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ABSTRACT

Acquiring 3D geometry of the scene is a key task in computer vision. Applica-

tions are numerous, from classical object reconstruction and scene understanding to the

more recent visual SLAM and autonomous driving. Recent advances in computational

imaging have enabled many new solutions to tackle the problem of 3D reconstruction.

By modifying the camera’s components, computational imaging optically encodes the

scene, then decodes it with tailored algorithms.

This dissertation focuses on exploring new computational imaging techniques,

combined with recent advances in deep learning, to infer 3D geometry of the scene. In

general, our approaches can be categorized into active and passive 3D sensing.

For active illumination methods, we propose two solutions: first, we present a

multi-flash (MF) system implemented on the mobile platform. Using the sequence of

images captured by the MF system, we can extract the depth edges of the scene, and

further estimate a depth map on a mobile device. Next, we show a portable immersive

system that is capable of acquiring and displaying high fidelity 3D reconstructions

using a set of RGB-D sensors. The system is based on structured light technique and

is able to recover 3D geometry of the scene in real time. We have also developed

a visualization system that allows users to dynamically visualize the event from new

perspectives at arbitrary time instances in real time.

For passive sensing methods, we focus on light field based depth estimation. For

depth inference from a single light field, we present an algorithm that is tailored for

barcode images. Our algorithm analyzes the statistics of raw light field images and

conducts depth estimation with real time speed for fast refocusing and decoding. To

mimic the human vision system, we investigate the dual light field input and propose

a unified deep learning based framework to extract depth from both disparity cue and

xvii



focus cue. To facilitate training, we have created a large dual focal stack database with

ground truth disparity. While above solution focuses on fusing depth from focus and

stereo, we also exploit combing depth from defocus and stereo, with an all-focus stereo

pair and a defocused image of one of the stereo views as input. We have adopted the

hourglass network architecture to extract depth from the image triplets. We have then

studied and explored multiple neural network architectures to improve depth inference.

We demonstrate that our deep learning based approaches preserve the strength of

focus/defocus cue and disparity cue while effectively suppressing their weaknesses.

xviii



Chapter 1

INTRODUCTION

Inferring shape from images is one of the fundamental challenges in computer

vision. Applications include object reconstruction, scene understanding, robotic nav-

igation, visual SLAM and autonomous driving. Recent advances in computational

imaging have enabled many new solutions to recover the geometry of the scene. By

modifying the camera’s components, computational imaging optically encodes the scene

then decodes it with tailored algorithms. For the purpose of depth inference, existing

approaches can be generally categorized into active and passive 3D sensing.

Active methods rely on programmable light source to illuminate the camera’s

field of view. Laser range finder [17, 63] projects a light stripe on the scene while

observing it from an offset viewpoint. The deformation of the stripe in the image

infers the 3D location the scene by using the optical triangulation. Alternatively, time-

of-flight (ToF) sensor [44, 37] obtains the depth information by measuring the time that

it takes for laser light to travel between the object and the sensor. Traditional depth

sensor requires complex hardware and features expensive price until Microsoft has

released Kinect sensor [50, 82], making such sensor accessible to the average consumers.

Kinect sensor utilizes structured light technique or ToF (updated version) to generate

real-time depth map of the physical scene.

Passive depth sensing acquire depth information by modifying camera compo-

nents, which are typically cost-effective and can conduct non-intrusive depth measure-

ments. Light field camera [84, 68] features a microlens array that is placed on top of

the sensor to optically sort the rays by direction onto the pixels underneath. A single

shot of the light field camera is amount to capturing the same scene from multiple

perspectives, where large overlap between views could be observed. Given the light

1



field, one can recover depth by first matching the correspondences between views, then

patching gaps by imposing specific priors, e.g., induced by the Markov Random Field

[57]. Further, the regularly sampled light field exhibits a special line pattern on the

epipolar plane image (EPI), where the pixel’s depth is associated with the slope of

the line [18, 126, 52, 113]. While above methods rely on photo-consistency between

views to estimate depth, another important passive method, namely depth from fo-

cus/defocus (DfF/DfD), captures a sequence of images with different focus setting,

then infers depth by analyzing blur variations at same pixel. The capturing process

utilizes complex optical design, such as the telecentric optics [114], or focal sweep

camera [135, 74, 124] with moving sensor or deformable lens.

Recent advances in neural network have revolutionized both high-level and low-

level vision by learning a non-linear mapping between the input and output. Contrast-

ing to the conventional methods that rely on hand-crafted features and engineered

cost functions, the data driven approach is capable of learning more discriminative

features from the images and inferring the depth with robustness and efficiency. Exist-

ing solutions mainly focuses on extracting depth from single image [22], or stereo pair

[127, 128, 69]. Applying deep learning to light field stereo has also been investigated

[43].

Although impressive progress have been achieved, there are still several open

problems. Compared with the decreasing price of smart devices, active 3D sensing

methods on the mobile platform are still less affordable. Meanwhile, active sensing for

large scale 3D reconstruction faces the problems of huge data bandwidth, imperfect

registration, and limited 3D viewing tools. For passive methods, especially for light field

data, real time depth estimation is still challenging. Finally, combining the disparity

cue and the focus cue in a deep learning framework has not been investigated.

1.1 Dissertation Statement

This dissertation focuses on exploring new computational imaging techniques,

combined with recent advances in deep learning, to infer 3D geometry of the scene.
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In general, our approaches can be generally categorized into active and passive 3D

sensing.

1.1.1 Active 3D Sensing

Depth Acquisition using Mobile Multi-flash System To acquire depth on mobile

platform, we implement the multi-flash (MF) system on mobile platform. MF system

offers a number of advantages over regular photography since the location and width

of the shadow encodes the geometrical information of the scene. Implementing MF

system on mobile devices, however, is challenging due to their restricted form factors,

limited synchronization capabilities, low computational power and limited interface

connectivity. To overcome these limitations, we develop a novel mobile MF system that

achieves comparable performance as conventional MF. We first construct a mobile flash

ring using four LED lights and design a special mobile flash-camera synchronization

unit. The mobile devices own flash first triggers the flash ring via an auxiliary photocell.

The mobile flashes are then triggered consecutively in sync with the mobile cameras

frame rate, to guarantee that each image is captured with only one LED flash on.

To process the acquired MF images, we further develop a class of fast mobile image

processing techniques for image registration, depth edge extraction [90]. We also adopt

shape-from-shadow [20, 27] techniques to obtain a qualitative depth map. With the

depth map and its corresponding color image, we can construct a light field that enables

us to synthesis shallow depth-of-field effects and interpolate novel views.

A Portable Immersive System using RGB-D Sensor To achieve 3D reconstruc-

tion of a room-sized environment in real time, we develop a new portable immersive

system that is capable of acquiring and displaying high fidelity 3D reconstructions.

Traditional solutions [31, 32, 91, 95, 65, 116], e.g., from Fuch’s group at UNC, Bajcsy’s

group at Penn, Kanade’s group at CMU, and Gross’s group at ETH, have pioneered

the use of a “sea of cameras” around a room. However, the system infrastructure is

bulky, and recovering 3D scene geometry from images is still one of the open problem

in computer vision. Instead, we resolve both system and reconstruction problems by
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using a small number (2 ∼ 4) of the emerging 3D sensors, namely Microsoft Kinect.

Our system consists of three major components. The first component, image acqui-

sition, captures images and depth data using a set of Microsoft Kinect cameras and

recovers the camera calibration matrix [130, 46] for each view. Next, the data fusion

and 3D stereoscopic rendering module combines the image and depth data to generate

a 3D point cloud from each view and utilizes the camera calibration parameters to

fuse individual data into a global 3D point cloud, which is subsequently rendered as

a 3D stereoscopic view of the scene. Finally, the data navigation module allows users

to dynamically visualize the surgical event from new perspectives at arbitrary time

instances in real time. To deliver an immersive experience, our system supports the

display of stereo contents either on a 3D monitor, 3D projector or an autostereoscopic

display.

1.1.2 Passive 3D Sensing

Depth from a Single Light Field We develop a class of advanced algorithm to facil-

itate the depth estimation of a special target: barcode. Relative to standard barcode

readers, which typically use fixed-focus cameras in order to reduce mechanical com-

plexity and shutter lag, employing a light field camera significantly increases the scan-

ners depth of field. However, the increased computational complexity that comes with

software-based focusing is a major limitation on these approaches. Whereas traditional

light field rendering involves time-consuming steps intended to produce a focus stack in

which all objects appear sharply-focused, a scanner only needs to produce an image of

the barcode region that falls within the decoders inherent robustness to defocus. With

this in mind, we speed up image processing by segmenting the barcode region before

refocus is applied. We then estimate the barcodes depth directly from the raw sen-

sor image, using a lookup table characterizing the relationship between depth and the

codes spatial frequency. In contrast to depth estimation method [18, 105, 30, 113] for

general scenes which are geometrically complex, our work focuses on barcode imaging

based on its unique frequency characteristics, thus largely reducing the computational
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cost. We demonstrate that our system can produce a decodable image in near real

time.

Depth from Dual Light Fields The human visual system relies on both binocular

stereo cues and monocular focusness cues to gain effective 3D perception. In computer

vision, the two problems are traditionally solved in separate tracks. To simultane-

ously uses both types of cues for depth inference, we develop a unified learning-based

technique. Specifically, we use a pair of focal stacks as input to emulate human per-

ception. We first construct a comprehensive focal stack training dataset synthesized

by depth-guided light field rendering. We then construct three individual networks: a

Focus-Net to extract depth from a single focal stack, a EDoF-Net to obtain the ex-

tended depth of field (EDoF) image from the focal stack, and a Stereo-Net to conduct

stereo matching. We show how to integrate them into a unified solution to obtain high

quality depth maps. Comprehensive experiments show that our approach outperforms

the state-of-the-art in both accuracy and speed and effectively emulates human vision

systems.

Hybrid Depth from Defocus and Stereo Imaging Depth from defocus (DfD) and

stereo matching are two most studied passive depth sensing schemes. The techniques

are essentially complementary: DfD can robustly handle repetitive textures that are

problematic for stereo matching whereas stereo matching is insensitive to defocus blurs

and can handle large depth range. We present a unified learning-based technique to

conduct hybrid DfD and stereo matching. Our input is image triplets: a stereo pair

and a defocused image of one of the stereo views. We first apply depth-guided light

field rendering to construct a comprehensive training dataset for such hybrid sens-

ing setups. Next, we adopt the hourglass network architecture to separately conduct

depth inference from DfD and stereo. Finally, we exploit different connection methods

between the two separate networks for integrating them into a unified solution to pro-

duce high fidelity 3D disparity maps. Comprehensive experiments on real and synthetic

data show that our new learning-based hybrid 3D sensing technique can significantly

improve accuracy and robustness in 3D reconstruction.
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1.2 Dissertation Overview

This dissertation is organized as follows. Chapter 2 reviews the background on

the computational imaging techniques, including the active and passive methods, as

well as deep learning based approach for 3D inference.

