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The decoupling approximation, proposed by Kotlarchyk & Chen [J. Chem. Phys.

(1983), 79, 2461–2469], is a first-order correction to the experimentally

determined apparent structure factor that is necessary because of concentration

effects in polydisperse and/or nonspherical systems. While the approximation is

considered accurate for spheres with low polydispersity (<10%), the

corresponding limitations for nonspherical particles are unknown. The validity

of this approximation is studied for monodisperse dispersions of hard ellipsoids

of revolution with aspect ratios ranging from 0.333 to 3 and a guide for its

accuracy is provided.

1. Introduction

Small-angle scattering (SAS) is an important tool for

measuring the solution structure of colloidal suspensions and,

more recently, of highly concentrated globular protein solu-

tions (Stradner et al., 2004; Heinen et al., 2012; Yearley et al.,

2013, 2014; Liu et al., 2011; Godfrin et al., 2016). Interpretation

of the SAS signal from protein solutions is complicated by the

nonspherical shape of the protein molecule and by the

complex orientation-dependent interaction potential (Neal

et al., 1998; Lomakin et al., 1999). These complexities are

typically addressed by treating the protein shape as an ellip-

soid or other nonspherical shape (e.g. a flexible ‘Y’ shape for a

monoclonal antibody; Godfrin et al., 2016) and the interaction

potential as an effectively isotropic potential (Heinen et al.,

2012; Liu et al., 2011; Godfrin et al., 2016). Here we rigorously

evaluate standard methodologies for addressing the first issue,

the nonspherical shape of the protein molecule, by examining

SAS from hard ellipsoid configurations.

While the SAS spectrum for monodisperse spheres can be

rigorously separated into independent contributions arising

from particle shape and particle–particle interactions, the SAS

spectrum for polydisperse spheres and for nonspherical

objects cannot be similarly factored (Wagner et al., 1991;

Kotlarchyk & Chen, 1983). A variety of approximations have

been developed to interpret SAS data from these

systems (Pedersen, 1997; Hansen, 2013), but the most preva-

lent approximation used in the protein community is known as

the decoupling approximation (DA), proposed by Kotlarchyk

& Chen (1983).

The DA is a rigorous first-order correction to the structure

factor that assumes for the case of nonspherical particles that

particle orientations and positions are not correlated. Thus,

using the nomenclature of Kotlarchyk & Chen (1983), the DA

allows the scattering intensity to be written as
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IðqÞ ¼ npPðqÞS0ðqÞ; ð1Þ

where np is the number density, PðqÞ is the particle form factor

and S0ðqÞ is the apparent interparticle structure factor. The DA

relates the apparent structure factor, S0ðqÞ, to what Kotlarchyk

& Chen (1983) refer to as the ‘true structure factor’, SðqÞ, via

S0ðqÞ ¼ 1þ �ðqÞ½SðqÞ � 1�; �ðqÞ ¼ hFðqÞi
�� ��2� jFðqÞj2� �

; ð2Þ

where hjFðqÞj2i � PðqÞ. The true structure factor is defined as

SðqÞ ¼
1

N

Xn

j;k¼1

exp �iq � ðrj � rkÞ
� �* +

; ð3Þ

where the angle brackets indicate averaging over configura-

tions and orientations.

The DA has been shown to be valid for polydisperse

spherical systems with low polydispersity (Pedersen, 1997),

but, to our knowledge, the limits of its validity for nonsphe-

rical particles have not been established. Here we use Monte

Carlo (MC) simulations to quantitatively establish those limits

in terms of aspect ratio and concentration for hard ellipsoids

of revolution with aspect ratios typical for globular proteins.

2. Methods

2.1. Simulation details

The surface of a hard ellipsoid of revolution is given by

(Frenkel & Mulder, 2002)

z2

a2
þ

x2 þ y2

b2
¼ 1; ð4Þ

where 2a is the length of the molecule along the symmetry axis

and 2b is the length of the axis perpendicular to the symmetry

axis. The aspect ratio (AR) of the ellipsoid of revolution is

defined as AR � a=b. In this work, the maximum of either a or

b is referred to as �, while the minimum is �. 2� was set to

unity.

