eq. (1.1) will be exactly canceled.

Supersymmetry is a proposed symmetry motivated by this solution. In super-

symmetry, a bosonic state can be transformed into a fermionic state, and vice versa.

Therefore, for each fermion / boson in the SM, we can introduce a superpartner with

spin differing by 1/2 unit, which serves to cancel the large quantum corrections to the

Higgs boson mass.

1.5.1 Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) is a minimal supersym-

metric extension to the SM. For each quark / lepton in the SM, there is a superpartner

called squark / slepton with spin 0. The W,B bosons (see section 1.2) and gluons have

superparters with spin 1
2
, and they are called winos, binos and gluinos. There are two

Higgs fields in the MSSM: hu and hd, which couple to the up type quarks and down

type quarks, respectively. Their spin 1
2

superparters are called Higgsinos. The particle

content of MSSM is shown in Table 1.3. The SM particle and its corresponding super-

partner form a supermultiplet. The supermultiplets in the MSSM are summarized in

Table 1.4. These supermultiplets can be described by the superfield in the superspace,

which we will discuss next.

1.5.2 Superfields and Lagrangian

It is very convenient to study supersymmetry using superspace and superfields.

A detailed discussion can be found in Ref. [6]. Superspace is an enlarged space with
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SM Particle Symbol Spin Superpartner Symbol Spin

Fermions
Quark qL, uR, dR

1
2

Squark q̃L, ũR, d̃R 0

Lepton lL, eR
1
2

Slepton l̃L, ẽR 0

Bosons

W boson W 1 Wino W̃ 1
2

B boson B 1 Bino B̃ 1
2

Gluon g 1 Gluino g̃ 1
2

Higgs bosons
Higgs hu 0 Higgsino h̃u

1
2

Higgs hd 0 Higgsino h̃d
1
2

Table 1.3: Particle content in the MSSM.

coordinates (xµ, θ
α, θ†α̇), where θα and θ†α̇ are complex anticommuting two-component

spinors. Each field in superspace is represented by these coordinates, i. e. Φ(xµ, θ
α, θ†α̇).

Such a field is called a superfield.

One can define a chiral superfield to describe the chiral supermultiplet in the

MSSM. The chiral covariant derivatives are defined as

Dα =
∂

∂θα
− i(σµθ†)α∂µ, D†α̇ = − ∂

∂θ†α̇
+ i(θσµ)α̇∂µ. (1.36)

where σµ is defined as:

σ0 =

 1 0

0 1

 , σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (1.37)

A chiral superfield Φ(x, θ, θ†) is a superfield satisfying the following constraint:

D†α̇Φ(x, θ, θ†) = 0. (1.38)

By solving Eq. (1.38), we can obtain the component form of the chiral superfield:

Φ(x, θ, θ†) = φ(x) + iθ†σµθ∂µφ(x) +
1

4
θθθ†θ†∂µ∂

µφ(x) +
√

2θψ(x)

− i√
2
θθθ†σµ∂µψ(x) + θθF (x), (1.39)
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Supermultiplet Fermionic State Bosonic State

Q qL q̃L

U uR ũR

D dR d̃R

L lL l̃L

E eR ẽR

Hu hu h̃u

Hd hd h̃d

W W W̃

B B B̃

G g g̃

Table 1.4: Supermultiplets in the MSSM.

where φ(x) is a complex scalar field, ψ(x) is a left-handed Weyl spinor (fermion) field,

and F (x) is an auxiliary field to keep supersymmetry algebra close off-shell. σµ is

defined as:

σ0 =

 1 0

0 1

 , σ1 =

 0 −1

−1 0

 , σ2 =

 0 i

−i 0

 , σ3 =

 −1 0

0 1

 . (1.40)

It is clear that a chiral superfield can be used to describe a chiral supermultiplet

which contains a chiral fermion ψ(x) and its scalar superpartner ψ(x).

Likewise, a vector superfield can be defined to represent the gauge supermul-

tiplet in the MSSM. A vector field V (x, θ, θ†) is a superfield satisfying the following

constraint:

V (x, θ, θ†) = V ∗(x, θ, θ†) (1.41)
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The component form is the vector superfield is

V (x, θ, θ†) = a+ θξ + θ†ξ† + θθb+ θ†θ†b∗ + θ†σµθAµ + θ†θ†θ(λ− i

2
σµ∂µξ

†)

+ θθθ†(λ† − i

2
σµ∂µξ) + θθθ†θ†(

1

2
D +

1

4
∂µ∂

µa). (1.42)

The vector superfield can be used to represent a guage supermultiplet which contains a

gauge boson Aµ and a gaugino λ. Like the chiral auxiliary field F , the gauge auxiliary

field D is needed in order that supersymmetry algebra is closed off-shell.

It turns out that the only term contributing to the Lagrangian from a vector

superfield is the D-term.

[V ]D =

∫
d2θd2θ† V (x, θ, θ†) =

1

2
D +

1

4
∂µ∂

µa. (1.43)

The term 1
4
∂µ∂

µa can be dropped in the Lagrangian since it is a total derivative.

The only term contributing to the Lagrangian from a chiral superfield is the

F -term.

[Φ]F =

∫
d2θΦ

∣∣∣
θ†=0

=

∫
d2θd2θ† δ(2)(θ†) Φ = F. (1.44)

To ensure the action is real, this contribution to the Lagrangian is always accompanied

by its complex conjugate:

[Φ]F + c.c. =

∫
d2θd2θ†

[
δ(2)(θ†) Φ + δ(2)(θ) Φ∗

]
. (1.45)

The Lagrangian for the chiral superfields in superspace is given by

L = [Φ∗iΦi]D + ([W (Φi)]F + c.c.) . (1.46)

Here W (Φi) is a holomorphic function of the chiral superfieds that is called superpo-

tential. Its form varies in different supersymmetric models. For example, in a simple

modeld called the Wess-Zumino model, the superpotential is defined as:

W =
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk. (1.47)

Note that the composite superfield Φ∗iΦi in Eq. (1.46) is a vector field since it satisfies

the constraint in Eq. (1.41).
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The Lagrangian for an Abelian gauge theory involving the chiral superfield and

the vector superfield is given by

L =
[
Φ∗ie2gqiV Φi

]
D

+ ([W (Φi)]F + c.c.) +
1

4
([GαGα]F + c.c.)− 2κ[V ]D (1.48)

Here qi is the U(1) charge carried by the chiral superfield Φi. Gα is the gauge-invariant

Abelian field strength superfield associated with the vector superfield V :

Gα = −1

4
D†D†DαV. (1.49)

κ is a dimensionless parameter and 2κ[V ]D is called the Fayet-Iliopoulos term. This

type of term can play a important role in spontaneous supersymmetry breaking.

The superpotential for the MSSM is given by

WMSSM = YuUQHu −YdDQHd −YeELHd + µHuHd . (1.50)

Yu,Yd, and Ye are dimensionless Yukawa coupling matrices. Q, U , D, L, E, Hu, and

Hd are the chiral superfields corresponding to the supermultiplets in Table 1.4. The

term µ has dimensions of [mass]. In order to accommodate a Higgs VEV of 175 GeV, µ

has to be of order 102 or 103 GeV. This is very unnatural, since there is no explanation

for why it is many orders of magnitude smaller than the Planck scale. This puzzle is

called “the µ problem”.

1.5.3 R-Parity and Matter Parity

There are other gauge invariant terms that are not included in the superpotential

in Eq. (1.50). For example, let us examine the following terms:

W =
1

2
λELL+ λ′DLQ+ µ′LHu +

1

2
λ′′UDD. (1.51)

These terms are all gauge invariant. However, the first three terms violate lepton

number by 1 unit, and the last term violates baryon number by 1 unit. Such terms

may cause serious problems in MSSM. For example, if λ′ and λ′′ were not suppressed,
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the lifetime of the proton would be extremely short. In order to avoid these terms, one

can define a quantum number called “matter parity”:

PM = (−1)3(B−L). (1.52)

With this definition, the quark and lepton supermultiplets will have PM = 1. The

gauge boson supermutilples do not carry baryon or lepton number, therefore they also

have PM = 1. The Higgs supermultiplets Hu and Hd have PM = −1. If one requires

that any term in the Lagragian in the MSSM must have PM = 1, the terms in Eq.(1.51)

are forbidden, while the terms in Eq. (1.50) are still allowed.

Another widely used parity is called the “R-parity”. It is defined as the follow-

ing:

PM = (−1)3(B−L)+2s. (1.53)

where s is the spin of the particle. Requiring R-parity conservation will have the

same effect on the Lagrangian as requiring matter parity conservation. However, the

advantage of R-parity is that all SM particles have PR = 1, while all their superpartners

have PR = −1. This is very useful in phenomenological studies at colliders.

1.5.4 Soft Supersymmetry Breaking

The fact that none of the superpartners of the SM particles has been discovered

so far indicates that supersymmetry must be a broken symmetry. One way to break

supersymmetry is to introduce the “soft” supersymmetry breaking terms. “Soft” means

that these terms do not disturb the cancellation of the quadratic divergences. To

avoid any correction to ∆m2
h that is proportional to Λ2, these terms can only contain

couplings with positive mass dimension. The soft supersymmetry breaking terms in

the MSSM are:

L MSSM
soft = −1

2

(
M1B̃B̃ +M2W̃W̃ +M3G̃G̃ + c.c.

)
−

(
au ũR q̃L hu − ad d̃R q̃L hd − ae ẽR l̃L hd + c.c.

)
− m2

Q q̃
†
L q̃L −m2

L l̃
†
L l̃L −m2

u ũ
†
R ũR −m2

d d̃
†
R d̃R −m2

e ẽ
†
L ẽL

− m2
Hu
h∗u hu −m2

Hd
h∗d hd − (b hu hd + c.c.) . (1.54)
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M1, M2, M3 are the bino, wino, gluino mass terms. au, ad, and ae are complex 3 × 3

matrices with dimensions of [mass]. m2
Q, m2

L, m2
u, m

2
d and m2

e are hermition 3 × 3

matrices. The last four terms contribute to the Higgs potential in the MSSM. These

terms break supersymmetry explicitly because they contain only scalars and gauginos

but not their superpartners. To provide a Higgs VEV of 175 GeV, we expect

M1, M2, M3, au, ad, ae ∼ msoft, (1.55)

m2
Q, m2

L, m2
u, m2

d, m2
e, m

2
Hu
, m2

Hd
, b ∼ m2

soft, (1.56)

with msoft not much greater than the TeV scale. This is a strong reason for many

theoretical physicists to believe that supersymmetry will be discovered at the LHC.

The MSSM introduces a large number (105) of new parameters to the ordinary

SM. This makes the phenomenological analysis on the MSSM very complicated. In

order to form more viable models, one can make various assumptions to reduce the

number of new parameters. For example, it is often assumed that the squark and

slepton squared-mass matrices are proportional to the 3× 3 identity matrix:

m2
Q = m2

QI3, m2
L = m2

LI3, m2
u = m2

uI3, m2
d = m2

dI3, m2
e = m2

eI3, (1.57)

and each (scalar)3 couplings matrix is proportional to the corresponding Yukawa cou-

pling matrix:

au = Au Yu, ad = Ad Yd, ae = Ae Ye. (1.58)

Au, Ad and Ae are called trilinear couplings. The b term is often assumed to be

proportional to the µ term.

b = B0µ. (1.59)

B0 is called bilinear coupling. These conditions can help minimize the flavor-changing

and CP-violating effects in the MSSM.

A well-studied minimal scenario is called the constrained MSSM (CMSSM) or

minimal Supergravity (mSUGRA) scenario. The assumptions in this model are the

following:
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• All gaugino masses are unified at the Grand Unification enerygy scale MGUT:

M1(MGUT) = M2(MGUT) = M3(MGUT) = m1/2. (1.60)

• All scalar masses are unified at MGUT:

m2
Q = m2

L = m2
u = m2

d = m2
e = m2

0, m2
Hu

= m2
Hd

= m2
0. (1.61)

• All trilinear couplings are unified at MGUT:

Au = Ad = Ae = A0. (1.62)

The values of µ and b are determined by two minimization conditions of the

two-Higgs doublet scalar potential. However, one still needs to specify the ratio of the

VEVs of the two neutral Higgs fields at low energy scale, as well as the sign of µ. This

leaves a total of four free parameters and an unknown sign:

m1/2, m0, A0, tan β, sign(µ). (1.63)

This framework has been used as a benchmark scenario in many phenomenological

studies on supersymmetry. It will also be discussed when I present my research results.
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Chapter 2

EXTENDED STANDARD MODEL WITH VECTOR LIKE FERMIONS

In this chapter we study the impact of vectorlike fermions on the SM Higgs mass

bounds [15]. Unification at MGUT ∼ 3 × 1016 GeV of the three SM gauge couplings

can be achieved by postulating the existence of a pair of vectorlike fermions carrying

SM charges and masses of order 300 GeV – 1 TeV. The presence of these fermions

significantly modifies the vacuum stability and perturbativity bounds on the mass of

the SM Higgs boson. The new vacuum stability bound in this extended SM is estimated

to be 117 GeV, to be compared with the SM prediction of about 128 GeV. An upper

bound of 190 GeV is obtained based on perturbativity arguments. The impact on these

predictions of type I seesaw physics is also discussed.

2.1 Introduction

Under a somewhat radical assumption that the next energy frontier lies at the

reduced Planck scale (MP ' 2.4 × 1018 GeV), it has been found that the SM Higgs

boson mass lies in the range 128 GeV . mH . 175 GeV [16]. Here the lower bound of

128 GeV on mH derives from arguments based on the stability of the SM vacuum. More

precisely, that the Higgs quartic coupling does not become negative at any scale between

MZ and MP . The upper bound of 175 GeV or so on mH stems from the requirement

that the Higgs quartic coupling remains perturbative and does not exceed 4π, say,

during its evolution between MZ and MP . Thus, it would appear that discovery of a

relatively ‘light’ Higgs boson (with mass well below 128 GeV) may signal the presence

of physics beyond the SM.

