
 

 

 

 

 

A MODEL OF TRAFFIC IMPACTS: 

 POINTS OF DISPENSING AS A RESPONSE  

TO A BIOLOGICAL OUTBREAK  

 

 

 

 

 

by 

 

Rachel M. Chiquoine 

 

 

 

 

 

 

 

 

 

A thesis submitted to the Faculty of the University of Delaware in partial 

fulfillment of the requirements for the degree of Master of Applied Sciences 

 

 

 

Summer 2016 

 

 

 

© 2016 Rachel M. Chiquoine 

All Rights Reserved 

  



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

ProQuest         

Published by ProQuest LLC (    ).  Copyright of the Dissertation is held by the Author.

ProQuest Number:          

10190555

10190555

2016



 

 

 

 

A MODEL OF TRAFFIC IMPACTS: 

 POINTS OF DISPENSING AS A RESPONSE  

TO A BIOLOGICAL OUTBREAK  

 

 

by 

 

Rachel M. Chiquoine 

 

 

 

 

Approved:  __________________________________________________________  

 Sue McNeil, Ph.D. 

 Professor in charge of thesis on behalf of the Advisory Committee 

 

 

 

Approved:  __________________________________________________________  

 Harry W. Shenton III, Ph.D. 

 Chair of the Department of Civil and Environmental Engineering 

 

 

 

Approved:  __________________________________________________________  

 Babatunde A. Ogunnaike, Ph.D. 

 Dean of the College of Engineering 

 

 

 

Approved:  __________________________________________________________  

 Ann L. Ardis, Ph.D.  

Senior Vice Provost for Graduate and Professional Education



 iii 

ACKNOWLEDGMENTS 

I would first and foremost like to thank my thesis advisor Dr. Sue McNeil. Her 

professional guidance, moral support, and endless pep talks were vital to my writing 

this thesis. Dr. McNeil has provided an amazing support system throughout my 

graduate career.  

I would also like to thank Dr. Earl “Rusty” Lee, whom without I would not 

have come up with this thesis topic. His inspiration and input were the catalyst for this 

entire thesis.  

I would also like to acknowledge Michael DuRoss from the Delaware 

Department of Transportation. Mr. DuRoss was a great teacher, mentor, and facilitator 

in the creation of this model. In addition, I would like to thank Scott Thompson-

Graves, Ashley Tracy, and Li Li at Whitman, Requardt & Associates for the time, 

effort, and helpfulness in developing the POD Traffic Impact Model.  

Finally, I would like to thank my parents for their continued support and love.  



 iv 

TABLE OF CONTENTS 

LIST OF TABLES ....................................................................................................... vii 

LIST OF FIGURES ........................................................................................................ x 
ABSTRACT ................................................................................................................. xii 

Chapter 

1 INTRODUCTION .............................................................................................. 1 

1.1 Problem Statement ..................................................................................... 1 

1.2 Motivation ................................................................................................. 1 
1.3 Objectives .................................................................................................. 2 

1.4 Overview of Methodology ........................................................................ 4 

1.5 Outline of the Thesis ................................................................................. 5 

2 LITERATURE REVIEW ................................................................................... 6 

2.1 Background ................................................................................................ 6 

2.1.1 Motivation from the Literature ...................................................... 6 

2.1.2 Points of Dispensing ...................................................................... 8 
2.1.3 Arrival Rates, Throughput Rates, and Service Times ................... 9 

2.1.4 Walk-in versus Drive-Through PODs ......................................... 10 
2.1.5 Transportation Issues in Federal Initiatives, Guidelines, and 

Standards for PODs ..................................................................... 11 

2.1.5.1 Cities Readiness Initiative and the Strategic National 

Stockpile ....................................................................... 13 
2.1.5.2 CDC POD Standards .................................................... 14 
2.1.5.3 FEMA Point of Distribution Guidelines ....................... 15 

2.1.5.4 Agency for Healthcare Research and Quality 

Planning Guide ............................................................. 16 
2.1.5.5 NCHRP Report on Role of Transportation in Public 

Health Disasters ............................................................ 17 
2.1.5.6 NCHRP Report on Public Transportation Pandemic 

Planning and Response ................................................. 18 

2.1.6 POD Preparedness ....................................................................... 19 
2.1.7 Written Plans, Roles, and Agencies in Delaware ........................ 21 

2.1.7.1 Neighborhood Emergency Help Center Plan ............... 21 
2.1.7.2 Delaware Influenza Pandemic Plan .............................. 24 



 v 

2.1.7.3 State, County, and City Level Emergency Operations 

Plans ............................................................................. 24 

2.1.7.4 Delaware Department of Transportation ...................... 25 

2.2 Past Related Research .............................................................................. 26 

2.2.1 Planning, Field Exercises, and Lessons Learned ......................... 26 
2.2.2 POD Models ................................................................................ 28 
2.2.3 Transportation Related Models ................................................... 31 

2.3 Relevant Methodologies .......................................................................... 34 

2.3.1 Travel Demand Forecast Model .................................................. 34 

2.3.2 Analysis of Complete Streets using Cube ................................... 36 

2.3.3 DelDOT Statewide Evacuation Model ........................................ 37 
2.3.4 Accessibility-Based Network Vulnerability Analysis ................. 37 

2.4 Summary of Relevant Literature ............................................................. 38 

3 METHODOLOGY ........................................................................................... 42 

3.1 Introduction ............................................................................................. 42 
3.2 POD Traffic Impact Model ..................................................................... 42 

3.3 Model Process and Scenarios .................................................................. 46 
3.4 Patient Arrival Scenarios ......................................................................... 47 
3.5 Measures of Effectiveness ....................................................................... 50 

3.6 Data Sources ............................................................................................ 54 

4 CASE STUDY .................................................................................................. 55 

4.1 Wilmington, Delaware ............................................................................ 55 
4.2 Case Study Scenario ................................................................................ 57 

4.3 POD Locations ........................................................................................ 58 
4.4 Assumptions ............................................................................................ 60 
4.5 Analysis, Results, and Discussion ........................................................... 62 

4.5.1 POD Performance Measures ....................................................... 62 

4.5.1.1 Uniform Arrival Scenario ............................................. 67 

4.5.1.2 Dual Uniform Arrival Scenario .................................... 68 
4.5.1.3 Rush Hour Peaks Arrival Scenario ............................... 68 
4.5.1.4 PM Rush Hour Peak Arrival Scenario .......................... 69 
4.5.1.5 Midday Peak Arrival Curve Scenario ........................... 69 



 vi 

4.5.2 Network Performance Measures ................................................. 70 
4.5.3 Parking Availability ..................................................................... 86 

4.5.4 POD TIM Computational Performance ....................................... 90 

5 CONCLUSIONS, RECOMMENDATIONS, AND FUTURE RESEARCH .. 91 

5.1 Conclusions ............................................................................................. 91 
5.2 Recommendations ................................................................................... 93 
5.3 Future Research ....................................................................................... 95 

REFERENCES ........................................................................................................... 103 

Appendix  
 

A DISCLAIMER ................................................................................................ 108 

B HOURLY ARRIVAL PERCENTAGES OF TOTAL POPULATION FOR 

ARRIVAL CURVE SCENARIOS ................................................................. 109 
C POD MOES FOR UNIFORM ARRIVAL CURVE SCENARIO ................. 111 
D POD MOES FOR DUAL UNIFORM ARRIVAL CURVE SCENARIO ..... 118 

E POD MOES FOR AM AND PM RUSH HOUR PEAKS ARRIVAL 

CURVE SCENARIO ...................................................................................... 125 

F POD MOES FOR PM RUSH HOUR PEAK ARRIVAL CURVE 

SCENARIO .................................................................................................... 132 
G POD MOES FOR MIDDAY PEAK ARRIVAL CURVE SCENARIO ........ 139 

 



 vii 

LIST OF TABLES 

Table 1: List of Potential NEHC Sites (DPH, 2008b, p. 176) ............................... 23 

Table 2: Summary of Relevant Literature ............................................................. 39 

Table 3: Descriptions of Model Measures of Effectiveness .................................. 53 

Table 4: Data Sources ............................................................................................ 54 

Table 5: POD MOEs for the Scenario Assuming Uniform Arrivals ..................... 67 

Table 6: POD MOEs for the Scenario Assuming Dual Uniform Arrivals ............ 68 

Table 7: POD MOEs for the Scenario Assuming AM and PM Rush Hour Peaks 

for Arrivals .............................................................................................. 68 

Table 8: POD MOEs for the Scenario Assuming PM Rush Hour Peak Arrivals .. 69 

Table 9: POD MOEs for the Scenario Assuming Midday Peak Arrivals ............. 69 

Table 10: Hourly Arrival Percentages of Total Population for Arrival Curve 

Scenarios (in percentages) ..................................................................... 110 

Table 11: Raw Hourly Data for DelTech POD for Uniform Arrival Curve 

Scenario ................................................................................................. 112 

Table 12: Raw Hourly Data for JCC POD for Uniform Arrival Curve Scenario . 113 

Table 13: Raw Hourly Data for NESSC POD for Uniform Arrival Curve 

Scenario ................................................................................................. 115 

Table 14: Raw Hourly Data for Frawley POD for Uniform Arrival Curve 

Scenario ................................................................................................. 116 

Table 15: Raw Hourly Data for DMV POD for Uniform Arrival Curve Scenario 117 

Table 16: Raw Hourly Data for DelTech POD for Dual Uniform Arrival Curve 

Scenario ................................................................................................. 119 

Table 17: Raw Hourly Data for JCC POD for Dual Uniform Arrival Curve 

Scenario ................................................................................................. 120 

Table 18: Raw Hourly Data for NESSC POD for Dual Uniform Arrival Curve 

Scenario ................................................................................................. 122 



 viii 

Table 19: Raw Hourly Data for Frawley POD for Dual Uniform Arrival Curve 

Scenario ................................................................................................. 123 

Table 20:  Raw Hourly Data for DMV POD for Dual Uniform Arrival Curve 

Scenario ................................................................................................. 124 

Table 21: Raw Hourly Data for DelTech POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario .......................................................................... 126 

Table 22: Raw Hourly Data for JCC POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario .......................................................................... 127 

Table 23: Raw Hourly Data for NESSC POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario .......................................................................... 129 

Table 24: Raw Hourly Data for Frawley POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario .......................................................................... 130 

Table 25: Raw Hourly Data for DMV POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario .......................................................................... 131 

Table 26: Raw Hourly Data for DelTech POD for PM Rush Hour Peak Arrival 

Curve Scenario ...................................................................................... 133 

Table 27: Raw Hourly Data for JCC POD for PM Rush Hour Peak Arrival 

Curve Scenario ...................................................................................... 134 

Table 28: Raw Hourly Data for NESSC POD for PM Rush Hour Peak Arrival 

Curve Scenario ...................................................................................... 136 

Table 29: Raw Hourly Data for Frawley POD for PM Rush Hour Peak Arrival 

Curve Scenario ...................................................................................... 137 

Table 30: Raw Hourly Data for DMV POD for PM Rush Hour Peak Arrival 

Curve Scenario ...................................................................................... 138 

Table 31: Raw Hourly Data for DelTech POD for Midday Peak Arrival Curve 

Scenario ................................................................................................. 140 

Table 32: Raw Hourly Data for JCC POD for Midday Peak Arrival Curve 

Scenario ................................................................................................. 141 

Table 33: Raw Hourly Data for NESSC POD for Midday Peak Arrival Curve 

Scenario ................................................................................................. 143 



 ix 

Table 34: Raw Hourly Data for Frawley POD for Midday Peak Arrival Curve 

Scenario ................................................................................................. 144 

Table 35: Raw Hourly Data for DMV POD for Midday Peak Arrival Curve 

Scenario ................................................................................................. 145 

 



 x 

LIST OF FIGURES 

Figure 1: POD Arrival Rates (Baccam et al., 2011, p. 141) ................................... 32 

Figure 2: The Delaware Department of Transportation's Peninsula Model Road 

Network, in Citilabs Cube ....................................................................... 44 

Figure 3: Arrival Curve Scenarios of Percentages of Hourly Patient Arrivals at 

PODs ....................................................................................................... 50 

Figure 4: Wilmington City Limits (Google Inc., 2016) .......................................... 56 

Figure 5: Case Study Area of Wilmington, Modeled at the Census Block Level .. 57 

Figure 6: POD Locations in Wilmington (Google Inc., 2016) ............................... 60 

Figure 7: Population Distribution Amongst POD Locations .................................. 63 

Figure 8: Congestion Levels in V/C for 6 AM Hour .............................................. 72 

Figure 9: V/C Congestion Levels for 7 AM Hour .................................................. 73 

Figure 10: V/C Congestion Levels for 8 AM Hour .................................................. 74 

Figure 11: V/C Congestion Levels for 4 PM Hour ................................................... 75 

Figure 12: V/C Congestion Levels for 5 PM Hour ................................................... 76 

Figure 13: V/C Congestion Levels for 6 PM Hour ................................................... 77 

Figure 14: Map of Area Surrounding the DMV POD (Google Inc. 2016) ............... 79 

Figure 15: V/C Congestion Levels for the 6 AM Hour Surrounding the DMV 

POD ......................................................................................................... 80 

Figure 16: V/C Congestion Levels for the 7 AM Hour Surrounding the DMV 

POD ......................................................................................................... 81 

Figure 17: V/C Congestion Levels for the 8 AM Hour Surrounding the DMV 

POD ......................................................................................................... 82 

Figure 18: Map of Area Surrounding the DelTech POD (Google Inc., 2016) ......... 83 

Figure 19: V/C Congestion Levels for 6, 7 and 8 AM Hours Surrounding the 

DelTech POD .......................................................................................... 84 



 xi 

Figure 20: Map of Area Surrounding the JCC POD (Google Inc., 2016) ................ 85 

Figure 21: V/C Congestion Levels for 7 AM Hour Surrounding the JCC POD ...... 86 

Figure 22: Map of Parking Garages and Surface Lots Operated by the 

Wilmington Parking Authority (Google Inc., 2016) ............................... 89 

 



 xii 

ABSTRACT 

A Point of Dispensing (POD) is one method to distribute medical 

countermeasures to a population during a biological outbreak. The POD Traffic 

Impact Model (POD TIM) developed in this research examines the traffic impacts of 

POD operations on a transportation network. The methodology utilizes a modified and 

enhanced travel demand forecast model based on DelDOT’s Statewide Evacuation 

Model in Citilabs Cube to include the choice of POD location choice based on 

proximity. Five patient arrival scenarios are tested using six relevant measures of 

effectiveness: V/C ratio, average and maximum patient queue length, average and 

maximum waiting times (delay), and worst time to arrive.  

A case study is developed based on Wilmington, Delaware under the 

assumptions of an aerosolized anthrax release, and five POD locations. The case study 

operates under several assumptions: all traffic is vehicular; 90% compliance rate; and 

a POD processing rate of 1000 people per hour. Results indicated that the POD choice 

algorithm created an uneven distribution of population between the five POD 

locations, with 40% at one POD and 1% at another POD. The disparity in population 

distribution meant that the POD TIM is insensitive to patient arrival pattern. At their 

busiest, PODs had maximum queues of over ten thousand people. The oversight of a 

parking constraint sub-model led to all patients parking their vehicles and queueing 

outside of PODs. In reality, parking would represent a serious concern during POD 

operations. In general, the PODs did not have significant traffic impacts on the 

surrounding networks.  Recommendations for future research include updating the 

POD choice algorithm, implementing a parking constraint sub-model, and 

readdressing the patient arrival patterns. 
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Chapter 1 

INTRODUCTION 

1.1 Problem Statement 

In the public health sector, emergency response plans exist for mass biological 

outbreaks, such as a pandemic or a bioterrorism attack. A Point of Dispensing (POD) 

is one method to distribute medical countermeasures. At a POD, public health 

personnel dispense medication to the public at predetermined locations. Public health 

emergency planners utilize decision support tools to prepare for the challenges and 

uncertainties of POD operations. However, the public health sector has not considered 

the potential impacts of traffic generated by PODs. When added to daily traffic, the 

congestion caused by this additional traffic may negatively affect POD efficiency. 

During a public health emergency, a decreased efficiency could mean an increased 

mortality rate when distributing medication to an entire population within 24 hours. 

This thesis performs an exploratory analysis to understand better the current gaps in 

public health emergency response policy, to model traffic generated by PODs, and to 

provide recommendations for future POD traffic models.  

1.2 Motivation 

Among literature focusing on planning and operation of PODs, very little 

focuses on the effects of external challenges. The literature on planning and operation 

of PODs does not recognize or address the external challenges, such as traffic 

congestion. The goal of a POD is to dispense medical countermeasures to a target 

population within 24 to 48 hours (“Cities Readiness Initiative,” 2010). Planning 

emphasizes internal logistics such as staffing, location, and set-up optimization 

(Nelson et al., 2008; Emergency Management Institute, 2008; Nelson et al., 2012). 
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When logistics external to the POD are considered, typically the focus is on the 

delivery, repackaging, and distribution of medical countermeasures from state and 

federal stockpiles to POD locations (Nelson et al., 2012). However, other potential 

issues exist because of the interface between the community in which the POD is 

located and the POD operations. This interface includes transportation-related 

challenges include vehicular and pedestrian logistics, such as arrival rates, parking 

availability, and traffic control. Even a well-planned POD may face unexpected 

congestion outside of the facility that affect its utilization rate, throughput rate, and 

waiting times.  

I have identified a gap between public health emergency response and 

transportation planning and analysis in the context of POD operations. I advocate for 

open communication, collaboration, and coordination between Departments of Public 

Health and Transportation during emergency response planning. By integrating traffic 

modeling into the POD planning process, we create a comprehensive emergency 

response and an open line of communication.  

1.3 Objectives 

This exploratory analysis demonstrates the benefits of using travel demand 

software during POD planning. The primary objective is to provide evidence that the 

interaction between a transportation network and a POD warrants future analysis and 

collaboration. This study provides proof of concept for the use of travel demand 

models in emergency response planning. In the long term, development of a travel 

demand POD model may determine congestion spots, identify possible traffic control 

measures, and provide recommendations for emergency planners. This first attempt to 
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model POD traffic will produce many important recommendations for future model 

iterations.  

Many questions may be answered through a case study of traffic during POD 

operations. Primarily, are the traffic impacts worth considering during emergency 

planning? How much additional traffic does a POD generate? How is this traffic 

distributed throughout the network? How does POD-generated traffic affect 

background traffic? Where do the congestion points occur in the network? Are there 

identifiable reasons for this congestion that can be mitigated through traffic control? 

By answering these questions, I hope to demonstrate that POD traffic impacts and 

potential control measures should be considered during emergency response planning.  

Because POD-generated traffic has not been previously considered from this 

perspective, the secondary objective is to provide recommendations to improve the 

accuracy and realism of future travel demand/traffic impact models. What issues arise 

from the current model? How do the assumptions shape the model results? How 

inaccurate or unreasonable are these assumptions? What are the limitations of this 

methodology? In the future, modelers should integrate realistic social behaviors, 

internal POD processes, and alternative performance metrics. This case study will 

provide guidance for future models.   

The third objective is to promote communication and collaboration between 

emergency management and transportation agencies. The results of this analysis may 

be shared with emergency planners and policy makers to help them better understand 

the external challenges of PODs. In addition to issues caused by our model 

assumptions, how do POD guidelines, policies, and practices impact the process? For 

example, many planners assume a uniform arrival rate for patients (Ma et al., 2011). 
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The analysis results will shape the discussion between public health officials and 

transportation agencies.  

1.4 Overview of Methodology 

To explore the issues identified, the Point of Dispensing Traffic Impact Model 

(POD TIM) is created to analyze the impact of POD operations on a transportation 

network. The POD TIM forecasts hourly traffic demand on the Delmarva Peninsula 

during a public health response to a large-scale biological outbreak. The POD TIM is 

based on a background network model, the four-step method (Garber & Hoel, 2009), 

and scenarios. The Delaware Department of Transportation provides the regional 

network in Citilabs Cube, a transportation and land use modeling platform. The case 

study area and a 1-2 mile buffer zone are modeled at the census block level. The 

remaining regional network of the Delmarva Peninsula is modeled using 

transportation analysis zones.  

The POD TIM utilizes the four-step method of traditional travel demand 

models, consisting of trip generation, trip distribution, mode choice, and route 

assignment. In addition to normal background traffic, the model generates POD trips 

based on demographic data, employment records, and compliance rate. POD locations 

service two populations: residents of the case study area; and non-resident workers, 

who live outside of but are employed within the case study area. The POD TIM runs 

several model scenarios, which vary residential patient arrival patterns. The model 

compares a uniform, stationary patient arrival pattern to four non-uniform arrival 

patterns. There are two sets of performance measures for the model. Network 

performance measures describe hourly background, evacuation, and spillover traffic 

volumes. POD performance measures indicate patient arrival and processing rates, 
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queue lengths, and waiting times. A case study of Wilmington, Delaware is used to 

demonstrate the methodology.   

 

1.5 Outline of the Thesis 

The first chapter of this paper introduces the problem, objectives, 

methodology, and outline of the rest of the thesis. Chapter 2 provides a literature 

review of background information, related research, and relevant methodologies. 

Chapter 3 introduces the methodology, including describing the model process, 

performance measures, arrival scenarios, and data sources. Chapter 4 describes the 

case study of Wilmington, Delaware used to demonstrate the methodology. Results, 

analysis, and discussion are provided in Chapter 4 also. Chapter 5 provides 

conclusions, recommendations, and suggestions for future research. Appendices 

document a disclaimer, arrival pattern data, and POD measures of effectiveness 

results.  
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Chapter 2 

LITERATURE REVIEW 

2.1 Background 

In this chapter, I review the literature related to POD planning, past related 

research, and relevant methodologies. The purpose of the literature review is to 

understand the operation of PODs, and determine the extent to which issues related to 

transportation planning and traffic analysis is included in these documents.  My goal is 

to better understand current standards, practices, and research in disease outbreak 

emergency planning and response. 

Motivations for this research stemming from the literature include the lack of 

traffic management plans and a call for interagency coordination. I define PODs and 

relevant terminology, such as open and closed, head of household method, and drive-

through clinics. I identify transportation management plans in federal initiatives and 

standards, POD preparedness measures, and plans and roles for Delaware. Lessons 

learned from planning and field exercises involve investigating nonstationary patient 

arrival rates and implementing traffic control. The majority of POD models optimize 

internal POD processes such as location, layout, and staffing, although two 

publications examine the external impacts of POD operations. Lastly, I examine how 

the uses of travel demand forecast models for other research are relevant to this thesis.  

2.1.1 Motivation from the Literature 

When trying to frame the initial transportation problem, the first step was to 

determine where current practitioners and planners think that there is a problem. I 

review motivations found in POD exercise reports that support the need for traffic 

analysis and understanding the impacts of PODs in transportation planning. The 
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largest motivation for this research is the lack of explicit planning for transportation 

issues during POD planning and operations based on the literature reviewed here. 

Much of POD research skirts around the issues of traffic, congestion, and logistical 

management surrounding a POD. The most direct mention comes from a study by 

Gupta et al. (2013), which states that “[traffic] management will also be problematic in 

large cities… though traffic management is outside the scope [of this research]” (p. 

106). A majority of POD literature focuses on internal logistics, such as patient 

throughput rates, service times, and staff utilization rates. 