Ellipsoids with aspect ratios 0.333, 0.5, 0.75, 1, 1.5, 2 and 3

were studied at volume fractions ranging from 0.1 to 40%. All

of the states studied here lie within the isotropic region of the

hard ellipsoid phase diagram (Frenkel & Mulder, 2002). Our

choice of aspect ratios coincides with typical values for glob-

ular proteins of which the crystal structures are approximated

as ellipsoids [e.g. bovine serum albumin: 0.37 (Heinen et al.,

2012); lysozyme: 1.5 (Liu et al., 2011); ovalbumin: 2.6 (Greene

et al., 2015)]. The maximum concentration studied here is

higher than intracellular protein concentrations, which are

about 200–300 mg ml�1 (Ellis, 2001), or, assuming an average

specific molar volume of 0.736 ml g�1 (Mylonas & Svergun,

2007), about 15–22% by volume.

MC simulations (Frenkel & Smit, 2002) were performed

within the canonical ensemble (NVT) in a cubic box with side

length 40� to generate hard ellipsoid configurations. Ellipsoids

were initially placed on a tetragonal lattice within the cubic

box and allowed to equilibrate for 105 steps. Each step

involved 3N attempted moves, where N is the number of

particles. On average, half the moves were translations and

half were rotations. The average move acceptance was 20–

30%. After equilibration, configurations were recorded every

50 steps. Five hundred configurations were analyzed for scat-

tering intensity, structure factor, center-to-center radial

distribution function and an orientational distribution func-

tion, OðrÞ.

2.2. Orientational distribution function, O(r)

The orientational distribution function is defined as

OðrÞ ¼ cosð�Þ
�� ��

r

� �
; ð5Þ

where � is the relative angle between the symmetry axes of

two ellipsoids. The averaging is performed over pairs of

ellipsoids whose centers are separated by a distance r. The

expected value of OðrÞ for random orientations is 1
2.

2.3. Scattering calculations

The measured SAS intensity is the Fourier transform of the

excess scattering-length density distribution, �ðrÞ, averaged

over all orientations, �:

IðqÞ ¼
R
V

�ðrÞ expð�iq � rÞ dr

����
����

2
* +

�

: ð6Þ

Equation (6) was evaluated by discretizing ellipsoid config-

urations on a 350� 350� 350 grid and taking its three-

dimensional Fourier transform using the FFTW3 software

package (Frigo & Johnson, 2005). Orientational averaging was

performed by integrating the three-dimensional intensity

distribution over the polar and azimuthal angles so that the

intensity was a function of only the magnitude of the scat-

tering vector, q. To establish rigorous limits of the DA, the true

structure factor, SðqÞ, was calculated in a similar fashion to

scattering intensities. Ellipsoid centers were discretized onto a

350� 350� 350 grid and the Fourier transform of the grid

was taken using FFTW3. The signal was integrated such that it

was a function of only q and normalized by the number of

ellipsoids.

The accuracy and appropriateness of the DA were deter-

mined by comparing three independent calculations of the

apparent structure factor, S0ðqÞ. First, equation (1) was eval-

uated for S0ðqÞ by dividing the calculated scattering intensity

by the rotationally averaged particle form factor. This struc-

ture factor is referred to as S0APP. Simulated scattering data for

0.1% volume fraction were used for the form factor in this

work. Second, S0ðqÞ was calculated by modifying the true

structure factor derived from the ellipsoid simulations by the

DA [equation (2)]. This method is referred to as S0COM as it is

based on the ellipsoids’ centers of mass. Finally, S0ðqÞ was

calculated from the structure factor, SðqÞ, for monodisperse

spheres obtained using the Percus–Yevick closure relation

(Wertheim, 1963). An effective radius for the monodisperse

spheres that conserves particle number density and volume

fraction was adopted because this radius gives better agree-

ment with S0APP than the radius that matches the second virial

coefficient. For clarity, this third method is referred to as S0PY

as it arises from the Percus–Yevick closure.
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The deviation of S0COM from S0APP was quantified by the �2