Supersymmetry is by far the most compelling extension of the SM and its min-

imal realization (MSSM) predicts a relatively ‘light’ SM–like Higgs boson with mass
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. 130 GeV. However, in the light of LHC, plausible alternatives to supersymmetry

deserve careful investigation. For instance, it was shown in [17] that the new physics

between MZ and MP associated with type II seesaw [13] around TeV scale or higher can

yield a ‘light’ Higgs boson with mass & 114.4 GeV, the LEP II bound. A ‘light’ Higgs

boson is also realized in scenarios of gauge–Higgs unification with a compactification

scale below MP [18].

In this chapter we revisit another extension of the SM, proposed several years

ago, in which new TeV scale vectorlike fermions are introduced in order to imple-

ment unification at some scale MGUT of the three SM gauge couplings [19]. The new

vectorlike fermions carry SM gauge quantum numbers and their presence therefore

modifies the SM Higgs mass bounds based on vacuum stability and perturbativity ar-

guments. In particular, by including only a pair of vectorlike fermions for which case

MGUT ' 3 × 1016 GeV, the vacuum stability bound can be lowered from its conven-

tional value of around 128 GeV to a significantly lower value of about 117 GeV. To

keep the discussion as realistic as possible, we also study the possible impact neutrino

oscillation physics could have on the Higgs mass predictions. We employ type I seesaw

for these considerations [12]. Note that a more complicated scenario containing several

new particles (including scalars) can yield MGUT 'MP , with a vacuum stability bound

as low as 114 GeV.

2.2 New Fermions and the Higgs Boson Mass

Let us start by introducing the following vectorlike fermions:

Q

(
3, 2,

1

6

)
+Q

(
3̄, 2,−1

6

)
+D

(
3, 1,

1

3

)
+D

(
3̄, 1,−1

3

)
, (2.1)

where the brackets contain the SU(3)c×SU(2)L×U(1)Y quantum numbers of the new

particles. The SM Lagrangian is supplemented by additional terms, and the relevant

ones are given by

Lnew = −κ1Q̄D̄Φc − κ2QDΦ− yi1QdciΦ− yi2qiDΦ− yi3QuciΦc −MF (Q̄Q+ D̄D)

+ h.c. (2.2)
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where Φ denotes the SM higgs doublet, Φc ≡ iσ2Φ∗ its charge conjugate, and we employ

the standard notation qi, u
c
i , d

c
i for the SM quarks, with i = 1, 2, 3. The parameters

yi1,2,3 and κ1,2 are dimensionless couplings. We assume, for simplicity, that the new

fermions have a common vectorlike mass MF . As pointed out in [20], most of the

yi1,2,3 couplings have to be very small due to constraints from the precision electroweak

data. To accommodate this, we will assume that the couplings yi1,2,3 are sufficiently

small so that they do not give a significant contribution in the RGE analysis. However,

the yi ′s allow the new fermions to decay into the SM particles, without creating any

cosmological problems.

There are constraints on the κ1,2 couplings and the masses of the new matter

fields. The most important ones arise from the S and T parameters which severely

limit the number of additional chiral generations. Consistent with these constraints,

one should therefore add new matter which is predominantly vectorlike. In the limit

where the vectorlike mass MF is much heavier than the chiral mass term (arising from

Yukawa coupling to the Higgs doublets), the contribution to the T parameter from a

single chiral fermion is given by [21]

δT ≈ N(κiv)2

10π sin2 θWm2
W

[(
κiv

MV

)2

+O

(
κiv

MV

)4
]
, (2.3)

where κi, i = 1, 2, are the Yukawa couplings in Eq. (2.2), v = 246.2 GeV is the vacuum

expectation value (VEV) of the Higgs field, and N counts the number of additional

SU(2) doublet pairs, which in our case is 3. From the precision electroweak data

T ≤ 0.06(0.14) at 95% CL for mH = 117 GeV (300 GeV) [22]. We will take δT < 0.1

as a conservative bound for our analysis. We see from Eq. (2.3) that with MF ∼ 500

GeV, the Yukawa couplings κi can be O(1).

For the SM gauge coupling we employ the two renormalization group equation

(RGE) [23] :

dgi
d lnµ

=
bi

16π2
g3
i +

g3
i

(16π2)2

(
3∑
j=1

Bijg
2
j − Ct

iy
2
t

)
, (2.4)
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where gi (i = 1, 2, 3) are the SM gauge couplings and yt is the top Yukawa coupling,

bSMi =

(
41

10
,−19

6
,−7

)
, BSM

ij =


199
50

27
10

44
5

9
10

35
6

12

11
10

9
2
−26

 , Ct
i =

(
17

10
,
3

2
, 2

)
. (2.5)

For a renormalization scale µ > MF , the beta function for gauge couplings receives an

additional contribution from the vectorlike fermions,

b′i =

(
2

5
, 2, 2

)
, B′ij =


3
50

3
10

8
5

1
10

49
2

8

1
5

3 114
3

 , Cκ1
i = Cκ2

i =

(
1

2
,
3

2
, 2

)
, (2.6)

where Cκ1
i and Cκ2

i stand for the contribution which is proportional to the κi coupling

in the two loop RGE for gauge couplings.

For the top Yukawa coupling, we have [23]

dyt
d lnµ

= yt

(
1

16π2
β

(1)
t +

1

(16π2)2
β

(2)
t

)
. (2.7)

Here the one-loop contribution is

β
(1)
t =

9

2
y2
t −

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

)
, (2.8)

while the two-loop contribution is given by

β
(2)
t = −12y4

t +

(
393

80
g2

1 +
225

16
g2

2 + 36g2
3

)
y2
t +

1187

600
g4

1 −
9

20
g2

1g
2
2

+
19

15
g2

1g
2
3 −

23

4
g4

2 + 9g2
2g

2
3 − 108g4

3 +
3

2
λ2 − 6λy2

t . (2.9)

In solving Eq. (2.7), the initial top Yukawa coupling at µ = Mt is determined from the

relation between the pole mass and the running Yukawa coupling [24, 25],

Mt ' mt(Mt)

(
1 +

4

3

α3(Mt)

π
+ 11

(
α3(Mt)

π

)2

−
(
mt(Mt)

2πv

)2
)
, (2.10)

with yt(Mt) =
√

2mt(Mt)/v and α3 ≡ g2
3/4π. Here, the second and third terms in

parentheses correspond to one- and two-loop QCD corrections, respectively, while the

22



fourth term comes from the electroweak corrections at one-loop level. The numerical

values of the third and fourth terms are comparable (their signs are opposite). The

electroweak corrections at two-loop level and the three-loop QCD corrections are both

comparable and of sufficiently small magnitude [25] to be safely ignored.

For a renormalization scale µ > MF , according to the Eq. (2.2), the beta

function for the top Yukawa coupling receives an additional contribution at one loop

level as follows:

δβ
(1)
t = 3(κ2

1 + κ2
2), (2.11)

and the additional two loop contributions are

δβ
(2)
t =

(
5

8
g2

1 +
45

8
g2

2 + 20g2
3

)
(κ2

1 + κ2
2)− 27

4
(κ4

1 + κ4
2)− 27

4
y2
t (κ

2
1 + κ2

2). (2.12)

The one and two loop RGEs for the Yukawa couplings κ1 and κ2 are given by

dκ1

d lnµ
= κ1

(
1

16π2
β(1)
κ1

+
1

(16π2)2
β(2)
κ1

)
. (2.13)

Here the one loop contribution is

β(1)
κ1

= −1

4
g2

1 −
9

4
g2

2 − 8g3 +
9

2
κ2

1 + 3κ2
2 + 3y2

t , (2.14)

while the two-loop contribution is given by

β(2)
κ1

= −127

600
g4

1 −
23

4
g4

2 − 108g4
3 −

27

20
g2

1g
2
2 +

31

15
g2

1g
2
3 + 9g2

2g
2
3 − 6λκ2

1

+

(
85

40
g2

1 +
45

8
g2

2 + 20g2
3

)
y2
t +

(
237

80
g2

1 +
225

16
g2

2 + 36g2
3

)
κ1

2 +
3

2
λ2

+

(
5

8
g2

1 +
45

8
g2

2 + 20g2
3

)
κ2

2 − 12κ4
1 −

27

4
(y4
t + κ4

2 + y2
t κ

2
1 + κ2

1κ
2
2). (2.15)

The RGE for the Yukawa coupling κ2 is obtained by making the replacement κ1 ↔ κ2

in Eqs. (2.13)-(2.15). This follows from the various quantum numbers listed in Eq.

(2.1). As previously mentioned, we are neglecting mixing terms involving the new

vectorlike particles and the SM ones.
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The RGE for the Higgs boson quartic coupling is given by [23]

dλ

d lnµ
=

1

16π2
β

(1)
λ +

1

(16π2)2
β

(2)
λ , (2.16)

with

β
(1)
λ = 12λ2 −

(
9

5
g2

1 + 9g2
2

)
λ+

9

4

(
3

25
g4

1 +
2

5
g2

1g
2
2 + g4

2

)
+ 12y2

t λ− 12y4
t , (2.17)

and

β
(2)
λ = −78λ3 + 18

(
3

5
g2

1 + 3g2
2

)
λ2 −

(
73

8
g4

2 −
117

20
g2

1g
2
2 −

1887

200
g4

1

)
λ− 3λy4

t

+
305

8
g6

2 −
867

120
g2

1g
4
2 −

1677

200
g4

1g
2
2 −

3411

1000
g6

1 − 64g2
3y

4
t −

16

5
g2

1y
4
t −

9

2
g4

2y
2
t

+10λ

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

)
y2
t −

3

5
g2

1

(
57

10
g2

1 − 21g2
2

)
y2
t − 72λ2y2

t

+60y6
t . (2.18)

We calculate the Higgs boson pole mass mH from the running Higgs quartic coupling

using the one-loop matching condition [26].

According to Eq. (2.2) there are additional contributions to the one and two

loop beta function for λ which are proportional to the κ1 and κ2 couplings. At one

loop we have

δβ
(1)
λ = 12(κ2

1 + κ2
2)λ− 12(κ4

1 + κ4
2), (2.19)

and for two loop

δβ
(2)
λ =

(
8

5
g2

1 − 64g2
3

)
(κ4

1 + κ4
2)− 9

2
g4

2(κ2
1 + κ2

2) + 10λ

(
1

4
g2

1 +
9

4
g2

2 + 8g2
3

)
(κ2

1 + κ2
2)

+
3

5
g2

1

(
3

2
g2

1 + 9g2
2

)
(κ2

1 + κ2
2)− 72λ2(κ2

1 + κ2
2)− 3λ(κ4

1 + κ4
2)

+60(κ6
1 + κ6

2). (2.20)

We next analyze the two loop RGEs numerically and show how the vacuum

stability and perturbativity bounds on the SM Higgs boson mass are altered in the

presence of the new TeV scale vectorlike particles.
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Figure 2.1: Gauge coupling evolution in the SM (left panel) and in the extended SM (right
panel). The vectorlike mass is set equal to 500 GeV and the gauge coupling
unification scale is MGUT ' 3× 1016 GeV.

We chose the cutoff scale to be MGUT, the scale at which the SM gauge couplings

are all equal. This choice is motivated by the following argument. Namely, we want

to have as much as possible model independent analysis and in the realistic GUT’s we

can have very different representation for fields. For instance there are many choice of

fileds to break GUT symmetry [27], or if one address the question of flavor structure

of fermions in the framework of GUT, or origin of neutrino mass and etc. Also it is

well known that in many GUT the cutoff scale has to be very close to the MGUT scale

doe to existence of big representation under the GUT gauge symmetry, for instance in

SO(10), E(6) etc.

We define the vacuum stability bound as the lowest Higgs boson mass obtained

from the running of the Higgs quartic coupling which satisfies the condition λ(µ) ≥ 0,

for any scale between MZ ≤ µ ≤MGUT. On the other hand, the perturbativity bound

is defined as the highest Higgs boson mass obtained from the running of the Higgs

quartic coupling with the condition λ(µ) ≤ 4π for any scale between MZ ≤ µ ≤MGUT.

In Figure 3.1, we present the evolution of the gauge couplings for the SM (left

panel) and for the extended SM (ESM) containing the vectorlike fermions Q+Q̄+D+D̄

(right panel). As noted in [19], in ESM model with new vectorlike fermions weighing

a 100 GeV or so, one can realize essentially perfect gauge coupling unification at some
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Figure 2.2: Evolution of the top Yukawa coupling in the SM (red dashed line) and in the
extended SM (blue solid line). The evolution of the SM Higgs quartic coupling
in the two cases are also displayed. We have set MF = 500 GeV and κi = 0.

scale MGUT. Furthermore, if we require gauge coupling unification at a level of around

1% or so, then the new vectorlike fermion mass should weigh less than a TeV. For

definiteness, we set MF = 500 GeV in our calculation. In this case the SM gauge

couplings are unified at MGUT ' 3×1016 GeV. As seen in Figure 3.1, the new vectorlike

particles help achieve unification by altering the slopes of the three gauge couplings.

In particular, the slope of α3 is changed and it becomes larger at MGUT in comparison

to the SM case. The evolution of the top Yukawa coupling is also affected and its value

is somewhat smaller at MGUT.

In Figure 3.2 we show how the evolution of the two-loop top Yukawa coupling

in ESM with MF = 500 GeV. The red dashed line stands for the SM case, and the

blue solid line corresponds to the ESM with κi = 0. We also present in Figure 3.2

the evolution of the Higgs quartic coupling. The red dashed line corresponds to the

vacuum stability bound for Higgs quartic coupling in the SM, and the blue solid line

corresponds to the quartic couplings in the ESM. We see that at MGUT, the top Yukawa

coupling in the ESM is smaller in comparison to the SM case. On the other hand, it

is well known that in the determination of the SM Higgs boson mass vacuum stability
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bound [16], a crucial role is played by the interplay between the top Yukawa coupling

and Higgs quartic coupling, which have comparable and dominant contributions in

the RGE for Higgs quartic coupling (See Eq. (2.17)). The negative sign contribution

from the top Yukawa coupling makes the Higgs quartic coupling smaller during the

evolution. This is how the lower bound for Higgs boson mass is obtained in the SM.