Chapter 3 introduces the active methods for geometry estimation. We first

describe a mobile multi-flash system to obtain depth on a mobile platform. We then

explore using multiple RGB-D sensors to reconstruct room size geometry in real time.

Chapter 4 discusses an approach to efficiently extract depth from a single light

field by analyzing the variance of pixel intensities in the raw light field image 1.

Chapter 5 presents a learning based framework to acquire depth from binocular

focal stacks that are generated by dual light field 2.

Chapter 6 proposes a learning based framework to combine disparity cue and

defocus cue for depth estimation and exploits different network architectures for en-

hanced performance 3.

Chapter 7 concludes the dissertation and discusses the future directions for this

work.

1 This research was done while I was an intern at Honeywell ACS Lab

2 This research was done while I was an intern at Plex-VR

3 This research was done while I was an intern at Plex-VR
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Chapter 2

RELATED WORK

This chapter introduces the background and the related work on 3D inference

using computational imaging, which can be generally categorized into active and pas-

sive 3D sensing. I will first review the methods based on active illumination, including

flash-based computational photography and structured light. For passive methods, I

will discuss the recent advances in light field stereo and depth from focus/defocus.

Finally, I will review the existing work on deep learning technique and how it could be

applied to computational imaging for depth inference.

2.1 Active Illumination

Active methods use a programmable light source to illuminate the scene. In

this dissertation, we mainly focus on using flash based computational photography

and structured light technique.

Flash-based Computational Photography Flash-based computational photogra-

phy has attracted much attention in the past decade. Earlier approaches aim to enhance

imaging quality by fusing photographs captured with and without flash. The seminal

flash/no-flash pair imaging applies edge preserving filters to enhance noisy no-flash

images with high quality flash images. Eisemann and Durand [23] and Petschnigg et

al. [87] used the no-flash image to preserve the original ambient illumination while

inserting sharpness and details from the flash image. Krishnan et al. [58] explored the

use of non-visible light (UV/IR) flashes and demonstrated how different wavelength

imagery can be used to for image denoising.

Raskar et al. presented the first multi-flash(MF) camera [90] that used an array

of flashes surrounding the central SLR camera. They take multiple shots of the scene,
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each with only one flash. Each flash casts a different shadow abutting the occlusion

boundary of the object and they extract the boundaries by traversing along the flash-

camera epipolar line. Feris et al. [27] further showed that one can obtain a qualitative

depth map using MF photography, which assists stereo matching. They derived object

depths (disparities) from shadow widths and then applied belief propagation for scene

reconstruction. Under industrial applications, [66] mounted MF cameras on robots for

enhancing object detection, localization and pose estimation in heavy clutter.

Previous MF photography is sensitive to specular surfaces, thin objects, lack of

background, and moving objects, and a number of extensions have been proposed to

address these issues. To find proper flash-camera configuration, Vaquero et al. [109]

investigated the epipolar geometry of all possible camera-light pairs to characterize the

space of shadows. Their analysis can be used to derive the lower bound on the number

of flashes, as well as the optimal flash positions. Tremendous efforts have also been

made to reduce the number of flashes or shots in MF. Feris et al. [28] used color mul-

tiplexing to more robustly handle multi-scale depth changes and object motion. They

have shown that for some special scene configurations, a single shot with the color flash

is sufficient for depth edge extraction whereas for general scenes, a color/monochrome

flash pair would be enough. Recently, Taguchi et al. [103] utilized a ring color flashes

of continuous hues for extracting the orientation of depth edges.

Structured Light Early approaches of structured light [2, 5, 8, 16] project a special

light pattern onto the scene, then infer the scene depth using a single projector and

a single camera. For a detailed overview, we refer the readers to [60, 33]. The rapid

advances in structured light technique are enabling us to capture geometric data with

unprecedented ease and accuracy. Recent depth sensors project a dots patterns onto

the scene and analyze the distribution of the dots to obtain depth in real time. Based

on such technique, Microsoft Kinect sensor offers real time high resolution depth maps.

With Kinect sensor, Izadi et al. [50] presented KinectFusion, a real time method to

simultaneously reconstruct a room-size scene and track the camera. The reconstructed

scene could be used in a variety of interactive scenarios and augmented reality. To
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address the scalability issue for real-time volumetric surface reconstruction, [12] de-

signed a memory efficient, hierarchical data structure which fuses overlapping depth

maps into single volumetric representation.

2.2 Passive Methods

Without modifying the light source, passive methods change camera components

to encode information when capturing an image and later decode with signal processing.

2.2.1 Light Field Stereo

Integral or light field photography describe the scene by recording radiances of

rays emanated from objects’ surface. A distinct advantage of light field is its capa-

bility to produce novel views with high photorealism [62, 36] and conduct refocusing

after exposure [49]. To describe the radiance along all rays in 3D space, Adelson and

Bergen [1] proposed the 5D plenoptic function that describes both position and direc-

tion of the ray. However, when light travels in free space without occluders, one can

reduce the 5D plenoptic function to 4D representation: a ray can be parameterized

by its intersection with two parallel planes Πst and Πuv and described as L(u, v, s, t),

where st is the camera plane and uv is the image plane. This representation is called

2-plane parameterization (2PP) [62, 36]. By fixing s and t, one obtain the sub-aperture

image L(s?t?)(u, v) that is amount to the image captured using a sub-region of the main

lens aperture. Therefore, light field can be regarded as a collection of images captured

from multiple viewpoints.

Light field acquisition proves to be a challenging task due to its high dimen-

sionality. Early approaches [122, 108, 117, 118, 107] utilized camera arrays that deliver

high spatial resolution and moderate angular resolution at the expense of bulky and

complex system infrastructure. Alternatively, Ng [84] designed a hand-held light field

camera where a microlens array is placed on top of the sensor to optically sort the rays

by direction onto the pixels underneath. To increase the spatial resolution, Lumsdaine

et al. [68] presented a slightly different design by focusing the microlens array on a
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virtual plane inside the camera. Other acquisition methods, such as coded masks [110]

and gantry-based camera systems [106], have also been proposed. In contrast to the

aforementioned special camera system, Davis et al. [21] use a hand-held commodity

camera to interactively acquire and render light field in an unstructured manner.

Light field encodes not only the visual appearance, but also the geometric infor-

mation of the scene. In essence, light field can be seen as a set of multi-view images,

thus could be solved by conventional multi-view stereo approaches [57, 119]. However,

the regular sampling pattern of the light field enables novel depth estimation meth-

ods that are more efficient and accurate than conventional approach. Wanner and

Goldlücke [112] employed structure tensor on the 2D epipolar plane image (EPI) to

find the direction of local level lines and enforce globally consistent visibility for depth

labeling. Tao et al. [105] analyzed the EPI and found that the horizontal variance after

vertical integration of the EPI encodes defocus cue, while vertical variances encode

disparity cue. The two cues were then jointly optimized in an MRF framework. Kim

et al. [52] first estimated depth from EPI on depth pixels, then propagated the depth

value along the EPI and finally to the coarser EPI resolution. Without global opti-

mization process, their method is able to handle light field with high spatial-angular

resolution. Heber and Pock [42] observed a large amount of overlap among light field

data and formulate the model to perform a low rank minimization on the stack of

warped images. Most recently, Jeon et al. [51] described a method to extract depth

from lenslet light field images with extremely small baseline. At its core is applying

the phase shift theorem in the Fourier domain to achieve sub-pixel accuracy.

2.2.2 Depth from Focus/Defocus

The amount of blur carries information about the objects’ distance. Depth from

focus/defocus(DfF/DfD) recovers scene depth from a collection of images captured

under varying focus settings.

Depth from Focus In general, depth from focus (DfF) [80, 81, 71] exploits differen-

tiations of sharpness at each pixel across a focal stack and assigns the layer with the
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highest sharpness as its depth. To avoid ambiguity in the textureless region, Moreno-

Noguer et al. [76] used active illumination to project a sparse set of dots onto the

scene. The defocus of the dots offers depth cue, which could be further used for re-

alistic refocusing. [39] combined focal stack with varying aperture to recover scene

geometry. Moeller et al. [75] applied an efficient nonconvex minimization technique

to solve DfF in a variational framework. Suwajanakorn et al. [101] proposed the DFF

with mobile phone under uncalibrated setting. They first aligned the focal stack, then

jointly optimized the camera parameters and depth map, and further refined the depth

map using anisotropic regularization.

Depth from Defocus Depth from defocus (DfD) infers depth based on the amount

of the spatially varying blur at each pixel. Earlier DfD techniques [96, 88, 115] rely on

images captured with different focus setting (moving the objects, the lense or the sensor,

changing the aperture size, etc). More recently, Favaro and Soatto [26] formulated the

DfD problem as a forward diffusion process where the amount of diffusion depends

on the depth of the scene. [61, 134] recovered scene depth and all-focused image

from images captured by camera with binary coded aperture. Based on a per-pixel

linear constraint from image derivatives, Alexander et al. [4] introduced a monocular

computational sensor to simultaneously recover depth and motion of the scene. Varying

the size of the aperture [86, 24, 100, 9] has also been extensively investigated. This

approach will not change the distance between the lens and sensor, thus avoiding the

magnification effects.

Combining Stereo and DfD In the computational imaging community, there has

been a handful of works that aim to combine stereo and DfD. Early approaches [55, 97]

use a coarse estimation from DfD to reduce the search space of correspondence matching

in stereo. Rajagopalan et al. [89] used a defocused stereo pair to recover depth and

restore all-focus image. Recently, Tao et al. [105] analyzed the variances of the epipolar

image (EPI) to infer depth: the horizontal variance after vertical integration of the

EPI encodes the defocus cue, while vertical variance represents the disparity cue. Both

cues are then jointly optimized in a MRF framework. Takeda et al. [104] exploited the
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relationship between point spread function and binocular disparity in the frequency

domain, and jointly resolved the depth and deblurred the image. Wang et al. [111]

presented a hybrid camera system that is composed of two calibrated auxiliary cameras

and an uncalibrated main camera. The calibrated cameras were used to infer depth

and the main camera provides DfD cues for boundary refinement.

