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ABSTRACT

This dissertation presents a three-dimensional (3D) numerical study of the tur-

bulent bubbly flow in surface breaking waves, from steepness-limited unsteady breaking

in deep water to depth-limited breaking in the surf zone. Because of available com-

putational resources, the whole range of the relevant scales can not be resolved in

a single high resolution framework. Instead, two different frameworks are chosen to

study the relevant physics from small scales through field scales. In the first frame-

work, a Volume-of-Fluid (VOF) based Eulerian-Eulerian polydisperse two-fluid model

(Ma et al. 2011, Derakhti & Kirby 2014b) is used to study breaking-induced energy

dissipation (chapter 2), bubble entrainment and liquid-bubble interaction (Derakhti &

Kirby 2014b) in unsteady whitecaps as well as large-scale turbulent coherent structures

and their interaction with dispersed bubbles in the surf zone (chapter 3). A 3D non-

hydrostatic wave-resolving σ-coordinate framework is chosen as the lower-resolution

framework. We derive a new set of equations, in conservative form, describing the

kinematics and dynamics of continuous and dispersed phases in a multiphase mixture

in a surface- and terrain-following σ-coordinate system, together with exact surface and

bottom boundary conditions for the velocity and dynamic pressure fields as well as a

Neumann-type boundary condition for scalar fluxes (chapter 4). The model capability

and accuracy to reproduce the evolution of the free surface, velocity and vorticity fields

and breaking-induced dissipation under regular and irregular breaking waves from surf

zone to deep water is examined in detail (chapter 5).
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Chapter 1

SUMMARY

Surface wave breaking is a complex two-phase flow phenomenon that has an

important role in numerous environmental processes, such as air-sea transfer of gas,

momentum and energy, acoustic underwater communications, optical properties of the

water column as well as nearshore mixing and morphodynamics (Melville 1996). Wave

breaking is a highly dissipative process, limiting the height of surface waves. It is also a

source of turbulence, which enhances transport and mixing in the ocean surface layer.

It entrains a large volume of air which rapidly evolves into a distribution of bubble

sizes, which interact with liquid turbulence and organized motions. In shallow water

and nearshore regions, this process becomes even more complicated when the bottom

effect and sediment alter the flow field. In the surf zone, large-scale breaking-induced

turbulent coherent structures (LBTCS), for example obliquely descending eddies, are

responsible for intermittent sediment and bubble transport. Although these intermit-

tent LBTCS play significant role in the transport of dispersed bubbles and sediment

under individual breaking waves in a localized/short-term manner, long-term trans-

port of dispersed particles and passive tracers are highly dependent on the structure

of organized motions and their evolution.

This dissertation presents a three-dimensional (3D) numerical study of both

short-term and long-term breaking-induced processes, from steepness-limited unsteady

breaking in deep water to depth-limited breaking in the surf zone. The work is bro-

ken into four chapters. Each chapter is written to be freestanding and thus has its

own abstract, introduction, and literature review relevant to the topic followed by a

discussion of the results and the corresponding conclusions.
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Because of available computational resources, the whole range of the relevant

scales can not be resolved in a single high-resolution framework. Instead, two dif-

ferent frameworks are chosen to study the relevant physics from small-scales through

field-scales. In the first framework, a Volume-of-Fluid (VOF) based Eulerian-Eulerian

polydisperse two-fluid model (Ma et al. 2011, Derakhti & Kirby 2014b) is used to

study breaking-induced energy dissipation (chapter 2), bubble entrainment and liquid-

bubble interaction (Derakhti & Kirby 2014b) in unsteady whitecaps as well as LBTCS

and their interaction with dispersed bubbles in the surf zone (chapter 3). In this frame-

work, turbulence is modeled using a large-eddy simulation (LES). The model accounts

for momentum exchange between dispersed bubbles and liquid phase as well as bubble-

induced dissipation. A 3D non-hydrostatic wave-resolving σ-coordinate framework is

chosen as the lower-resolution framework. We derive a new set of equations, in con-

servative form, describing the kinematics and dynamics of continuous and dispersed

phases in a multiphase mixture in a surface- and terrain-following σ-coordinate system,

together with exact surface and bottom boundary conditions for the velocity and dy-

namic pressure fields as well as a Neumann-type boundary condition for scalar fluxes

(chapter 4). The model capability and accuracy to reproduce the evolution of the free

surface, velocity and vorticity fields and breaking-induced dissipation under regular and

irregular breaking waves from surf zone to deep water is examined in detail (chapter 5).

As opposed to the VOF/LES framework, the free surface is a single-valued function of

horizontal location, and detailed near-surface processes during active breaking, such as

turbulence generation and air entrainment, can not be resolved in this lower-resolution

framework. Due to computational efficiency, however, this framework can be used to

study long-term, O(days), and large-scale, O(100m ≈ 10km), breaking wave-driven

circulation as well as transport of fine sediment and small, persistent bubbles.
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Chapter 2

BREAKING-ONSET, ENERGY AND MOMENTUM FLUX IN
UNSTEADY BREAKING WAVES

2.1 Abstract

Breaking waves on the ocean surface transfer energy and momentum into cur-

rents and turbulence. What is less well understood, however, is the associated total

loss of wave energy and momentum flux. Further, finding a robust and universal diag-

nostic parameter that determines the onset of breaking and its strength is still an open

question. Derakhti & Kirby (2014b) have recently studied bubble entrainment and

turbulence modulation by dispersed bubbles in isolated unsteady breaking waves using

large-eddy simulation. In this chapter, a new diagnostic parameter ξ(t) is defined based

on that originally proposed by Song & Banner (2002), and it is shown that, using a

threshold value of ξth = 0.05, the new dynamic criteria is capable of detecting single and

multiple breaking events in the considered packets. In addition, the spatial variation of

the total energy and momentum flux in intermediate- and deep-water unsteady break-

ing waves generated by dispersive focusing is investigated. The accuracy of estimating

these integral measures based on free surface measurements and using a characteristic

wave group velocity is addressed. It is found that the new diagnostic parameter just

before breaking, ξb, has a strong linear correlation with the commonly used breaking

strength parameter b, suggesting that ξb can be used to parameterize the averaged

breaking-induced dissipation rate and its associated energy flux loss. It is found that

the global wave packet time and length scales based on the spectrally-weighted packet

frequency proposed by Tian et al. (2010), are the reasonable estimations of the time

and length scales of the carrier wave in the packet close to the focal/break point. A

global wave steepness, Ss, is defined based on these spectrally-weighted scales, and its

3



spatial variation across the breaking region is examined. It is shown that the corre-

sponding values of Ss far upstream of breaking, Ss0, have a strong linear correlation

with respect to b for the considered focused wave packets. The linear relation, however,

can not provide accurate estimations of b in the range b < 5 × 10−3. A new scaling

law given by b = 0.3(Ss0 − 0.07)5/2, which is consistent with inertial wave dissipation

scaling of Drazen et al. (2008), is shown to be capable of providing accurate estimates

of b in the full range of breaking intensities, where the scatter of data in the new

formulation is significantly decreased compared with that proposed by Romero et al.

(2012). Furthermore, we examine nonlinear interactions of different components in a

focused wave packet, noting interactive effect on a characteristic wave group velocity in

both non-breaking and breaking packets. Phase locking between spectral components

is observed in the breaking region as well, and subsequently illustrated by calculating

the wavelet bispectrum.

2.2 Introduction

The breaking of ocean surface gravity waves Figures2 in a number of different

environmental processes including air-sea exchange of heat, momentum and energy,

underwater optics and acoustics, and upper ocean mixing (Melville 1996). During ac-

tive breaking, the process may be characterized as a two-phase turbulent flow with a

complex interface, involving a wide range of temporal and spatial scales. For practical

use in large-scale wave modeling, the onset of breaking and subsequent integral mea-

sures of the process, such as total loss of wave energy and momentum flux, need to be

parameterized using available pre-breaking information.

For many decades, considerable attention has been paid to find a robust and uni-

versal methodology to predict the onset of steepness-limited unsteady breaking waves

(Song & Banner 2002, Wu & Nepf 2002, Banner & Peirson 2007, Tian et al. 2008).

There are several important reviews on the topic of wave breaking (Banner & Pere-

grine 1993, Melville 1996, Duncan 2001, Kiger & Duncan 2012). Recently, Perlin et al.

(2013) have reviewed the latest progress on prediction of geometry, breaking onset, and
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energy dissipation of intermediate- and deep-water breaking waves. The predictive pa-

rameters involved can be categorized as (i) geometric, (ii) kinematic, and (iii) dynamic

criteria. As summarized in Perlin et al. (2013, §3), one of the most reliable criteria

which can distinguish between breaking packets from those that do not break is the

dynamic criterion proposed by Song & Banner (2002). They proposed a dimensionless

parameter, δ(t), to measure the growth rate of the local wave energy density, given by

δ(t) =
1

ωc

D〈µ〉
Dt

, µ =
Emaxk

2

ρlg
, (2.1)

where ωc = 2πfc is a characteristic angular frequency (e.g. , taken as the initial angular

frequency of the center component of the dispersive packet), D /Dt represents the total

derivative following the wave group, µ is the dimensionless local wave energy density,

Emax is the maximum local wave energy density given in §3, k is the local wave number,

ρl is the liquid density, and g is the gravitational acceleration. Here, the averaging

procedure denoted by 〈 〉 was proposed by Song & Banner (2002) to remove the large

oscillation of µ, involving the determination of the upper and lower envelopes of µ as

described in Song & Banner (2002, Appendix B). Song & Banner (2002) found that

this dynamically-based mean growth rate of the local energy density maximum along

a wave packet had a common threshold value of [1.4± 0.1]× 10−3 associated with the

initiation of breaking. As pointed out by Perlin et al. (2013), the calculation of the

time-averaged local wave energy density 〈µ〉 is nontrivial, and, thus, the application of

the criterion, e.g. , in phase-resolving nonlinear wave prediction models, may be limited.

A modified version of (2.1), which removes the required post-processing procedure in

the calculation of 〈µ〉, is defined in §3 and is tested for the packets considered here.

In addition to a selected pre-breaking diagnostic parameter, the accurate esti-

mation of total loss of wave energy and momentum flux is needed to find a robust

parameterization for the breaking strength, e.g. , the averaged breaking-induced wave

energy dissipation rate. During the last three decades, laboratory experiments have
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been conducted for the estimation and parameterization of total energy and momen-

tum flux losses and their rates (Duncan 1983, Rapp & Melville 1990, Banner & Peirson

2007, Drazen et al. 2008, Tian et al. 2010, 2012). The most up-to-date review may be

found in Perlin et al. (2013, §4). Inherent difficulties associated with the measurement

of an instantaneous velocity field during an active breaking event make direct estimates

of energy and momentum flux in a breaking region impractical. The common practice

is to approximate energy and momentum flux through surface elevation measurements

taken at fixed locations upstream and downstream of a break point, using a wave the-

ory (usually linear theory) and a simple control volume analysis to obtain estimates of

total fluxes (e.g., see Rapp & Melville 1990, §2.4).

Because numerical computations based strictly on inviscid, irrotational flow

theory can not proceed beyond the onset stage of breaking, a post breaking flow field

becomes unavailable. As summarized by Perlin et al. (2013, §6), most two-phase viscous

numerical simulations for steepness-limited breaking waves are limited to the evolution

of a periodic unsTable wave train having relatively low Reynolds numbers (∼ 104)

and short wave lengths (< 0.3m). An exception is noted in recent work by Derakhti &

Kirby (2014b). Examining bubble entrainment and turbulence modulation by dispersed

bubbles in isolated unsteady breaking waves generated by dispersive focusing (with the

same scale as in the previous laboratory experiments), they used an Eulerian-Eulerian

polydisperse two-fluid model to performed large-eddy simulation (LES), together with

a dynamic Smagorinsky sub-grid formulation for turbulence closure. As opposed to

direct numerical simulations, the dissipative scales of the process as well as liquid-

bubble interaction were sub-grid scale and were modeled using the available closure

models, which is an inherent limitation in any LES study.

In this paper, we present direct estimates of total energy and momentum flux

in unforced intermediate- and deep-water unsteady breaking waves generated by dis-

persive focusing. Both spilling and plunging breaking packets are considered. The

accuracy of estimating these integral measures based on free surface measurements

and using a characteristic wave group velocity is examined in detail. In addition, we
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examine nonlinear interactions of different frequency components in a focused wave

packet as well as interaction effects on a characteristic wave group velocity both in

non-breaking and breaking packets. Phase locking between spectral components is ob-

served in the breaking region as well, and subsequently illustrated by calculating the

wavelet bispectrum.

Beside dispersive energy focusing, other mechanisms such as modulational in-

stability (Benjamin & Feir 1967, Melville 1982) and wind-forcing (Grare et al. 2013,

Smit et al. 2014) can induce wave breaking. Although some of the available estimates

of the non-dimensional breaking strength parameter, b, in the field (Thomson et al.

2009, Smit et al. 2014) are comparable to those in spillers due to dispersive energy fo-

cusing (Drazen et al. 2008, Tian et al. 2010), most of the field estimations of b (Phillips

et al. 2001, Gemmrich et al. 2008, 2013) tend to be more consistent with the observed

b values in weak spillers due to modulational instability (Banner & Peirson 2007, Allis

2013). Here, we briefly establish that the present model is capable of capturing break-

ing waves due to modulational instability. A more detailed evaluation of this class of

weak breaking events will appear in a separate paper.

In §2.3, the model set-up and choice of experimental data are explained. Results

for breaking-onset prediction, energy and momentum flux are presented in §2.4, §2.5

and §2.6, respectively. Conclusions are given in §2.7.
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Table 2.1: Input parameters for the 2D and 3D simulated cases. (i): Rapp & Melville (1990), d = 0.6m, d/Lc = 0.3
intermediate-depth, constant-amplitude packets; (ii): Drazen et al. (2008), d = 0.6m, d/Lc = 0.3 intermediate-
depth, constant-steepness packets; (iii): Tian et al. (2012), d = 0.62m, d/Lc = 1.1 deep-water, constant-
steepness packets. Here, d is the still water depth, Lc is the wavelength of the center frequency component
of the incident packet fc, S is the theoretical linear global wave steepness, ∆f is the packet band width, xb
and tb are the predefined, linear theory estimates of location and time of breaking respectively, and N is the
number of different wave components in the packet. In constant-steepness packets, each wave component has
a different amplitude, ai = S/(kiN) such that component steepness aiki is constant with respect to i. In
constant-amplitude packets, on the other hand, all the components have the same amplitude, ai = a. Rapp
& Melville (1990) defined the global steepness of a constant-amplitude packet as S = kc

∑N
i=1 ai = kcNa

and, thus, a = S/(kcN). Different meth grid densities are: G1 = (∆x =21.5,∆y =7.0,∆z =7.0)mm, G2 =
(∆x =18.3,∆z =5.0)mm, G3 = (∆x =10.0,∆z =5.0)mm, and G4 = (∆x =5.0,∆z =5.0)mm.

Case S fc ∆f/fc tb xb N Mesh resolution Domain size Exp.

no. (s−1) (s) (m) (m)

RN 0.150 0.88 0.73 20.5 8.5 32 G2,G3 (22.0,0.8) (i)
RI 0.256 0.88 0.73 20.5 8.5 32 G2,G3 (22.0,0.8) (i)
RS1 0.278 0.88 0.73 20.5 8.5 32 G2,G3 (22.0,0.8) (i)
RP1 0.352 0.88 0.73 20.5 8.5 32 G2,G3 (22.0,0.8) (i)
RP1(3D) 0.352 0.88 0.73 20.5 8.5 32 G1 (17.0,0.77,0.63) (i)
RP2 0.388 0.88 0.73 20.5 8.5 32 G2,G3 (22.0,0.8) (i)
DI 0.30 0.88 0.75 20.5 8.8 32 G2,G3 (22.0,0.86) (ii)
DS1 0.32 0.88 0.75 20.5 8.8 32 G2,G3 (22.0,0.86) (ii)
DP1 0.42 0.88 0.75 20.5 8.8 32 G2,G3 (22.0,0.86) (ii)
DP2 0.46 0.88 0.75 20.5 8.8 32 G2,G3 (22.0,0.86) (ii)
TN 0.256 1.7 0.824 25.0 7.0 128 G3,G4 (16.0,0.8) (iii)
TP1 0.410 1.7 0.824 25.0 7.0 128 G3,G4 (16.0,0.8) (iii)
TP2 0.576 1.7 0.824 25.0 7.0 128 G3,G4 (16.0,0.8) (iii)
TP3 0.742 1.7 0.824 25.0 7.0 128 G3,G4 (16.0,0.8) (iii)
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2.3 Model Set-up and Choice of Experimental Conditions

A detailed description of the polydisperse two-fluid model used here as well

as boundary conditions are given in Appendix A. Here, the incident wave boundary

condition and model set-up are discussed briefly.

All model simulations are performed with the model initialized with quiescent

conditions. An incident wave packet is then generated at the model upstream boundary.

The input wave packet was composed of N sinusoidal components of steepness aiki, i =

1, · · · , N where ai and ki are the amplitude and wave number of the ith frequency

component. Based on linear superposition and by imposing that the maximum η

occurs at xb and tb, the total surface displacement at the incident wave boundary

x = 0 is given by

η(0, t) =
N∑
i=1

ai cos[2πfi(t− tb) + kixb], (2.2)

where fi is the frequency of the ith component, and xb and tb are the predefined,

linear theory estimates of location and time of breaking, respectively (e.g. see Rapp

& Melville 1990, §2.3). The discrete frequencies fi were uniformly spaced over the

band ∆f = fN − f1 with a central frequency defined by fc = 1/2(fN + f1). Different

theoretical global steepness, S =
∑N

i=1 aiki, and bandwidth, ∆f/fc, lead to spilling or

plunging breaking, where increasing S and/or decreasing ∆f/fc increases the breaking

intensity (See Drazen et al. (2008) for more details). Free surface displacements and

velocities for each component are calculated using linear theory and then superimposed

at x = 0.

The input packet parameters as well as mesh resolutions and domain sizes for

cases considered here are summarized in Table 3.1. The convergence study may be

found in Derakhti & Kirby (2014a). The model parameters for a polydisperse bubble

phase are chosen as summarized in Derakhti & Kirby (2014b, Table 4).

For non-breaking cases, tb and xb are used as the reference for the time and x

direction respectively. For breaking packets, the references for time and x direction are

tob and xob, respectively. For plunging breakers, tob and xob are the time and location
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at which the falling jet hits the undisturbed forward face of the wave. For spilling

breakers, on the other hand, tob and xob are the time and location at which a vertical

tangent develops near the wave crest. Normalized horizontal position and time can

then be written as

x∗ =
x− xob
Ls0

, t∗ =
t− tob
Ts0

, (2.3)

where Ls0 and Ts0 are the characteristic length and time scales of the carrier wave

in the packet far upstream of the focal/break point, and are calculated based on the

spectrally-weighted frequency of the wave packet fs given by

fs =
Σfi|Fi|2∆fi
Σ|Fi|2∆fi

, (2.4)

where, Fi and fi are the discrete Fourier transform and the frequency of the ith com-

ponent of the wave train, respectively. ∆fi is the frequency difference between com-

ponents, which is constant here. The characteristic wave length Ls and period Ts,

hereafter called spectrally-weighted wave length and period, are calculated based on fs

and using the linear dispersion relation. Tian et al. (2010) found that this choice of the

characteristic wave parameters provided the best data collapse for their wave packets.

We also found that the corresponding length and time scales of the carrier wave in

the packet close to the focal/break point are predicted more accurately by this choice

of the characteristic parameters compared with those of the center frequency of the

wave packet, especially for our deep-water packets. For constant-amplitude packets we

have fs0 ≈ fc, and thus Ls0 ≈ Lc and Ts0 ≈ Tc, where subscript c indicates the center

frequency component of the wave packet.

2.4 Prediction of the Onset of Wave Breaking

Avoiding the post-processing procedure in (2.1), we define the normalized growth

rate of the time-dependent µ = Emaxk
2/ρlg as

ξ(t) =
1

ωs0

Dµ

Dt
, (2.5)
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Figure 2.1: Definitions of the local wave parameters. k and a are the local wave
number and amplitude respectively. The wave propagates from the left
to the right.

where ωs0 = 2πfs0 is the pre-breaking characteristic wave angular frequency, and k is

the local wave number calculated based on two consecutive zero-crossings adjacent to

the breaking crest (see Figure 2.1) as suggested by Tian et al. (2008). Here, Emax is the

time-dependent, non-horizontally averaged local maximum of the ensemble-averaged

depth-integrated total energy density E(t, x) along the wave group given by

E(t, x) = 〈
∫ η

−d

1

2
ρu2

i dz〉+ 〈
∫ η

−d
ρgz dz〉+

1

2
ρlgd2 = Ek + Ep (2.6)

where i = 1, 2, 3 refers to the x, y and z directions respectively; ρ = αρl is the mixture

density, and α is liquid volume fraction; d is the still water depth, z is the vertical

distance to the still water level (positive upward), Ek is the ensemble-averaged depth-

integrated kinetic energy density, and Ep is the ensemble-averaged depth-integrated

potential energy density. Hereafter, 〈.〉 indicates ensemble averaging and is approxi-

mated by spanwise averaging as in Derakhti & Kirby (2014b, §2.8). No spatial averaging

is employed in the 2D simulations.

Figure 2.2 shows that, in all the intermediate- and deep-water breaking packets

considered here, the corresponding values of ξ before breaking, say −0.5 < t∗, exceed

an approximate threshold value of ξth = 0.05. In the incipient breaking packets RI

and DI, it is seen that ξmax ∼ 0.05, also supporting the selection of ξth = 0.05 as a

maximum normalized growth rate of the local wave energy density maximum for the
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Figure 2.2: Temporal variations of (a, b, c) the normalized local energy density max-
imum, µ, and (A,B,C) its normalized growth rate, ξ, for different
breaking and non-breaking packets. (a,A) intermediate-depth incipi-
ent breaking RI ( ), spilling breaker RS1 ( · ), plunging breaker
RP1 ( ); (b, B) intermediate-depth incipient breaking DI ( · · · · · · ),
spilling breaker DS1 ( ), plunging breaker DP1 ( · ), plunging
breaker DP2 ( ); and (c, C) deep-water non-breaking packet TN
( · · · · · · ), weak plunging breaker TP1 ( ), plunging breaker TP2
( · ), plunging breaker TP3 ( ). Horizontal lines show µ = 0.2 and
ξ = 0.05. Thick lines in panels (a,A) are the results for RP1(3D).
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Figure 2.3: Temporal variations of the ratio of the potential energy density to the
total energy density for (a) RI, (b) RS1, (c) RP1, (d) TN, (e) TP2, (f)
TP3; at the locations of Emax ( ), crest maxima ( ), and trough
maxima ( · ).
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non-breaking packets. The exceedance of the threshold value ξth = 0.05 at t∗ ≈ −1.5

for the deep-water packet with multiple plungers TP3 is because of the preceding

weaker breaking wave in the packet before the main breaker at t∗ = 0, observed both

in the simulation and the corresponding measurement by Tian et al. (2012). Thus, the

criterion is capable of detecting multiple breaking events in a wave group. Figure 2.2

also shows that µ > 0.2 at which ξ > ξth in all breaking packets except the deep-water

weak plunging breaker TP1. For the intermediate-depth plunging breaking case RP1,

comparing the results of the two-dimensional (2D) and the three-dimensional (3D)

simulations, shown in panel (A) with thin and thick solid lines respectively, we may

conclude that the 2D simulation captures the evolution of ξ fairly accurately.

The evaluation of Emax needs the spatio-temporal variation of both the free

surface and velocity field. Although the free surface locations are easy to measure,

the velocity field may not be available especially in in-situ measurements. Thus, the

estimation of Emax based only on the free surface information is of potential interest.

Figure 2.3 shows that the location of Emax switches between the crest maxima and

trough maxima before and after the focal/break point both in the intermediate- and

deep-water packets. However, it is always on the crest maxima close to the focal/break

point, say −1 < t∗ < 0, at which ξ goes beyond the threshold value of 0.05. As

S increases, the location of Emax occurs at the crest maxima more frequently. In

addition, increasing S results in decreasing the Ep/E ratio at the crest maxima and

in increasing the Ep/E ratio at trough maxima; a similar trend can be seen in Tian

et al. (2008, Figure 11). Thus, we may estimate Emax ≈ Ecm
p /λ before the break point,

where Ecm
p = 1

2
ρlgz2

max is the local potential energy density at the crest maxima and

λ = Ep/Emax, shown by thick solid lines in Figure 2.3, varies from ≈ 0.6 for t∗ < −1

down to ≈ 0.5 at breaking-onset.

14



2.5 Fractional and Total Losses of Energy Flux

The ensemble- and time-averaged depth-integrated horizontal energy flux of a

2D wave packet per unit crest length over the time t = t1 → t2, FE, can be written as

FE(x) =
1

t2 − t1

∫ t2

t1

〈
∫ η

−d
[
1

2
ρu2

i + p+ ρgz]u dz〉dt, (2.7)

where ( ) hereafter refers to ensemble and time averaging, p is the pressure, and the rest

of variables were defined in the text below (2.6). For simplicity, hereafter the term “av-

eraged” is used to represent ensemble- and time averaging and depth-integration. We

choose t1 = 0 and t2 = 40.0 s to cover the entire signal. For breaking packets, although

(2.7) represents the averaged horizontal wave energy flux before and far downstream

of the break point (x∗ < 0 and x∗ > 1), the breaking-induced current and turbulent

motions contribute partially to the averaged energy flux for 0 < x∗ < 1.0. Our main

interest is estimating the total loss of wave energy flux after the breaking region, and

thus such a decomposition close to the break point has not been applied.

The spatial variations of FE are shown in Figure 2.4 (solid lines) for different

packets. Most of the energy flux loss occurs within one wavelength downstream of

the break point, 0 < x∗ < 1, while the rate of loss is larger close to the break point.

The app2Arent loss before x∗ = 0 in panel (d) is due to a weaker preceding breaking

event in the packet. For breaking packets, the contribution of the kinetic energy flux,

FE
k =

∫ η
−d [1

2
ρu2

i ]u dz, to FE is negligibly small far from the break point, less than 3%

of the total flux, but reaches up to 0.15FE close to the break point, as shown in Figure

2.5. Consistent with the linear theory prediction, the contribution of FE
k to FE is

negligibly small for the non-breaking packet RN, shown in panel (a).

Under the linear potential flow assumption, it is known that the averaged wave

horizontal energy flux and energy density can be related using a group velocity based

on the linear dispersion relation. Thus, we define an energy transport velocity for our
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Figure 2.4: Normalized exact FE /FE
1 ( ) and approximated (FE/FE

1 )apx1 ≈
η2 /η2

1 ( ) averaged horizontal energy flux for intermediate-depth
(a) incipient breaking, RI; (b) spilling breaker, RS1; (c) plunging breaker,

RP1; and (d) plunging breaker, RP2. Circles are the measured η2 /η2
1

adopted from Rapp & Melville (1990) Figure 11(b). Thick lines are the
results for RP1(3D).
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nonlinear and breaking packets as

CE = FE/E, (2.8)

where FE and E = Ep +Ek are the exact averaged energy flux and density calculated

from the simulation results using (2.7) and (2.6), respectively. Strictly speaking, the

strong nonlinearity as well as breaking-induced current and turbulent motions, which

do not have a dispersion relation, make the linear potential flow assumption invalid,

and thus this definition of CE is different from the theoretical definition of a linear

wave group velocity, e.g. , Cg = ∂ω/∂k in the breaking region. Far from the break

point, however, CE ' Cg.

The estimation of potential energy is challenging in regions where a multi-valued

surface and/or large bubble void fraction exist. In other words, 1
2
ρlgη2 is only an

approximate measure of the exact averaged potential energy density given by Ep =∫ η
−d ρgzdz + 1

2
ρlgd2 in the regions of jet formation and subsequent splashes, which

are limited in the range −0.2 < x∗ < 0.5 in our breaking packets. Consistent with

experimental studies, we use the 1
2
ρlgη2 estimation for Ep only in our approximate

formulas. Our methodology to define the free surface location in the regions with a

multi-valued surface together with the comparison between Ep and 1
2
ρlgη2 are presented

in Appendix A. In conclusion, 1
2
ρlgη2 is a fairly accurate estimation for Ep except for

−0.2 < x∗ < 0.5.

The total loss of the averaged horizontal wave energy flux in the breaking region

can be obtained as ∆FE = FE
1 − FE

2 , where the subscripts 1 and 2 refer to upstream

and downstream of the break point respectively. By assuming that the averaged energy

density is equal to twice the averaged potential energy density and using (2.8), we get

∆FE ≈ ρlgCE1(η2
1 −

CE2

CE1

η2
2), (2.9)

where either the linear group velocity of the center frequency component, Cgc, or a
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spectrally-weighted group velocity of the wave packet have been previously proposed

as an estimation for the characteristic group velocity. Drazen et al. (2008) defined a

spectrally-weighted group velocity, Cgs, as

Cgs =
ΣCgi|Fi|2∆fi

Σ|Fi|2∆fi
, (2.10)

where Cgi is the linear group velocity of the ith component of the wave train, and the

rest of variables were defined in (2.4). They showed that their wave trains propagated

at a speed close to this characteristic group velocity. figure 2.6 also demonstrates that

both CE and Cgs are reasonable estimators of the travel speed of the wave groups,

while Cgc significantly underestimates wave group travel speed (see also Tian et al.

2010, Figure 4). In a number of previous experimental studies (Rapp & Melville 1990,

Wu & Nepf 2002, Banner & Peirson 2007, Tian et al. 2010, 2012), it has been assumed

that CE2 = CE1. Thus, the total loss of the averaged horizontal wave energy flux and

its associated fractional loss may be approximated as

(∆FE)apx1 ≈ ρlgCgs1∆η2, (∆FE/FE
1 )apx1 ≈ ∆η2/η2

1. (2.11)

Figure 2.4 shows FE/FE
1 and (FE/FE

1 )apx1 ≈ η2/η2
1 for the intermediate-depth

incipient breaking RI, spilling breaker RS1, and plunging breakers, RP1 and RP2.

First, 2D simulations give fairly reasonable results in terms of the averaged horizontal

energy flux and potential energy density variations compared with the corresponding

3D-simulation shown in panel (c) as well as the measurement shown in panel (d), and

also provide fairly accurate results compared with the surface measurements by Tian

et al. (2012) for deep-water packets (not shown). The app2Arent undulations in η2 do

not exist in FE. Because of these undulations, a spatially-averaged value of η2 over

about two meters is used upstream and downstream of the break point to apply (2.11).

As summarized in Table 2.2, using (2.11) overestimates the fractional and total loss of

the horizontal energy flux by approximately 35% to 70% for our breaking packets.

19



t∗
-5 0 5 10

x
∗

-2

0

2

4
(a)

t∗
-10 0 10 20

x
∗

-4

-2

0

2

4

(b)

Figure 2.6: Temporal variations of surface elevation for (a) intermediate-depth
plunger RP1 and (b) deep-water plunder TP2 at different spatial loca-
tions. Different lines show dx∗/dt∗ = C, where C = CE, energy transport
velocity ( ), C = Cgs, spectrally-weighted group velocity ( ), and
C = Cgc, group velocity of the center frequency of the wave packet ( · ).
Circles show the crest maximum at each spatial location. For clarity, the
surface elevation is exaggerated by a factor of 4.
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Figure 2.7: Normalized averaged kinetic energy density, E∗k , ( ); and potential en-

ergy density, E∗p , ( ) for intermediate-depth (a) non-breaking packet
RN; (b) incipient breaking, RI; (c) spilling breaker, RS1; and (d) plung-
ing breaker, RP1. Thick lines are the results for RP1(3D). The results
are normalized by a reference value of ρlgk2

s0S
−2
s0 , where Ss0 and ks0 are

defined in §4.3.

Three main assumptions are involved in (2.11): (i) E ≈ ρlgη2 is a valid estima-

tion, (ii) using Cgs is a sufficient estimate of CE, and (iii) the change of a selected group

velocity through the breaking region may be ignored. As shown in Figures2 2.7 and

Figure B.2, the first assumption is fairly accurate far from the break point (x∗ < −0.5

and x∗ > 2). The other two assumptions will be discussed in the following section.

2.5.1 Characteristic Wave Group Velocity

Figure 2.8 shows the spatial variation of CE (solid lines) and Cgs (dashed lines),

calculated using (2.8) and (2.10), for the intermediate-depth non-breaking packet RN,

incipient breaking RI, as well as breaking packets RS1 and RP1. Cgs is easily computed

based on measured free surface time-series, while estimating CE requires instantaneous

velocity and pressure measurement over the entire depth. For all the breaking and
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Figure 2.8: Energy transport velocity, CE, ( ) and spectrally-weighted group
velocity, Cgs ( ) for intermediate-depth (a) non-breaking packet RN;
(b) incipient breaking, RI; (c) spilling breaker, RS1; and (d) plunging
breaker, RP1. Thick lines are the results for RP1(3D).
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non-breaking packets, there is a local increase of CE as the packets approach the

focal/break point, where local peaks become relatively smaller as S decreases. Far

downstream of the focal/break point, CE is equal to its value at the upstream of

the focal point for the non-breaking packet RN and the incipient breaking RI. For

breaking packets, on the other hand, there is an app2Arent increase after the break

point, due to noticeable breaking-induced dissipation of higher frequency components

of the packet. This increase of CE after the breaking region becomes relatively larger as

the breaker intensity increases. Tian et al. (2010) also observed a jump about a 5% to

10% increase in Cgs after wave breaking for their breaking packets. On the other hand,

this jump is not reported by Drazen et al. (2008), who argued that their spectrally-

weighted group velocity remains unchanged within their experimental accuracy. Figure

2.8 shows that Cgs is a good choice for an energy transport velocity, because it predicts

fairly comparable estimates of CE before and after the breaking region.

Thus, ignoring the change of a selected wave group velocity after breaking region

leads to the overprediction of ∆FE (Table 2.2). We can rewrite (2.9) based on Cgs as

∆FE ≈ ρlgCgs1(α1η2
1 − α2β η2

2), (2.12)

where α1,2 = (CE/Cgs)1,2 and β = Cgs2/Cgs1, with β > 1.0 can be obtained for each

specific breaker using free surface measurements. Table 2.2 summarizes the computed

values of α1, α2 and β for the different breaking packets. By choosing α2 = 1.0, we get

(∆FE)apx2 ≈ ρlgCgs1(α1η2
1 − β η2

2). (2.13)

where α1 = Max( 1.0 , 0.13(Ss0 − 0.2) + 1.0), obtained based on linear curve fitting.