So, having in the model a smaller value at MGUT for the top Yukawa coupling means

having a milder contribution in the RGE for the Higgs quartic coupling, and this

explains why in ESM, somewhat smaller values for the Higgs quartic coupling1 can

satisfy the vacuum stability bound, compared to the SM. In ESM, the lower bound for

the SM Higgs boson mass using the one-loop matching condition [26] is found to be

mH = 117 GeV, close to the LEP bound of 114.4 GeV [29]. We estimate a theoretical

error in this prediction of about 2 GeV, which is in addition to the errors arising from

the experimental uncertainties in the determination of the top quark mass and α3 [30].

As mentioned earlier, the κi coupling in Eq. (2.2) can be O(1) if MF > 500

GeV. In Figure 3.3 we present the Higgs boson mass versus κi for varying MF scales.

For simplicity, we assume that κ ≡ κ1 = κ2. The upper solid blue and red curves

correspond to the Higgs perturbativity bound, and the lower dashed curves correspond

to the vacuum stability bound when the vectorlike particle mass is taken to be 500

GeV (dashed red) and 1 TeV (dashed blue). It is interesting to observe that the

perturbativity bound decreases as κ increases from zero to κ ≈ 0.6, and then increases

as the value of κ is increased further. We can easily understand this behavior at one

loop level. It arises from the interplay between the terms 12λ(κ2
1 +κ2

2) and −12(κ4
1 +κ4

2)

in Eq. (2.19). Up to κ ≈ 0.6, the term proportional to κ2λ dominates over the ∼ κ4

contribution. So, for κ ≤ 0.6, in the RGE in Eq. (2.16), we have an effective additional

contribution with the same sign as the λ coupling, which leads to the decrease of the

perturbativity bound. For κ ≥ 0.6 the ∼ κ4 contribution dominates compared to the

term κ2λ, and we have an effective additional contribution which has the same sign

1 A similar observation was made in ref. [28] when considering the type III seesaw
mechanism for neutrinos.
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Figure 2.3: Perturbativity (solid) and vacuum stability (dashed) bounds on the Higgs
boson pole mass (mH) versus κ(≡ κ1 = κ2), with vectorlike particle mass
MF = 500 GeV (red lines) and MF = 1 TeV (blue lines). The maximum value
for the perturbativity bound is mH ' 191 GeV when κ = 0.86. The lower
bound for the Higgs mass is mH ' 117 GeV, with κ = 0 and MF = 500 GeV.

contribution as the top quark in Eq. (2.16). This leads to an increasing perturbativity

bound as the κ coupling increases. Note that we have an upper bound κ = 0.86 for

MF = 500 GeV, and κ = 0.84 for MF = 1 TeV. This happens because either the top

Yukawa or κ coupling becomes nonperturbative before the GUT scale. Corresponding

to the upper bound for κ couplings, we have an upper bound on the Higgs mass:

mH = 191 GeV if MF = 500 GeV, and mH = 189 GeV if MF = 1 TeV.

We see in Figure 3.3 that the vacuum stability bound gradually increases as

the κ coupling increases. This happens because in the evolution of the Higgs quartic

coupling, corresponding to the vacuum stability bound, the contribution proportional

to the term −κ4 dominates over the κ2λ contribution for lower values of κ. So in the

RGE for the Higgs quartic coupling (see Eq. (2.16)) we have an additional contribution

with the same sign as the top quark. This leads to the explanation why the vacuum

stability bound increases when value of κ increases at low scale, and they eventually

merge with the vacuum stability bound. We obtain the following results for the Higgs
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mass corresponding to the vacuum stability bound: mH = 117 GeV when MF = 500

GeV, and mH = 119 GeV when MF = 1 TeV, with κ = 0.

2.3 Type I Seesaw and the Higgs Boson Mass

We next consider the impact of type I seesaw physics [12] on the Higgs mass

bounds found in the previous section. The terms relevant for neutrino oscillations

through type I seesaw are given by

Lν = −yijD li ν
c
j Φc − 1

2
M ij

R (νc)Ti νj + h.c., i, j = 1, 2, 3. (2.21)

Here li is the lepton doublet, νci the right handed neutrino, yijD is neutrino Yukawa

coupling and M ij
R denotes the right handed neutrino mass matrix.

Above the scale MR we have the following one loop RGE for Yν ≡ yijD,

dYν

d lnµ
=

1

16π2
Yν

(
3y2

t + tr
[
Y †ν Yν

]
+

3

2
Y †ν Yν −

(
9

20
g2

1 +
9

4
g2

2

))
. (2.22)

The various beta functions are modified as follows:

β
(1)
t → β

(1)
t + tr

[
Y †ν Yν

]
,

β(1)
κ1
→ β(1)

κ1
+ tr

[
Y †ν Yν

]
,

β(1)
κ2
→ β(1)

κ2
+ tr

[
Y †ν Yν

]
,

β
(1)
λ → β

(1)
λ + 4 tr[Y †ν Yν ]λ− 4 tr[(Y †ν Yν)

2]. (2.23)

It is certainly interesting to consider realistic cases of the neutrino mass matrix

and mixing which reproduce the current neutrino oscillation data. We will consider a

scenario in which the light neutrinos form a hierarchical mass spectrum. It was shown

in Ref. [28] that the impact on the SM Higgs boson mass from an inverted-hierarchial

neutrino mass spectrum is not significantly different from the hierarchial case.

The light neutrino mass matrix is diagonalized by a mixing matrix UMNS such

that

Mν =
v2

2M
Y TY = UMNSDνU

T
MNS, (2.24)
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with Dν = diag(m1,m2,m3), where we have assumed, for simplicity, that the Yukawa

matrix Yν is real. We further assume that the mixing matrix has the so-called tri-

bimaximal form [31]

UMNS =


√

2
3

√
1
3

0

−
√

1
6

√
1
3

√
1
2

−
√

1
6

√
1
3
−
√

1
2

 , (2.25)

which is in very good agreement with the current best fit values of the neutrino oscil-

lation data [32].

For the hierarchical case the diagonal neutrino mass matrix is given by

Dν ' diag(0,
√

∆m2
12,
√

∆m2
23). (2.26)

We fix the input values for the solar and atmospheric neutrino oscillation data as [32]

∆m2
12 = 8.2× 10−5 eV2,

∆m2
23 = 2.4× 10−3 eV2. (2.27)

Our finding are presented in Figure 3.4 where we plot the vacuum stability

(dashed) and perturbativity (solid) bound versus κ(≡ κ1 = κ2), with MF set equal to

500 GeV. We consider three distinct mass scales for the heavy right handed neutrinos,

namely, MR = 1013 GeV (red), 1014 GeV (blue) and 1015 GeV (green). The general

picture of the Higgs mass versus κ coupling is qualitatively the same as in Figure 3.3.

Only the initial values for the Higgs mass when κ = 0 is taken are changed depending

on the type I seesaw scale. According to Eq. (2.23) the Dirac neutrino Yukawa coupling

Yν gives an additional contribution to the Higgs quartic coupling RGE with the same

sign as the top quark contribution. It is natural to expect that the vacuum stability

bound will increase if the Yν coupling is increased. For MR = 1013 GeV, the vacuum

stability bound essentially coincides with the corresponding bounds in Figure 3.3. With

MR = 1014 GeV the vacuum stability bound is only slightly altered since Yν is still

not large at that scale in comparison to the top Yukawa coupling. For MR = 1015
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Figure 2.4: Perturbativity (solid) and vacuum stability (dashed) bounds on the Higgs
boson pole mass (mH) versus κ(≡ κ1 = κ2) in the extended SM, including type
I seesaw physics. We consider three different type I seesaw scales MR = 1013

GeV (red), 1014 GeV (blue) and 1015 GeV (green). For our calculation we
consider a hierarchical neutrino mass spectrum, and we set MF = 500 GeV.
The maximum and minimal values for the Higgs mass corresponding to the
perturbativity and vacuum stability bounds are the same as in Figure 3.3.

GeV we see a significant change in the vacuum stability bound since now the coupling

Yν is larger than the top Yukawa coupling, and the two of them together force the

Higgs quartic coupling at low scale to be larger in order to satisfy the vacuum stability

bound. Note that there is hardly any impact of type I seesaw on the perturbativity

bound. This is due to the fact that above the seesaw scale the Higgs quartic coupling

is already larger than Yν .

2.4 Conclusion

Following ref. [19], we have considered a plausible extension of the SM in which

new vectorlike fermions carrying SM quantum numbers and with masses of order 300

GeV – 1 TeV are introduced. This relatively modest extension of the SM, denoted by

ESM in the text, leads to a rather precise unification of the SM gauge couplings at

MGUT ∼ 3 × 1016 GeV, and it also gives rise to a vacuum stability bound on the SM
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Higgs mass of 117 GeV. The perturbativity bound on the Higgs mass is estimated to

lie close to 190 GeV. The new vectorlike fermions should be accessible at the LHC.
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Chapter 3

SEESAW EXTENDED STANDARD MODEL WITH NON-MINIMAL
GRAVITATIONAL COUPLING

In this chapter we examine the impact of the non-minimal gravitational coupling

on the SM Higgs mass bounds [33]. In the presence of non-minimal gravitational

coupling ξH†HR between the SM Higgs doublet H and the curvature scalar R, the

effective ultraviolet cutoff scale is given by Λ ≈ mP/ξ, where mP is the reduced Planck

mass, and ξ & 1 is a dimensionless coupling constant. In type I and type III seesaw

extended SM, which can naturally explain the observed solar and atmospheric neutrino

oscillations, we investigate the implications of this non-minimal gravitational coupling

for the SM Higgs boson mass bounds based on vacuum stability and perturbativity

arguments. A lower bound on the Higgs boson mass close to 120 GeV is realized with

type III seesaw and ξ ∼ 10− 103.

3.1 Introduction

In general, the non-minimal gravitational coupling between the SM Higgs dou-

blet and the curvature scalar,

ξH†HR, (3.1)

can be introduced in the SM. This coupling opens up a very intriguing scenario for

inflationary cosmology, namely, the possibility that the SM Higgs field may play the

role of inflation field, and this has been investigated in several recent papers [34]-[40].

As pointed out in [41], in the presence of the non-minimal gravitational coupling, it is

natural to identify the effective ultraviolet cutoff scale as

Λ ≈ mP

ξ
, (3.2)
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for ξ ≥ 1, rather than mP . Note that the cutoff may depend on the background field

value which in our case is of order the electroweak scale (see last refs. in [34] and [40]).

In this chapter, we extend previous work on the Higgs boson mass bounds in

type I and III seesaw extended SM [28] to the case with non-minimal gravitational

coupling. The ultraviolet cutoff scale is taken to be Λ = mP/ξ in our analysis. We

will show that the gravitational coupling as well as type I and III seesaw effects can

dramatically alter the vacuum stability and perturbativity bounds on the SM Higgs

boson mass. In particular, the vacuum stability bound on the Higgs boson mass can

be lowered to 120 GeV or so, significantly below the usual lower bound of about 128

GeV found in the absence of seesaw and with ξ = 0.

3.2 Non-Minimal Gravitational Coupling and Type I Seesaw Extended

Standard Model

In type I seesaw, three generations of SM-singlet right-handed neutrinos ψi(i =

1, 2, 3) are introduced. The relevant terms in the Lagrangian are given by

L ⊃ −yij`iψjH −MRψciψi, (3.3)

where `i is the i-th generation SM lepton doublet. For simplicity, we assume in this

paper that the three right-handed neutrinos are degenerate in mass (MR). At energies

below MR, the heavy right-handed neutrinos are integrated out and the effective dimen-

sion five operator is generated by the seesaw mechanism. After electroweak symmetry

breaking, the light neutrino mass matrix is obtained as

Mν =
v2

2MR

YT
ν Yν , (3.4)

where v = 246 GeV is the VEV of the Higgs doublet, and Yν = yij is a 3×3 Yukawa

matrix.
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For a renormalization scale µ < MR, the heavy fermions are decoupled, and

there is no effect on the RGEs for the SM couplings. However, in the presence of the

non-minimal gravitational coupling, a factor s(µ) defined as

s(µ) =
1 + ξµ2

m2
P

1 + (6ξ + 1) ξµ
2

m2
P

, (3.5)

is assigned to each term in the RGEs associated with the physical Higgs boson loop

corrections [34, 35, 38]. In our analysis, we employ 2-loop RGEs for the SM couplings.

Since the SM beta functions suitably modified with the s-factor are known only at 1-

loop level, we employ the beta functions with the s-factor for 1-loop corrections, while

the beta functions for 2-loop corrections are without the s-factor. We have checked

that the effects of the s-factor in beta functions for 2-loop corrections are negligible as

far as our final results are concerned [36].

The SM REGs with a renormalization scale µ < MR are presented in Chapter

2. The Higgs boson pole mass mH is determined through one-loop effective potential

improved by two-loop RGEs. The second derivative of the effective potential at the

potential minimum leads to [42]

m2
H = λζ2v2 +

3

64π2
ζ2v2

{
g4

2

(
log

g2
2ζ

2v2

4µ2
+

2

3

)
+

1

2

(
g2

2 +
3

5
g2

1

)2
[

log

(
g2

2 + 3
5
g2

1

)
ζ2v2

4µ2
+

2

3

]
− 8y4

t log
y2
t ζ

2v2

2µ2

}
, (3.6)

where ζ = exp
(
−
∫ µ
MZ

γ(µ)
µ
dµ
)

, with the anomalous dimension γ of the Higgs doublet

evaluated at two-loop level. All running parameters are evaluated at µ = mH , and the

Higgs boson mass is determined as the root of this equation. We have checked that

our results on the Higgs boson mass bounds for the SM case (ξ = 0 and MR → ∞)

coincide with the ones obtained in recent analysis [43].