statistic,

�2 ¼
Xn

i¼1

½S0APPðqiÞ � S0COMðqiÞ�
2

�2ðqiÞ
: ð7Þ

Here, n is the number of points and �ðqiÞ is an assumed

standard error in S0APP that was introduced to generate a

quantifiable boundary to denote where the DA is applicable

and where it is not. Three typical values of standard error were

used to determine boundaries denoting the levels of accuracy,

5, 10 and 20%, such that �ðqiÞ ¼ 0:05S0APPðqiÞ etc. In each case,

the boundary was set to �2 ¼ 1.

Hansen (2013) approximated the apparent structure factor

for ellipsoids of revolution with AR ranging from 0.5 to 2 by

the structure factor for polydisperse spheres. The web appli-

cation BayesApp, available at http://www.bayesapp.org/, was

used to calculate this structure factor (Hansen, 2012), which is

referred to as S0Hansen.

3. Results and discussion

Fig. 1 shows the apparent and true structure factors for

ellipsoids with AR ¼ 0:333, 0.5, 2 and 3 at volume fractions of

10, 20, 30 and 40%. The profiles are shifted vertically for

clarity by the respective amounts indicated in Fig. 1. The

apparent structure factor, S0APP, for oblate ellipsoids contains

two peaks (Figs. 1a and 1b), while SðqÞ, S0COM and S0PY contain

only one peak. The peak in SðqÞ, S0COM and S0PY sharpens,

increases in magnitude and shifts to

higher q with increasing concentration.

This behavior is observed in the struc-

ture factor for hard spheres and can be

interpreted as reflecting a decrease in

the average center-to-center distance

between ellipsoids. The first peak in

S0APP occurs at approximately the same

q value as the peak in S0COM and SðqÞ, so

it is likely to be associated with the

average center-to-center distance

between ellipsoids. In contrast, the

second peak in S0APP is not associated

with any peak in S0COM or in SðqÞ, indi-

cating that it does not correspond to a

real correlation length in the system. In

all cases, the peak in S0COM and SðqÞ

occurs at smaller q values than the first

peak in S0APP and is larger in magnitude.

S0APP differs qualitatively for prolate

ellipsoids (Figs. 1c and 1d) in that it

contains only one primary peak. The

peak sharpens, increases in magnitude

and shifts to higher q with increasing

concentration, suggesting that it is

associated with the average center-to-

center distance between ellipsoids.

However, as for the case of oblate

ellipsoids, the peak in SðqÞ and S0COM always occurs at lower q

values than the peak in S0APP. In contrast, the magnitude of the
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Figure 1
The true structure factor, SðqÞ (dotted lines), and apparent structure factors, S0APP (open symbols),
S0COM (solid lines) and S0PY (dashed lines). Values of AR: (a) 0.333; (b) 0.5; (c) 2; (d) 3. Values of
volume fraction: black, 10%; red, 20%; green, 30%; blue, 40%.

Figure 2
�2 contours characterizing the deviation of S0APP from S0COM. Points
studied in this work are marked with squares. The solid line indicates the
�2 ¼ 1 boundary assuming a standard error of 10% in equation (7), the
dashed line is the boundary assuming a standard error of 5% and the
dotted line is the boundary assuming a standard error of 20%. The colors
are based on the 10% standard error. The equivalent protein
concentration, assuming a specific molar volume of 0.736 ml g�1

(Mylonas & Svergun, 2007), is shown on the right axis. The cross-
hatched region indicates intracellular protein concentrations (Ellis, 2001)
and the aspect ratios of several model proteins are shown on the top axis.



peak in S0APP is larger than the magnitude of the peak in SðqÞ

and S0COM.