2.2.3 Deep Learning based Stereo Methods

Recent advances in neural network have revolutionized both high-level and low-

level vision by learning a non-linear mapping between the input and output. Here we

mainly discuss the learning based stereo techniques.

One stream focuses on learning the matching function. The seminal work by

Žbontar and LeCun [128] leveraged convolutional neural network (CNN) to predict

the matching cost of image patches, then enforced smoothness constraints to refine

depth estimation. [127] investigated multiple network architectures to learn a general

similarity function for wide baseline stereo. Han et al. [38] described a unified approach

that includes both feature representation and feature comparison functions. Luo et

al. [69] used a product layer to facilitate the matching process, and formulate the

depth estimation as a multi-class classification problem. Other network architectures

[14, 67, 85] have also been proposed to serve a similar purpose.

Another stream of studies exploits CNN to predict the confidence of disparity

map for outlier removal. Seki and Pollefeys [93] designed a novel two channels disparity

patch and incorporated the inferred confidence into Semi Global Matching by adjust-

ing its parameters. Mostegel et al. [77] checked the contradictions and consistencies

between multiple depth maps produced by the same stereo algorithm to automatically

generate the dataset for confidence prediction.

There also exist works that apply end-to-end learning approach. Mayer et al.

[73] proposed a multi-scale network with contractive part and expanding part for real-

time disparity prediction. They also generated three synthetic dataset for disparity,

optical flow and scene flow estimation. Knöbelreiter et al. [56] presented a hybrid
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CNN+CRF model. They first utilized CNNs for computing unary and pairwise cost,

then feed the costs into CRF for optimization. The hybrid model is trained in an

end-to-end fashion.
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Chapter 3

ACTIVE METHODS FOR 3D RECONSTRUCTION

Active illumination uses a programmable light source to illuminate the camera’s

field of view. In this chapter, I discuss two approaches that use active computational

imaging methods for depth estimation. First, I present a multi-flash (MF) system

implemented on a mobile platform. Using the sequence of images captured by the MF

system, I can extract the depth edges of the scene, and further infer a depth map on a

mobile device. Next, I show a portable immersive system that is capable of acquiring

and displaying high fidelity 3D reconstructions using a set of RGB-D sensors. Based

on structured light technique, our proposed system is able to recover 3D geometry of

the scene in real time.

3.1 Depth Inference using Mobile Multi-flash System

3.1.1 Background

Multi-flash (MF) photography takes successive photos of a scene, each with a

different flashlight located close to the camera’s center of projection (CoP). Due to the

small baseline between the camera CoP and the flash, a narrow sliver of shadow would

appear attached to each depth edge. By analyzing shadow variations across different

flashes, we can recover a depth map of the scene [27] and robustly distinguish depth

edges from material edges [90]. MF photography hence can be used to obtain scene

geometry, extract occlusion contour, as well as remove the effects of illumination, color

and texture in images. Previous MF cameras, however, tend to be bulky and unwieldy

in order to accommodate the flash array and the control unit. In this section, we present

a mobile MF photography technique suitable for mobile devices such as smartphones

or tablets.
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Implementing mobile MF photography is challenging due to restricted form fac-

tor, limited synchronization capabilities, low computational power and limited interface

connectivity of mobile devices. We resolve these issues by developing an effective and

inexpensive pseudo flash-camera synchronization unit as well as a class of tailored im-

age processing algorithms. We first construct a mobile flash ring using four LED lights

and control it using the mobile device’s own flash. Specifically, the mobile flash first

triggers the flash ring via an auxiliary photocell, as shown in Fig. 3.1. It then activates

a simple micro-controller to consecutively trigger the LED flashes in sync with the

mobile camera’s frame rate, to guarantee that each image is captured with only one

LED flash on.

To process the acquired MF images, we further develop a class of fast mobile

image processing techniques for image registration, depth edge and depth map extrac-

tion, and edge-preserving smoothing. We demonstrate our mobile MF on a number of

mobile imaging applications, including light field construction and rendering, occlusion

detection, image thumbnailing, and image abstraction. Compared with traditional MF

cameras, our design is low-cost (less than $25) and compact (1.75′′× 2.75′′). Our solu-

tion is also universal, i.e., it uses the device’s flash, a universal feature on most mobile

devices, rather than device-specific external interfaces such as USBs. Experimental

results show that our mobile MF technique is robust and efficient and can benefit a

broad range of mobile imaging tasks.

3.1.2 Mobile Multi-Flash Hardware

3.1.2.1 System Construction

Figure 3.1 shows our prototype mobile MF device that uses a micro-controller to

trigger an array of LED flashes. To control the micro-controller, the simplest approach

would be to directly use the mobile device’s external interface, e.g., the USB. For

example, the recent Belkin camera add-on for iPhone allows the user to have a more

camera-like hold on their phone while capturing images by connecting to the data port.

However, this scheme has several disadvantages. First, it requires additional wiring on
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Figure 3.1: (Left) Our prototype mobile MF system. The photocell is hidden on the
back of the system. The red highlighted region shows the closeup of the
photocell. (Right) Traditional MF system with SLR-camera.

top of the already complex setup. Second, it will occupy the USB interface and limit

the use of other application. Finally, each platform (Samsung vs. Apple vs. Nokia)

will need to implement its own version of the control due to the heterogeneity of the

interface. Other alternatives include the Wi-Fi and the audio jack. However, it would

require modifying sophisticated circuitry and the communication protocols.

Our strategy is to implement a cross-platform solution: we use the original

flash on the mobile device to trigger the LED flashes. We implement our solution on a

perfboard. To reduce the form factor, we choose the Arduino pro mini micro-controller,

a minimal design approach (0.7′′×1.3′′) of the Arduino family. We also use small sized

but bright LEDs, e.g., the 3mm InGaN white LED from Dialight with a luminous

intensity of 1100 mcd and a beam angle of 45 degree. It is worth noting that brighter

LEDs are available but many require higher forward current which can cause damage

to the micro-controller. In our setup, the baseline between the LED and the camera is

about 0.6′′.

To trigger the micro-controller, we put a photocell in front of the device’s own
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flash. The photocell serves as a light sensor that takes the flash signal from the mobile

device to trigger the multi-flash array. In our setup, we use a CdS photoconductive

photocell from Advanced Photonix. The photocell is designed to sense light from 400

to 700 nm wavelength and its response time is around 30 ms. The resistance is 200k

Ohms in a dark environment and will drop to 10k Ohms if illuminated at 10 lux. The

complete system is powered by two button cell batteries, making it self-contained. Its

overall size is 1.75′′ × 2.75′′ and therefore can be mounted on a wide range of mobile

devices, ranging from the iPhone family to the Samsung Galaxy and Note family.

For example, even for the smallest sized iPhone 4/4S (2.31′′ × 4.54′′), our system fits

perfectly.

3.1.2.2 Image Acquisition

To avoid the device’s flash to interfere with the LED flashes, we initiate the

image acquisition process only after the device’s flash goes off. The frame rates of the

camera and the LED flash ring are set to be identical by software (e.g., the AVFoun-

dation SDK for iOS) and by micro-controller respectively. After acquiring four images,

we turn on the device’s flash to stop the acquisition module. We also provide a quick

preview mode to allow users to easy navigate the captured four images. If the user

is unsatisfied with the results, with a single click, he/she can reacquire the image and

discard the previous results.

Conceptually, it is ideal to capture images at the highest possible frame rate of

the device (e.g., 30 fps on iPhone 4S). In practice, we discover that a frame rate higher

than 10 will cause the camera out-of-sync with the flash. This is because the iPhone and

the Arduino micro-controller use different system clocks and are only perfectly sync’ed

at the acquisition initiation stage. In our implementation, we generally capture four

flash images at a resolution of 640 × 480 images in 0.4s. The low frame rate can lead

to image misalignment since the device is commonly held by a hand. We compensate

for hand motion by applying image registration (Section 3.1.3.1) directly on mobile

devices.
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Figure 3.2: The pipeline for disparity map generation and depth edge extraction.

A unique feature of our system is its extensibility, i.e., we can potentially use

many more flashes if needed. The Arduino pro mini microcontroller in our system has

14 digital I/O pins: one serves as an input for the triggering signal and the others

as output for the LED flashes. Therefore, in theory, we can control 13 flashes with

minimum modification.

3.1.3 MF Image Processing

3.1.3.1 Depth Edge Extraction

Traditional MF photography assumes that the images are captured from a fixed

viewpoint. In contrast, our mobile MF photography uses a hand-held device and the

images are usually shifted across different flashes as we capture with a low frame

rate. Extracting depth edges without image alignment will lead to errors as shown
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in Fig. 3.7(b). In particular, the texture edges are likely to be detected as depth

edges. We therefore implement a simple image registration algorithm by first detecting

SIFT features and then use them to estimate the homography between images. This

scheme works well for scenes that contain textured foreground (Fig. 3.9) or background

(Fig. 3.8). It fails in the rare scenario that the scene contains very few textures and

the shadow edges become the dominating SIFT features in homography estimations.

Once we align the images, we adopt the shadow traversing algorithm in [90]

to extract the depth edges. Figure 3.2 shows the processing pipeline. The captured

MF images contain noise, especially under low-light environment. We therefore first

convert the color images to grey scale and apply Gaussian smoothing. We denote the

resulting four images as Ik, k = 1..4 and construct a maximum composite image Imax

where Imax(x, y) = maxk(Ik(x, y)). To detect the shadow regions, we take the ratio

of a shadow image with the maximum composite image as Rk = Ik/Imax. The ratio

is close to 1 for non-shadow pixels and is close to 0 for shadow pixels. A pixel on the

depth edge must transition from the non-shadow region to the shadow region and we

apply Sobel filter on each of the ratio images to detect such transitions. In the final

step, we apply a median filter to the depth edge image to further suppress the noise.

The complete process takes about 1.2s for images with a resolution of 640× 480 on an

iPhone 4S.

3.1.3.2 Qualitative Depth Map

In addition to the depth edge, we can also infer a qualitative depth map from

the MF images. We adopt the method described in [27], which is closely related to

shape-from-shadow techniques [20]. Here we will briefly reiterate the method.