For the renormalization scale µ ≥ MR, the SM RGEs should be modified to

include contributions from the singlet and triplet fermions in type I seesaw, so that

the RGE evolution of the Higgs quartic coupling is altered. For simplicity, we consider

only one-loop corrections from the heavy fermions.
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For µ ≥MR, the above RGEs are modified as

β
(1)
t → β

(1)
t + tr [Sν ] ,

β
(1)
λ → β

(1)
λ + 4tr [Sν ]λ− 4tr

[
Sν

2
]
, (3.7)

where Sν = Y†νYν , and its corresponding RGE is given by

16π2 dSν
d lnµ

= Sν

[
6y2

t + 2 tr [Sν ]−
(

9

10
g2

1 +
9

2
g2

2

)
+ (2 + s)Sν

]
. (3.8)

We analyze the RGEs numerically and show how the vacuum stability and per-

turbativity bounds on Higgs boson mass are altered in the presence of type I seesaw and

the non-minimal gravitational coupling. As previously noted, because of the gravita-

tional coupling, we set the ultraviolet cutoff as Λ = mP/ξ for ξ ≥ 1 (Λ = mP as usual if

ξ < 1). We define the vacuum stability bound as the lowest Higgs boson mass obtained

from the running of the Higgs quartic coupling which satisfies the condition λ(µ) ≥ 0

for any scale between mH ≤ µ ≤ Λ. On the other hand, the perturbativity bound is

defined as the highest Higgs boson mass obtained from the running of the Higgs quartic

coupling with the condition λ(µ) ≤ 4π for any scale between mH ≤ µ ≤ Λ.

In order to see the effects of the neutrino Yukawa coupling on the Higgs boson

mass bounds, we first examine a toy model with Yν = diag(0, 0, Yν). In Figure 3.1, the

vacuum stability and perturbativity bounds on Higgs boson mass as a function of ξ are

depicted for various Yν values and a fixed seesaw scale MR = 1013 GeV. The results

for the perturbativity bound are almost insensitive to Yν . On the other hand, for a

fixed ξ < mP/MR, the vacuum instability bound becomes larger, as Yν is increased.

For a fixed Yν , the vacuum instability bound becomes smaller, as ξ is increased. When

ξ > mP/MR or equivalently Λ < MR, the vacuum stability and perturbativity bounds

coincides with the SM ones with Λ, as expected. For a fixed cutoff scale Λ > MR,

the window for the Higgs boson mass between the vacuum stability and perturbative

bounds becomes narrower and is eventually closed as Yν becomes sufficiently large.

This behavior is shown in Figure 3.2 for various values of ξ. Increasing ξ widens the

Higgs mass window for a fixed Yν .
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Figure 3.1: Perturbativity and vacuum stability bounds on Higgs boson mass versus
ξ for various Yν and MR = 1013 GeV for type I seesaw. The gray lines
correspond to Yν = 0. The red, blue, green and purple lines correspond
to Yν = 0.6, 0.8, 1.0 and 1.2.
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Figure 3.2: Perturbativity and vacuum stability bounds on Higgs boson mass versus
Yν for various ξ and MR = 1013 GeV for type I seesaw. The red, blue,
green and purple lines correspond to ξ = 0, 10, 100 and 103. The gray
lines show the bounds in the SM case.

It is certainly interesting to consider more realistic cases which are compatible
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with the current neutrino oscillation data. The light neutrino mass matrix is diagonal-

ized by a mixing matrix UMNS such that

Mν =
v2

2MR

Sν = UMNSDνU
T
MNS, (3.9)

with Dν = diag(m1,m2,m3), where we have assumed, for simplicity, that the Yukawa

matrix Yν is real. We further assume that the mixing matrix has the so-called tri-

bimaximal form [31],

UMNS =


√

2
3

√
1
3

0

−
√

1
6

√
1
3

√
1
2

−
√

1
6

√
1
3
−
√

1
2

 , (3.10)

which is in very good agreement with the current best fit values of the neutrino oscilla-

tion data [32]. Let us consider two examples for the light neutrino mass spectrum, the

hierarchical case and the inverted-hierarchical case. In the hierarchical case, we have

Dν ' diag(0,
√

∆m2
12,
√

∆m2
23), (3.11)

while for the inverted-hierarchical case, we choose

Dν ' diag(
√
−∆m2

12 + ∆m2
23,
√

∆m2
23, 0). (3.12)

We fix the input values for the solar and atmospheric neutrino oscillation data as [32]

∆m2
12 = 8.2× 10−5 eV2,

∆m2
23 = 2.4× 10−3 eV2. (3.13)

From Eqs. (3.9)-(3.13), we can obtain the matrix

Sν = Y†νYν = YT
ν Yν =

2MR

v2
UMNSDνU

T
MNS. (3.14)

For a given value of MR, we obtain a concrete 3×3 matrix at the MR scale, which

is used as an input in the RGE analysis. The windows for the Higgs boson pole mass

for the hierarchical and inverted-hierarchical cases are shown in Figures 3.3 and 3.4,
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Figure 3.3: Perturbativity and vacuum stability bounds on Higgs boson mass versus
MR with a hierarchical mass spectrum for type I seesaw. The red, blue,
green and purple lines correspond to ξ = 0, 10, 100 and 103. The gray
lines show the bounds in the SM case.
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Figure 3.4: Perturbativity and vacuum stability bounds on Higgs boson mass versus
MR with an inverted hierarchical mass spectrum for type I seesaw. The
red, blue, green and purple lines correspond to ξ = 0, 10, 100 and 103.
The gray lines show the bounds in the SM case.

respectively. As MR or equivalently the Yukawa couplings become large, the window

for the Higgs boson mass becomes narrower and is eventually closed for a fixed ξ. In
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plots for large values of ξ, the Higgs boson mass window first narrows, but opens up

again, as MR is increased. This is because MR becomes larger than Λ for a sufficiently

large ξ.

3.3 Non-Minimal Gravitational Coupling and Type III Seesaw Extended

Standard Model

The basic structure of type III seesaw is similar to type I seesaw, except that

instead of the singlet right-handed neutrinos, three generations of fermions which trans-

forms as (3, 0) under the electroweak gauge group SU(2)L×U(1)Y are introduced:

ψi =
∑
a

σa

2
ψai =

1

2

 ψ0
i

√
2ψ+

i
√

2ψ−i −ψ0
i

 . (3.15)

With canonically normalized kinetic terms for the triplet fermions, we replace the SM-

singlet right-handed neutrinos of type I seesaw in Eq. (3.3) by these SU(2) triplet

fermions. Assuming degenerate masses (MR) for the three triplet fermions, the light

neutrino mass matrix via type III seesaw mechanism is obtained as

Mν =
v2

8MR

YT
ν Yν . (3.16)

The analysis is analogous to the type I seesaw case. For µ ≥MR, the RGEs are

modified as [28]

β
(1)
t → β

(1)
t +

3

4
tr [Sν ] ,

β
(1)
λ → β

(1)
λ + 3tr [Sν ]λ−

5

4
tr
[
Sν

2
]
. (3.17)

The RGE for Sν is given by

16π2 dSν
d lnµ

= Sν

[
6y2

t +
3

2
tr [Sν ]−

(
9

10
g2

1 +
33

2
g2

2

)
+

3 + 2s

4
Sν

]
. (3.18)

In addition, in type III seesaw, the one-loop beta function coefficient of the SM SU(2)

gauge coupling is modified as −(39 − s)/12 → (9 + s)/12 in the presence of SU(2)

triplet fermions.

40



1 2 3 4 5 6

120

140

160

180

200

Log10Ξ

m
H
HG

eV
L

Figure 3.5: Perturbativity and vacuum stability bounds on Higgs boson mass versus
ξ for various Yν and MR = 1013 GeV for type III seesaw. The gray lines
correspond to Yν = 0. The red, blue, green and purple lines correspond
to Yν = 0.6, 0.8, 1.0 and 1.2.

We first examine the toy model for type III seesaw with MR = 1013 GeV. The

results are depicted in Figure 3.5, which corresponds to Figure 3.1 for type I seesaw.

We can see results similar to those presented in Figure 3.1. The window for the Higgs

boson mass between the vacuum stability and perturbativity bounds is shown in Figure

3.6 for various ξ values, corresponding to Figure 3.2 for type I seesaw.

In a more realistic case, we repeat the same analysis as in type I seesaw, except

for a factor difference in the definition of the light neutrino mass matrix in type III

seesaw, Mν = v2

8MR
Sν . The windows for the Higgs boson pole mass for the hierarchical

and inverted-hierarchical cases are shown in Figures 3.7 and 3.8, respectively. For large

MR, we can see behavior similar to Figures 3.3 and 3.4 for type I seesaw. However,

note that for low MR values, the Higgs boson mass bounds with type III seesaw are

different from the SM ones and the range of the Higgs boson mass window is enlarged,

as pointed out in [28] . In particular, a relatively light Higgs boson mass close to 120

GeV is now possible. This result can be qualitatively understood in the following way.

The presence of the triplet fermions significantly alters the RGE running of the SU(2)L
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Figure 3.6: Perturbativity and vacuum stability bounds on Higgs boson mass versus
Yν for various ξ and MR = 1013 GeV for type III seesaw. The red, blue,
green and purple lines correspond to ξ = 0, 10, 100 and 103. The gray
lines show the bounds in the SM case.

gauge coupling by making it asymptotically non-free, so that g2(µ) for µ > MR is larger

than the SM value without type III seesaw. In the analysis of the stability bound, the

Higgs quartic coupling is small, and the one-loop beta function of the Higgs quartic

coupling can be approximated as (see Eq. (2.17))

β
(1)
λ '

1

16π2

[
9

4

(
3

25
g4

1 +
2

5
g2

1g
2
2 + g4

2

)
− 12y4

t

]
. (3.19)

Since the first term on the right hand side is larger in type III seesaw than in the SM

case, the Higgs quartic coupling decreases more slowly than in the SM. Consequently,

the stability bound on the Higgs boson mass is lowered. For the perturbativity bound,

the Higgs quartic coupling is large and the one-loop beta function can be approximated

by

β
(1)
λ '

1

16π2

[
(3 + 9s2)λ2 −

(
9

5
g2

1 + 9g2
2

)
λ+ 12y2

t λ− 12y4
t

]
. (3.20)

The beta function is smaller than the SM one due to the second term. Therefore, the

evolution of the Higgs quartic coupling is slower, and as a result, the Higgs boson mass

based on the perturbative bound is somewhat larger than the SM one.
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Figure 3.7: Perturbativity and vacuum stability bounds on Higgs boson mass versus
MR with a hierarchical mass spectrum for type III seesaw. The red, blue,
green and purple lines correspond to ξ = 0, 10, 100 and 103. The gray
lines show the bounds in the SM case.
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Figure 3.8: Perturbativity and vacuum stability bounds on Higgs boson mass versus
MR with an inverted hierarchical mass spectrum for type III seesaw. The
red, blue, green and purple lines correspond to ξ = 0, 10, 100 and 103.
The gray lines show the bounds in the SM case.

Finally, we note that with type III seesaw, the lower bound on the SM Higgs
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mass is approximately given by

mH ≥ 121.4 GeV + 3.0 GeV

(
Mt − 173.1 GeV

1.3 GeV

)
−2.6 GeV

(
αS(MZ)− 0.1193

0.0028

)
. (3.21)

This is to be compared with a lower bound close to 128 GeV in the absence of type III

seesaw.

3.4 Conclusion

We have considered the potential impacts of type I and III seesaw on the vacuum

stability and perturbativity bounds on the Higgs boson mass in the presence of the non-

minimal gravitational coupling, with an effective ultraviolet cutoff scale Λ = mP/ξ for

ξ ≥ 1. For energies higher than the seesaw scale, the heavy fermions introduced in

type I and III seesaw are involved in loop corrections and the RGEs of the SM are

modified. As a consequence, the vacuum stability and perturbativity bounds on the

Higgs boson mass are altered. We have found that for a fixed ξ, as the neutrino Yukawa

couplings are increased, the vacuum stability bound grows and eventually merges with

the perturbativity bound. Therefore, the Higgs boson mass window is closed at some

large Yukawa couplings with a fixed seesaw scale, or some high seesaw scale by fixing

the light neutrino mass scale. For a fixed neutrino Yukawa coupling or a fixed seesaw

scale, the Higgs boson mass window is enlarged as ξ is increased or equivalently the

effective cutoff scale is lowered. A large neutrino Yukawa coupling or equivalently a

large seesaw scale affects in similar ways the Higgs mass bounds in both type I and

III seesaw. However, with type III seesaw, there is significant lowering of the Higgs

mass due to modification of the RGE evolution of the SU(2)L gauge coupling even if

the neutrino Yukawa couplings are negligible. For a low seesaw scale, the Higgs boson

mass window between the vacuum stability and perturbative bounds turns out to be

wider than the SM one. This is in contrast with type I seesaw where the Higgs boson

mass bounds in the SM are reproduced in the small Yukawa coupling limit. We have
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shown that in type III seesaw, the vacuum stability bound on Higgs mass can be close

to the current Higgs mass lower bound of 114.4 GeV [29].
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Chapter 4

HIGGS MASS IN NMSSM WITH INVERSE SEESAW

In this chapter we consider extensions of the next-to-minimal supersymmetric

model (NMSSM) in which the observed neutrino masses are generated through a TeV

scale inverse seesaw mechanism [44]. The new particles associated with this mechanism

can have sizable couplings to the Higgs field which can yield a large contribution to

the mass of the lightest CP-even Higgs boson. With this new contribution, a 126

GeV Higgs is possible along with order of 200 GeV masses for the stop quarks for a

broad range of tan β. The Higgs production and decay in the diphoton channel can be

enhanced due to this new contribution. It is also possible to solve the little hierarchy

problem in this model without invoking a maximal value for the NMSSM trilinear

coupling and without severe restrictions on the value of tan β.

4.1 Introduction

In 2012, the ATLAS and CMS Collaborations at the Large Hadron Collider

(LHC) independently reported the discovery [45, 46] of a particle with production and

decay modes that appear more or less consistent with the Standard Model (SM) Higgs

boson of mass mh ≈ 126 GeV. In addition to the Higgs discovery, both experiments

reported an excess in Higgs production and decay in the diphoton channel, around

1.4 − 2 times larger than the SM expectations. These results nevertheless serve as

strong motivation to investigate possible extensions of the SM where a possible signal

in the diphoton channel could be enhanced compared to the SM.