Here, Ss0 is the spectrally-weighted global steepness of the packet far upstream of

breaking as defined in §4.3. The estimated total horizontal wave energy flux losses

using (2.13) are also given in Table 2.2. In contrast to (∆FE)apx1, which has at least

35% error, (∆FE)apx2 is more accurate, with errors of less than 5%.
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Table 2.2: Summary of fractional and total energy and momentum flux loss for the breaking packets. ∆η2/η2
1 is the

fractional loss of the total potential energy, ∆FE/FE
1 and

∫
t
∆FE are the fractional and total loss of the total

horizontal energy flux respectively, ∆I/I1 and
∫
t
∆I are the fractional and total loss of the total horizontal

wave momentum flux respectively. Sp1 is the horizontal momentum flux due to the mean pressure field.
∫
t
(2.11)

and
∫
t
(2.13) are the commonly used and the proposed estimates of

∫
t
∆FE, respectively. α1, α2 and β are

defined below (2.12). γ is defined below (2.25). Subscript 1 refers to far upstream of the break point.

Case ∆η2

η21

∆FE

FE1

∫
t
∆FE

∫
t
(2.11)

∫
t
(2.13) α1 α2 β ∆I

I1

Sp1

I1

∫
t
∆I γ

no. (%) (%) (J/m) (J/m) (J/m) (%) (N/m)
RS1 14.0 10.1 5.7 7.6 5.4 1.030 1.016 1.07 12.6 0.21 4.1 1.021
RP1 28.9 19.5 17.8 25.4 18.5 1.035 1.007 1.16 23.7 0.17 12.4 1.063
RP2 31.7 21.7 24.3 33.8 24.05 1.045 1.000 1.20 26.3 0.16 16.8 1.073
DS1 10.7 6.9 8.4 12.9 9.0 1.017 1.000 1.06 7.6 0.26 4.8 1.027
DP1 21.7 15.3 32.0 43.6 31.2 1.037 0.990 1.13 15.9 0.26 17.3 1.056
DP2 28.1 19.9 50.5 67.8 51.8 1.047 0.980 1.16 17.2 0.23 22.6 1.067
TP1 13.3 8.1 0.45 0.7 0.5 1.010 1.015 1.05 13.0 0.10 0.5 0.988
TP2 25.0 16.0 1.6 2.3 1.8 1.031 1.027 1.12 24.6 0.07 1.9 0.979
TP3 30.3 21.5 3.5 4.6 3.7 1.053 1.027 1.16 31.0 0.03 4.0 0.974
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2.5.2 Nonlinear Wave-wave Interaction Before the Focal/Break Point

Although Cgs captures the main features of CE, there is a permanent lag be-

tween the local peaks of Cgs and CE. In addition, Cgs predicts slightly smaller values

compared with CE especially before the break point, consistent with the observation

of envelope propagation shown in Figure 2.6 and by Tian et al. (2010, Figure 4). Tian

et al. (2010) found that a nonlinear correction to the linear group velocity, used to

calculate Cgs, had negligibly small effects and argued that this difference should be

explained by nonlinear interaction between different wave components rather than the

nonlinear correction to the linear group velocity of each wave component.

Figure 2.9 shows that there is an interesting correlation between these local

peaks of CE before the focal/break points (solid lines) and the wave asymmetry of

the dominant wave in the packet As(x) =
∫ tmax
tzu

η3dt −
∫ tzd
tmax

η3dt (dotted lines); in

which negative asymmetry, indicating waves which are pitched forward, is associated

with the increase of CE and vice versa. Here, tzu and tzd are the associated time of

two consecutive zero-crossing η = 0 before and after the crest maxima at tmax. The

negative asymmetry can explain the observed energy transfer to the higher frequency

components, and the increase of the spectrally-weighted frequency of the packet fs

(dashed lines). Since the higher frequency components have relatively smaller linear

group velocities, one may expect the decrease of CE as fs increases, as predicted by

Cgs shown in Figure 2.8 (dashed lines). Surprisingly, CE considerably increases as

fs increases close to the focal/break points, which is completely an opposite trend

compared with that predicted using the linear theory.

In the following we use the continuous wavelet transform to study the spatio-

temporal structure and relative phasing of different wave components in the packet.

We particularly aim to explain the considerable increase of CE before the break point

x∗ < 0 as well as the noticeable undulation of CE in the incipient breaking case RI, as

shown in Figures2 2.8 and 2.9 (solid lines). Because there is negligibly small breaking-

induced dissipation in RI and in x∗ < 0 for breaking packets, this increase of CE can

only be explained through the nonlinear interaction of different wave components of
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Figure 2.9: Normalized energy transport velocity C∗E = (CE − Cgs1)/Cgs1 ( ),
normalized wave asymmetry near the dominant component of the packet
As∗ = 0.25As/|As|max ( · · · · · · ), and normalized spectrally-weighted
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breaking packet RN; (b) incipient breaking, RI; (c) spilling breaker, RS1;
and (d) plunging breaker, RP1.
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nonbreaking packet RN ( ); and plunging breaker RP1 ( ) at
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0) is a constant.

the packet.

The continuous wavelet transform W〈η〉 of a discrete sequence of the free surface

time series at certain location, 〈η(t)〉, is defined as the convolution of 〈η(t)〉 with a

scaled and translated version of a mother wavelet φ,

W〈η〉(s, t) =
1√
s

∫ ∞
−∞
〈η(τ)〉φ?(τ − t

s
)dτ (2.14)

where t is time, s = (θf)−1 is the scale factor, θ = 4π/(ω0 +
√

2 + ω2
0) is a constant,

τ is the translation factor,
√
s is for energy normalization across different scales, and

? denotes the complex conjugate. The wavelet kernel adopted here is the Morlet wavelet

φ(t) = eiω0te−
t2

2 (Farge 1992), where ω0 is the non-dimensional central frequency of the

analyzing wavelet. The wavelet transform is computed in Fourier space to obtain an

arbitrary number and distribution of scales.

The modulus of the wavelet transforms of the weakly nonlinear non-breaking

packet, RN, and the plunging breaker, RP1, are shown in Figure 2.10. Except the

cross-section at x∗ = 0, all the x locations shown for RP1 are outside of the region in

which the surface is multi-valued. In RN, the results follow the linear theory prediction

in which all the frequencies in the packet arrive at the predefined focal point, xb, at
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the predefined time, tb. In addition, energy at each frequency component propagates

with its corresponding linear group velocity before and after the focal point, leading

to symmetry of the results about x∗ = 0. In RP1, however, as the packet approaches

the break point, nonlinear effects lead to faster propagation of the energy, generating

a permanent lead in arrival time relative to the linear prediction. In addition, a phase

locking can be seen which starts from near the break point up to x∗ ≈ 2, and nearly all

of the frequencies propagate together with the speed close to the linear group velocity

of the low frequency components of the packet.

Strictly speaking, phase locking occurs if two frequencies, say f1, f2, are simul-

taneously present in the signal along with their sum frequency, f3 = f1 + f2, with

Θ3 = Θ1 + Θ2 + const., where Θi is a corresponding phase of fi. This phase locking

process in the breaking region is further demonstrated by looking at the first higher-

order spectrum, or bispectrum, of the wavelet transform near the peak frequency of

the wave packet. The bispectrum is defined as

B〈η〉(s1, s2, t) = W〈η〉(s1, t)W〈η〉(s2, t)W
∗
〈η〉(s3, t), (2.15)

with 1/s1+1/s2 = 1/s3 corresponding to addition of frequencies. This analysis tool was

first introduced by Van Milligen et al. (1995) in an integrated form with respect to time,∫
T
B〈η〉(s1, s2, τ) dτ , which was shown to measure the amount of phase locking in the

interval T between wavelet components of scale lengths s1, s2 and s3 or equivalently of

frequencies f1, f2 and f3. We set s1 = s2, then s3 = s1/2 or f1 = f2 = f3/2. Here, s1 is

the corresponding scale for a frequency near the peak frequency of the signal. Note that

the bispectrum is a complex number, and its phase represents ΘB〈η〉 = Θ1 + Θ2 − Θ3.

In a decoupled linear system, ΘB〈η〉 changes continuously between −π to π. In the

case of phase locking, however, it becomes constant or nearly so over the interval in

which phase-locking is occurring. Figure 2.11 shows ΘB〈η〉 corresponding to the center

frequency for RN and RP1 at two different x locations. In RP1, phase locking starts

upstream of the break point, and lasts for more than two wave periods in the breaking
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Table 2.3: Summary of the breaking parameters. Ss0 is the spectrally-weighted global
steepness of the wave packet far upstream of breaking given by (2.19), S
is the theoretical linear global steepness of a wave packet defined in §2, k
and a are the local wave number and amplitude as defined in Figure 2.1,∫
t
∆FE

br is the total loss of the total horizontal energy flux due to breaking,
Tb and cb are the breaking wave period and phase speed respectively, and
are calculated based on kb and using linear dispersion relation, ξ is the local
dynamic parameter defined in §3 and b is the breaking strength parameter
given by (2.18). Subscript b refers to the breaking-onset instant at which
a vertical tangent develops near the wave crest, where t∗b = −0.2 ∼ 0.

Case Ss0 Ss0/S kbab
∫
t
∆FE

br kb Tb cb ξb b

no. (J/m) (rad/m) (s) (m/s)

RS1 0.34 1.22 0.36 5.1 4.3 0.97 1.50 0.09 9.1×10−3

RP1 0.46 1.34 0.44 16.3 4.8 0.92 1.42 0.20 40.0×10−3

RP2 0.53 1.37 0.39 18.7 4.4 0.96 1.49 0.14 34.7×10−3

DS1 0.33 1.03 0.36 7.4 3.5 1.09 1.65 0.11 7.3×10−3

DP1 0.47 1.12 0.42 30.5 3.8 1.04 1.60 0.20 37.3×10−3

DP2 0.54 1.17 0.45 48.6 3.8 1.04 1.59 0.25 60.0×10−3

TP1 0.33 0.81 0.32 0.17 12.6 0.57 0.88 0.07 6.8×10−3

TP2 0.48 0.83 0.41 1.18 10.5 0.62 0.97 0.16 29.3×10−3

TP3 0.63 0.85 0.45 2.60 9.7 0.64 1.00 0.15 52.0×10−3

region. In RN, on the other hand, there is not such a strong phase locking and ΘB〈η〉

continuously changes between −π to π. The existence of phase locking near the center

frequency in RP1, supports the results from the wavelet analysis in a more quantitative

sense.

In conclusion, the phase locking of the higher frequency components to the

lower frequency components (e.g. , as shown for RP1 Figures2 2.10 and 2.11), which

have greater linear group velocities, leads to a considerable increase of CE before the

focal/break points in the packets considered here, up to ≈ 30% increase compared with

its values upstream of the break point.
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2.5.3 Parameterization of the Averaged Breaking-induced Wave Energy

Dissipation Rate

Based on scaling arguments, Duncan (1983) showed that the wave energy dissi-

pation rate per unit length of breaking crest, ε, can be written in the form

ε = bρlg−1c5
b , (2.16)

where b is a breaking strength parameter, and cb is the phase speed of the breaking

wave. Hereafter, the subscript b refers to breaking-onset instant at which a vertical

tangent develops near the wave crest (t∗b = −0.2 ∼ 0). As described by Derakhti &

Kirby (2014b, §4.3), the dissipation rate during active breaking has strong temporal

and spatial variations, and thus using a time-invariant b in any formulation like (5.3)

may provide an averaged estimate of the energy dissipation rate during active breaking.

The averaged wave energy dissipation rate during active breaking can be approximated

as

ε =

∫
t
∆FE

br

τb
, (2.17)

where
∫
t
∆FE

br is the total horizontal wave energy flux loss only due to breaking (see

Appendix C), τb = αtTb is a time scale related to the active breaking period and is on

the order of the breaking wave period Tb, αt is a constant in the range 0.5 ∼ 1.0. To

estimate Tb and cb, we first estimate the local wave number, kb, as defined in Figure 2.1.

Then, the linear dispersion relation is used to estimate the breaking wave phase speed

and period as cb = (g/kb tanh kbd)1/2 and Tb = 2π/kbcb. We found cb/cs0 = 0.85 ∼ 0.90

in our breaking packets. Because no particular choice of αt gives the actual time-

averaged breaking-induced dissipation rate, we set αt = 0.75 for all cases which is

consistent with Drazen et al. (2008, Figure 10). Rearranging (5.3) and using (5.4), the

breaking strength parameter is written as

b =
g
∫
t
∆FE

br

ρlc5
bτb

. (2.18)
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All the breaking parameters for the focused wave packets are summarized in

Table 2.3. For a packet with multiple breaking events, e.g. , RP2 and TP3, the given

parameters are associated with the strongest breaker of that packet. Figure 2.12 shows

the variation of b with respect to the local wave steepness at breaking-onset kbab, and

to the diagnostic parameter ξb for different breaking packets. The solid circles are

the corresponding results for the breaking waves due to modulational instability; their

input parameters are given in Appendix D. These local parameters can be fairly ac-

curately estimated in phase-resolving nonlinear wave models, such as pseudo-spectral

wave models (West et al. 1987, Goullet & Choi 2011, Tian et al. 2012). For our fo-

cused wave packets, b linearly decreases as kbab decreases, where kbab ≈ 0.32 at incipient

breaking. This trend does not exist for the spilling breakers due to modulational insta-

bility, indicating kbab is not a reliable criterion neither for breaking-onset prediction or

parameterization of b. Large values of local steepness, say kbab > 0.4, have been also

observed by Allis (2013) for their very weak spillers due to modulational instability. In

addition, several experimental studies (Wu & Nepf 2002, Allis 2013) showed that local

geometric parameters are sensitive to the degree of directionality.

The diagnostic dynamic parameter ξb, on the other hand, increases systemat-

ically from 0.048 in the weakest spiller due to modulational instability up to 0.25 in

the strongest plunger due to dispersive focusing. A linear correlation between b and ξb

exists as shown in Figure 2.12b, given by

b = 0.3(ξb − 0.05). (2.19)

The threshold value of 0.05 is consistent with the corresponding ξb values for our

incipient breaking packets. Banner & Peirson (2007) also observed an approximately

linear relationship between their diagnostic parameter just prior to wave breaking, δb,

and b as shown in their Figure (8)b.

The parameterization of b based on a characteristic spectrally-based global

steepness of a wave packet is also of an interest, especially for use in wave-averaged
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Figure 2.12: Variations of the breaking strength parameter b with respect to (a) the
local wave steepness at breaking-onset kbab, and (b) the dynamic diag-
nostic parameter ξb for (open circles) the unsteady dispersive focused
breaking packets and (solid circle) the modulated unstable breaking
packets; their input parameters are given in Appendix D. Dashed lines
are linear fits through the results of the simulated focused packets.
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Figure 2.13: Spatial variations of the spectrally-weighted global steepness Ss for (a)
intermediate-depth nonlinear packet RN ( · · · · · · ), incipient breaking
RI ( ), spilling breaker RS1 ( · ), plunging breaker RP1 ( );
and (b) deep-water nonlinear packet TN ( · · · · · · ), weak plunging
breaker TP1 ( · ), plunging breaker TP2 ( ), plunging breaker
TP3 ( ).
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models where ξb can not be evaluated. Following Tian et al. (2010), we define the

spectrally-weighted global steepness of a packet as

Ss = ksΣan, (2.20)

where, ks = 2π/Ls is the spectrally-weighted wave number and an is the Fourier

amplitude of the nth component of the wave train. Here, we only consider Fourier

components in which 0.25fs0 < fn < 4.0fs0. Figure 2.13 shows the spatial variation of

Ss for different non-breaking and breaking packets. Figure 2.13 shows that Ss has a

relatively constant value far upstream of the focal/break point, say x∗ < −3, hereafter

referred to as Ss0. We note that Ss0 can be easily calculated in wave-averaged models

based on wave energy spectra. It is seen that Ss0 for all the dispersive focused breaking

packets is greater than Ss0 = 0.31 for the incipient breaking packets RI and DI (not

shown). In addition, Ss increases as the packet approaches the break point, consistent

with the observations of Tian et al. (2010). Interestingly, the corresponding values of

Ss after the breaking region seems to reach below the threshold value of (Ss0)th = 0.31

for all the dispersive focused breaking packets. This universal post-breaking value

of Ss could be used as a test for any selected model for the parameterization of the

breaking-induced wave energy dissipation in broad-banded deep-water packets.

Available estimates of b in the previous laboratory experiments range over three

order of magnitude from O(10−4) for gently spillers (Banner & Peirson 2007, Allis

2013) up to O(10−1) for strong plungers (Melville 1994, Drazen et al. 2008, Tian et al.

2010), see for example Romero et al. (2012, Figure 1). Figure 2.14 shows the variation

of b versus the theoretical linear slope of a wave packet S defined in §2 as well as

Ss0 for the considered focused wave packets (open circles), the simulated spillers due

to modulational instability (solid circle), and the weak spilling breaking waves in a

wide tank by Allis (2013) (pluses). Here, the recent laboratory results of Allis (2013)

are used instead of those from Banner & Peirson (2007), because the characteristic

global steepness of the wave packets in Allis (2013) were calculated far upstream of
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Figure 2.14: Variations of the breaking strength parameter b with respect to (a)
the theoretical linear slope of a wave packet S = Σknan; and (b) the
initial spectrally-weighted global steepness Ss0 = ks0Σan for the con-
sidered focused wave packets (open circles), the simulated spillers due
to modulational instability (solid circle), and the weak spilling break-
ing waves in a wide tank adopted from Allis (2013, Table 8.1) (pluses).
The dashed and dotted lines in (a) are given by equation (2.21) and
b = 0.16 (Ss0 − 0.28 ). The dashed line in (b) was given by Romero
et al. (2012). In Allis (2013) the values of S = Σaiki have not been
calculated. We assume S = Ss0 for their cases.
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the first break, consistent with our calculation of Ss0. Note that Banner & Peirson

(2007) calculated the characteristic global steepness just before the first break in order

to exclude the viscous background losses, which were O(101) higher than that in Allis

(2013).

For our focused wave packets, b > 6 × 10−3, Figure 2.14a shows that b ∼ Ss0,

consistent with the results in Tian et al. (2010, Figure10a) and the scaling law from

Derakhti & Kirby (2014b, equation 4.16). However, a linear correlation does not exist

for the weaker breaking packets in which b < 5 × 10−3. Drazen et al. (2008) used an

inertial scaling argument indicating that wave energy dissipation depends on a local

wave slope to the 5/2 power. Subsequently, Romero et al. (2012) showed that, within

the scatter of the experimental data, a relation b = 0.4(S − 0.08)5/2 fit the considered

laboratory data in the range 8 × 10−5 < b < 9 × 10−2. Figure 2.14 shows that using

the initial spectrally-weighted global steepness Ss0 instead of S results in a significant

decrease of the scatter of the data. As shown in Figure2.14a, the new polynomial fit

based on inertial scaling is given by

b = 0.3 (Ss0 − 0.07 )5/2, (2.21)

where (2.21) gives reasonable estimates of b over the full range of different unsteady

uni-directional breaking waves. As shown in Figure 2.13, the location at which Ss0 is

evaluated needs to be far upstream of the break point, say x∗ < −3, to remove the

spatial dependency in Ss0.

Other relevant physics, such as the effects of the degree of directionality and

wind forcing, need to be investigated to apply (2.21) in a real sea state.
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Figure 2.15: Normalized horizontal momentum flux by waves and turbulence, I∗,

( ); mean pressure field, S∗p , ( ); I∗apx ( · ); and (S∗p)apx
( · · · · · · ) for intermediate-depth (a) non-breaking packet RN; (b) in-
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RP1. Thick lines are the results for RP1(3D). The results are normal-
ized by a reference value of ρlgk2
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2.6 Fractional and Total Losses of Momentum Flux

The averaged horizontal momentum flux of a 2D wave packet per unit crest

length over the time t = t1 → t2, FM can be written as

FM(x) =
1

t2 − t1

∫ t2

t1

〈
∫ η

−d
[(ρu)u+ p] dz〉dt. (2.22)

By subtracting the static pressure contribution from (2.22), the total excess horizontal

momentum flux, also called the radiation stress, can be defined as

S = FM − 1

2
ρlg(d+ η)2 = I + Sp, (2.23)

where I = 1
t2−t1

∫ t2
t1
〈
∫ η
−d [(ρu)u] dz〉dt represents both the averaged wave horizontal

momentum flux and the turbulent Reynolds stress. For a pure wave field, however,

I ≈ Iapx = ρlgη2n to the second order, where here we define n as the ratio of the

characteristic group velocity over the characteristic phase speed of the packet, given

by

n = Cgs/cs, (2.24)

where the cs is the spectrally-weighted phase speed. Figure 2.15 shows that Iapx accu-

rately predicts I before and after the breaking region. Thus, the total loss of the wave

horizontal momentum flux can be written as

∆I ≈ ∆Iapx = ρlgn1(η2
1 − γ η2

2), (2.25)

where γ = n2/n1. The corresponding γ values for the different cases are summarized

in Table 2.2. In addition, Sp = 1
t2−t1

∫ t2
t1
〈
∫ η
−d [p] dz〉dt − 1

2
ρlg(d + η)2 represents the

averaged horizontal momentum flux due to the mean pressure field. For a pure wave

field, Sp ≈ (Sp)apx = ρlgη2(n − 1/2) to the second order. Direct estimates of Sp

(dashed lines) and its corresponding approximate measure (Sp)apx (dotted lines) for

non-breaking RN, incipient breaking RI, spilling RS1, and plunging RP1 packets are
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shown in Figure 2.15. The results show that Sp has relatively small change after the

breaking region; thus we may assume ∆S ≈ ∆I. The loss of wave radiation stress

is balanced by the increase of η after the break point. In intermediate-depth packets

the fractional loss of the time-averaged horizontal momentum flux is overpredicted by

approximately 11% to 63% by ignoring the change of n after the breaking region, or

choosing γ = 1 in (2.25) (see Table 2.2). In deep-water cases, instead, the fractional

loss of the time-averaged potential energy density is close to that of the time-averaged

momentum flux, ∆I/I1 ≈ ∆η2/η2
1.

2.7 Conclusions

A continuum polydisperse two-fluid model described in Derakhti & Kirby (2014b)

was used to study the breaking-onset prediction as well as the spatial variations of total

energy and momentum flux in laboratory-scale intermediate- and deep-water unsteady

breaking waves generated by dispersive focusing. We should remark that all the follow-

ing conclusions may not be directly applicable to other types of breaking waves such

as steepness-limited breaking waves due modulational instability. Also, the absolute

values may need to be tested for a wider range of breaking scales. Here, we briefly

establish that the present model is capable of capturing breaking waves due to mod-

ulational instability. A more detailed evaluation of this class of weak breaking events

will appear in a separate paper. The main conclusions are summarized as follows.

(a) Breaking-onset prediction: Avoiding the post-processing procedure in the

dimensionless parameter originally proposed by Song & Banner (2002) given by (2.1),

we defined a new diagnostic parameter, ξ(t), as the normalized growth rate of the

time-dependent local energy density maxima along the wave packet given by ξ(t) =

ω−1
s0 Dµ/Dt, where µ = Emaxk

2/ρlg. The threshold value of ξth = 0.05 was found as the

maximum value of ξ for the non-breaking and incipient breaking packets. It was shown

that, the new dynamic criterion is capable of detecting a single or multiple breaking

events in a packet. Noting different length scales, depth regime, and packet types (see

Table 1) of the considered cases, the dynamic criterion with the threshold value of
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ξth = 0.05 seems to be universal at least for steepness-limited unsteady breaking waves

generated by dispersive focusing.

(b) Fractional and total losses of horizontal wave energy flux: It was shown

that the widely used formulas ∆η2/η2
1 and (∆FE)apx1 ≈ ρlgCgs1∆η2 overpredict both

fractional and total losses of horizontal wave energy flux by approximately 35% to

70% for our breaking packets, due to the neglect of the increase of the characteristic

group velocity after the breaking region. A new simple formulation was proposed to

improve the prediction of the averaged horizontal wave energy flux as (∆FE)apx2 ≈

ρlgCgs1(α1η2
1 − β η2

2), in which α1 = Max( 1.0 , 0.13(Ss0 − 0.2) + 1.0), obtained based

on linear curve fitting. Here, β = Cgs2/Cgs1 can be obtained based on free surface

measurements upstream and downstream of the break point. The β varied between

1.05 for weak spilling breakers to 1.2 for strong plunging breakers in the simulated

cases.

(c) Characteristic wave group velocity: The energy transport velocity, defined

as CE = FE/E, was compared with the spectrally-weighted linear group velocity Cgs,

defined by Drazen et al. (2008). In general, Cgs is an appropriate choice for a charac-

teristic group velocity, because (i) it is an easily compuTable quantity using only free

surface time series, and (ii) it provides fairly accurate estimates of CE before and after

the breaking region. However, we showed that the local peaks of Cgs and CE were

180◦ out of phase near the focal/break points. In addition, Cgs predicts smaller values

compared with CE, especially before the break point. A strong correlation between

a local increase of CE and the asymmetry of the dominant wave in the packet was

observed in both non-breaking and breaking packets, where negative asymmetry (wave

pitched forward) led to increase of the spectrally-weighted frequency, fs, of the packet,

and led to a noticeable increase of CE. This increase of CE can not be captured using

linear wave theory. For example, as fs increases, Cgs decreases which is completely

an opposite trend compared with that observed in the results for CE. It was shown

that the phase locking of the higher frequency components to the lower frequency com-

ponents which have greater linear group velocities led to the considerable increase of
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CE before the focal/break points, up to ≈ 30% increase of CE compared with its val-

ues upstream of the break point. Far downstream of the focal point, CE returned to

its value upstream of the focal point for non-breaking packets. For breaking packets,

however, there is a significant increase of CE after the break point, due to noticeable

breaking-induced dissipation of higher frequency components within the wave packet.

This increase became relatively larger as the breaker intensity increased.

(d) Parametrization of the breaking strength parameter b: As summarized by

Romero et al. (2012), the available estimates of b ranges from O(10−4) for gently spillers

up to O(10−1) for strong plungers. In most of the previous experiments, ∆FE was

approximated using (∆FE)apx1 ≈ ρlgCgs1∆η2. As we explained, using (∆FE)apx2 ≈

ρlgCgs1(α1η2
1−β η2

2) the estimation of ∆FE and the associated b is improved compared

with that predicted using (∆FE)apx1 ≈ ρlgCgs1∆η2. In addition, we found that the

initial spectrally-weighted global steepness, Ss0, is a preferable parameter compared

with the theoretical linear global steepness S =
∑N

i=1 aiki for our dispersive focused

packets. The new diagnostic parameter at the breaking onset, ξb, was shown to have

a strong linear dependence with respect to b given by b = 0.3(ξb − 0.05). Note that in

the present work, the estimated b ranges from 3 × 10−4 up to 0.06. Although ξb can

not be evaluated in wave-averaged wave models, it can be easily used in wave-resolving

nonlinear wave models. A strong linear dependence was also found between b and Ss0

for the considered focused wave packets, while a large scatter was found between b and

S. The linear relation, however, can not provide accurate estimations of b in the range

b < 5 × 10−3. A new scaling law given by b = 0.3(Ss0 − 0.07)5/2, which is consistent

with inertial wave dissipation scaling of Drazen et al. (2008), is shown to be capable of

providing accurate estimates of b in the full range of breaking intensities, 10−5 < b <

10−1, where the scatter of data in the new formulation significantly decreases compared

with that proposed by Romero et al. (2012).

(e) Fractional and total losses of total momentum flux: Momentum flux due to

the mean pressure Sp was shown to have relatively small change after the breaking

region, and, thus, ∆S ≈ ∆I. We showed that total wave momentum flux, I, could be
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accurately estimated as Iapx = ρgη2n upstream and far downstream of the break point,

where we defined n = Cgs/cs. In intermediate-depth breaking packets, total fractional

loss of horizontal momentum flux was approximately 11% to 63% overpredicted by

ignoring the change of n after the breaking region, or choosing γ = n2/n1 = 1 in

(2.25). In deep-water cases, on the other hand, the fractional loss of the averaged

potential energy density was close to that of the averaged horizontal wave momentum

flux.
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Chapter 3

INTERMITTENT BUBBLE TRANSPORT IN THE SURF ZONE

3.1 Abstract

Derakhti & Kirby (2014a,b) have recently studied bubble entrainment and tur-

bulence modulation by dispersed bubbles in isolated unsteady breaking waves along

with extensive model verifications and convergence tests. In this chapter, we use the

model of Derakhti & Kirby (2014b) to examine the role of large-scale breaking-induced

turbulent coherent structures (LBTCS) in the three-dimensional (3D) intermittent

transport of dispersed bubbles in the surf zone. The relative importance of prefer-

ential accumulation of dispersed bubbles in coherent vortex cores is investigated. It is

shown that the 3D distribution of the bubble plume is highly correlated with that of

the LBTCS, with high bubble void fraction regions located closer to the part of the

vortex cores with negative turbulent vertical velocity. Near-bed bubble void fractions

greater than 5% have been observed in the plunging case considered here.

3.2 Introduction

Surface wave breaking is of considerable importance to air-sea interactions,

acoustic underwater communications, optical properties of the water column, and upper

ocean/surf zone dynamics. Wave breaking is a highly dissipative process, representing

an important source of turbulence in the ocean surface layer. Air is entrained and

rapidly evolves into a distribution of bubble sizes, hereafter referred to as a bubble

plume, which interacts with liquid turbulence and organized motions. Bubble plume

kinematics and dynamics are the basis for evaluating the effects of dispersed bubbles

on the environmental and technical processes mentioned above (Thorpe 1995, Melville

1996).
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The breaking process can be divided into two stages; (i) the generation of bub-

bles in the vicinity of the free surface due to cavity break up, and (ii) the later distribu-

tion of entrained bubbles in the water column by LBTCS and organized motions. An

examination of the former is beyond the scope of this study, and the reader is referred to

Kiger & Duncan (2012), who reviewed the most recent progress on the air-entrainment

mechanisms in plunging jets and breaking waves. Due to a need to understand air-sea

interaction processes in the upper ocean layer, investigating air entrainment and bubble

distribution in steepness-limited breaking waves is advanced compared to depth-limited

surf zone breaking waves. Thus, to summarize the relevant literature, we review field

and experimental studies of bubble void fraction in both deep-water and surf zone

breaking waves. Then we discuss the relevant numerical studies.

In the past few decades, several theoretical and experimental studies (Thorpe

& Humphries 1980, Thorpe 1982, Baldy 1988, Hwang et al. 1990, Leifer & De Leeuw

2006, Leifer et al. 2006) have described the characteristics of the bubble distribution

in breaking wind waves. In summary, the bubble plume characteristics, including

spatial distributions of time-averaged bubble void fraction and its size spectrum, have

been shown to be different in the near surface zone, say z > −Hs, compared with

those in lower depths, z < −Hs. Here, z is the vertical distance from the still water

surface, and Hs is the characteristic wave height. In lower depths, the bubble plume

is composed of very small bubbles a � aH , where a is the bubble radius and aH

is the associated bubble Hinze scale, and the bubble number density, N(a, z), has

exponential dependence with respect to depth with an approximately constant size

spectrum slope, α1. In the near surface zone, however, bubble void fraction has much

stronger temporal and spatial variations, exponential dependence may not exist, and

the size spectrum has two distinct depth- and time-dependent slopes of α1 and α2 for

the bubbles smaller and larger than aH respectively. The theoretical work by (Garrett

et al. 2000), experimental work by (Deane & Stokes 2002), and numerical work by

Ma et al. (2011) support the conclusion that α2 ' −10/3 at the early stages of active

breaking.
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Using a conductivity probe, Lamarre & Melville (1991, 1994) produced time-

varying void fraction distribution in controlled 2D and 3D focused breaking wave pack-

ets. The results showed that the degassing rate was rapid, and less than 5% of the

initial entrained bubbles remained in the water column one period after breaking, where

the maximum ensemble-averaged bubble void fraction decreases from ≈ 50% during

the initial stages of active breaking down to ≈ 1% at one wave period after break-

ing. They calculated the area, volume, mean void fraction and centroids of the bubble

plume. It was shown that these integral properties evolved as a simple function of time

and scaled fairly well from their small 2D to larger 3D packets. Blenkinsopp & Chap-

lin (2007) used two optical fibers to measure the time-dependent void fraction under

breaking waves generated by propagating regular waves over a submerged sloping reef

structure. They also found that the integral properties of the bubble plume evolved as

a simple function of time. They showed that the bubble plume volume grew linearly

to a maximum and then decayed exponentially in time. As concluded by Lamarre

& Melville (1991), the contributions of bubbles to air-sea processes may be seriously

underestimated if the existence of these transient bubble plumes of large bubbles is not

taken into account. We note that the entire surf zone may be considered as the near

surface zone in which transient bubble plumes with large spatio-temporal bubble void

fraction variations evolve from the free surface down to the bed.

Few quantitative measurements of the bubble void fraction in controlled surf

zone breaking waves exist (Cox & Shin 2003, Hoque & Aoki 2005, Mori et al. 2007),

observing the maximum ensemble-averaged bubble void fraction in the range 15% ∼

30%. Cox & Shin (2003) showed that the temporal variation of the ensemble-averaged

void fraction above the still water level normalized by the wave period and time-

averaged void fraction was self-similar, and that it could be modeled by linear growth

followed by exponential decay. Cox & Shin (2003) and Mori et al. (2007) showed

that the time-averaged bubble void fraction had a linear relationship with the time-

averaged turbulent horizontal intensity and time-averaged turbulent kinetic energy
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respectively. These observations have been made at a number of locations in the cross-

section through the middle of an experimental tank, mostly in the transition region.