Figure 3.3 illustrates the imaging geometry of the shadows: B is the camera-

flash baseline, D is the real world shadow width, d is the shadow width on the image, f

denotes camera’s focal length, z1 and z2 are the depths to the shadowing and shadowed

edges respectively. Using principles of similar triangle, we can describe the relationship
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Figure 3.3: An illustration of the relationship between shadow width and relative
depth.

between shadow width and relative depth as

d =
fB(z2 − z1)

z1z2
(3.1)

and we can rewrite the equation as

d

fB
=

1

z1
− 1

z2
= ∇ 1

Z
(3.2)

where Z(x, y) is the unknown depth map of the scene. Equation 3.2 indicates

that, at the depth edge locations, the shadow depth on the image plane directly encodes

the gradient of the inverse depth value.

G(x, y) =

 (0, 0) if (x, y) /∈ depth edge pixel

∇ 1
Z(x,y)

if (x, y) ∈ edge pixel
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Next, we can recover the depth by solving an optimization problem |∇M −G|2,

which amounts to solving a Poisson differential equation. The final depth map can be

obtained by 1
M

.

3.1.3.3 Light Field Construction

Light field is a set of rays that depict a scene in place of geometry. In free space,

light field is defined by its intersection with two parallel planes, namely the camera

plane Πst and image plane Πxy. This definition is in accord with a common practice

by storing the light field as a 2D array of images, where (s, t) is the image index and

(x, y) is the pixel index.

We can obtain the light field by moving a camera in a 2D grid and capturing

the scene. However, the capturing process is time-consuming and will generate a

large dataset. Given the fact that the real scene usually contains a large fraction

of Lambertian surfaces, the light field is fairly sparse, i.e., for a 3D point, the light field

is constant along the angular dimension. Therefore, we can explore this sparse prior

for light field reconstruction.

Specifically, we use the maximum composite image as the reference view R00

and warp the image based on the disparity map M to construct the light field [125].

Suppose that a 3D point P is captured by R00 at pixel p(x0, y0), then for light field

camera Rst we can locate its pixel (x, y) that passes through P ,

(x, y) = (x0, y0) + disparity ∗ (s, t) (3.3)

Based on Eqn. 3.3, we can directly warp the pixel in R00 onto Rst. Since multiple

pixels in R00 may warp to the same pixel location in Rst, we also warp the disparity map

to reject pixel whose disparity is smaller than the one stored in the map. In this way

we can ensure correct visibility. Meanwhile, the forward warping will introduce holes

from occlusion. These holes are filled with image inpainting algorithm [6]. With the

light field, we can interpolate novel views and synthesis shallow depth-of-field effects

with add-and-shift algorithm [84].
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Figure 3.4: (Left) Image abstraction by using anisotropic diffusion. (Right) Image
abstraction by using bilateral filter.

3.1.3.4 Non-photorealistic Rendering

From the depth edge image, we can further perform post-processing techniques

for synthesizing various non-photorealistic effects.

Line-art Rendering Line-art image [53] is a simple yet powerful way to display an

object. Lines not only represent the contour of an object but also exhibit high artistic

value. Raskar et al. [90] convert the edge image to a linked list of pixels via skeletoniza-

tion and then re-render each edge stroke. However, it is computationally expensive.

We adopt a much simpler approach using simple filtering. We first downsample the

image by bicubic interpolation, then apply the gaussian filter, and finally upsample the

image. Both bicubic interpolation and gaussian filter serve as low pass filters, which

will blur the binary depth edge image. Also users are capable of adjusting the kernel

size to control the smoothness. Our processing pipeline is simple, making it suitable

for implementation on the mobile platform. iPhone 4S takes about half a second for

processing an 640× 480 image.

Image Abstraction The most straightforward approach is to use edge-preserving
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filters such as bilateral filters or anisotropic diffusion [7] to suppress texture edges

while preserving depth edges. For example, we can apply the joint bilateral filters [87]

that uses the depth image for computing the blur kernel and then blurring the max

image Imax. A downside of this approach is that the result may exhibit color blending

across the occlusion boundaries, as shown in Fig. 3.4. This is because bilateral filters do

not explicitly encode the boundary constraint in the blurring process, i.e., the contents

to the left and to the right of the edge are treated equally.

To avoid this issue, we apply anisotropic diffusion instead. Specifically, we

diffuse the value of each pixel to its neighboring pixels iteratively and use the depth

edge as constraints. To ensure that pixels will not diffuse across the depth edge, at the

nth iteration, we compute the mask Mn

Mn(x, y) =

 In(x, y) if (x, y) /∈ edge pixel

0 if (x, y) ∈ edge pixel

and

In+1(x, y) =
w
∑

(xt,yt)∈N Mn(xt, yt) +Mn(x, y)

1 + 4w
(3.4)

where N are the neighboring pixels to (x, y) and w is the assigned weight to the

neighboring pixels. In our implementation, we simply set w = 5. Notice that large

w will make the diffusion converge faster and we limit the number of iterations to 15.

Finally, we add the edge map to the texture de-emphasized results. On an iPhone 4S,

this process takes about 1.5s.

Image Thumbnailing Image thumbnailing [72] reduces the size of the normal image

for better organizing and storing. By using bicubic interpolation, we can downsample

the de-emphasized image to create a stylized thumbnail image. The depth edges are

preserved while the texture regions are blurred, making it suitable for creating icons.

3.1.4 Object Category Classification using Depth Edges

The effectiveness of using depth edges (occluding contours) in object category

classification has been reported by recent study [99]. Specifically, depth edges can
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serve as feature filter which help high-level vision tasks to get “purified” shape related

features. Here we use similar bag-of-visual-word classification framework as in [99] for

evaluation on a dataset collected by the proposed mobile multi-flash camera.

Category Classification Using Bag-of-Visual-Word Model The main idea of

bag-of-visual-word (BOW) approach is to represent image as histogram of visual words.

128-dimensional SIFT descriptor is used as independent feature. The dictionary of

visual words is learned from training data using clustering method such as k-means.

Each training and testing image is represented by histogram of visual words in the

dictionary. A classifier is then learned in the space of these visual words for classification

task. In this experiment we use Support Vector Machine (SVM) due to its simplicity

and discriminative power. As for implementation detail, we chose the LibSVM package

and Gaussian kernel.

Feature Filtering Using Depth Edges Sun et al. [99] proposed to enhance the

BOW framework by filtering out irrelevant features in images using depth edges. Let

an image be I : Λ → [0, 1], where Λ ∈ R2 defines the 2D grid. The set of feature

descriptors are:

F(I) = {(xi, fi)}, (3.5)

where xi is the position of the ith feature fi. After obtaining the depth edge image IDE

according to steps mentioned in previous sections, any feature that is far away from

valid nonzero IDE pixels will be eliminated. The new feature set G is defined as:

G(F(I), Imask) = {(xi, fi) ∈ F(I) | Imask(xi) < τ}, (3.6)

where Imask(·) is the distance transform map of IDE(·) and τ is a preset distance

threshold. After filtering, feature descriptors become concentrated around depth edges

of objects.
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3.1.5 Implementation and Application

3.1.5.1 Implementation

We have implemented our mobile MF system on an iPhone 4S. iPhone 4S fea-

tures a 1 GHz dual core, a 512 MB RAM and an 8 megapixel camera with a fixed

aperture of f/2.4. All examples are captured and rendered at an image resolution of

640 × 480. The images are captured under indoor conditions to avoid outdoor ambi-

ent light overshadowing the LED flash light which would make it difficult to identify

shadow regions. Further, the iPhone 4S does not allow the user to control the shutter

speed. As a result, under a relatively dim environment, the camera uses a high ISO

setting and the acquired images, even under the LED flashes, exhibit noise. However,

this is not a major issue for our targeted applications such as depth edge detection,

depth map extraction and image abstraction where the smoothing operator for reducing

textures also effectively reduces noise.

The camera-flash baseline determines the effective acquisition ranges (i.e., to

capture distinctive shadows). If we place the camera too far away, the shadows will be

too narrow to be observed due to the small baseline. On the other hand, if we place

the camera too close to the object, the LED cannot cover the complete region where

the camera is imaging as the LED beam has a relatively small FoV. In practice, we find

that the suitable distance for acquiring an object is about 6′′ to 10′′ and the object to

background distance is about 2′′ to 3′′. For example, assume the camera-object distance

is 9′′ and the object background distance is 2.5′′, reusing the derivation from [90] we

can obtain that the shadow width in the image is about 9 pixels on the iPhone 4S

camera which uses a focal length of 0.17′′. Further, if the width of the object is smaller

than 0.14′′, the shadows can appear detached.

3.1.5.2 Imaging Application

First we demonstrate using our mobile MF camera to recover depth on toy

robots of 4′′ in height. We acquire the images with the device held by hand and

we rely on the textures on the background and the robots to provide useful features
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Figure 3.5: The recovered depth map from MF images.

for registering the images. After the image alignment, we can recover a qualitative

depth map from the input MF images, as shown in Fig. 3.5. Note that due to the

small camera-flash baseline and image noise, the depth map exhibits some artifacts.

However, one can still readily identify different depth layers of the scene. Once we

obtain the depth map, we are able to generate a light field from the depth map and

its corresponding maximum composite image using image warping. The holes in the

warped images will be filled with image inpainting algorithm [6]. From the light field

we can synthesis shadow depth-of-field effects and produce novel views, as shown in

Fig. 3.6.

Next we show depth edge extraction and non-photorealistic rendering on our

mobile MF platform. Figure 3.7 shows the MF results on a 6′′ cowboy model in

front of a white background. We acquire the images with the device held by hand.

Fig. 3.7(a) shows one of the LED flashed image and Fig. 3.7(b) shows the extracted

depth edges. Compared with Canny edge detection (Fig. 3.7(c)), the MF edge map is

of much better quality despite slight hand moves. The results after image registration

are further improved as shown in Fig. 3.7(d). We observe though a spurious edge

appear on the hat of the cowboy which is caused by detaching shadows due to the

small size of the hat. Fig. 3.7(e) and (f) show various non-photorealistic rendering
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(a)

(b)

Figure 3.6: (a) The shallow depth-of-field effect with varying position of the focal
plane. (b) The interpolated novel view.

effects. The color of the scene is also washed out by the flash and we normalize the

maximum composite color images using linear mapping to enhance the color.

Figure 3.8 demonstrates using our mobile MF camera on a headstand mannequin

of 5.5′′ in height. The mannequin is placed in front of a highly textured background

to illustrate the robustness of our technique. Fig. 3.8(b) and (d) show the depth edge

results with and without image registration. Despite some spurious edges caused by

the specular pedestal, our recovered occlusion contours are generally of good quality.