However, planning and exercises should consider all aspects of POD 

operations, including external processes. The POD literature hints to the need for 

collaboration with transportation owners and operators, declaring that traffic control 

may be problematic and suggesting that future research incorporate the external 

processes of a POD (Gupta et al., 2013; Koh et al., 2008; Reid, 2010; Whitworth, 

2005). For example, inadequate parking may lead to increased congestion, 

bottlenecks, and traffic accidents (Whitworth, 2005; Reid, 2010). A high-efficiency 

mass dispensing site may be severely underutilized “if gridlocked parking lots and 

access roads prevent clients and supplies from reaching the dispensing site” 

(Whitworth, 2005, p. 1). In extreme situations, drivers may run out of gas or abandon 

their vehicles in the road (Whitworth, 2005; Reid, 2010).  Insufficient planning, 

training, and practice may lead to unprepared PODs during a public health emergency, 

which can lead to high death tolls (Rebmann et al., 2015). These POD publications 

clearly imply that future research and planning should plan for transportation issues.  

A public health emergency plan requires the cooperation and coordination of 

many organizations, such as departments of public health, emergency response 
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services, elected officials, and law enforcement (Koh et al,. 2008). These 

organizations should also include Departments of Transportation. Table and field 

exercises provide experience, feedback, and insight into mass dispensing situations 

(Banks et al., 2013). Exercises and training also help to develop cooperative 

relationships between participating organizations.  Departments of Transportation, 

highway agencies, and law enforcement may provide valuable insight during training, 

exercises, and planning. Good planning recognizes that “the lack of an event does not 

mean a lack of risk” (Agócs et al., 2007, p. 266). The message the literature tells us is 

that if we do not consider the effects of increased traffic, congestion, and limited 

access points, we are setting ourselves up for failure before an event even occurs. 

2.1.2 Points of Dispensing  

A Point of Dispensing (POD) is a preselected location where medical 

operations dispense vaccines, antibiotics, or other medication to the general population 

during a public health emergency (Hupert et al., 2004; Emergency Management 

Institute, 2008). PODs may be employed in response to a variety of biological 

outbreaks, such as influenza, aerosolized anthrax, or smallpox. A typical POD is 

comprised of “areas for patient registration, triage, medical evaluation, and dispensing 

of appropriate prophylaxis” (Zerwekh et al., 2007, p. 8). PODs use a “pull” method 

that requires the affected population to gather at specified locations to receive medical 

countermeasures (MCMs) (Hupert et al., 2004; Koh et al., 2008). Alternatively, 

“push” methods involve delivering MCMs to households through the United States 

Postal Service or other delivery service (Reid, 2010). “Pull” methods, such as PODs, 

offer the advantages of medical education and evaluation, dosage modifications, and 

dispensing of vaccines (Reid, 2010). PODs are the most utilized method to quickly 
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and efficiently vaccinate or distribute medication to a population (Baccam et al., 

2011). 

There are two types of PODs: open PODs, which dispense to the general 

population; and closed PODs, which provide MCMs to a specific organization, such as 

a hospital or corporation (Rebmann et al., 2014; Rebmann et al., 2015). For closed 

PODs, a formal agreement exists between a health department and a private entity to 

dispense MCMs to all organization members and their families (Rebmann et al., 

2014).  Although closed PODs can target specific groups, officials need open PODs to 

reach most of a community’s population. Open PODs should be easily accessible to all 

members of a community (Rebmann et al., 2014). Open and closed PODs operate 

side-by-side to dispense MCMs to the entire affected population. 

POD operators may use a head of household (HoH) method when distributing 

oral medication. In a HoH dispensing method, an individual is allowed to pick up 

MCMs for all members of their household (Agócs et al., 2007). The HoH method 

offers several benefits, such as shorter waiting times for individuals, fewer facilities, 

and less staff needed for each location (Agócs et al., 2007). Additionally, the HoH 

model allows higher risk populations such as children, senior citizens, and people with 

disabilities to remain at home, thus lowering their exposure risk. However, this 

method cannot be utilized for vaccinations, which must be administered to each 

individual by a qualified health professional.  

2.1.3 Arrival Rates, Throughput Rates, and Service Times 

When assessing the operations of a POD, there are several key characteristics 

to consider. The arrival rate describes the pattern in which people arrive at the site 

before and during operations (Baccam et al., 2011; Ma et al., 2011). Many dispensing 
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plans assume a stationary, uniform arrival rate, where patients arrive at a constant, 

fixed rate (Ma et al., 2011). However, arrival patterns are much more complex in real 

life situations. The service time specifies how long it takes to process one patient at a 

POD, including registration and dispensing MCMs (Ma et al., 2011). The throughput 

rate indicates how many people one POD can service per hour (Baccam et al., 2011; 

Ma et al., 2011). Assumptions about arrival rates, service times, and throughput rates 

vary between studies. Waiting times and queue lengths are also very important to 

consider in an analysis, as these can be an indicator of inadequate staffing, high 

service times, or low throughput rates.  

2.1.4 Walk-in versus Drive-Through PODs 

There are two POD delivery methods: walk-in clinics, in which patients park 

their vehicles and walk through the POD set-up; and drive-through clinics, in which 

patients remain in their vehicles for the duration of the process. Drive-through clinics 

may have multiple processing lanes, with the ability to process several vehicles per 

lane if staffing allows.  Choosing the type of delivery that best fits the situation 

depends on the type of MCM (e.g. antibiotic versus vaccine), available workforce, the 

size of the patient population, and the time available to dispense medications (Reid, 

2010). 

There are several advantages to dispensing MCMs via drive-through over a 

traditional, walk-in POD. These benefits include protection from severe weather, 

access for clients with limited mobility, and keeping families together (Reid, 2010; 

Banks et al., 2013). By secluding patients in separate vehicles, there is a decreased risk 

of disease transmission between patient groups and staff. Decreasing the risk of 

exposure may increase health care workers’ willingness to participate in POD 
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operations (Reid, 2010). Drive-through clinics also eliminate several external process 

limitations, such as parking constraints, excessive queues, and security issues 

(Zerwekh et al., 2007; Reid, 2010). Additionally, HoH methods may be used at drive-

through PODs when dispensing oral MCMs. Congestion and bottlenecks along the 

road network may still be a concern. 

There are several drawbacks to drive-through PODs. Although vehicles 

provide patients with protection from the elements, POD staff are exposed to the 

weather (Reid, 2010). There may be limited availability of restrooms for patients in 

processing (Zerwekh et al., 2007). Additionally, there is the potential for vehicles to 

run out of gas and cause a traffic jam in the queue (Reid, 2010). Costs of idling in line 

for hours are a negative impact for patients. Both drive-through and walk-in clinics 

discriminate against people without transportation or licenses. Choosing the best 

method for dispensing depends on the disease scenario, location, and available 

resources. 

2.1.5 Transportation Issues in Federal Initiatives, Guidelines, and 

Standards for PODs 

POD operations plans should have the flexibility and scalability to adapt to 

variety of biological threats (Lee et al., 2009). During planning and operations, public 

health officials must overcome many constraints, such as location choice, supply 

distribution, limited staff, and time (Hupert et al. 2009; Koh et al., 2008; Lee et al., 

2009; Ma et al., 2011). In the event of a large-scale aerosolized anthrax release, it is 

critical to dispense medical countermeasures within 48 hours of exposure (Whitworth, 

2005). The first 24 hours are dedicated to preparing the POD and the delivery of the 

medicine, leaving 24 hours to vaccinate or dispense medication to potentially affected 
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populations (Ma et al., 2011). Speed, accuracy, security, and organization are crucial 

principles for a successful POD (Agócs et al., 2007; Banks et al., 2013). There are 

many concerns and constraints to consider during the planning and operation of PODs.  

Public health emergency response occurs at the lowest level of government 

that can adequately manage the incident. Biological outbreak plans are generally 

formed at the city or county level (Rebmann et al., 2015). These plans are not 

standardized, which is both a strength and weakness. As a benefit, each location’s 

plans are tailored to their unique population, geography, and resources. Unfortunately, 

unstandardized plans lead to an inherent variability in the vocabulary, quality, and 

scope of response plans. Several federal programs have provided guidelines for POD 

planning. These include the Cities Readiness Initiative, a planning guide from the 

Agency for Healthcare Research and Quality, POD standards from the Centers for 

Disease Control and Prevention, and guidelines from the Federal Emergency 

Management Agency and the U.S. Army Corps of Engineers (“Cities Readiness 

Initiative,” 2010; Hupert et al., 2004; Nelson et al., 2008, Centers for Disease Control 

and Prevention, 2008; Emergency Management Institute, 2008). Additionally, two 

reports from the National Cooperative Highway Research Program examine the 

intersection of transportation and public health (Friedman et al., 2006; Fletcher et al., 

2014).  Upon examination, it was found that transportation-related planning is only 

minimally considered in federal guidelines. When transportation is considered, it is in 

the context of logistical delivery of MCMs to POD sites, transferring of sick patients 

to medical treatment facilities, and traffic control of entry/exit points and parking lots.  
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2.1.5.1 Cities Readiness Initiative and the Strategic National Stockpile 

The CRI is a federally funded program created in 2004 by the Centers for 

Disease Control and Prevention (CDC) (“Cities Readiness Initiative”, 2010). The CRI 

helps metropolitan statistical areas (MSAs) to develop response plans to large-scale 

biological outbreaks (“Cities Readiness Initiative”, 2015). As of 2010, seventy-two 

metropolitan statistical areas were participating in the CRI, including Dover, Delaware 

(“Cities Readiness Initiative”, 2010). The CRI encourages MSAs to create, implement, 

and update their response plans. 

Initial planning scenarios stemmed from a homeland security perspective, 

focusing on bioterrorism events such as anthrax attacks. The CRI’s original goal was 

to receive, distribute, and dispense medical countermeasures (MCMs) from the CDC’s 

Strategic National Stockpile (SNS) to a target population within 48 hours of a 

bioterrorism event (“Cities Readiness Initiative”, 2010, Ma et al., 2011). In the case of 

an anthrax release, the mortality rate sharply increases 48 hours post-exposure (Ma et 

al., 2011). The SNS contains enough medicine to protect the United States’ population 

if supplies run out at the local level during a public health emergency, delivering to 

any location within twelve hours (Hupert et al., 2004; Zerwekh et al., 2007; “Strategic 

National Stockpile”, 2015). According to the CDC, “each state has plans to receive 

and distribute SNS medicine and medical supplies to local communities as quickly as 

possible” (“Strategic National Stockpile”, 2015). Since the CRI’s initial 

implementation, scenarios have expanded to incorporate epidemics such as smallpox 

and influenza. The current focus emphasizes an all-hazards approach to public health 

preparedness. Regional transportation analysis and POD traffic management have not 

been explicitly considered by the initiative (Nelson et al., 2012).  
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2.1.5.2 CDC POD Standards 

Based on research by the Department of Health and Human Services, Nelson et 

al. (2008) recommends a set of POD standards related to security, staffing, facility 

locations, and operations. The standards are based on evidence through consultation of 

current policy, mathematical modeling, and coordination with practitioners and key 

stakeholders (Nelson et al., 2008). The Centers for Disease Control and 

Prevention/Division of Strategic National Stockpile have adopted these standards 

(Centers for Disease Control and Prevention [CDC], 2008). State and local-level 

policymakers and emergency planners are the target audience. The standards 

incorporate flexibility to allow planners to meet the unique needs of their area. Nelson 

et al. (2008) urge local planners to plan beyond the standards to effectively service 

their population, stating that even full compliance with these standards may not lead to 

a “fully successful response” (p. 7). The standards follow the CRI goals to dispense 

MCMs to a population within 48 hours (Nelson et al., 2008).  

The emphasis of the standards is on internal POD infrastructure, such as 

facility location and set-up (Nelson et al., 2008). The standards do not directly pertain 

to transportation-related issues such as transportation infrastructure, traffic control, 

and congestion management. The required number of PODs considers population size 

and geographical distribution (Nelson et al., 2008). The report suggests future 

collaboration between “public health and city planning, public works, transportation, 

and other departments likely to possess GIS capabilities” to aid with POD location 

optimization process (Nelson et al., 2008, p. 24). Potential POD optimization models 

may utilize travel distance as a metric, assuming people will travel to the POD nearest 

to them (Nelson et al., 2008). However, there is no consideration of how this influx of 

travel would affect the road network. Nelson et al. (2008) briefly consider 
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transportation in POD site security, recommending guidance on vehicle traffic control 

immediately surrounding a POD location. Additionally, security should manage POD 

location ingress, egress, and parking (Nelson et al., 2008).  However, security 

responsibilities do not include managing the larger impacts of congestion throughout a 

region’s transportation network. 

Nelson et al. (2008) recommend further development of infrastructure and 

operational capabilities standards. The authors suggest that current standards may 

leave deficits in planning, such as communicating information to the public and 

incident management. I suggest that these deficiencies also include regional 

transportation planning. A congested transportation network may impact the 

operational capabilities of a POD, such as throughput rate. Future iterations of POD 

standards should incorporate transportation management planning.  

2.1.5.3 FEMA Point of Distribution Guidelines 

The Emergency Management Institute is a training institute supported by the 

Federal Emergency Management Agency (FEMA) and the Department of Homeland 

Security (DHS). The institute offers an independent study course on Points of 

Distribution called “IS-26: Guide to Points of Distribution” (Emergency Management 

Institute [EMI], 2008). Compared to the CDC POD standards, the FEMA guidelines 

provide more detailed instructions for operations and planning. The course focuses on 

the functional aspects of Points of Distribution for state and local emergency planners. 

The course defines the roles of the local Emergency Management Agency for staffing, 

set-up and layout, equipment, operations, and safety. The guide defines Points of 

Distribution as “centralized locations where the public picks up life sustaining 

commodities following a disaster or emergency” (EMI, 2008, p. 6). Because a Point of 
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Distribution focuses on distributing a wider array of commodities to the public, the 

set-up, staffing, and operations instructions may differ from traditional public health 

Point of Dispensing (POD). In the case of a large-scale biological outbreak, we may 

consider “Point is Distribution” synonymous with our definition of a POD and the 

“commodities” as medical countermeasures.  

The manual does consider transportation issues directly related to POD 

operations. The transportation impact surrounding a POD is mentioned when 

determining site layout (EMI, 2008). The guide urges planners to consider entry and 

exit points, traffic flow, and potential congestion when choosing POD locations. 

However, the guide does not suggest a methodology to assess traffic impacts of a 

POD. Although the manual calls for a Traffic Controller staff position, this position’s 

duties pertain to drive-through site traffic flow, not regional mitigation (EMI, 2008). 

Transportation impacts of multiple PODs in a region are not considered.  

2.1.5.4 Agency for Healthcare Research and Quality Planning Guide 

Community-Based Mass Prophylaxis: A Planning Guide for Public Health 

Preparedness is a customizable framework for state, county, and local public health 

agencies currently developing epidemic response plans. The guide was published by 

the Agency for Healthcare Research and Quality, whose objective is to improve the 

safety, quality, and preparedness of the American Healthcare System (Hupert et al., 

2004). The guide is intended for a wide audience, including public health agencies, 

academics, and non-governmental organizations. However, users should consider that 

information in the guide might be outdated, as the Public Health Emergency 

Preparedness program that published the guide was discontinued in 2011.  
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 The Planning Guide’s purpose is to provide a response structure, common 

understanding, and shared vocabulary of disease outbreak response. The guide 

describes the vital components of outbreak response, mass dispensing, and the design, 

planning, and support functions for PODs (called Dispensing/Vaccination Centers in 

the guide). The framework provides enough flexibility to incorporate local 

characteristics into response plans. The planning guide discusses transportation in the 

context of logistical transport of supplies and medical transport for sick patients. 

Ironically, the guide utilizes highway traffic as an analogy for patient flow within a 

POD. However, the guide does not consider any external transportation challenges or 

traffic management of a POD. 

2.1.5.5 NCHRP Report on Role of Transportation in Public Health 

Disasters 

In 2006, The National Cooperative Highway Research Program (NCHRP) 

published A Guide to Transportation’s Role in Public Health Disasters (Friedman et 

al., 2006). The report examines the vulnerabilities of transportation systems to 

chemical, biological, and radiological threats. The guide defines each threat, identifies 

emergency response needs, and provides emergency response plans for highway, 

maritime, railway, aviation, and mass transit transportation systems. The focus of 

transportation’s role in a public health emergency relates to the transmission, 

contamination, and containment of a biological, chemical, or radiological threat 

through a transportation system. 

For this project, we are interested in the performance highway transportation 

during the response to biological threats. Principle factors considered in response 

include “biological agent type and formulation, quantity and persistence, exposure 
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route, dispersion, and population density in the area at risk” (Friedman et al., 2006, p. 

20). Vulnerabilities in a transportation system include confined areas, passenger 

volume, contamination of ventilation and other utilities, and the decontamination 

process (Friedman et al., 2006). Transportation system responsibilities include routing 

exposed populations to “decontamination areas,” evacuating non-exposed populations, 

and providing clear passage for first responders and medical supplies (Friedman et al., 

2006). Transportation agencies have three main roles before, during, and after a public 

health emergency: managing traffic flow and congestion within the road network; 

sharing information about the network with other public agencies; and coordinating 

logistics for other agencies and the public (Friedman et al., 2006). These objectives 

directly align with the role of transportation during POD operations. Although more 

detailed guidelines are not provided, this report supports coordination and 

collaboration between public health and transportation agencies.  

2.1.5.6 NCHRP Report on Public Transportation Pandemic Planning 

and Response 

The NCHRP published A Guide for Public Transportation Pandemic Planning 

and Response in 2014 in response to the call for comprehensive pandemic planning 

(Fletcher et al., 2014). The report reviews pandemics, the role of transportation 

organizations during a pandemic, agency coordination, containment tactics, and 

staffing (Fletcher et al., 2014). The guide focuses on pandemic planning for rural and 

suburban transit organizations and human transport providers, which is outside the 

scope of this case study.  However, this document may be useful for future research 

that incorporates public transportation into the POD planning process.  
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2.1.6 POD Preparedness 

There have been several evaluations of POD preparedness, including the 

Technical Assistance Review (TAR) and a national study of open and closed PODs 

(Nelson et al., 2012; Rebmann et al., 2014; Rebmann et al., 2015). The TAR is a 

weighted composite score that assesses thirteen functional areas in the following 

categories: Strategic National Stockpile plans, management, and requests; tactical 

communications and security; public information; receipt, storage, distribution, and 

dispensing of MCMs; and training, exercise, and evaluation (Nelson et al., 2012). 

However, the TAR has several limitations, such as its sole focus on oral medication 

dispensing and its use to assess CRI participants only (Rebmann et al., 2015). No 

formal review exists for non-CRI jurisdictions’ open PODs or for any closed PODs.  

In an online survey of 456 CRI jurisdictions and 500 randomly sampled non-

CRI jurisdictions, Rebmann et al. (2015) asked whether U.S. jurisdictions are prepared 

to operate open PODs. A total of 257 jurisdictions completed the survey, which 

assessed for open POD preparedness, alternative dispensing options, closed POD 

plans, perceived preparedness and priorities, exercise participation and scenarios, and 

after-action reports. Approximately 94% of jurisdictions had written and/or layout 

POD plans (Rebmann et al., 2015). Furthermore, approximately 74% of jurisdictions 

reported having at least one closed POD (Rebmann et al., 2014). Rebmann et al. 

(2014) and Rebmann et al. (2015) filled a hole in public health preparedness literature 

by recognizing gaps in readiness evaluation, analyzing shortcomings in preparedness, 

and identifying opportunities to increase these attributes.  

Although evaluated jurisdictions appear prepared, gaps do exist in the 

evaluative measures for POD preparedness (Nelson et al., 2012; Rebmann et al., 2014; 

Rebmann et al., 2015). Most notably, current preparedness measures do not consider 
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the external, logistical challenges of PODs, such as accessibility, parking capacity, and 

vehicle congestion (Nelson et al., 2012). Few studies have examined how fundamental 

assumptions about patient arrival rates and dispensing capabilities affect POD 

preparedness, operations, and efficiency (Ma et al., 2011; Baccam et al., 2011). 

Additionally, Rebmann et al. (2015) identified a discrepancy between perceived and 

actual dispensing preparedness, in which 82% of jurisdictions claimed they could 

distribute to the entire population within 48 hours, despite 43% acknowledging that 

they had insufficient staff and volunteer numbers. This finding highlights that some 

jurisdictions may be less prepared than they believe. By ignoring the transportation 

challenges surrounding a POD, the gap between perceived and actual preparedness 

grows larger.  

Even fewer preparedness measures have been conducted for closed PODs. The 

gap between CRI and non-CRI jurisdictions grows larger when considering closed 

POD preparedness. Rebmann et al. (2014) stated that 85% of CRI jurisdictions 

reported having at least one closed POD, while only 58.5% of non-CRI jurisdictions 

reported closed POD plans. Rebmann et al. (2014) posits that this preparedness 

discrepancy may be partially because of funding provided to CRI participants. Overall, 

a standardized, formal review process is needed to assess POD preparedness for all 

jurisdictions, not just CRI participants. This formal review should incorporate traffic 

control measures and mitigation strategies to alleviate congestion and other external 

challenges surrounding PODs.  
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2.1.7 Written Plans, Roles, and Agencies in Delaware 

2.1.7.1 Neighborhood Emergency Help Center Plan 

Published in 2008 by the Department of Health and Social Services for the 

State of Delaware, the Neighborhood Emergency Help Center Plan is an official 

document defining the emergency response plans for a crisis within the state of 

Delaware (Division of Public Health [DPH], 2008b). The document describes 

circumstances for initiating a plan, general facility set-up and operations, and agency 

roles and responsibilities (DPH, 2008b). Agencies involved include Delaware Health 

and Social Services, Delaware Emergency Management Agency, Delaware 

Pharmacist Society, Delaware Department of Transportation (DelDOT), Delaware 

State Police (DSP), and Emergency Medical Services. Additionally, volunteers from 

the Delaware Medical Reserve Corps or from private EMS agencies may be present.  

A Neighborhood Emergency Help Center (NEHC) is a facility operated by the 

aforementioned agencies and the State Health Operations Center that provides 

“prophylaxis, medical triage and sheltering […] in the event of a disaster or public 

health event” (DPH, 2008b, p. 3). In many public health emergency scenarios, a 

NEHC is synonymous with a POD. The NEHC plan provides several key guidelines 

for planning and operations in Delaware. The Division of Public Health assumes a 

patient throughput rate of between 1000-2000 people per hour per location for 

medications and up to 600 people per hour per location for vaccines (DPH, 2008b). To 

distribute patient throughput both throughout the 24-hour operational period and to 

different locations, patients may be assigned to a NEHC by area, postal code, phone 

number, or other technique (DPH, 2008b). Lastly, the plan states that NEHCs are not 
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limited only to Delaware residents, indicating that any person who attends a NEHC 

shall receive care. (DPH, 2008b).   

The document does not provide explicit, formal traffic management plans. 

DelDOT’s roles include to “assist in planning efforts with DPH[;] provide traffic 

control at NEHC facilities[; and] participate and/or observe in yearly exercises by 

DPH, if necessary” (DPH, 2008b, p. 31). The Delaware State Police shall also provide 

traffic support. Several transportation characteristics related to potential NEHC sites 

are listed below: 

 “At least two main roads from different directions to access the 

facility. 

 Secondary road or long driveway (over 500 feet) used to access the 

facility. 

 Parking lots sufficiently illuminated. 

 Number of parking areas. 

 Total area enough to accommodate parking for visitors, employees, 

public transit vehicles (buses), police cars, and ambulances. 

 Main entrance to the Initial Sorting and Screening Area easily 

located from the parking area(s). 

 Location of overflow parking areas” (DPH, 2008b, p. 69-71). 