Several 3D numerical studies have been conducted to investigate the structure

of turbulence and LBTCS (Christensen & Deigaard 2001, Christensen 2006, Watanabe

et al. 2005, Lakehal & Liovic 2011, Farahani & Dalrymple 2014, Zhou et al. 2014)

in depth-limited breaking waves. In all of these numerical studies, however, most

portions of the typical bubble size spectrum are unresolved because of a relatively

coarse resolution or the neglect of the air dynamics in the numerical simulation. To

account for bubble size distribution in surf zone breaking waves, we need to have a very

fine grid resolution, about two orders of magnitude smaller than typical large-eddy

simulation (LES) resolution. An example of such a LES simulation with a fine grid

resolution has been done by Lubin & Glockner (2015) for deep water plunging breaking

waves generated due to the evolution of a periodic unstable wave train with relatively

short wave lengths < 0.2m. They solved the Navier-Stokes equations in both air and

water with a grid resolution of∼0.1 mm, and showed the model captured the generation

and evolution of small-scale aerated vortex filaments during the splash process. Such a

high resolution two-phase LES simulation of laboratory-scale surf zone breaking waves

is still impractical. Instead of resolving individual bubbles, Derakhti & Kirby (2014b)

extended the Eulerian-Eulerian polydisperse two-fluid model of Ma et al. (2011) to an

LES framework to study bubble entrainment and liquid-bubble interaction in turbulent

bubbly flow in laboratory-scale, isolated, deep water focused breaking wave packets.

Bubbles were entrained at the free surface using a bubble entrainment model, initially

distributed based on the size spectrum observed by Deane & Stokes (2002). The SGS

bubble-induced turbulence and the momentum transfer between the two phases were

considered using statistical closure models. By comparing snapshots of the bubble void

fraction distributions, bubble void fraction time series as well as integral properties

of the bubble plumes with the corresponding experiments, the model was shown to

captures the spatial and temporal evolution of entrained bubbles fairly accurately.

The process of air entrainment is highly 3D even in a long-crested plunger, as
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shown by Kiger & Duncan (2012, Figure 11) and Derakhti & Kirby (2014b, Figure 3).

The 3D distribution of entrained bubbles also can be seen in Nadaoka et al. (1989,

Figure 3). It is known that the effects of LBTCS, such as the radial pressure gradient

within a vortex core, result in the 3D intermittent distribution of bubble plumes in

surf zone breaking waves. Quantitative examination of the relative importance of

LBTCS on the intermittent transport of dispersed bubbles, however, has not yet been

investigated. In this paper, we use the model of Derakhti & Kirby (2014b) to examine

the role of LBTCS on the 3D intermittent transport of dispersed bubbles in the surf

zone.

In §3.3, the model set-up and choice of experimental conditions are explained.

The comparison of the predicted free surface evolution and time-averaged velocity and

turbulence fields with the available measurements are presented in §3.4. The results

are given in §3.5. Conclusions are given in §3.6.

3.3 Model Set-up and Averaging Procedures

3.3.1 Model Set-up and Choice of Experimental Conditions

A detailed description of the polydisperse two-fluid model used here as well as

boundary conditions may be found in Appendix A. Here, the incident wave boundary

condition and model set-up are discussed briefly.

Both weakly plunging/spilling (hereafter referred to as S1) and strong plunging

(hereafter referred to as P1) periodic breaking waves over a plane slope are considered

following the experimental set-up of Ting & Nelson (2011) and Ting & Reimnitz (2015),

respectively. All model simulations are performed with the model initialized with qui-

escent conditions. At the inflow boundary, the free surface location and velocities are

calculated using the theoretical relations for cnoidal waves as given in Wiegel (1960).

The right end of the numerical domain is extended beyond the maximum run-up. Fig-

ure 3.1 sketches the experimental layout. The input wave parameters are summarized

in Table 3.1. Besides the corresponding experiments in Table 3.1, we also consider

the void fraction measurements by Cox & Shin (2003) and the turbulence and velocity
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Figure 3.1: Side view of the experimental layout of the simulated cases and coordinate
systems. The rectangular mesh is shown some part of the numerical grid.

Table 3.1: Input parameters for the simulated cases. Here, d0 is the still water depth
in the constant-depth region, H and T are the wave height and period
of the cnoidal wave generated by the wavemaker, (kH)0 = 2πH0/L0 is
the corresponding deep water wave steepness of the generated wave, ξ0 =
s/
√
H0/L0 is the self similarity parameter, and s is the plane slope.

Cases d0 (m) s H (m) T (s) (kH)0 ξ0 Hb(m) Breaking type Exp.

P1 0.30 0.025 0.12 4.0 0.022 0.42 0.167 p Ting & Reimnitz (2015)
S1 0.36 0.03 0.122 2.0 0.119 0.22 0.170 s/wp Ting & Nelson (2011)

measurements by Ting & Kirby (1994) for model validation. The experimental set-ups

in these two works are similar to S1, as summarized in Table 3.2. Mesh resolutions and

domain sizes are summarized in Table 3.3. The model parameters for a polydisperse

bubble phase are chosen as summarized in Derakhti & Kirby (2014b, Table 4).

3.3.2 Averaging Procedures and Scale Decomposition

As discussed in Derakhti & Kirby (2014b, §2.8), ensemble averaging, 〈.〉, is

approximated by spanwise averaging as

〈φ〉(i, k, t) ≈
Ny−20∑
j=21

1

Ny − 40
φ(i, j, k, t), (3.1)
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Table 3.2: Input parameters for the experiments which are similar with the simulated
cases.

Similar Cases d0 (m) s T (s) (kH)0 ξ0 Hb Breaking type Exp.

∼ S1 0.4 0.029 2.0 0.126 0.20 0.166 s Ting & Kirby (1994)
∼ S1 0.51 0.029 2.0 0.111 0.215 0.155 s/wp Cox & Shin (2003)

Table 3.3: Numerical set-up for the 3D LES cases. ∗ These are the number of the
available wave cycles after the simulation reaches a quasi-steady state
conditions, which is approximately 15 wave periods after the start of the
simulation. Here, superscripts b and nb refer to a simulation with and
without the consideration of dispersed bubbles respectively.

Cases Domain sizes (m) Mesh sizes Mesh resolutions (mm) Num. of wave cycles∗

(Lx, Lz, Ly) Nx ×Nz ×Ny (∆x,∆z,∆y) (NW b, NW nb)
P1 (16.25, 0.49, 0.84) 650× 70× 120 (25, 7.0, 7.0) (2,25)
S1 (16.25, 0.602, 0.896) 650× 86× 128 (25, 7.0, 7.0) (15,41)
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where φ is a field variable and Ny is the number of grid points in the spanwise direction

(see Table 3.3). Here, we ignore 20 grid points near each wall, and then averaging is

performed on the remaining grid points. The resolved turbulent fluctuation about this

average is then given by φ′(i, j, k, t) = φ(i, j, k, t)− 〈φ〉(i, k, t).

Phase averaging is given by

φ̂(i, j, k, n) =
NW∑
m=1

1

NW
φ(i, j, k, n+ (m− 1) ∗ T/dt), (3.2)

where n = 1, ..., T/dt, T is the wave period, dt is the sampling interval, and thus

T/dt is the number of available outputs per wave cycle which is 200 for both S1 and

P1. NW is the number of the available wave cycles after the simulation reaches a

quasi-steady state conditions, which is approximately 15 wave periods after the start

of the simulation. Note that irregularities in the breaking process, e.g. , the change

in the initial breaking location, result in the deviation of (3.2) from the corresponding

ensemble-averaged value.

Time averaging is given by

φ(i, j, k) =
1

NW × T

∫ t0+NW×T

t0

φ(i, j, k, t)H(ψ(i, j, k, t)− 0.5)dt, (3.3)

where H is the Heaviside step function, and ψ is the volume fraction of the water

within a computational cell. The points located between the troughs and the crests

are located in the water and air alternatively depending on the local wave phase. To

remove these unphysical zero values during time averaging, hereafter referred to as the

conditional time averaging, (3.3) should be divided by the probability of being inside

the water column, Pw(i, j, k), given by

Pw(i, j, k) = H(ψ(i, j, k, t)− 0.5). (3.4)

51



Figure 3.2: Snapshots of the free-surface (isosurface of ψ = 0.5) evolution the weakly-
plunging/spilling case S1 after 23 wave periods after the start of the simu-
lation (tb = 46.91s). Here, xb is approximately the point of incipient wave
breaking, and is defined as the cross-shore location at which a vertical
tangent appears near the wave crest.

3.4 Model Validation

Extensive model validations including detailed comparisons of free surface evo-

lution, bubble void fraction, integral properties of the bubble plume, and mean and

turbulent velocity fields with the corresponding measurements have been performed by

Derakhti & Kirby (2014a,b) in unsteady steepness-limited breaking wave packets. Here,

we show that the model captures the evolution of free surface, velocity and turbulence

fields in the surf zone fairly accurately.
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3.4.1 Free Surface Evolution

Figure 3.2 shows snapshots of the free-surface evolution for the weakly-plunging/

spilling case S1. It is seen that the model captures the large scales of the splash

process and formation of a bore-like region, with apparent irregularities at the surface

behind the propagating bore due to subsurface vortex-induced pressure fluctuations

(Watanabe et al. 2005, §3.4). Figure 3.3 shows that the model reasonably captures the

evolution of phase-averaged free surface elevations compared with the corresponding

measurements of Ting & Nelson (2011) in the shoaling, transition and inner surf zones.

The comparison of the predicted wave height, H = 〈̂η〉max− 〈̂η〉min, evolution with the

measurements of Ting & Nelson (2011) and that of the spilling case of Ting & Kirby

(1994) (see Table 3.2) from the outside of the surf zone up to the shore line is shown in

Figure 3.4. The incident wave conditions and flume geometry of Ting & Nelson (2011)

are very close to those of the spilling case of Ting & Kirby (1994). This Figure shows

that the spatial evolution of H relative to the initial break point at x′ = xb is also

comparable for these two breaking wave cases.

3.4.2 Spanwise-time-averaged Organized and Turbulent Fields

It is well-established that the ensemble-time-averaged velocity, called undertow,

and turbulent kinetic energy in the surf zone scale with the local linear wave phase

speed
√
gh, where h = d + η is the local mean sea level. Figure 3.5 shows the spatial

distribution of the normalized conditional spanwise-time-averaged, (P−1
w 〈k〉)1/2/

√
gh,

and the spanwise-time-averaged, 〈k〉
1/2
/
√
gh, turbulent kinetic energy for S1. It is

seen that the conditional time averaging gives a consistent trend of characteristic time-

averaged k above the troughs in which the corresponding values of (P−1
w 〈k〉)1/2/

√
gh

systematically decreases from the transition region toward the shoreline. Figure 3.6

shows that both the magnitude and spatial variation of the predicted 〈k〉
1/2
/
√
gh and

〈u〉/
√
gh are consistent with the corresponding measured values of Ting & Kirby (1994)

in the transition and inner surf zones.
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Figure 3.3: Spanwise-phase-averaged free surface elevations at different cross-shore
locations for the weakly-plunging/spilling case S1. Comparison between

the simulation and the corresponding measurements by Ting
& Nelson (2011). Here, ̂ indicates phase averaging over N successive
waves after the wave field reaches to a steady state condition, where N is
15 in the simulation, and is 10 the measurements. xb is approximately the
point of incipient wave breaking, and is the cross-shore location at which
a vertical tangent appears near the wave crest. No spanwise averaging
was involved in the measurement.
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Figure 3.4: Cross-shore variation of the wave height H = 〈̂η〉max − 〈̂η〉min for the
weakly-plunging/ spilling case S1. Comparison between the simula-
tion and +++ the corresponding measurements by Ting & Nelson (2011).
◦ ◦ ◦ show the results for the spilling case of Ting & Kirby (1994).
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Figure 3.5: Spatial distribution of (a) the normalized conditional spanwise-
time-averaged, (P−1

w 〈k〉)1/2/
√
gh, and (b) the spanwise-time-averaged,

〈k〉
1/2
/
√
gh, turbulent kinetic energy for S1. Thick solid lines show the

troughs and the crests levels. Vertical dashed lines show the cross-shore
locations of the data-model comparisons shown in Figure 3.6. Here,
σ = (z − η)/h.
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Figure 3.6: Spanwise-time-averaged normalized (a − f) turbulent kinetic energy,

〈k〉
1/2
/
√
gh, profiles and (A−F ) normalized horizontal velocity, 〈u〉/

√
gh,

(undertow) profiles for the weakly-plunging/spilling case S1 at different
cross-shore locations after the initial break point. ◦ ◦ ◦ show measure-
ments of Ting & Kirby (1994). Here, σ = (z − η)/h
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3.5 The Role of the LBTCS in Bubble Transport in the Surf Zone

3.5.1 Coherent Structure Definition and Identification

A number of various definitions for coherent structures are available in the lit-

erature. Robinson (1991) defined a coherent structure as a 3D region of the flow over

which at least one fundamental flow variable (velocity component, density, tempera-

ture, etc.) exhibits significant correlation with itself or with another variable over a

range of scales and/or time that is significantly larger than the smallest local scales of

the flow. Here, we are interested in LBTCS with length scales on the order of the local

wave height. A turbulent breaking-induced coherent structure may be a vortical struc-

ture (VS), a compact region of vorticity surrounded by irrotational fluid, or a bursting

region with large Reynolds stresses associated with the production of turbulence in

the splash/bore-like region via downward ejections of fluid into lower depths. In this

paper, the latter is referred to as a downburst structure (DBS).

There are several methods that are usually used for the identification of VS

(Jeong & Hussain 1995, Chakraborty et al. 2005). Local or point-wise methods of vor-

tex identification define a function which can be evaluated at every point in the domain,

and then classify each point as being inside or outside a vortex by setting a threshold

value. In this section, we briefly present the selected criteria for the identification of

VS and DBS.

Here, we use the Q-criterion (Hunt et al. 1988) to identify the VS, with the

threshold values Qth of 25 and 50 for the weakly plunging/spilling case S1 and the

plunging case P1 respectively. The Q criterion defines vortices as flow regions with

positive second invariant of ∇u, i.e. Q > 0. In addition, the pressure in the eddy must

be lower than the ambient pressure. For an incompressible flow, the second invariant

can be written as

Q =
1

2
(||Ω||2 − ||S||2), (3.5)

where ||Ω|| = tr[ΩΩt]1/2 and ||S|| = tr[SSt]1/2. S = 1
2
(∂ui/∂xj + ∂uj/∂xi) and Ω =

1
2
(∂ui/∂xj − ∂uj/∂xi) are the symmetric and antisymetric components of ∇u. Here
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we use the Q criterion without the additional pressure condition as in Chakraborty

et al. (2005). Both Q and λ2 (Jeong & Hussain 1995) criteria result in similar looking

vortical structures in the cases considered.

Although several experimental studies (Ting 2008, Ting & Nelson 2011, Ting

& Reimnitz 2015) have discussed the existence of the DBS and their dynamical effects

on the near-bed velocity field in depth-limited breaking waves, no quantitative criteria

have been proposed for the identification of these structures. We consider a point

x = (x, y, z, t) as being inside a DBS if

|τ(x)| > βu′rms(x, z, t)w
′
rms(x, z, t) + γ (3.6)

w′(x) < 0 (3.7)

Q(x) < Qth, (3.8)

where ()′ refers to the turbulent fluctuations about the corresponding spanwise-averaged

value defined by (5.2), β = 1.5 and γ = 0.006(m2s−2).

3.5.2 Intermittent 3D Bubble Distribution

Figure 3.7 shows the evolution of the bubble plume (isosurface of αb = 0.5%) in

P1 and S1. The shape and structure of the bubble plume for P1 are also comparable

with photographs taken by Ting & Reimnitz (2015, Figure 6), where the time interval

between successive panels in Figure 3.7 are approximately twice larger than that in

Ting & Reimnitz (2015, Figure 6). In addition, the oblique extension of the bubble

plume behind the splash-up regions and the propagating bores is consistent with the

previous observations of bubble plume structure such as Nadaoka et al. (1989, Figure

8) and Watanabe et al. (2005, Figure 17).

It is seen that during each splash-up cycle the bubble plume is extended obliquely

towards the bottom. Figures 3.8 and 3.9 show snapshots of the evolution of both the

LBTCS and bubble plume underneath the first and second splash-up regions. The VS

generated during the first splash-up cycle (Figure 3.8) is approximately twice larger
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than those generated during the second splash-up cycle (Figure 3.9). After the obliquely

descending VS reaches the bottom, the vortex loop interacts with the bottom and

breaks into the two broken legs. The broken legs tend to be attached to the bottom

and move away from each other, sweeping a large area near the bed. The life time of

the broken VS decreases as the local depth decreases.

The size of the predicted VS shown in Figure 3.9 are fairly reasonably com-

parable with the corresponding measurement shown in Ting et al. (2013, Figure 8)

and Ting & Reimnitz (2015, Figure 7), indicating the model accurately captures the

kinematics of the VS in the considered cases. Qualitatively, the 3D distribution of the

bubble plume is highly correlated with that of the LBTCS, with high bubble void frac-

tion regions located inside the VS. High bubble void fractions seem to transport down

to the bed and stay in the core of the VS for a long time. As shown in Figures 3.10

and 3.11, the near-bed bubble void fractions could be greater than 5%. The results

show that the distribution of bubble void fraction in the surf zone is highly 3D and

intermittent both in time and space. These 3D distribution of entrained bubbles are

consistent with the observation of Nadaoka et al. (1989, Figure 3). Figures 3.12, 3.13

and 3.14 show generally similar results for weakly plunging/spilling case S1 as in the

plunging case P1. Due to the weaker first jet impact and splash-up, however, the re-

sultant obliquely descending VS are smaller than those in P1, containing less spatially

distributed bubble plume with smaller bubble void fractions.

3.5.3 Preferential Accumulation of Bubbles into the LBTCS

Preferential accumulation is one of the main characteristics of dispersed multi-

phase flows. It is well-known that heavier-than-fluid particles (e.g. , sediment) tend

to accumulate in regions of high strain rate and avoid regions of intense vorticity. In

contrast, lighter-than-fluid particles (e.g. , bubbles) tend to congregate in vortical re-

gions. This is mainly due to the local low-pressure region in a vortex core, as shown

in Figure 3.15. Figures 3.16 and 3.17 show the resultant dynamic pressure gradient

in the vertical and spanwise directions for P1 and S1 respectively. Comparing Figures
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Figure 3.7: Snapshots of the bubble plume (isosurface of αb = 0.5%) evolution for
(right) plunging case P1, and (left) the weakly-plunging/spilling case S1.
Here, tb = 90.78 s and tb = 46.91 s for P1 and S1 respectively.
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Figure 3.8: Snapshots of the evolution of (a−d) LBTCS, blue and red volumes are VS
and DBS respectively, and (A−D) bubble plume, opaque and transparent
volumes are the isosurfaces of αb = 1% and αb = 0.2% respectively, for the
plunging case P1 underneath the first splash-up. Waves are propagating
in the positive x direction, into the paper.
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Figure 3.9: As in Figure 3.8 except underneath the second splash-up. The box volume
shows approximately the location of 3D velocity measurements by Ting
& Reimnitz (2015).
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Figure 3.10: Snapshots of the bubble void fraction (%) distribution at (a − d) the
mid cross-shore section and (A − D) different along-shore sections for
the plunging case P1. Black and blue contours indicate the locations of
DBS and VS respectively. Arrows in the right panels show the turbulent
velocity vectors at the along-shore sections. For clarity only one-half of
the arrows are shown. Arrows at each panel scale accordingly to give a
better visibility. The vertical dashed line in each left panel shows the
cross-shore location of the corresponding along-shore section shown in
the right panel of that row. Horizontal dashed lines in panel c are the
vertical elevations of the horizontal sections shown in Figure 3.11.
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Figure 3.11: Horizontal distribution of the bubble void fraction (%) at tb+t/T = 0.35
for the plunging case P1 at different vertical elevations shown in Figure
3.10. (a) z = 115.5mm, (b) z = 80.5mm, (c) z = 45.5mm, and (d)
z = 10.5mm. Black and blue contours indicate the locations of DBS
and VS respectively. The dashed lines show the cross-shore location of
the along-shore sections shown in the right column of Figure 3.10.
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Figure 3.12: Snapshots of the evolution of (a − d) LBTCS, blue and red volumes
are VS and DBS respectively, and (A −D) bubble plume, opaque and
transparent volumes are the isosurfaces of αb = 05% and αb = 0.1%
respectively, for the weakly-plunging/spilling case S1 underneath the
first splash-up. Waves are propagating in the positive x direction.
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Figure 3.13: As in Figure 3.10 except for the weakly-plunging/spilling case S1.
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Figure 3.14: Horizontal distribution of the bubble void fraction (%) at tb+t/T = 0.85
for the weakly plunging/spilling case S1 at different vertical elevations
shown in Figure 3.13. (a) z = 136.5mm, (b) z = 94.5mm, (c) z =
52.5mm, and (d) z = 10.5mm. Black and blue contours indicate the
locations of DBS and VS respectively. The dashed lines show the cross-
shore location of the along-shore sections shown in the right column of
Figure 3.13.
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3.16 and 3.17 with Figures 3.10 and 3.13, it is seen that greater accumulation occurs

at the VS parts with larger dynamic pressure gradient.

Figures 3.18 and 3.19 show the corresponding drag, lift and virtual mass forces

on dispersed bubbles in the vertical and spanwise directions in S1 respectively. In the

vertical direction the magnitude of the drag force is at least an order of magnitude

larger than the other two forces. In the spanwise direction the drag force is still larger

than the other two forces, but its magnitude is comparable with them. The lift force

is mainly in the spanwise direction and towards the part of the VS with negative

turbulent vertical velocity. The total interfacial forces on the bubbles in the vertical

and spanwise directions are presented in Figure 3.20. The total interfacial force in the

spanwise direction changes its sign across the VS consistent with the dynamic pressure

gradient distribution shown in Figure 3.17. The total interfacial force in the vertical

direction are larger near the part of the VS with negative turbulent vertical velocity.

We showed that the dispersed bubbles at lower depths are mainly associated

with the LBTCS. However, higher bubble void fractions are not exactly located at the

center of the vortex cores. As shown in Figure 3.8B, the trapped bubbles in the large VS

are not uniformly distributed within the vortex loop. However, the entrapped bubbles

in the VS shown in Figure 3.9B are nearly uniformly distributed through the vortex

loop. Non-uniform void fraction distribution is also seen in Figure 3.13A. In addition,

at some instances high void fraction regions are located inside the DBS rather than the

vortex cores as shown in Figure 3.13B,C. These complicated 3D bubble distributions

in the VS and DBS are due to the 3D distribution of the total interfacial forces, mainly

the drag force, and that of the dynamic pressure gradient.

Figure 3.21 shows the spatial distribution of the conditional time-averaged bub-

ble void fraction inside the VS, DBS and outside of the LBTCS as well as the time-

averaged results from the 2D simulation for the weakly plunging/spilling case S1. The

results are obtained by averaging over 15 wave cycles after the wave field reaches a

quasi-steady state. It is seen that the time-averaged bubble void fraction inside the

VS and DBS are an order of magnitude larger than that outside the LBTCS. In the

68



2D simulation, DBS and 3D VS do not exist and thus the vertical transport of the

bubbles below the tough level is significantly underestimated compared with that in

the 3D simulation.

3.6 Conclusions

In this paper, we use the model of Derakhti & Kirby (2014b) to examine the

role of large-scale breaking-induced turbulent coherent structures (LBTCS) on the 3D

intermittent transport of dispersed bubbles in the surf zone. The relative importance

of preferential accumulation of dispersed bubbles in coherent vortex cores was investi-

gated.

It was shown that the 3D distribution of the bubble plume is highly correlated

with that of the LBTCS, with high bubble void fraction regions are located closer to

the part of the VS with negative turbulent vertical velocity. These complicated 3D

bubble distribution into the VS and DBS are due to the 3D distribution of the total

interfacial forcing, mainly the drag force, and that of the dynamic pressure. High

bubble void fractions seem to transport down to the bed and stay in the core of the VS

for a long time. Near-bed bubble void fractions greater than 5% have been observed

in the considered plunging case. It was shown that the time-averaged bubble void

fraction inside the VS and DBS are an order of magnitude larger than that outside the

LBTCS. In the 2D simulation, the vertical transport of the bubbles below the tough

level is significantly underestimated compared with that in the 3D simulation, due to

the absence of the DBS and 3D VS.
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Figure 3.15: Snapshots of the spatial distribution of the dynamic pressure in (a− d)
the plunging case P1 and (A − D) the weakly plunging/spilling case
S1. Black and blue contours indicate the locations of DBS and VS
respectively. Arrows in the right panels show the turbulent velocity
vectors at the along-shore sections. For clarity only one-half of the
arrows are shown. Arrows at each panel scale accordingly to give a
better visibility. The reference value is 0.01ρg.

70



Figure 3.16: Snapshots of the spatial distribution of the dynamic pressure gradient
in the (a− d)vertical and (A−D) spanwise directions in the plunging
case P1. Black and blue contours indicate the locations of DBS and VS
respectively. The reference value is ρg.
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Figure 3.17: Snapshots of the spatial distribution of the dynamic pressure gradient in
the (a−d)vertical and (A−D) spanwise directions in the weakly plung-
ing/spilling case S1. Black and blue contours indicate the locations of
DBS and VS respectively. The reference value is ρg.
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Figure 3.18: Snapshots of the spatial distribution of (a) drag, (b) lift and (c) virtual
mass forces in the vertical direction per unit volume of the liquid in the
weakly plunging/spilling case S1. Black and blue contours indicate the
locations of DBS and VS respectively. Arrows show the corresponding
vector force at the along-shore sections. Arrows at each panel scale
accordingly to give a better visibility. The reference value is 0.01ρg.
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Figure 3.19: Snapshots of the spatial distribution of (a) drag, (b) lift and (c) virtual
mass forces in the spanwise direction per unit volume of the liquid in the
weakly plunging/spilling case S1. Black and blue contours indicate the
locations of DBS and VS respectively. Arrows show the corresponding
vector force at the along-shore sections. Arrows at each panel scale
accordingly to give a better visibility. The reference value is 0.01ρg.
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Figure 3.20: Snapshots of the spatial distribution of the total interfacial forces per
unit volume of the liquid in the (a− d) vertical and (A−D) spanwise
directions in the weakly plunging/spilling case S1. Black and blue con-
tours indicate the locations of DBS and VS respectively. The reference
value is 0.01ρg.
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Figure 3.21: Spatial distribution of the conditional time-averaged bubble void frac-
tion (%) for the weakly plunging/spilling case S1, (a) inside the VS
〈αb〉V S, (b) inside the DBS 〈αb〉DBS, (c) P−1

w 〈αb〉 in the 3D simulation.
Panel (d) gives the corresponding conditional time-averaged bubble void
fraction P−1

w 〈αb〉 for the corresponding 2D simulation. Blue solid lines
show trough and crest elevations. Here, σ = (z − η)/h.
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Chapter 4

NHWAVE: GOVERNING EQUATIONS, EXACT BOUNDARY
CONDITIONS AND TURBULENCE MODELING

4.1 Abstract

We derive a new set of equations, in conservative form, describing the kine-

matics and dynamics of continuous and dispersed phases in a multiphase mixture in

a surface- and terrain-following σ-coordinate system, together with exact surface and

bottom boundary conditions for the velocity and dynamic pressure fields as well as a

Neumann-type boundary condition for scalar fluxes. It is shown that the new bound-

ary conditions significantly improve the predicted velocity and turbulence fields under

regular surf zone breaking waves, compared with commonly used, simplified stress

boundary conditions developed by ignoring the effects of surface and bottom slopes

in the transformation of stress terms. Also, by comparing the predicted velocity field

under a deep water standing wave in a closed basin, we show that the new model

does not generate unphysical vorticity at the free surface, in contrast to the simplified

case. A new numerical scheme is used for terms including vertical gradients, preserving

second-order accuracy for a general non-uniform vertical grid.

4.2 Introduction

Surface wave breaking plays an important role in numerous environmental and

technical processes such as air-sea interaction, acoustic underwater communications,

optical properties of the water columns, nearshore mixing and coastal morphodynamics.

Wave breaking is a highly dissipative process, limiting the maximum height of surface

waves. It is also a source of turbulence, enhancing transport and mixing in the ocean

surface layer. It entrains large volumes of air that rapidly evolve into a distribution
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of bubble sizes, which in turn interact with liquid turbulence and organized motions.

In shallow water, this process becomes more complicated when both bottom effects

and sediment alter a flow field (Banner & Peregrine 1993, Melville 1996, Duncan 2001,

Kiger & Duncan 2012, Perlin et al. 2013, Derakhti & Kirby 2014b).

Although large-eddy simulations (LES) combined with the well-known volume-

of-fluid (VOF) method for free-surface tracking (Watanabe et al. 2005, Lakehal & Liovic

2011, Derakhti & Kirby 2014b) can resolve turbulence and mean flow dynamics under

breaking waves quite well, they are computationally expensive even for laboratory-scale

events. A lower-resolution framework is needed to study long-term, O(days), and large-

scale, O(100m ∼ 10km), breaking-driven circulations as well as transport of sediment,

bubbles, and other suspended materials. Computationally efficient Boussinesq-type

models (e.g., Wei et al. 1995, Shi et al. 2012) can often yield acceptable predictions

of surface elevations and depth-averaged currents in the nearshore region. Such single

layer models, however, cannot provide any vertical structure of mean flow, and thus

recourse must be made to models which either provide estimates of vertical structures

through closure hypotheses (Kim et al. 2009) or which utilize a three-dimensional (3D)

framework from the outset.

During the past decade, several 3D wave-resolving non-hydrostatic models based

on Reynolds-averaged Navier-Stokes (RANS) equations, such as NHWAVE (Ma et al.

2012), SWASH (Zijlema et al. 2011), and Bradford (2011), have been developed for

coastal applications using surface- and terrain-following curvilinear (x, y, σ) coordi-

nates, hereafter is referred as the σ-coordinate system. A direct simplification of

this new framework, in comparison with VOF-based models, is achieved by assuming

the free surface to be a single-valued function of horizontal location. By using a σ-

coordinate system, the free surface is always located at an upper computational bound-

ary, determined by applying free-surface boundary conditions. A pressure boundary

condition at the free surface can thus be accurately prescribed, and dispersion charac-

teristics of short waves are typically captured by using a few vertical levels. However,

the effects of surface and bottom slopes in the dynamic boundary conditions at the
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top and bottom interfaces, e.g., the continuity of the tangential surface stress, have

been ignored in most of the previous studies using the σ-coordinate system, following

previous practice in large-scale ocean circulation models. Although this assumption

is fairly reasonable for wave-averaged models, it is not accurate for highly nonlinear

and breaking waves in wave-resolving computations, or in the presence of rapid bottom

changes. Ignoring surface slopes effects in the surface boundary condition for stresses

also leads to the generation of an unphysical vorticity, as discussed in §5.1.

A previous version of the non-hydrostatic model NHWAVE has been described

in Ma et al. (2012), Ma, Kirby & Shi (2013) (hereafter referred to as the old model).

NHWAVE solves the RANS equations in well-balanced conservative form, formulated in

the σ-coordinate system. The governing equations are discretized by a combined finite-

volume/finite-difference approach with a Godunov-type shock-capturing scheme. The

model is wave-resolving, and can provide instantaneous descriptions of surface displace-

ments and wave orbital velocities. The model has been applied to study tsunami wave

generation by submarine landslides (Ma, Kirby & Shi 2013, Tappin et al. 2014), wave

damping in vegetated environments (Ma, Kirby, Su, Figlus & Shi 2013), nearshore sus-

pended sediment transport (Ma, Chou & Shi 2014), and wave interactions with porous

structures (Ma, Shi, Hsiao & Wu 2014). In these studies, the effects of surface and

bottom slopes in the surface and bottom dynamic boundary conditions as well as in

the horizontal diffusion terms were ignored, as done, to the best of our knowledge, in

all of the existing non-hydrostatic models using the σ-coordinate system.

In this paper, we first derive a new set of governing equations, in a conservative

form, based on the mixture theory in the σ-coordinate system, describing the kine-

matics and dynamics of the continuous and dispersed phases in a multi-phase mixture.

Here, we assume a dilute suspension regime and particles with small Stokes number.

The effects of baroclinic pressure and turbulence modulation due to density variations

are considered. The exact surface and bottom dynamic boundary conditions for the

velocity and dynamic pressure fields are derived, using the continuity of the normal
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and tangential stresses at the top and bottom interfaces. A Neumann-type bound-

ary condition for scalar fluxes is also derived. It is shown that the new boundary

conditions significantly improve the velocity and turbulence fields predictions under

surf zone breaking waves compared with the commonly used simplified stress bound-

ary conditions in non-hydrostatic studies using the σ-coordinate system. In addition,

a new numerical scheme is implemented for terms with vertical gradients, preserving

second-order accuracy for a general non-uniform vertical grid. The model’s capability

for reproducing the evolution of the free surface, velocity, vorticity, and turbulence

fields under different breaking waves from the surf zone to deep water is examined in

detail in a companion paper (Derakhti et al. 2016b).

The paper is organized as follows. In §4.3, new conservative forms of the conti-

nuity and momentum equations for a multiphase mixture in the σ-coordinate system

are derived, and the main assumptions are discussed. In §4.4, exact surface and bot-

tom kinematic and dynamic boundary conditions as well as a Neumann-type boundary

condition for a scalar quantity are derived. In §4.5, the details of the numerical scheme

to obtain a hydrostatic velocity field as well as the non-hydrostatic velocity correction

scheme are presented. In §4.6, the new model results for the velocity field under a deep

water standing wave in a closed basin are compared with that predicted by the old

model. Turbulence predictions under spilling periodic surf zone breaking waves using

the new dynamic boundary conditions are compared with those from the old model

as well as the corresponding measurements of Ting & Kirby (1994). In addition, to

examine the two-dimensional isotropy of the new model, the evolution of an initial

two-dimensional Gaussian hump in a closed box is presented. Conclusions are given in

§4.7.

4.3 Governing Equations in Conservative Form

We first derive the continuity and momentum equations for a multiphase mix-

ture in the σ-coordinate system assuming a dilute suspension regime with particles

with small Stokes numbers. Using the Boussinesq approximation, the mixture density
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variations are ignored except in the gravity term. The scalar transport equation is

also derived using the same way as used to derive the momentum equation. Finally,

different turbulence models including the standard k − ε and that by Yakhot et al.

(1992) which is based on the renormalization group (RNG) approach, are presented.