Our technique fails though to capture the inner contour of the legs of the model. We
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Figure 3.7: (a) The shadowed image. (b) Extracted depth edge image before image
registration. (c) Detected depth edge image using Canny edge detector.
(d) Extracted depth edge image after image registration and translation.
(e) Line-art Rendering. (f) Image abstraction and image thumbnailing.

observe in the maximum image that this area was not well illuminated by any of the

four flashes, as shown in Fig. 3.8(a). The problem, however, can be alleviated by using

more flashes.

In Fig. 3.9, we show using mobile MF for acquiring a complex plant that are

covered by leaves and branches. The scene is challenging for traditional stereo matching

algorithms because of heavy occlusions and high similarity between different parts of

the scene. Previous SLR-camera based MF systems [90] have shown great success on

recovering depth edges on such complex scenes but it uses a bulky setup (Fig. 3.1)

and bright flashes. Our mobile MF camera produces comparable results as shown in
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Figure 3.8: (a) The maximum composite image. (b) Extracted depth edge image
before image registration. (c) Detected depth edge image using Canny
edge detector. (d) Extracted depth edge image after image registration
and translation. (e) Line-art Rendering. (f) Image abstraction and image
thumbnailing.

Fig. 3.9(b). The thin tip of the leaves cause detached shadows and leads to splitting

edges, an artifacts commonly observed in MF-based techniques.

Figure 3.10 demonstrates the potential of using our mobile MF to enhance

human-device interactions. We use the mobile MF device for acquiring the contour

of hands. Fig. 3.10(c) and (e) compares the foreground segmentation vs. our MF-

based edge extraction. As the hand and the background shirt contain similar color

and textures, segmentation based method fails to obtain accurate hand contours. In

contrast, our mobile MF technique faithfully reconstructs the contours and the results
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Figure 3.9: (a) The maximum composite image. (b) Extracted depth edge image.
(c) Line-art Rendering. (d) Image abstraction and image thumbnailing.

can be used as input to gesture-based interfaces. One downside of our technique though

is that the flashes cause visual disturbances. The problem can be potentially resolved

by coupling infrared LED flashes such as 1W 850 nm infrared LED from Super Bright

LEDs and the infrared camera that is already available on latest mobile devices.

3.1.5.3 Visual Inference Application

For object category classification, we created a dataset containing 5 categories

similar to the Category-5 dataset used in [99]. Each of the 5 categories contains 25

images (accompanied with depth edge images) taken from 5 objects. For each object,

images are taken from 5 poses (0◦, 90◦, 135◦, 180◦, 270◦) with 5 different background.

Each image is generated along with depth edges using the proposed mobile multi-flash

camera.

Standard bag-of-visual-word (BOW) and BOW with depth edge filtering (BOW+DE)

are compared to evaluate the effectiveness of proposed camera. Training and testing

sets are randomly divided into half for each run and the experimental result is sum-

marized over 100 such random splits. The performance of BOW and BOW+DE are

reported in terms of recognition rate in Table 3.1.

The result has shown that using depth edge images has significant improvement

(about 10%) in recognition rate. This result is consistent with that found in [99]. It
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Figure 3.10: (a) The foreground image. (b) The background image. (c) Foreground
contour from foreground-background substraction. (d) One shadowed
image. (e) The depth edge image. (f) Image abstraction and image
thumbnailing.

suggests that the proposed mobile multi-flash camera shares the similar performance

with traditional multi-flash camera system but it is much compact and light-weighted.

Method BOW BOW+DE
Classification Accuracy (%) 66.52± 4.85 75.42 ± 3.42

Table 3.1: Category classification result.
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3.1.6 Discussion

In this section we have presented a new mobile multi-flash camera that uses the

mobile device’s own flash as a pseudo synchronization unit. Our mobile MF camera

is compact, light-weight, inexpensive and can be mounted on most smartphones and

tablets as a hand-held imaging system. To process the MF images, we have exported the

OpenCV library onto mobile platforms and have developed a class of imaging processing

algorithms. Our system is able to register misaligned images due to hand motions,

extract depth map and depth edges by analyzing shadow variations, construct a light

field and produce non-photorealistic effects. Our solution showcases the potential of

exporting computational photography techniques onto mobile platforms.
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3.2 A Portable Immersive System using RGB-D Sensor

3.2.1 Background

Acquiring and displaying high-fidelity 3D reconstruction in large scale are chal-

lenging tasks in computer vision. Most existing approaches [91, 31, 32, 95, 65, 116],

e.g., from Fuchs’s group at UNC, Bajcsy’s group at Penn, Kanade’s group at CMU,

and Gross’s group at ETH, have pioneered the use of a “sea of cameras” around a

room for reconstruction. However, this approach presents difficulties in several as-

pects: On the system front, it is literally impractical to mount “a sea of cameras”

within a room. Most existing multi-camera systems (including the immersive solu-

tions mentioned above) require using multiple workstations just for data transmission

and storage. The system infrastructure, such as camera mountings, interconnects, and

workstations, is bulky, making them unsuitable for on-site tasks. On the reconstruction

front, recovering 3D scene geometry from images is still one of the open problems in

computer vision [3, 79]. To make the problem tractable, many existing algorithms tend

to make simplified assumptions about scenes, such as Lambertian surface and distant

light sources. However, in most environments, we simply cannot assume these factors.

For example, in a surgical environments, specular highlights and changing lighting are

the norm, easily causing the classical computer vision algorithms, such as binocular

stereo or shape-from-shading to break down.

In this section, we present a new immersive system that focuses on room size

3D reconstruction in real time. Our proposed solution resolves both the system and

reconstruction problems by leveraging emerging 3D imaging technologies and multi-

modal fusion algorithms. Instead of using a large number of cameras, we use a small

number (2 ∼ 4) of 3D sensors, namely Microsoft Kinect. Kinect camera is able to

produce real-time depth maps using a structured light technique: it projects a special

infrared dots pattern onto the objects, and compute its depth by computing the distri-

bution of the dots. These sensors are uniformly controlled by a single workstation and

their range and imagery data are fused via a companion computer vision algorithm for

robustly recovering the 3D surgical scene. We further develop a user interface to allow
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the users to navigate the 3D environment in both space and time.

We have conducted our experiments in a surgical environment, making our sys-

tem an immersive surgical training system. Although videotaped instruction has long

served as a workhorse for teaching surgical procedures, they are marginally effective:

videotapes only provide 2D imagery that lacks depth perception and the trainee cannot

freely change viewpoints as the inputs are captured from a fixed location. Our pre-

liminary experiments, conducted at the Virtual Education and Simulation Technology

(VEST) Center at Christiana Care Health System (CCHS), show that our system can

effectively capture and reconstruct 3D surgical procedures performed by an expert.

These three-dimensional recordings can be presented in a virtual operation theater in

which medical students can perceive solid stereoscopic views without glasses (e.g. on

an autostereo display) or with special glasses on a commercial 3D TV, as if they were

present in the room.

To summarize, the contributions of this section are the following: (i) We present

a portable 3D acquisition system that is capable of acquiring scene geometry in real

time. (ii) We fuse the 3D point cloud from each view into a global 3D point cloud repre-

sentation. (iii) We develop a space-time navigator that allows the user to dynamically

explore the scene over space and time.

3.2.2 Methods and Materials

Figure 3.11 shows our proposed immersive system that can automatically re-

cover 3D scenes. Our system consists of three major components. The first component,

Image Acquisition, captures images and depth data using a set of Microsoft Kinect cam-

eras and recovers the camera calibration matrix for each view. Next, the Data Fusion

and 3D stereoscopic rendering module combines the image and depth data to generate

a 3D point cloud from each view and utilizes the camera calibration parameters to fuse

individual data into a global 3D point cloud, which is subsequently rendered as a 3D

stereoscopic view of the scene. Finally, the Data Navigation module allows users to
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Figure 3.11: Our proposed pipeline for reconstructing and visualizing 3D environ-
ments.

dynamically visualize the event from new perspectives at arbitrary time instances in

real time.

3.2.2.1 Image Acquisition and Camera Pose Recovery

Figure 3.12 shows our image acquisition system that uses a set of three Microsoft

Kinect sensors. Each Kinect sensor consists of an infrared projector, a RGB camera

with a res- olution of 640 × 480 pixels, and an infrared sensor. Also, a calibration

pattern is used to determine point correspondence to automatically recover the camera

calibration parameters. To get access to both depth and RGB image streams, we

develop our data fetching module based upon the open source nestk library [64].

In our experiments we strategically mount the Kinect sensors around the oper-

ating table to cover both the organs and surgeons during the surgical procedure. A

computer with an i7-3930k processor is used to communicate with the Kinect sensors

through USB interfaces. During acquisition, both depth and RGB images are captured
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(a) (b)

Figure 3.12: (a) Microsoft Kinect has a microphone array, an infrared projector, an
infrared sensor and a VGA camera. (b) Acquisition system consists of
a set of three Microsoft Kinect cameras.

at a rate of 15 frames per second for all Kinect sensors.

Similar to previous approaches [91, 120, 133, 132], our method requires obtain-

ing the camera calibration matrix for each view. In our solution, the operating room

has very similar colors without textures and the occlusion patterns vary significantly

across views due to sparse sampling, making it challenging to robustly compute the

point correspondence across views. To resolve this issue, we manually identify point

correspondences between the corners of the calibration pattern in the acquisition sys-

tem. We then recover the camera calibration parameters for each view, using the

approach described in [70].

3.2.2.2 Data Fusion and 3D Stereoscopic Rendering

Next, we perform a two pass rendering approach that first recovers a point cloud

for each viewpoint, and then fuses the individual results to generate a dense set of 3D

points that faithfully reconstruct the 3D scene.

Given a depth-RGB image pair, our solution first traces a ray for each pixel

in the image and utilizes the depth data to find the corresponding 3D coordinates.
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Specifically, for each pixel in the input image we trace a ray originating at the center

of projection C toward the image plane. Let r̄ denote a ray originating from C toward

pixel (u, v) in the image plane. The trajectory of the ray can be described as

r̄ = C + λd̄ (3.7)

where d̄ is the direction vector. In camera coordinate system, the direction

vector d̄ can be written in terms of camera image plane axis d̄x d̄x, d̄ and the optical

axis d̄z as

d̄ = ud̄x + vd̄y + f d̄z (3.8)

Here (u, v) is the pixel coordinate in the image plane and f is the focal length

of the camera. Therefore, the original equation can be described as

r̄ = C + λ(ud̄x + vd̄y + f d̄z) (3.9)

Note that the ray intersects the image plane when λ = 1. Since the depth image

contains a measure of depth along the optical axis, we can conveniently determine λ

for each pixel. Thus, for each Kinect sensor we can compute a 3D textured point from

each input pixel in the 2D image.