From these data one can observe that the apparent struc-

ture factor can be significantly distorted as compared to the

true structure factor, especially at high concentrations, indi-

cating that the DA is inadequate in modifying the true struc-

ture factor. In general, the primary peak in the apparent

structure factor is always located at larger q values than the

primary peak in SðqÞ and S0COM. This is

particularly important because the peak

position is commonly utilized to esti-

mate key length scales in protein

systems (Stradner et al., 2004; Liu et al.,

2011). An overestimation of the peak

location would result in an under-

estimation of these length scales. Addi-

tionally, the secondary peak in S0APP of

oblate ellipsoids does not appear to

correspond to a real correlation length

in the system and may be an artifact of

modeling the intensity as a product of

the form factor and apparent structure

factor.

Fig. 2 depicts the �2 values that

quantify the difference between S0APP

and S0COM as a function of concentration

and aspect ratio. Because the DA is

exact for monodisperse spheres, the �2

value is zero for AR ¼ 1. The solid

black contour indicates �2 ¼ 1 assuming

a standard error of 10%, so points below

this curve have deviations between S0APP

and S0COM of less than 10%. The dashed

and dotted contours indicate the

corresponding �2 ¼ 1 boundary

assuming that the standard error in

equation (7) is 5 or 20%, respectively.

As shown in Fig. 2, the limits of

applicability of the DA depend strongly

on particle shape and volume fraction.

In general, the DA is valid for higher

concentrations for oblate ellipsoids than

for prolate ellipsoids, and in both cases,

there is a monotonic increase in �2 as

the aspect ratio approaches unity. The

monotonic increase is expected as the

DA is exact in the limit AR! 1.

As noted in the Introduction,

numerous experimental reports of SAS

from globular proteins have employed

various anisometric shape models in the

analysis. Our work can provide

guidance as to the level of accuracy

afforded by the DA. The effective

protein concentration assuming an

average specific molar volume of

0.736 ml g�1 (Mylonas & Svergun,

2007) is shown on the secondary y axis

in Fig. 2 and the aspect ratios of some

model globular proteins are indicated

on the secondary x axis. The cross-
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Figure 3
Orientational distribution function for hard ellipsoids. Values of AR: (a) 0.333; (b) 0.5; (c) 2; (d) 3.
Values of volume fraction: black, 10%; red, 20%; green, 30%; blue, 40%. Vertical lines are drawn at
r=2� ¼ 2�.

Figure 4
Radial distribution functions for hard ellipsoids. Values of AR: (a) 0.333; (b) 0.5; (c) 2; (d) 3. Values
of volume fraction: black, 10%; red, 20%; green, 30%; blue, 40%. Vertical lines are drawn at
r=2� ¼ 2�.



hatched region in Fig. 2 indicates the approximate intracel-

lular protein concentration, 200–300 mg ml�1 (Ellis, 2001). As

can be observed, the DA is effective only for the ellipsoids

deviating least from a spherical shape at these high concen-

trations. We note that proteins interact via a complex and

‘patchy’ potential (Neal et al., 1998; Lomakin et al., 1999);

however, some cases have been effectively modeled as the sum

of an isotropic short-range attraction and long-range repulsion

(Stradner et al., 2004; Liu et al., 2011). Depending on the

relative strengths of the attraction and repulsion we expect

that the boundaries of validity for the DA will change, but

nonetheless propose that these boundaries for hard ellipsoids

of revolution provide a useful guide for interpreting SAS from

protein solutions and from other anisotropic colloidal and

nanoparticle suspensions.

Ultimately, the failure of the DA is due to a breakdown in

the assumption that particle positions and orientations are not

correlated. To show this, the relative particle orientations and

real-space particle distributions were quantified using OðrÞ

and the radial distribution function gðrÞ (Figs. 3 and 4,

respectively). Fig. 3 shows the orientational distribution

function for all nonspherical ellipsoids. The separation

distance is normalized by 2�, the closest two ellipsoids can

approach without overlapping. The vertical line is drawn at

r=2� ¼ 2�. 2� is an important length scale in the system

because it represents the collisional cross section of the

ellipsoids. Particles separated by distances less than this length

scale experience an excluded volume effect that hinders

certain rotations and effectively couples the particles’ orien-

tations with their relative positions. This is shown by the

systematic increase in OðrÞ as r decreases below 2�. As the

concentration increases a secondary peak develops in OðrÞ

around 2� for AR ¼ 0:333 and AR ¼ 2 and slightly below 2�
for AR ¼ 3. The secondary peak in these cases suggests that

next-nearest neighbors also have a preferred orientation. This

cooperative multi-body behavior is known to be a signature of

pre-nematic swarms in liquid crystals (de Gennes, 1971).