The minimal supersymmetric standard model (MSSM) [47] can accommodate

values of mh ∼ 126 GeV, but this requires either a very large, O(few − 10) TeV, stop

quark mass [48], or a large soft supersymmetry breaking (SSB) trilinear A-term, with
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a stop quark mass of around a TeV [49]. Such a heavy stop quark leads to the so-

called “little hierarchy” problem [50] because, in implementing radiative electroweak

symmetry breaking, TeV scale quantities must conspire to yield the electroweak mass

scale.

On the other hand, in the next-to-minimal supersymmetric standard model

(NMSSM), the Higgs mass can be raised significantly through a tree level contribution

to the Higgs potential [51]. Therefore, the NMSSM can alleviate the little hierarchy

problem, and a 126 GeV Higgs mass can be realized with less fine-tuning. In Ref. [52]

it was shown that in order to accommodate a 126 GeV Higgs mass with only a few

percent fine-tuning, the NMSSM is pushed to the edge of its parameter space, with

tan β . 2 and λ ∼ 0.7. Here tan β is the ratio of the vacuum expectation values

(VEVs) of the up (Hu) and down (Hd) MSSM Higgs doublets. The parameter λ is the

dimensionless coupling associated with the interaction HuHdS, where S is a MSSM

gauge singlet field. Note that assuming non-universal gaugino masses at the GUT

scale, one can also alleviate the little hierarchy problem [53], but we will not discuss

this possibility.

Furthermore, in the framework of the NMSSM, Higgs production and decay in

the diphoton channel can be enhanced with respect to the SM prediction due to the

doublet-singlet mixing in the Higgs sector [52, 54]. It has been shown that to comply

with the ATLAS and CMS results, a large stop mass still cannot be avoided. Besides,

the couplings (λ, κ, yt) are all of O(1) at the GUT scale, which are close to the Landau

pole.1 Here κ is the dimensionless coupling corresponding to the S3 interaction and yt

is the top Yukawa coupling.

Inspired by recent studies on the NMSSM and the results from ATLAS and

CMS, we consider an extension of the NMSSM which has previously been used to

explain the origin of neutrino masses. In Ref. [56], in particular, it was shown that in

the NMSSM the observed neutrino masses and mixings can be described in terms of

1 The possible impact of non-perturbative couplings has also received attention. For
an example, see Ref. [55].

47



dimension six, rather than dimension five, operators. All such operators respect the

discrete Z3 symmetries of the model. The new particles associated with the inverse

seesaw mechanism [57] can have sizable couplings to the Higgs boson, even with the

seesaw scale of around a TeV. This, as we will show, enables the Higgs boson mass

to be 126 GeV, without invoking sizable contributions from the stop quark as well as

keeping the λ and κ couplings relatively small. With relatively light stop quarks in

the spectrum one can enhance the diphoton production relative to the SM prediction

[58, 59, 60].

4.2 Higgs Boson Mass in MSSM and NMSSM

The NMSSM is obtained by adding to the MSSM a gauge singlet chiral superfield

S (with even Z2 matter parity) and including the following superpotential terms:

W ⊃ λSHuHd +
κ

3
S3, (4.1)

where λ and κ are dimensionless constants, and Hu, Hd denote the MSSM Higgs

doublets. A discrete Z3 symmetry under which S carries a unit charge ω = ei2π/3

is introduced in order to eliminate terms from the superpotential that are linear and

quadratic in S, as well as the MSSM µ term. We also need the Z3 symmetry to forbid

dangerous tadpole terms in the potential which can revive the gauge hierarchy problem

in the theory. On the other hand, once the S field develops a VEV, the Z3 symmetry is

spontaneously broken which can cause the domain wall problem. In order to circumvent

this problem, as pointed out in Ref. [61], suitable higher dimensional operators can

be introduced in the superpotential which explicitly break the Z3 symmetry, thereby

lifting the degeneracy between three discrete vacua. Note that these Z3 violating

higher dimensional operators (S7/M4
Pl), where MPl denotes the Planck mass, are quite

different in form from the effective seesaw operators which we will discuss. The higher

dimensional operators which generate neutrino masses are Z3 invariant.

In order to assign the Z3 charges we require the presence of Yukawa couplings

at the renormalizable level. There are several possible Z3 charge assignments for the
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matter superfields presented in Ref. [56] that are consistent with this requirement.

We consider those cases (see Table 4.1) which lead to the dimension six (inverse)

seesaw operator for neutrinos. Later, we will briefly discuss the dimension seven seesaw

operators and their implications for the Higgs boson mass. We employ the standard

notation for the superfields in Table 4.1. Family indices are omitted for simplicity.

Q U c Dc L Ec Hu Hd S

case I Z3 1 ω2 ω2 1 ω2 ω ω ω

case II Z3 1 ω 1 ω2 ω ω2 1 ω

case III Z3 1 1 ω ω 1 1 ω2 ω

Table 4.1: Z3 charge assignments of the NMSSM superfields corresponding to dimen-
sion six operators for neutrino masses. Here ω = ei2π/3.

The Z3 charge assignments presented in Table 4.1 lead to the following effective

operator for neutrino masses and mixing:

LLHuHuS

M2
6

, (4.2)

where M6 denotes the appropriate seesaw mass scale. As we will show in the next

section, this operator can be generated from the renormalizable superpotential by just

integrating out the heavy (O(TeV)) fields. In section 4.3.1 we consider the gauge singlet

case, and in section 4.3.2 we replace the gauge singlet field with an SU(2)L triplet field.

We will also show later that the new TeV scale fields will affect the lightest CP-even

Higgs mass bound. Before studying this new contribution to the lightest CP-even Higgs

boson mass, we briefly summarize the Higgs mass bound in the MSSM and NMSSM.

The upper limit on the lightest CP-even Higgs boson mass in the NMSSM is

given by [62][
m2
h

]
NMSSM

= M2
Z

(
cos2 2β +

2λ2

g2
1 + g2

2

sin2 2β

)(
1− 3

8π2
y2
t t

)
+

3

4π2
y2
tm

2
t sin2 β

[
1

2
X̃t + t+

1

(4π)2

(
3

2
y2
t − 32παs

)
×

(
X̃t + t

)
t
]
, (4.3)
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where

t = log

(
M2

S

M2
t

)
, X̃t =

2Ã2
t

M2
S

(
1− Ã2

t

12M2
S

)
, Ãt = At − λ〈S〉 cot β. (4.4)

At is the top trilinear soft term, and 〈S〉 denotes the vacuum expectation value (VEV)

of the singlet field. Also, g1 and g2 denote the U(1)Y and the SU(2)L gauge couplings,

Mt = 173.2 GeV is the top quark pole mass, MS =
√
mt̃L

mt̃R
denotes the SUSY

scale, and t̃L and t̃R are the left and right handed stop quarks. Notice that we assume

tan β < 50, since for larger tan β values there can be additional contributions in Eq.

(4.3) which may reduce the Higgs mass [51]. An approximate error of ±3 GeV in the

Higgs mass calculation is assumed, which largely arises from theoretical uncertainties

[63] and simplifications in the calculation of the Higgs mass formula in Eq. (4.3). The

upper bound on λ at the weak scale depends on tan β. In general, it cannot be greater

than ∼ 0.7, if we require that λ remains perturbative up to the MGUT scale [62].

Note that the main difference in the expression (see Eq. (4.3)) for the light-

est CP-even Higgs mass between the NMSSM and the MSSM theory is the term

2λ2 sin2(2β)/(g2
1 + g2

2). Therefore, the maximum value of the lightest CP-even Higgs

mass in the NMSSM is obtained for smaller value of tan β.

In Figure 4.1 we show our results in the mh versus tan β planes. For comparison,

we have chosen two different SUSY scales, MS = 1 TeV (left panel) and MS = 200

GeV (right panel), and the maximum value of the coupling λ is used. The red lines

correspond to the NMSSM case, whereas the blue lines correspond to the MSSM case.

The solid lines show the Higgs mass bounds for X̃t = 6, while the dashed lines show the

bounds for X̃t = 0. The gray band shows the Higgs mass range of 126±3 GeV. We can

see that in order to obtain a 126 GeV Higgs in the MSSM, we need to have MS > 1 TeV

with maximal mixing. In the NMSSM, due to the additional contributions proportional

to λ, for tan β = 2 one can easily get a 126 GeV Higgs mass even for MS = 200 GeV.

However, without maximal mixing in the stop sector it is hard, even in the NMSSM,

to generate a 126 GeV Higgs mass with MS < 1 TeV.
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Figure 4.1: Upper bounds on the lightest CP-even Higgs boson mass versus tan β, for
MS = 1 TeV (left panel) and MS = 200 GeV (right panel). Maximum
value of λ is used. Red lines correspond to the NMSSM, and blue lines
correspond to the MSSM. The solid lines show the Higgs mass bounds
for X̃t = 6, while the dashed lines show the bounds with X̃t = 0. The
gray band shows the Higgs mass range of 126± 3 GeV.

4.3 Inverse Seesaw and Higgs Boson Mass

4.3.1 NMSSM + Gauge Singlet field

As shown in Ref. [56], one can incorporate the observed solar and atmospheric

neutrino oscillations in the NMSSM by introducing an effective dimension six operator

for neutrino masses and mixings. The simplest way to generate this operator is to

introduce the gauge singlet chiral superfields (N c
n + Nn) in the NMSSM with charges

listed in Table 4.2. This charge assignment corresponds to the so-called case I in Table

4.1. It is straightforward to find the Z3 charge assignments for N c
n + Nn for other

cases given in Table 4.1, but this will not lead to any new phenomena compared to

case I. Because of this we will not consider here the other cases presented in Table 4.1.

Since the new chiral superfields are gauge singlets, they will preserve gauge coupling

unification which is one of the nice features of supersymmetry.

The renormalizable superpotential terms involving only the new chiral super-

fields are given by

W ⊃ yNniN
c
n(HuLi) +

λNnm

2
SNnNm +mnmN

c
nNm. (4.5)
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SU(3)c SU(2)L U(1)Y Z3 Z2

N c
n 1 1 0 ω2 −

Nn 1 1 0 ω −

Table 4.2: Charge assignments of N c
n + Nn superfields for case I. Here ω = ei2π/3,

n denotes the number of gauge singlet (N c
n +Nn) pairs, and Z2 is matter

parity.

Here i runs from 1 to 3 and denotes the family index, while n and m denote the number

of pairs of new fields which we consider, and can be from zero (just the NMSSM case)

up to 3. For mnm larger than the electroweak scale, we can integrate out the N c
n and

Nn fields and generate the effective non-renormalizable operators for neutrino masses

presented in Eq. (4.2). Following the electroweak symmetry breaking, the neutrino

Majorana mass matrix is generated:

mν =
(Y T

N YN)vu
2

M6

× λN〈S〉
M6

. (4.6)

For simplicity, we take mij = M6δij, YN ≡ yij, and (λN)ij = λNδij. vu is the VEV of

the Hu Higgs doublet and 〈S〉, the VEV of S field, is around the TeV scale.2 Eq. (4.6)

implies that even if YN ∼ O(1) and MS ∼ 1 TeV, the correct mass scale for the light

neutrinos can be reproduced by suitably adjusting λN .

From Eq. (4.5), the additional contribution to the lightest CP-even Higgs mass

is given by[
m2
h

]
N

= n×
[
−M2

Z cos2 2β

(
1

8π2
Y 2
N tN

)
+

1

4π2
Y 4
Nv

2 sin2 β

(
1

2
X̃YN + tN

)]
, (4.7)

where

tN = log

(
M2

S +M2
6

M2
6

)
, X̃YN =

4Ã2
YN

(3M2
S + 2M2

6 )− Ã4
YN
− 8M2

SM
2
6 − 10M4

S

6 (M2
S +M2

6 )
2 , (4.8)

and

ÃYN = AYN − YN〈S〉 cot β. (4.9)

2 The smallness of M6 can be understood using dimension 5 operator for mass gener-
ation. For an example, see Ref. [64].
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Figure 4.2: Upper bounds on the lightest CP-even Higgs boson mass versus tan β,
with MS = 300 GeV, M6 = 3 TeV, X̃YN = 4. Maximum value of λ is
used. Red lines correspond to NMSSM, while blue lines correspond to
NMSSM with one additional pair of (N c

n + Nn) singlets. Purple lines
correspond to NMSSM with 3 additional pairs of (N c

n + Nn) singlets.
In both cases YN = 0.7. The solid lines show the Higgs mass bounds
with X̃t = 6, while the dashed lines show the bounds with X̃t = 0. For
reference the gray band shows the Higgs mass range of 126± 3 GeV.

AYN is the trilinear N c−L soft mixing parameter and n is the number of pairs of new

singlets. v = 174.1 GeV is the electroweak VEV. Note that the expression in Eq. (4.5)

is very similar to what was presented in Ref. [65].

To see how these new, (N c
n +Nn), singlets can affect the lightest CP-even Higgs

mass, we plot the upper bounds on the lightest CP-even Higgs mass versus tan β for

n = 1 and 3 in Figure 4.2. We choose MS = 300 GeV for all cases in order to minimize

the stop quark contribution to the Higgs boson mass. M6 = 3 TeV and YN = 0.7 are

used. Compared to the NMSSM bound, the Higgs mass can be increased by up to 5

GeV or so. To maximize the effect coming from the new field we choose the maximal

value X̃YN = 4. For n = 3, the upper bound for the Higgs mass becomes as large as 140

GeV for tan β ≈ 2, and asymptotically approaches mh ≈ 126 GeV for large tan β. This

indicates that we are able to accommodate a Higgs mass of around 126 GeV even with
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Figure 4.3: Upper bounds on the lightest CP-even Higgs boson mass versus tan β,
with MS = 300 GeV, M6 = 3 TeV, X̃t = 6, X̃YN = 4, YN = 0.7 and
λ = 0.1. Red dashed line corresponds to NMSSM. Blue, purple and
black solid lines (from bottom to top) correspond to NMSSM+singlets
with n=1, 2 and 3. For reference the gray band shows the Higgs mass
range of 126± 3 GeV.

relatively small values of λ and YN . Therefore, we can conclude that in the NMSSM

with the inverse seesaw mechanism for neutrinos, we can have relatively light O(300)

GeV stop quarks. This can be achieved without invoking maximal values for the λ or

YN couplings, and without imposing severe restrictions on the values of tan β.