Next, we use the camera calibration parameters to transform the point cloud of

each Kinect sensor from local coordinate into a global coordinate system. Then we fuse

multiple point clouds into one global point cloud representation. Note that Kinect is

de- signed as a stand-alone solution. While a single Kinect sensor delivers quite robust

depth maps, simultaneously running multiple sensors may lead to deteriorated results.

With the generated point cloud, we set out to render a 3D stereoscopic view of the

scene. Traditional 3D rendering generates a single perspective view by synthesizing a

pinhole camera image in the scene. We extend this approach by simultaneously setting

two cameras in the scene with a user specified baseline. In a single frame, two cameras

capture two views of the point cloud and render them with red-cyan anaglyph. We also
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utilized the NVIDIA 3D API to render two regular color images and synchronize with

the NVIDIA 3D glasses to deliver a better user experience. Both passes are mapped

onto Mi- crosoft Direct3D graphics framework. Using the state of the art NVIDIA

GeForce GTX 580 graphics card, we can render stereoscopic views at over 1000 fps

with a resolution of 1280× 1024.

3.2.2.3 Data Navigation

To better help the users to navigate the scene, we have developed a space- time

visualization system to display the acquired data. The system includes an interface,

which allows users to pick a specific time frame in an event, pause or re- play that time

frame and dynamically change viewpoints and have close-up views as if they were there.

Our new navigation system thus allows the users to review a surgical procedure without

any space or time constraint, as shown in the videos from our project website [102].

3.2.3 Results

To evaluate our proposed system, we bring together both researchers and clinical

trainees.We have worked closely with the VEST Center at CCHS, which supports

the entire Christiana Care Community (physicians, nurses, allied health professionals,

residents, students and regional health services). The VEST Center includes adult and

pediatric high-fidelity human patient simulators, a working laparoscopy station with

simulated tissues, an endoscopy/bronchoscopy simulator, 3D visualization software and

display and numerous task trainers to meet departmental needs. In addition, the VEST

center has two operative theaters approved for tissue block surgery, fully fitted with

all instrumentation and equipment for surgical procedures.

We used our system to capture a cholecystectomy (gallbladder surgery) on ani-

mal tissue blocks conducted by highly trained surgeons at the VEST Center. To cover

as many details as possible on the operating table, we used three Kinect sensors facing

the table. For training purposes, the surgery took half an hour and we were able to

capture five video clips. Figure 3.13(a) shows three point clouds acquired from the
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(a)

(b) (c) (d)

Figure 3.13: (a) Combining point clouds acquired from each Kinect sensor. (b) A
global point cloud representation. (c) Change of viewpoint. (d) A close-
up view.

three Kinect sensors. Figure 3.13(b) shows the global point cloud representation by

combining three point clouds. As shown in Fig. 3.13(c) and (d), one can change view-

points and zoom in and out using our system. Fig. 3.14 shows the 3D stereoscopic view

using red-cyan anaglyph. Initial Feedback from the residents shows that our system

is much more effective than the conventional videotaped system. These results along

with additional videos can be found at [102].

3.2.4 Discussion

We have developed a new immersive system by coupling emerging 3D imaging

technologies with advanced computer vision and graphics techniques. Specifically, we

use the Microsoft Kinect platform, an inexpensive commercial 3D camera, as the main

acquisition device and develop a class of multi-view 3D fusion techniques to faithfully

reconstruct the surgical procedure. We have conducted preliminary tests of the system
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Figure 3.14: 3D stereoscopic view using red-cyan anaglyph.

fidelity for cholecystectomy (gallbladder surgery) training and have developed a space-

time visualization system to display the acquired data. Furthermore, we integrate our

system with 3D stereoscopic displays to enhance the user experience.
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Chapter 4

DEPTH FROM A SINGLE LIGHT FIELD

4.1 Background

A light field (LF) consists of a large collection of rays that store radiance in-

formation in both spatial and angular dimensions. An important application of light

fields is light field rendering. It has been shown that light field is capable of rendering

photorealistic images of complex scene without geometric information. Moreover, one

can conduct digital refocusing after exposure, making it suitable for scenarios where

auto-focusing is not available or high focusing speed is required.

However, accurately refocusing the target object is a non-trivia problem. Ideally,

one can utilize the captured light field to synthesis a focal stack, from which the image

with target object in focus can be picked. But synthesizing the complete focal stack

requires applying computationally expensive light field rendering schemes, making it

prohibited for time-sensitive applications. In order to reduce the time for correct

refocusing, knowing the depth of the target object is critical. Tremendous effects [18,

52, 105, 113, 30] has been made to extract depth from LFs. However, most existing

methods aim to recover the depth for the general scene. The complexity of different

scenes require high computational cost for depth extraction, which largely mitigates

the benefit of using depth prior in refocusing tasks.

In this section, we set out to recover the depth of a special target: barcode. A

barcode is an optical machine-readable representation of data relating to the object to

which it is attached. Nowadays the ubiquitous barcodes found on product packaging

significantly improve the speed and accuracy of computer data entry. With increasing

popularity of barcodes, 2D imagers have been used to automate the process of barcode
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reading. These 2D scanners are fundamental low-cost cameras. Therefore, a user would

need to manually move the barcode towards or away from the scanner to ensure it is

within the depth of field of the scanner. Alternatively, the scanner can conduct a focal

sweep and select the proper focal slice to decode. However, implementing focal sweep

requires adding moving parts to the scanner, which reduces robustness to mechanical

shock. The overwhelming majority of purpose-built scanners are fixed focus for these

reasons.

Therefore, a barcode scanning system using the light field camera will address

above-noted issues. A light field camera such as Lytro and Raytrix uses a microlens

array to capture multiple views of the scene in a single shot. The capability of digital

refocusing reduces the mechanical complexity of moving parts in the scanner. To speed

up the refocusing process, we develop an image processing algorithm to recover the

barcode’s depth in real time. We first segment out the barcode region, which we detect

from a sub-sampled version of the raw sensor image. Then, we directly estimate the

depth of the barcode by analyzing the variance of pixel intensities in the lenslet images

formed behind each microlens. Finally, we conduct refocusing only at the estimated

depth.

Compared with 2D imagers, our system only adds two extra steps: depth esti-

mation and barcode image rendering. With little computational cost, we gain a system

with its range of depth of field nearly triples that of a conventional camera. Compre-

hensive experiments demonstrate our new light-field based barcode scanner system is

fast, accurate and robust to barcode orientation, size variation, and lighting.

4.2 Related Work on Barcode Imaging

Recently, there has been an emerging interest in barcode reading using 2D im-

agers. Barcode reading consists of two distinct stages: localization and decoding.

Tremendous efforts have been made to enhance the performance of both stages. Muniz

et al. [78] applied hough transform to the image to locate the barcode and find its op-

timal orientation for further decoding. Zhang et al. [129] jointly analyzed the texture
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and shape information to search for the barcode. Chai and Hock [11] improved the

barcode localization by using morphological operator to identify parallel line patterns

at block level. Gallo and Manduchi [34] employed a deformable template matching

method and enforced global spatial coherence to correctly read barcodes in difficult

situations. Xu and McCloskey [121] described a system for localizing and deblurring

motion-blurred image using a flutter shutter camera. In contrast to their methods, our

system features a better light efficiency and aims at reducing the defocus blur of the

barcode image.

4.3 Barcode Scanning Overview

This section explains important differences in barcode reading devices, estab-

lishes that current barcode readers are limited by the depth of field, and that reducing

spatial resolution is an acceptable tradeoff. Key to this is understanding the distinction

between 1D scanline barcode reader and 2D barcode reader.

4.3.1 1D Scanline Barcode Readers

The commonly-used term “scanner” comes from the fact that early 1D readers

consisted of a fixed laser source and a rotating prismatic mirror which caused the

illumination to scan across the barcode. A single photodiode recorded the temporal

variations of the laser reflection, which is roughly equivalent to a 1D image slice. Similar

devices are still used at retail checkout counters, but the need for a rotating element

makes them ill-suited for hand-held readers. Instead, mobile 1D readers are solid state,

with a linear array of photodiodes whose field of view is illuminated by an optically

diffused stationary laser. Because only a single line through the barcode needs to be

imaged, illumination is high and 1D readers have a large depth of field.

4.3.2 2D Barcode Readers

Because 1D barcodes have limited capacity, several different 2D codes have

been introduced, readers of which are essentially monochrome cameras. Unlike con-

sumer cameras, however, 2D barcode scanners are solid state for robustness to physical
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shock1. As such, a fixed focal position is used which, in combination with the aper-

ture, determines the depth of field over which a sufficiently sharp barcode image can

be obtained. The well-known tradeoff with exposure, made by changing the aperture,

is used in scanner design, but apertures smaller than f/10 are rarely used due to lim-

itations on active illumination2. To work around this limitation, 2D barcode readers

(e.g., Honeywell Xenon 1900 and Motorola DS4208) are offered in multiple sub-models

with different focal positions, but this is inconvenient for many users.

4.3.3 Resolution to Trade

Without being able to increase illumination, and with modern sensors already

close to 100% quantum efficiencies, we argue that a microlens-based LF camera is the

best way to expand scanning depth of field. As in the Lytro camera, this approach

gives an image with diminished spatial resolution relative to that of the sensor, but bar-

code scanners - most of which currently use sub-megapixel sensors - are not resolution

limited. Most symbologies can be decoded with a resolution of 50 pixels per cm on the

target, meaning that a solid state LF scanner producing a 1 megapixel refocused image

can decode a 10 mil data matrix from 0 to 29 cm, a range which currently requires the

use of three separate fixed-focus devices.