No further guidance is offered on how to set up parking, access points, and traffic 

control outside of NEHCs. Lastly, the NEHC plan lists potential locations for NEHC 

facilities, seen in Table 1 below. 
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Table 1: List of Potential NEHC Sites (DPH, 2008b, p. 176) 

Site Location 

Northern Health Services Area Sites  

Brandywine Senior Center Claymont 

Christiana Fire Company Christiana 

Claymont Community Center Claymont 

Del Tech – Stanton Stanton 

Del Tech – Wilmington Wilmington 

Jewish Community Center Wilmington 

Newark Senior Center Newark 

Riverfront Wilmington 

Southern Health Services Area Sites  

Blades Fire Company Blades 

Cape Henlopen Senior Center Rehobeth Beach 

Del Tech – Dover Dover 

Del Tech – Georgetown Georgetown 

Delaware National Guard (Smyrna Readiness Center) Smyrna 

Georgetown CHEER Community Center Georgetown 

Greenwood Fire Hall Greenwood 

Harrington Senior Center Harrington 

Laurel Fire Hall Laurel Fire Hall 

Modern Maturity Center Dover Dover 

Roxana Fire Company Roxana 

State Service Centers  

Appoquinimink State Service Center Middletown 

Belvedere State Service Center Wilmington 

Claymont State Service Center Claymont 

DelaWarr State Service Center New Castle 

Floyd I. Hudson State Service Center Newark 

Northeast State Service Center Wilmington 

Winder Laird Porter State Service Center Wilmington 

Anna C. Shipley State Service Center Seaford 

Bridgeville State Service Center Bridgeville 

Edward W. Pyle State Service Center Frankford 

Georgetown State Service Center Georgetown 

James W. Williams State Service Center Dover 

Laurel State Service Center Laurel 

Milford State Service Center Milford 
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2.1.7.2 Delaware Influenza Pandemic Plan 

The Delaware Influenza Pandemic Plan is an official document published in 

2008 by the Department of Health and Social Services for the State of Delaware 

(Division of Public Health [DPH], 2008a). The Delaware Influenza Pandemic Plan 

outlines the responsibilities and procedures for all involved agencies during an 

influenza pandemic. Although influenza pandemic response may differ from an 

anthrax exposure or a smallpox outbreak, this plan is a similar scenario to an epidemic 

that requires mass dispensing clinics.  

The pandemic plan operates in one of six phases (DPH, 2008a). Phases 1 and 2 

belong to the “Inter-Pandemic Period,” in which no flu viruses are present currently. 

Phases 3, 4, and 5 represent a “Pandemic Alert Period,” in which human infections 

begin to spread, although transmission is localized. In phase 6, the “Pandemic Period,” 

the flu virus poses an immediate public health emergency to the general population. 

During a pandemic, the state governor may declare States of Emergency (DPH, 

2008a). Open and closed PODs (NEHCs, hospitals, universities, large employers, etc.) 

will operate to dispense antivirals and vaccinations to the population (DPH, 2008a). 

The plan identifies distribution protocols for various “Vaccination Priority Groups,” 

including medical personnel and high-risk populations (DPH, 2008a). During a 

pandemic, DelDOT’s responsibility is to “provide traffic control measure at the 

NEHCs and other points of dispensing” (DPH, 2008a, p. 19). No further traffic 

management procedures are provided. 

2.1.7.3 State, County, and City Level Emergency Operations Plans 

Emergency Operations Plans exist at the State, County and City levels. It is 

understood that these plans contain detailed information on the emergency response to 
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a biological outbreak. However, the plans are not publically available, and despite 

requests to Delaware Emergency Management Agency (DEMA) access was not 

granted for research purposes. 

2.1.7.4 Delaware Department of Transportation 

There are no formally written plans detailing the Delaware Department of 

Transportation’s role during a biological outbreak (D. Day, personal communication, 

April 5, 2016). DelDOT’s role during a biological outbreak is as a support agency for 

the Division of Public Health and Delaware Emergency Management Agency, 

providing any necessary training and resources (D. Day, personal communication, 

April 5, 2016). Most likely, the responsibility will fall to DelDOT’s Transportation 

Management Center (TMC), in conjunction with state, county, and local law 

enforcement and emergency services.  A 2004 Transportation Incident & Event 

Management Plan provides the only indication of the potential role of DelDOT in a 

medical emergency (Delaware Department of Transportation [DelDOT], 2004). 

However, the plan is a multi-hazard evacuation procedure, with no specific strategies 

for a mass dispensing scenario. Additionally, the plan is a decade out of date. Thus, 

the plan is only marginally helpful when framing the problem.  

The incident management plan names the Transportation Management Team 

(TMT) as the group primarily responsible, consisting of agencies such as DelDOT, 

Delaware Emergency Management Agency, Delaware State Police, and other essential 

groups (DelDOT, 2004). DelDOT would coordinate alternate routes, supply traffic 

control devices such as “barriers, cones, temporary signs, and sign crews,” and 

provide information to the Delaware Emergency Operations Center during an 

emergency (DelDOT, 2004, p. 23). The TMC would be responsible for “transportation 
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management, secondary incident management, providing real-time information,” and 

deploying and staging assets (DelDOT, 2004, p. 23-4). State, county, and local law 

enforcement would be an essential asset for traffic control around the POD site.  

2.2 Past Related Research 

2.2.1 Planning, Field Exercises, and Lessons Learned 

Many departments of public health, emergency services, and other 

organizations have published reports on their experiences in POD planning, training, 

and exercises. Summarized below are the assumptions, constraints, and results from 

these exercises.   

Public health agencies in Massachusetts, Pennsylvania, Washington, Oregon, 

and New York have performed walk-in clinics (Koh et al., 2008; Agócs et al., 2007; 

Stergachis et al., 2007; Spitzer et al., 2007; Rinchiuso-Hasselmann et al., 2011). Three 

out of five exercises utilized the HoH dispensing method (Koh et al., 2008; Agócs et 

al., 2007; Stergachis et al., 2007). The remaining exercises dispensed vaccinations, 

which must be administered by a health professional to each individual (Spitzer et al., 

2007; Rinchiuso-Hasselmann et al., 2011). Health organizations and first responders in 

Hawaii, Washington, New Mexico, and Kentucky held drive-through POD exercises 

(Zerwekh et al., 2007; Reid, 2010; Banks et al., 2013; Carrico et al., 2012). Only 

Hawaii utilized a HoH method, although it was not explicitly named as such (Zerwekh 

et al., 2007). The other three exercises administered influenza vaccines (Reid, 2010; 

Banks et al., 2013; Carrico et al., 2012).  

The layout of each exercise was different, incorporating local needs, resources, 

and capacity constraints. Waiting times, service times, and throughput rates depended 
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on POD set-up, staffing, and resource availability. For each exercise, the initial 

throughput rate assumption was a function of target population size and time the POD 

was operational. Throughput rate assumptions ranged from 360-1000 people per hour. 

Information collected from drills included observed throughput rates, service times, 

queue lengths, and wait times, which vary depending on location, staffing resources, 

and demand.  

There are several limitations of the information learned from these exercises 

and drills. Several reports recognized that field exercises might not accurately 

represent emergency mass dispensing events (Agócs et al. 2007; Banks et al, 2013; 

Stergachis et al., 2007). Because vaccination clinics were voluntary, the throughput 

rates may not accurately reflect the true throughput capacity of each drive-through 

(Banks et al., 2013). In at least one case, the POD never reached full capacity, and 

therefore POD operations were never pushed to the limit of their capabilities 

(Stergachis et al., 2007). Despite these limitations, field tests can still provide valuable 

insights into the operational challenges for PODs. Rinchiuso-Hasselmann et al. (2011) 

asserted that while the lessons resulted from small-scale clinics, there are implications 

for larger-scale operations. 

For walk-in clinics, recommended improvements related to the dispensing 

process, POD layout, staffing resources, operations and control, and prior and just-in-

time training. Analysis of one exercise revealed that the patient arrival rate did not 

follow a stationary Poisson process (Spitzer et al., 2007). Typically, POD planners 

assume a stationary, uniform rate for patient arrivals (Baccam et al., 2011). A 

nonstationary arrival rate could have a large impact on both internal and external 

processes of a POD. Only one walk-in clinic exercise noted that issues outside of the 
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POD should be considered (Koh et al., 2008). A limitation of walk-in clinic exercises 

is the focus on internal POD process improvements.  POD exercises represent the 

opportunity to examine and respond to external challenges in addition to internal 

challenges.  

The drive-through clinics experienced several limitations and lessons related to 

public communication and traffic control. Post-exercise discussion of the Hawaiian 

POD revealed that drivers were confused by traffic flow patterns (Zerwekh et al., 

2007). Reid (2010) acknowledged that traffic control, thinly spread security, and 

traffic due to queuing were limitations. Future exercises should incorporate clearer 

signage and increased traffic guidance. The Washington clinic only administered 250 

vaccine doses at their first exercise, due to a restricted priority group, poor weather, 

and limited advertisement and public awareness (Reid, 2010). For their second clinic, 

a long queue developed before the clinic opened. For the first clinic in New Mexico, 

many vehicles arrived up to two hours before operations began, causing the waiting 

times to be longer (Banks et al., 2013). Banks et al. (2013) note that while routine 

clinics focus on limiting transportation effects on the public, “these concerns would be 

significantly different during a public health emergency or disaster and would result in 

different techniques for processing” (p. 180). Concerns during an emergency should 

focus on how transportation affects a POD’s efficiency in addition to how POD traffic 

affects the rest of the network’s mobility. 

2.2.2 POD Models 

Decision support tools help emergency managers plan for POD events. Some 

emergency planners utilize mathematical models to simulate, optimize, and evaluate 

aspects of mass dispensing events, such as staffing levels, location, and layout. The 
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Bioterrorism and Epidemic Outbreak Response Model, the Dynamic POD Simulator, 

the University of Maryland’s Clinic Planning Model Generator, and an optimization 

model by Hernandez et al. (2015) are decision support tools that determine staffing 

levels and POD performance based on staffing constraints, patient flow and queueing, 

and layout (Hupert et al., 2009; Hernandez et al. 2015). The RealOpt model, created 

by Lee et al. (2009), is a decision-support software suite that models decisions about 

POD location, floor plans, and resource and staff allocation. In addition, RealOpt 

performs disease propagation analysis, investigates alternative dispensing strategies, 

and provides personnel training. Models by Gupta et al. (2013) and Ramirez-Nafarrate 

et al. (2015) optimize POD location, capacity, and layout for drive-through PODs, and 

can be used in conjunction with RealOpt. The inputs and outputs vary for each of 

these models based on their functional uses.   

There are several advantages when using models during the planning process. 

By creating flexible, scalable, real-time tools, public health officials may overcome 

the challenges of making time-sensitive decisions during biological outbreaks. Users 

may customize input parameters based on factors like available staff, number of POD 

locations, and target population. These models are scalable to communities of different 

sizes (Gupta et al., 2013; Lee et al., 2009). Developers have validated these models 

using results from key operations of past clinical experience (Gupta et al., 2013; Lee et 

al., 2009; Hernandez et al., 2015). The greatest contribution of such models is the 

balance between using simulation and optimization to produce results quickly. 

However, there exists a trade-off between the computational time and precision of a 

simulation-optimization model (Lee et al., 2009). To receive the most accurate and 

precise solution, a model needs to portray external and internal processes realistically. 
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Programming a detailed, realistic simulation takes time that emergency planners may 

not have during a biological outbreak. A more detailed simulation requires more 

computation time, limiting the number of optimization iterations. A less realistic 

scenario computes faster, but may not have the level of detail and accuracy required to 

provide an optimal solution. Lee et al. (2009) claim that simulation-optimization 

models are a big challenge for emergency planners.  

There are other potential drawbacks for these models as well. Although 

scientists and researchers create these models, public health officials and emergency 

managers use them. It is important for the user interface to be intuitive, instructive, 

and easy to run. Emergency managers may not understand the internal processes and 

inherent uncertainty within models, and thus misinterpret results as factual. Another 

limitation is the scope of the models. For example, Lee et al. (2009) did not 

demonstrate whether the RealOpt model could adapt to extremely unusual 

circumstances, which may potentially limit its flexibility. RealOpt and the Dynamic 

POD Simulator may only be used for walk-in PODs (Lee et al., 2009; Hupert et al., 

2009), while the models created by Gupta et al. (2013) and Ramirez-Nafarrate et al. 

(2015) are explicitly for drive-through PODs. Despite these disadvantages, models 

provide useful decision support when planning, analyzing, and implementing POD 

operations.  

None of the aforementioned models considers the effects of external 

transportation processes on a POD’s efficiency. Currently, only two publications have 

examined the effects of transportation (Baccam et al., 2011; Ma et al., 2011). These 

two publications are reviewed in the following subsection.  
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2.2.3 Transportation Related Models 

Two publications by Baccam et al. (2011) and Ma et al. (2011) have examined 

external impacts of POD operations at the microscopic level. These studies consider 

queueing, total process time, POD utilization rate, and congestion. Ma et al. (2011) 

developed a demand and supply model to examine impacts on a specific POD location 

due to limited parking, congested roadways, and nonstationary arrival rates. The road 

network, developed in PTV Vissim, includes all access points to the POD and key 

intersections immediately surrounding the POD (Ma et al., 2011). Performance 

measures for the Vissim model include average and maximum waiting times, parking 

lot queue lengths, dispensing queue lengths, delays, total person-hours of waiting, 

percentage of time that parking lots are at capacity, and POD inbound and outbound 

volumes (Ma et al., 2011). In a complementary study, Baccam et al. (2011) examined 

how traffic flow, nonstationary arrival rates, and parking capacity affect POD 

utilization rates using Monte Carlo simulation (twenty iterations) in Visual Basic 

Applications for Microsoft Excel. Performance measures included total process time, 

number of vehicles in the parking lot, and queue lengths waiting to park (Baccam et 

al., 2011).  

The same six arrival rates are used in both publications, based on work by 

Whitworth (2005), Hupert et al. (2009), Lindell and Prater (2007), and Morrow and 

Gladwin (2005) (Ma et al., 2011; Baccam et al., 2011). Baccam et al. (2011) and Ma 

et al. (2011) used a Poisson process to distribute the arrival patterns within each hour. 

The six arrival rates are shown in Figure 1 as the percent of patients arriving at a POD 

over 24 hours.  
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Figure 1: POD Arrival Rates (Baccam et al., 2011, p. 141) 

The five nonstationary arrival rates include: 

 “An evacuation rate based on observations prior to Hurricane Ivan 

in 2004; 

 A Rayleigh distribution, which has been used to describe hurricane 

evacuation times; 

 A distribution approximation of arrival rates in a hypothetical “Bay 

Island” POD study; 

 A bimodal distribution based on a binomial function; 

 An approximation of a bimodal arrival rate used in a study by 

Hupert and colleagues.” (Baccam et al., 2011, p. 141-142) 
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There are several motivations for these two publications. The first is 

emergency planners’ underlying assumption of a stationary, uniform arrival rate 

during the dispensing period. In reality, the public arrive randomly, which the authors 

consider “a concern, especially if it results in underuse of POD staff and lower 

throughput rates than planned” (Baccam et al., 2011, p. 140). Results from case 

studies demonstrated that total process time in a POD was much greater for 

nonstationary arrival rates, causing long waiting times and lengthy queues (Baccam et 

al., 2011; Ma et al., 2011). Secondly, Baccam et al. (2012) suggest that the POD 

process itself can affect parking availability and generate congestion, with increased 

service times creating longer queues and waiting times. The third motivation comes 

from the limited supply of parking spaces at a POD location, which limits the number 

of people who can arrive and enter the POD at a given time. In the case studied by 

Baccam et al. (2011), the number of parking spaces greatly influenced queue length 

and congestion on the road network outside of the POD.  

Ma et al. (2011) and Baccam et al. (2011) emphasize the importance of 

integrating the medical process with transportation problems to analyze the POD 

process accurately. Baccam et al. (2011) conclude that “nonstationary arrival rates to 

the PODs will likely cause traffic challenges outside of the PODs and should receive 

increased attention from planners” (p. 147). These challenges included long queues to 

enter a POD, long queues to enter parking lots, and increased traffic congestion on the 

surrounding road network. Baccam et al. (2011) urge planners to consider pedestrian 

access, accessibility to mass transit, and parking availability when choosing a POD 

location. Congestion mitigation strategies include signs, barriers, and traffic control 

officers to guide vehicle and pedestrian traffic, indicate entry/exit points and queueing 
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areas, and facilitate flow at surrounding intersections (Baccam et al,. 2011). Increasing 

available parking may reduce traffic congestion on the road network. Another 

alternative is to provide shuttles from satellite parking lots.  

There are several disadvantages about the assumptions in these two models. 

The model assumes a first-in-first-out service rate between stages, which may not be 

the case for different interest groups (people with special needs versus families versus 

single individuals). The models simplifies the internal dispensing process (Ma et al., 

2011). Additionally, staffing levels, service times, and service rates are fixed. These 

conditions may not accurately reflect POD processes during operation. Ma et al. 

(2011) assume a HoH dispensing method, which may only be used to administer 

medications, not vaccinations. Dispensing vaccinations would create a lower 

throughput rate and potentially increase waiting times. Baccam et al. (2011) note that 

there is no dynamic interaction between traffic congestion and the arrival of additional 

vehicles. In reality, congestion on the network surrounding the POD would prevent 

additional vehicles from arriving. Lastly, these studies have a very limited scope, 

focusing on a small study area around the POD. The microscopic analyses provide 

evidence that external impacts exist immediately surrounding the POD. However, no 

larger, regional analysis is performed to see how the congestion spreads throughout 

the network.  

2.3 Relevant Methodologies 

2.3.1 Travel Demand Forecast Model 

To understand traffic impacts on a transportation network, transportation 

planners may utilize a demand forecast model. A travel demand model is a computer 



 35 

model that forecasts travel demand and behavior based on assumptions. Most 

commonly used is the four-step travel model, which consists of trip generation, trip 

distribution, mode choice, and route assignment (Garber & Hoel, 2009). First, the 

study region is separated into traffic analysis zones (TAZs), which have the following 

characteristics: similar socioeconomic features; similarly sized populations; few trips 

between zones; and composed of census tract, physical, political, and historical 

boundaries if possible (Garber & Hoel, 2009). Each TAZ features a centroid node that 

contains employment, socioeconomic, and other demographic information. 

For trip generation, planners determine the number of trips that begin or end in 

each TAZ. These trips are grouped by purpose, such as work-based trips or home-

based trips. Next, the generated trips are distributed within and outside of the study 

region. Internal trips begin and end in a TAZ. Internal-external trips begin or end 

outside of the study area. One method for trip distribution is the gravity model, which 

utilizes transportation system, land-use, and socioeconomic characteristics to 

distribute trips. Once the trips are distributed, the model determines the proportion of 

trips made by available transportation modes, such as personal vehicle or mass transit. 

Mode choices are based on travel times, socioeconomic factors, and availability.  

At this point, transportation planners know how many trips occur, mode of 

transportation, and where the trips begin and end. The last step determines the routes 

used by these modes on these trips. Trip assignment is an iterative process that 

redistributes traffic based on road capacity, posted speed limits, travel times, and route 

availability. Trip assignment produces the expected traffic volumes on all roads across 

the network. Once the four steps have been completed, the model produces evaluative 
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metrics of the traffic impacts. Evaluative metrics include volume to capacity ratio, 

level of service, and travel times.  

In the following subsections, I review several case studies that utilize a travel 

demand model to analyze network-level impacts in Citilabs Cube. Cube is a software 

platform for travel demand forecast modeling. Within Cube, a gravity model 

completes an origin-destination matrix, which is a table indicating how many trips 

travel between two locations for all location pairs within the network (Patterson, 

2013). The model then utilizes the four-step travel model to assign these trips to the 

network and output travel times for each road segment (Patterson, 2013).  

2.3.2 Analysis of Complete Streets using Cube 

The first case study examines the impacts of complete street policies in Cube. 

A “complete street” integrates pedestrian, cyclist, transit, and vehicle uses safely into 

one road (Patterson, 2013).  Patterson (2013) considers the effect of implementing 

complete street strategies on the transportation network in Smyrna, Delaware. The 

model of Smyrna and the Delmarva Peninsula was provided by the Delaware 

Department of Transportation. Smyrna is modeled at the tax parcel level, while the 

surrounding area is modeled in TAZs (Patterson, 2013).  Outputs include “daily 

volumes, volume to capacity ratios for the peak AM period, and travel times for the AM, 

PM, and midday peak periods, and for the off peak period” (Patterson, 2013, p. 73). Delay 

and emissions impacts are quantified by travel time changes across the entire network. 

Patterson’s model has several differences from the POD model. In Patterson’s 

analysis of complete streets, road capacities are varied while volumes across the 

network remain constant. These capacity variations simulate the implementation of 

various “complete street” tactics. Oppositely, in the analysis of POD operations, road 
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capacities will remain constant while volumes are varied over a 24-hour period. The 

analysis performed by Patterson (2013) demonstrates the flexibility and innovation of 

using the Cube travel demand model for nontraditional purposes.  

2.3.3 DelDOT Statewide Evacuation Model 

The Delaware Department of Transportation (DelDOT) utilizes a statewide 

travel demand model, called the Peninsula Model, in Cube Voyager (Thompson-

Graves et al., 2007). As a part of their Peninsula Model, DelDOT has created a 

Statewide Evacuation Model, which utilizes road capacity, behavioral, policy, and 

operational assumptions, and their iterative traffic assignment process to model hourly 

evacuation impacts (Thompson-Graves et al., 2007).  Behavior assumptions include 

the rate of evacuation, compliance, population size, and evacuation destinations 

(Thompson-Graves et al., 2007). Policy assumptions include determining when to 

declare an evacuation or a state of emergency for specific areas (Thompson-Graves et 

al., 2007). The evacuation assignment is an iterative, hourly process that assigns 

evacuation trips and background traffic to the network, determines operating capacity 

and demand, and assigns spillover trips to the subsequent hour when volume exceeds 

road capacity (A. Tracy, personal communication, February 24, 2016).  The model has 

a thirty-hour evacuation period. This model is the base for the POD Traffic Impact 

Model for this thesis.  

2.3.4 Accessibility-Based Network Vulnerability Analysis 

A case study by Taylor (2008) proposes an alternative performance measure to 

the more traditional delay, travel time, volume to capacity ratio, level of service, and 

emissions used in travel demand models. The methodology identifies vulnerabilities in 
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the transportation network using Cube Voyager. The case study examines the impacts 

of congestion “hot spots” in the network in terms of accessibility (Taylor, 2008). In 

this context, accessibility is based on three factors: traveler, transport system, and land 

use (Taylor, 2008). Accessibility may be considered both as the ease of access of point 

X from point Y and as the overall accessibility level of the study region. 

The framework considers time of day, mode of transportation, and origin-

destination trips. Accessibility is measured by social welfare costs, called “CS,” which 

is “the benefit … that an individual receives from a consumption choice situation” 

(Taylor, 2008, p. 599). Accessibility of individual locations can be aggregated into an 

overall accessibility level for the network. The largest drawback is the unit of study for 

the model. The case study divides the study area in statistical local areas, the next size 

above TAZs. To break these areas into smaller zones would greatly increase 

computational time for the model. Statistical local areas provide only a very broad 

representation of a town or neighborhood, and thus may exclude many local roads, 

intersections, and key features. An accessibility analysis at this scope may not 

accurately identify vulnerabilities or congestion spots within the network. 

Notwithstanding the method’s broad scope, the accessibility metric has the potential in 

future work to provide an alternative network performance metric that reflects human 

costs instead of vehicle impacts. 