The exact surface and bottom boundary conditions are derived in the next section.

4.3.1 Continuity and Momentum Equations

In the absence of heat and mass transfers, the continuity and momentum equa-

tions in Cartesian coordinates (x∗1, x
∗
2, x
∗
3), where x∗1 = x∗, x∗2 = y∗ and x∗3 = z∗ for each

phase in the mixture can be written as

∂χkρk

∂t∗
+

∂

∂x∗j

(
χkρkukj

)
= 0, (4.1)

∂χkρkuki
∂t∗

+
∂

∂x∗j

(
χkρkuki u

k
j

)
= χk

∂Πk
ij

∂x∗j
+ χkρkgiδi3, (4.2)

where δ is the Kronecker delta function, (i, j) = 1, 2, 3, and χ(x, t) is a phase-indicator

function at time t and point x, defined by

χk(x, t) =

 1 if x lies in phase k at time t

0 otherwise
(4.3)

to determine the volumes occupied by each phase. Here, k refers either to the dispersed

bubble phase, suspended sediment or to the liquid phase. In addition, ρk is the phase

density, uk is the phase velocity, and g = (0, 0,−g) is the gravitational acceleration.

For an incompressible fluid, the net fluid stress, composed of the pressure contribution

pk plus the viscous stress σkij, is defined by Πk
ij = −pkδij + σkij. In a Newtonian fluid,

we may assume that σkij = 2µkekij, where ekij = 1/2(∂uki /∂x
∗
j + ∂ukj/∂x

∗
i ) is the strain

rate tensor and µk is the phase dynamic viscosity.

As we aim to capture ensemble-averaged large-scales of the process, as opposed

to the details of the interaction between different phases in the mixture, we may simplify
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the problem by summing up the continuity and momentum equations for all phases

in the mixture and defining the ensemble-averaged bulk density, velocity, net stress

gradient, and Reynolds stress of the mixture, ()m, as (Drew & Passman 1999)

ρm =〈Σχkρk〉 = αlρl + αbρb + αcρc

umi =
〈Σχkρkuki 〉

ρm

∂Πm
ij

∂x∗j
=〈Σχk

∂Πk
ij

∂x∗j
〉 =

∂

∂x∗j

(
− pmδij + 2µmemij

)
τmij =〈Σχkρkuki ukj 〉 − ρmumi umj ,

(4.4)

where 〈 . 〉 indicates ensemble averaging, and αk = 〈χk〉 is the ensemble-averaged volume

fraction of phase k in the mixture. By doing this, all small-scale processes, e.g. the

shear-induced dissipation, become subgrid-scale and need to be modeled. Although

there is no universal model for τmij , even in the case of a single phase flow, we use the

common eddy viscosity approach to relate the anisotropic part of the mixture Reynolds

stress, τm,devij , to the mixture rate of strain, emij as

τm,devij ≡ τmij −
δij
3
τmkk = −2ρm(νmt )je

m
ij , (4.5)

where (νmt )j is the mixture turbulent eddy viscosity in the j direction (j is not a free

index here), obtained from an appropriate turbulence model, and may include both

shear-induced and bubble-induced eddy viscosity (see Derakhti & Kirby 2014b, for more

details). If a grid resolution in the horizontal directions is considerably different from

that in the vertical direction, the horizontal turbulent eddy viscosity (νmt )1 = (νmt )2

may be different from that in the vertical direction (νmt )3. We further assume a static

constant reference density for the liquid phase as ρ0, corresponding to a reference

temperature and salinity of the liquid phase, and employ the Boussinesq approximation

to neglect the density variations in the momentum equation except in the gravity term.

This is a common assumption in geophysical flows, as density variations due to the

82



temperature and salinity changes are small, say |ρm − ρ0| < 0.05ρ0. In the case of a

multiphase flow, we need to have a small void fraction for dispersed phases, referred as

a dilute regime, in order for the Boussinesq approximation to be applicable. Although

the dilute regime is usually the case for suspended sediment studies, we may have

relatively large bubble void fractions near the bore-front region of a breaking wave.

However, comparing with the simplification associated with assuming a single-valued

free-surface, and, thus, losing the details of vorticity and turbulence generation at

the turbulent bore-front, the Boussinesq approximation may have a secondary effect.

Applying the above mentioned assumptions, the ensemble-averaged form of (4.1) and

(4.2) reads as
∂umj
∂x∗j

= 0 (4.6)

∂umi
∂t∗

+
∂umi u

m
j

∂x∗j
=

1

ρ0

∂S m
ij

∂x∗j
+
ρm

ρ0

giδi3, (4.7)

where S m
ij = Πm

ij − τmij is the total ensemble-averaged mixture stress tensor.

The governing equations (4.6) and (4.7) are next transformed into the σ-coordinate

system, which is given by

t = t∗ x = x∗ y = y∗ σ =
z∗ + d

D
(4.8)

where D = d + 〈η〉 is the total water depth, d is the still water depth, and 〈η〉 is

the ensemble-averaged free surface elevation. In the case of a multi-valued surface,

however, the definition of the ensemble-averaged free surface elevation is arbitrary,

and, we assume 〈η〉 is sufficiently smooth to be considered as a single-valued mean

air-water interface as defined in Brocchini & Peregrine (2001, figure 1). Using chain

differentiation rule gives

∂ψ

∂t∗
=
∂ψ

∂t
+
∂ψ

∂σ
σt∗ ,

∂ψ

∂x∗j
=
∂ψ

∂xj
λj +

∂ψ

∂σ
σx∗j , (4.9)
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where λj = 1− δ3j, ∂( )/∂t∗ = ( )t∗ , ∂( )/∂x∗j = ( )x∗j , and

σt∗ =
1

D

(
dt − σDt

)
, σx∗j =

1

D

{(
dxj − σDxj

)
λj + δ3j

}
∂σt∗

∂σ
= −Dt

D
,

∂σx∗j
∂σ

= −
Dxj

D
λj.

(4.10)

where hereafter summation inside expressions involving λj is not implied. Each term

of (4.6) and (4.7) is transformed into the σ-coordinate system by multiplying by D and

using (4.9) and (4.10) as

D
∂ψ

∂x∗j
= D

∂ψ

∂xj
λj +D

∂ψ

∂σ
σx∗j

=
∂Dψ

∂xj
λj +

(
−
Dxj

D
λj

)
Dψ +

(
σx∗j

)∂Dψ
∂σ

=
∂Dψ

∂xj
λj +

∂σx∗jDψ

∂σ
.

(4.11)

Multiplying (4.7) byD and using (4.11), the momentum equation in conservative

form can be written as

∂Dumi
∂t

+
∂Dumi u

m
j

∂xj
λj +

∂

∂σ

(
D
[
σt∗ + σx∗ju

m
j

]
umi

)
=

1

ρ0

∂D
[
S s
ij + S d

ij

]
∂xj

λj +
1

ρ0

∂

∂σ

(
Dσx∗j

[
S s
ij + S d

ij

])
+D

ρm

ρ0

giδi3,

(4.12)

where the total ensemble-averaged mixture stress tensor, S m
ij = S d

ij+S s
ij, is written as

a combination of the static stress due to the hydrostatic pressure S s
ij, and the dynamic

stress due to the fluid motion S d
ij, given by

S s
ij = −psδij

S d
ij = S m

ij −S s
ij = −

(
pd +

1

3
τmkk

)
δij + 2ρ0(νeff )j e

m
ij ,

(4.13)

where (νeff )n = νm + (νmt )n, n = 1, 2, 3. Here, the total mixture pressure is divided
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into the dynamic pressure pd = pm − ph, and the hydrostatic pressure given by

∂ph

∂σ
= −Dρmg, (4.14)

where g3 = −g and, thus,

ph =gD

∫ 1

σ

[
ρ0 + (ρm − ρ0) dσ

]
+ ph

∣∣∣
σ=1

=ρ0gD(1− σ) + phbar + ph
∣∣∣
σ=1

,

(4.15)

where phbar = gD
∫ 1

σ
(ρm − ρ0) dσ is the hydrostatic barocilinic pressure due to the non-

constant density field, and ph
∣∣∣
σ=1

is the hydrostatic pressure at the free surface.

We want to make sure that, in a case of no fluid motion, the source terms due

to S s
ij in the horizontal directions are zero, producing no artificial motions. To obtain

an appropriate form of (4.12) to satisfy this property, typically referred as the “well-

balanced” form of the momentum equation (Rogers et al. 2003), the right hand-side

terms due to S s
ij can be rewritten as

1

ρ0

∂DS s
ij

∂xj
λj =

{
− 1

ρ0

∂Dphbar
∂xj

− D

ρ0

(∂ph
∂xj

∣∣
σ=1

+ ρ0g(1− σ)Dxj

)
−
Dxj

ρ0

(
ph
∣∣
σ=1

+ ρ0gD(1− σ)
)}

λjδij

1

ρ0

∂

∂σ

(
Dσx∗jS

s
ij

)
=−Dρ

m

ρ0

giδi3 −
1

ρ0

∂Dphbarσx∗j
∂σ

λjδij

+

{
Dxj

ρ0

(
ph
∣∣
σ=1

+ ρ0gD(1− σ)
)

+
dxj − σDxj

ρ0

ρ0gD

}
λjδij.

(4.16)
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Thus the summation of the hydrostatic terms and the body force becomes

1

ρ0

{
∂DS s

ij

∂xj
λj +

∂Dσx∗jS
s
ij

∂σ

}
+D

ρm

ρ0

giδi3 = − 1

ρ0

{
∂Dphbar
∂xi

+
∂Dphbarσx∗i

∂σ

}
λi{

− D

ρ0

∂ph

∂xi

∣∣
σ=1

+ g〈η〉dxi
}
λi −

∂

∂xj

(
gd〈η〉+ g〈η2〉/2

)
λjδij.

(4.17)

Keeping the first two terms as source terms, the conservative well-balanced form

of the momentum equation in the σ-coordinate system reads as

∂Ui
∂t

+
∂

∂xj

(
UiUj/D +

[
gd〈η〉+ g〈η〉2/2

]
δij

)
λj +

∂UiΩ/D

∂σ
=

− 1

ρ0

{
D
∂ph

∂xi

∣∣
σ=1
− ρ0g〈η〉dxi

}
λi (barotropic pressure terms)

− 1

ρ0

{
∂Pbar

∂xi
+
∂σx∗iPbar

∂σ

}
λj (baroclinic pressure terms)

− 1

ρ0

{
∂P

∂xi
λi +

∂σx∗iP

∂σ

}
(dynamic pressure terms)

+
∂ 2(νeff )jEij

∂xj
λj +

∂ 2σx∗j (νeff )jEij

∂σ
(diffusion terms),

(4.18)

where

Ui = Dumi

Ω = D
(
σt∗ + σx∗ju

m
j

)
= Dσt∗ + σx∗jUj

Pbar = Dphbar

P = D
(
pd +

1

3
τmkk

)
= D

(
pd +

2

3
ρ0k
)

Eij = Demij =
1

2

{
∂Ui
∂xj

λj +
∂Uj
∂xi

λi +
∂

∂σ

(
σx∗jUi + σx∗iUj

)}
.

(4.19)

and k is the ensemble-averaged turbulent kinetic energy.

Multiplying (4.6) by D and using (4.11), we have

D
∂umj
∂x∗j

=
∂Uj
∂xj

λj +
∂σx∗jUj

∂σ
=
∂Uj
∂xj

λj +
∂
(
Ω−Dσt∗

)
∂σ

(4.20)
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Using (4.10), the continuity equation in the σ coordinates can be written as

∂D

∂t
+
∂U

∂x
+
∂V

∂y
+
∂Ω

∂σ
= 0 (4.21)

Assuming a dilute suspension regime (void fractions less than 0.1) and particles

with a small Stokes number (less than 0.2), the velocity of the dispersed phases, then,

are obtained by simply adding their settling/rising velocity to the liquid phase velocity

(see Balachandar & Eaton 2010, for more details). The dispersed phase void fractions

are obtained from the scalar transport equation as given in the following.

4.3.2 Scalar Transport Equation

The scalar transport equation for a ensemble-averaged passive scalar, 〈c〉, in

Cartesian coordinates reads as

∂〈c〉
∂t∗

+
∂

∂x∗j

([
umj + wcδ3j

]
〈c〉
)

=
∂

∂x∗j

(
νj
∂〈c〉
∂x∗j

)
+ Γ〈c〉, (4.22)

where νn = νm + (νmt /σ〈c〉)n, and σ〈c〉 is the corresponding Schimdt number. Here, Γ〈c〉

represents the associated source/sink terms for 〈c〉, and wc is a settling or rising velocity

of 〈c〉, equal to zero for a neutrally buoyant quantity. Doing the same procedure as we

did for the transformation of the momentum equation, i.e., multiplying (4.22) by D and

using (4.11), the conservative form of the scalar transport equation in the σ-coordinate

system can be written as

∂C

∂t
+
∂CUj/D

∂xj
λj +

∂

∂σ

(
C
[
Ω/D + σx∗jwcδ3j

])
=

+
∂νjDj

∂xj
λj +

∂σx∗j νjDj

∂σ
+DΓ〈c〉.

(4.23)

87



where

C = D〈c〉

Dj =
∂C

∂xj
λj +

∂σx∗jC

∂σ
.

(4.24)

In the case of negligibly small surface and bottom slopes (∇hd and ∇h〈η〉 ≈ 0),

equation (4.23) simplifies to those given in Ma, Kirby & Shi (2013), Ma, Chou & Shi

(2014).

4.3.3 Turbulence Model

An appropriate turbulence model is needed to estimate νmt as well as to provide

the bulk turbulence statistics such as the ensemble-averaged turbulent kinetic energy

and dissipation rate. In many numerical approaches, depending on the grid size in

the vertical and horizontal directions, the corresponding eddy viscosity for the vertical,

νvt = (νmt )3, and horizontal, νht = (νmt )1,2, directions may not be of the same order.

Here, we assume the more physically reasonable formulation νmt = νvt = νht .

The Smagorinsky subgrid and k−ε models are commonly used turbulence mod-

els, depending on the grid resolution. The constant Smagorinsky model reads as

νmt =
(cs∆)2

D

√
2EijEij, (4.25)

where ∆ is the length scale on the order of the grid size, and cs ∼ 0.1 − 0.2 is the

only input parameter. Having relatively larger grid sizes, which is usually the case in

non-hydrostatic modeling using a few vertical levels, a k− ε turbulence model is more

appropriate to estimating νmt as below

νmt = cµ
k2

ε
= cµ

K2

DE
, (4.26)

where cµ is an empirical coefficient, k is the ensemble-averaged turbulent kinetic energy,

and ε is the ensemble-averaged turbulent dissipation rate. To obtain K = Dk and
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E = Dε, their transport equations need to be solved. Using (4.23) and replacing C by

K and E , we can write

∂K
∂t

+
∂KUj/D
∂xj

λj +
∂KΩ/D

∂σ
=

∂

∂xj

(
νK
[ ∂K
∂xj

λj +
∂σx∗jK
∂σ

])
λj

+
∂

∂σ

(
νKσx∗j

[ ∂K
∂xj

λj +
∂σx∗jK
∂σ

])
+ Ps + Pρ − E ,

(4.27)

and

∂E
∂t

+
∂EUj/D
∂xj

λj +
∂EΩ/D

∂σ
=

∂

∂xj

(
νE
[ ∂E
∂xj

λj +
∂σx∗jE
∂σ

])
λj

+
∂

∂σ

(
νEσx∗j

[ ∂E
∂xj

λj +
∂σx∗jE
∂σ

])
+
E
K
[
c1E(Ps + c3EPρ)− c2EE

]
,

(4.28)

where νK = ν + νt/σK, νE = ν + νt/σE , and c3E = 0 as in Ma, Kirby & Shi (2013). In

the standard k − ε model (Rodi 1980) we have,

cµ = 0.09, c1E = 1.44, c2E = 1.92, σK = 1.0, σE = 1.3. (4.29)

Using the RNG approach with scale expansions for the Reynolds stress and production

of dissipation terms, Yakhot et al. (1992) derived a dynamic procedure to determine

c2E as

c2E = 1.68 +
cµζ

3(1− ζ/4.38)

1 + 0.012ζ3
, (4.30)

where ζ = K
DE

√
2EijEij is the ratio of the turbulent and mean strain time scales. The

rest of the closure coefficients are given by

cµ = 0.085, c1E = 1.42, σK = 0.72, σE = 0.72. (4.31)
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Finally, the rate of shear, Ps, and buoyancy, Pρ, production rates are given by

Ps = −τmij
[∂Ui
∂xj

λj +
∂σx∗jUi

∂σ

]
, Pρ = cµ

K2

DE
g

ρ0

∂ρm
∂σ

(4.32)

where the Reynolds stress τmij may be estimated using a linear model given by (4.5) or

a nonlinear model, (Lin & Liu 1998, Ma, Kirby & Shi 2013), given by

τmij
ρm

=− 2Cd
K2

D2E
Eij +

2K
3D

δij

− C1
K3

DE2

(
∂umi
∂x∗l

∂uml
∂x∗j

+
∂umj
∂x∗l

∂uml
∂x∗i
− 2

3

∂uml
∂x∗k

∂umk
∂x∗l

δij

)
− C2

K3

DE2

(
∂umi
∂x∗k

∂umj
∂x∗k
− 1

3

∂uml
∂x∗k

∂uml
∂x∗k

δij

)
− C3

K3

DE2

(
∂umk
∂x∗i

∂umk
∂x∗j
− 1

3

∂uml
∂x∗k

∂uml
∂x∗k

δij

)
(4.33)

Cd, C1, C2 and C3 are empirical coefficients as given by Lin & Liu (1998)

Cd =
2

3

(
1

7.4 + 2Smax

)
, C1 =

1

185.2 + 3D2
max

C2 = − 1

58.5 + 2D2
max

, C3 =
1

370.4 + 3D2
max

(4.34)

where

Smax =
K
E
max

{∣∣∣∣∂umi∂x∗i

∣∣∣∣} (indices not summed)

Dmax =
K
E
max

{∣∣∣∣∂umi∂x∗j

∣∣∣∣} (4.35)

The above coefficients ensure the non-negativity of turbulent kinetic energy and bounded

Reynolds stress.

Additional source terms for both of K and E equations may be considered to

account for bubble-induced turbulent and/or dissipation, as discussed in Ma et al.

(2011).
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4.4 Surface and Bottom Boundary Conditions

The free surface and the bottom may be expressed as F = z∗ − ξ = 0 where

ξ = 〈η〉 at the free surface (σ = 1), and ξ = −d at the bottom (σ = 0). We define

the local coordinate system (x′1,x
′
2,x

′
3), such that x′3 is the normal to F = 0 pointing

outward, given by

x′3 =
∇F
|F |

=
1

A
(−ξx∗1 , −ξx∗2 , 1) =

1

A
(−ξx , −ξy , 1), (4.36)

where A = |F | =
√

1 + ξ2
x + ξ2

y . The other two unit vectors can be any orthogonal pair

of vectors (x′1 · x′2 = 0) in the plane tangent to the F = 0 surface. Here, we choose

x′1 =
1

B
(1 , 0 , ξx), B =

√
1 + ξ2

x

x′2 = x′3 × x′1 =
1

AB
(−ξxξy , 1 + ξ2

x , ξy)
(4.37)

The transformation of any vector, ϕ, in the Cartesian coordinates into the local

coordinates, ϕ′, on F = 0 is given by

ϕ′j = Cijϕi, C =


1
B

−ξxξy
AB

−ξx
A

0 1+ξ2x
AB

−ξy
A

ξx
B

ξy
AB

1
A

 , (4.38)

where Cij is the cosine of the angle between the x∗i and x′j axes. In addition, the

transformation of any tensor in Cartesian coordinates into the local coordinates on

F = 0 is given by

ϕ′mn = CimCjnϕij. (4.39)

4.4.1 Kinematic Boundary Conditions

Assuming no mass flux at the interface, a particle initially on the interface will

remain on the interface in which we can write DF/Dt∗ = ∂F/∂t∗ + 〈umj 〉∂F/∂x∗j = 0.
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Thus, the kinematic surface and bottom boundary conditions in the σ coordinates are

simply written as

W
∣∣∣
σ=0,1

= Dξt + ξxU
∣∣∣
σ=0,1

+ ξyV
∣∣∣
σ=0,1

(4.40)

where ξ = 〈η〉 at the free surface (σ = 1), and ξ = −d at the bottom (σ = 0). Because

σt∗
∣∣∣
σ=0,1

= −ξt/D, σx∗1

∣∣∣
σ=0,1

= −ξx/D, and σx∗2

∣∣∣
σ=0,1

= −ξy/D, we have

Ω
∣∣∣
σ=0,1

= Dσt∗
∣∣∣
σ=0,1

+ σx∗j

∣∣∣
σ=0,1

Uj

∣∣∣
σ=0,1

= −ξt −
ξx
D
U
∣∣∣
σ=0,1

− ξy
D
V
∣∣∣
σ=0,1

+
1

D
W
∣∣∣
σ=0,1

= 0

∂Ω

∂σ

∣∣∣
σ=0,1

= −ξx
D

∂U

∂σ

∣∣∣
σ=0,1

− ξy
D

∂V

∂σ

∣∣∣
σ=0,1

+
1

D

∂W

∂σ

∣∣∣
σ=0,1

= 0 .

(4.41)

meaning that in the σ coordinates, the surface and bottom vertical velocity as well as

vertical acceleration are always zero.

4.4.2 Tangential Stress Boundary Conditions

Using (4.39), the transformed total stress on F = 0 is given by

S ′
3i

∣∣∣
σ=0,1

= Cji

(
− ξx
A

S1j −
ξy
A

S2j +
1

A
S3j

)∣∣∣
σ=0,1

, (4.42)

where Sij = S pδij + S v
ij is the total mixture stress including the pressure, S p =

−
(
ph + P/D

)
, and viscous stress S v

ij = 2ρ0(νeff )j
(
Eij/D

)
contributions. Thus, the
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components of the total stress tensor (S ′
31,S

′
32,S

′
33) on F = 0 are given by

S ′
31

∣∣∣
σ=0,1

=
1

AB

{
− ξx

[
S11 −S33

]
+
[
1− ξ2

x

]
S13 − ξy

[
S12 + ξxS23

]}
σ=0,1

S ′
32

∣∣∣
σ=0,1

=
1

A2B

{
ξy
[
ξx

2S11 − (1 + ξx
2)S22 + S33

]
+
[
1 + ξx

2 − ξ2
y

]
S23

− ξx
[
(1 + ξx

2 − ξ2
y)S12 + 2ξyS13

]}
σ=0,1

=− ξxξy
A

S ′
31

∣∣∣
σ=0,1

+
B

A2

{
− ξy

[
S22 −S33

]
+
[
1− ξ2

y

]
S23

− ξx
[
S12 + ξyS13

]}
σ=0,1

S ′
33

∣∣∣
σ=0,1

=
1

A2

{
ξx

2S11 + ξy
2S22 + S33 + 2ξxξyS12 − 2ξxS13 − 2ξyS23

}
σ=0,1

.

(4.43)

The coefficients of the normal stress components sum to zero in S ′
31

∣∣∣
σ=0,1

and S ′
32

∣∣∣
σ=0,1

and, thus, there are no pressure contribution in the tangential stresses on F = 0. We

remark that, the apparent lack of symmetry in S ′
31

∣∣∣
σ=0,1

and S ′
32

∣∣∣
σ=0,1

is because of our

arbitrary choice of x′1,x
′
2 in the local coordinate system. However, the corresponding

equations for the continuity of the tangential stress in the global Cartesian coordinate,

e.g., (4.45) and (4.49) for σ = 1, are completely symmetric.

If the state of stress in the external media is available, the continuity of the

tangential stress on F = 0 reads as

S ′
31

∣∣∣
σ=0,1

= S ′
31
ext
∣∣∣
σ=0,1

, S ′
32

∣∣∣
σ=0,1

= S ′
32
ext
∣∣∣
σ=0,1

, (4.44)

where S ′
3i
ext
∣∣
σ=0,1

is the external stress on F = 0 in the i direction, e.g., the wind

stress parallel to the free surface or the bottom shear stress, where ( )′ represent the

local coordinate system given by (4.36). However, if the external media is assumed to

be rigid, S ′
3i
ext
∣∣
σ=0,1

is replaced by the estimated shear stress near the rigid boundary.

Multiplying (4.44) by D and using (4.43), and assuming the same turbulent
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eddy viscosity in all directions, (νeff )n = νeff , (n = 1, 2, 3) on F = 0, we obtain

−ξx
[
E11 − E33

]
+
[
1− ξ2

x

]
E13 − ξy

[
E12 + ξxE23

]
=

AD

2ρ0νeff
F ext1

∣∣∣∣
σ=0,1

−ξy
[
E22 − E33

]
+
[
1− ξ2

y

]
E23 − ξx

[
E12 + ξyE13

]
=

AD

2ρ0νeff
F ext2

∣∣∣∣
σ=0,1

,

(4.45)

where

F ext1 = BS ′
31
ext

F ext2 =
ξxξy
B

S ′
31
ext

+
A

B
S ′

32
ext
.

(4.46)

Rearranging (4.45), the condition of continuity of the tangential stress on F = 0 finally

gives

∂U

∂σ

∣∣∣
σ=0,1

=
D2

Aρ0νeff
F ext1

∣∣∣
σ=0,1

− ξx
∂W

∂σ

∣∣∣
σ=0,1

+
D

A2

{
2ξx(U)x −

[
1− ξ2

x

]
(W )x + ξy

[
(U)y + (V )x + ξx(W )y

]}
σ=0,1

∂V

∂σ

∣∣∣
σ=0,1

=
D2

Aρ0νeff
F ext2

∣∣∣
σ=0,1

− ξy
∂W

∂σ

∣∣∣
σ=0,1

+
D

A2

{
2ξy(V )y −

[
1− ξ2

y

]
(W )y + ξx

[
(V )x + (U)y + ξy(W )x

]}
σ=0,1

,

(4.47)

where

(Ui)x = ∂Ui/∂x− UiDx/D = D
∂umi
∂x

(Ui)y = ∂Ui/∂y − UiDy/D = D
∂umi
∂y

.
(4.48)

The tangential stress at σ = 1, which represents the ensemble-averaged free-

surface location, is a combination of the wind-induced shear stress and the Reynolds-

type stress in the case of the existence of high turbulence near the free surface such as

in the bore-front region (see, for more details, Brocchini & Peregrine 2001, §5). If we
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only consider the wind stress and ignore the latter, using (4.43) we have

F ext1

∣∣∣
σ=1

=
1

A

{
(1− ξ2

x)τwx − ξxξyτwy
}

F ext2

∣∣∣
σ=1

=
1

A

{
(1− ξ2

y)τwy − ξxξyτwx
}
,

(4.49)

where τwx and τwy are the wind stresses at the x and y directions, respectively. In the

case of negligibly small wind speeds, F ext1 |σ=1 = F ext2 |σ=1 = 0.

At the bottom, the external shear stress parallel to the bottom, or bottom stress,

can be estimated from the law of the wall as

S ′
31
ext
∣∣∣
σ=0
≈ ρ0u

2
∗
U ′

U ′b
, S ′

32
ext
∣∣∣
σ=0
≈ ρ0u

2
∗
V ′

U ′b
(4.50)

where U ′b =
√
U ′2 + V ′2

∣∣∣
σ=∆σ1/2

is the magnitude of velocity parallel to the bed at the

first grid cell above the bed. Using (4.38), U ′ and V ′, the horizontal velocities (velocity

times D) parallel to the bed, are given by

U ′ = Cj1Uj =
1

B

(
U − dxW

)∣∣∣
σ=∆σ1/2

V ′ = Cj2Uj =
1

AB

(
− dxdyU +

[
1 + d2

x

]
V − dyW

)∣∣∣
σ=∆σ1/2

,
(4.51)

and u∗ is the friction velocity given by

u∗ =
κβU ′b

D ln
(
zb/z0

) (4.52)

where κ = 0.41 is the Van Karman constant, β ≤ 1 represents the stratification effects

in the bottom boundary layer. Here, zb and z0 are the distances from the bed at which

the ensemble-averaged velocities parallel to the bed are assumed to be U ′b/D and zero

respectively, depending on the boundary layer characteristics as well as the roughness

length-scale, ks. For a fully rough turbulent boundary layer, it is typically assumed

that z0 = ks/30.
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4.4.3 Normal Stress Boundary Condition

If the state of stress in the external media is available, the continuity of the

normal stress reads as

DS ′
33

∣∣∣
σ=0,1

=

{
−
(
Dph + P

)
+

2ρ0νeff
A2

(
ξ2
xE11 + ξ2

yE22 + E33

+ 2ξxξyE12 − 2ξxE13 − 2ξyE23

)}
σ=0,1

= DS ′
33

∣∣∣ext
σ=0,1

.

(4.53)

where the normal stress in the local coordinate, S ′
33

∣∣∣
σ=0,1

, is obtained using (4.42).

Rearranging (4.53), we have

P
∣∣∣
σ=0,1

= −D
(
ph
∣∣∣
σ=0,1

+ S ′
33

∣∣∣ext
σ=0,1

)
− ρ0νeff

A2

{
2ξx
[
(W )x − ξx(U)x

]
+ 2ξy

[
(W )y − ξy(V )y

]
− 2ξxξy

[
(U)y + (V )x

]}
σ=0,1

(4.54)

Neglecting viscous stresses in the air side, we have S ′
33

∣∣∣ext
σ=1

= −patm on the free surface.

The atmospheric pressure, patm, can be absorbed in the hydrostatic pressure term as

ph
∣∣∣
σ=1

= patm. Thus, the Dirichlet-type boundary condition for the modified dynamic

pressure reads as

P
∣∣∣
σ=1

= −
ρ0νeff

∣∣
σ=1

A2

{
2ξx
[
(W )x − ξx(U)x

]
+ 2ξy

[
(W )y − ξy(V )y

]
− 2ξxξy

[
(U)y + (V )x

]}
σ=1

.

(4.55)

At the bottom, however, such a relation can not be applied unless the bottom is a

dynamically coupled layer. In the case of a rigid bottom, using the vertical momentum

equation we can write

∂P

∂σ

∣∣∣
σ=0

=−Dρ0

{
∂W

∂t
+
∂WU/D

∂x
+
∂WV/D

∂y
+
∂WΩ/D

∂σ

}
σ=0

+Dρ0

{
∂ 2(νeff )jE3j

∂xj
λj +

∂ 2σx∗j (νeff )jE3j

∂σ

}
σ=0

.

(4.56)
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Neglecting the Reynolds stress gradients at the bottom and using (4.41), a Neumann-

type boundary condition for the modified dynamic pressure at the bottom reads as

∂P

∂σ

∣∣∣
σ=0

=−Dρ0

{
∂W

∂t
+
∂WU/D

∂x
+
∂WV/D

∂y

}
σ=0

. (4.57)

4.4.4 Neumann-type Boundary Condition for a Scalar Quantity

The Neumann boundary condition for a scalar quantity, 〈c〉, normal to the

interface, F = 0, may be expressed as

∂〈c〉
∂x′3

∣∣∣
σ=0,1

= 〈f〉
∣∣∣
σ=0,1

, (4.58)

where 〈f〉
∣∣∣
σ=0,1

represent the corresponding ensemble-averaged flux of 〈c〉 across the in-

terface. In the case of 〈f〉
∣∣∣
σ=0,1

= 0, (4.58) is called a zero-gradient boundary condition

for 〈c〉 on the interface, commonly used for passive scalars such as salinity, the turbu-

lent kinetic energy, and dissipation rate. Multiplying (4.58) by D and using (4.36), we

have

D
∂〈c〉
∂x′3

∣∣∣
σ=0,1

= D(∇〈c〉)
∣∣∣
σ=0,1

· x′3 = D
∂〈c〉
∂x∗j

∣∣∣
σ=0,1

x′3j = F
∣∣∣
σ=0,1

. (4.59)

where F
∣∣∣
σ=0,1

= D〈f〉
∣∣∣
σ=0,1

. Using (4.11), the Neumann-type boundary condition for

C = D〈c〉 normal to the interface on F = 0 can be written as

∂C

∂σ

∣∣∣
σ=0,1

=

{
D

A
F +

D2

A2

(
ξx
∂C /D

∂x
+ ξy

∂C /D

∂y

)}
σ=0,1

, (4.60)

As mentioned, A =
√

1 + ξ2
x + ξ2

y , and ξ = 〈η〉 at the free surface (σ = 1), and ξ = −d

at the bottom (σ = 0).
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4.4.5 Boundary Conditions for K and E

Here, σ = 1 represents the ensemble-averaged free-surface location, suggesting

that a zero-tangential stress and zero-gradient flux for the turbulent kinetic energy

may not be accurate in the bore-front region, due to highly turbulent two-phase air-

water mixture (Brocchini & Peregrine 2001, §5). In the present study, however, a

zero-gradient boundary condition, F = 0, is imposed for both K and E using (4.60).

The Dirichlet-type boundary conditions for both K and E is used near the

bottom, given by

Kb = D
u2
∗√
cµ
, Eb = D

u3
∗

κzb
(4.61)

where κ is the Von Karman constant, zb is the distance from the bed, and u∗ is a

friction velocity given by (4.52). Strictly speaking, this is based on the mixing length

assumption and the simplified k-equation (turbulence production equals to dissipation)

for a steady boundary layer.