4.4 Overview and Assumptions of Approach

Figure 4.1 shows an overview of our approach. Starting from the raw image

captured by a sensor behind a microlens array, we sub-sample one pixel per microlens

to get a sub-aperture image within which we locate the barcode. We then crop out

the corresponding region of the raw sensor image, which gives a LF covering only the

barcode. Using the pixels in this region, we estimate the depth (the distance from the

1 Handheld scanners are typically designed to withstand multiple drops from 2m onto
a concrete floor.

2 Not only is the effectiveness of active illumination reduced at longer distances, but
illumination is limited by the fact that batteries or USB connections limit the available
power.
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Figure 4.1: Our overall system for barcode refocusing.

lens to the barcode) and then refocus a single image which sharply renders the target.

The sharply-focused barcode region is then supplied to a decoder which determines

both the symbology and the barcode’s contents.

While barcodes in the real world may appear at any orientation relative to the

sensor, our analysis assumes that the barcode is approximately frontal parallel, and

we only consider one depth value. In practice, slanted barcodes will often appear

sufficiently well-focused, though effective scanning in these situations is limited by

decoder performance on skewed inputs.

4.5 Barcode Depth Estimation

The key to fast rendering of the refocused barcode image is depth estimation.

While existing methods [18, 52, 105, 113, 30] are applicable to general scenes, the ex-

pensive computational cost prohibits them from being used in time-sensitive scenarios

like barcode scanning. In this section, we speed up the process by first segmenting

out the barcode region, and then analyzing the statistics of pixel intensities in the

lenslet image. Compared with traditional depth estimation methods, our approach is

application specific and much faster.
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Figure 4.2: Raw LF image. Note that lenslet image pattern changes with the depth
of the barcode.

4.5.1 Barcode Localization

Conventional barcodes are composed of high contrast black and white bars or

patches, which facilitate the localization process. Several approaches have been pro-

posed and optimized to take advantage of the texture information for localization, but

barcode detection is still an active area of research [15] for traditional cameras. How-

ever, the imaging mechanism of LF camera will distort and deteriorate these features,

making existing approaches less effective, even unusable. The structure of LF camera

is similar to a conventional camera, except that it adds a microlens array in front of

the sensor to further diverge the rays based on their directions. Thus, the resultant

raw LF image consists of hundreds of thousands of lenslet images, as shown in Fig. 4.2.

Directly locating the barcode on the raw LF image would be extremely challenging:

each lenslet image contains a small number of pixels (e.g., 10 × 10 in Lytro camera);
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and the high contrast in the boundary region of lenslet image will fail gradient based

detection algorithms.

In order to address these issues, we aim to first localize the barcode on a sub-

aperture image instead of the raw image. A sub-aperture image is a 2D image composed

of pixels at the same position beneath each microlens. It can be regarded as an image

taken by a virtual camera with its center of projection on the main lens. In our case,

we pre-calibrate the center of each lenslet image and pick the center pixels to generate

a central sub-aperture image. Interpolation is required since the lenslet arrangement

is hexagonal.

Although the sub-aperture image is of low resolution (about 328×378 for Lytro)

which inhibits direct decoding, it is detailed enough for barcode localization. We extend

the method proposed in [34] by incorporating the barcode orientation into the feature

computation, and analyze the shape of the region with high average feature responses

for robust localization. For each angle θ ∈ {−90,−85, ..., 90}, feature response Iθe (p) =

|Ixθ(p)| − |Iyθ(p)| is evaluated at each pixel p, where Ixθ(p) and Iyθ(p) are the image

gradient along orthogonal directions xθ(cos θ, sin θ) and yθ(− sin θ, cos θ) respectively.

A box filter is applied to Iθe to get locally averaged feature response Īθe . The potential

barcode region is identified by a connected region of constantly high average response

Īθ
∗
e with θ∗ maximizing the mean of Īθe (p)’s within the region. The shape of this region

is also required to be tightly bounded by an oriented rectangle. Within this rectangle,

we compute the size of the candidate barcode as the distance between the first and the

last black bars. In order to eliminate the effects of illumination variations, the input

sub-aperture image is preprocessed using local histogram equalization. Fig. 4.3 shows

an example of our barcode localization algorithm.

Note that our localization method is designed for 1D barcode. We refer the

reader to [121] and other related work for 2D barcode localization. After we locate the

barcode in the sub-aperture image, we can continue to crop the corresponding barcode

region in the raw light field image and only process this region to speed up our following

ray tracing algorithm.
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Figure 4.3: A barcode localization example. An optimal rotation angle θ∗ is deter-
mined maximizing the mean feature response of the potential barcode
region.

4.5.2 Spatial Frequency vs. Depth

We first study the correlation between the spatial frequency of the raw barcode

region and its depth. Here we assume that the barcode is approximately frontal parallel

to the camera so we only consider one depth value. As shown in Fig. 4.2, barcodes

positioned at different depth exhibits different lenslet image patterns. In the first inset,

each lenslet image shows uniform color, indicating the image plane of the main lens

coincides with the plane of the microlens array. As the barcode moves nearer to the

camera, increasing intensity variations are evident in lenslet images. Therefore, our

intuition is to use this statistical characteristics of barcode for depth estimation.

To better illustrate our algorithm, we simplify the barcode as evenly distributed

black and white bars. The spatial frequency of the barcode is defined as the number of

line pairs per unit length. Fig. 4.4 shows two cases of formation of lenslet images. In

the first case, the image plane of the main lens falls in front of the microlens array, where

each lenslet image is a real image. On the contrary, when the image plane is behind
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Figure 4.4: Spatial frequencies of the barcode image at different image planes.

the microlens array, a virtual image will be observed. Given the spatial frequency of

the barcode X1, we apply thin lens equation to compute the spatial frequency at the

image plane of the main lens X2 = a
b
· X1 = a−F

F
· X1, where a is the object distance

and F is the focal length of the main lens. We repeat this process to obtain the spatial

frequency of the barcode image at the sensor plane X3 = z−b
f
·X2 = a(z−F )−zF

Ff
·X1 when

the main lens image plane is in front of the microlens and X3 = z−b
f
·X2 = a(F−z)+zF

Ff
·X1

when the image plane is behind the microlens. Here z represents the distance between

the main lens and the microlens, b is the image distance and f is the focal length of the

microlens. In both cases, a linear relationship between the barcode’s spatial frequency

at the sensor and its depth can be observed.

4.5.3 Variance vs. Depth

Although we can mathematically compute the sensor plane’s spatial frequency

X3, it is very challenging to robustly measure this frequency since each lenslet image is

only of size 10× 10 pixels–i.e. a very small portion of the barcode, with its boundary

region corrupted by vignetting. In our experiments, we observe at most two color

transitions inside each lenslet image. Therefore, we instead use variance to represent

the spatial frequency of each lenslet image. Specifically, we define a window around
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Figure 4.5: Lenslet images function as a sliding window across the barcode region.

each lenslet center and measure the variance of pixel intensities within the window.

Our intuition is that the higher the spatial frequency, the larger the chance to observe

intensity transitions inside the window. We then compute the overall variance as

the spatial frequency measurement by averaging the variances from the lenslet images

inside the barcode region.

To formulate the correlation between variance and depth, we make following

assumptions based on the observation that at most two intensity transitions appear

within each lenslet image. Next, we regard the light field camera as a relay imaging

system, which consists of mainlens and microlenses as pinhole cameras. We first analyze

the image captured by the microlens, then extend our analysis to the whole system.

First we want to define variance σ2. Suppose our target is evenly distributed

black/white bars. Our pinhole camera has N pixels and the captured image contains

m white pixels and n black pixels. And we further denote the intensity of the white

pixel as 1 and that of the black pixel as 0. Then we can get

σ2 =
1

N

N∑
i=1

(xi − µ)2 =
mn

(m+ n)2
(4.1)

Next we only consider the lenslet image. As each lenslet image only observes a

very small portion of the barcode, its variance changes with its relative positions with

the bar. As shown in Fig. 4.5, we denote the bar width of the image as w, the sensor

size at the barcode image plane as l and the distance between the starting point of
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the lenslet image and a intensity transition as s. Then we continue our analysis in two

cases:1) If l ≤ w, then

σ2 =

0 s ≤ w − l
−s2+(2w−l)s+lw−w2

l2
w − l < s ≤ w

(4.2)

We only compute the variance σ2 as a function of s ranging from 0 to w because it is

a periodic function. Since the lenslets are hexagonally arranged, their images can be

considered as a sliding windows across the entire barcode image. From the distribution

of σ2, we can get the average variance σ̄2 as:

σ̄2 =

∫ w
0
σ2ds

w
=

1

w
(

∫ w−l

0

σ2ds+

∫ w

w−l
σ2ds) =

l

6w
(4.3)

It is evident that average variance σ̄2 is linearly relates to l. We can further map l

through the mainlens to the real barcode as L. By using similar triangles, we have

L = al
b

= A
Ff

[(z−F )a− zF ]or A
Ff

[(F − z)a+ zF ] and l =
A(z−a−F

aF
)

f
, where A is the size

of the sensor and a, b, F, f, z are defined in last section. Therefore, each lenslet image

covers an area of l on the barcode image through mainlens, and an area of L on the

real barcode. Because l increases monotonically with the increase of a, we can obtain

a one-on-one mapping between the depth a and average variance σ̄2.

2) if w < l ≤ 2w, we have

σ2 =


−s2+(2w−l)s+lw−w2

l2
, 0 < s ≤ 2w − l

lw−w2

l2
, 2w − l < s ≤ w

(4.4)

Similarly, we compute its average variance σ̄2 as:

σ̄2 =

∫ w
0
σ2ds

w
=

1

w
(

∫ 2w−l

0

σ2ds+

∫ w

2w−l
σ2ds) =

w2

3
l−2 − 1

6w
l − wl−1 + 1 (4.5)

To prove σ̄2 monotonically increases with l, we compute its first and second order

derivative as (σ̄2)′ = −2w2

3
l−3 − 1

6w
+ wl−2 and (σ̄2)′′ = 2w2 − 3wl. Since w < l ≤ 2w,

(σ̄2)′′ < 0. We further examine the value of (σ̄2)′ at l = w and l = 2w, they are both

larger than 0. Therefore, we can prove that (σ̄2)′ > 0, so σ̄2 monotonically increases

with l. Similar to the first case, we can also obtain a one-to-one mapping between the

depth and average variance.
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Figure 4.6: (a) The average variances of the barcode image using different window
sizes vs. its depth. (b) The depth of the barcode region is determined
jointly by the variance and the size of the detected barcode region.

4.6 Efficient Refocusing

Our analysis above reveals that we can quickly use the variance to determine

the depth of the barcode. This allows us to conduct refocusing with high efficiency.