The nearest-neighbor peak in gðrÞ for ellipsoids is located at

a length scale smaller than or equal to 2� (Fig. 4). Technically,

the particles separated by this length scale violate the key

assumptions of the DA because, below 2�, particles adopt

preferred relative orientations (Fig. 3). At the lowest

concentrations, these configurations are apparently too few in

number to significantly affect the DA result. However, as the

concentration increases, the nearest-neighbor peak grows and

moves to smaller r. These trends in gðrÞ result in increased

neighboring particle alignment that leads to an unacceptable

error in the DA.

The model calculations presented here provide guidance in

analyzing SAS data from anisotropic particles, such as often

performed with proteins. It is demonstrated that caution is

required in interpreting SAS from protein solutions or

anisotropic colloidal suspensions that are near or above the

boundary in Fig. 2, especially under physiological conditions

or other conditions that promote attraction. Any association

between particles could more strongly couple their relative

positions and orientations and therefore further limit the

validity of the DA. This situation would require a more

detailed model, such as a coarse-grained or full atomistic

simulation.

For systems where the DA breaks down, a potential alter-

native is the technique developed by Hansen (2013), who

showed that the apparent structure factor for hard ellipsoids

with aspect ratios ranging from 0.5 to 2.0 may be approxi-

mated by the structure factor for polydisperse spheres. The

method explicitly accounts for excluded volume effects not

considered in the DA. Here we have used Hansen’s method to

calculate S0ðqÞ and compare it with S0APP. The results for

AR ¼ 0:5 and AR ¼ 2 at volume fractions of 10, 20 and 30%

are shown in Fig. 5. For AR ¼ 0:5, Hansen’s method performs

worse than the DA, while for AR ¼ 2, it outperforms the DA.

Interestingly, Hansen’s method does not account for the

secondary peak observed in S0APP for oblate ellipsoids, indi-
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Figure 5
Apparent structure factors, S0Hansen (dashed lines), S0COM (solid lines) and
S0APP (open symbols). Values of AR: (a) 0.5; (b) 2. Values of volume
fraction: black, 10%; red, 20%; green, 30%.

Figure 6
Ratio of �2

Hansen to �2
10% as a function of volume fraction and aspect ratio.

Points studied in this work are marked with squares.



cating that the excluded volume contributions to the apparent

structure factor are not adequate in reproducing this peak.

The origin of the peak is still unclear.

The deviation between S0Hansen and S0APP was characterized

by �2
Hansen, computed using an expression identical to equation

(7) where S0COM has been replaced with S0Hansen. The standard

error was assumed to be 10% of S0APP. The ratio of �2
Hansen to

the �2
10% reported in Fig. 2 is shown in Fig. 6. Ratio values less

than unity indicate that Hansen’s method performs better than

the DA, while values greater than unity indicate the converse.

The ratio calculation shows that Hansen’s method works

better than the DA for prolate ellipsoids, up to a factor of �2,

and also performs better than the DA for AR ¼ 0:75. We are

unaware of any literature applying this technique to protein

solutions, but, from the comparisons here, it appears more

appropriate than the DA for the interpretation of SAS from

protein solutions.

4. Conclusions

The DA is valid only within the contours established in Fig. 2.

The most significant error that is not corrected by the DA is an

overestimation of the primary peak location in the structure

factor, which leads to an underestimation of the correlation

length. Additionally, spurious peaks can be introduced into

the apparent structure factor that do not correspond to any

real correlation length scale in the system. The DA fails when

there are a significant number of ellipsoidal pairs that are

separated by less than 2�. These model calculations provide a

useful starting point for the analysis of SAS from protein

solutions and anisotropic colloidal and nanoparticle disper-

sions.
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