4.5 Numerical Method

To solve the momentum equation (4.18), an intermediate velocity field U∗ is

first obtained by neglecting the dynamic pressure effects as

U∗ −Un

∆t
− S∗τ2 = −

{
∂F

∂x
+
∂G

∂y
+
∂H

∂σ

}n
+

{
Sph + SPbar

+ Sτ1

}n
(4.62)

and, then, the dynamic pressure effects are considered as

Un′ −U∗

∆t
= Sn

′

P , (4.63)

As in Ma et al. (2012), the two-stage second-order Runge-Kutta scheme is used, in

which (4.62) and (4.63) are solved two times at each time step. The final velocity field

at the new time level, n+ 1, is given by

Un+1 =
1

2
Un +

1

2
Un′′ , (4.64)
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where n′ and n′′ indicate the first and second Runge-Kutta stage. The fluxes, source

terms and pressure terms in (4.62) and (4.63) are given by

F =


UU
D

+ 1
2
g〈η〉2 + gd〈η〉
UV
D

UW
D

 G =


UV
D

V V
D

+ 1
2
g〈η〉2 + gd〈η〉
VW
D



H =


UΩ
D

V Ω
D

WΩ
D

Sph =


−D
ρ0

∂phσ=1

∂x
+ g〈η〉 ∂d

∂x

−D
ρ0

∂phσ=1

∂y
+ g〈η〉∂d

∂y

0

 Sτ1 =


Sτ1x

Sτ1y

Sτ1σ



Sτ2 =


∂
∂σ

(
νheff

[
2σx∗

∂σx∗U
∂σ

+ σy∗
∂σy∗U

∂σ

]
+ νveff

[
1
D2

∂U
∂σ

])
∂
∂σ

(
νheff

[
σx∗

∂σx∗V
∂σ

+ 2σy∗
∂σy∗V

∂σ

]
+ νveff

[
1
D2

∂V
∂σ

])
∂
∂σ

(
νheff

[
σx∗

∂σx∗W
∂σ

+ σy∗
∂σy∗W

∂σ

]
+ νveff

[
2
D2

∂W
∂σ

])


SPbar
=


−1
ρ0

(
∂Pbar

∂x
+ ∂σx∗Pbar

∂σ

)
−1
ρ0

(
∂Pbar

∂y
+

∂σy∗Pbar

∂σ

)
0

 SP =


−1
ρ0

(
∂P
∂x

+ ∂σx∗P
∂σ

)
−1
ρ0

(
∂P
∂y

+
∂σy∗P

∂σ

)
−1
ρ0D

∂P
∂σ



(4.65)

and

Sτ1x =
∂

∂x

(
νheff

[
2
∂U

∂x
+ 2

∂σx∗U

∂σ

])
+

∂

∂y

(
νheff

[∂U
∂y

+
∂V

∂x
+
∂σy∗U + σx∗V

∂σ

])
+

∂

∂σ

(
νheff

[
2σx∗

∂U

∂x
+ σy∗(

∂U

∂y
+
∂V

∂x
+
∂σx∗V

∂σ
)
]

+
νveff
D

[∂W
∂x

+
∂σx∗W

∂σ

])
Sτ1y =

∂

∂y

(
νheff

[
2
∂V

∂y
+ 2

∂σy∗V

∂σ

])
+

∂

∂x

(
νheff

[∂V
∂x

+
∂U

∂y
+
∂σx∗V + σy∗U

∂σ

])
+

∂

∂σ

(
νheff

[
2σy∗

∂V

∂y
+ σx∗(

∂V

∂x
+
∂U

∂y
+
∂σy∗U

∂σ
)
]

+
νveff
D

[∂W
∂y

+
∂σy∗W

∂σ

])
Sτ1σ =

∂

∂x

(
νheff

[∂W
∂x

+
∂σx∗W + U/D

∂σ

])
+

∂

∂y

(
νheff

[∂W
∂y

+
∂σy∗W + V/D

∂σ

])
+

∂

∂σ

(
νheff

[
σx∗
[∂W
∂x

+
1

D

∂U

∂σ

]
+ σy∗(

∂W

∂y
+

1

D

∂V

∂σ
)
])
.

(4.66)
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In addition, D∗ is obtained using the integrated form of (4.21) as,

D∗ = D −∆t
(∂ ∫ 1

0
Udσ

∂x
+
∂
∫ 1

0
V dσ

∂y

)
. (4.67)

The fluxes, F,G,H, in (4.62) are obtained using the second-order shock-capturing

Godunov-type Finite-volume scheme using HLLC Reiman solver as described in Ma,

Kirby & Shi (2013). The source terms are calculated using centered second-order finite-

difference schemes. The 3-point finite-difference approximation for a non-uniform grid

(see F for the details) is used for terms with a gradient in the σ direction. Both the

fluxes and source terms are obtained using the values at the previous time stage. In

§4.1, we present the details of the scheme for calculating hydrostatic velocity field at

the intermediate time stage ()∗, following by the implicit non-hydrostatic velocity cor-

rection to satisfy divergence free condition for the velocity field in §4.2. In §4.3 the

truncation error of different terms are presented.

4.5.1 Hydrostatic Velocity Calculation

There is no horizontal gradient involved in S∗τ2, and, thus, by applying (F.11) it

can be discretized using U∗i,j,k−1,U
∗
i,j,k and U∗i,j,k+1, where k = 2, ..., K − 1, where K is

the number of the vertical levels, as

AkU
∗
i,j,k−1 + BkU

∗
i,j,k + CkU

∗
i,j,k+1 = Un

i,j,k + ∆t RU∗

∣∣∣ n
i,j,k

, (4.68)
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where

Ak = −∆t

{
αc

∆σk

(
Γk−1
k+ 1

2

− Γk−1
k− 1

2

)
+

Γk−1
k+ 1

2

+ Γk−1
k− 1

2

∆σck−1(∆σck−1 + ∆σck)

}
Bk = 1−∆t

{
βc

∆σk

(
Γk
k+ 1

2
− Γk

k− 1
2

)
−

Γk
k+ 1

2

+ Γk
k− 1

2

∆σck−1∆σck

}

Ck = −∆t

{
γc

∆σk

(
Γk+1
k+ 1

2

− Γk+1
k− 1

2

)
+

Γk+1
k+ 1

2

+ Γk+1
k− 1

2

∆σck(∆σ
c
k−1 + ∆σck)

}
RU∗

∣∣∣ n
i,j,k

= −
{
∂F

∂x
+
∂G

∂y
+
∂H

∂σ

}n
i,j,k

+

{
Sph + SPbar

+ Sτ1

}n
i,j,k

ΓΘ
θ =


νhθ

{
2(σx∗)θ(σx∗)Θ + (σy∗)θ(σy∗)Θ

}
+ νvθ

1
D2

νhθ

{
(σx∗)θ(σx∗)Θ + 2(σy∗)θ(σy∗)Θ

}
+ νvθ

1
D2

νhθ

{
(σx∗)θ(σx∗)Θ + (σy∗)θ(σy∗)Θ

}
+ νvθ

2
D2

 ,

(4.69)

where the horizontal indices of all terms are i, j, and, ∆σck−1 = (∆σk + ∆σk−1)/2,

∆σck = (∆σk+1 + ∆σk)/2, ∆σk−1 = σk − σk−1, ∆σk = σk+1 − σk, and

αc =
−∆σck

∆σck−1(∆σck−1 + ∆σck)

βc =
∆σck −∆σck−1

∆σck−1∆σck

γc =
∆σck−1

∆σck(∆σ
c
k−1 + ∆σck)

.

(4.70)
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For the top layer, k = K, we use U∗i,j,K−1,U
∗
i,j,K and U∗i,j,top, where the coeffi-

cients and right-hand side of (4.57) are given by

AK =−∆t

{ 3
2
Γk−1
K− 1

2

∆σcK−1(∆σcK−1 + ∆σK
2

)

}

BK =1−∆t

{
−

(3
2
−∆σcK−1/∆σK)Γk

K− 1
2

∆σcK−1
∆σK

2

}
CK = 0

RU∗

∣∣∣ n
i,j,K

=−
{
∂F

∂x
+
∂G

∂y
+
∂H

∂σ

}n
i,j,K

+

{
Sph + SPbar

+ Sτ1

}n
i,j,k

+ RU∗

∣∣∣ n
i,j,σ=1

RU∗

∣∣∣ n
i,j,σ=1

=
1

∆σK


{
νh
[
2σx∗σx∗ + σy∗σy∗

]
+ νv 1

D2

}
∂U
∂σ
− νh

{
2σx∗Dx + σy∗Dy

}
U
D{

νh
[
σx∗σx∗ + 2σy∗σy∗

]
+ νv 1

D2

}
∂V
∂σ
− νh

{
σx∗Dx + 2σy∗Dy

}
V
D{

νh
[
σx∗σx∗ + σy∗σy∗

]
+ νv 2

D2

}
∂W
∂σ
− νh

{
σx∗Dx + σy∗Dy

}
W
D


n

i,j,σ=0

+

{(∆σK −∆σcK−1)Γtop

K− 1
2

[∆σK ]2

2
(∆σcK−1 + ∆σK

2
)

}
Uσ=1

(4.71)

and for the bottom layer, k = 1, we use U∗i,j,bot,U
∗
i,j,1 and U∗i,j,2, where the coefficients

and right-hand side of (4.57) are given by

A1 = 0

B1 =1−∆t

{
−

(3
2
−∆σc1/∆σ1)Γ1

1+ 1
2

∆σc1
∆σ1

2

}

C1 =−∆t

{ 3
2
Γ2

1+ 1
2

∆σc1(∆σc1 + ∆σ1
2

)

}
RU∗

∣∣∣ n
i,j,1

=−
{
∂F

∂x
+
∂G

∂y
+
∂H

∂σ

}n
i,j,1

+

{
Sph + SPbar

+ Sτ1

}n
i,j,k

+ RU∗

∣∣∣ n
i,j,σ=0

RU∗

∣∣∣ n
i,j,σ=0

=
−1

∆σ1


{
νh
[
2σx∗σx∗ + σy∗σy∗

]
+ νv 1

D2

}
∂U
∂σ
− νh

{
2σx∗Dx + σy∗Dy

}
U
D{

νh
[
σx∗σx∗ + 2σy∗σy∗

]
+ νv 1

D2

}
∂V
∂σ
− νh

{
σx∗Dx + 2σy∗Dy

}
V
D{

νh
[
σx∗σx∗ + σy∗σy∗

]
+ νv 2

D2

}
∂W
∂σ
− νh

{
σx∗Dx + σy∗Dy

}
W
D


n

i,j,σ=1

+

{(∆σ1 −∆σc1)Γbot
1+ 1

2

[∆σ1]2

2
(∆σc1 + ∆σ1

2
)

}
Uσ=0

(4.72)

and then, U∗i,j,k is obtained (for k = 1, ..., K) using the Thomas algorithm. Finally,

the exact boundary conditions described in §3 are used to obtain the velocities at the
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ghost cells.

4.5.2 Implicit Non-hydrostatic Velocity Correction

The final velocity field at the first Runge-Kutta stage, Un′ = U∗ + ∆tSP ,

is obtained from the intermediate velocity field, U∗, using the following form of the

continuity equation (4.20),

∂Un′

∂x
+
∂V n′

∂y
+

∂

∂σ

[
σx∗U

n′ + σy∗V
n′ +W n′/Dn′

]
= 0

(4.73)

and replacing Un′ by Sn
′

P using (4.63), we have

∂

∂x

(∂Pn′

∂x
+
∂σ∗x∗P

n′

∂σ

)
+

∂

∂y

(∂Pn′

∂y
+
∂σ∗y∗P

n′

∂σ

)
+

∂

∂σ

(
σ∗x∗
[∂Pn′

∂x
+
∂σ∗x∗P

n′

∂σ

]
+ σ∗y∗

[∂Pn′

∂y
+
∂σ∗y∗P

n′

∂σ

]
+

1

D∗2
∂Pn′

∂σ

)
=

ρ0

∆t

(∂U∗
∂x

+
∂V ∗

∂y
+
∂σ∗x∗U

∗ + σ∗y∗V
∗ +W ∗/D∗

∂σ

) (4.74)

where the same process is repeated for the second Runge-Kutta stage, ( )n
′′
. The above

equation is discretized using (F.1), (F.5) as well as the conventional centered difference

scheme for the horizontal gradients. The resulting linear discretized equation, for

k = 1, ..., K, is given by

a1P
n′

i,j−1,k−1 + a2P
n′

i−1,j,k−1 + a3P
n′

i,j,k−1 + a4P
n′

i+1,j,k−1 + a5P
n′

i,j+1,k−1 + a6P
n′

i,j−1,k

+ a7P
n′

i−1,j,k + a8P
n′

i,j,k + a9P
n′

i+1,j,k + a10P
n′

i,j+1,k + a11P
n′

i,j−1,k+1

+ a12P
n′

i−1,j,k+1 + a13P
n′

i,j,k+1 + a14P
n′

i+1,j,k+1 + a15P
n′

i,j+1,k+1

= (R∗P)i,j,k

(4.75)
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where

a1 =
−α
2∆y

(
{σy∗}∗i,j−1,k−1 + {σy∗}∗i,j,k−1

)
a2 =

−α
2∆x

(
{σx∗}∗i−1,j,k−1 + {σx∗}∗i,j,k−1

)
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1
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2
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ρ0

∆t

(∂U∗
∂x

+
∂V ∗

∂y
+
∂σ∗x∗U

∗ + σ∗y∗V
∗ +W ∗/D∗

∂σ
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i,j,k

(4.76)

104



where

α =
−∆σk

∆σk−1(∆σk−1 + ∆σk)

β =
∆σk −∆σk−1

∆σk−1∆σk

γ =
∆σk−1

∆σk(∆σk−1 + ∆σk)

(4.77)

To calculated the right hand-side term, (R∗P)i,j,k, the velocities are interpolated at

the σk level using (E.1). The pressure at the free-surface, PK+1, are obtained using

the Dirichlet boundary condition given by (4.55), and, thus, at k = K, the terms

including PK+1 are moved to the right-hand side. At the bottom, k = 1, the discretized

Neumann boundary condition (4.56) reads as

∂P

∂σ

∣∣∣
i,j,1

=αPi,j,1−1 + βPi,j,1 + γPi,j,1+1 = RHS(4.56)

∣∣∣
i,j,1

. (4.78)

Thus,

Pi,j,1−1 = +
1

α
RHS(4.56)

∣∣∣
i,j,1
− β

α
Pi,j,1 −

γ

α
Pi,j,1+1. (4.79)

and the terms including P1−1 are replaced by using the above equation.

4.5.3 Truncation Error Analysis

Because a uniform grid is used in the horizontal directions, the truncation error

of the first and second horizontal derivatives is on the order of (∆x)2 and (∆y)2 using

the conventional centered difference scheme. In the case of having a non-uniform grid

in the vertical direction, however, the truncation error of the second derivatives with

respect to σ is on the order of ∆σk∆σk−1 and ∆σk−∆σk−1; see F for details. Thus, the

arrangement of the σ levels should be selected such that ∆σk∆σk−1 ≈ ∆σk − ∆σk−1

or |1 − Rk|/Rk ≈ ∆σk−1 where Rk = ∆σk/∆σk−1. For Rk < 1, we should have
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Rk ≈ 1/(1 + σk−1), and, thus, as σk−1 decreases, Rk should be increased, to maintain

second-order accuracy in the vertical direction at the finer vertical levels. The effects

of the vertical grid design on the velocity and dynamic pressure fields will be examined

in a separate paper. In the present study, we always use constant σ levels.

4.6 The Role of Surface Slopes in the Near-surface Velocity and Turbu-

lence Fields

In this section, the new model results of the velocity field under a deep water

standing wave in a closed basin as well as the turbulence field under the surf zone regular

spilling breaking waves have been compared with those predicted by the old model,

Ma et al. (2012). In addition, the evolution of an initial two dimensional Gaussian

hump is presented, showing the new model preserves two-dimensional isotropy in the

horizontal plane.

4.6.1 Standing Wave in a Closed Basin

Using the simplified velocity boundary condition, e.g., ∂u/∂σ = 0, imposes an

unphysical source of vorticity at the free surface in the case of a non-zero horizontal

gradient of the vertical velocity, ∂w/∂x 6= 0, generating an unphysical circulation

pattern. A deep water standing wave in a closed basin, with length of L = 20m and

depth of D = 10m, is selected to examine this effect. The initial surface elevation

is η0 = a cos kx, where k = 2π/L, a = 0.1m is the amplitude of the standing wave

and L is the wave length, equals to the basin’s length. Since kD = π, the wave is

highly dispersive. Based on the linear dispersion relation, the wave period is equal

to T = 5.79s. A uniform grid spacing of 0.2m in the horizontal direction, and 10

constant σ levels are used. The simulation time is 36.0s, about 10 wave periods. To

calculate long-time averaged velocity field, the results are first interpolated into an

Eulerian grid of ∆z = 0.1m and ∆x = 0.2m, and, then, time averaging is performed

over 10 wave periods. Figure 4.1 shows the existence of an unphysical circulation

pattern in the model results using ∂u/∂σ = 0 boundary conditions. Using the linear
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theory, it can be shown that the magnitude of the instantaneous unphysical vorticity

at the free surface is ω(ka). In the deep water regime, it then becomes ag−1T−3, and

increases with increasing wave height or decreasing wave period. In addition, using the

exact boundary conditions, the potential energy loss is decreased compared with the

linearized analytical solution, especially at cases with few vertical levels as shown in

figure 4.2.

4.6.2 Two-dimensional Isotropy Test

In this section, the evolution of an initial two dimensional Gaussian hump,

f(x, y, t = 0) = 0.1e−(x2+y2)/4, in a closed box with the length of 20m and 1m depth

will be presented. Uniform grid of ∆x = ∆y = 0.1m in the horizontal directions, and

the vertical resolution of 2 vertical uniform levels are used. As shown in figures 4.3 and

4.4, the initial surface displacement generates completely circular waves propagating

to the side walls. The reflected waves from the side walls generate a relatively complex

pattern at later times. The results show the new model preserves two-dimensional

isotropy in the horizontal plane very accurately. In other words, the new boundary

conditions and numerical schemes are not biased in the either x and y directions.

4.6.3 Surf zone Regular Breaking Waves

The surf zone regular spilling breaking case of Ting & Kirby (1994) is selected

here, to examine the role of surface slopes on the prediction of ensemble-averaged

turbulent characteristics under surf zone breaking waves. This experiment has been

widely used by other researchers to validate both non-hydrostatic and VOF-based

multilevels coastal numerical models. The details of the model comparisons with the

corresponding measurement are given in Derakhti et al. (2016b). Here, we only present

the comparison between the predicted turbulent kinetic energy, k, field by the new

and old model. Uniform grid of ∆x = 0.025m is used in the horizontal direction. The

vertical resolution of 10 vertical uniform levels is used. At the left inflow boundary,

the free surface location and velocities are calculated using the theoretical relations
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for Cnoidal waves. The right end of the numerical domain is extended beyond the

maximum run-up, and the wetting/drying cells are treated as described in Ma et al.

(2012, §3.4) by setting Dmin = 0.001m. Here, ( ) refers to wave averaging over five

subsequent waves after the results reach the quasi-steady state. The mean see level is

defined as h = d+η, where d is the still water depth and η is the wave set-down/set-up.

As in Ting & Kirby (1994), x = 0 is the cross-shore location in which d = 0.38m , and

x∗ = x− xb is the horizontal distance from the initial break point, xb.

Figure 4.5 shows the turbulent kinetic energy, k, prediction by the new model is

significantly improved compared with that predicted by the old model. The wrong loca-

tion of high k regions predicted by the old model is mainly due to imposing ∂u/∂σ = 0

boundary condition at the free surface, leading to a significantly change of the pro-

duction term at the bore-front region. In addition, the k values predicted by the old

model are much larger than those predicted by the new model. The new model results

are more comparable with the corresponding measurements of Ting & Kirby (1994)

as shown in figure 4.6. Figure 4.6 also shows that the RNG-based k − ε model gives

a better estimation of k compared with the standard k − ε model, especially at the

transition region. In addition, using the complete form of the diffusion terms in both

the momentum and k − ε equations has an important role in the correct prediction of

the k distribution inside the surf zone and prevents the unphysical continuous seaward

propagation of the k patch as observed in the old model results.

4.7 Conclusions

In this paper, we derived a new set of governing equations based on the mixture

theory in the σ-coordinate system, describing the kinematics and dynamics of the

continuous and dispersed phases in a multi-phase mixture, assuming dilute suspension

regime and particles with small Stokes number. The effects of baroclinic pressure and

turbulence modulation due to density variations were considered. The exact surface

and bottom dynamic boundary conditions for the velocity and dynamic pressure fields

were derived, using the continuity of the normal and tangential stresses at the top
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and bottom interfaces. A Neumann-type boundary condition for scalar fluxes was also

derived. A new numerical scheme was implemented for terms with vertical gradients,

preserving second-order accuracy for a general non-uniform vertical grid.

It was shown that the new boundary conditions significantly improved turbulent

kinetic energy prediction under surf zone breaking waves compared with the simplified

stress boundary conditions commonly used in non-hydrostatic studies using the σ-

coordinate system. We found that the RNG-based k−ε model gave a better estimation

of k compared with the standard k − ε model, especially in the transition region.

Further, by comparing the predicted velocity field under a deep water standing wave

in a closed basin, we showed that the new model did not generate unphysical vorticity

at the free surface. The model capability and accuracy to reproduce the evolution of

the free surface, velocity, vorticity, and turbulence fields under different breaking waves

from the surf zone to deep water is examined in detail in a companion paper (Derakhti

et al. 2016b).
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Figure 4.1: Spatial distribution of the long-time-averaged velocity field under a stand-
ing wave in a closed basin. Comparison between NHWAVE results with
10 vertical levels using the (a) exact and (b) old boundary conditions.
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Figure 4.2: Time variation of the normalized wave-averaged potential energy of a
standing wave in a closed basin. Comparison between NHWAVE results
with (circle symbols) 3, (+ symbols) 5 and (diamonds symbols)10 ver-
tical levels using the (solid lines) exact and (dashed lines) old boundary
conditions.
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Figure 4.3: Snapshots of the two-dimensional free surface locations generated by the
evolution of an initial two dimensional Gaussian hump at (a,A) t− t0 =
0.1s, (b, B) t− t0 = 1.5s, and (c, C) t− t0 = 9.9s. (a, b, c) show the plan
view, while (A,B,C) show the corresponding 3d view.
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Figure 4.4: Cross sections of the two-dimensional free surface locations shown in
figure 4.3(b, B), at (solid line) x = 0, (dashed line) y = 0 and (dotted
line) x = y.
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Figure 4.5: Snapshots of the turbulent kinetic energy, k(m2/s2), distributions un-
der the spilling periodic surf zone breaking waves. Comparison between
NHWAVE results with 10 vertical levels using the (a−e) new and (A−E)
old model. Here, x = 0 corresponds to the cross-shore location at which
d = 0.38 as in Ting & Kirby (1994).
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Figure 4.6: Time-averaged normalized turbulent kinetic energy,
√
k/gh, profiles at

different cross-shore locations under the spilling periodic surf zone break-
ing waves. Comparison between NHWAVE results with 10 vertical levels
using the new model with (solid lines) RNG-based, (dotted-dashed lines)
standard k − ε and (dashed lines) the old model. Here, x∗ = x − xb, is
the horizontal distance from the break point; and h = d + η, where d is
the still water depth and η is the wave set-up/set-down.
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Chapter 5

WAVE BREAKING IN THE SURF ZONE AND DEEP WATER IN A
NON-HYDROSTATIC MODEL

5.1 Abstract

We examine wave-breaking predictions ranging from shallow to deep water con-

ditions using a non-hydrostatic model NHWAVE (Ma et al. 2012, Derakhti et al.

2016a), comparing results both with corresponding experiments and with the results

of a volume-of-fluid (VOF)/Navier-Stokes solver (Ma et al. 2011, Derakhti & Kirby

2014b,a). Our study includes regular and irregular depth-limited breaking waves on

planar and barred beaches as well as steepness-limited unsteady breaking waves in in-

termediate and deep water. Results show that the model accurately resolves breaking

wave properties in terms of (1) time-dependent free-surface and velocity field evolu-

tion, (2) integral breaking-induced dissipation, (3) second- and third-order wave statis-

tics, (4) time-averaged breaking-induced velocity field, and (5) turbulence statistics

in depth-limited breaking waves both on planar and barred beaches. The breaking-

induced dissipation is mainly captured by the k − ε turbulence model and involves

no ad-hoc treatment, such as imposing hydrostatic conditions. In steepness-limited

unsteady breaking waves, the turbulence model has not been triggered, and all the

dissipation is imposed indirectly by the TVD shock-capturing scheme. Although the

absence of turbulence in the steepness-limited unsteady breaking events which leads to

the underestimation of the total breaking-induced dissipation, and, thus, the overpre-

diction of the velocity and vorticity field in the breaking region, the model is capable of

predicting (1) the dispersive and nonlinear properties of different wave packet compo-

nents before and after the break point, (2) the overall wave height decay and spectral

evolution, and (3) the structure of the mean velocity and vorticity fields including large
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breaking-induced coherent vortices. The same equations and numerical methods are

used for the various depth regimes, and vertical grid resolution in all simulated cases

is at least an order of magnitude coarser than that of typical VOF-based simulations.

5.2 Introduction

One of the least understood and yet most important events in the ocean upper

layer is the breaking of surface waves. Surface wave breaking, a complex, two-phase

flow phenomenon, plays an important role in numerous environmental and techni-

cal processes such as air-sea interaction, acoustic underwater communications, optical

properties of the water columns, nearshore mixing and coastal morphodynamics. Sur-

face wave breaking is one of the most challenging process in coastal hydrodynamic

modeling. Model results become even more dubious and problematic as model res-

olution decreases. During active breaking, perhaps the major simplification by any

non-hydrostatic model is achieved by replacing a complex free surface by a single-

valued function of horizontal location. Instead of having a jet/splash cycle in plunging

breakers or formation of surface rollers and a turbulent bore in spilling breakers, this

simplification leads to the formation of a relatively sharp wave-front, analogous to a

jump discontinuity in a shock-front propagation, as a wave approaches breaking. The

sharp wave-front propagates without any unphysical numerical oscillation when an

appropriate shock-capturing scheme is used.

Although turbulence-resolving frameworks such as large-eddy simulations (LES)

combined with the volume-of-fluid (VOF) method for free-surface tracking (Watanabe

et al. 2005, Lakehal & Liovic 2011, Derakhti & Kirby 2014b, Zhou et al. 2014, Lubin

& Glockner 2015) can resolve small scale processes such as breaking-induced turbulent

coherent structures, they are still computationally expensive even for laboratory-scale

events. A lower-resolution three-dimensional (3D) framework is needed to study long-

term, O(hrs), and large-scale, O(100m ≈ 10km), breaking-driven circulation as well as

transport of sediment, bubbles, and other suspended materials. During the past decade,
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several 3D wave-resolving non-hydrostatic models based on Reynolds-averaged Navier-

Stokes (RANS) equations have been developed for coastal applications (Ma et al. 2012,

Young & Wu 2010, Zijlema et al. 2011, Bradford 2011, Shirkavand & Badiei 2014).

For surf zone breaking waves, when non-hydrostatic effects are retained, Smit

et al. (2013) have emphasized that high resolution in the vertical direction (more than

15 levels) is needed for reasonable integral dissipation and corresponding wave-height

decay resulting from discontinuity propagation. In place of common shock-capturing

schemes (Toro 2009), they used a special treatment to maintain momentum conserva-

tion across flow discontinuity, observing that insufficient vertical resolution led to an

underestimation of velocities, thereby delaying the initiation of breaking. They pro-

posed a hydrostatic front approximation in which the non-hydrostatic part of pressure

is switched off by analogy to the nonlinear shallow water equations. Using this tech-

nique, SWASH was shown to predict the evolution of wave-height statistics in a surf

zone reasonably well compared with laboratory measurements of irregular waves on

a plane slope, by using a few σ levels. In the present study, however, we will show

that NHWAVE, as described in Derakhti et al. (2016a), accurately captures the wave-

height decay in regular waves as well as wave-height statistics in irregular surf zone

breaking waves using as few as 4 vertical σ levels, without recourse to disabling of

non-hydrostatic effects.

Organized flow structures and their evolution have a critical role in long-term

mixing and transport of fine sediment, bubbles, and other suspended materials in the

ocean upper layer and surf zone. For example, large coherent vortices induced by in-

dividual whitecaps in deep and intermediate water (Rapp & Melville 1990, Pizzo &

Melville 2013, Derakhti & Kirby 2014a) as well as undertow, longshore and rip cur-

rents (Longuet-Higgins 1970, Svendsen 1984) in the surf zone are fairly well-understood

breaking-induced organized motions. Such organized motions need to be reasonably

resolved in any RANS-based framework to truly estimate long-term transport and

mixing processes at field scales. The effect of Langmuir circulation cells should also
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be taken into account in deep water mixing. The available relevant literature on non-

hydrostatic models mainly are related to surf zone breaking waves (or depth-limited

breaking waves) and mostly focus on the capability of these models to predict free

surface evolution and wave statistics, while less attention has been dedicated to veloc-

ity and turbulence fields. Although there are recent studies (Young & Wu 2010, Ai

et al. 2014) examining the capability of non-hydrostatic models to resolve wave-wave

nonlinear interaction and dispersion properties of non-breaking deep water waves, no

study has examined non-hydrostatic model predictions of breaking-related processes in

steepness-limited unsteady breaking waves.

Our goals here are (1) to carefully examine what level of detail of a veloc-

ity field and of turbulence statistics can be reproduced by the non-hydrostatic model

NHWAVE as described by Derakhti et al. (2016a), across the inner shelf and nearshore

regions, and (2) to establish whether this models is capable of providing accurate rep-

resentations of breaking-wave properties in intermediate/deep water. Model results for

regular and irregular depth-limited breaking waves over planar and barred beaches as

well as steepness-limited unsteady breaking waves generated by the dispersive focusing

technique will be presented in detail, focusing on wave-breaking-related large-scale pro-

cesses categorized as (1) time dependent free-surface and mean velocity field evolution,

(2) integral breaking-induced dissipation, (3) second- and third-order wave statistics,

(4) wave-averaged breaking-induced organized velocity field, and (5) ensemble-averaged

breaking-induced turbulence statistics.

The paper is organized as follows. A brief description of the model is presented

in §5.3. Details of the numerical set-up, and comparisons of model results with mea-

surements for depth-limited breaking waves on a planar beach and on a barred beach

are given in §5.4 and §5.5 respectively. The numerical set-ups and comparisons of

model results with measurements and with results of LES/VOF simulations of Der-

akhti & Kirby (2014b,a) for steepness-limited unsteady breaking waves are given in

§5.6. Discussions and conclusions are presented in §5.7.
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5.3 Mathematical Formulation and Numerical Methods

The non-hydrostatic model NHWAVE is originally described in Ma et al. (2012).

NHWAVE solves the RANS equations in well-balanced conservative form, formulated

in time-dependent, surface and terrain-following σ coordinates. The governing equa-

tions are discretized by a combined finite-volume/finite-difference approach with a

Godunov-type shock-capturing scheme. The model is wave-resolving and can provide

instantaneous descriptions of surface displacement and wave orbital velocities. The

model has been applied to study tsunami wave generation by submarine landslides

(Ma, Kirby & Shi 2013, Tappin et al. 2014), wave damping in vegetated environments

(Ma, Kirby, Su, Figlus & Shi 2013), nearshore suspended sediment transport (Ma,

Chou & Shi 2014), and wave interaction with porous structures (Ma, Shi, Hsiao &

Wu 2014). In these studies, the effects of surface and bottom slopes in the dynamic

boundary conditions (Ma et al. 2012, §3), as well as in the horizontal diffusion terms of

the transport equation for suspended sediment concentration (Ma, Kirby & Shi 2013,

equation 10) and k−ε equations (Ma, Kirby & Shi 2013, equations 13,14) were ignored.

Derakhti et al. (2016a) have recently derived a new form of the governing equations

together with the exact surface and bottom boundary conditions. They have shown

that surface slope effects should be taken into account in order to accurately resolve

turbulence statistics, such as turbulent kinetic energy (k) distribution, in surf zone

breaking waves. Here, we use the Derakhti et al. (2016a) formulation together with

the k − ε model based on the renormalization group theory (Yakhot et al. 1992). The

reader is referred to Derakhti et al. (2016a) for the details of the governing equations,

surface and bottom boundary conditions and numerical methods.

5.4 Depth-limited Breaking Waves on a Planar Beach

In this section, we consider model performance for the case of regular and irreg-

ular depth-limited wave breaking on a planar beach using the data sets of Ting & Kirby

(1994) for regular waves and of Bowen & Kirby (1994) and Mase & Kirby (1992) for

irregular waves. All experiments have been conducted in wave flumes approximately
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40m long, 0.6m wide and 1.0m deep. Results for regular and irregular wave breaking

cases are given in §3.1 and §3.2, respectively. In each section, the experimental and

numerical set-ups for the corresponding cases will be described.

5.4.1 Regular Breaking Waves

Both spilling breaking (hereafter referred as TK1) and plunging breaking (here-

after referred as TK2) cases of Ting & Kirby (1994) are selected to examine the model

capability and accuracy to reproduce the free surface and mean velocity field evolu-

tion, breaking-induced wave-averaged velocity field and k estimates. This experiment

has been widely used by other researchers to validate both non-hydrostatic (Ma, Chou

& Shi 2014, Bradford 2011, 2012, Smit et al. 2013, Shirkavand & Badiei 2014) and

VOF-based (Ma et al. 2011, Lin & Liu 1998, Bradford 2000, Lakehal & Liovic 2011)

numerical models. Figure 5.1 sketches the experimental layout and the cross-shore

locations of the available velocity measurements. The velocity measurements were ob-

tained using Laser Doppler velocimetry (LDV) along the centerline of the wave tank.

Table 5.1 summarizes the input parameters for TK1 and TK2.

A uniform grid of ∆x = 0.025m is used in the horizontal direction. Grids with

4, 8, and 16 uniformly spaced σ levels are used to examine the effects of varying ver-

tical resolution. At the inflow boundary, the free surface location and velocities are

calculated using the theoretical relations for cnoidal waves as given in Wiegel (1960).

The right end of the numerical domain is extended beyond the maximum run-up, and

the wetting/drying cells are treated as described in Ma et al. (2012, §3.4) by setting

Dmin = 0.001m. In this section, 〈 〉 and ( ) refer to phase and time averaging over five

subsequent waves after the results reach quasi-steady state, respectively. The corre-

sponding measured averaged variables, were calculated by averaging over 102 successive

waves starting at a minimum of 20 minutes after the initial wavemaker movement.

The mean depth is defined as h = d + η, where d is the still water depth

and η is the wave set-down/set-up. Here, x = 0 is the cross-shore location at which

d = 0.38m as in Ting & Kirby (1994), and x∗ = x − xb is the horizontal distance
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Table 5.1: Input parameters for the simulated surf zone regular breaking cases on a
planar beach. Here, d0 is the still water depth in the constant-depth region,
H and T are the wave height and period of the cnoidal wave generated by
the wavemaker, (kH)0 is the corresponding deep water wave steepness of
the generated wave, ξ0 = s/

√
H0/L0 is the self similarity parameter, and

s is the plane slope.