In order to show how small the coupling λ can be, we consider the case with

λ = 0.1, MS = 300 GeV and YN = 0.7. The main reason for choosing λ = 0.1 is that

in this case the contribution from λ to the lightest CP-even Higgs mass is negligible,

and the results are applicable to the MSSM case as well. Figure 4.3 shows the upper

bounds on the Higgs mass versus tan β for varying numbers of N c
n+Nn pairs. Note that

in order to reproduce the neutrino oscillation data, we need to introduce at least two

pairs of N c
n and Nn. However, for completeness, we have shown the bounds with n =1,

2 and 3 in Figure 4.3. We can see from Figure 4.3 that in the MSSM and NMSSM, an

inverse seesaw can make it very easy to generate mh = 126 GeV. In this case we do
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not require very heavy stop quarks, or large value of λ, or a very restrictive value in

the NMSSM of tan β ≈ 2 .

Table 4.3 presents upper bounds on the Higgs masses for varying numbers of

(N c
n+Nn) singlets. n = 0 corresponds to NMSSM/MSSM without inverse seesaw. The

Higgs mass has been calculated using the input values tan β = 30, λ = 0.1, X̃t = 6,

X̃YN = 4, YN = 0.7 and MS = 300 GeV.

n = 0 n = 1 n = 2 n = 3

mh(GeV) 121 123 124 126

Table 4.3: Higgs masses for varying numbers of (N c
n + Nn) singlets, with n = 0

corresponding to NMSSM/MSMM. The Higgs mass has been calculated

using the input values tan β = 30, λ = 0.1, YN = 0.7, X̃t = 6, X̃YN = 4
and MS = 300 GeV.

As mentioned above, in order to have realistic neutrino masses and mixings,

with TeV scale effective dimension six operators, we need to adjust the values for λN

in Eq. (4.6). It turns out that λN should be order of 10−9 or so, which is possible but

appears not natural. This can be resolved if we consider Z3 charge assignment which

allows dimension seven as the lowest possible operator for generating neutrino masses.

One example of such a charge assignment is presented in Table 4.4.

Q U c Dc L Ec Hu Hd S N c
n Nn N0

m

Z3 1 ω ω ω ω ω ω ω ω ω2 1

Table 4.4: Z3 charge assignments of the NMSSM with additional new superfields
which correspond to dimension seven as lowest effective operator for neu-
trino masses. The new fields have Z2 matter parity and ω = ei2π/3.

The relevant part of the renormalizable superpotential involving only the new

chiral superfields is given by

W ⊃ YnjN
c
n(HuLj) + (λN)nmSNnN

0
m +mnmN

c
nNm +

1

2
m′nmN

0
nN

0
m. (4.10)
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For simplicity, we set mnm = m′nm = M7δnm, (λN)nm = λNδij and YN ≡ Ynj. Integrat-

ing out the new heavy chiral field and following the electroweak symmetry breaking,

the light neutrino Majorana mass matrix is generated:

mν =
(Y T

N YN)v2
u

M7

× λTNλN〈S〉2

M2
7

. (4.11)

We can see from this formula that the upper bound for seesaw scale is M7 ∼ 106 GeV,

assuming all Yukawa coupling in Eq. (5.7) are O(1). It is clear from Eq. (4.11) that

we can have O(1) YN couplings and the seesaw scale M7 around TeV for λN ∼ 10−4 or

so. In this case the value for λN is more natural compared to the dimension six case.

Comparing Eq. (4.11) to Eq. (4.5), we can see that we have identical contributions to

the lightest CP-even Higgs mass for effective dimension six and seven cases.

Having low (∼TeV) scale for the inverse seesaw mechanism clearly makes the

model accessible at the LHC. In Ref. [66] it is shown that regions of the parameter

space of the inverse seesaw model can be tested at the LHC, while Ref. [67] shows that

lepton flavor violation imposes strict constraints on these models.

4.3.2 NMSSM+Triplets

As pointed out in Ref. [56], another way for generating the dimension six

operator is to introduce SU(2)L triplets with zero (∆c
0 + ∆0) or with unit (∆c

n + ∆n)

hypercharge. It was shown in Ref. [56] that two pairs (n = 1, 2) of (∆c
n+∆n) are needed

in order to generate the effective dimension six operator for inverse seesaw mechanism.

We will consider the case involving only (∆c
n + ∆n) as the additional fields. As an

example we choose the charge assignments for the NMSSM fields shown as case I in

Table 4.1. Accordingly, in order to generate effective dimension six operators (see Eq.

(4.2)) for the light neutrinos, the Z3 charges for (∆c
n + ∆n) fields are fixed, as given

in Table 4.5. The additional contributions to the NMSSM superpotential in this case

contain the following terms

W ⊃ Yij(Li∆1Lj) + YHu(Hu∆2Hu) + λNS tr
[
∆̄1∆̄2

]
+m1 tr

[
∆̄1∆1

]
+ m2 tr

[
∆̄2∆2

]
, (4.12)
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where Yij, YHu and λN are dimensionless Yukawa couplings and m1, m2 are mass

parameters. It is interesting to note that the interactions (Hd∆nHd) and (Hd∆nHd),

which can give significant contributions to the CP-even Higgs mass [68], are forbidden

by Z3 or U(1)Y symmetry.

SU(3)c SU(2)L U(1)Y Z3 Z2

∆1 1 3 1 1 +

∆1 1 3 −1 1 +

∆2 1 3 −1 ω +

∆2 1 3 1 ω2 +

Table 4.5: Charge assignments of (∆n + ∆n) superfields, where n = 1, 2. ω = ei2π/3

and Z2 is matter parity.

The coupling YH(Hu∆Hu) in Eq. (4.12) will generate a tree level contribution

to the lightest CP-even Higgs boson mass given by [68]

[
m2
h

]
∆

= 4Y 2
Hu
v2 sin4 β. (4.13)

We assume tan β . 50 since for larger tan β, there will be additional contribution

in Eq. (4.13) which can reduce the Higgs mass [51]. To show the impact of (∆n+∆n) on

the lightest CP-even Higgs mass, we plot in Figure 4.4 the upper bounds on the Higgs

mass versus tan β. We choose MS = 200 GeV, X̃t = 6, YHu = 0.15 and m1 = m2 = 3

TeV. The red dashed line corresponds to NMSSM. The blue solid line corresponds to

NMSSM+ (∆n + ∆n). For reference, the gray band corresponds to a Higgs mass of

126± 3 GeV. We see that there is no need for very large, O(1), value for the coupling

YHu in order to have a 126 GeV Higgs. As seen from Figure 4.4, YHu = 0.15 already

yields an upper bound on the Higgs mass above 126 GeV. The upper bound is 142

GeV for tan β ≈ 2, which asymptotically approaches mh ≈ 130 GeV for larger tan β

values. We are able to realize a Higgs mass of around 126 GeV with relatively small

values of λ and YHu . We therefore conclude that in the NMSSM with the inverse seesaw

mechanism for neutrinos, we can have relatively light, O(200) GeV or so, stop quarks
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Figure 4.4: Upper bounds on the lightest CP-even Higgs boson mass versus tan β,
for MS = 200 GeV, X̃t = 6, YHu = 0.15, m1 = m2 = 3 TeV. Maximum
value of λ is used. Red dashed line corresponds to NMSSM, and the blue
solid line corresponds to NMSSM + (∆n + ∆n). For reference, the gray
band shows the Higgs mass range of 126± 3 GeV.

without invoking maximal values for λ or YHu , and also without severely restricting

tan β.

Consider a case with relatively small value of λ. In Figure 4.5 we choose λ =

0.3 and MS = 200 GeV. The red dashed line corresponds to the Higgs mass bound

in NMSSM, while the blue and purple lines show the bounds with YHu = 0.15 and

YHu = 0.2. One can see that it is fairly easy to increase the Higgs mass bound in

NMSSM to 126 GeV, even with small values of λ and YHu .

Notice that we can use a triplet with zero hypercharge to generate the inverse

seesaw operator. In this case the superpotential looks exactly the same, with (∆c
0 +∆0)

replacing (N c
n + Nn). The result will be similar to what we presented in section 4.3.1

when we consider 3 pairs of (N c
n + Nn). Given this similarity we do not extend our

analysis to the case of an SU(2)L triplet with zero hypercharge.

The low scale triplet model has a very nice feature. A light triplet not only

helps generate the inverse seesaw mechanism and provides significant contribution to
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Figure 4.5: Upper bounds on the lightest CP-even Higgs boson mass versus tan β,
with MS = 200 GeV, X̃t = 6, m1 = m2 = 3 TeV, and λ = 0.3. Red
dashed line corresponds to the NMSSM, and blue and purple solid lines
correspond to NMSSM + (∆n + ∆n), with YHu = 0.15 and 0.2. For
reference, the gray band shows the Higgs mass range of 126± 3 GeV.

the CP-even Higgs boson mass, it also contributes to the enhancement of the Higgs

production and decay in the diphoton channel. In order to have a sizable effect on the

diphoton production, the coupling involving the triplet and the Higgs doublets has to

be large [69], which makes the coupling non-perturbative below the Planck or GUT

scale. On the other hand, as was shown in Ref. [56], we need one pair of SU(2)L triplets

with zero hypercharge or two pairs of triplets with unit hypercharge. In both cases

at least one of the gauge couplings becomes non-perturbative below the GUT scale.

However, if the theory is still valid near the Landau pole all couplings will become

large through the two and higher loop renormalization group equations (RGEs). The

couplings can effectively merge together and we can have non-perturbative unification

[70]. Another attractive feature of the light triplet extension of the NMSSM (MSSM)

spectrum is that it can help resolve the little hierarchy problem [71] with a Higgs mass

of around 126 GeV.
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4.4 Conclusion

Following Ref. [56], we consider extensions of the next-to-minimal supersym-

metric model (NMSSM) in which the observed neutrino masses are generated through

TeV scale inverse seesaw mechanism. We have shown that the new particles asso-

ciated with the inverse seesaw mechanism can have sizable couplings to the lightest

CP-even Higgs field which can yield a large contribution to its mass. This new contri-

bution makes it possible to have a 126 GeV Higgs with order of 200 GeV stop quarks

mass and a broad range of tan β values. This can be exploited to enhance the Higgs

production and decay in the diphoton channel as well.
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Chapter 5

INVERSE SEESAW MECHANISM ON THE SPARTICLE SPECTRUM

In this chapter we study the implications of the inverse seesaw mechanism (ISS)

on the sparticle spectrum in the Constrained Minimal Supersymmetric Standard Model

(CMSSM) and Non-Universal Higgs Model (NUHM2) [72]. Employing the maximal

value of the Dirac Yukawa coupling involving the up type Higgs doublet provides a

2-3 GeV enhancement of the lightest CP-even Higgs boson mass. This effect permits

one to have lighter colored sparticles in the CMSSM and NUHM2 scenarios with LSP

neutralino, which can be tested at LHC14. We present a variety of LHC testable

benchmark points with the desired LSP neutralino dark matter relic abundance.

5.1 Introduction

The discovery of the Standard Model (SM)-like Higgs boson with mass mh ≈

126 GeV by the ATLAS [73] and CMS [74] experiments at the Large Hadron Collider

(LHC) has sparked detailed examinations of viable regions of the parameter space

of low scale supersymmetry. This is largely motivated by the fact that the Minimal

Supersymmetric Standard Model (MSSM) predicts an upper bound on the mass of the

lightest CP-even Higgs boson mass, mh . 135 GeV [75]. The Higgs boson mass and the

corresponding sparticle spectrum strongly depend on the soft supersymmetry breaking

(SSB) parameters [49], which can be tested at the LHC (see, for instance [76, 48, 77]).

In low scale supersymmetry, a Higgs boson mass of around 125 GeV requires

either a relatively large value, O(few− 10) TeV, for the geometric mean of top squark

masses [48], or a large SSB trilinear At-term, with a geometric mean of the top squark

masses of around a TeV [77]. The presence of heavy top squarks typically yields a heavy

sparticle spectrum in gravity mediated supersymmetry breaking [78], if universality at
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MGUT of sfermion masses is assumed. It is especially hard in this case to achieve

colored sparticles lighter than 2.5 TeV.

The current LHC lower bounds on the colored sparticle masses from LHC data

are mg̃ & 1.5 TeV (for mg̃ ∼ mq̃), and mg̃ & 0.9 TeV (for mg̃ � mq̃) [79, 80], and it is

expected that the LHC14 can test squarks and gluinos with masses up to 3.5 TeV [81].

In order to be able to reduce the sparticle masses to more accessible values in models

with universal sfermion and gaugino masses, we require additional contributions from

new physics, which preserves gauge coupling unification.

Solar and atmospheric neutrino oscillation experiments have established that at

least two neutrino states are massive [82]. On the theoretical side the nature of the

physics responsible for neutrino masses and flavor properties remains largely unknown

and is a subject of extensive investigations [83]. Since our goal is to lower the sparticle

mass spectrum while preserving gauge coupling unification, we utilize in this chap-

ter the inverse seesaw mechanism (ISS) for generating the light neutrino masses [84].

Introducing only SM singlet fields allows one to realize the ISS mechanism, and all

new fields can be below the TeV scale. In addition, we can have O(1) Dirac Yukawa

couplings involving the up type Higgs doublet. It has been shown in Refs. [85, 86] that

the Dirac Yukawa coupling can impact the lightest CP-even Higgs boson mass through

radiative corrections and increase it by 2-3 GeV when the additional new fields are SM

singlets. The ISS mechanism can also be realized using SU(2)W weak triplets [85], and

in this case the Higgs mass can be enhanced by more than 10 GeV.