2.4 Summary of Relevant Literature 

Table 2 provides a summary of the relevant literature focusing on the concepts, 

data, and models that are used to answer the research questions posed in Chapter 1.  
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Table 2: Summary of Relevant Literature 

Area Summary Sources 

Concepts 

PODs dispense MCMs to 

population during a public health 

emergency 

Hupert et al., 2004; 

Emergency 

Management Institute, 

2008 

PODs should dispense oral 

antibiotics to population within 48 

hours of an anthrax release 

Whitworth, 2005; Ma et 

al., 2011 

Coordination between public 

health and transportation agencies 

is assumed in plans, but not 

formally written 

EMI, 2008; DPH, 

2008a;  DPH, 2008b 

Potential transportation issues 

include insufficient parking, entry 

point bottlenecks, and congestion 

due to queueing 

Whitworth, 2005; Reid, 

2010; Ma et al., 2011; 

Baccam et al., 2011 

POD 

Configurations 

Open PODs dispense MCMS to 

general population 

Rebmann et al., 2015 

An organization operates a closed 

POD for all employees and their 

families  

Rebmann et al. 2014 

A head of household method 

allows 1 member to pick up  

MCMs for entire household 

Agócs et al., 2007 

In walk-in clinics, patients park 

and walk through POD set-up  

Koh et al., 2008; Agócs 

et al., 2007; Stergachis 

et al., 2007; Spitzer et 

al., 2007; Rinchiuso-

Hasselmann et al., 2011 

Drive-through clinics allow 

patients to remain in vehicle for 

entire process 

Zerwekh et al., 2007; 

Reid, 2010; Banks et 

al., 2013; Carrico et al., 

2012 
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Table 2, continued 

 

Area Summary Sources 

Data 

Federal initiatives, standards, and 

roles are provided by the Cities 

Readiness Initiative, CDC, 

FEMA, and NCHRP 

“Cities Readiness 

Initiative,” 2010; 

Nelson et al., 2008, 

CDC, 2008; EMI, 2008; 

Friedman et al., 2006 

Delaware’s Division of Public 

Health assumes a processing rate 

of 1000-2000 people per hour for 

medications and up to 600 people 

per hour for vaccinations 

DPH, 2008b 

Throughput rates, service times, 

and arrival patterns vary in real-

time exercises  

Koh et al., 2008; Agócs 

et al., 2007; Stergachis 

et al., 2007; Spitzer et 

al., 2007; Rinchiuso-

Hasselmann et al., 

2011; Zerwekh et al., 

2007; Reid, 2010; 

Banks et al., 2013; 

Carrico et al., 2012 

Nonstationary patient arrival rates 

may be more realistic than a 

uniform arrival pattern 

Baccam et al., 2011; Ma 

et al., 2011 
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Table 2, continued 

 

Area Summary Sources 

Tools 

Many simulation-optimization 

models evaluate internal POD 

characteristics such as location, 

layout, and staffing  

Hupert et al., 2009; 

Hernandez et al., 2015; 

Gupta et al., 2013; 

Ramirez-Nafarrate et 

al., 2015; Lee et al., 

2009 

A microscopic-level traffic 

simulation in PTV Vissim models 

POD impacts due to traffic and 

parking 

Ma et al., 2011 

A Monte Carlo simulation in 

Microsoft Excel examines POD 

utilization rates based on 

nonstationary patient arrival rates 

Baccam et al., 2011 

Travel demand forecast models 

provide a regional analysis of 

traffic impacts 

Garber & Hoel, 2009; 

Patterson, 2013; 

Thompson-Graves et 

al., 2007 

Performance 

Measures 

Average and maximum waiting 

times, parking lot queue lengths, 

dispensing queue lengths, delays, 

total person-hours of waiting, 

percentage of time that parking 

lots are at capacity, and POD 

inbound and outbound volumes 

Ma et al., 2011 

Total process time, number of 

vehicles in the parking lot, and 

queue lengths waiting to park 

Baccam et al. 2011 

Volume to capacity ratio, level of 

service, travel times 

Garber & Hoel, 2009; 

Patterson, 2013 

Delay and emissions impacts 
Patterson, 2013 

Overall accessibility level of a 

transportation network, calculated 

through social welfare costs 

Taylor, 2008  
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Chapter 3 

METHODOLOGY 

3.1 Introduction  

This chapter describes the general methodology used for the thesis. The POD 

Traffic Impact Model forecasts hourly traffic demand on the Delmarva Peninsula 

during a public health response to a large-scale biological outbreak. The model, 

adapted from the DelDOT’s evacuation model, consists of the transportation network, 

the four-step method, and scenarios. Several model scenarios are tested, in which 

residential patient arrival patterns are varied. There are two sets of performance 

measures for the model. Network performance measures describe hourly background, 

evacuation (in this case traffic going to and from the POD), and spillover traffic 

volumes. POD performance measures indicate patient arrival and processing rates, 

waiting times, and queue lengths. Lastly, sources for the data used in the methodology 

are provided.  

3.2 POD Traffic Impact Model 

The POD Traffic Impact Model (POD TIM) used for this methodology is a 

modified and enhanced travel demand forecast model created in Citilabs Cube 

Voyager. Whereas a typical travel demand model predicts network usage as a function 

of behavior, the POD TIM examines the impacts of the network’s usage during POD 

operations. The POD TIM does not model individual trip generation or behavior, but 

instead makes broad assumptions about these factors. In addition, a traditional travel 

demand model predicts network usage for peak and off-peak periods. The POD TIM 

analyzes traffic impacts in one hour increments.  
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The network base of the model is the Delaware Department of Transportation’s 

Peninsula Model, which consists of the Delmarva Peninsula including Delaware and 

the eastern shore of Maryland (see Figure 2 below) (Patterson, 2009). The model uses 

the four step method (trip generation, trip distribution, mode choice, and route 

assignment), real-time traffic data, and a calibration process to accurately forecast 

travel demand across the regional transportation network (Garber & Hoel, 2009; 

Thompson-Graves et al., 2007). The Peninsula Model is broken into TAZs, with the 

case study area modeled at the census block level. The POD TIM builds upon the 

framework of DelDOT’s Statewide Evacuation Model. The Statewide Evacuation 

Model utilizes road capacity and characteristics, an iterative traffic assignment 

process, and behavioral, policy, and operational assumptions to model hourly 

evacuation traffic and delay. In the Statewide Evacuation Model, traffic is assigned to 

destination zones outside of the study region. The POD TIM alters the destination 

zones to be POD locations and adds a patient processing sub-model. Unlike 

evacuation traffic that remains at the destination zones, POD patient traffic returns to 

work or home after being processed at PODs. 
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Figure 2: The Delaware Department of Transportation's Peninsula Model Road 

Network, in Citilabs Cube  
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The POD TIM operates similarly to the Statewide Evacuation Model, with an 

hourly, iterative trip assignment process. The POD TIM assigns POD and background 

traffic to the network, determines road operating capacity and demand, and assigns 

excess traffic to subsequent hours. Inputs include POD patient arrival patterns, POD 

“destination” zones, population “evacuation” zones, and compliance rate. Each input 

scenario is run once, as the model assumes the results are for an “average day” (A. 

Tracy, personal communication, February 25, 2016). The model has the capability to 

restrict vehicle traffic in the network with a “state of emergency” setting. POD 

locations are modeled as TAZs with a link connector to the network. Once patients 

arrive at a POD, they park, exit their vehicles, and queue to enter the POD. The PODs 

have fixed hourly processing rates and operate for a continuous 24 hours. However, 

the underlying evacuation model has a 30-hour traffic assignment period, in which all 

hours must have a nonzero arrival rate. A small percentage of the population (less than 

1%) may arrive at the PODs after “closing.” After a POD has “closed,” it will continue 

to process patients until its queue dissipates. The model assumes that all traffic is 

vehicular. Pedestrian, mass transit, and other modes of transportation are not 

considered explicitly.  

The PODs service two distinct populations within the model. For both groups, 

the decision of which POD to go to is proximity-based. The first group are home-

based work trips for people who live outside of the case study area. These people work 

within the study region, may be exposed to contaminants, and therefore are required to 

go to the PODs. I call this group “non-resident workers.” Because non-resident 

workers enter and exit the study region twice daily, they are most likely to go to a 

POD on their way to or from work. In this model, all non-resident workers stop at a 
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POD on their way from home to work. The decision of which POD location to go to is 

based on the smallest combined total travel time for the two legs of the commute: 

home to POD and POD to work. Thus, the POD that causes the smallest addition in 

commute will be chosen.  

The second group are residents who live within the study area, whom I call 

“residents.” This population group includes adults, children, seniors, and persons with 

disabilities. All residents within the case study region are required (notwithstanding 

the compliance rate) to go to a POD. Residents may work within the study region, but 

will only attend PODs once as residents. Residents go to the POD closest to their 

homes. It is assumed that residents will travel to PODs from home, with one vehicle 

per household, and return to home afterwards. Households without vehicles use transit 

and arrive the same hour as the households with vehicles. At the POD, each vehicle 

break ups into the number of patients within each household for POD processing. In 

the case study, several resident arrival patterns are considered during POD operations.  

3.3 Model Process and Scenarios 

The POD TIM consists of three aspects: the base network, the four-step 

method, and scenarios. The base network for the POD TIM is the Peninsula Model, 

seen above in Figure 2. The Peninsula Model is a series of nodes, which represent road 

intersections and other network features, and links, the road segments that connect 

nodes. The base network is a catalog of physical road infrastructure characteristics, 

such as number of lanes, length and width, capacity, and traffic volumes. The network 

is broken into traffic analysis zones (TAZs) that contain demographic data for 

homogenous population areas. The case study area is divided into census blocks, in 

which all city-block level streets are modeled as links in the network. 
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The core of the model is the four-step process: trip generation, trip distribution, 

mode choice, and route assignment.  The model first performs this process to 

background trips, applying an “hour of day factor” to derive hourly background trips. 

Background trips, separated from non-resident worker trips that must travel to PODs, 

are assigned to the network. The model then generates POD trips. The non-resident 

worker POD trips are derived using the “hour of day factor” also. POD destinations 

are chosen for non-resident workers based on combined travel time from home to the 

POD and from the POD to work. For residents, the model first processes demographic 

data to collect population per household and households with vehicles. Assuming one 

vehicle trip per household, the model applies the patient arrival curve to obtain hourly 

vehicle and population trips. POD destination choice for residents is based on 

proximity to home. POD locations are modeled as TAZs with a link connector to the 

network. Once vehicles arrive at a POD, they park, exit their vehicles, and queue to 

enter the POD. The model utilizes a POD Release Process sub-model to determine in 

which hour patients are released back into the network. A capacity constrained 

assignment process determines spillover traffic into subsequent hours.  

The model may run different scenarios. For the POD TIM, the following 

factors are adjustable: patient arrival pattern, beginning arrival time, at what time POD 

operations begin, POD locations, affected population, compliance rate, and state of 

emergency. Each input scenario is run once, as the model assumes the results are for 

an “average day.” For this thesis, patient arrival pattern is the only varied input.  

3.4 Patient Arrival Scenarios 

The methodology consists of five resident patient arrival scenarios. The 

scenarios utilize different, hourly patient arrival patterns to understand potential traffic 
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impacts on the network due to varying patient behavior. The arrival curves only 

pertain to Wilmington residents. Non-resident workers arrive at PODs on their way to 

work from home, continuing to work afterwards. The five arrival curves used for 

residential arrivals are based on studies performed by Baccam et al. (2011) and Ma et 

al. (2011). The first rate is a uniform, stationary rate. The remaining four rates are non-

uniform, non-stationary rates. The five rates, shown in Figure 3f below, are a uniform, 

dual uniform, AM and PM rush hour peaks, a PM rush hour peak, and a midday peak. 

Hourly arrival percentages of the total population for each arrival scenario are 

provided in Appendix B.  

The uniform, stationary arrival rate reflects many POD planners’ implicit 

assumptions that the public will arrive at the POD at a constant rate throughout 

operations (Ma et al., 2011). The uniform arrival curve is the base line for comparison 

with other POD arrival rates (see Figure 3a below).  

The second arrival rate is a dual uniform rate, in which a higher, uniform 

percentage of patients will arrive during daytime hours between 8 AM and 8 PM (see 

Figure 3b). A much lower, stationary percentage of patients will arrive throughout 

nighttime hours (9 PM to 8 AM). The dual uniform arrival rate is based on the 

assumption that there will be significantly more arrivals during daytime hours than 

nighttime (Ma et al., 2011; Whitworth, 2005). 

The third arrival rate reflects the typical weekday pattern of peak traffic during 

AM and PM rush hours (7-9 AM and 4-6 PM) (see Figure 3c). This scenario reflects a 

majority of vehicles stopping at PODs as a part of their work commute.   
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The fourth arrival rate is an adjusted rush hour pattern, in which the PM peak 

(4-8 PM) is much greater than the AM peak (see Figure 3d). This curve may reflect a 

pattern in which more residents go to PODs after work. 

The fifth arrival rate is a midday peak (10 AM – 2 PM) (Figure 3e). The 

midday peak may reflect a weekend day of POD operations, a state holiday, or a 

declared state of emergency.  
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Figure 3a-f: Arrival Curve Scenarios of Percentages of Hourly Patient Arrivals at 

PODs 

3.5 Measures of Effectiveness 

The POD TIM outputs two sets of measures of effectiveness (MOEs). A 

summary of the measures of effectiveness are provided in Table 3 below. Network 

MOEs describe the hourly conditions of the transportation network and traffic. Each 
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link in the network outputs a capacity, background volume, evacuation volume, 

spillover, and volume to capacity ratio for each direction for each hour. The capacity 

is the maximum hourly traffic volume per lane that can pass through a road segment. 

Capacity constraints are set within the model and do not change hourly. Background 

volume is all trip demand within the network not related to PODs. Evacuation volume 

is the non-resident worker and resident trip demand to and from POD locations. For 

both background and evacuation volumes, these values represent the traffic that wants 

to use the road for a given hour. However, due to capacity constraints, not all of this 

traffic may make it through the network within that hour, resulting in spillover traffic 

that overflows into the following hour. The volume to capacity (V/C) ratio 

summarizes link demand and traffic flow on a scale of 0-1. Low V/C ratios indicate 

healthy traffic flow, while values close to or above one indicates traffic resembling 

gridlock.  

The second set of MOEs are POD MOEs, which describe the hourly internal 

process for each POD location. MOEs include patient spillover from the previous 

hour, new arrivals, hourly processing rate, and patient spillover to the following hour. 

Similar to spillover traffic demand, patients that are not processed for a given hour 

will be pushed to the next hour. The MOEs also calculate the number of hours that 

people will wait in the queue, up to the current hour. Queue lengths vary hourly based 

on patient arrivals, processing, and spillover. From these MOEs, I calculate maximum 

delay, average delay, average queue length, and maximum queue length. This 

information determines when the worst and best times to arrive are. For this analysis, I 

choose delay and V/C metrics over the social costs suggested by Taylor (2008) 

because it is important to understand first the technical impacts of PODs. I must 
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understand how the network handles a large-scale emergency response before 

considering how the congestion may impact people socially. From these MOEs, I shall 

better understand the regional impacts of POD operations.  
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Table 3: Descriptions of Model Measures of Effectiveness 

Measure of Effectiveness Description 

Network 
Hourly conditions of transportation network and 

traffic 

Capacity 
Maximum hourly traffic volume per lane that can 

reasonable pass through a road segment 

Background volume Trip demand within network not related to PODs 

Evacuation volume 
Non-resident worker and resident trip demand to 

and from PODs 

Spillover volume 

Traffic demand that cannot be met in a given hour 

due to capacity constraints, resulting in traffic 

pushed into the following hour 

Volume to capacity ratio 

(V/C) 

Summary of link demand and traffic flow. Anything 

greater than 1 represents gridlock 

POD Hourly internal processes of each POD location 

Patient spillover from 

previous hour 

Patients who arrived in a prior hour but have not 

been processed yet, in queue 

New arrivals Patients who arrive in the current hour 

Processing rate Number of patients processed per hour per location 

Patient spillover to next 

hour 

Patients from prior and current hours that are not 

processed in current hour, pushed into next hour 

Hourly average queue  
Up to current hour’s arrivals, the average number of 

hours a patient will wait in line to be processed 

Maximum delay 
Maximum number of hours spent in queue, over 

entire operational period 

Average delay 
Average number of hours spent in queue, over entire 

operational period 

Maximum queue length 
Maximum number of people waiting in line at POD, 

over entire operational period 

Average queue length 
Average number of people waiting in line at POD, 

over entire operational period 

Worst time to arrive 
The worst time to arrive at a POD location, based on 

maximum delay  
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3.6 Data Sources 

The data used in this methodology come from a variety of census, 

transportation, and public health sources, seen in Table 4: Data Sources below.  

Table 4: Data Sources 

Data Source 

Arrival rates Baccam et al. 2011; Ma et al. 2011 

Peninsula Model and background traffic 

data 

Provided by DelDOT 

POD Traffic Impact Model (POD TIM) Created by DelDOT and WRA 

Wilmington census data U.S. Census Bureau 2015a; 2015b 

Throughput rates  DPH 2008b 
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Chapter 4 

CASE STUDY 

4.1 Wilmington, Delaware 

To demonstrate the feasibility of this methodology, I chose the city of 

Wilmington, Delaware as a case study. Wilmington is located on the Delaware and 

Christina Rivers in New Castle County. Washington D.C., Baltimore, Philadelphia, 

and New York City are located within a three-hour radius of Wilmington, accessible 

by Interstate 95, which bisects the city. Downtown Wilmington is a dense grid pattern 

of intersecting streets with limited parking. The Amtrak Station sits on the Christina 

River, at the mouth to Wilmington’s latest development area called the Riverfront. 

Many Fortune 500 companies are headquartered within Wilmington, making it a large 

corporate hotspot (“About the City of Wilmington,” 2016). In addition to its 

residential population of 72,000, over 40,000 people enter the city for employment 

daily (“About the City of Wilmington,” 2016). The case study area is determined by 

the boundaries of the city of Wilmington (see Figure 4), except in the south where the 

study area extends to Interstate 295. The study area is bounded by the Delaware River 

to the east. A 1-2 mile buffer zone beyond these boundaries is included to capture the 

relevant network. The study area including the buffer zone are modeled at the census 

block level as shown in Figure 5. All surrounding areas are modeled as TAZs in the 

Peninsula Model (see Figure 2 in Section 3.2).  
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Figure 4: Wilmington City Limits (Google Inc., 2016) 
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Figure 5: Case Study Area of Wilmington, Modeled at the Census Block Level  

4.2 Case Study Scenario 

This case study examines the transportation network impacts of a citywide 

dispensing effort in Wilmington, DE. The case study operates under the assumption of 

an aerosolized anthrax release throughout Wilmington. In the event of an anthrax 
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attack, it is critical to dispense oral antibiotics within 48 hours of exposure, after 

which the mortality rate increases drastically (Whitworth, 2005; Ma et al., 2011). The 

Cities Readiness Initiative originally based planning on this scenario, founded on 

evidence that receiving antibiotics within 48 hours prevents 95% of anthrax outbreaks 

(CDC, 2008).  The first 24 hours are dedicated to POD preparations and medication 

delivery, leaving 24 hours to dispense oral antibiotics to potentially infected 

populations (Ma et al., 2011). The response for Wilmington, DE is based on the 

typical planning scenario to a citywide anthrax release.  

4.3 POD Locations 

To service the entire residential and working populations of Wilmington, I 

must first discuss several relevant assumptions. According to the Point of Dispensing 

Standards created by Nelson et al. (2008) and adopted by the CDC (2008), the affected 

region should estimate how many PODs are needed to service the region’s entire 

population. According to the most recent census data, Wilmington has a residential 

population of 71,817 and a non-resident worker population of 43,647 (U.S. Census 

Bureau, 2015a; U.S. Census Bureau, 2015b). Together, an estimated population of 

115,464 people live and work in Wilmington.  

Delaware’s Neighborhood Emergency Help Center Plan indicates that a POD 

location may dispense between 1,000-2,000 oral antibiotics per hour per location 

(DPH, 2008b). For the purposes of this study, I assume the lower throughput rate of 

1,000 people per hour per location. Thus, one POD may process 24,000 people over 

its 24 hours of operation. Approximately five POD locations are needed to service 

Wilmington’s working and residential populations within a 24-hour period.  
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POD locations were chosen through several methods. The NEHC Plan 

provides a list of suggested locations throughout Delaware (DPH, 2008b). Four 

locations in Wilmington were chosen from this list (seen in Table 1 in Section 

2.1.7.1): 

 Jewish Community Center (JCC) and YWCA Delaware, located at 709 

N Madison Street, Wilmington, DE 19801; 

 George Campus of the Delaware Technical Community College 

(DelTech) in downtown Wilmington, located at 300 N. Orange Street, 

Wilmington, DE 19801; 

 Northeast State Service Center (NESSC), located at 1624 Jessup St, 

Wilmington, DE 19802; and 

 Frawley Stadium at the Riverfront, home to the Wilmington Blue 

Rocks baseball team, located at 801 Shipyard Drive, Wilmington, DE 

19801. 

The remaining location was chosen because of plentiful parking, ease of access, and 

relatively well-known location: 

 Department of Motor Vehicles (DMV) south of Wilmington near the I-

495/US-13 exchange, located at 2230 Hessler Blvd, New Castle, DE 

19720. 

The combination of these five locations is not officially endorsed. DPH is not willing 

to share potential POD locations for strategic reasons. The five locations were chosen 

to give a wider geographical coverage of the city of Wilmington, in addition to the 

limited guidelines for location choice. See Figure 6 below for a map of POD locations.  
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Figure 6: POD Locations in Wilmington (Google Inc., 2016) 

4.4 Assumptions 

In this section, I discuss the remaining assumptions utilized for the case study 

of Wilmington, DE. The POD system is activated in response to a citywide, 

aerosolized anthrax release. The process does not operate under a declared state of 

emergency. PODs operate for a continuous 24-hour period, opening at 8 AM and 
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operating until 8 AM the following day. However, PODs will continue to process 

patients after 8 AM on the second day until all patient queues have dissipated. Patients 

may begin to arrive at the POD up to two hours before operations begin. This behavior 

reflects patient actions and assumptions in exercises and research (Ma et al., 2011; 

Banks et al., 2013). Each POD location has a processing rate (or throughput rate) of 

1,000 people per hour (DPH, 2008b). Patient processing is first-in first-out, i.e. the 

system does not utilize priority groups. The number of PODs needed to service 

Wilmington’s population was calculated from Standards 1.1 and 1.2 of the Point of 

Dispensing Standards (Nelson et al., 2008; CDC, 2008). The remaining standards 

focused on internal processes, which are not relevant to this study. The purpose of 

these PODs is solely to dispense oral antibiotics to the population. No triage or 

medical treatment is provided at POD locations.  

All traffic headed to PODs is vehicular. Pedestrian, mass transit, and other 

transportation modes are not considered explicitly. There is a 90% compliance rate, 

meaning that 90% of the affected population will head to the PODs. Non-resident 

workers will head to PODs on their way from home to work, continuing the journey to 

work afterwards. Wilmington residents will follow hourly arrival rate patterns, 

beginning and ending at home. These arrival curves are varied to test emergency 

planners’ assumption of a uniform patient arrival rate. There is no formal assignment 

process issued by the Delaware Division of Public Health to assign the population to 

specific PODs. Both non-resident workers and residents choose POD locations based 

on proximity. Non-resident workers will choose the POD that least increases their 

commute distance. Residents will choose the POD closest to their home. For residents, 

one vehicle per household travels to the POD. Households without vehicles use transit 
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and arrive the same hour as the households with vehicles. No news outlets or social 

media provide real-time updates of POD status, waiting times, or traffic conditions to 

the public, which might influence POD location choice.  

The POD TIM is adapted from the Delaware Statewide Evacuation Model. The 

adaptation required understanding how PODs function and how users use the POD. 

Two assumptions resulted from oversights when setting up the model and should be 

corrected in future model iterations. First, the model assumes an unlimited parking 

capacity for each POD location. Once a vehicle clears the road capacity and arrives at 

the POD TAZ, the vehicle parks and patients line up in the queue to enter the POD. In 

reality, parking would be a major constraint on the transportation network. The second 

assumption is that there is no service time within the POD. Once a patient enters the 

POD, they are immediately processed and released. A more realistic model would 

include the time to service a patient within the POD.  

4.5 Analysis, Results, and Discussion 

In this section, I analyze and discuss the results from the five model scenarios. 