Case no. d0 H T (kH)0 ξ0 breaking
(m) (m) (s) type

TK1 0.4 0.125 2.0 0.126 0.20 spilling
TK2 0.4 0.128 5.0 0.015 0.59 plunging

from the initial break point, xb. In Ting & Kirby (1994), the break point for spilling

breakers was defined as the location where air bubbles begin to be entrained in the

wave crest (xb = 6.40m), whereas for plunging breakers it was defined as the point

where the front face of the wave becomes nearly vertical (xb = 7.795m). In the model

the break point is taken to be the cross-shore location at which the wave height starts

to decrease, approximately 0.7m seaward of the observed xb for both TK1 and TK2.

5.4.1.1 Time-dependent Free Surface Evolution

Figure 5.2 shows the cross-shore distribution of crest, 〈η〉max, and trough, 〈η〉min,

elevations as well as mean water level, η in the shoaling, transition and inner surf zone

regions for the spilling case TK1 and plunging case TK2. Figures 5.3 and 5.4 show the

phase-averaged water surface elevations at different cross-shore locations before and

after the initial break point for TK1 and TK2, respectively. In the shoaling and inner

surf zone regions, the model captures the water surface evolution reasonably well in

both cases. The predicted cross-shore location of the initial break point, however, is

slightly seaward of the measured location for both cases, regardless of the choice of

vertical resolution (Figure 5.2 a,b), as in the two-dimensional (2D) VOF-based sim-

ulations (Bradford 2000, Figures 1 and 7). In both cases, after shifting the results

with respect to the cross-shore location of the break point, the model captured the free
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surface evolution, wave height decay rate (Figure 5.2A,B), crest and trough elevations,

as well as wave set-up reasonably well using as few as 4 σ levels.

5.4.1.2 Organized Flow Field

Figures 5.5 and 5.6 show the oscillatory part of the phase-averaged horizontal

velocities 〈u〉 − u normalized by the local phase speed
√
gh, at different cross-shore

locations in the shoaling, transition and inner surf zone regions at about 5cm above

the bed for TK1 and TK2, respectively. In general, the model captures the evolution

of 〈u〉 − u fairly reasonably both in time and space in both cases using as few as 4 σ

levels, and the predicted 〈u〉 − u of the simulations with different vertical resolutions

are nearly the same. For the spilling case (Figure 5.5) there is an apparent landward

increasing phase lead in the results of the simulation with 4 σ levels, indicating an

overestimation of bore propagation speed at low vertical resolutions. This error is

corrected at the higher resolutions of 8 and 16 σ levels.

Figure 5.7 shows the spatial distribution of the time-averaged velocity field using

different vertical resolutions for TK1. To obtain the Eulerian mean velocities, the

model results in the σ-coordinate system first were interpolated onto a fixed vertical

mesh at each cross-shore location using linear interpolation, and then time averaging

was performed. The predicted return current using 4 σ levels shown in 5.7(a) has not

detached from the bed at x∗ ∼ 0 in contrast to the simulations with 8 and 16 σ levels.

The results of the simulations with different vertical resolutions have approximately

the same structure in the surf zone. A similar pattern of results was found for the

plunging case TK2 and is not shown.

The amount of curvature in the predicted undertow profiles is greater than in

the measured undertow profiles for both cases, as shown in Figures 5.8 and 5.9. This

difference is more noticeable in the plunging case TK2, in which the measured profiles

are approximately uniform with depth. Considering available undertow models using

an eddy viscosity closure scheme (see Garcez Faria et al. 2000, among others), it is
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known that the three factors determine the vertical profile of undertow currents; in-

cluding (i) bottom boundary layer (BBL) processes, leading to a landward streaming

velocity (Longuet-Higgins 1953, Phillips 1977) or a seaward streaming velocity due to

a time-varying eddy viscosity within the wave turbulent BBL (Trowbridge & Madsen

1984), close to the bed; (ii) vertical variations of the eddy viscosity νt, affected mainly

by breaking-generated turbulence; and (iii) wave forcing due to the cross-shore gra-

dients of radiation stress, set-up, and convective acceleration of the depth-averaged

undertow. As explained by Garcez Faria et al. (2000), the amount of curvature in the

undertow profile is a function of both wave forcing and νt. Large values of wave forcing

generates more vertical shear, resulting in a parabolic profile, whereas large values of νt

reduce vertical shear, leading to a more uniform velocity profile with depth. As shown

in the next section, we believe that the underprediction of turbulence, and, thus, the

underprediction of νt results in greater vertical shear in the predicted undertow profiles,

where the larger discrepancy in TK2 is due to the more noticeable underprediction of

νt in TK2 compared with that in TK1. In addition, the difference between the pre-

dicted and measured return velocities close to the bed have relatively larger deviations

in TK2 than in TK1. This may be due to the lack of second-order BBL effects, and,

thus, the absence of the associated streaming velocity, in the present simulations.

Compared with measurements, the model predicts the time-averaged Eulerian

horizontal velocity field fairly reasonably using as few as 4 σ levels for both cases.

5.4.1.3 Turbulence Statistics

Figure 5.10 shows snapshots of the predicted instantaneous k distribution using

4 and 8 σ levels for TK1. Increasing the vertical resolution decreases the predicted k

levels in the transition region and increases k in the inner surf zone. Generally, the

overall distribution of k is the same. The same trend is also observed for TK2 (not

shown).

Figure 5.11 shows a comparison of modeled and measured 〈k〉 time series at

about 4cm and 9cm above the bed at different cross-shore locations using 4, 8 and 16 σ
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levels for TK1. Comparing different resolutions, a reasonable 〈k〉 level at different cross-

shore locations is captured by the model using as few as 4 σ levels. 〈k〉 is overestimated

higher in the water column during the entire wave period especially close to the break

point. This overestimation has been also reported in previous VOF-based k− ε studies

(Lin & Liu 1998, Ma et al. 2011). Lin & Liu (1998) argued that this is because the

RANS simulation can not accurately predict the initiation of turbulence in a rapidly

distorted shear flow such as breaking waves. Alternately, Ma et al. (2011) incorporated

bubble effects into the conventional single phase k − ε model, and concluded that

the exclusion of bubble-induced turbulence suppression is the main reason for the

overestimation of turbulence intensity by single phase k − ε. Comparing Figure 5.11

with the corresponding results from the VOF-based model Ma et al. (2011, Figure 7),

we can conclude that predicted 〈k〉 values under spilling breaking waves by NHWAVE

are at least as accurate as the VOF-based simulation without bubbles.

In the plunging case TK2, a different behavior is observed in the predicted 〈k〉

values shown in Figure 5.12 compared with the corresponding results for TK1, regard-

less of the various vertical resolutions. After the initial break point, 〈k〉 is underpre-

dicted especially for lower elevations. Figure 5.12 shows 〈k〉 time series at 4cm and 9cm

above the bed as well as the corresponding measurements of Ting & Kirby (1994) for

TK2. The model could not resolve the sudden injection of k into the deeper depths at

the initial stage of active breaking, and, thus, there is a considerable underprediction

of 〈k〉 at the beginning of active breaking below trough level.

Figure 5.13 shows k field using 4, 8 and 16 σ levels for TK1. The increase of

the vertical resolution leads to a more concentrated patch of k. A similar trend is also

observed for TK2 (not shown). Figures 5.14 and 5.15 show the comparison of modeled

and measured k profiles at different cross-shore locations before and after the initial

break point for TK1 and TK2 respectively. For TK2, the noticeable underprediction of

〈k〉 at the initial stage of active breaking shown in Figure 5.12 compensates relatively

smaller overprediction of 〈k〉 at the other phases, resulting to apparent smaller k values

than those in the measurement in the shoreward end of the transition region and inner

125



surf zone, as shown in Figure 5.15(d-g).

It can be concluded that the vertical resolution of 4 σ levels is sufficient to

capture the temporal and spatial evolutions of k for the spilling case TK1. For the

plunging case TK2, the vertical advection of k into the deeper depths can not be

captured by increasing the σ levels, and, thus, k is always underpredicted at those

depths.

5.4.2 Irregular Breaking Waves

In this section, we use one of three cases of Bowen & Kirby (1994) (hereafter

referred as BK) and both cases of Mase & Kirby (1992) (hereafter referred as MK1 and

MK2) in order to compare the model predictions of power spectra evolution, integral

breaking-induced dissipation and wave statistics of the surf zone breaking irregular

waves on a planar beach. The three cases have different dispersive and nonlinear

characteristics as summarized in Table 5.2. The data set of Mase & Kirby (1992) has

been used in a number of previous studies of spectral wave modeling in the surf zone.

In particular, MK2 has a high relative depth of kpd0 ∼ 2 at the constant-depth region

and a high relative steepness of (kpHrms)0 ∼ 0.16, and thus, is a highly dispersive and

nonlinear case. In these two experiments, irregular waves with single-peaked spectra

were generated and allowed to propagate over a sloping planar bottom. Figures 5.16

and 5.17 sketch the corresponding experimental layouts and the cross-shore locations of

the available free surface measurements. Bowen & Kirby (1994) used a TMA spectrum

with a width parameter γ = 3.3 to generate the initial condition at the wavemaker.

In Mase & Kirby (1992), random waves were simulated using the Pierson-Moskowitz

spectrum.

Uniform grid of ∆x = 0.025m, 0.015m and 0.01m is used in the horizontal

direction for BK, MK1 and MK2 cases, respectively. Resolutions of 4 and 8 σ levels

are used to examine the effects of different vertical resolution. The cross-shore location

of the numerical wavemaker is set to be the first gage location. The measured free

surface and velocities determined from linear theory are constructed at the wavemaker
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Table 5.2: Input parameters for the simulated surf zone irregular breaking cases on
a planar beach. Here, d0 is the still water depth in the constant-depth
region, kpd0 and (kpHrms)0 are the dispersion and nonlinearity measure
of the incident irregular waves respectively, fp is the peak frequency of

the input signal, ξ0 = s/
√

(Hrms)0/L0 is the self similarity parameter,
L0 = g(2π)−1f−2

p , and s is the plane slope.

Case no. d0 kpd0 (kpHrms)0 fp ξ0 dominated
(m) (Hz) breaking type

BK 0.44 0.30 0.016 0.225 0.56 plunging
MK1 0.47 0.93 0.058 0.6 0.52 plunging
MK2 0.47 1.97 0.161 1.0 0.31 spilling

using the first 5000 Fourier components of the measured free surface time series. The

right end of the numerical domain is extended beyond the maximum run-up, and

the wetting/drying cells are treated as described in Ma et al. (2012, §3.4) by setting

Dmin = 0.001m. In this section, ( ) refers to long-time averaging over several minutes,

more than 300 waves. The first 1000 data points were ignored both in the model

result and the corresponding experiment for all cases. The mean see level is defined as

h = d + η, where d is the still water depth and η is the wave set-down/set-up. Here,

x∗ = x−xb is the horizontal distance from the xb, we define as the cross-shore location

in which Hrms is maximum.

5.4.2.1 Power Spectra Evolution and Integral Breaking-induced Dissipa-

tion

The shape and energy content of wave spectra in nearshore regions are observed

to have a considerable spatial variation over distances on the order of a few wave-

lengths due to continued wave breaking-induced dissipation as well as triad nonlinear

interactions between different spectral components (Elgar & Guza 1985, Mase & Kirby

1992). Here, we will examine the model prediction of the integral breaking-induced
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dissipation compared with the corresponding measurements by looking at the evolution

of the power spectral density, S(f), from outside the surf zone up to the swash region.

Figure 5.18 shows the variation of the computed S(f) using 4 and 8 σ levels

for the random breaking cases, BK, MK1 and MK2, as well as the corresponding

measured S(f). The measured signals were split into 2048 data points segments. Each

segment multiplied by a cosine-taper window with the taper ratio of 0.05 to reduce

the end effects. The measured spectrum is obtained by ensemble averaging over the

computed spectra of 11, 8, 7 segments for BK, MK1 and MK2 respectively and then

band averaging over 5 neighboring bands. The resultant averaged spectra of BK, MK1

and MK2 have 110, 80 and 70 degrees of freedom, respectively. The sampling rate

was 25 Hz (fNyq = 12.5Hz) for BK and MK1 and 20 Hz (fNyq = 10Hz) for MK2.

The spectral resolution for BK, MK1 and MK2 are ∆f = 0.06Hz, 0.06Hz and 0.05Hz,

respectively. The spectrum for the computed wave field is obtained in a similar way,

with the same spectral resolution and degrees of freedom. The first two rows of Figure

5.18 show S(f) outside the surf zone, while the other panels cover the entire surf zone

up to a shallowest depth of d ∼ 3cm. Comparing with the measurements, the model

captures the evolution of S(f) in the shoaling region as well as in the surf zone fairly

well. We used the measured surface elevation time series at d = d0 as an input, and,

thus, the infra-gravity waves are introduced in the domain as in the experiment. The

more pronounced predicted energy at this frequency range (f/fp ≈ 0.5) compared

with measurements at shoreward cross-shore locations is due to the absence of lateral

side walls effects and the reflection from the upstream numerical boundary, which is

located closer than the physical wavemaker used in the experiment to the plane slope,

especially in MK1 and MK2. In addition the input low frequency climate is not exactly

the same as in the measurement. The reason is that, we impose the input low frequency

signal as a progressive wave at the numerical boundary while it was a standing wave

in the measurement.

We can conclude that the integral breaking-induced dissipation is captured by

the model, using as few as 4 σ levels. In addition, an asymptotic f−2 spectral shape of
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the wave spectrum in the inner surf zone (Kaihatu et al. 2007), due to the sawtooth-like

shape of surf zone waves, is fairly reasonably captured by the model in all cases.

5.4.2.2 Wave Statistics

Second-order wave statistics such as a significant wave height and a significant

wave period, characterize the relative strength/forcing of irregular waves which need to

be estimated for different coastal/inner-shelf related calculations and designs. These

may be defined based on the wave spectrum, S(f), as a significant wave height Hm0 =

4m
1/2
0 and the mean zero-crossing period Tm02 = (m0/m2)1/2, where mn =

∫
fnS(f)df ,

is the nth order moment of S(f), or based on the statistics of a fairly large number

of waves (Figure 5.19, first row) extracted from the associated surface elevation time

series by using the zero-up crossing method. The second and third rows of Figure 5.19

show the cross-shore variations of the model predictions of η, Hm0 , Tm02 together with

H1/10 and T1/10 which represent the averaged wave height and period of the one-tenth

highest waves, using 4 and 8 σ levels as well as the corresponding measured values for

the random breaking cases, BK, MK1 and MK2. At the very shallow depths d < 0.05cm

the model predictions of H1/10 and T1/10 deviates considerably from the measurements.

This deviation is mainly due to the relatively higher energy of infra-gravity waves

in the model results compared with that in the measurements, as discussed in the

previous section. To eliminate the infra-gravity and very high frequency wave effects,

both the measured and computed ensemble-averaged S(f) have been band-pass filtered

with limits 0.25fp < f < 8.0fp, and then Hm0 and Tm02 are obtained based on the

resultant band-pass filtered spectra. Such deviations at the shallow depths does not

exist between the model results of Hm0 and Tm02 and the measurements. Comparing

with the measurements, the model fairly reasonably predicts these second-order bulk

statistics both in plunging and spilling dominated random breaking cases.

As waves propagate from deep into shallower depths, crests and troughs become

sharper and wider, respectively. Furthermore, waves pitch forward, and in the surf zone,

the waveform becomes similar to a sawtoothed form. Normalized wave skewness=
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η3/(η2)3/2, and asymmetry= H(η)3/(η2)3/2 (where H denotes the Hilbert transform

of the signal), are the statistical third-order moments characterizing these nonlinear

features of a wave shape (Elgar & Guza 1985, Mase & Kirby 1992). Skewness and

Asymmetry are the statistical measures of asymmetry about horizontal and vertical

planes, respectively. These third-order moments are potentially useful for sediment

transport and morphology calculations. The bottom row of Figure 5.19 shows the

cross-shore variation of the predicted third-order bulk statistics from outside the surf

zone to the swash region. Comparing with the measurements, the model accurately

captures the nonlinear effects, including the energy transfer due to triad nonlinear

interaction, in the entire water depths, using as few as 4 σ levels.

5.4.2.3 Time-averaged Velocity and k

Although the only available data from Bowen & Kirby (1994) and Mase & Kirby

(1992) are the free surface time series at different cross-shore locations, the predicted

time-averaged velocity and k fields are presented and compared with those of regular

breaking waves.

Figure 5.20 shows the spatial distribution of the time-averaged velocity field

using 4 and 8 σ levels for MK2. The normalized undertow current for the irregular wave

cases have smaller magnitude than that for regular wave cases TK1 and TK2 with the

same vertical structures within the surf zone. This is consistent with the measurements

of Ting (2001) which has the similar incident wave conditions and experimental set-

up compared with the simulated irregular breaking waves on a planner beach in the

present study. In addition, the results with 4 σ levels have a nearly constant curvature

at lower depths as oppose to the results with 8 levels where the curvature of the return

current decreases at lower depths.

Ting (2001) observed that the mean of the highest one-third wave-averaged k

values in his irregular waves in the middle surf zone was about the same as k in a

regular wave case TK1, where deep-water wave height to wavelength ratio of those two

cases was on the same order. Here, the normalized k values are at the same order or
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even larger than those in regular breaking cases in the middle and inner surf zone. In

the outer surf zone, however, the normalized k values are smaller than those under

regular breaking cases. Although the k values decrease near the bottom in the outer

surf zone similar to regular breaking cases, they have small vertical and cross-shore

variations in the inner surf zone.

5.5 Depth-limited Breaking Waves on a Barred Beach

In this section, we use the data set of Scott et al. (2004), including a regular

breaking case (hereafter referred as S1) and irregular breaking case (hereafter referred

as S2), in order to examine the model predictions of free surface evolution as well as

breaking-induced velocity and turbulence fields in depth-limited breaking waves on a

barred beach. The experiment was conducted in the large wave flume at Oregon State

University, approximately 104m long, 3.7m wide, and 4.6m deep. The bathymetry was

designed to approximate the bar geometry for the averaged profile observed on October

11, 1994, of the DUCK94 field experiment at a 1:3 scale. The velocity measurements

were carried out at 7 cross-shore locations using Acoustic Doppler Velocimeters (ADVs)

sampling at 50 Hz. Figure 5.22 sketches the experimental layout and the cross-shore

locations of the available free-surface and velocity measurements. The regular case S1

is used by Jacobsen et al. (2014) to validate their 2D VOF-based model using RANS

equations with k − ω turbulence closure. Here, both regular and irregular cases are

considered; the corresponding results are given in §4.1 and §4.2 respectively. For both

cases, a uniform grid of ∆x = 0.15m is used in the horizontal direction. Vertical

resolutions of 4 and 8 σ levels are used. The right end of the numerical domain is

extended beyond the maximum run-up, and the wetting/drying cells are treated by

setting Dmin = 0.001m for both S1 and S2.

5.5.1 Regular Breaking Waves

Table 5.3 summarizes the incident wave conditions for S1. The cross-shore

location of the numerical wavemaker is set to be as the initial position of the physical
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Table 5.3: Input parameters for the simulated depth-limited regular breaking waves
on a barred beach. Here, H0 and L0 are the deep water wave height and
wave length calculated using linear theory, (kH)0 is the corresponding deep
water wave steepness of the generated wave, ξ0 = s/

√
H0/L0 is the self

similarity parameter, and s is the averaged slope before the bar, assumed
as s ∼ 1/12. For the irregular wave case S2, H = Hs0 is the deep-water
characteristic wave height, T = Tp and k = kp, where p refers to the peak
frequency of the incident waves.

Case no. H0 T (kH)0 ξ0 breaking
(m) (s) type

S1 0.64 4.0 0.148 0.52 plunging
S2 0.59 4.0 0.136 0.54 plunging

wavemaker. The measured free surface and velocities determined from linear theory are

constructed at the wavemaker using the first 10 Fourier components of the measured

free surface time series in front of the wavemaker. In this section, 〈 〉 and ( ) refer

to phase and time averaging over five subsequent waves after the results reach the

quasi-steady state, respectively. The corresponding measured averaged variables were

calculated by phase averaging over 150 successive waves and ensemble averaging over

at least 8 realizations.

The mean sea level is defined as h = d+η, where d is the still water depth and η

is the wave set-down/set-up. Here, x = 0 is the cross-shore location of the wavemaker

location. The regular waves were observed to plunge at x = 53m.

5.5.1.1 Time-dependent Free Surface Evolution

Figure 5.23 shows the cross-shore distribution of the wave height H = 〈η〉max−

〈η〉min as well as mean water level, η in the primary shoaling region up to the top of

the bar (x < 52.8m), the top of the bar (52.8m< x < 56.5m), the shoreward face of the

bar (56.5m< x < 60m), and the secondary shoaling region after the bar (x > 60m) for

the regular case S1. The underprediction of the wave height near the breaking point is
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similar to that in TK1 as shown in Figure 5.2(a). Compared with measurements, wave

height decay in the breaking region and shoreward face of the bar (53m< x < 60m) is

captured reasonably well. In the secondary shoaling region after the bar (x > 60m), the

overshoot of the wave height is not captured, as also seen in the VOF-based simulation

of Jacobsen et al. (2014, Figure 4A). The mean water level is accurately resolved from

deep water up to the swash zone, as opposed to the VOF-based simulation of Jacobsen

et al. (2014, Figure 4B) which overpredicts wave set-up after the bar.

Figure 5.24 shows the phase-averaged water surface elevations at different cross-

shore locations before and after the bar for S1. Although the time evolution of the free

surface elevations are comparable with the measurements at all cross-shore locations,

the crest is underpredicted near the break-point as shown in panel (c) and after the bar

as shown in panels (f) and (g). The secondary peak in the measured phase-averaged

free surface elevations at x = 69.3m is also visible in the predicted results, while its

crest elevation is underpredicted by the model. This secondary peak is due to the

generation of the higher harmonics on top of the bar propagating with different phase

speed than the primary wave. The predicted cross-shore location of the initial break

point is slightly seaward compared with the measurements as in TK1, regardless of

the different vertical resolutions. In both cases, the model captured the free surface

evolution, wave height decay rate, crest and trough elevations, as well as wave set-up

reasonably well using as few as 4 σ levels.

5.5.1.2 Time-averaged Velocity and k

Figure 5.25 shows the spatial distribution of the time-averaged velocity field

using different vertical resolutions for S1. To obtain the Eulerian mean velocities, the

model results in the σ-coordinate system first were interpolated onto a fixed vertical

mesh at each cross-shore location using linear interpolation, and then time averaging

was performed. As in TK1, the predicted return current using 4 σ levels shown in

5.25(a) has not detached from the bed shoreward of the breaking point, as opposed to

the simulation with 8 σ levels. The results of the simulations with different vertical
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resolutions have approximately the same structure after the breaking point, where

the predicted undertow current using 8 σ levels has larger magnitude in the entire

surf zone. The curvature of the undertow profile has strong spatial variations near

the break points as shown in Figure 5.26(c), where the amount of curvature of the

undertow profile at x = 48.0m (red lines) considerably decreases compared with that

at x = 51.0m (black lines). This is due to the detachment of the undertow current

from the bed, forming negative slopes at seaward of the break point. Figure 5.26(c)

also shows that the model predicts breaking seaward of the measured break point.

Finally, the measured undertow profiles at two different longshore locations (shown by

open and solid circles) reveal that the time-averaged velocity field has strong variation

in the spanwise direction close to the break point; the 3D effects are absent in our

2D simulation. Compared with the measured undertow profiles (Figure 5.26), the

undertow current is resolved on top of and after the bar using as few as 4 σ levels.

Figure 5.27 shows the spatial distribution of k using different vertical resolutions

for S1. The values of the normalized time-averaged k,
√
k/gh, are similar to those in

TK1 and TK2 in the outer surf zone. Figure 5.28 shows the predicted k profiles at the

different cross-shore locations before, on the top of, and after the bar together with

the corresponding measurements. Compared with the measurements, it is seen that

the model predicts fairly reasonably the cross-shore variation of the breaking-induced

turbulence using 4 σ levels, with the large k levels across the breaker bar, where the

waves are breaking, and the subsequent decay of k level on the seaward face as well as

after the bar.

5.5.2 Irregular Breaking Waves

The random waves of S2 were generated based on a TMA spectrum with a

width parameter γ = 20 to generate the initial condition at the wavemaker. Table

5.3 summarizes the incident wave conditions for S2. The cross-shore location of the

numerical wavemaker is set to be as the initial position of the physical wavemaker. The

measured free surface and velocities determined from linear theory are constructed at
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the wavemaker using the first 2000 Fourier components of the measured free surface

time series in front of the wavemaker. In this section, ( ) refers to long-time averaging

over several minutes, more than 250 waves. The first 2500 data points were ignored

both in the model and results and the corresponding experiment.

The mean sea level is defined as h = d+η, where d is the still water depth and η

is the wave set-down/set-up. Here, x = 0 is the cross-shore location of the wavemaker

location. The random waves were observed to be both plunging and spilling as far

offshore as x = 42m.

5.5.2.1 Power spectra evolution and integral breaking-induced dissipation

Here, we examine the model prediction of the integral breaking-induced dissi-

pation compared with the corresponding measurements by looking at the evolution of

the power spectral density, S(f), across a fixed bar.

Figure 5.29 shows the variation of computed S(f) using 4 and 8 σ levels for the

random breaking case S2 as well as the corresponding measured S(f). The measured

signals were split into 8196 data points segments. Each segment multiplied by a cosine-

taper window with the taper ratio of 0.05 to reduce the end effects. The measured

spectrum is obtained by ensemble averaging over the computed spectra of 7 segments

and then band averaging over the 5 neighboring bands. Thus the resultant averaged

spectra have 70 degrees of freedom. The sampling rate was 50 Hz (fNyq = 25Hz).

The spectrum resolution is ∆f = 0.03Hz. The computed spectrum is obtained in a

similar way, with the same spectral resolution and degrees of freedom. Panels (a),(b),

and (c) show the S(f) in the shoaling zone before the break point x = 53m. The

decrease of energy at the dominant peak frequency and increase of energy at higher

and lower harmonics before the breaking region due to the nonlinear interaction, shown

at panel (c), as well as the decrease of energy at the dominant peak frequency and higher

frequency range across the bar, shown in panel (d), are captured by the model using 4 σ

levels. However, the energy at low-frequency range is overpredicted while the energy at

the second harmonic is underpredicted across and after the bar. No wave absorption

135



at the wavemaker exists both in the simulation and the experiment, and thus the

reflected long waves from the bar and the beach face are reflected back in the domain

as in the experiment. The more pronounced predicted energy at this frequency range

(f/fp ≈ 0.5) comparing with the measurements may be due to the inherent difference

between the numerical wavemaker and that in the experiment and the absence of

lateral side walls effects in the present 2D simulation. The underprediction of the

second harmonics across the bar is unresolved.

5.5.2.2 Wave Statistics

Figure 5.30(a) shows the cross-shore variations of the model predictions of η,

Hm0 , Tm02 , normalized wave skewness, and normalized wave asymmetry using 4 and

8 σ levels as well as the corresponding measured values for the random breaking case

S2. These bulk statistics are calculated as explained in §3.2.1. Comparing with the

measurements, the model fairly reasonably predicts the wave set-down/set-up as well

as the second- and third-order bulk statistics for S2 using 4 σ levels. As in the regular

case S1 (Figure 5.23a), the wave height after the bar, x > 60m, is underpredicted.

5.5.2.3 Time-averaged Velocity and k field

Figure 5.31 shows the spatial distribution of the time-averaged velocity field

using different vertical resolutions of 4 and 8 levels for S2. The Eulerian mean velocities

were obtained as described before. The predicted undertow current using 4 and 8 σ

levels have approximately the same structure and magnitude in the surf zone, and have

the smaller magnitude compared with those under the regular case S1. Comparing

the results with the measured undertow profiles shown in Figure 5.32, the undertow

current is reasonably well captured across the bar and trough using as few as 4 σ

levels, with smaller amount of curvature at lower depths which is partially because of

the underprediction of the k and as a result the unerprediction of the turbulent eddy

viscosity at those depths, as explained in §3.1.2.
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Figure 5.33 shows the spatial distribution of the time-averaged k field using

different vertical resolutions for S2. The values of the normalized time-averaged k,√
k/gh, are smaller than those in the regular case S1 in the entire surf zone, having

the same structure near the bar and the steep beach. Figure 5.34 shows the predicted

time-averaged k profiles at the different cross-shore locations before, on the top of,

and after the bar together with the corresponding measurements. Compared with the

measurements, it is seen that using 4 σ levels the model predicts fairly reasonably the

cross-shore variation of the breaking-induced turbulence as in the regular case S1.

5.6 Steepness-limited Unsteady Breaking Waves

The data sets of Rapp & Melville (1990) and Tian et al. (2012) are considered to

study the model capability and accuracy for breaking-induced processes in steepness-

limited unsteady breaking waves. Here, the model results for the two unsteady plunging

breakers of Rapp & Melville (1990), hereafter referred as RM1 and RM2, in an interme-

diate depth regime with kcd ≈ 1.9 and one of the plunging cases of Tian et al. (2012),

hereafter referred as T1, in a deep water regime with kcd ≈ 6.9 are presented, where

kc is the wave number of the center frequency wave of the input packet defined below.

The evolution of the free surface, mean velocity field and large mean vortex under

isolated breaking case RM1 are compared to the corresponding measurements and the

results of the VOF-based simulation of Derakhti & Kirby (2014a). Integral breaking-

induced energy dissipation under an isolated steepness-limited unsteady breaking wave

is examined for RM2. In addition, the power spectral density evolution as well as in-

tegral breaking-induced energy dissipation under multiple steepness-limited unsteady

breaking waves are examined for T1.

In both experiments, breaking waves were generated using the dispersive focus-

ing technique, in which an input packet propagates over an constant depth and breaks

at a predefined time, tb, and location, xb. The input wave packet was composed of N

sinusoidal components of steepness aiki where the ai and ki are the amplitude and wave

number of the ith component. Based on linear superposition and by imposing that the
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maximum 〈η〉 occurs at xb and tb, the total surface displacement at the incident wave

boundary can be obtained as (Rapp & Melville 1990, §2.3)

〈η〉(0, t) =
N∑
i=1

ai cos[2πfi(t− tb) + kixb], (5.1)

where fi is the frequency of the ith component. The discrete frequencies fi were

uniformly spaced over the band ∆f = fN −f1 with a central frequency defined by fc =

1
2
(fN − f1). Different global steepnesses S =

∑N
i=1 aiki and normalized band-widths

∆f/fc lead to spilling or plunging breaking, where increasing S and/or decreasing

∆f/fc increases the breaking intensity (See Drazen et al. (2008) for more details). In

the numerical wavemaker, free surface and velocities of each component are calculated

using linear theory and then superimposed at x = 0. Sponge levels are used at the

right boundary to minimize reflected waves. The input wave parameters for different

cases are summarized in table 5.4.

The normalized time and locations are defined as

x∗ =
x− xob
Lc

, z∗ =
z

Lc
, t∗ =

t− tob
Tc

, (5.2)

where Tc and Lc are the period and wavelength of the center frequency wave of the input

packet, respectively. Here, tob and xob are the time and location at which the forward

jet hits the free surface, obtained from corresponding VOF simulations of Derakhti &

Kirby (2016).

5.6.1 Time-dependent Free Surface Evolution

Figure 5.35 shows the free surface evolution in the breaking region for RM1

using 8 σ levels. Figure 5.36 shows the free surface time series at locations before and

after the break point, showing that the model captures the free surface evolution up

to the break point fairly accurately. The overall wave height decay is also predicted

reasonably well. However, the sudden drop of the crest during active breaking is not
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Table 5.4: Input parameters for the simulated focused wave packets. d is the still
water depth, S =

∑N
i=1 aiki is the global steepness, N is the number of

components in the packet, aiki is the component steepness which is the
same for the all components, and the discrete frequencies fi were uniformly
spaced over the band ∆f = fN − f1 with a central frequency defined by
fc = 1

2
(fN − f1).

Case no. d S fc ∆f/fc N breaking
(m) (1/s) type

RM1 0.60 0.352 0.88 0.73 32 plunging
RM2 0.60 0.388 0.88 0.73 32 plunging
T1 0.62 0.576 1.70 0.824 128 plunging

resolved.

Figure 5.37 shows the water surface elevations at different x locations for T1

using 8 σ levels. Nearly all the input wave components are in the deep water regime

(d/Li > 0.5), and thus the packet is highly dispersive. Multiple breaking was observed

in the experiment between x∗ ≈ −1 and x∗ ≈ 1, where x∗ = 0 is the x location of the

main breaking event in the packet. The model captures the packet propagation and

evolution accurately. The focusing of dispersive waves before the break point can be

seen at panels (a) through (c) with decrease in the number of waves and increase of the

maximum crest elevation. Downstream of the breaking region (Figure 5.37e and f), the

results indicate that the wave height decay due to multiple unsteady breaking events,

as well as dispersive properties of the packet, are captured by the model reasonably

well.

5.6.2 Integral Breaking-Induced Dissipation

In this section, the predicted integral breaking-induced dissipation is compared

to the corresponding measurements by looking at the evolution of the time-integrated

energy density, ρgη2, as well as the power spectral density. In this section, ( ) refers to

long-time integration over the entire wave packet.
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Strictly speaking, ρgη2 is twice the time-integrated potential energy density, Ep,

and, to a good approximation, can be considered as the time-integrated total energy

density far from the breaking region. By choosing an appropriate characteristic group

velocity, Cgρgη2 is then used as an estimation of the time-integrated total horizontal

energy flux, F . Thus, the spatial variation of ρgη2 is related to total breaking-induced

dissipation for unsteady breaking waves, as explained by Derakhti & Kirby (2016) in

detail. Figure 5.38 shows the variation of η2/η2
1 for the intermediate depth unsteady

breaking case, RM2, using different horizontal and vertical resolutions. The predicted

integral dissipation is underestimated comparing with the measurements. In addition,

the predicted decay of Ep occurs at a larger down wave distance compared with the

measurements, and the sudden drop of the potential energy density is not resolved.