In this chapter we restrict ourselves to the case of SM singlet fields since we

do not want to disturb gauge coupling unification. An enhancement by 2-3 GeV of

the CP-even SM-like Higgs boson mass, as we will show, can yield significant reduc-

tions of sparticle masses in the Constrained Minimal Supersymmetric Standard Model

(CMSSM) [78] and Non-Universal Higgs Model with m2
Hu
6= m2

Hd
(NUHM2) [87]. Here

m2
Hu

and m2
Hd

denote the SSB mass square terms for the up and down type MSSM

Higgs doublets respectively.
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5.2 Inverse Seesaw Mechanism and Higgs Boson Mass

In order to explain non-zero neutrino masses and mixings by the ISS mecha-

nism [84], we supplement the MSSM field content with three pairs of MSSM singlet

chiral superfields (N c
i +Ni), i = 1, 2, 3, and a singlet chiral superfield S which develops

a vacuum expectation value (VEV) comparable to or less than the electroweak scale.

The part of the renormalizable superpotential involving only the new chiral superfields

is given by

W ⊃ YNij
N c
iHuLj + λNij

SNiNj +mijN
c
iNj. (5.1)

Here YNij
and λNij

are dimensionless couplings and mij is a mass term. A non-zero VEV

for the scalar component of S generates the lepton-number-violating term µsNiNj ≡

λNij
< S > NiNj and, as a result, Majorana masses for the observed neutrinos can be

generated. The coupling λNij
SNiNj is preferred over the direct mass term µNiNj, with

the former yielding the desired mass terms for the N fields with a non-zero < S >. A

singlet chiral superfield S can make it easier to find extension of the SM gauge group

with help from a suitable symmetry (see, for instance, Refs. [85, 88]), and avoid terms

which otherwise may spoil the ISS mechanism.

The SSB terms pertaining to the fields N c
i and Ni are given by

Lsoft ⊃ m2
NcÑ c

†
Ñ c +m2

NÑ
†Ñ +

[
Aijν L̃iÑ

c
jHu +Bjk

m Ñ
c
jÑk +Bjk

µN
ÑjÑk

+ h.c.] , (5.2)

where the SSB parameters are prescribed at the TeV SUSY breaking scale. In the

ISS case there are regions of the SSB parameter space for which one of the sneutrinos

can be the lightest supersymmetric particle (LSP). The phenomenology of models of

this kind has been studied in Ref. [88]. In our present work we assume that the

lightest neutralino is the LSP, and a spectrum of this nature can be realized both in

the CMSSM and NUHM2 if we assume that all sfermions, including the N c
i and Ni

fields, have universal SSB mass terms at MGUT.
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Figure 5.1: Supergraph leading to dimension six operator for neutrino masses.

According to the superpotential in Eq. (5.1), after integrating out the (N c
i +Ni)

fields, the neutrino mass arises from the effective dimension six operator (Figure. 5.1):

LLHuHuS

M2
6

. (5.3)

We assume here that M6δij ≡ mij is larger than the electroweak scale. Also, in Eq. (5.3)

the family and SU(2)W gauge indices are omitted.

Following the electroweak symmetry breaking, the neutrino Majorana mass ma-

trix is generated:

mν =
(Y T

N YN)vu
2

M6

× λN〈S〉
M6

. (5.4)

For simplicity, we set YN ≡ YNij
and λN ≡ λNij

, and vu, 〈S〉 are the VEVs of Hu, and

the S field. Eq. (5.4) implies that even if we require YN ∼ O(1) and M6 ∼ 1 TeV,

the correct mass scale for the light neutrinos can be reproduced by suitably adjusting

λN〈S〉.

Keeping YN ∼ O(1) will provide sizable contribution to the lightest CP-even

Higgs mass, which is given by [89]

[
m2
h

]
N

= n×
[
−M2

Z cos2 2β

(
1

8π2
Y 2
N tN

)
+

1

4π2
Y 4
Nv

2 sin4 β

(
1

2
X̃YN + tN

)]
, (5.5)

where

tN = log

(
M2

S +M2
6

M2
6

)
, X̃YN =

4Ã2
YN

(3M2
S + 2M2

6 )− Ã4
YN
− 8M2

SM
2
6 − 10M4

S

6 (M2
S +M2

6 )
2 , (5.6)
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and

ÃYN = AYN − YN〈S〉 cot β. (5.7)

Also, AYN ≡ Aijν is the SSB mixing parameter in Eq. (5.2), n is the number of pairs of

new MSSM singlets, MS =
√
mt̃L

mt̃R
defines the SUSY scale, and v = 174.1 GeV is

the electroweak VEV.

We incorporate the ISS mechanism in CMSSM and NUHM2 and scan the SUSY

parameter space using the ISAJET 7.84 package [90]. We modify the code by including

the additional contributions from Eq. (5.5) to the lightest CP-even Higgs boson mass.

5.3 Phenomenological constraints and scanning procedure

We employ the ISAJET 7.84 package [90] to generate sparticle spectrum over

the fundamental parameter space. In this package, the weak scale values of the gauge,

third generation Yukawa couplings, including the Yukawa coupling N c
iHuLj from ISS,

are evolved to MGUT via the MSSM renormalization group equations (RGEs) in the

DR regularization scheme. With the boundary conditions given at MGUT, all of the

SSB parameters, along with the gauge and Yukawa couplings, are evolved back to

the weak scale MZ. The data points collected all satisfy the requirement of radiative

electroweak symmetry breaking condition with the neutralino in each case being the

LSP.

We have performed Markov-chain Monte Carlo (MCMC) scans for the following

CMSSM parameter range:

0 ≤ m0 ≤ 10 TeV,

0 ≤ m1/2 ≤ 5 TeV,

−3 ≤ A0/m0 ≤ 3,

3 ≤ tan β ≤ 60, (5.8)

with µ > 0 and mt = 173.3 GeV [91]. We use mDR
b (MZ) = 2.83 GeV which is hard-

coded into ISAJET. Here m0 is the universal SSB mass parameter for MSSM sfermions,

Higgs and additional N c, N and S fields. m1/2 is the gaugino mass parameter, tan β is

65



the ratio of the VEVs of the two MSSM Higgs doublets, and A0 is the MSSM universal

SSB trilinear scalar coupling. In order to maximize the contribution from the ISS

mechanism to the Higgs boson mass, we set X̃YN = 4, following Ref. [85].

In the case of NUHM2, in addition to the above mentioned parameters we have

two additional independent SSM mass parameters mHd
and mHu . We use the following

parameter range for them:

0 ≤ mHu ≤ 10 TeV,

0 ≤ mHd
≤ 10 TeV. (5.9)

To maximize the impact of ISS on the sparticle spectrum, we set λN = 0.7. This is

the maximal value of λN at low scale that remains perturbative up to MGUT. We also

assume that M6 is larger than MS, in order that the neutralino rather than sneutrino

is the LSP.

After collecting the data, we impose the mass bounds on all the particles [92] and

use the IsaTools package [93] and Ref. [94] to implement the following phenomenological

constraints:

mh = 123− 127 GeV [95, 96] (5.10)

0.8× 10−9 ≤ BR(Bs → µ+µ−) ≤ 6.2× 10−9 (2σ) [97] (5.11)

2.99× 10−4 ≤ BR(b→ sγ) ≤ 3.87× 10−4 (2σ) [98] (5.12)

0.15 ≤ BR(Bu → τντ )MSSM

BR(Bu → τντ )SM

≤ 2.41 (3σ) [99] . (5.13)

As far as the muon anomalous magnetic moment aµ is concerned, we require that the

benchmark points are at least as consistent with the data as the SM.

For the benchmark points presented in Table 5.1 and 5.2, we require that the

LSP neutralino dark matter abundance lies in the interval 0.0913 ≤ ΩCDMh
2 ≤ 0.1363

[100].

Finally we implement the following following bounds on the sparticle masses:

mg̃ & 1.5 TeV (for mg̃ ∼ mq̃) and mg̃ & 0.9 TeV (for mg̃ � mq̃) [79, 80]. (5.14)
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5.4 CMSSM and Inverse Seesaw

In this section we present our results for the CMSSM and the CMSSM with

additional ISS contribution (CMSSM-ISS). The main idea behind the presentation of

these results is to show that these two scenarios have quite distinct features as far as

choice for the fundamental parameters of the models is concerned. In Figure 5.2, the

left panels represent our results for the CMSSM, while the right panels display our

results for the CMSSM-ISS. Here grey points satisfy REWSB and the LSP neutralino

requirement. The orange points represent solutions which satisfy the mass bounds and

B-physics bounds from Section 5.3. Solutions in blue color are a subset of orange points

and satisfy the requirement 123 GeV . mh . 127 GeV. This figure clearly serves our

purpose stated above.

For instance, the graph in m0−m1/2 plane shows that for the CMSSM case, the

Higgs mass bounds excludes simultaneously small values for m0 and m1/2, while in the

CMSSM-ISS case, we can have relatively small values for m1/2 (< 800 GeV) and m0 (<

400 GeV), consistent with all constraints given in section 5.3. There is also noticeable

difference between CMSSM and CMSSM-ISS in the A0/m0−m0 plane. In the CMSSM

case, for instance, we find m0 ∼ 700 GeV for A0/m0 = −3, and for A0/m0 = 3 we

have m0 ∼ 1.3 TeV. In CMSSM-ISS, on the other hand, the corresponding minimum

m0 values vary from 400 GeV to 1.1 TeV. In the m0 − tan β plane too, considering

the blue points, we see in the left panel that for a minimum value m0 ∼ 700 GeV, the

corresponding tan β value is around 16. In the right panel, on the other hand, tan β is

again around 16 but now the minimum value of m0 is ∼ 300 GeV.

In Figure 5.3 we show plots of m0 versus µ. The color coding is the same as

in Figure 5.2 with the left and right panels representing CMSSM and CMSSM-ISS

respectively. This figure shows very distinct features of the two scenarios. Considering

the orange points, in CMSSM-ISS we have solutions with µ & 1 TeV, in contrast with

the CMSSM, where we have solutions with small, as well as large values of µ. The

reason for this difference is that in CMSSM-ISS, m2
Hu

gets new contribution from the

loop induced by the coupling N c
iHuLj in addition to the top quark loop, which makes
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Figure 5.2: Plots in m0−m1/2, A0/m0−m0 and m0− tan β planes for CMSSM (left
panel) and CMSSM-ISS (right panel). Grey points satisfy REWSB and
LSP neutralino conditions. Orange point solutions satisfy mass bounds
and B-physics bounds given in Section 2. Points in blue are a subset of
orange points and satisfy 123 GeV . mh . 127 GeV.
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Figure 5.3: Plots in m0 − µ plane for CMSSM (left panel) and CMSSM-ISS (right
panel). Color coding is the same as in Figure 5.2.

µ relatively heavy. Thus, in the CMSSM-ISS case we do not have the so-called focus

point/hyperbolic branch scenario [101, 102] while it is still a viable solution in the

CMSSM case.

In Figure 5.4, we show graphs in mχ̃0
1
−mt̃1 and mχ̃0

1
−mτ̃1 planes. The color

coding is the same as in Figure 5.2, except that the solutions in red are a subset of

solutions in blue and also satisfy the relic abundance bound 0.001 ≤ Ωh2 ≤ 1. These

graphs show that despite the fact that there are differences in the space of fundamental

parameters, the mass spectrum for χ0
1, t̃1 and τ̃1 turn out to be more or less identical.

For instance, in the mχ̃0
1
−mt̃1 plane we see that we have NLSP t̃1 in the mass

range of ∼ 260−500 GeV in both cases. Similar results were also reported in [103, 104]

in the case of b-τ Yukawa coupling unification in CMSSM and SU(5). It was shown

in [105, 106] that the region of parameter space with stop-neutralino mass difference

of 20% is ruled out for mt̃1 . 140 GeV. In the mχ̃0
1
−mτ̃1 plane, we note that NLSP

τ̃1 has the same mass range in CMSSM and CMSSM-ISS. The reason why we have

comparable intervals for mt̃1 and mτ̃1 in CMSSM and CMSSM-ISS is that low values

for both sparticle masses are acheived via fine tuning involving the trilinear SSB terms,

while the addition of ISS to CMSSM mostly affects the first two generation sparticle

masses.
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Figure 5.4: Plots in mχ̃0
1
−mt̃1 and mχ̃0

1
−mτ̃1 planes for CMSSM (left panel) and

CMSSM-ISS (right panel). The color coding is the same as in Figure 5.2
except that red points are a subset of blue point solutions and also satisfy
bounds for relic abundance, 0.001 ≤ Ωh2 ≤ 1.

In Figure 5.5, we present graphs in mχ̃0
1
−mA and mχ̃0

1
−mχ̃±1

planes, with color

coding the same as in Figure 5.4. The graphs in mχ̃0
1
− mA plane show that we do

not have the A-resonance solution [107], and the reason can be understood from the

following equation:

m2
A = 2|µ|2 +m2

Hu
+m2

Hd
. (5.15)

In CMSSM, since we have universal scalar masses and we require mh ∼ 123−127 GeV,

m2
Hu

and m2
Hd

are both large, and, as a result, mA is also large. This can be seen in

the mχ̃0
1
−mA graph in the left panel. The solid black line in the graph represents the

condition 2mχ̃0
1

= mA for the A-resonance solution [107].
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Figure 5.5: Plots in mχ̃0
1
−mA and mχ̃0

1
−mχ̃±1

planes for CMSSM (left panel) and

CMSSM-ISS (right panel). The color coding is the same as in Figure 5.2
except that red points are subset of blue point solutions and also satisfy
bounds for relic abundance, 0.001 ≤ Ωh2 ≤ 1.

We note that the solutions in orange color lie around the solid black line, but

if we apply the constraint 123 GeV . mh . 127 GeV, the relevant blue points lie

further from the black line. In the right panel, which represents the CMSSM-ISS case,

we note that both the orange and blue points are further away from the solid black

line. This is because of two reasons. Firstly, as stated earlier, µ is larger because of

extra contributions from the N c
iHuLj Yukawa coupling, and so the orange points move

away from the solid black line. Secondly, as explained, in the CMSSM case the mh

constraint makes solutions move away from the solid black line as mA becomes larger.
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Figure 5.6: Plots in mg̃ −mq̃ planes for CMSSM (left panel) and CMSSM-ISS (right
panel). The color coding is the same as in Figure 5.2, except that orange
points do not satisfy mass bounds for gluinos and first two generation
squarks, and red points are a subset of blue point solutions and also
satisfy bounds for relic abundance, 0.001 ≤ Ωh2 ≤ 1. Dashed vertical and
horizontal lines stand for current squark and gluino lower mass bounds
respectively.