Performance measures of the POD TIM are separated into POD and transportation 

network MOEs. The raw data for POD MOEs are available in the Appendices C 

through G. 

4.5.1 POD Performance Measures 

The results from the five arrival scenarios are first discussed in general terms, 

as several concepts are common to all arrival scenarios. The performance measures for 

each of the specific arrival scenarios are then discussed.  
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Overall, the PODs processed approximately 100,000 patients. The initial 

population estimate of residents and non-resident workers in Wilmington was 115,464 

people. The model implemented a 90% compliance rate. The proximity algorithm for 

POD location choice was the same for each scenario. Approximately 39.7% of the 

serviced population arrived at the Jewish Community Center, 29.6% at the Northeast 

State Service Center, 16.7% at the Department of Motor Vehicles, 13.2% at the 

DelTech George campus, and 0.8% at Frawley Stadium (see Figure 7 below). The 

disparity between patient populations at the PODs causes several issues, including 

underutilized staff, long queues, and dangerously long waiting times.  

 

Figure 7: Population Distribution Amongst POD Locations  

In all scenarios, the Frawley POD is severely underutilized due to the POD 

choice algorithm by closest proximity. Despite its abundant parking, the facility is 
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closest for the least number of both residents and non-resident workers. The Frawley 

POD services less than 800 people during its entire operation. This facility 

underutilizes staff, medical, and parking resources and reserve roadway capacity. 

Although the stadium location develops a queue of approximately 490 people, the 

queue occurs because a majority of patients arrives before 8 AM. In all scenarios, the 

worst time to arrive is 6 AM, due to the two-hour delay for the POD to open.  

The DMV and DelTech PODs are also underutilized in every scenario. Both 

locations receive a surge in the morning due to the incoming non-resident worker 

population. The DMV POD has the largest AM surge of all POD locations. This 

immense surge is most likely due to the DMV’s close proximity to several major 

highways, including Interstates 95, 495, and 295, and US Route 13, which are utilized 

by non-resident workers on the commute to Wilmington. However, the influx of 

patients drastically lowers after the initial AM peak. Maximum and average queue 

lengths and delays between scenarios were similar for both the DMV and DelTech 

PODs. For the DMV POD, maximum and average queue lengths were around 7,000 

and 2,000 people respectively. Maximum and average delay were about 8 and 2 hours 

respectively. The worst time to arrive at the DMV POD was 8 AM for all scenarios. 

The queue lengths and delays were much smaller for the DelTech POD, with 

maximum queue lengths around 3,000 people and average queue lengths less than 

1,000 people. The maximum and average delays were about 4 and 1 hours 

respectively. The worst time to arrive varied between 7 AM and 8 AM for all 

scenarios.  

In contrast, the JCC POD was completely overwhelmed by patients, receiving 

over 1.6 times the volume of patients it could service in 24 hours. The JCC’s close 
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proximity to both residential homes and places of employment made it a prime POD 

location. In all scenarios, the maximum queue is over 15,000 people in length. The 

maximum delay is over 20 hours. The worst times to arrive vary more than other POD 

locations, with the earliest time at 6 PM and the latest at 7 AM the following morning. 

This worst time varies due to the arrival patterns of residential patients. However, with 

an average queue of at least 9,000 people and an average delay of over 10 hours, the 

patient arrival patterns are insignificant when considering the long waiting times 

experienced by all patients. A long waiting time could become dangerous for patients, 

due to fatigue and exhaustion, limited access to food, water, and bathrooms, and the 

short timeframe within which to receive antibiotics. The JCC POD operates at 100% 

capacity, perhaps running out of medical supplies or causing POD worker fatigue and 

burnout.  

The NESSC POD also operates at full capacity, although not to the same 

extent as the JCC POD. For all scenarios with the exception of the uniform arrival 

curve, the maximum and average queue lengths were above 11,000 and 6,000 people 

respectively. The maximum and average delays were above 12 and 7 hours 

respectively. The uniform arrival scenario had smaller queue lengths and delays by a 

third. The assumption of a uniform arrival rate in POD planning and operations may 

lead to a lack of preparedness for a non-uniform arrival pattern. The worst time to 

arrive varied between 5 PM and 11 PM.  

Due to the nature of the evacuation model, a small percentage of patients 

(cumulatively less than 1%) arrive after the initial 24 hours of operation. With the 

exception of this small number of patients, all patients at the Frawley, DMV, and 

DelTech PODs are processed within the 24 hours. However, in all scenarios, patient 
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processing continues past 8 AM on the second day at the NESSC and JCC PODs. The 

NESSC POD operates for an additional six hours, closing at 2 PM on the second day. 

The JCC POD operates for an additional sixteen hours to service its extreme backlog 

of patients, closing at 12 AM.  

Overall, the biggest impact on the PODs was the morning surge of non-

resident workers, which caused queues to form immediately. When POD processing 

capacity is underwhelmed, the worst time to arrive is at the beginning of the day. This 

was true for the DMV, Frawley, and DelTech PODs. When POD processing capacity 

is overwhelmed, the worst time to arrive is in the evening. The JCC and NESSC PODs 

never recovered from the initial surge, with more patients arriving hourly.  

At this stage of the model, the transportation network and PODs are insensitive 

to patient arrival patterns for three reasons. First, the huge influx of non-resident 

workers in the morning causes patient queues for all locations, regardless of residential 

arrival pattern. Secondly, the proximity algorithm for choosing POD locations creates 

an enormous disparity in population distribution. For the overcrowded PODs, it is 

impossible to tell if the patient queues and long waiting times are due to varying 

arrival patterns or the proportion of population who arrive. The Frawley POD received 

so little traffic that the arrival patterns are insignificant. Thirdly, the lack of a parking 

capacity constraint at POD locations represents an inaccurate description of traffic 

behavior on the road network. There is one exception to patient arrival insensitivity, 

seen at the NESSC POD. The difference in queue lengths and delay between the 

uniform and non-uniform arrival scenarios suggests that a non-uniform arrival pattern 

could directly impact POD operations. Patient arrival patterns should be reconsidered 
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in future research, addressing the above-mentioned reasons for insensitivity in this 

analysis.  

The following subsections contain the POD MOEs for each arrival scenario. 

The relevant MOEs relate to population, queue length, and delay for each POD 

location. The population served and percentage of total population are provided. The 

maximum and average queue lengths are measured as number of people waiting to be 

serviced at a POD. The maximum and average delay are the number of hours that 

people waited to be serviced at a POD. The worst time to arrive at each POD location 

is based on the time at which the maximum delay occurs. 

4.5.1.1 Uniform Arrival Scenario 

The POD measures of effectiveness for the uniform arrival scenario are shown 

below in Table 5.  

Table 5: POD MOEs for the Scenario Assuming Uniform Arrivals 

POD 
Pop. 

Served 

% of 

Total 

Pop. 

Max 

Queue 

Length 

Average 

Queue 

Length 

Max 

Delay 

Average 

Delay 

Worst 

Time 

to 

Arrive 

DelTech 13,261 13.3% 3,330 456.13 4.33 1.00 7:00 

DMV 16,659 16.7% 7,098 1,850.83 8.1 2.51 8:00 

Frawley 767 0.8% 491 27.35 2.2 0.17 6:00 

JCC 39,710 39.7% 15,576 9,501.83 16.57 10.52 31:00 

NESSC 29,615 29.6% 5,539 4,687.50 6.54 5.71 23:00 
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4.5.1.2 Dual Uniform Arrival Scenario 

The POD measures of effectiveness for the dual uniform arrival scenario are 

shown below in Table 6. 

Table 6: POD MOEs for the Scenario Assuming Dual Uniform Arrivals 

POD 
Pop. 

Served 

% of 

Total 

Pop. 

Max 

Queue 

Length 

Average 

Queue 

Length 

Max 

Delay 

Average 

Delay 

Worst 

Time 

to 

Arrive 

DelTech 13,232 13.2% 2,951 543.43 3.95 1.08 7:00 

DMV 16,668 16.7% 6,969 2,336.97 7.97 2.99 8:00 

Frawley 768 0.8% 482 37.28 2.19 0.25 6:00 

JCC 39,728 39.7% 21,199 12,007.52 22.2 13.03 22:00 

NESSC 29,609 29.6% 12,206 7,108.78 13.21 8.13 21:00 

 

4.5.1.3 Rush Hour Peaks Arrival Scenario 

The POD measures of effectiveness for the AM and PM rush hour peaks 

arrival scenario are shown below in Table 7. 

Table 7: POD MOEs for the Scenario Assuming AM and PM Rush Hour Peaks for 

Arrivals 

POD 
Pop. 

Served 

% of 

Total 

Pop. 

Max 

Queue 

Length 

Average 

Queue 

Length 

Max 

Delay 

Average 

Delay 

Worst 

Time 

to 

Arrive 

DelTech 13,226 13.2% 3,955 724.80 4.96 1.27 8:00 

DMV 16,671 16.7% 7,919 2,425.23 8.92 3.08 8:00 

Frawley 764 0.8% 501 26.92 2.2 0.17 6:00 

JCC 39,672 39.7% 19,282 11,595.17 20.28 12.61 20:00 

NESSC 29,687 29.7% 11,380 6,785.00 12.38 7.80 19:00 
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4.5.1.4 PM Rush Hour Peak Arrival Scenario 

The POD measures of effectiveness for the PM rush hour peak arrival scenario 

are shown below in Table 8.  

Table 8: POD MOEs for the Scenario Assuming PM Rush Hour Peak Arrivals 

POD 
Pop. 

Served 

% of 

Total 

Pop. 

Max 

Queue 

Length 

Average 

Queue 

Length 

Max 

Delay 

Average 

Delay 

Worst 

Time 

to 

Arrive 

DelTech 13,208 13.2% 3,261 468.27 4.26 1.01 7:00 

JCC 39,725 39.7% 20,786 10,995.07 21.79 12.01 21:00 

NESSC 29,635 29.6% 11,963 6,138.78 12.96 7.16 21:00 

Frawley 767 0.8% 489 26.27 2.19 0.17 6:00 

DMV 16,671 16.7% 7,143 2,059.17 8.14 2.72 8:00 

 

4.5.1.5 Midday Peak Arrival Curve Scenario 

The POD measures of effectiveness are the midday peak arrival scenario are 

shown below in Table 9.  

Table 9: POD MOEs for the Scenario Assuming Midday Peak Arrivals  

POD 
Pop. 

Served 

% of 

Total 

Pop. 

Max 

Queue 

Length 

Average 

Queue 

Length 

Max 

Delay 

Average 

Delay 

Worst 

Time 

to 

Arrive 

DelTech 13,232 13.2% 3,261 886.93 4.26 1.43 7:00 

JCC 39,698 39.7% 21,605 12,568.81 22.6 13.59 18:00 

NESSC 29,640 29.6% 13,542 7,681.41 14.54 8.70 17:00 

Frawley 765 0.8% 489 25.35 2.19 0.17 6:00 

DMV 16,672 16.7% 7,143 2,666.67 8.14 3.32 8:00 
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4.5.2 Network Performance Measures 

The network MOE results are fundamentally the same for each arrival scenario 

because the transportation network is insensitive to the arrival patterns of Wilmington 

residents and workers at the PODs. Therefore, I review the performance measures for 

the uniform arrival scenario only. The most relevant metric is the volume to capacity 

(V/C) ratio, which summarizes the level of congestion on each segment of road. The 

Highway Capacity Manual identifies congestion using Levels of Service (LOS), with a 

scale of A through F (Transportation Research Board, 2010). Generally, road 

segments with LOS A, B, or C represent acceptable levels of congestion. The 

Highway Capacity Manual defines LOS C as a V/C less than a threshold between 0.62 

and 0.74, depending on free flow speed, for basic freeway segments and multilane 

highways (Transportation Research Board, 2010). As an approximation, I assume V/C 

less than 0.7 as an acceptable level of congestion. A V/C value above 0.7 demonstrates 

potential congestion due to heavy traffic volumes.  

Overall, the network does not experience heavy congestion, in part because of 

the absence of a parking capacity constraint at POD locations. Once vehicles clear the 

capacity of the roads surrounding a POD, the vehicles may “park” and queue outside 

of the POD on foot. It is noted that in this model the transportation network does not 

display the realistic conditions that would arise from limited parking.  

I focus on the AM and PM peak periods when traffic is greatest. Figures 8, 9, 

10, 11, 12, and 13 below illustrate the overall level of congestion in V/C. In the 

figures, black links represent V/C values greater than 0.7 and gray links represent V/C 

values less than 0.7. High levels of congestion occur where black is present. Figures 8, 

9, and 10 illustrate the overall level of congestion in the 6, 7, and 8 AM hours 
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respectively. Figures 11, 12, and 13 illustrate the overall level of congestion in the 4, 

5, and 6 PM hours respectively.  
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Figure 8: Congestion Levels in V/C for 6 AM Hour 
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Figure 9: V/C Congestion Levels for 7 AM Hour 
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Figure 10: V/C Congestion Levels for 8 AM Hour 
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Figure 11: V/C Congestion Levels for 4 PM Hour 
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Figure 12: V/C Congestion Levels for 5 PM Hour 
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Figure 13: V/C Congestion Levels for 6 PM Hour 
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Overall, traffic is acceptable with a limited number of links exhibiting high 

levels of congestion. The main source of congestion is Interstate 95, which bisects 

Wilmington. Interstate 95 is congested with commuters during rush hours on a typical 

workday, and therefore this congestion is not unusual. There are several areas of 

localized congestion outside of the DMV, DelTech, and JCC POD locations during the 

AM rush hour. There are no areas of localized congestion surrounding PODs during 

the PM rush hour. There are no areas of high congestion surrounding the NESSC or 

Frawley PODs for any hour.  

During the AM rush hour, there is congestion surrounding the DMV POD. A 

more detailed map of the area shown in Figure 14 shows the proximity to Interstate 

295, Interstate 495 and State Route 13. In the 6 AM and 8 AM hours, the congestion is 

only located at the entrance to the DMV POD (Figures 15 and 17). During the 7 AM 

hour, the congestion extends down US Route 13 to the interchange with Interstate 295 

(Figure 16). During the PM rush hour, there are no road segments with V/C greater 

than 0.7, indicating acceptable traffic conditions.  
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Figure 14: Map of Area Surrounding the DMV POD (Google Inc. 2016) 
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Figure 15: V/C Congestion Levels for the 6 AM Hour Surrounding the DMV POD 
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Figure 16: V/C Congestion Levels for the 7 AM Hour Surrounding the DMV POD 
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Figure 17: V/C Congestion Levels for the 8 AM Hour Surrounding the DMV POD 

There was a small amount of congestion on the bend of E. Front Street near the 

DelTech POD. A more detailed map of the area is shown in Figure 18. This 

congestion occurred for the 6, 7 and 8 AM hours (Figure 19). There was no congestion 

during the PM hours. 
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Figure 18: Map of Area Surrounding the DelTech POD (Google Inc., 2016) 
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Figure 19: V/C Congestion Levels for 6, 7 and 8 AM Hours Surrounding the DelTech 

POD 

Lastly, the block of W. 7th Street immediately before the JCC POD 

experienced congestion. A more detailed map of the area is shown in Figure 20. This 

block was only congested during the 7 AM hour (Figure 21). The surrounding network 

was not congested during the 6 or 8 AM hours or the PM rush hours.  
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Figure 20: Map of Area Surrounding the JCC POD (Google Inc., 2016) 
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Figure 21: V/C Congestion Levels for 7 AM Hour Surrounding the JCC POD 

Beyond these small areas of congestion, the network was clear throughout the 

AM and PM rush hours. However, I would like to reiterate that the low levels of 

congestion are caused, in part, by the assumption within the model of an infinite 

parking capacity. A more realistic model would also consider the impacts of limited 

parking availability. Parking constraints are discussed in the following section. 

4.5.3 Parking Availability  

Although parking was not considered as a constraint for this case study, 

parking would represent a serious concern during POD operations (Ma et al., 2011; 

Baccam et al., 2011). An estimate of the available parking for each POD location is 

based on counting spaces or available curb parking using images from Google Earth 

(Google Inc., 2015). I perform approximate calculations to determine how many curb 
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parking spaces would be necessary to accommodate the maximum queue lengths 

experienced by each POD. A household survey by the Wilmington Area Planning 

Council (2009) reported an average work trip occupancy of 1.3 persons per vehicle 

and an average school trip occupancy of 2.6 persons per vehicle. Because the POD 

scenario operates under the assumption that families travel together, I assume an upper 

estimate of 2.5 persons per vehicle. Additionally, I assume a length of 20 feet per 

parking space for curb or parallel parking. A web search indicated that 20 feet would 

be a reasonable assumption. To provide some intuition to how much parking is 

needed, I provide curb miles of parking required to accommodate the maximum 

queues.  

Frawley Stadium, located in the Riverfront in Wilmington, has by far the 

largest amount of available parking spaces. The area offers over 3,500 spots in both 

painted and unpainted asphalt areas. The surrounding retail area parking is included in 

the count. Additionally, surrounding fields and unpaved areas may be used for excess 

parking. However, such a large area for parking would require traffic control 

mechanisms to facilitate flow and order. Despite the abundance of parking, the 

Frawley POD requires only a maximum of 200 parking spaces to accommodate a 

maximum queue length of 501 patients. The parking availability at Frawley Stadium is 

severely underutilized.  

The DMV parking lot has approximately 225 parking spaces. However, several 

drive-through lanes and other paved areas could be converted into temporary parking, 

providing approximately 50 additional spaces. Nearby, there are several other large 

parking lots within 1/2 mile that could be appropriated for an added 1,000 spaces. This 

is a total of 1,275 available parking spaces at the DMV. With a maximum queue of 
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7,919 patients, the DMV requires approximately 3,168 parking spaces, or 12 miles of 

curbside parking. The DMV has a shortage of 1,893 spaces, or 7 miles of parking, to 

accommodate the maximum number of patients present at one time.  

Unlike the Riverfront and the DMV, both the JCC and DelTech campus are 

located in the heart of Wilmington and therefore have very limited parking. The 

majority of parking is on street. The Wilmington Parking Authority operates six 

parking garages and two surface lots within Wilmington, shown below in Figure 22 

(Wilmington Parking Authority, n.d.). These lots offer a total of 4,413 parking spaces. 

Within a ¼-mile radius of the DelTech George campus on Orange Street, there are an 

additional 8 medium-sized parking lots with approximately 800 spaces. However, 

these lots may be dedicated to other corporate, retail, or private entities. The parking 

lots would have to be lawfully appropriated in the event of a POD. 
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Figure 22: Map of Parking Garages and Surface Lots Operated by the Wilmington 

Parking Authority (Google Inc., 2016) 
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Despite these parking facilities and surrounding on-street parking, there is not 

nearly enough parking to accommodate the JCC POD’s maximum queue length of 

21,605 patients. Such a vast accumulation of people would require 8,642 parking 

spaces, or 33 miles of parking. The DelTech POD has a maximum queue of 3,955 

patients, requiring 1,582 spaces, or 6 miles of parking.  

There are approximately 225 spaces in the parking lot and on the street 

immediately in front of the NESSC. In addition, there is street parking in the 

surrounding neighborhood. However, the NESSC POD requires approximately 4,882 

parking spaces, or 18 miles of parking, to accommodate its maximum queue length of 

12,206 patients.  

For all locations with the exception of Frawley Stadium, there is woefully 

inadequate parking to accommodate the large crowds waiting at each POD. The long 

queues waiting to enter parking lots would create gridlock surrounding POD locations. 

Additionally, vehicles circling the area in search of parking would create more traffic. 

Future research should quantify the impacts of limited parking capacity on the 

network during POD operations.  

4.5.4 POD TIM Computational Performance 

 The POD TIM ran in Citilabs Cube version 6.1.1. The run time for each 

scenario was approximately thirty hours on a Dell desktop computer with Intel® 

Core™ 2 Quad processing and Microsoft Windows 7 64-bit operating system.  
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Chapter 5 

CONCLUSIONS, RECOMMENDATIONS, AND FUTURE RESEARCH 

5.1 Conclusions  

The POD TIM demonstrated that for the Wilmington case study large queues 

and delays can occur at selected PODs but in general, the transportation network is 

able to handle the additional traffic. Overall, the goal of the POD TIM is to provide an 

understanding of the impact of the traffic generated by PODs on the performance of 

the transportation network. The first iteration of the POD TIM only partially achieved 

this goal. However, the primary objective of this thesis is to obtain evidence that 

future analysis is warranted. The thesis meets the primary objective because the POD 

TIM demonstrates that it is possible to model traffic surrounding PODs. The first 

iteration of the POD TIM has provided a foundation on which to build future models. 

The second objective is to provide recommendations to improve the accuracy and 

realism of a traffic impact model. I discuss recommendations and future research in 

the following sections. The third objective is to promote collaboration and 

communication between Emergency Management Agencies, Divisions of Public 

Health, and Departments of Transportation. Although this thesis does not directly 

address the third objective, the POD TIM provides a common goal, shared vocabulary, 

and a starting point for interagency coordination.  

Below, I draw conclusions based on the case study results. The algorithm used 

to determine the POD visited, patient arrival patterns, and lack of parking constraints 

limited the realism of traffic behavior on the network. Within the POD choice 

algorithm, all POD patients go to the POD location closest to them. For residents, this 

location was the POD closest to their home. Non-resident workers choose the POD 
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that added the least distance to their normal work commute. The proximity algorithm 

caused a vast discrepancy in population distribution between POD locations. The JCC 

POD received nearly 40% of the population, while the Frawley POD received less 

than 1%. Realistically, patients may choose to go to a POD that is a farther distance, 

due to familiarity, convenience, or knowledge about waiting times. The location 

choice algorithm is an important determinant of congestion for each POD. 

Due to the POD choice algorithm, the POD TIM was insensitive to patient 

arrival patterns. The discrepancy in population distribution overwhelmed several 

PODs. Queue lengths and waiting times were extensive for the JCC and NESSC 

PODs, regardless of arrival pattern. The worst time to arrive was the only factor that 

patient arrival patterns affected. So few people utilized the Frawley POD that the 

arrival patterns were inconsequential.  In addition, the patient arrival patterns were 

inconsistent between non-resident workers and residents. Non-resident workers 

traveled to PODs on their commutes to work, with a majority arriving during the AM 

rush hour. Residents followed several arrival curves, including a uniform, dual 

uniform, and several rush hour peak scenarios. Overall, the patient arrival patterns 

were insensitive and inconsistent.  

The lack of a parking constraint sub-model within the POD TIM was a large 

disadvantage. Without a parking constraint sub-model, infinite parking is assumed to 

be available at each POD location. The only network constraints were road capacities. 

Once vehicles arrived at PODs, the vehicles parked and patients queued to enter the 

PODs. In reality, PODs may have inadequate parking to accommodate the number of 

patients waiting to be serviced. The only notable exception was the Frawley POD. For 

all other locations, limited parking and large patient queues would result in lines of 
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vehicular traffic waiting to park. The long queues of vehicles waiting to enter parking 

lots would create gridlock surrounding POD locations. Additionally, vehicles circling 

the area in search of parking would create more traffic. Parking availability would be a 

significant restriction of POD operations.  

There are other limitations of the POD TIM as well. The POD internal 

processes were modeled simplistically, with first-in-first-out processing, no additional 

service time, and no consideration of patient queue storage.  The POD TIM utilized a 

uniform set of behavioral assumptions, with no regard to the inherent diversity and 

complexity of human actions. The model only considers vehicular traffic, neglecting 

pedestrian, mass transit, and other forms of transportation. Additionally, the 

computational time to run a model scenario is a disadvantage in emergency planning. 

Each model scenario ran for approximately thirty hours. With a thirty-hour run time, 

public health officials may only use the POD TIM as a preemptive planning measure 

to identify potential congestion areas for POD scenarios. The model may not be used 

during an ongoing emergency to identify where traffic management resources should 

be distributed. Future iterations of the POD TIM should incorporate solutions to its 

many limitations.  