Here, the entire dissipation is imposed by the shock-capturing TVD scheme in

these cases. In other words, the turbulence model has not been triggered, and νt is

approximately zero. It is well known that the numerical dissipation applied by TVD

schemes decreases as the grid resolution increases. In breaking waves, the large gradient

in a velocity field occurs near the sharp wave front and in the horizontal direction. As

expected, by decreasing the horizontal resolution from ∆x = 23mm to ∆x = 10mm

the total decay of Ep becomes smaller, whereas the associated change in Ep due to

further decrease of ∆x from 10 mm to 5 mm is negligibly small. Increasing the vertical

resolution, on the other hand, improves the results. Similar behavior is observed in

other cases (not shown).

Figure 5.39 shows the evolution of different spectral components in the wave

packet for T1, and the corresponding measurements of Tian et al. (2012). The measured

spectrum is obtained by ensemble averaging over 5 runs and then band averaging

over three neighboring bands (30 degrees of freedom) with a spectral resolution of

∆f = 0.075Hz, where the signal length is 40 s, and the sampling rate is 100 Hz. The

computed spectrum is based on a single realization with the same length and sampling

rate. In general, the energy of the high frequency (f/fc > 2) part of the spectrum is

underestimated due to a relatively coarse vertical resolution of the model which can not
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resolved fast decay of short-waves orbital velocities with depth. The nonlinear energy

transfer into low-frequency components (f/fc < 0.5), however, is fairly reasonably

resolved. Energy is dissipated mostly in the frequency range 0.75 < f/fc < 1.5, as

shown in panels (e) and (f). Close to the break point, the model does not capture

the sudden dissipation of energy, especially for larger frequencies (Figure 5.39c). The

predicted spectrum becomes more similar to the measured spectrum as the packet

propagates away from the breaking region.

5.6.3 Velocity Field

Comprehensive experimental work by Rapp & Melville (1990) and Drazen &

Melville (2009) has revealed the main characteristics of the ensemble-averaged flow

field under unsteady breaking waves, especially after active breaking. Rapp & Melville

(1990) measured the velocity field using LDV at seven elevations and seven x loca-

tions in the breaking region. Figure 5.40 shows the normalized horizontal and vertical

velocities at x∗ = 0.60, z∗ = −0.025 for RM1 using 10 σ levels versus the corre-

sponding unfiltered measured ensemble-averaged signals. After breaking, the larger

velocities compared with the measurements also demonstrates the underprediction of

the breaking-induced dissipation shown in Figure 5.38.

The ensemble-averaged velocity field can be decomposed into

〈u〉 = uw + ufw + uc, (5.3)

where uw is the orbital velocity of the surface waves, ufw is the velocity of the forced

long-waves induced by breaking, and uc is the current stemming from the momentum

loss during the breaking and/or Stokes drift. The rest of the available measured velocity

signals are low-pass filtered using the threshold frequency of 0.3 Hz, to remove the

surface waves as in Rapp & Melville (1990), where the frequency range of the input

surface waves is 0.56 < fi < 1.20. Figure 5.41 shows the low-pass filtered results and

the corresponding measurements for RM1 at x∗ = 0.15 and x∗ = 0.60, from very close
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to the free surface to z∗ = −0.15 (≈ z = −d/2). The smaller low-passed filtered

velocity field is due to the smaller wave dissipation and smaller wave forcing, predicted

by the model.

The mean current can be calculated by time averaging of the ensemble-averaged

velocity signal,

uc = u =
1

t∗2 − t∗1

∫ t∗2

t∗1

〈u〉 dt∗, (5.4)

where t∗1 and t∗2 cover the entire wave packet. During time integration for each grid

point, when the point is above the free surface the velocity signal is zero. Figure

5.42 shows the spatial distribution of the normalized mean current and its horizontal-

averaged between x∗ = 0 and 1.5, as well as the normalized horizontal-averaged mass

flux below the depth z∗, M̂∗(z∗) =
∫ z∗
z∗1
û∗cdz

∗ where z∗1 = −0.31 is the bottom eleva-

tion, for RM1 using 8 σ levels (top panels) together with the LES/VOF results by

Derakhti & Kirby (2014a) (bottom panels). The positive current near the surface, the

return negative current at lower depths and the two distinct circulation cells are cap-

tured by the model as in the LES/VOF results. Comparing with the measurements of

(Rapp & Melville 1990, Figure 43) and the LES/VOF simulation, we can see that the

model generated a large mean vortex with relatively stronger velocity field. We believe

this is due to the absence of an enhanced eddy viscosity that would be present as a

result of the turbulence, which was not captured by NHWAVE in unsteady breaking

cases. In addition, the model predicts relatively larger cells than those predicted by the

LES/VOF simulation, especially in the x direction. The predicted patch of persistent

vorticity (not shown) is consistent with Drazen & Melville (2009, Figure 4) and the

LES/VOF simulation of Derakhti & Kirby (2014a, Figure 4.16), having larger vorticity

values due to underestimation of effective viscosity in the absence of turbulence.

5.7 Conclusions

In this paper, we examined wave-breaking predictions ranging from shallow- to

deep-water conditions using a surface-following, shock-capturing 3D non-hydrostatic
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model, NHWAVE (Ma et al. 2012), comparing results both with corresponding exper-

iments and with outcomes of a VOF/Navier-Stokes solver (Ma et al. 2011, Derakhti &

Kirby 2014b,a). The new version of NHWAVE has been described in Derakhti et al.

(2016a), including the new governing equations and exact surface and bottom bound-

ary conditions. We considered regular and irregular depth-limited breaking waves on

planar and barred beaches as well as steepness-limited unsteady breaking waves in in-

termediate and deep depths. The same equations and numerical methods are used for

the various depth regimes and involve no ad-hoc treatment. Vertical grid resolution

in all simulated cases is at least an order of magnitude coarser than that of typical

VOF-based simulations. The main conclusions can be categorized as follows.

(a) Depth-limited breaking waves: using as few as 4 σ levels, the model was

shown to accurately predict depth-limited breaking wave properties in terms of (1)

time-dependent free-surface and mean velocity field evolution, (2) integral breaking-

induced dissipation, (3) second- and third-order bulk statistics, and (4) breaking-

induced organized motion both on a planar and barred beaches. In addition, the

model is shown to predict k distributions under troughs as accurate as those predicted

by typical VOF-based simulations without bubble effects. As it was explained by De-

rakhti et al. (2016a), the new boundary conditions significantly improve the predicted

velocity and turbulence fields under depth-limited breaking waves compared with the

commonly used simplified stress boundary conditions, ignoring the effects of surface

and bottom slopes in the transformation of stress terms. The k prediction above the

troughs may be further improved by replacing the zero gradient boundary condition for

k and/or the zero-stress tangential stress boundary with a physics-based model such as

the model proposed by Brocchini & Peregrine (2001), Brocchini (2002). Under strong

plunging breakers, the rapid advection of high k to lower depths can not captured

by the model due to the unresolved jet impact and subsequent splash processes. It

was found that this turbulence underprediction, and thus the underprediction of the

turbulent eddy viscosity, can not be improved by increasing the number of σ levels.

As a result, the amount of the curvature of undertow profiles are overpredicted in the
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Figure 5.1: Experimental layout of Ting & Kirby (1994). Vertical solid lines: the
cross-shore locations of the velocity measurements for TK1. Vertical
dashed lines: the cross-shore locations of the velocity measurements for
TK2.

events where the breaking is characterized as strong plunging.

(b) Steepness-limited breaking waves: it was shown that all the dissipation

was imposed indirectly by only the TVD shock-capturing scheme, and the turbulence

model had not been triggered. Although the absence of turbulence in deep water

breaking waves predictions led to the underestimation of the total breaking-induced

dissipation, and, thus, the overprediction of the velocity and vorticity field in the

breaking region, the model was shown to predict (1) the dispersive and nonlinear

properties of different wave packet components before and after the break point, (2)

the overall wave height decay and spectral evolutions, and (3) the structures of the

mean velocity and vorticity fields including large breaking-induced coherent vortices.

The near-surface turbulence model for whitecap events, e.g., the model proposed by

Brocchini (2002) to set boundary condition for k, is needed to provide sufficient k

levels during active breaking, with which the model will produce the turbulence field,

leading to an enhance eddy viscosity and an appropriate amount of breaking-induced

dissipation in the breaking region.
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Figure 5.2: Cross-shore distribution of crest and trough elevations as well as mean
water level for the surf zone (a,A) spilling breaking case TK1 and (b,B)
plunging breaking case TK2. Comparison between NHWAVE results
with 4 σ levels (dashed lines), 8 σ levels (dotted-dashed lines), 16 σ
levels (solid lines) and the measurements of Ting & Kirby (1994) (circle
markers). In panels (A) and (B), x∗ = x − xb represents the horizontal
distance from the break point.
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break point x∗ = 0. Comparison between NHWAVE results with 4 σ lev-
els (dashed lines), 8 σ levels (dotted-dashed lines) and the measurement
(thin red solid lines).
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els (dashed lines), 8 σ levels (dotted-dashed lines) and the measurement
(thin red solid lines).
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Figure 5.5: Phase-averaged normalized horizontal velocities for the surf zone spilling
breaking case TK1 at about 5 cm above the bed (z∗ is the distance from
the bed), at different cross-shore locations before and after the initial
break point x∗ = 0. Comparison between NHWAVE results with 4 σ
levels (dashed lines), 8 σ levels (dotted-dashed lines), 16 σ levels (thick
solid lines) and measurements (thin red solid lines).
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Figure 5.6: Phase-averaged normalized horizontal velocities for the surf zone plunging
breaking case TK2 at about 5 cm above the bed (z∗ is the distance from
the bed), at different cross-shore locations before and after the initial
break point x∗ = 0. Comparison between NHWAVE results with 4 σ
levels (dashed lines), 8 σ levels (dotted-dashed lines), 16 σ levels (thick
solid lines) and measurements (thin red solid lines).
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Figure 5.7: Time-averaged velocity field, u, for the surf zone spilling breaking case
TK1. NHWAVE results with (a) 4 σ levels, (b) 8 σ levels, and (c) 16
σ levels. Dash lines show the crest 〈η〉max and trough 〈η〉min elevations.
Colors show u/

√
gh.
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Figure 5.8: Time-averaged normalized horizontal velocity (undertow) profiles for the
surf zone spilling breaking case TK1 at different cross-shore locations
before and after the initial break point, x∗ = 0. Comparison between
NHWAVE results with 4 σ levels (dashed lines), 8 σ levels (dotted-dashed
lines), 16 σ levels (solid lines) and the measurements (circle markers).
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Figure 5.10: Snapshots of the turbulent kinetic energy, k(m2/s2), distribution for the
surf zone spilling breaking case TK1. NHWAVE results with (a− e) 4
σ levels and (A− E) 8 σ levels.
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Figure 5.11: Phase-averaged k time series for the surf zone spilling breaking case
TK1 at (a− f) ∼ 4 cm and (A− F ) ∼ 9 cm above the bed at different
cross-shore locations before and after the initial break point, x∗ = 0.
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Figure 5.12: Phase-averaged k time series for the surf zone plunging breaking case
TK2 at (a− f) ∼ 4 cm and (A− F ) ∼ 9 cm above the bed at different
cross-shore locations after the initial break point, x∗ = 0. Compari-
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Figure 5.13: Time-averaged normalized k field,
√
k/gh, for the surf zone spilling

breaking case TK1. NHWAVE results with (a) 4 σ levels, (b) 8 σ levels,
and (c) 16 σ levels. Dash lines show the crest 〈η〉max, mean η and trough
〈η〉min elevations.
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Figure 5.14: Time-averaged normalized k profiles for the surf zone spilling breaking
case TK1 at different cross-shore locations before and after the initial
break point, x∗ = 0. Comparison between NHWAVE results with 4 σ
levels (dashed lines), 8 σ levels (dotted-dashed lines), 16 σ levels (solid
lines) and the measurements (circle markers).
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Figure 5.16: Experimental layout of Bowen & Kirby (1994). Vertical solid lines: the
cross-shore locations of the free surface measurements.
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Figure 5.17: Experimental layout of Mase & Kirby (1992). Vertical solid lines: the
cross-shore locations of the free surface measurements.
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Figure 5.18: Power spectral density evolution, S(f) (cm2.s), for the random breaking
cases, (a) BK with fp = 0.225Hz, (b) MK1 with fp = 0.6Hz, and (c)
MK2 with fp = 1.0Hz at different cross-shore locations. Comparison
between NHWAVE results with 4 σ levels (dashed lines), 8 σ levels
(thick solid lines) and the corresponding measurements (circles). Here,
d is the still water depth, and db is the still water depth at x = xb
(db ∼ 20.5cm for BK and db ∼ 12.5cm for MK1 and MK2). The solid
lines show an f−2 frequency dependence.
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Figure 5.19: Cross-shore variation of different Second- and third-order wave statistics
for (a) BK, (b) MK1 and (c) MK2. Comparison between NHWAVE
results with 4 σ levels (dashed lines), 8 σ levels (solid lines) and the
corresponding measurements (circles). Here, Nw is the number of waves
detected by the zero-up crossing method, H0.1 and T0.1 are the averaged
height and period of the one-tenth highest waves in the signal, Hm0 ,
Tm02 are the characteristic wave height and period based on the power
spectra of the signal, Skewness= η3/(η2)3/2 > 0 is the normalized wave
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asymmetry. The results shown in (a) and (c) has the same label as in
(b).
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Figure 5.20: Time-averaged velocity field, u, for the surf zone irregular breaking case
MK2. NHWAVE results with (a) 4 σ levels and (b) 8 σ levels. Dash
lines show Hrms + η. Colors show u/

√
gh.

Figure 5.21: Time-averaged normalized k field,
√
k/gh, for the surf zone irregular

breaking case MK2. NHWAVE results with (a) 4 σ levels and (b) 8 σ
levels. Dash lines show Hrms + η.
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Figure 5.23: (a) Cross-shore distribution of the wave height, H = 〈η〉max − 〈η〉min,
and (b) mean water level, η, for the surf zone regular breaking waves
on a barred beach case S1. Comparison between NHWAVE results
with 4 σ levels (dashed lines), 8 σ levels (dotted-dashed lines) and the
measurements of Scott et al. (2004) (circle markers). Vertical lines: the
cross-shore locations of the velocity measurements shown in Figure 5.22.
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Figure 5.24: Phase-averaged free surface elevations for the surf zone regular breaking
waves on a barred beach case S1 at different cross-shore locations before
and after the bar. Comparison between NHWAVE results with 4 σ levels
(dashed lines), 8 σ levels (dotted-dashed lines) and the measurement
(thin red solid lines).
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Figure 5.25: Time-averaged velocity field, u, for the surf zone regular breaking waves
on a barred beach case S1. NHWAVE results with (a) 4 σ levels, and
(b) 8 σ levels. Dash lines show the crest 〈η〉max and trough 〈η〉min
elevations. Colors show u/

√
gh. Vertical lines: the cross-shore locations

of the velocity measurements shown in Figure 5.22.
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Figure 5.26: Time-averaged normalized horizontal velocity (undertow) profiles for the
surf zone regular breaking waves on a barred beach case S1 at different
cross-shore locations before and after the bar. Comparison between
NHWAVE results with 4 σ levels (dashed lines), 8 σ levels (dotted-
dashed lines), and the measurements at two different longshore locations
(open and solid circle markers). Red lines at (c) show the results 3m
seaward of the corresponding measurement location.
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Figure 5.27: Time-averaged normalized k field,
√
k/gh, for the surf zone regular

breaking waves on a barred beach case S1. NHWAVE results with (a)
4 σ levels, and (b) 8 σ levels. Dash lines show the crest 〈η〉max, mean
η and trough 〈η〉min elevations. Vertical lines: the cross-shore locations
of the velocity measurements shown in Figure 5.22.
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Figure 5.28: Time-averaged normalized k profiles for the surf zone regular breaking
waves on a barred beach case S1 at different cross-shore locations before
and after the bar.Comparison between NHWAVE results with 4 σ levels
(dashed lines), 8 σ levels (dotted-dashed lines), and the measurements
(circle markers). Red lines at (c) show the results 3m seaward of the
corresponding measurement location.
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Figure 5.29: Power spectral density evolution, S(f) (m2.s), for the random breaking
on a barred beach case S2 at different cross-shore locations. Comparison
between NHWAVE results with 4 σ levels (dashed lines), 8 σ levels
(thick solid lines) and the corresponding measurements (circles). The
solid lines show f−2.
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Figure 5.30: Cross-shore variation of different Second- and third-order wave statistics
for the random breaking on a barred beach case S2. Comparison be-
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Figure 5.31: Time-averaged velocity field, u, for the random breaking on a barred
beach case S2. NHWAVE results with (a) 4 σ levels and (b) 8 σ levels.
Dash lines show Hrms + η. Colors show u/

√
gh.
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Figure 5.32: Time-averaged normalized horizontal velocity (undertow) profiles for
the random breaking on a barred beach case S2 at different cross-shore
locations before and after the bar. Comparison between NHWAVE
results with 4 σ levels (dashed lines), 8 σ levels (dotted-dashed lines),
and the measurements (circle markers). Red lines at (c) show the results
3m seaward of the corresponding measurement location.
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Figure 5.33: Time-averaged normalized k field,
√
k/gh, for the random breaking on

a barred beach case S2. NHWAVE results with (a) 4 σ levels and (b) 8
σ levels. Dash lines show Hrms + η.
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Figure 5.34: Time-averaged normalized k profiles for the random breaking on a
barred beach case S2 at different cross-shore locations before and after
the bar.Comparison between NHWAVE results with 4 σ levels (dashed
lines), 8 σ levels (dotted-dashed lines), and the measurements (circle
markers). Red lines at (c) show the results 3m seaward of the corre-
sponding measurement location.
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Figure 5.35: Snapshots of the free surface evolution during active breaking for the in-
termediate depth breaking case, RM1. Comparison between NHWAVE
results with 8 σ levels (thick solid lines) and the VOF-based model (thin
solid lines). The free surface time series at the locations indicated by
vertical dashed lines are shown in Figure 5.36.
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the corresponding measurements of Rapp & Melville (1990) (circles).
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Figure 5.37: Time series of the free surface evolution at different x locations for the
deep water breaking case, T1. Comparison between NHWAVE results
with 8 σ levels and the horizontal resolution of ∆x = 10mm (dotted
dashed lines) and the measurement of Tian et al. (2012) (solid lines).
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Figure 5.38: Normalized time-integrated potential energy density, Ep, for the in-
termediate depth breaking case, RM2. Comparison between the cor-
responding measurements (circles) and NHWAVE results with (a) 8
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Figure 5.39: Energy density spectrum evolution, S(f) (cm2.s) for the deep water
breaking case, T1. Comparison between NHWAVE results with 8 σ
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lines) as well as the measurements of Tian et al. (2012) (solid lines).
Vertical dotted lines indicate the frequency range of the input packet.
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û∗c

0   0.01
-0.3

-0.15

0

(b)

M̂ ∗

-0.001 0     
-0.3

-0.15

0

(c)

x∗
0 0.5 1 1.5

-0.3

-0.15

0

z∗

(d)
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Appendix A

EULERIAN-EULERIAN MULTIPHASE MODELS

A.1 Different Numerical Approaches to Turbulent Multiphase Flows

Balachandar & Eaton (2010) reviewed computational approaches for turbulent

dispersed multiphase flows. In dispersed multiphase flows, the evolution of the interface

between the phases is considered of secondary importance. As they pointed out: (1) the

phenomenon of preferential accumulation, and (2) turbulence modulation by particles

are the most important futures of turbulent multiphase flows.

Considering bubble and sediment phases as continuous dispersed phases is a

reasonable assumption. The possible exception is during the entrainment stage near

the free surface, at which time a large air cavity is entrained and breaks down to some

extent, and can not be described as dispersed bubbles. The key factors to choose

an appropriate numerical framework are the relative particle size and the volumetric

concentration of the dispersed phase. Figure A.1 shows the applicability of different

approaches to turbulent multiphase flow proposed by Balachandar & Eaton (2010).

The horizontal axis is the volumetric concentration, Φv, of a dispersed phase. They

proposed the upper limit of Φv ≈ 0.1% for considering dilute suspension regime and

ignoring inter-particle momentum transfer and collision processes. However, the dilute

suspension regime is typically assumed to be valid for Φv values up to 1 ∼ 10% for

sediment modeling. In the present study, we have always ignored particle-particle

interaction for dispersed bubbles. We will also ignore this interaction for suspended

sediment phases. In other words, we have used one- or two-way coupled frameworks.

The vertical axis refers to particle stokes number, St = τp/τk or τp/τξ, where τp =

d2ρr/[18νφ(Re)] is the particle time scale, τk = (ν/ε)(1/2) is the Kolmogorov timescale,
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Figure A.1: Different approaches to turbulent multiphase flows. Their applicability
is separated in terms of timescale and length-scale ratios. Figure taken
from Balachandar & Eaton (2010) figure 1.

and τξ = τk(ξ/η)(2/3) is the smallest resolved eddy timescale. ξ is the smallest resolved

LES length scale, η = (ν3/ε)(1/4) is the Kolmogrove length scale, ν is the kinematic

viscosity of the fluid, ε is turbulence dissipation rate, ρr = ρp/ρf is particle-to-fluid

density ratio, and d is the particle diameter. Finally, φ(Re) = 1 + 0.15Re0.687, where

Re = |v − u|d/ν is the particle Reynolds number, and v,u are the particle and carrier

phase velocities, respectively. In case of LES of the carrier phase, St can be written as

(Balachandar & Eaton 2010)

St =
τp
τξ

=
2ρr + 1

36

1

φ(Re)
(
d

ξ
)2(

ξ

η
)
4
3 . (A.1)

The turbulence dissipation rate, ε (m2s−3), in breaking waves has a wide range

from O(0.1 ∼ 1.0) at the initial stage of active breaking near the free surface to

O(10−5 ∼ 10−4) after active breaking and/or in deeper depths (see for example, Lanck-

riet & Puleo 2013, Gemmrich & Farmer 2004, among others).
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Table A.1: Bubble Stokes number for different bubble diameters and turbulence dis-
sipation rates. wb is the rise velocity of a bubble.

db (mm) wb (m/s) St(ε = 0.01) St(ε = 0.1) St(ε = 1.0)

1 0.15 0.014 0.031 0.066
3 0.23 0.051 0.110 0.236
5 0.23 0.102 0.219 0.472
8 0.23 0.191 0.412 0.887
10 0.23 0.258 0.555 1.196

Table A.1 summarizes the corresponding bubble stokes number for different

bubble diameters, db, and turbulence dissipation rates. In this study, we have used 20

different groups with characteristic bubble diameters increased by a constant spacing

in a logarithmic scale, from 0.1 to 8 mm with the Hinze scale equals to 1 mm. Based on

table A.1, we conclude that the Equilibrium Eulerian approach can be used for bubble

groups with the maximum diameter of 3 mm during active breaking. For larger bubble

diameters (3 < db < 8 mm), St is still smaller than 1.0, and thus the Eulerian-Eulerian

framework will be appropriate.

In general, we can divide Eulerian-Eulerian numerical models of bubbly flows

into discrete and continuous models. In the discrete models, the interface between an

individual bubble and the liquid is resolved. Obviously, the possible bubble diameter

which can be resolved is limited to the grid resolution. To account for the bubble size

distribution under breaking waves, we need to have a very fine grid resolution about

two orders of magnitude smaller than typical LES resolution. In the continuous models,

instead, the interface between an individual bubble and the liquid is not resolved, and

the interfacial momentum transfers are considered using closure models. A critical

issue in this approach, especially under breaking waves, is accurately introducing air

bubbles into a model using a bubble entrainment formulation (Moraga et al. 2008, Shi

et al. 2010, Ma et al. 2011).

As summarized by Perlin et al. (2013), most of the numerical simulations for

193



deep water breaking waves are limited to the evolution of a periodic unstable wave

train with relatively low-Reynolds numbers (∼ 104) and short wave lengths (< 0.3m)

(Chen et al. 1999, Song & Sirviente 2004, Lubin et al. 2006, Iafrati 2009, 2011, Lubin &

Glockner 2013). This artificial way of leading a wave train to breaking has an advan-

tage in that it represents a more compact computational problem. However, it is not

possible to do comparisons with experimental data, except in a qualitative sense. In

addition, it is well known that, at such a short scale, surface tension significantly affects

the breaking process and fragmentation of the air cavity. Furthermore, although wave

breaking is initially a fairly 2D event, the entrainment process is highly 3D even in

the case of a small scale plunger where surface tension appears to be playing a strong

role (Kiger & Duncan 2012). Thus, 2D frameworks can not accurately account for

bubble transport and vorticity evolution during and after breaking. In these discrete

numerical studies, the Navier-Stokes equations are solved both in air and water with

a relatively fine spatial resolution that can resolve cavity fragmentation to some ex-

tent. Although the density and viscosity of the gas is not equal to real air in most

of the previous simulations, consideration of the gas phase considerably increases the

computational effort. To study periodic breaking waves in laboratory scale with 3D

LES VOF-based models, the common practice is to neglect the computations in the air

side by replacing the air by void (Christensen & Deigaard 2001, Watanabe et al. 2005,

Christensen 2006, Ma 2012). An exception is Lakehal & Liovic (2011) where actual air

density and viscosity was considered. Lakehal & Liovic (2011) carried out 3D LES of

the filtered two-fluid Navier-Stokes equations combined with the VOF method. The

Smagorinsky sub-grid scale model is coupled with a new damping formula similar to a

solid wall function that has several input parameters and needs the so called air-side

interfacial shear/friction velocity to estimate the ”interface turbulence units” length

scale. They analyzed the energy transfer between the mean flow and the wave modes,

and studied wave-turbulence interaction. They found that wave breaking is accompa-

nied by intermittent generation of local vortices and increased surface wrinkling. The

turbulent kinetic energy budget and energy decay are linked to the localized incidence
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of coherent structures in the liquid. The mesh resolution in the stream-wise direction

is much coarser than the other two directions, ∆x
∆y

= ∆x
∆z
∼ 5. With this grid resolu-

tion, bubble entrainment and transport as well as liquid-bubble interactions can not

be resolved properly.

The first attempt to use a continuous model for studying bubbly flow under

breaking waves was done by Shi et al. (2010). They used a 2D VOF-based mixture

model, with a k−ε turbulence closure, to study air bubble evolution in an isolated un-

steady breaking wave in a laboratory scale event. They used an air bubble entrainment

formula which connected shear production at the air-water interface and the bubble

number density with the bubble size distributions suggested by Deane & Stokes (2002).

The bubble velocities were calculated directly by adding the rise velocities to the liq-

uid velocity, and the additional terms were used both in k and ε transport equations

to account for the bubble-induced turbulence. They argued that, with an appropri-

ate parameter in the bubble entrainment formula, the model is able to predict the

main features of bubbly flows as evidenced by reasonable agreement with measured

void fraction. Ma et al. (2011) incorporated a polydisperse two-fluid model (Carrica

et al. 1999) into the VOF-based Navier-Stokes solver TRUCHAS. They proposed an

entrainment model that connected bubble entrainment with turbulent dissipation rate,

ε, at the air-water interface. The model was tested against laboratory experimental

data for an oscillatory bubble plume and the bubbly flow under a laboratory periodic

breaking wave using 2D simulations with a k − ε turbulence closure, in conjunction

with the additional terms to account for bubble-induced turbulence. The exponential

decay in time of void fraction observed in the laboratory experiments was captured by

the model. The kinematics of the bubble plume, as well as the evolution of the bubble

size spectrum over depth, were investigated. They employed a bubble breakup model

proposed by Mart́ınez-Bazán et al. (1999a,b) and showed that the model reproduced

the −10/3 dependence for bubbles greater than the Hinze scale in the bubble size spec-

trum, consistent with the observation of Deane & Stokes (2002). Ma (2012) and Kirby

et al. (2012) extended the model to a LES framework with a constant Smagorinsky
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subgrid formulation for turbulence closure. They investigated surf zone breaking and

found that the integrated void fraction has a linear growth and exponential decay in

time. They showed that, as the vortices move downward, bubbles are transported to

the lower part of the water column and concluded that the turbulent coherent struc-

tures tend to transport bubbles more deeply into the water column. Based on both 2D

and 3D simulations, they found that the presence of bubbles suppresses liquid phase

turbulence and enstrophy.

A.2 Polydisperse Two-fluid Model

Using the multi-group approach explained by Carrica et al. (1999), bubbles are

divided into NG groups with a characteristic diameter, and the filtered polydisperse

two-fluid model is derived based on the filtered monodisperse two-fluid model of Lakehal

et al. (2002). In this section, we quickly review the traditional two-fluid model as well

as work by Lakehal et al. (2002), and then the extension to the polydisperse two-fluid

model and the corresponding main assumptions are discussed.

A.2.1 The filtered two-fluid equations

The filtered two-fluid model is obtained by applying a certain averaging process

on the microscopic instantaneous equations governing each phase evolving in the mix-

ture. The conservation laws for each phase can be written using the phase indicator

function χ(x, t) at time t and point x, defined by (Drew 1983),

χk(x, t) =

 1 if x lies in phase k at time t

0 otherwise
(A.2)

to determine the volumes occupied by each phase. Here, k refers either to the gas

phase or to the liquid phase. In the absence of heat and mass transfer, the continuity
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and momentum equations for each phase can be written as

∂

∂t
(χkρk) +

∂

∂xj
(χkρkukj ) = 0, (A.3)

∂

∂t
(χkρkuki ) +

∂

∂xj
(χkρkuki u

k
j ) = χk

∂

∂xj
Πk
ij + χkρkgi, (A.4)

where ρk is the phase density, uk is the phase velocity and g is the gravitational ac-

celeration. The phase net stress, composed of the pressure contribution, pk, and the

viscous stress σkij, is defined by Πk
ij = −pkδij + σkij. In a Newtonian fluid,

σkij = ρkνk(
∂uki
∂xj

+
∂ukj
∂xi

) (A.5)

where νk is the phase kinematic viscosity. Within the LES framework, a filtering

process is utilized which is defined by

f(x) =

∫
D

G(x− x
′
; ∆)f(x

′
)d3x

′
, (A.6)

where D is the domain of the flow, G(x − x
′
; ∆) represents a spatial filter and ∆ is

the filter width which should strictly be larger than the characteristic length scale of

the dispersed phase. On the other hand, ∆ should be small enough to resolve mean

flow and at least 80% of the TKE. To meet the latter in LES of small-scale breaking

events, as in the present study, we need to have ∆ ∼ O(1cm), which is close to the

bubble diameters of the upper range of the typical observed bubble size distribution.

At larger-scale breaking events, however, larger values for the filtered width may be

chosen, and thus the whole range of bubble diameters can be considered using the

polydisperse approach. With this operator, the volume fraction of phase k can be

defined by

αk(x) = χk(x). (A.7)
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As carried out by Lakehal et al. (2002), the filtered equations are obtained by adopting

a component-weighted volume-averaging procedure, in which

f̃k =
χkfk

χk
=
χkfk

αk
. (A.8)

By applying the above definition to (A.3) and (A.4) and ignoring surface tension effects,

the filtered Eulerian-Eulerian equations are obtained (Lakehal et al. 2002),

∂

∂t
(αkρk) +

∂

∂xj
(αkρkũkj ) = 0 (A.9)

∂

∂t
(αkρkũki ) +

∂

∂xj
(αkρkũki ũ

k
j ) =

∂

∂xj
αk[Π̃k

ij − ρkτ kij] + αkρkgi + Mk, (A.10)

where (̃ ) is the filter operation (A.8), Mk = Πk
ijn

k
j δ(x− xI) are the pure interfacial

forces resulting from filtering, where nkj is the normal unit vector pointing outward of

phase k, δ is the Dirac distribution identifying the interface location with xI and

τ kij = ũiuj
k − ũki ũkj , (A.11)

is the subgrid-scale (SGS) stress. Interphase momentum exchange Mk and SGS stress

τ kij are the two unresolved terms in (A.10); our treatment of them will be explained

in the following sections. Equations (A.9) and (A.10) can be easily extended for the

polydisperse two-fluid model by neglecting the momentum exchange between bubble

groups as in Carrica et al. (1999) and Ma et al. (2011). To simulate polydisperse

bubbly flow, the dispersed bubble phase is separated into NG groups. Each group

has a characteristic bubble diameter dbk, k = 1, 2, · · · , NG, and a corresponding volume

fraction αbk. By definition, the volume fraction of all of the phases must sum to one:

αl +

NG∑
k=1

αbk = 1, (A.12)
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where the superscripts l and b refer to the liquid and bubble phases respectively. The

volume fraction of the kth bubble group is related to the bubble number density N b
k

by

αbk =
mb
kN

b
k

ρb
, (A.13)

where mb
k is the mass of the kth bubble group, N b

k is the number density of the kth

bubble group and ρb is the bubble density, which is assumed to be constant. The

governing equations consist of mass conservation for the liquid phase,

∂(αlρl)

∂t
+

∂

∂xj
(αlρlũlj) = 0, (A.14)

momentum conservation for the liquid phase,

∂(αlρlũli)

∂t
+

∂

∂xj
(αlρlũliũ

l
j) = − ∂

∂xj
(αlp̃)δij+α

lρlgi+
∂

∂xj

[
αl(σ̃lij − ρτ lij)

]
+Mgl, (A.15)

the bubble number density equation for each bubble group,

∂N b
k

∂t
+

∂

∂xj
(ũbk,jN

b
k) = Bb

k + Sbk +Db
k, k = 1, · · · , NG (A.16)

and the momentum conservation for each bubble group,

0 = − ∂

∂xj
(αbkp̃)δij + αbkρ

bgi + Mlg
k , k = 1, · · · , NG (A.17)

in which we neglect the inertia and shear stress terms in the gas phase following Carrica

et al. (1999) and Ma et al. (2011). Here, ρl is assumed to be constant; p̃ is the filtered

pressure, which is identical in each phase due to the neglect of interfacial surface

tension; Bb
k is the source for the kth bubble group due to air entrainment, and Sbk is

the intergroup mass transfer, which only accounts for bubble breakup in the present

study (Moraga et al. 2008, Ma et al. 2011). The bubble breakup model proposed by

Mart́ınez-Bazán et al. (2010) is employed. Here, Db
k = νb(∂N b

k/∂xj) stems from filtering

the exact bubble number density equation and represents the SGS diffusion for the kth
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bubble group with bubble difusivity, νb, given by (A.32) below; Mgl and Mlg
k are the

momentum transfers between phases, which satisfy the following relationship:

Mgl +

NG∑
k=1

Mlg
k = 0. (A.18)

A.2.2 Interfacial Momentum Exchange

For a single particle moving in a fluid, the force exerted by the continuous phase

on the particle includes drag, lift, virtual mass and Basset history forces. These forces

are well established in the literature for both laminar and turbulent flows (Clift et al.