A more distinctive figure concerning the sparticle spectra in CMSSM and CMSSM-

ISS is presented in the mχ̃0
1
−mχ̃±1

plane. In contrast to CMSSM (left panel), the figure

for CMSSM-ISS is quite different. This is due to the fact that in CMSSM-ISS, the

LSP neutralino is mostly a bino and the chargino mostly wino. Therefore, the ratio

mχ̃0
1
/mχ̃±1

is close to the ratio of U(1) and SU(2) gauge couplings, g1/g2 ≈ 1/2, and

the points form a narrow strip.

In Figure 5.6 we show mq̃ versus mg̃ for CMSSM (left panel) and CMSSM-ISS

(right panel). The color coding is the same as in Figure 5.2, except that the orange

points do not include mass bounds for gluinos and the first two generation squarks.

Dashed vertical and horizontal lines represent current squark and gluino mass bounds.

We note that especially in the CMSSM the gluino mass bound excludes a significant

portion of the parameter space which otherwise is consistent with the experimental

data. The location of blue points relative to the orange points shows how the lower

bounds on the squark and gluino masses are pushed up by mh. It is interesting to

observe that there are no red points with neutralino LSP dark matter within the reach
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Figure 5.7: Plots in ml̃−mχ̃±1
planes for CMSSM (left panel) and CMSSM-ISS (right

panel). The color coding is the same as in Figure 5.2, except that red
points are a subset of blue point solutions and also satisfy bounds for
relic abundance, 0.001 ≤ Ωh2 ≤ 1.

of LHC14. Comparing results from mg̃ −mq̃ panel with the results from Figures 5.4

and 5.5, we conclude that in the CMSSM, the solution which yields the correct dark

matter relic abundance predicts gluino and squarks masses that lie beyond the reach

of the LHC14 [81].

On the other hand, comparison of left and right panels in Figure 5.6 shows the

impact of the ISS mechanism on the sparticle masses. We can see from the mg̃ −mq̃

plot in the right panel that plenty of blue points are left after we apply the Higgs

mass constraint 123 GeV . mh . 127 GeV. This means that in the presence of the

ISS mechanism, most points satisfying all experimental constraints lie in the Higgs

mass range 123 GeV . mh . 127 GeV, which is very different from the CMSSM case.

There are also red points in the right panel which shows that we can have LHC testable

solutions with the correct relic abundance of dark matter.

In Figure 5.7 we display plots for mχ̃±1
versus ml̃ in CMSSM (left panel) and

CMSSM-ISS (right panel), with the color coding the same as in the previous figures.

In the left panel we see from the blue points that ml̃ > 1.4 TeV, which may be difficult

to test at the LHC. On the other hand, we see in the right panel solutions in blue

and red colors around ml̃ ' 500 GeV, which provides a glimmer of hope that sleptons
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Point A Point B
m0 1020.3 3234
M1/2 1091.1 684.6
A0/m0 -2.71 -2.97
tan β 38 14.4
mh 125 125
mH 1602 4744
mA 1592 4714
mH± 1604 4745
µ 1772 3727
mg̃ 2401 1705
mχ̃0

1,2
476, 902 312, 608

mχ̃0
3,4

1769, 1772 3724, 3724

mχ̃±1,2
905, 1773 614, 3733

mũL,R
2391, 2314 3492, 3476

mt̃1,2 1569, 1983 347, 2376

md̃L,R
2392, 2305 3493, 3479

mb̃1,2
1940, 2035 2400, 3262

mν̃1 1248 3265
mν̃3 792 2024
mẽL,R

1252, 1098 3261, 3245
mτ̃1,2 497, 820 2040, 3027

σSI(pb) 1.57×10−11 1.71×10−15

σSD(pb) 5.05×10−9 7.3×10−13

ΩCDMh
2 0.114 0.092

Table 5.1: Masses (in GeV units) and other parameters for two CMSSM-ISS bench-
mark points satisfying all phenomenological constraints discussed in sec-
tion 5.3. Points A and B are chosen from the stau-neutralino coannihila-
tion and the stop-neutralino coannihilation regions respectively.

employing the CMSSM-ISS mechanism may be found at the LHC.

In Table 5.1 we display two benchmark points for the cMSM-ISS model that

are consistent with constraints in Section 5.3. The LSP neutralino relic density in

the two cases is in accord with the WMAP observations, and corresponds to stau-

neutralino [108] (stop-neutralino [109]) coannihilation for point A (B). For point A,

mτ̃1 ≈ 500 GeV, mg̃ ≈ 2.4 TeV, the first two generation squarks are close to 2 TeV,

while slepton masses are around 1−2 TeV. For point B, mt̃1 ≈ 350 GeV, mg̃ ≈ 1.7 TeV,
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the first two generation squark masses are about 3.4 TeV, while slepton masses are

around 3.2 TeV.

5.5 NUHM2 and Inverse Seesaw

In this section we present the results of our scan for NUHM2 with ISS con-

tributions (NUHM2-ISS). In Figure 5.8 we present graphs in m0 − m1/2 and m0 − µ

planes, with color coding the same as in Figure 5.2. In the m0 − m1/2 plane we see

that the results are similar to what we found in CMSSM-ISS. Again we can have so-

lutions compatible with all experimental constraints presented in section 5.3. We note

that the Higgs mass constraint 123 GeV . mh . 127 GeV provides the lower bounds

m1/2 ≈ 500 GeV and m0 ≈ 1 TeV. Since µ is a free parameter in NUHM2, we can

find solutions with any value of µ compatible with the experimental data (see m0 − µ

plot). As shown in [110], a relatively small µ term is necessary, but not sufficient, to

be consistent with natural supersymmetry (little hierarchy problem) criteria. We find

that it is hard to fully resolve the little hierarchy problem in this scenario.

Figure 5.8: Plots in m0−m1/2 and m0−µ planes for NUHM2-ISS. The color coding
is the same as in Figure 5.2.

The sparticle spectrum for NUHM2-ISS is shown in Figure 5.9, with color coding

the same as in the previous figures. The top left panel shows an NLSP t̃1 in the mass

range of 220 - 500 GeV, which can be tested at LHC14. The top panel on right shows
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Figure 5.9: Plots in mχ̃0
1
−mt̃1 , mχ̃0

1
−mτ̃1 , mχ̃0

1
−mA, mχ̃0

1
−mχ̃±1

and mχ̃0
1
−mν̃3 planes

for NUHM2-ISS. The color coding is the same as in Figure 5.2 except that
red points are a subset of blue point solutions and also satisfy bounds for
relic abundance, 0.001 ≤ Ωh2 ≤ 1.
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Figure 5.10: Plots in mg̃ −mq̃ and ml̃ −mχ̃±1
planes for NUHM2. In the left panel

orange points do not satisfy gluino and first two generation squark mass
bounds and red points are a subset of blue point solutions and also
satisfy bounds for relic abundance, 0.001 ≤ Ωh2 ≤ 1. Dashed vertical
and horizontal lines stand for current squark and gluino lower mass
bounds respectively. Otherwise color coding is the same as in Figure 5.2.

that the NLSP τ̃1 can be as light as 250 GeV, which is somewhat lighter than in the

CMSSM and CMSSM-ISS scenarios. The bottom left panel shows the presence of A-

resonance solutions. This follows from the relatively low µ values in NUHM2 (Figure.

5.8), and with mHu and mHd
(or equivalently µ and MA) being independent parameters.

In the bottom right panel we plot mχ̃±1
versus mχ̃0

1
. This graph is very different

from the corresponding one for CMSSM-ISS. In NUHM2-ISS scenario, because of low

µ values, the chargino can be Higgsino-like, which yields bino-Higgsino mixed dark

matter. This type of solution can be seen along the solid back line. In those cases

where µ is heavy, the chargino will be wino-like as in the CMSSM-ISS case. Such

solutions can are displayed in the second strip in the graph. We also display a plot in

the mχ̃0
1
−mν̃3 plane where we show a minimum value mν̃3 ≈ 250 GeV, which is also

consistent with the results reported in Ref. [111].

In Figure 5.10 we show graphs in mq̃−mg̃ and mχ̃±1
−ml̃ planes. In the left panel,

the orange points do not satisfy the mass bounds for gluinos and first two generation

squarks. The color coding otherwise is the same as in the previous figures. Dashed
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Point 1 Point 2 Point 3 Point 4 Point 5
m0 2452.3 1742.2 1573.4 1301.9 3116
M1/2 1333.4 1292.1 968.18 1293.1 857.6
A0/m0 -2.62 -2.49 -2.60 -2.82 -2.87
tan β 53.42 12.54 26.25 22.67 18.89
mHd

4.5484 855.55 1.8117 1.7413 737.7
mHu 2.0939 3783.2 2661.3 3060.1 3972
mh 125 125 125 125 126
mH 1865 1253 882 658 2782
mA 1853 1245 876 654 2765
mH± 1867 1256 886 664 2784
µ 3483 6455 1448 1006 3149
mg̃ 2971 2842 2188 2816 2054
mχ̃0

1,2
600, 1139 556, 656 423, 805 563, 979 388, 748

mχ̃0
3,4

3447, 3448 657, 1080 1445, 1450 1015, 1103 314, 314

mχ̃±1,2
1141, 3448 659, 1070 807, 1451 987, 1097 755, 3151

mũL,R
3565, 3492 3052, 3063 2479, 2483 2836, 2815 3515, 3576

mt̃1,2 2195, 2687 1180, 2302 1078, 1819 1374, 2185 428, 2303

md̃L,R
3566, 3484 3053, 2943 2481, 2406 2837, 2720 3516, 3470

mb̃1,2
2628, 2776 2305, 2849 1804, 2153 2171, 2520 2329, 3160

mν̃1 2605 2021 1748 1627 3225
mν̃3 1503 804 818 568 1808
mẽL,R

2606, 2502 2022, 1611 1749, 1502 1630, 1210 3222, 3012
mτ̃1,2 628, 1501 824, 1536 824, 1201 588, 972 1823, 2693

σSI(pb) 1.80×10−12 6.83×10−9 5.11×10−11 5.07×10−10 2.35×10−13

σSD(pb) 3.80×10−11 1.00×10−5 2.26×10−8 2.56×10−7 2.1×10−10

ΩCDMh
2 0.108 0.093 0.113 0.103 0.122

Table 5.2: Masses (in GeV units) and ohter parameters for NUHM2-ISS benchmark
points satisfying all phenomenological constraints discussed in section 5.3.
Points 1-5 are chosen, respectively, from the stau-neutralino coannihila-
tion, the bino-Higgsino mixed dark matter, the A-resonance, the sneutrino-
neutralino coannihilation, and the stop-neutralino coannihilation regions.

vertical and horizontal lines display the current squark and gluino mass bounds.

Comparing results from Figures 5.10 and 5.7, we see very small changes on the

lower mass bounds for the first two generation squarks, and sleptons as well as gluinos,

which is what we expected. But there are many more red points in Figure 5.10, because
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in the NUHM2-ISS case, we have the additional A−resonance and bino-Higgsino dark

matter solutions for the LSP neutralino relic abundance. As in the CMSSM-ISS case,

we can have squarks and gluinos in a mass range which can be explored at LHC14.

In Table 5.2 we present five benchmark points for NUHM2-ISS case which satisfy

the phenomenological constraints discussed in section 5.3. Points 1, 2, 3, 4 and 5 are

chosen, respectively, from the stau-neutralino coannihilation region, the bino-Higgsino

mixed dark matter region, the A-resonance region, the sneutrino-neutralino coannihi-

lation region, and the stop-neutralino coannihilation region. In all the five benchmark

points the first two generation squarks are in the mass range 2.4-3.5 TeV, while the first

two generation sleptons lie around 1.6-3 TeV. Note that for the bino-Higgsino mixed

dark matter point the spin independent cross section is 6.83× 10−9 pb, which is below

the current XENON100 bounds [112], but within the reach of XENON1T [113] and

SuperCDMS [114].

5.6 Conclusions

The recent discovery at the LHC of a SM-like Higgs boson with mass mh '

125 GeV puts considerable stress on the MSSM. With mh . MZ at tree level, large

radiative corrections are required. Such corrections can be achieved in the MSSM

either with multi-TeV stops, or with a large stop trilinear coupling and stop masses

around 1 TeV. In models with universal sfermion masses at MGUT, such as CMSSM

and NUHM2, this leads to heavy sleptons and 1st/2nd generation squarks which are

near or beyond the ultimate LHC reach. Various MSSM extensions have been proposed

to allow lighter sfermions via additional contributions to the lightest CP-even Higgs

boson mass. In this paper we explored the impact of the inverse seesaw mechanism on

the sparticle mass spectrum.

The ISS mechanism allows an increase of mh by a few GeV, while simultaneously

generating mass for neutrinos via dimension six operators. With a maximal value of

the Dirac Yukawa coupling involving the up-type Higgs doublet, mh is increased by

2-3 GeV. As we have shown, this effect allows one to have lighter colored sparticles
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in CMSSM and NUHM2 scenarios which can be tested at LHC14. For example, in

CMSSM-ISS the minimal value of m0 is ∼ 400 GeV, compared to CMSSM where

m0 & 800 GeV. Furthermore, requiring neutralino LSP to be the cold dark matter

(CDM) pushes m0 to 10-20 TeV range in CMSSM, whereas in CMSSM-ISS values as

low as ∼ 200 GeV are allowed. This means that squarks and gluinos in CMSSM-ISS lie

within the reach of LHC14. Similarly, in NUHM2-ISS squarks and gluinos in 1.5-3 TeV

range are consistent with neutralino CDM. We have presented several LHC testable

benchmark points with the desired neutralino dark matter relic abundance.
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