5.2 Recommendations  

Based on the results and conclusions from the previous sections, I recommend 

which model assumptions and processes should be refined in future iterations. 

Opportunities for future work include the POD choice algorithm, patient arrival 

patterns, and parking constraints. Additionally, recommendations related to internal 

processing, behavioral assumptions, and model capabilities are provided. 
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The POD TIM requires a more sophisticated POD choice algorithm to balance 

the population distribution while accurately modeling patients’ behaviors. Possible 

options include official POD location assignment or POD status updates through 

social media or news outlets. Planners may use traffic impact models to determine to 

which PODs patients will go based on behavioral assumptions. Emergency managers 

may utilize patient distribution results, in conjunction with other POD models, to 

distribute staff and supplies to best meet demand. Planners may also use the POD TIM 

to contrast several patient-location assignment strategies, such as by postal code or 

phone number.  

Although the POD TIM was insensitive to patient arrival patterns in the first 

model attempt, arrival scenarios should be considered with a different location choice 

algorithm. The POD TIM results displayed evidence that different patient arrival rates 

could affect queue lengths, delay, and worst times to arrive. For the NESSC POD, the 

uniform arrival rate had smaller queue lengths and delays by a third than the non-

uniform rates. The assumption of a uniform arrival rate in POD planning and 

operations may lead to a lack of preparedness for a non-uniform arrival pattern. In the 

current model, the AM surge of non-resident workers created long queues and waiting 

times early in the day. Researchers should also consider a variety of non-resident 

worker arrival patterns. Arrival patterns may have an impact on staffing, parking 

availability, and traffic control. Future model iterations may examine uniform and 

non-uniform patient arrival patterns for both residents and non-resident workers.  

Future models should represent the available parking surrounding each POD 

location. I hypothesize that implementing a parking constraint sub-model would 

greatly increase congestion throughout the transportation network. Information about 
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available parking may be acquired from Google Earth or visual inspection of the area. 

The parking sub-model may also include the physical locations of these parking spots 

and accurately demonstrate the traffic effects of vehicles circling the block looking for 

parking.  

Other recommendations for model improvements include internal processing, 

behavioral assumptions, and model capabilities. The internal processes of PODs 

should incorporate dynamic processing rates, priority patient groups, waiting areas, 

and possible triage and evaluation operations. Future model iterations should integrate 

complex behavioral assumptions, such as turn away rates due to long waiting times, 

POD status updates, and individuals’ reactions to a biological outbreak. A more 

comprehensive traffic impact model may include pedestrian and mass transit volumes 

in addition to vehicular traffic. Future models should reduce computational time to 

make the model usable in emergency situations.  

5.3 Future Research 

 In this section, I suggest specific methods for the above recommendations. 

Future iterations of the POD TIM should incorporate realistic social behaviors in the 

POD choice algorithm and patient arrival patterns. The challenges of a realistic 

parking sub-model are reviewed. In addition, I consider possible directions for future 

work. Opportunities for future work include alternative modes of transportation, 

behavioral assumptions in other contexts, and the internal POD process. Lastly, I 

discuss the model itself, including alternative performance metrics, the limitations of 

the software platform, and possible uses in POD planning and operations.  

I suggest two options for an updated POD choice algorithm. The first option is 

a public information updating system in addition to the current least-distance choice 
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algorithm. The information would provide incoming patients with status updates on 

waiting times, available parking, and other POD statistics. Therefore, patients may 

choose to go to a POD location other than the closest POD based on current demand. 

The information may be disseminated through either social media, news outlets, or 

direct messages from the Division of Public Health. The second option is POD 

location assignment. The Delaware Division of Public Health’s NEHC Plan (2008b) 

suggests location assignment based on postal codes or telephone numbers. Because 

location assignment is only relevant to residents with home addresses in the case study 

area, several alternatives may be considered for non-resident workers. The first 

alternative is the operation of closed PODs at large, corporate firms in the study area. 

The operation of closed PODs would require coordination between the Division of 

Public Health and corporations. Non-resident workers employed at smaller companies 

would attend open PODs based on the location proximity algorithm. The second 

alternative would assign places of employment to open PODs by address. The POD 

choice algorithm is a challenge to consider in future work.  

Patient arrival patterns may also integrate realistic behavior assumptions for 

residents and non-resident workers. Many complex factors determine when patients go 

to PODs, such as number of dependents, work schedules, number of vehicles per 

household, and available information about a POD’s status. Arrival scenarios may be 

separated into non-resident worker patterns and resident patterns. For non-resident 

workers, arrival patterns should not be fixed in the morning commute. Non-resident 

workers may choose to go to PODs after work instead to avoid missing work hours. I 

suggest three non-resident worker arrival scenarios: all workers on their way to work 

from home, all workers on their way to home from work, and a 50-50 split before and 
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after work. The five existing residential arrival scenarios are sufficient for the next 

iteration of the model. The POD TIM should consider every combination of non-

resident worker and resident arrival patterns. Future research may examine dynamic 

arrival patterns, where patients make the decision to go to a POD based on a complex 

set of human behaviors. Survey-based research may be used to define more realistic 

arrival patterns.  

The implementation of a parking constraint sub-model represents a challenge 

for researchers. There is a trade-off between realism and complexity when modeling 

parking availability. The most simplistic version of a parking sub-model creates a 

parking space constraint at the entrance of each POD location. Vehicles arrive at a 

POD, wait for available parking, park, and then dispatch to the POD. If no parking is 

available, vehicles queue on the roads surrounding the POD. A more complex version 

may include the physical locations of parking spaces, such as the garages owned by 

the Wilmington Parking Authority. In this version, vehicles arrive at parking space 

locations instead of the PODs. However, patients must be “linked” to their parking 

spaces, i.e. a parking space remains occupied until the patients occupying that space 

have been serviced in the POD and return to their vehicle. This version is vastly more 

complex to model because the POD TIM must keep track of each individual patient 

within the PODs. Computational time may also increase with complexity. However, it 

is vital for future researchers to include a parking constraint sub-model.  

Researchers may consider other factors of parking availability as well. The 

model may demonstrate the traffic effects of vehicles circling the network looking for 

parking. Future research should determine how far away a distance is acceptable to 

park. If parking is tightly constrained, vehicles may park several miles away and walk 
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to PODs. Constraints on available parking also include permit-only parking, pay-for-

parking, handicapped parking, and loading zones. Researchers may consider the 

availability of handicap parking spaces, as physically disadvantaged populations might 

be unable to walk long distances to PODs. There may be parking facilities shared by 

two or more POD locations, such as with the JCC and DelTech PODs. Many 

challenges of parking availability should be considered in future model iterations. 

Future models should incorporate all available modes of transportation for a 

region. Most notably, pedestrian volumes may comprise a large percentage of POD 

crowds in densely populated, urban areas. The Division of Public Health may urge 

patients to walk instead of drive in areas with limited parking. Planners should note 

that large swarms of pedestrians might require traffic control at intersection crossings. 

POD patients may also use mass transit options, such as buses, subways, or streetcars. 

Patients may combine walking and mass transit use in a single trip. Patients who chose 

to walk or take public transportation may reduce network congestion.  

There are many aspects of behavior that should be considered in future work. 

First, human behaviors are complex. The POD TIM’s fixed compliance rate and 

proximity-based location choice algorithm do not realistically model patient decision 

processes. Many factors determine if, when, and where to go to a POD. Researchers 

must understand the components of an individual’s decision to go to a POD, including 

understanding of the severity of the biological outbreak, time sensitivity of the event, 

and transportation mode choices. People’s reactions to a large-scale biological 

outbreak may not be rational. Individuals may be noncompliant with a mandatory 

order to receive MCMs. Groups may continue their normal routine, work on an altered 
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schedule, or completely change plans. A realistic model should compare multiple 

behavior scenarios.  

Secondly, future models should evaluate a population’s reactions to POD 

operations, such as waiting times at queues, available sources of information, and the 

potential for turn-away patients.  The current model assumes that patients will wait in 

queues for over ten hours. Researchers should investigate how the availability of POD 

status updates, through channels such as social media or local news stations, may 

affect location choice, arrival time, and compliance. Patients who are aware of long 

waiting times may choose a different arrival time or location. Additionally, patients 

waiting in long lines may leave a POD before being serviced. Future research should 

consider the impacts of patient turn-away on fatality rate, spread of infection, and 

other public health factors. It is also possible that sick patients waiting in long queues 

will succumb to illness before receiving MCMs. In the case of an anthrax release, the 

mortality rate increases drastically after the first 48 hours. Patients who do not receive 

MCMs within this period may become fatally ill. Future models should consider the 

potential impacts of extremely long queue lengths, such as patient turn-away and 

death.  

The current version of the POD TIM simplifies internal processes to a first-in-

first-out operation with no added service time. However, POD internal processes are 

dynamic, with variable staffing, layout, and supplies that may affect hourly processing 

rates. PODs may incorporate priority groups, which identify specific population such 

as children, pregnant women, and senior citizens as a higher priority for MCMs. PODs 

may utilize head of household methods to distribute several types of MCMs. PODs 

may operate as triage and evaluation centers in addition to MCM dispensing centers, 
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such as in the NEHC Plan (DPH, 2008b). Opportunities for future research include 

employing a dynamic processing rate, incorporating triage and evaluation procedures, 

and considering different dispensing techniques.  

The flexibility of the POD TIM is key to its successful use in planning. A 

flexible model is adaptable for use in many disease scenarios. The POD TIM may 

have future applications as a scenario comparison. I have already discussed comparing 

location choice strategies, patient arrival patterns, and other behavioral factors above. 

Other scenario characteristics include type of biological outbreak, walk-in versus 

drive-through PODs, and implementation of closed PODs. In addition, researchers 

may use the model to compare traffic mitigation techniques.  Future work should 

consider the rigidity of the model’s assumptions. The current POD TIM is an 

inflexible model that considers an anthrax release with open PODs and limited 

behavior options. An improved model would incorporate general planning concepts 

and accommodate ongoing emergency characteristics. Researchers may also create a 

traffic impact model that is compatible with existing POD models, such as the 

Bioterrorism and Epidemic Outbreak Response Model, the Dynamic POD Simulator, 

or the RealOpt model (Hupert et al., 2009; Lee et al., 2009). Future research should 

balance the rigidity of the model’s assumptions and outputs with the needs of 

emergency planners.  

Researchers should consider if the current model uses the best tools to analyze 

the traffic impacts of PODs. I use the term “tools” to refer to two distinct aspects of 

the model: the performance measures within the model and the modeling software 

itself. The current model’s performance measures quantify network and POD impacts. 

Network measures of effectiveness compare background, POD, and spillover traffic 
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volumes to road capacity. POD measures of effectiveness describe patient arrivals, 

processing rates, spillover volumes, queue lengths, and delay. Both sets of 

performance measures examine the infrastructure impacts. However, it may be equally 

important to examine social costs to the population as well. A publication by Taylor 

(2008) measures impacts in accessibility to users, in which accessibility is the ease of 

access from point X to point Y. Accessibility of individual locations may be 

aggregated into an overall accessibility level for the network. A user-based 

performance metric may more directly relate POD traffic impacts to POD planning 

and operations.  

The second aspect of the model to be considered is the software platform. The 

POD TIM is modeled in Citilabs Cube Voyager, a macroscopic level software often 

used for travel demand models. Future research should consider if Citilabs Cube is the 

best software to analyze POD traffic impacts on a transportation network. I ask the 

question, is a travel demand forecast model the best type of model to represent the 

interaction between PODs and the transportation network? A macroscopic level model 

is needed to understand the impacts across a regional network. However, a 

complimentary, detailed examination of POD locations may be performed at a 

microscopic level. Researchers may model parking availability in a microscopic level 

software, such as the model by Ma et al. (2011). This model type would examine each 

POD location individually, since modeling the entire case study region at the 

microscopic level would be extreme. A microscopic level POD model may also be 

useful when determining traffic mitigation techniques. Future research should explore 

microscopic and macroscopic traffic modeling software to ensure the best fit for the 

model.  
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The last, and arguably most important, suggestion for future research is to 

promote communication, coordination, and collaboration between Emergency 

Management Agencies, Divisions of Public Health, Departments of Transportation, 

and academic research institutions. Currently, two large issues stand between 

researchers and interdisciplinary collaboration. The first issue is security guidelines 

that prevent sharing official documents between agencies and institutions. The second 

issue is differing vocabulary between agencies, particularly between researchers and 

practitioners. We may overcome these prohibitive issues through compromise and 

discussion between organizations. In A National Strategic Plan for Public Health 

Preparedness and Response, the CDC states that “it is essential that partners and 

stakeholders across public health, healthcare, bio-defense, emergency management, 

and the private sector, work together” (2011, p. 4). I advocate extending interagency 

collaboration to Departments of Transportation as well. The goal of future POD traffic 

impact models is to facilitate interagency coordination between the emergency 

management sector and Departments of Transportation.  
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Appendix A 

DISCLAIMER 

This research uses a model created by the Delaware Department of 

Transportation and the data associated within that model. However, the views and 

opinions expressed through this research are those of the author, and do not reflect 

policies or programs of the Delaware Department of Transportation. The Delaware 

Department of Transportation does not endorse the processes or findings of this 

research.  
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Appendix B 

HOURLY ARRIVAL PERCENTAGES OF TOTAL POPULATION FOR 

ARRIVAL CURVE SCENARIOS 

Table 10 presents the hourly arrival percentages of the total population for the 

five arrival scenarios. The five patient arrival rates are a uniform, dual uniform, AM 

and PM rush hour peaks, a PM rush hour peak, and a midday peak arrival curves. The 

model has a two-hour waiting period before the PODs open, followed by 24 hours of 

continuous patient arrivals. However, the underlying evacuation model has a 30-hour 

traffic assignment period, in which all hours must have a nonzero arrival rate. 

Therefore, a small percentage of the population (cumulatively less than 1%) may 

arrive at the PODs for four hours after “closing.”  
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Table 10:  Hourly Arrival Percentages of Total Population for Arrival Curve Scenarios 

(in percentages) 

Time of 

Day 

Uniform Dual 

Uniform 

AM and 

PM Rush 

Hour Peaks 

PM Rush 

Hour Peak 

Midday 

Peak 

6:00 3.83 1 5 3 3 

7:00 3.83 3 7 4 4 

8:00 3.84 6 9 5 5 

9:00 3.83 6 7 4 6 

10:00 3.83 6 5 3 8 

11:00 3.83 6 3 2 9 

12:00 3.83 6 2 2 10 

13:00 3.83 6 2 2 9 

14:00 3.83 6 3 3 8 

15:00 3.83 6 5 6 6 

16:00 3.83 6 7 9 5 

17:00 3.83 6 9 12 4 

18:00 3.83 6 7 11 3 

19:00 3.83 6 5 9 2 

20:00 3.83 6 3 7 1 

21:00 3.83 5 1 4 1 

22:00 3.83 3 1 2 1 

23:00 3.83 2 1 1 1 

24:00 3.83 1 1 1 0.9 

25:00 3.84 1 1 0.9 0.9 

26:00 3.83 1 1 0.9 0.9 

27:00 3.83 1 1 0.9 0.9 

28:00 3.83 0.9 1 0.9 1 

29:00 3.83 0.9 1 1 2 

30:00 3.83 0.9 5 2 3 

31:00 3.83 0.9 6.6 3 4 

32:00 0.1 0.1 0.1 0.1 0.1 

33:00 0.1 0.1 0.1 0.1 0.1 

34:00 0.1 0.1 0.1 0.1 0.1 

35:00 0.1 0.1 0.1 0.1 0.1 
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Appendix C 

POD MOES FOR UNIFORM ARRIVAL CURVE SCENARIO 

 

Tables 11 through 15 contain the POD MOEs for each POD location for the 

uniform arrival scenario. The model provided time of day, residents from previous 

hour, new arrivals, POD processing rate, spillover to next hour, and hourly average 

queue. For descriptions, see Table 3 in Section 3.5. Cumulative arrivals and 

cumulative processed were calculated after each scenario run. Due to rounding errors 

within matrices in the model, cumulative arrivals and cumulative processed may not 

be equal.   
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Table 11: Raw Hourly Data for DelTech POD for Uniform Arrival Curve Scenario 
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6:00 0 1426 0 1426 3.43 1426 0 

7:00 1426 1904 0 3330 4.33 3330 0 

8:00 3330 644 1000 2974 3.97 3974 1000 

9:00 2974 398 1000 2372 3.37 4372 2000 

10:00 2372 414 1000 1787 2.79 4786 3000 

11:00 1787 407 1000 1194 2.19 5193 4000 

12:00 1194 418 1000 612 1.61 5611 5000 

13:00 612 403 1000 15 1.01 6014 6000 

14:00 15 410 425 0 0.43 6424 6425 

15:00 0 387 387 0 0.39 6811 6812 

16:00 0 414 414 0 0.41 7225 7226 

17:00 0 415 415 0 0.42 7640 7641 

18:00 0 421 421 0 0.42 8061 8062 

19:00 0 411 411 0 0.41 8472 8473 

20:00 0 397 397 0 0.4 8869 8870 

21:00 0 397 397 0 0.4 9266 9267 

22:00 0 401 401 0 0.4 9667 9668 

23:00 0 400 400 0 0.4 10067 10068 

24:00 0 395 395 0 0.39 10462 10463 

25:00 0 396 396 0 0.4 10858 10859 

26:00 0 395 395 0 0.39 11253 11254 

27:00 0 395 395 0 0.39 11648 11649 

28:00 0 395 395 0 0.39 12043 12044 

29:00 0 395 395 0 0.39 12438 12439 

30:00 0 395 395 0 0.39 12833 12834 

31:00 0 395 395 0 0.39 13228 13229 

32:00 0 8 8 0 0.01 13236 13237 

33:00 0 9 9 0 0.01 13245 13246 

34:00 0 8 8 0 0.01 13253 13254 

35:00 0 8 8 0 0.01 13261 13262 
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Table 12: Raw Hourly Data for JCC POD for Uniform Arrival Curve Scenario 
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6:00 0 2842 0 2842 4.84 2842 0 

7:00 2842 3517 0 6358 7.36 6359 0 

8:00 6358 1734 1000 7092 8.09 8093 1000 

9:00 7092 1359 1000 7451 8.45 9452 2000 

10:00 7451 1391 1000 7841 8.84 10843 3000 

11:00 7841 1378 1000 8219 9.22 12221 4000 

12:00 8220 1397 1000 8616 9.62 13618 5000 

13:00 8616 1370 1000 8986 9.99 14988 6000 

14:00 8986 1385 1000 9371 10.37 16373 7000 

15:00 9371 1364 1000 9735 10.74 17737 8000 

16:00 9735 1416 1000 10152 11.15 19153 9000 

17:00 10152 1418 1000 10570 11.57 20571 10000 

18:00 10570 1405 1000 10975 11.98 21976 11000 

19:00 10975 1387 1000 11362 12.36 23363 12000 

20:00 11362 1355 1000 11717 12.72 24718 13000 

21:00 11717 1357 999 12074 13.07 26075 13999 

22:00 12074 1364 1000 12439 13.44 27439 14999 

23:00 12439 1364 1000 12803 13.8 28803 15999 

24:00 12803 1349 1000 13152 14.15 30152 16999 

25:00 13152 1352 1000 13504 14.5 31504 17999 

26:00 13504 1349 999 13853 14.85 32853 18998 

27:00 13854 1349 1000 14203 15.2 34202 19998 

28:00 14203 1349 1000 14552 15.55 35551 20998 

29:00 14552 1349 1000 14901 15.9 36900 21998 

30:00 14901 1337 1000 15238 16.24 38237 22998 

31:00 15238 1337 1000 15575 16.57 39574 23998 

32:00 15575 34 1000 14609 15.61 39608 24998 

33:00 14609 34 1001 13643 14.64 39642 25999 

34:00 13642 34 1000 12676 13.68 39676 26999 

35:00 12676 34 1000 11710 12.71 39710 27999 

36:00 11710 0 1000 10710 11.71 39710 28999 
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Table 12, continued 
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37:00 10710 0 1000 9710 10.71 39710 29999 

38:00 9709 0 1000 8709 9.71 39710 30999 

39:00 8709 0 1000 7709 8.71 39710 31999 

40:00 7709 0 1000 6709 7.71 39710 32999 

41:00 6710 0 1000 5710 6.71 39710 33999 

42:00 5710 0 1000 4710 5.71 39710 34999 

43:00 4710 0 1000 3710 4.71 39710 35999 

44:00 3710 0 1000 2710 3.71 39710 36999 

45:00 2710 0 1000 1710 2.71 39710 37999 

46:00 1710 0 1000 710 1.71 39710 38999 

47:00 710 0 710 0 0.71 39710 39709 
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Table 13: Raw Hourly Data for NESSC POD for Uniform Arrival Curve Scenario 
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6:00 0 2160 0 2160 4.16 2160 0 

7:00 2160 2665 0 4825 5.83 4825 0 

8:00 4825 1333 1000 5159 6.16 6158 1000 

9:00 5159 1002 1000 5161 6.16 7160 2000 

10:00 5161 1041 1000 5202 6.2 8201 3000 

11:00 5202 1030 1000 5232 6.23 9231 4000 

12:00 5232 1046 1000 5278 6.28 10277 5000 

13:00 5278 1011 1000 5288 6.29 11288 6000 

14:00 5288 1021 1000 5309 6.31 12309 7000 

15:00 5309 1019 1000 5328 6.33 13328 8000 

16:00 5328 1069 1000 5397 6.4 14397 9000 

17:00 5397 1071 1000 5468 6.47 15468 10000 

18:00 5468 1036 1000 5504 6.5 16504 11000 

19:00 5504 1022 1000 5526 6.53 17526 12000 

20:00 5526 1000 1000 5525 6.53 18526 13000 

21:00 5525 1001 1000 5526 6.53 19527 14000 

22:00 5526 1006 1000 5532 6.53 20533 15000 

23:00 5532 1006 1000 5538 6.54 21539 16000 

24:00 5538 993 1000 5531 6.53 22532 17000 

25:00 5531 996 1000 5526 6.53 23528 18000 

26:00 5526 993 1000 5519 6.52 24521 19000 

27:00 5519 993 1000 5512 6.51 25514 20000 

28:00 5512 993 1000 5505 6.5 26507 21000 

29:00 5505 993 1000 5498 6.5 27500 22000 

30:00 5497 1006 1000 5503 6.5 28506 23000 

31:00 5504 1006 1000 5510 6.51 29512 24000 

32:00 5510 26 1000 4535 5.54 29538 25000 

33:00 4535 25 1000 3561 4.56 29563 26000 

34:00 3561 26 1000 2586 3.59 29589 27000 

35:00 2586 26 1000 1612 2.61 29615 28000 

36:00 1612 0 1000 612 1.61 29615 29000 

37:00 612 0 612 0 0.61 29615 29612 
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Table 14: Raw Hourly Data for Frawley POD for Uniform Arrival Curve Scenario 
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6:00 0 196 0 196 2.2 196 0 