(1978) and Maxey & Riley (1983), among many others). By neglecting the Basset

history force, the filtered interfacial forces can be formulated as follows:

Mlg
k = f̃VMk + f̃Lk + f̃Dk , (A.19)

where the filtered virtual mass force f̃VMk , the filtered lift force f̃Lk and the filtered drag

force f̃Dk are approximated as (Lakehal et al. 2002)

f̃VMk ≈ αbkρ
lCVM(

Dũl

Dt
− Dũbk

Dt
),

f̃Lk ≈ αbkρ
lCL(ũl − ũbk)× (∇× ũl), (A.20)

f̃Dk ≈ αbkρ
l 3

4

CD
dbk

(ũl − ũbk) | ũl − ũbk |,

where D
Dt

is the material derivative defined in terms of the Eulerian velocity field, CVM

is the virtual mass coefficient with a constant value of 0.5, CL is the lift force coefficient

chosen as 0.5 and CD is the drag coefficient given by (Clift et al. 1978)

CD =

 24
Rek

(1 + 0.15Re0.687
k ) for Rek < 1000,

0.44 for Rek ≥ 1000,
(A.21)

where Rek = (dbk | ũl − ũbk |)/νl is the bubble Reynolds number of the kth group. It

should be noted that in pure water, with no contamination, the bubble drag coefficient
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is smaller than that in (A.21). As explained by Clift et al. (1978), the presence of

surfactants, which is usually the case in laboratory conditions and the real world,

increases the drag force so that the drag corresponds frequently to that of a solid

sphere of the same size as given by (A.21). Finally, an inherent assumption in (A.20)

is that SGS effects on the interfacial forces are assumed to be negligibly small.

A.2.3 Bubble Entrainment Model

Kiger & Duncan (2012) reviewed the mechanisms of air entrainment in plunging

jets and breaking waves. As already mentioned, a detailed examination of the process of

bubble entrainment needs much more computational resolution than we are employing.

Instead, dispersed bubbles are introduced into the water column using an entrainment

model. Ma et al. (2011) correlated the bubble entrainment rate with the shear-induced

turbulence dissipation rate, εl, which is available in the Reynolds-averaged Navier-

Stokes (RANS) framework. In the present LES framework, we use the formulation of

Ma et al. (2011) but change εl to the shear-induced production rate of SGS kinetic

energy, εlsgs,SI (sometimes called the SGS dissipation rate) which represents the rate

of transfer of energy from the resolved to the SGS motions, given by (A.31). For

polydisperse bubbles, the formulation is

Bb
k =

cen
4π

(
σ

ρl
)−1αl

 f(ak)∆ak∑NG

k=1
a2
kf(ak)∆ak

 εlsgs,SI , (A.22)

where cen is the bubble entrainment parameter and has to be calibrated in the simula-

tion. σ is the surface tension coefficient, ak is the characteristic radius of each bubble

group, ∆ak is the width of each bubble group and f(ak) is the bubble size spectrum.

Deane & Stokes (2002) used a high-speed video camera to measure the bubble size dis-

tribution under the laboratory-scale breaking imposed by the focused wave method in

seawater. They divided the entrainment process into two distinct mechanisms control-

ling the bubble size distribution. The first is turbulent fragmentation of the entrapped

cavity, which is largely responsible for bubbles larger than the Hinze scale, leading
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to a bubble number density proportional to aα1 , where a is the bubble radius. The

second is jet interaction and drop impact on the wave face, resulting in smaller bubbles

with a number density proportional to aα2 . Their results showed that initially the

size spectrum slopes are α1 = −10/3 and α2 = −3/2, with considerable decrease at

later times in the quiescent phase. The initial bubble size spectrum (A.23) directly

affects the size-dependent liquid-bubble interaction. Bubbles with radii smaller than

the Hinze scale contribute approximately a few percent of the total entrained bubbles

with smaller dynamical effects due to relatively smaller diameter and rising velocity.

Thus, the size spectrum slope for the larger bubbles, α1, is more important and need to

be chosen accurately. Different experimental studies under laboratory-scale unsteady

breaking waves (Loewen et al. 1996, Rojas & Loewen 2007) found similar values for

α1 in both freshwater and saltwater. In addition, Ma et al. (2011) employed a bubble

breakup model proposed by Mart́ınez-Bazán et al. (2010) and showed that the model

reproduced the −10/3 dependence for bubbles greater than the Hinze scale, consistent

with the observation of Deane & Stokes (2002). As in Ma et al. (2011), we use the size

spectrum suggested by Deane & Stokes (2002),

f(a) ∝

 a−10/3 if a > ah

a−3/2 if a ≤ ah
(A.23)

where ah = 1.0mm is taken to be the Hinze scale, to initially distribute the generated

bubbles across the NG bubble groups. This initial distribution is merely a convenience

in that the bubble break-up model of Mart́ınez-Bazán et al. (2010) rapidly redistributes

large bubbles to fit this distribution, as shown by Ma et al. (2011). Bubbles are

entrained at the free surface cells if εlsgs,SI is larger than a critical value, εlc, which

is set to 0.01 m2s−3. The threshold value, εlc, is imposed to avoid unphysical bubble

entrainment, especially after active breaking. We note that if we change εlc by a factor

of 2 or so, the change of entrained bubbles during active breaking is negligibly small.
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A.2.4 Subgrid-scale Model

The turbulent velocities in the continuous phase can arise from (a) bubble ag-

itations, e.g. turbulent wakes behind individual bubbles, and (b) large-scale flow in-

stabilities, e.g. shear-induced instability (Fox 2012). In a continuum LES framework

in which individual bubbles are not resolved and the filter width is in the inertial

subrange, the main dissipative scales of motions are not resolved, and then transfer

of the energy from the resolved to subgrid scales through shear- and bubble-induced

dissipation should be modeled appropriately. The most widely used and simplest SGS

model is the Smagorinsky model (Smagorinsky 1963), in which the anisotropic part of

the SGS stress τ l,dij is related to the resolved rate of strain,

τ l,dij ≡ τ lij −
δij
3
τ lkk = −2νlsgsS̃ lij, (A.24)

where S̃ lij = 1
2
(∂ũli/∂xj + ∂ũlj/∂xi) is the resolved rate of strain and νlsgs = νlSI + νlBI

is the eddy viscosity of the SGS motions calculated using linear superposition of both

the shear-induced, νlSI , and bubble-induced, νlBI , viscosities (Lance & Bataille 1991).

As in single-phase flow, we take

νlSI = (Cs∆̃)2 ˜|S|, (A.25)

where Cs is the Smagorinsky coefficient, ∆̃ = (∆x∆y∆z)1/3 is the width of the grid

filter and ˜|S| =
√

2S̃ lijS̃ lij is the norm of the resolved strain rate tensor.

The Cs can be chosen as a constant (0.1 ∼ 0.2) or determined dynamically.

Although the constant Smagorinsky model (CSM) is fairly good at fully turbulent

flows with simple geometries (e.g. turbulent channel flow), it is too dissipative near

the wall as well as in laminar and transition flows. A near-wall function can be used

to give better behavior close to walls, but the extra dissipation can not be removed

in transitional turbulence generated under breaking waves. In the case of deep water

unsteady breaking, this is more important because we have a localized unsteady TKE
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plume with relatively high intensity at the initial stage of the breaking, which gradually

becomes more uniform and is mixed down to a greater depth. Shen & Yue (2001)

studied the interaction between a turbulent shear flow and a free surface at low Froude

numbers using single-phase Navier-Stokes equations. The DNS results showed that the

amount of energy transferred from the grid scales to the SGS reduced significantly as

the free surface was approached. As a result, the coefficient Cs should decrease towards

the free surface (Shen & Yue 2001, Figure 6a), which is not captured in the CSM and

leads to excessive dissipation near the free surface. The dynamic Smagorinsky models

(DSMs), on the other hand, provide a methodology for determining an appropriate

local value for Cs, where the turbulent viscosity converges to zero when the flow is

not turbulent and no special treatment is needed near the wall or in laminar and

transitional regions. In addition, the DSM is able to capture the anisotropy and the

decrease of Cs near the free surface as seen in DNS results. In the present study,

we use the dynamic procedure of Germano et al. (1991) with a least-square approach

suggested by Lilly (1992) to compute (Cs)
2 based on double filtered velocities as

(Cs)
2 = − LijMij

2∆̃2MijMij

, (A.26)

where

Lij = ̂̃uliũlj − ̂̃uli ̂̃uli and Mij = α2 ̂̃|S|̂̃Sij −̂̃|S|S̃ij. (A.27)

Here, ̂ represents the test scale filter with α = ∆̂/∆̃ > 1. We use the box filter given

in Zang et al. (1993, Appendix A) with α = 2. As pointed out by Zang et al. (1993)

and others, the locally computed values from (A.26) have large fluctuations and cause

numerical instability especially in the case of negative diffusivity. To cope with this

problem, averaging in a homogeneous direction (Germano et al. 1991, Vremen et al.

1997) or, in a more general case, local averaging (Zang et al. 1993) should be applied.

We perform local averaging and set negative values to zero as in Vremen et al. (1997).

The effect of SGS bubble-induced turbulence is added in the form of a bubble-

induced viscosity, νlBI (Lance & Bataille 1991, Fox 2012). We use the well-known model
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proposed by Sato & Sekoguchi (1975), given by

νlBI = Cµ,BI

NG∑
k=1

αbkd
b
k|ũr,k|, (A.28)

where the model constant Cµ,BI is equal to 0.6 and ũr,k is the resolved relative velocity

between the kth bubble group and the liquid phase. It should be noted that in regions

of high void fraction, (A.28) may underestimate the bubble-induced viscosity due to

bubble-bubble interactions, and then SGS pseudo-turbulent kinetic energy. Using (A.5)

and (A.24), the σ̃lij−ρlτ lij term in (A.15) can be written in the form of effective viscosity

as

σ̃lij − ρlτ lij = σ̃lij − ρl(τ
l,d
ij +

δij
3
τ lkk), σ̃lij − ρlτ

l,d
ij = 2ρlνleff S̃ij, (A.29)

where

νleff = νl + νlsgs = νl + νlSI + νlBI . (A.30)

The ρl
δij
3
τ lkk term can be absorbed in the pressure term. We write εlsgs,SI in (A.22) as

εlsgs,SI = 2νlSI S̃ijS̃ij = νlSI |S̃|
2
. (A.31)

To compute Db
k in (A.16), the bubble diffusivity, νb, is given by

νb =
νlsgs
Scb

, (A.32)

where Scb is the Schmidt number for the bubble phase, taken equal to 0.7.

A.2.5 Free Surface Tracking

The VOF method with the second-order piecewise linear interface calculation

(PLIC) scheme (Rider & Kothe 1998) is employed to track the free surface location.

A linearity-preserving piecewise linear interface geometry approximation ensures that

the generated solutions retain second-order spatial accuracy. Second-order temporal
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accuracy is achieved by virtue of a multidimensional unsplit time integration scheme.

In the VOF approach, an additional equation for the fluid volume fraction ψ is solved,

∂ψ

∂t
+∇ · (ũlψ) = 0, (A.33)

where ψ is the volume fraction of the water within a computational cell. If ψ = 1, the

cell is inside the water, while if ψ = 0, the cell is outside the water; otherwise, the cell

is at the air(or void)-water interface, and ψ = 0.5 determines the position of the free

surface.

A.2.6 Boundary Conditions

We do not solve the Navier-Stokes equations in any cell where ψ = 0 and treat

it as a void with zero density. Instead, the pressure remains unchanged and all of

the velocity components are set to zero, which implies zero stress at the void-water

interface. Due to the zero-stress assumption, the energy transfer between water and

air is ignored. At the top boundary, the pressure is set to zero and then the whole

void area has zero pressure. As in Watanabe et al. (2005) and Christensen (2006),

we ignore surface tension, which leads to homogeneous boundary conditions for shear

and pressure at the free surface. To correctly account for the actual flume geometry, a

no-slip condition is imposed along the solid side walls and bottom. The DSM gives zero

turbulent viscosity near the wall and does not need any special treatment such as a

near-wall damping function. A sponge layer is used to reduce wave reflection from the

downstream boundary. At the upstream boundary, the appropriate inflow condition is

imposed. The input wave packet is composed of 32 sinusoidal components of steepness

aiki, where the ai and ki are the amplitude and wave number of the ith component.

Based on linear superposition and by imposing that the maximum η occurs at xb and

tb, the total surface displacement at the inlet is given by (see RM §2.3)

η(0, t) =
N=32∑
i=1

ai cos[2πfi(t− tb) + kixb], (A.34)
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where fi is the frequency of the ith component. Here, xb and tb are the predefined

location and time of breaking respectively. The discrete frequencies fi were uniformly

spaced over the band ∆f = fN − f1 with a central frequency defined by fc = 1
2
(fN −

f1). Different global steepnesses, S =
∑N=32

i=1 aiki, and bandwidths, ∆f/fc, lead to

spilling or plunging breaking, where increasing S and/or decreasing ∆f/fc increases

the breaking intensity (See Drazen et al. (2008) for more details). The free surface and

velocities of each component are calculated using linear theory and then superimposed

at x = 0.

A.2.7 Numerical Method

The 3D VOF unstructured finite volume code TRUCHAS (Rider & Kothe 1998)
was extended to incorporate the polydisperse bubble phase (Ma et al. 2011) and dif-
ferent turbulent closures. The details of the numerical method are given in Ma et al.
(2011). To summarize, the algorithm involves the following steps.

1. Material advection (the VOF model): The material interfaces are reconstructed
using PLIC and interface normals are determined. The movement of the material
between cells is based on combining the reconstructed geometry obtained from
the PLIC algorithm with the normal component of the fluid velocities located on
the faces of all mesh cells.

2. Solve the bubble number density and update the volume fractions: we use the
bubble velocity at the previous time step to solve (A.16) and then update the
volume fractions obtained from (A.12) and (A.13).

3. Velocity prediction: The intermediate predicted velocities are calculated with
updated volume fractions by a forward Euler step in time. This step incorporates
an explicit approximation to the momentum advection, body force and pressure
gradient. These are updated in the correction step. Viscous forces are treated
implicitly and then are averaged between the previous time step and the predicted
step.

4. Pressure solution and velocity correction: The Poisson equation for pressure cor-
rection is solved using the preconditioned generalized minimal residual (GMRES)
algorithm to satisfy the solenoidal condition.

5. bubble velocity calculation: Using (A.17), the bubble velocities are calculated
based on the updated fluid velocities.
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A.2.8 Reynolds Decomposition of the Resolved Fields

The Reynolds decomposition of any field variable, φ, can be written as φ =<

φ > +φ′, where < . > represents the ensemble-averaged or organized flow and φ′ is

the turbulent fluctuation about this average. Similarly, for the resolved field variable,

φ̃ = φ− φsgs, we can define φ̃ =< φ̃ > +φ̃′, then

φ′ = φ− < φ >= φ̃+ φsgs− < φ̃+ φsgs >= φ̃′ + φsgs− < φsgs >, (A.35)

where the SGS part is unresolved and its magnitude can only be estimated. Although

ensemble averaging is practical in experimental studies, it is tedious in the numerical

simulation due to the long computational times involved. The averaged variable in the

homogenous direction (here the y-direction) can be interpreted as an organized motion

and the deviation from this average as the turbulent fluctuation. By this assumption,

the ensemble averaging is approximated by the spanwise averaging, and enough grid

points in the spanwise direction are needed to obtain a stable statistic. Christensen &

Deigaard (2001) and Lakehal & Liovic (2011) used averaging on about 40 grid points

in the spanwise direction to study turbulence under surf zone breaking waves, where

the lateral boundary condition were periodic. We use a no-slip boundary condition

for the side walls and, because of wall effects, we should not perform the averaging

through the entire grid. We ignore 20 grid points near each wall, and then averaging

is performed on the remaining grid points,

< φ̃(i, k) >≈ ¯̃φ(i, k) =

Ny−20∑
j=21

1

Ny − 40
φ̃(i, j, k), (A.36)

where Ny is the number of grid points in the spanwise direction and (̄ ) represents the

spanwise averaging. Then we can write

φ̃′ = φ̃− ¯̃φ and φ̃r.m.s. = [φ̃′2]1/2, (A.37)
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where φ̃r.m.s. is the resolved r.m.s. of the turbulent fluctuations.
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Appendix B

FREE SURFACE DEFINITION CLOSE TO THE BREAK POINT

The free surface location η(x, t) defined as the top air/water interface location if

αl > 0.5 is satisfied in the three adjacent computational cells below that interfacial cell.

By doing this we avoid the small splashes and low void fraction regions to be considered

as a free surface. Figure B.1 shows snapshots of the spatial variations of the air-water

interface and its associated calculated η(x, t) (black lines) for the intermediate-depth

plunging breaking case DP1. Figure B.2 shows that the approximated time-averaged

potential energy density, 1
2
ρlgη2, based on our choice of the free surface location, has

more pronounce oscillations during the jet formation between −0.2 < x∗ < 0 compared

with the exact values Ep. For x∗ < −0.2 and 0.5 < x∗, the difference between Ep and

1
2
ρlgη2 are negligibly small.
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Figure B.1: Snapshots of the spatial variations of the air-water interface ( ) and
the calculated η(t, x) ( ) for the intermediate-depth plunging breaker
DP1. The resolution density is G3 = ( ∆x =10.0,∆z =5.0)mm.
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Figure B.2: Spatial variations of the normalized exact, 2Ep/ρ
lg, ( ) and ap-

proximated, η2, ( ) time-averaged potential energy density for the
intermediate-depth plunging breaker DP1. The resolution density is G3
= (∆x =10.0,∆z =5.0)mm. Vertical dashed lines show x∗ = −0.2 and
x∗ = 0.5.
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Appendix C

ESTIMATION OF WAVE ENERGY DISSIPATION DUE TO
BREAKING AND NON-BREAKING PROCESSES

The total loss of the horizontal wave energy flux
∫
t
∆FE given by (2.9) includes

both non-breaking, e.g. , viscous dissipation due to boundaries and inside the water

body, and breaking processes. In any model simulation, numerical dissipation always

contributes to some of the energy loss in the system. Here, we consider the numerical

dissipation as a non-breaking dissipation. To estimate the total non-breaking wave

energy dissipation, we fit a line to
∫
t
FE upstream of the break point, we observed that

this line also represents a linear fit to
∫
t
FE downstream of the break point. Then,

we assume that
∫
t
∆FE

nb(x
∗ → x∗ + 1) which is the slope of the fitted line is constant

over the whole numerical domain, including the breaking region. Thus the total non-

breaking loss of the horizontal wave energy flux between x1 and x2 can be estimated

as ∫
t

∆FE
nb(x

∗
1 → x∗2) = (x∗2 − x∗1)

∫
t

∆FE
nb(x

∗ → x∗ + 1), (C.1)

and thus
∫
t
∆FE

br =
∫
t
∆FE−

∫
t
∆FE

nb. The values of
∫
t
∆FE

br for the considered focused

wave packets are given in table 2.3. The ratio of
∫
t
∆FE

nb(x
∗ → x∗ + 1)/

∫
t
∆FE

br ranges

from ≈ 0.01 up to 0.04 in our focused plunging and spilling breaking wave packets. In

most of the considered cases, the decrease of the mesh resolution results in the increase

of
∫
t
∆FE

br and thus the increase of the breaking strength parameter b. Table C.1

summarizes the estimated b using different mesh resolution for our focused breaking

wave packets.
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Figure C.1: Calculation of the total loss of the horizontal wave energy flux due to
breaking and non-breaking processes. The reference value is the total

horizontal wave energy flux far upstream of the break point,
∫
t
FE

1 .

Table C.1: Variation of the breaking strength parameter b given by (2.18) with
respect to different grid densities for simulated focused packets. Dif-
ferent meth grid densities are: G2 = (∆x =18.3,∆z =5.0)mm, G3 =
(∆x =10.0,∆z =5.0)mm, and G4 = (∆x =5.0,∆z =5.0)mm.

Case Mesh resolution b Mesh resolution b

no.

RS1 G3 9.1×10−3 G2 13.1×10−3

RP1 G3 40.0×10−3 G2 41.0×10−3

RP2 G3 34.7×10−3 G2 35.0×10−3

DS1 G3 7.3×10−3 G2 8.8×10−3

DP1 G3 37.3×10−3 G2 36.6×10−3

DP2 G3 60.0×10−3 G2 60.2×10−3

TP1 G4 6.8×10−3 G3 9.1×10−3

TP2 G4 29.3×10−3 G3 31.4×10−3

TP3 G4 52.0×10−3 G3 51.0×10−3
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Appendix D

INPUT PARAMETERS FOR THE BREAKING WAVES DUE TO
MODULATIONAL INSTABILITY

For the generation of wave packets due to modulational instability, wave packets

composed of a carrier wave and one- or two side-band perturbation components are

produced. Here, we follow the set up of the bimodal initial spectrum, case II, wave

packets in Allis (2013), which is similar to case II in Banner & Peirson (2007). The

surface displacement at the incident boundary x = 0 is given by

η(0, t) = a0cos(ω0t) + a1cos(ω1t−
π

18
), (D.1)

where ω0 = 8.985(s−1), ω1 = ω0 + ∆ω. Table D.1 gives the rest of input parameters

for the three simulated cases. The two-dimensional numerical domain of (50.0,0.64)m

is discretized by a uniform grid of ∆x = 7.8mm and ∆z = 4mm.

Table D.1: Input parameters for the simulated breaking packets due to modulational
instability. Here, k0 = 8.23(m−1) and d = 0.55m is the still water depth.

Case a0k0 ∆ω/ω0 a1/a0

no.

S1 0.107 0.0954 0.3
S2 0.119 0.0954 0.3
S3 0.121 0.100 0.3
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Appendix E

THREE-POINTS FINITE-DIFFERENCE APPROXIMATION IN A
NON-UNIFORM GRID

For a continuous function Φ, with the given values Φ(x1), Φ(x2), and Φ(x3),

using the Taylor expansion formula it can be shown that,

Φ(x) =α(0)Φ(x1) + β(0)Φ(x2) + γ(0)Φ(x3)− e3

6
Φ′′′(x)− e1e3

24
Φ′′′′(x) +O(e2

1e3, e2e3),

Φ′(x) =α(1)Φ(x1) + β(1)Φ(x2) + γ(1)Φ(x3) +
e2

6
Φ′′′(x) +

e1e2 − e3

24
Φ′′′′(x) +O(e2

1e2, e1e3, e
2
2),

Φ′′(x) =α(2)Φ(x1) + β(2)Φ(x2) + γ(2)Φ(x3)− e1

3
Φ′′′(x)− e2

1 − e2

12
Φ′′′′(x) +O(e3

1, e1e2, e3),

(E.1)

where

α(0) =
(x2 − x)(x3 − x)

(x1 − x2)(x1 − x3)
β(0) =

(x1 − x)(x3 − x)

(x2 − x1)(x2 − x3)
γ(0) =

(x1 − x)(x2 − x)

(x3 − x1)(x3 − x2)
,

α(1) = −(x2 − x) + (x3 − x)

(x1 − x2)(x1 − x3)
β(1) = −(x1 − x) + (x3 − x)

(x2 − x1)(x2 − x3)
γ(1) = −(x1 − x) + (x2 − x)

(x3 − x1)(x3 − x2)
,

α(2) =
2

(x1 − x2)(x1 − x3)
β(2) =

2

(x2 − x1)(x2 − x3)
γ(2) =

2

(x3 − x1)(x3 − x2)
,

(E.2)

and

e1 = (x1 − x) + (x2 − x) + (x3 − x)

e2 = (x1 − x)(x2 − x) + (x1 − x)(x3 − x) + (x2 − x)(x3 − x)

e3 = (x1 − x)(x2 − x)(x3 − x).

(E.3)
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Appendix F

SECOND-ORDER FINITE-DIFFERENCE APPROXIMATION FOR
THE PRESSURE AND VELOCITY GRADIENTS IN A

NON-UNIFORM GRID

In the current NHWAVE formulation, we used uniform grid in the horizontal

directions. For the vertical direction, however, we may have a non-uniform arbitrary

grid σ1, σ2, ..., σK , σK+1, where K is the number of the vertical levels, and, σ1 = 0 and

σK+1 = 1 represent the bottom and free surface respectively.

Because the pressure field, Pi,j,k is defined at the σ levels, {∂ψP
∂σ
}i,j,k can be

estimated using Pi,j,k−1, Pi,j,k and Pi,j,k+1 using (E.1), with x1 = σk−1, x = x2 = σk,

x3 = σk+1, as

{∂ψP

∂σ
}i,j,k =α{ψP}i,j,k−1 + β{ψP}i,j,k + γ{ψP}i,j,k+1 + E(1) (F.1)

where ∆σk−1 = σk − σk−1, ∆σk = σk+1 − σk, and

α =
−∆σk

∆σk−1(∆σk−1 + ∆σk)

β =
∆σk −∆σk−1

∆σk−1∆σk

γ =
∆σk−1

∆σk(∆σk−1 + ∆σk)

E(1) = −∆σk−1∆σk
6

{∂3ψP

∂σ3

}
i,j,k

+O(∆σ1+m
k−1 ∆σ3−m

k ), m = 0, 1, 2

(F.2)

which is second-order accurate in a sense that E(1) ≈ ∆σk−1∆σk.
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In addition, we can write

{ ∂
∂σ

(
φ
∂ψP

∂σ

)
}i,j,k = 2α{φ∂ψP

∂σ
}i,j,k− 1

2
+ 2β{φ∂ψP

∂σ
}i,j,k

+ 2γ{φ∂ψP

∂σ
}i,j,k+ 1

2
− σk−1∆σk

24
{ ∂

3

∂σ3

(
φ
∂ψP

∂σ

)
}i,j,k

(F.3)

where

{φ∂ψP

∂σ
}i,j,k− 1

2
= φi,j,k− 1

2

{ψP}i,j,k − {ψP}i,j,k−1

∆σk−1

− φi,j,k− 1
2

[∆σk−1]2

24

{∂3ψP

∂σ3

}
i,j,k− 1

2

+O(∆σ4
k−1),

{φ∂ψP

∂σ
}i,j,k = φi,j,k

(
α{ψP}i,j,k−1 + β{ψP}i,j,k + γ{ψP}i,j,k+1

)
− φi,j,k

∆σk−1∆σk
6

{ ∂
3

∂σ3

(
φ
∂ψP

∂σ

)
}i,j,k

{φ∂ψP

∂σ
}i,j,k+ 1

2
= φi,j,k+ 1

2

{ψP}i,j,k+1 − {ψP}i,j,k
∆σk

− φi,j,k+ 1
2

[∆σk]
2

24

{∂3ψP

∂σ3

}
i,j,k+ 1

2

+O(∆σ4
k),

(F.4)

and, thus,

{
∂φ∂ψP

∂σ

∂σ
}i,j,k = 2α

( −1

∆σk−1

φi,j,k− 1
2

+ βφi,j,k

)
{ψP}i,j,k−1

+
( 2α

∆σk−1

φi,j,k− 1
2

+ 2β2φi,j,k −
2γ

∆σk
φi,j,k+ 1

2

)
{ψP}i,j,k

+ 2γ
(
βφi,j,k +

1

∆σk
φi,j,k+ 1

2

)
{ψP}i,j,k+1 + E(2).

(F.5)

where

E(2) =− ∆σk−1∆σk
24

{∂φ∂3ψP
∂σ3

∂σ
+
∂3φ∂ψP

∂σ

∂σ3

}
i,j,k
− ∆σk −∆σk−1

3
φi,j,k

{∂3ψP

∂σ3

}
i,j,k

+O(∆σ1+m
k−1 ∆σ2−m

k ,∆σ3
k,∆σ

4
k−1/∆σk), m = 0, 1, 2

(F.6)

Because E(2) ≈ ∆σk −∆σk−1, (F.5) is a first-order scheme. As ∆σk −∆σk−1 becomes

on the oder of ∆σk−1∆σk, however, it becomes a second order scheme.
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The velocity field is defined at the center of each vertical levels, where Ui,j,k−1,

Ui,j,k and Ui,j,k+1 are defined at x1 = σk−1 + ∆σk−1/2, x = x2 = σk + ∆σk/2, x3 =

σk+1 + ∆σk+1/2 respectively. Using (E.1) we have

{∂ψU
∂σ
}i,j,k =αc{ψU}i,j,k−1 + βc{ψU}i,j,k + γc{ψU}i,j,k+1 + E(3), (F.7)

where ∆σck−1 = (∆σk + ∆σk−1)/2, ∆σck = (∆σk+1 + ∆σk)/2, and

αc =
−∆σck

∆σck−1(∆σck−1 + ∆σck)

βc =
∆σck −∆σck−1

∆σck−1∆σck

γc =
∆σck−1
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In addition, we have
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(F.9)
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where
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and, thus,
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where
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(F.12)

Equations (F.7) and (F.11) are a second-order and a first-order scheme respectively.

As ∆σck −∆σck−1 = (∆σk+1 −∆σk−1)/2 becomes on the order of ∆σck−1∆σck, however,

(F.11) becomes a second order scheme in a sense that E(4) ≈ ∆σck−1∆σck.

220


	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Summary
	2 Breaking-onset, Energy and Momentum Flux in Unsteady Breaking Waves
	2.1 Abstract
	2.2 Introduction
	2.3 Model Set-up and Choice of Experimental Conditions
	2.4 Prediction of the Onset of Wave Breaking
	2.5 Fractional and Total Losses of Energy Flux
	2.5.1 Characteristic Wave Group Velocity
	2.5.2 Nonlinear Wave-wave Interaction Before the Focal/Break Point
	2.5.3 Parameterization of the Averaged Breaking-induced Wave Energy Dissipation Rate

	2.6 Fractional and Total Losses of Momentum Flux
	2.7 Conclusions

	3 Intermittent Bubble Transport in the Surf Zone
	3.1 Abstract
	3.2 Introduction
	3.3 Model Set-up and Averaging Procedures
	3.3.1 Model Set-up and Choice of Experimental Conditions
	3.3.2 Averaging Procedures and Scale Decomposition

	3.4 Model Validation
	3.4.1 Free Surface Evolution
	3.4.2 Spanwise-time-averaged Organized and Turbulent Fields

	3.5 The Role of the LBTCS in Bubble Transport in the Surf Zone
	3.5.1 Coherent Structure Definition and Identification
	3.5.2 Intermittent 3D Bubble Distribution
	3.5.3 Preferential Accumulation of Bubbles into the LBTCS

	3.6 Conclusions

	4 NHWAVE: Governing Equations, Exact Boundary Conditions and Turbulence Modeling
	4.1 Abstract
	4.2 Introduction
	4.3 Governing Equations in Conservative Form
	4.3.1 Continuity and Momentum Equations
	4.3.2 Scalar Transport Equation
	4.3.3 Turbulence Model

	4.4 Surface and Bottom Boundary Conditions
	4.4.1 Kinematic Boundary Conditions
	4.4.2 Tangential Stress Boundary Conditions
	4.4.3 Normal Stress Boundary Condition
	4.4.4 Neumann-type Boundary Condition for a Scalar Quantity
	4.4.5 Boundary Conditions for K and E

	4.5 Numerical Method
	4.5.1 Hydrostatic Velocity Calculation
	4.5.2 Implicit Non-hydrostatic Velocity Correction
	4.5.3 Truncation Error Analysis

	4.6 The Role of Surface Slopes in the Near-surface Velocity and Turbulence Fields
	4.6.1 Standing Wave in a Closed Basin
	4.6.2 Two-dimensional Isotropy Test
	4.6.3 Surf zone Regular Breaking Waves

	4.7 Conclusions

	5 Wave Breaking in the Surf Zone and Deep Water in a Non-hydrostatic Model
	5.1 Abstract
	5.2 Introduction
	5.3 Mathematical Formulation and Numerical Methods
	5.4 Depth-limited Breaking Waves on a Planar Beach
	5.4.1 Regular Breaking Waves
	5.4.1.1 Time-dependent Free Surface Evolution
	5.4.1.2 Organized Flow Field
	5.4.1.3 Turbulence Statistics

	5.4.2 Irregular Breaking Waves
	5.4.2.1 Power Spectra Evolution and Integral Breaking-induced Dissipation
	5.4.2.2 Wave Statistics
	5.4.2.3 Time-averaged Velocity and k


	5.5 Depth-limited Breaking Waves on a Barred Beach
	5.5.1 Regular Breaking Waves
	5.5.1.1 Time-dependent Free Surface Evolution
	5.5.1.2 Time-averaged Velocity and k

	5.5.2 Irregular Breaking Waves
	5.5.2.1 Power spectra evolution and integral breaking-induced dissipation
	5.5.2.2 Wave Statistics
	5.5.2.3 Time-averaged Velocity and k field


	5.6 Steepness-limited Unsteady Breaking Waves
	5.6.1 Time-dependent Free Surface Evolution
	5.6.2 Integral Breaking-Induced Dissipation
	5.6.3 Velocity Field

	5.7 Conclusions

	Bibliography
	A Eulerian-Eulerian Multiphase Models
	A.1 Different Numerical Approaches to Turbulent Multiphase Flows
	A.2 Polydisperse Two-fluid Model
	A.2.1 The filtered two-fluid equations
	A.2.2 Interfacial Momentum Exchange
	A.2.3 Bubble Entrainment Model
	A.2.4 Subgrid-scale Model
	A.2.5 Free Surface Tracking
	A.2.6 Boundary Conditions
	A.2.7 Numerical Method
	A.2.8 Reynolds Decomposition of the Resolved Fields


	B Free surface definition close to the break point
	C Estimation of Wave Energy Dissipation Due to Breaking and Non-breaking Processes
	D Input Parameters for the Breaking Waves Due to Modulational Instability
	E Three-points Finite-difference Approximation in a Non-uniform Grid
	F Second-order Finite-difference Approximation for the Pressure and Velocity Gradients in a Non-uniform Grid