7:00 196 295 0 491 1.49 491 0 

8:00 491 48 538 0 0.54 539 538 

9:00 0 9 9 0 0.01 548 547 

10:00 0 11 11 0 0.01 559 558 

11:00 0 10 10 0 0.01 569 568 

12:00 0 12 12 0 0.01 581 580 

13:00 0 10 10 0 0.01 591 590 

14:00 0 10 10 0 0.01 601 600 

15:00 0 9 9 0 0.01 610 609 

16:00 0 12 12 0 0.01 622 621 

17:00 0 13 13 0 0.01 635 634 

18:00 0 12 12 0 0.01 647 646 

19:00 0 11 11 0 0.01 658 657 

20:00 0 9 9 0 0.01 667 666 

21:00 0 9 9 0 0.01 676 675 

22:00 0 10 10 0 0.01 686 685 

23:00 0 9 9 0 0.01 695 694 

24:00 0 9 9 0 0.01 704 703 

25:00 0 9 9 0 0.01 713 712 

26:00 0 9 9 0 0.01 722 721 

27:00 0 9 9 0 0.01 731 730 

28:00 0 9 9 0 0.01 740 739 

29:00 0 9 9 0 0.01 749 748 

30:00 0 9 9 0 0.01 758 757 

31:00 0 9 9 0 0.01 767 766 
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Table 15: Raw Hourly Data for DMV POD for Uniform Arrival Curve Scenario 
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6:00 0 2936 0 2936 4.94 2936 0 

7:00 2936 4090 0 7027 8.03 7026 0 

8:00 7027 1072 1000 7098 8.1 8098 1000 

9:00 7098 350 1000 6448 7.45 8448 2000 

10:00 6448 425 1000 5874 6.87 8873 3000 

11:00 5873 401 1000 5275 6.27 9274 4000 

12:00 5274 437 1000 4711 5.71 9711 5000 

13:00 4711 369 1000 4081 5.08 10080 6000 

14:00 4080 393 1000 3473 4.47 10473 7000 

15:00 3473 359 1000 2832 3.83 10832 8000 

16:00 2832 458 1000 2291 3.29 11290 9000 

17:00 2291 462 1000 1753 2.75 11752 10000 

18:00 1753 424 1000 1177 2.18 12176 11000 

19:00 1177 396 1000 573 1.57 12572 12000 

20:00 573 344 917 0 0.92 12916 12917 

21:00 0 347 347 0 0.35 13263 13264 

22:00 0 360 360 0 0.36 13623 13624 

23:00 0 359 359 0 0.36 13982 13983 

24:00 0 330 330 0 0.33 14312 14313 

25:00 0 331 331 0 0.33 14643 14644 

26:00 0 330 330 0 0.33 14973 14974 

27:00 0 330 330 0 0.33 15303 15304 

28:00 0 330 330 0 0.33 15633 15634 

29:00 0 330 330 0 0.33 15963 15964 

30:00 0 330 330 0 0.33 16293 16294 

31:00 0 330 330 0 0.33 16623 16624 

32:00 0 9 9 0 0.01 16632 16633 

33:00 0 9 9 0 0.01 16641 16642 

34:00 0 9 9 0 0.01 16650 16651 

35:00 0 9 9 0 0.01 16659 16660 

 



 118 

Appendix D 

POD MOES FOR DUAL UNIFORM ARRIVAL CURVE SCENARIO 

Tables 16 through 20 contain the POD MOEs for each POD location for the 

dual uniform arrival scenario. The model provided time of day, residents from 

previous hour, new arrivals, POD processing rate, spillover to next hour, and hourly 

average queue. For descriptions, see Table 3 in Section 3.5. Cumulative arrivals and 

cumulative processed were calculated after each scenario run. Due to rounding errors 

within matrices in the model, cumulative arrivals and cumulative processed may not 

be equal.   
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Table 16: Raw Hourly Data for DelTech POD for Dual Uniform Arrival Curve 

Scenario 
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6:00 0 1133 0 1133 3.13 1133 0 

7:00 1133 1818 0 2951 3.95 2951 0 

8:00 2951 867 1000 2818 3.82 3818 1000 

9:00 2818 623 1000 2441 3.44 4441 2000 

10:00 2441 637 1000 2077 3.08 5078 3000 

11:00 2078 630 1000 1708 2.71 5708 4000 

12:00 1708 641 1000 1348 2.35 6349 5000 

13:00 1348 628 1000 976 1.98 6977 6000 

14:00 976 635 1000 611 1.61 7612 7000 

15:00 611 604 1000 215 1.22 8216 8000 

16:00 215 631 846 0 0.85 8847 8846 

17:00 0 632 632 0 0.63 9479 9478 

18:00 0 646 646 0 0.65 10125 10124 

19:00 0 636 636 0 0.64 10761 10760 

20:00 0 621 621 0 0.62 11382 11381 

21:00 0 519 519 0 0.52 11901 11900 

22:00 0 315 315 0 0.31 12216 12215 

23:00 0 211 211 0 0.21 12427 12426 

24:00 0 102 102 0 0.1 12529 12528 

25:00 0 102 102 0 0.1 12631 12630 

26:00 0 102 102 0 0.1 12733 12732 

27:00 0 102 102 0 0.1 12835 12834 

28:00 0 91 91 0 0.09 12926 12925 

29:00 0 91 91 0 0.09 13017 13016 

30:00 0 91 91 0 0.09 13108 13107 

31:00 0 91 91 0 0.09 13199 13198 

32:00 0 8 8 0 0.01 13207 13206 

33:00 0 9 9 0 0.01 13216 13215 

34:00 0 8 8 0 0.01 13224 13223 

35:00 0 8 8 0 0.01 13232 13231 
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Table 17: Raw Hourly Data for JCC POD for Dual Uniform Arrival Curve Scenario 
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6:00 0 1854 0 1854 3.85 1854 0 

7:00 1854 3226 0 5081 6.08 5080 0 

8:00 5081 2488 1000 6569 7.57 7568 1000 

9:00 6569 2123 1000 7692 8.69 9691 2000 

10:00 7692 2153 1000 8845 9.84 11844 3000 

11:00 8845 2140 1000 9985 10.99 13984 4000 

12:00 9985 2159 1000 11144 12.14 16143 5000 

13:00 11145 2134 1000 12279 13.28 18277 6000 

14:00 12280 2149 1000 13428 14.43 20426 7000 

15:00 13429 2130 1000 14559 15.56 22556 8000 

16:00 14559 2182 1000 15741 16.74 24738 9000 

17:00 15740 2184 1000 16924 17.92 26922 10000 

18:00 16925 2169 1000 18094 19.09 29091 11000 

19:00 18094 2151 1001 19245 20.24 31242 12001 

20:00 19244 2119 1001 20363 21.36 33361 13002 

21:00 20363 1769 1000 21131 22.13 35130 14002 

22:00 21132 1071 1000 21203 22.2 36201 15002 

23:00 21203 719 1001 20922 21.92 36920 16003 

24:00 20922 352 1000 20274 21.27 37272 17003 

25:00 20274 352 999 19626 20.63 37624 18002 

26:00 19626 352 1001 18978 19.98 37976 19003 

27:00 18977 352 1000 18330 19.33 38328 20003 

28:00 18329 317 1001 17646 18.65 38645 21004 

29:00 17646 317 1001 16963 17.96 38962 22005 

30:00 16962 315 1001 16277 17.28 39277 23006 

31:00 16276 315 999 15590 16.59 39592 24005 

32:00 15591 34 999 14625 15.62 39626 25004 

33:00 14625 34 1000 13659 14.66 39660 26004 

34:00 13659 34 1000 12693 13.69 39694 27004 

35:00 12693 34 1000 11727 12.73 39728 28004 
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Table 17, continued 
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36:00 11726 0 1000 10726 11.73 39728 29004 

37:00 10726 0 1000 9726 10.73 39728 30004 

38:00 9727 0 1000 8727 9.73 39728 31004 

39:00 8727 0 1000 7727 8.73 39728 32004 

40:00 7727 0 1000 6727 7.73 39728 33004 

41:00 6727 0 1000 5727 6.73 39728 34004 

42:00 5726 0 1000 4726 5.73 39728 35004 

43:00 4727 0 1000 3727 4.73 39728 36004 

44:00 3726 0 1000 2726 3.73 39728 37004 

45:00 2727 0 1000 1727 2.73 39728 38004 

46:00 1727 0 1000 727 1.73 39728 39004 

47:00 727 0 727 0 0.73 39728 39731 
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Table 18: Raw Hourly Data for NESSC POD for Dual Uniform Arrival Curve 

Scenario 
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6:00 0 1417 0 1417 3.42 1417 0 

7:00 1417 2446 0 3863 4.86 3863 0 

8:00 3863 1900 1000 4764 5.76 5763 1000 

9:00 4764 1565 1000 5328 6.33 7328 2000 

10:00 5329 1606 1000 5935 6.93 8934 3000 

11:00 5934 1595 1000 6529 7.53 10529 4000 

12:00 6529 1611 1000 7141 8.14 12140 5000 

13:00 7140 1573 1000 7713 8.71 13713 6000 

14:00 7713 1583 1000 8296 9.3 15296 7000 

15:00 8296 1586 1000 8882 9.88 16882 8000 

16:00 8882 1637 1000 9519 10.52 18519 9000 

17:00 9519 1638 1000 10157 11.16 20157 10000 

18:00 10156 1598 1000 10755 11.75 21755 11000 

19:00 10754 1585 1000 11339 12.34 23340 12000 

20:00 11339 1562 1000 11901 12.9 24902 13000 

21:00 11901 1304 1000 12205 13.21 26206 14000 

22:00 12205 791 1000 11996 13 26997 15000 

23:00 11997 531 1001 11528 12.53 27528 16001 

24:00 11528 260 999 10787 11.79 27788 17000 

25:00 10788 260 1000 10047 11.05 28048 18000 

26:00 10047 260 1000 9307 10.31 28308 19000 

27:00 9307 260 1000 8567 9.57 28568 20000 

28:00 8567 233 1000 7801 8.8 28801 21000 

29:00 7801 233 1000 7034 8.03 29034 22000 

30:00 7034 236 1000 6270 7.27 29270 23000 

31:00 6270 236 1000 5507 6.51 29506 24000 

32:00 5506 26 1000 4532 5.53 29532 25000 

33:00 4532 25 1000 3557 4.56 29557 26000 

34:00 3558 26 1000 2583 3.58 29583 27000 

35:00 2583 26 1000 1609 2.61 29609 28000 

36:00 1609 0 1000 609 1.61 29609 29000 

37:00 609 0 609 0 0.61 29609 29609 
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Table 19: Raw Hourly Data for Frawley POD for Dual Uniform Arrival Curve 

Scenario 
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6:00 0 189 0 189 2.19 189 0 

7:00 189 293 0 482 1.48 482 0 

8:00 482 53 535 0 0.53 535 535 

9:00 0 14 14 0 0.01 549 549 

10:00 0 16 16 0 0.02 565 565 

11:00 0 16 16 0 0.02 581 581 

12:00 0 17 17 0 0.02 598 598 

13:00 0 15 15 0 0.01 613 613 

14:00 0 16 16 0 0.02 629 629 

15:00 0 15 15 0 0.01 644 644 

16:00 0 18 18 0 0.02 662 662 

17:00 0 18 18 0 0.02 680 680 

18:00 0 17 17 0 0.02 697 697 

19:00 0 16 16 0 0.02 713 713 

20:00 0 14 14 0 0.01 727 727 

21:00 0 12 12 0 0.01 739 739 

22:00 0 8 8 0 0.01 747 747 

23:00 0 5 5 0 0.01 752 752 

24:00 0 2 2 0 0 754 754 

25:00 0 2 2 0 0 756 756 

26:00 0 2 2 0 0 758 758 

27:00 0 2 2 0 0 760 760 

28:00 0 2 2 0 0 762 762 

29:00 0 2 2 0 0 764 764 

30:00 0 2 2 0 0 766 766 

31:00 0 2 2 0 0 768 768 
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Table 20: Raw Hourly Data for DMV POD for Dual Uniform Arrival Curve Scenario 
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6:00 0 2692 0 2692 4.69 2692 0 

7:00 2692 4019 0 6712 7.71 6711 0 

8:00 6712 1258 1000 6970 7.97 7969 1000 

9:00 6970 537 1000 6507 7.51 8506 2000 

10:00 6507 613 1000 6119 7.12 9119 3000 

11:00 6119 589 1000 5708 6.71 9708 4000 

12:00 5708 624 1000 5332 6.33 10332 5000 

13:00 5332 557 1000 4889 5.89 10889 6000 

14:00 4889 580 1000 4469 5.47 11469 7000 

15:00 4469 547 1000 4016 5.02 12016 8000 

16:00 4017 646 1000 3663 4.66 12662 9000 

17:00 3663 649 1000 3312 4.31 13311 10000 

18:00 3312 612 1000 2924 3.92 13923 11000 

19:00 2924 583 1000 2507 3.51 14506 12000 

20:00 2507 531 1000 2038 3.04 15037 13000 

21:00 2038 448 1000 1486 2.49 15485 14000 

22:00 1486 289 1000 774 1.77 15774 15000 

23:00 774 201 975 0 0.98 15975 15975 

24:00 0 87 87 0 0.09 16062 16062 

25:00 0 86 86 0 0.09 16148 16148 

26:00 0 86 86 0 0.09 16234 16234 

27:00 0 86 86 0 0.09 16320 16320 

28:00 0 78 78 0 0.08 16398 16398 

29:00 0 78 78 0 0.08 16476 16476 

30:00 0 78 78 0 0.08 16554 16554 

31:00 0 78 78 0 0.08 16632 16632 

32:00 0 9 9 0 0.01 16641 16641 

33:00 0 9 9 0 0.01 16650 16650 

34:00 0 9 9 0 0.01 16659 16659 

35:00 0 9 9 0 0.01 16668 16668 
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Appendix E 

POD MOES FOR AM AND PM RUSH HOUR PEAKS ARRIVAL CURVE 

SCENARIO 

Tables 21 through 25 contain the POD MOEs for each POD location for the 

AM and PM rush hour peaks arrival scenario. The model provided time of day, 

residents from previous hour, new arrivals, POD processing rate, spillover to next 

hour, and hourly average queue. For descriptions, see Table 3 in Section 3.5. 

Cumulative arrivals and cumulative processed were calculated after each scenario run. 

Due to rounding errors within matrices in the model, cumulative arrivals and 

cumulative processed may not be equal.   
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Table 21: Raw Hourly Data for DelTech POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario 
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6:00 0 1546 0 1546 3.55 1546 0 

7:00 1546 2231 0 3778 4.78 3777 0 

8:00 3778 1178 1000 3955 4.96 4955 1000 

9:00 3956 727 1000 3682 4.68 5682 2000 

10:00 3682 534 1000 3217 4.22 6216 3000 

11:00 3217 322 1000 2538 3.54 6538 4000 

12:00 2538 229 1000 1767 2.77 6767 5000 

13:00 1767 213 1000 981 1.98 6980 6000 

14:00 980 324 1000 305 1.3 7304 7000 

15:00 305 505 810 0 0.81 7809 7810 

16:00 0 732 732 0 0.73 8541 8542 

17:00 0 933 933 0 0.93 9474 9475 

18:00 0 750 750 0 0.75 10224 10225 

19:00 0 533 533 0 0.53 10757 10758 

20:00 0 311 311 0 0.31 11068 11069 

21:00 0 104 104 0 0.1 11172 11173 

22:00 0 107 107 0 0.11 11279 11280 

23:00 0 107 107 0 0.11 11386 11387 

24:00 0 102 102 0 0.1 11488 11489 

25:00 0 102 102 0 0.1 11590 11591 

26:00 0 102 102 0 0.1 11692 11693 

27:00 0 102 102 0 0.1 11794 11795 

28:00 0 102 102 0 0.1 11896 11897 

29:00 0 102 102 0 0.1 11998 11999 

30:00 0 515 515 0 0.52 12513 12514 

31:00 0 680 680 0 0.68 13193 13194 

32:00 0 8 8 0 0.01 13201 13202 

33:00 0 9 9 0 0.01 13210 13211 

34:00 0 8 8 0 0.01 13218 13219 

35:00 0 8 8 0 0.01 13226 13227 
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Table 22: Raw Hourly Data for JCC POD for AM and PM Rush Hour Peaks Arrival 

Curve Scenario 
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6:00 0 3250 0 3250 5.25 3250 0 

7:00 3250 4623 0 7874 8.87 7873 0 

8:00 7874 3535 1000 10409 11.41 11408 1000 

9:00 10409 2475 1000 11884 12.88 13883 2000 

10:00 11884 1802 999 12686 13.69 15685 2999 

11:00 12687 1086 1000 12773 13.77 16771 3999 

12:00 12773 753 1000 12526 13.53 17524 4999 

13:00 12526 726 1000 12252 13.25 18250 5999 

14:00 12252 1091 1000 12344 13.34 19341 6999 

15:00 12344 1778 1000 13121 14.12 21119 7999 

16:00 13122 2535 1000 14656 15.66 23654 8999 

17:00 14657 3243 1000 16900 17.9 26897 9999 

18:00 16900 2522 1000 18422 19.42 29419 10999 

19:00 18421 1799 1000 19220 20.22 31218 11999 

20:00 19220 1062 999 19282 20.28 32280 12998 

21:00 19282 360 1001 18642 19.64 32640 13999 

22:00 18641 368 999 18009 19.01 33008 14998 

23:00 18010 367 1000 17377 18.38 33375 15998 

24:00 17377 352 999 16729 17.73 33727 16997 

25:00 16730 352 1000 16082 17.08 34079 17997 

26:00 16082 352 1000 15434 16.43 34431 18997 

27:00 15434 352 1000 14786 15.79 34783 19997 

28:00 14786 352 1000 14138 15.14 35135 20997 

29:00 14138 352 1000 13490 14.49 35487 21997 

30:00 13491 1745 1000 14236 15.24 37232 22997 

31:00 14237 2304 999 15541 16.54 39536 23996 

32:00 15541 34 999 14575 15.57 39570 24995 

33:00 14576 34 1000 13609 14.61 39604 25995 

34:00 13609 34 1000 12643 13.64 39638 26995 
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Table 22, continued 

 

T
im

e 
o
f 

D
ay

 

P
at

ie
n
ts

 f
ro

m
 

P
re

v
io

u
s 

H
o
u
r 

N
ew

 A
rr

iv
al

s 

P
O

D
 P

ro
ce

ss
in

g
 

R
at

e 

S
p
il

lo
v
er

 t
o
 N

ex
t 

H
o
u
r 

H
o
u
rl

y
 A

v
er

ag
e 

Q
u
eu

e 
(h

o
u

rs
) 

C
u
m

u
la

ti
v
e 

A
rr

iv
al

s 

C
u
m

u
la

ti
v
e 

P
ro

ce
ss

ed
 

35:00 12643 34 1000 11677 12.68 39672 27995 

36:00 11677 0 1000 10677 11.68 39672 28995 

37:00 10677 0 1000 9677 10.68 39672 29995 

38:00 9677 0 1000 8677 9.68 39672 30995 

39:00 8677 0 1000 7677 8.68 39672 31995 

40:00 7678 0 1000 6678 7.68 39672 32995 

41:00 6678 0 1000 5678 6.68 39672 33995 

42:00 5678 0 1000 4678 5.68 39672 34995 

43:00 4678 0 1000 3678 4.68 39672 35995 

44:00 3678 0 1000 2678 3.68 39672 36995 

45:00 2678 0 1000 1678 2.68 39672 37995 

46:00 1678 0 1000 678 1.68 39672 38995 

47:00 678 0 678 0 0.68 39672 39673 
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Table 23: Raw Hourly Data for NESSC POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario 
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6:00 0 2467 0 2467 4.47 2467 0 

7:00 2467 3498 0 5965 6.97 5965 0 

8:00 5965 2689 1000 7654 8.65 8654 1000 

9:00 7654 1825 1000 8479 9.48 10479 2000 

10:00 8479 1346 1000 8825 9.82 11825 3000 

11:00 8825 813 1000 8638 9.64 12638 4000 

12:00 8638 569 1000 8207 9.21 13207 5000 

13:00 8206 536 1000 7742 8.74 13743 6000 

14:00 7742 806 1000 7547 8.55 14549 7000 

15:00 7547 1325 1000 7872 8.87 15874 8000 

16:00 7872 1899 1000 8770 9.77 17773 9000 

17:00 8771 2423 1000 10194 11.19 20196 10000 

18:00 10194 1858 1000 11052 12.05 22054 11000 

19:00 11052 1326 1000 11378 12.38 23380 12000 

20:00 11378 784 1000 11162 12.16 24164 13000 

21:00 11162 267 1000 10430 11.43 24431 14000 

22:00 10429 273 1000 9703 10.7 24704 15000 

23:00 9702 273 1000 8975 9.98 24977 16000 

24:00 8975 260 1000 8235 9.23 25237 17000 

25:00 8235 260 1000 7494 8.49 25497 18000 

26:00 7495 260 1000 6754 7.75 25757 19000 

27:00 6755 260 1000 6014 7.01 26017 20000 

28:00 6015 260 1000 5274 6.27 26277 21000 

29:00 5274 260 1000 4534 5.53 26537 22000 

30:00 4534 1313 1000 4847 5.85 27850 23000 

31:00 4847 1734 1000 5581 6.58 29584 24000 

32:00 5581 26 1000 4607 5.61 29610 25000 

33:00 4607 25 1000 3632 4.63 29635 26000 

34:00 3632 26 1000 2657 3.66 29661 27000 

35:00 2657 26 1000 1683 2.68 29687 28000 

36:00 1683 0 1000 683 1.68 29687 29000 

37:00 683 0 683 0 0.68 29687 29683 
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Table 24: Raw Hourly Data for Frawley POD for AM and PM Rush Hour Peaks 

Arrival Curve Scenario 
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6:00 0 199 0 199 2.2 199 0 

7:00 199 302 0 501 1.5 501 0 

8:00 501 60 561 0 0.56 561 561 

9:00 0 17 17 0 0.02 578 578 

10:00 0 14 14 0 0.01 592 592 

11:00 0 8 8 0 0.01 600 600 

12:00 0 7 7 0 0.01 607 607 

13:00 0 5 5 0 0.01 612 612 

14:00 0 8 8 0 0.01 620 620 

15:00 0 12 12 0 0.01 632 632 

16:00 0 20 20 0 0.02 652 652 

17:00 0 25 25 0 0.02 677 677 

18:00 0 19 19 0 0.02 696 696 

19:00 0 13 13 0 0.01 709 709 

20:00 0 7 7 0 0.01 716 716 

21:00 0 2 2 0 0 718 718 

22:00 0 3 3 0 0 721 721 

23:00 0 3 3 0 0 724 724 

24:00 0 2 2 0 0 726 726 

25:00 0 2 2 0 0 728 728 

26:00 0 2 2 0 0 730 730 

27:00 0 2 2 0 0 732 732 

28:00 0 2 2 0 0 734 734 

29:00 0 2 2 0 0 736 736 

30:00 0 12 12 0 0.01 748 748 

31:00 0 16 16 0 0.02 764 764 

 



 131 

Table 25: Raw Hourly Data for DMV POD for AM and PM Rush Hour Peaks Arrival 

Curve Scenario 

T
im

e 
o
f 

D
ay

 

P
at

ie
n
ts

 f
ro

m
 

P
re

v
io

u
s 

H
o
u
r 

N
ew

 A
rr

iv
al

s 

P
O

D
 

P
ro

ce
ss

in
g
 

R
at

e 

S
p
il

lo
v
er

 t
o
 

N
ex

t 
H

o
u
r 

H
o
u
rl

y
 

A
v
er

ag
e 

Q
u
eu

e 
(h

o
u

rs
) 

C
u
m

u
la

ti
v
e 

A
rr

iv
al

s 

C
u
m

u
la

ti
v
e 

P
ro

ce
ss

ed
 

6:00 0 3038 0 3038 5.04 3038 0 

7:00 3038 4364 0 7402 8.4 7402 0 

8:00 7402 1517 1000 7918 8.92 8919 1000 

9:00 7918 623 1000 7542 8.54 9542 2000 

10:00 7542 527 1000 7068 8.07 10069 3000 

11:00 7068 330 1000 6398 7.4 10399 4000 

12:00 6398 279 1000 5677 6.68 10678 5000 

13:00 5677 212 1000 4889 5.89 10890 6000 

14:00 4889 322 1000 4210 5.21 11212 7000 

15:00 4211 461 1000 3672 4.67 11673 8000 

16:00 3672 732 1000 3404 4.4 12405 9000 

17:00 3404 909 1000 3312 4.31 13314 10000 

18:00 3312 698 1000 3010 4.01 14012 11000 

19:00 3010 497 1000 2507 3.51 14509 12000 

20:00 2507 273 1000 1780 2.78 14782 13000 

21:00 1780 103 1000 883 1.88 14885 14000 

22:00 883 116 999 0 1 15001 14999 

23:00 0 115 115 0 0.12 15116 15114 

24:00 0 87 87 0 0.09 15203 15201 

25:00 0 86 86 0 0.09 15289 15287 

26:00 0 86 86 0 0.09 15375 15373 

27:00 0 86 86 0 0.09 15461 15459 

28:00 0 86 86 0 0.09 15547 15545 

29:00 0 86 86 0 0.09 15633 15631 

30:00 0 432 432 0 0.43 16065 16063 

31:00 0 570 570 0 0.57 16635 16633 

32:00 0 9 9 0 0.01 16644 16642 

33:00 0 9 9 0 0.01 16653 16651 

34:00 0 9 9 0 0.01 16662 16660 

35:00 0 9 9 0 0.01 16671 16669 
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Appendix F 

POD MOES FOR PM RUSH HOUR PEAK ARRIVAL CURVE SCENARIO 

Tables 26 through 30 contain the POD MOEs for each POD location for the 

PM rush hour peak arrival scenario. The model provided time of day, residents from 

previous hour, new arrivals, POD processing rate, spillover to next hour, and hourly 

average queue. For descriptions, see Table 3 in Section 3.5. Cumulative arrivals and 

cumulative processed were calculated after each scenario run. Due to rounding errors 

within matrices in the model, cumulative arrivals and cumulative processed may not 

be equal.   
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Table 26: Raw Hourly Data for DelTech POD for PM Rush Hour Peak Arrival Curve 

Scenario 
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6:00 0 1340 0 1340 3.34 1340 0 

7:00 1340 1921 0 3261 4.26 3261 0 

8:00 3261 764 1000 3025 4.03 4025 1000 

9:00 3025 416 1000 2441 3.44 4441 2000 

10:00 2441 328 1000 1769 2.77 4769 3000 

11:00 1769 218 1000 988 1.99 4987 4000 

12:00 988 229 1000 217 1.22 5216 5000 

13:00 217 213 430 0 0.43 5429 5430 

14:00 0 324 324 0 0.32 5753 5754 

15:00 0 604 604 0 0.6 6357 6358 

16:00 0 933 933 0 0.93 7290 7291 

17:00 0 1234 1000 234 1.23 8524 8291 

18:00 234 1164 1000 398 1.4 9688 9291 

19:00 398 947 1000 345 1.35 10635 10291 

20:00 345 725 1000 71 1.07 11360 11291 

21:00 71 415 486 0 0.49 11775 11777 

22:00 0 211 211 0 0.21 11986 11988 

23:00 0 107 107 0 0.11 12093 12095 

24:00 0 102 102 0 0.1 12195 12197 

25:00 0 91 91 0 0.09 12286 12288 

26:00 0 91 91 0 0.09 12377 12379 

27:00 0 91 91 0 0.09 12468 12470 

28:00 0 91 91 0 0.09 12559 12561 

29:00 0 102 102 0 0.1 12661 12663 

30:00 0 205 205 0 0.2 12866 12868 

31:00 0 309 309 0 0.31 13175 13177 

32:00 0 8 8 0 0.01 13183 13185 

33:00 0 9 9 0 0.01 13192 13194 

34:00 0 8 8 0 0.01 13200 13202 

35:00 0 8 8 0 0.01 13208 13210 
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Table 27: Raw Hourly Data for JCC POD for PM Rush Hour Peak Arrival Curve 

Scenario 
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6:00 0 2551 0 2551 4.55 2551 0 

7:00 2551 3575 0 6126 7.13 6126 0 

8:00 6126 2140 1000 7266 8.27 8266 1000 

9:00 7266 1418 1000 7684 8.68 9684 2000 

10:00 7684 1098 1000 7783 8.78 10782 3000 

11:00 7783 735 1000 7517 8.52 11517 4000 

12:00 7517 753 1000 7271 8.27 12270 5000 

13:00 7271 726 1000 6996 8 12996 6000 

14:00 6997 1091 1000 7088 8.09 14087 7000 

15:00 7088 2130 1000 8219 9.22 16217 8000 

16:00 8218 3241 1000 10460 11.46 19458 9000 

17:00 10460 4302 1000 13762 14.76 23760 10000 

18:00 13762 3931 1000 16693 17.69 27691 11000 

19:00 16693 3208 1000 18901 19.9 30899 12000 

20:00 18901 2471 1000 20372 21.37 33370 13000 

21:00 20372 1416 1000 20788 21.79 34786 14000 

22:00 20788 720 1000 20507 21.51 35506 15000 

23:00 20508 367 1001 19875 20.87 35873 16001 

24:00 19874 352 1000 19226 20.23 36225 17001 

25:00 19226 317 1000 18543 19.54 36542 18001 

26:00 18543 317 999 17860 18.86 36859 19000 

27:00 17861 317 1000 17178 18.18 37176 20000 

28:00 17178 317 1000 16495 17.49 37493 21000 

29:00 16495 352 1000 15847 16.85 37845 22000 

30:00 15847 698 1000 15545 16.54 38543 23000 

31:00 15545 1046 1000 15591 16.59 39589 24000 

32:00 15592 34 999 14625 15.63 39623 24999 

33:00 14626 34 1000 13660 14.66 39657 25999 

34:00 13659 34 1000 12693 13.69 39691 26999 
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Table 27, continued 
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35:00 12693 34 1000 11727 12.73 39725 27999 

36:00 11727 0 1000 10727 11.73 39725 28999 

37:00 10727 0 1000 9727 10.73 39725 29999 

38:00 9727 0 1000 8727 9.73 39725 30999 

39:00 8727 0 1000 7727 8.73 39725 31999 

40:00 7727 0 1000 6727 7.73 39725 32999 

41:00 6727 0 1000 5727 6.73 39725 33999 

42:00 5727 0 1000 4727 5.73 39725 34999 

43:00 4727 0 1000 3727 4.73 39725 35999 

44:00 3727 0 1000 2727 3.73 39725 36999 

45:00 2727 0 1000 1727 2.73 39725 37999 

46:00 1727 0 1000 727 1.73 39725 38999 

47:00 727 0 727 0 0.73 39725 39726 
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Table 28: Raw Hourly Data for NESSC POD for PM Rush Hour Peak Arrival Curve 

Scenario 
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6:00 0 1941 0 1941 3.94 1941 0 

7:00 1941 2710 0 4651 5.65 4651 0 

8:00 4651 1638 1000 5289 6.29 6289 1000 

9:00 5289 1046 1000 5335 6.34 7335 2000 

10:00 5335 824 1000 5159 6.16 8159 3000 

11:00 5159 552 1000 4711 5.71 8711 4000 

12:00 4712 569 1000 4280 5.28 9280 5000 

13:00 4280 536 1000 3816 4.82 9816 6000 

14:00 3816 806 1000 3622 4.62 10622 7000 

15:00 3622 1586 1000 4208 5.21 12208 8000 

16:00 4208 2422 1000 5630 6.63 14630 9000 

17:00 5629 3208 1000 7837 8.84 17838 10000 

18:00 7837 2895 1000 9733 10.73 20733 11000 

19:00 9733 2363 1000 11096 12.1 23096 12000 

20:00 11096 1822 1000 11918 12.92 24918 13000 

21:00 11918 1045 1000 11963 12.96 25963 14000 

22:00 11963 532 1000 11495 12.49 26495 15000 

23:00 11495 273 1000 10768 11.77 26768 16000 

24:00 10767 260 1000 10027 11.03 27028 17000 

25:00 10027 233 1000 9260 10.26 27261 18000 

26:00 9261 233 1000 8494 9.49 27494 19000 

27:00 8494 233 1000 7727 8.73 27727 20000 

28:00 7727 233 1000 6961 7.96 27960 21000 

29:00 6961 260 1000 6220 7.22 28220 22000 

30:00 6220 525 1000 5745 6.74 28745 23000 

31:00 5745 787 1000 5532 6.53 29532 24000 

32:00 5532 26 1000 4558 5.56 29558 25000 

33:00 4557 25 1000 3583 4.58 29583 26000 

34:00 3583 26 1000 2608 3.61 29609 27000 

35:00 2608 26 1000 1634 2.63 29635 28000 

36:00 1634 0 1000 634 1.63 29635 29000 

37:00 634 0 634 0 0.63 29635 29634 
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Table 29: Raw Hourly Data for Frawley POD for PM Rush Hour Peak Arrival Curve 

Scenario 
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6:00 0 194 0 194 2.19 194 0 

7:00 194 295 0 489 1.49 489 0 

8:00 489 50 540 0 0.54 539 540 

9:00 0 10 10 0 0.01 549 550 

10:00 0 9 9 0 0.01 558 559 

11:00 0 6 6 0 0.01 564 565 

12:00 0 7 7 0 0.01 571 572 

13:00 0 5 5 0 0.01 576 577 

14:00 0 8 8 0 0.01 584 585 

15:00 0 15 15 0 0.01 599 600 

16:00 0 25 25 0 0.02 624 625 

17:00 0 32 32 0 0.03 656 657 

18:00 0 29 29 0 0.03 685 686 

19:00 0 23 23 0 0.02 708 709 

20:00 0 17 17 0 0.02 725 726 

21:00 0 10 10 0 0.01 735 736 

22:00 0 5 5 0 0.01 740 741 

23:00 0 3 3 0 0 743 744 

24:00 0 2 2 0 0 745 746 

25:00 0 2 2 0 0 747 748 

26:00 0 2 2 0 0 749 750 

27:00 0 2 2 0 0 751 752 

28:00 0 2 2 0 0 753 754 

29:00 0 2 2 0 0 755 756 

30:00 0 5 5 0 0 760 761 

31:00 0 7 7 0 0.01 767 768 
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Table 30: Raw Hourly Data for DMV POD for PM Rush Hour Peak Arrival Curve 

Scenario 

T
im

e 
o
f 

D
ay

 

P
at

ie
n
ts

 f
ro

m
 

P
re

v
io

u
s 

H
o
u
r 

N
ew

 A
rr

iv
al

s 

P
O

D
 

P
ro

ce
ss

in
g
 R

at
e
 

S
p
il

lo
v
er

 t
o
 

N
ex

t 
H

o
u
r 

H
o
u
rl

y
 

A
v
er

ag
e 

Q
u
eu

e 

(h
o
u
rs

) 

C
u
m

u
la

ti
v
e 

A
rr

iv
al

s 

C
u
m

u
la

ti
v
e 

P
ro

ce
ss

ed
 

6:00 0 2865 0 2865 4.87 2865 0 

7:00 2865 4106 0 6971 7.97 6971 0 

8:00 6971 1172 1000 7143 8.14 8143 1000 

9:00 7142 365 1000 6507 7.51 8508 2000 

10:00 6507 354 1000 5862 6.86 8862 3000 

11:00 5862 243 1000 5105 6.1 9105 4000 

12:00 5105 279 1000 4384 5.38 9384 5000 

13:00 4384 212 1000 3595 4.6 9596 6000 

14:00 3595 322 1000 2917 3.92 9918 7000 

15:00 2917 547 1000 2464 3.46 10465 8000 

16:00 2464 905 1000 2370 3.37 11370 9000 

17:00 2370 1168 1000 2538 3.54 12538 10000 

18:00 2538 1043 1000 2581 3.58 13581 11000 

19:00 2581 842 1000 2423 3.42 14423 12000 

20:00 2423 617 1000 2040 3.04 15040 13000 

21:00 2040 362 1000 1402 2.4 15402 14000 

22:00 1402 202 1000 604 1.6 15604 15000 

23:00 604 115 719 0 0.72 15719 15719 

24:00 0 87 87 0 0.09 15806 15806 

25:00 0 78 78 0 0.08 15884 15884 

26:00 0 78 78 0 0.08 15962 15962 

27:00 0 78 78 0 0.08 16040 16040 

28:00 0 78 78 0 0.08 16118 16118 

29:00 0 86 86 0 0.09 16204 16204 

30:00 0 172 172 0 0.17 16376 16376 

31:00 0 259 259 0 0.26 16635 16635 

32:00 0 9 9 0 0.01 16644 16644 

33:00 0 9 9 0 0.01 16653 16653 

34:00 0 9 9 0 0.01 16662 16662 

35:00 0 9 9 0 0.01 16671 16671 
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Appendix G 

POD MOES FOR MIDDAY PEAK ARRIVAL CURVE SCENARIO 

Tables 31 through 35 contain the POD MOEs for each POD location for the 

midday peak arrival scenario. The model provided time of day, residents from 

previous hour, new arrivals, POD processing rate, spillover to next hour, and hourly 

average queue. For descriptions, see Table 3 in Section 3.5. Cumulative arrivals and 

cumulative processed were calculated after each scenario run. Due to rounding errors 

within matrices in the model, cumulative arrivals and cumulative processed may not 

be equal.   
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Table 31: Raw Hourly Data for DelTech POD for Midday Peak Arrival Curve 
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6:00 0 1340 0 1340 3.34 1340 0 

7:00 1340 1921 0 3261 4.26 3261 0 

8:00 3261 764 1000 3025 4.03 4025 1000 

9:00 3025 623 1000 2648 3.65 4648 2000 

10:00 2648 842 1000 2490 3.49 5490 3000 

11:00 2490 939 1000 2429 3.43 6429 4000 

12:00 2429 1051 1000 2480 3.48 7480 5000 

13:00 2480 939 1000 2419 3.42 8419 6000 

14:00 2419 842 1000 2261 3.26 9261 7000 

15:00 2261 604 1000 1865 2.87 9865 8000 

16:00 1865 532 1000 1397 2.4 10397 9000 

17:00 1397 432 1000 829 1.83 10829 10000 

18:00 829 335 1000 164 1.16 11164 11000 

19:00 164 222 386 0 0.39 11386 11386 

20:00 0 103 103 0 0.1 11489 11489 

21:00 0 104 104 0 0.1 11593 11593 

22:00 0 107 107 0 0.11 11700 11700 

23:00 0 107 107 0 0.11 11807 11807 

24:00 0 91 91 0 0.09 11898 11898 

25:00 0 91 91 0 0.09 11989 11989 

26:00 0 91 91 0 0.09 12080 12080 

27:00 0 91 91 0 0.09 12171 12171 

28:00 0 102 102 0 0.1 12273 12273 

29:00 0 205 205 0 0.21 12478 12478 

30:00 0 309 309 0 0.31 12787 12787 

31:00 0 412 412 0 0.41 13199 13199 

32:00 0 8 8 0 0.01 13207 13207 

33:00 0 9 9 0 0.01 13216 13216 

34:00 0 8 8 0 0.01 13224 13224 

35:00 0 8 8 0 0.01 13232 13232 
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Table 32: Raw Hourly Data for JCC POD for Midday Peak Arrival Curve Scenario 
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6:00 0 2551 0 2551 4.55 2551 0 

7:00 2551 3575 0 6126 7.13 6126 0 

8:00 6126 2140 1000 7266 8.27 8266 1000 

9:00 7266 2123 1000 8389 9.39 10389 2000 

10:00 8389 2857 1000 10246 11.25 13246 3000 

11:00 10246 3196 1000 12443 13.44 16442 4000 

12:00 12443 3566 1000 15009 16.01 20008 5000 

13:00 15009 3192 1000 17200 18.2 23200 6000 

14:00 17201 2854 999 19054 20.05 26054 6999 

15:00 19055 2130 1000 20185 21.19 28184 7999 

16:00 20185 1829 999 21014 22.01 30013 8998 

17:00 21015 1477 1000 21492 22.49 31490 9998 

18:00 21492 1112 999 21604 22.6 32602 10997 

19:00 21605 742 1000 21347 22.35 33344 11997 

20:00 21346 358 999 20704 21.7 33702 12996 

21:00 20705 360 1000 20065 21.07 34062 13996 

22:00 20065 368 999 19433 20.43 34430 14995 

23:00 19433 367 1001 18801 19.8 34797 15996 

24:00 18800 317 1000 18117 19.12 35114 16996 

25:00 18116 317 1000 17433 18.43 35431 17996 

26:00 17433 317 1001 16750 17.75 35748 18997 

27:00 16750 317 1000 16067 17.07 36065 19997 

28:00 16067 352 999 15419 16.42 36417 20996 

29:00 15419 704 1001 15124 16.12 37121 21997 

30:00 15123 1046 1000 15169 16.17 38167 22997 

31:00 15170 1395 1000 15565 16.56 39562 23997 

32:00 15565 34 999 14599 15.6 39596 24996 

33:00 14599 34 1000 13633 14.63 39630 25996 

34:00 13633 34 1001 12667 13.67 39664 26997 

35:00 12666 34 1001 11700 12.7 39698 27998 
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Table 32, continued 

 

T
im

e 
o
f 

D
ay

 

P
at

ie
n
ts

 f
ro

m
 

P
re

v
io

u
s 

H
o
u
r 

N
ew

 A
rr

iv
al

s 

P
O

D
 P

ro
ce

ss
in

g
 

R
at

e 

S
p
il

lo
v
er

 t
o
 N

ex
t 

H
o
u
r 

H
o
u
rl

y
 A

v
er

ag
e 

Q
u
eu

e 
(h

o
u

rs
) 

C
u
m

u
la

ti
v
e 

A
rr

iv
al

s 

C
u
m

u
la

ti
v
e 

P
ro

ce
ss

ed
 

36:00 11699 0 1000 10699 11.7 39698 28998 

37:00 10699 0 1000 9699 10.7 39698 29998 

38:00 9699 0 1000 8699 9.7 39698 30998 

39:00 8699 0 1000 7699 8.7 39698 31998 

40:00 7698 0 1000 6698 7.7 39698 32998 

41:00 6698 0 1000 5698 6.7 39698 33998 

42:00 5698 0 1000 4698 5.7 39698 34998 

43:00 4698 0 1000 3698 4.7 39698 35998 

44:00 3698 0 1000 2698 3.7 39698 36998 

45:00 2698 0 1000 1698 2.7 39698 37998 

46:00 1698 0 1000 698 1.7 39698 38998 

47:00 698 0 698 0 0.7 39698 39696 
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Table 33: Raw Hourly Data for NESSC POD for Midday Peak Arrival Curve Scenario 
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6:00 0 1941 0 1941 3.94 1941 0 

7:00 1941 2710 0 4651 5.65 4651 0 

8:00 4651 1638 1000 5289 6.29 6289 1000 

9:00 5289 1565 1000 5854 6.85 7854 2000 

10:00 5854 2128 1000 6981 7.98 9982 3000 

11:00 6982 2377 1000 8359 9.36 12359 4000 

12:00 8359 2654 1000 10013 11.01 15013 5000 

13:00 10014 2351 1000 11365 12.36 17364 6000 

14:00 11364 2102 1000 12467 13.47 19466 7000 

15:00 12467 1586 1000 13053 14.05 21052 8000 

16:00 13053 1375 1000 13428 14.43 22427 9000 

17:00 13428 1115 1000 13544 14.54 23542 10000 

18:00 13543 820 999 13364 14.36 24362 10999 

19:00 13364 548 1000 12912 13.91 24910 11999 

20:00 12912 266 999 12178 13.18 25176 12998 

21:00 12179 267 1000 11446 12.45 25443 13998 

22:00 11447 273 1000 10720 11.72 25716 14998 

23:00 10719 273 1000 9992 10.99 25989 15998 

24:00 9992 233 1000 9225 10.23 26222 16998 

25:00 9225 233 1000 8458 9.46 26455 17998 

26:00 8458 233 1000 7692 8.69 26688 18998 

27:00 7692 233 1000 6925 7.93 26921 19998 

28:00 6925 260 1000 6185 7.19 27181 20998 

29:00 6185 518 1000 5703 6.7 27699 21998 

30:00 5703 787 1000 5490 6.49 28486 22998 

31:00 5491 1051 1000 5541 6.54 29537 23998 

32:00 5541 26 1000 4567 5.57 29563 24998 

33:00 4567 25 1000 3592 4.59 29588 25998 

34:00 3592 26 1000 2618 3.62 29614 26998 

35:00 2618 26 1000 1643 2.64 29640 27998 

36:00 1643 0 1000 643 1.64 29640 28998 

37:00 643 0 643 0 0.64 29640 29641 
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Table 34: Raw Hourly Data for Frawley POD for Midday Peak Arrival Curve 

Scenario 
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6:00 0 194 0 194 2.19 194 0 

7:00 194 295 0 489 1.49 489 0 

8:00 489 50 540 0 0.54 539 540 

9:00 0 14 14 0 0.01 553 554 

10:00 0 21 21 0 0.02 574 575 

11:00 0 23 23 0 0.02 597 598 

12:00 0 26 26 0 0.03 623 624 

13:00 0 22 22 0 0.02 645 646 

14:00 0 20 20 0 0.02 665 666 

15:00 0 15 15 0 0.01 680 681 

16:00 0 15 15 0 0.02 695 696 

17:00 0 13 13 0 0.01 708 709 

18:00 0 10 10 0 0.01 718 719 

19:00 0 6 6 0 0.01 724 725 

20:00 0 2 2 0 0 726 727 

21:00 0 2 2 0 0 728 729 

22:00 0 3 3 0 0 731 732 

23:00 0 3 3 0 0 734 735 

24:00 0 2 2 0 0 736 737 

25:00 0 2 2 0 0 738 739 

26:00 0 2 2 0 0 740 741 

27:00 0 2 2 0 0 742 743 

28:00 0 2 2 0 0 744 745 

29:00 0 5 5 0 0 749 750 

30:00 0 7 7 0 0.01 756 757 

31:00 0 9 9 0 0.01 765 766 
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Table 35: Raw Hourly Data for DMV POD for Midday Peak Arrival Curve Scenario 
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6:00 0 2865 0 2865 4.87 2865 0 

7:00 2865 4106 0 6971 7.97 6971 0 

8:00 6971 1172 1000 7143 8.14 8143 1000 

9:00 7142 537 1000 6679 7.68 8680 2000 

10:00 6680 786 1000 6465 7.47 9466 3000 

11:00 6465 848 1000 6313 7.31 10314 4000 

12:00 6313 970 1000 6283 7.28 11284 5000 

13:00 6283 815 1000 6098 7.1 12099 6000 

14:00 6098 753 1000 5850 6.85 12852 7000 

15:00 5850 547 1000 5397 6.4 13399 8000 

16:00 5398 560 1000 4958 5.96 13959 9000 

17:00 4957 477 1000 4434 5.43 14436 10000 

18:00 4434 353 1000 3788 4.79 14789 11000 

19:00 3788 238 1000 3026 4.03 15027 12000 

20:00 3026 100 1000 2126 3.13 15127 13000 

21:00 2126 103 1000 1229 2.23 15230 14000 

22:00 1229 116 1000 345 1.35 15346 15000 

23:00 345 115 460 0 0.46 15461 15460 

24:00 0 78 78 0 0.08 15539 15538 

25:00 0 78 78 0 0.08 15617 15616 

26:00 0 78 78 0 0.08 15695 15694 

27:00 0 78 78 0 0.08 15773 15772 

28:00 0 86 86 0 0.09 15859 15858 

29:00 0 172 172 0 0.17 16031 16030 

30:00 0 259 259 0 0.26 16290 16289 

31:00 0 346 346 0 0.35 16636 16635 

32:00 0 9 9 0 0.01 16645 16644 

33:00 0 9 9 0 0.01 16654 16653 

34:00 0 9 9 0 0.01 16663 16662 

35:00 0 9 9 0 0.01 16672 16671 

  