4.6.1 Barcode Depth Estimation

To validate our use of variance as a depth cue, we measure the average variance

of a randomly selected UPC-A barcode over a range of distances from the camera.

Fig. 4.6(a) shows the results using different window sizes for variance computation.

Clearly we can see valley shaped curves with two approximately linear regions. The

bottom of the curve indicates the main lens image plane falls on the microlens, so the

lenslet image gets uniform intensity which results in a minimum overall variance. Here

one variance value may correspond to two different depths. To resolve this two-fold

ambiguity, we only use the left linear region in our experiments, as barcodes of practical

sizes at depths in the right linear side are resolution limited even when properly focused.

If necessary, the right linear side can be used similarly to estimate another depth in the

case that the depth from the left side leads to an undecodable result. Notice that due

to defocus blur and resolution limitation [35] in the lenslet image, the curve fluctuates
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in both ends, making these regions unusable. For robustness reasons, we estimate three

depth values independently based on different window sizes 3× 3, 5× 5 and 7× 7, and

compute the mean of the corresponding depths as the final estimation.

The variance vs. depth curve in Fig. 4.6(a) is for standard 13 mil barcodes.

Scaling the size of the overall barcode will change the underlying spatial frequency

X1, and change the relationship between depth and variance. This is inevitable since

product manufacturers tend to adjust the size of the barcode to suit the package.

Our solution is first to build a look-up table indexed by variances per barcode size.

Then we jointly determine the final depth based on both the variance and the size

of the detected barcode region in the central sub-aperture image. From projective

geometry, we obtain the relationship between the barcode image size s and the depth d

as s ∝ S/d, where S is the original size of the barcode. Fig. 4.6(b) illustrates our depth

determination strategy. Given a detected barcode size, the larger the barcode’s original

size, the further its distance. Given a measured variance, another size vs. depth curve

is formed by collecting depths from the look-up tables for corresponding barcode sizes.

The ground truth original barcode size and the depth are therefore indicated by the

intersection of these two lines/curves.

4.6.2 Refocusing

The final step in our light field barcode imaging system renders a focused image

of the barcode region, using the depth estimated from the variance and size of this

region. We set out to perform ray tracing to generate the in focus barcode image. Ray

tracing mimics the physical process of image formation. The intensity of a point on the

target image plane (virtual plane) is computed by integrating all the rays of different

directions passing through it.

As shown in Fig. 4.7(a), we use two parallel plane parameterization (2PP) [62] to

represent a ray. Then the formation process of the target image I ′ can be summarized

as:

I ′(s) =
∑
i

I((si − s)
b′

a′
+ si), (4.6)
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Figure 4.7: (a)High quality barcode rendering by ray tracing. (b)Results from two
implementations of refocusing algorithm.

here si denote the location of the optical center of lenslet, a′ the distance from target

image plane Πs to the microlens plane Πu and b′ the distance from Πu to the sensor

plane, and I is the raw image on the sensor.

In our experiments, we first adopt the method proposed by [19] and use pre-

loaded white images from Lytro camera to locate the lenslet centers si according to the

camera’s focal length setting. The target image plane is then determined based on the

estimated depth and is discretized into pixels. Next we conduct ray tracing for each

pixel s to gather the recorded irradiance of the rays and apply bilinear interpolation

to achieve a better approximation of the pixel value. Notice that there is a tradeoff

between the resolution of the barcode image and its computational cost. The ray

tracing technique provides the flexibility to vary the resolution by simply changing the

sampling rate on the virtual plane. In our experiments, we render a barcode image of

approximately 200 × 200 pixels to balance these two factors. Compared to the shift-

and-add refocusing algorithm in [84], which requires rectified light field images (lenslet

images arranged on grids), our method produces sharper rendering results as shown in

Fig. 4.7(b). The blur artifacts in the shift-and-add result are due to the interpolation

operation conducted when generating the rectified light field image from Lytro data.

Generating images with even higher quality is still possible [126, 113], but impractical

due to its high computational cost.
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Figure 4.8: We progressively move the LF camera’s main focus plane from 150 mm
to 350 mm with an incremental of 50 mm and plot the depth vs. variance
curve with window size 3× 3.

4.7 Experiments

We use Lytro camera as our prototype light field camera. The raw images are

preprocessed according to the metadata from Lytro’s proprietary file format [19] and

the vignetting effects are removed using the pre-stored calibration images in Lytro

camera. Demosaicing is then applied to get the final raw light field image. While

capturing, we keep both the focal length and focal plane unchanged to simulate a light

field camera without active parts.

Focal Plane Determination Although the main focus plane of the LF camera is

unchanged during capture, we still need to investigate its impact on the “depth vs.

variance” curve and find the optimal focal plane. To this end, we keep all other settings

unchanged and click Lytro’s interface to progressively move the focal plane away from

the camera. Fig. 4.8 shows that position of the minimum value changes with its focal

plane, as well as the slope of the curve. A tradeoff exists between the depth resolution

and effective range: smaller focal plane corresponds to larger slope and higher depth
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Figure 4.9: Barcode images captured at variant depths using different devices. Light
field camera largely extends the decodable range while keeping the noise
level low.

resolution, but it suffers from smaller effective range. This conclusion infers that the

optimal focal plane is application specific. In our experiments we set the focal plane

to 250 mm for its moderate range and depth resolution.

Depth of Field Our first experiment is to determine the amount of extended depth of

field the light field camera has over a conventional camera. We collect a set of images

of the barcode positioned at 60 mm to 420 mm from the camera with an incremental

step of 6.9 mm. Using Lytro’s desktop application, we generate two groups of images

using the same focal length and aperture size: 1) one with focal plane coincides with

the moving barcode and 2) the other one with a fixed focal plane simulating the con-

ventional scanner. We test the decodability of the barcode images with a proprietary

decoder. Results show that images from the conventional camera are only decodable

within a range of 80 mm due to the defocus blur. On the contrary, the images from

light field camera feature extended depth of field, with a decodable region of 240 mm,

which nearly triples the range of the conventional camera. Fig. 4.9 shows the compar-

ison of the decodable range of 2D scanner and the light field camera, as well as the

sharpness of their resultant images.
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Figure 4.10: Comparison between measured depths and the ground truth depths for
barcodes of different sizes.

Depth Estimation and Image Rendering Our subsequent experiments are to val-

idate our barcode localization and depth estimation algorithm. We set our recognition

target to be the standard 13 mil UPC-A barcode with 1.0x, 1.15x, 1.3x, 1.45x and 1.6x

magnifications. Our variance vs. depth look up tables and size vs. depth curves are

calibrated based on training data of random UPC-A codes. Barcodes with codes differ-

ent from the training data are used for test. Fig. 4.10 shows the comparison between

the estimated depths and the ground truth depths for barcodes of different sizes. The

estimation errors are less than 60 mm which is within the decodable range. Fig. 4.11

shows our rendering results for barcodes on real products. Notice that our algorithm

is robust to different sizes, orientations and nonuniform lighting conditions. However,

severe distortions will lead to failure cases as shown in the last result of Fig. 4.11. The

main reason for this failure case is that our barcode localization algorithm detects a

rectangle rather than a tight parallelogram only encloses the barcode. The non-barcode

region inside our rectangle pollutes the variance estimation for depth estimation.

Running time We compare the processing speed/time of our system and a 2D scanner.
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Figure 4.11: Rendering results of real barcodes using our scanning system. The full
image on the left of each barcode example is the in focus image at the
ground truth depth. We also show an example where our algorithm fails
due to severe distortion.

A 2D scanner directly locates and decodes the barcode after exposure, while our system

requires two extra steps: depth estimation and rendering of the barcode region. In

our C++ implementation, the extra steps take around 0.2s for each light field image.

Note that the result is not fully optimized. With application-specific integrated circuit

(ASIC), as is implemented in most scanners, the overall processing time can be further

reduced.

4.8 Discussion

From the experiment, we can conclude that a light field camera could be used

to replace current barcode scanner to gain extended depth of field with advanced

algorithm and higher light efficiency with its larger aperture. While a purpose-built

LF scanner would likely use a smaller aperture than the Lytro camera, our emphasis

has been on algorithmic improvements that would apply to such hardware. The core

of our algorithm is fast depth estimation of barcode by jointly analyzing the size and

statistical characteristics of the barcode. Therefore, only the necessary focal slice will

be rendered and decoded. Depending on the size of the barcode in the image, and on

the depth complexity of the scene, these improvements can dramatically reduce the

amount of time needed to produce a decodable image.
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Chapter 5

DEPTH FROM DUAL LIGHT FIELDS

5.1 Background

Human visual system relies on a variety of depth cues to gain 3D perception.

The most important ones are binocular, defocus, and motion cues. Binocular cues such

as stereopsis, eye convergence, and disparity yield depth from binocular vision through

the exploitation of parallax. Defocus cue allows depth perception even with a single

eye by correlating variation of defocus blurs with the motion of the ciliary muscles

surrounding the lens. Motion parallax also provides useful input to assess depth, but

arrives over time and depends on texture gradients.

Computer vision algorithms such as stereo matching [92, 10] and depth-from-

focus/defocus [80, 81, 71, 25, 26] seek to directly employ binocular and defocus cues

which are available instantaneously without scene statistics. Recent studies have shown

that the two types of cues complement each other to provide 3D perception [45]. In

this chapter, we seek to develop learning based approaches to emulate this process.

To exploit binocular cues, traditional stereo matching algorithms rely on fea-

ture matching and optimization to maintain the Markov Random Field property: the

disparity field should be smooth everywhere with abrupt changes at the occlusion

boundaries. Existing solutions such as graph-cut, belief propagation [57, 98], although

effective, tend to be slow. In contrast, depth-from-focus (DfF) exploits differentiations

of sharpness at each pixel across a focal stack and assigns the layer with the highest

sharpness as its depth. Compared with stereo, DfF generally presents a low fidelity

estimation due to depth layer discretization. Earlier DfF techniques use a focal sweep

camera to produce a coarse focal stack due to mechanical limitations whereas more

recent ones attempt to use a light field to synthetically produce a denser focal stack.
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Figure 5.1: BDfF-Net integrates Focus-Net, EDoF-Net and Stereo-Net to predict
high quality depth map from binocular focal stacks.

Our solution benefits from the recent advance on computational photography

and we present an efficient and reliable learning based technique to conduct depth

inference from a focal stack pair, emulating the process of how human eyes work.

We call our technique binocular DfF or B-DfF. Our approach leverages deep learning

techniques that can effectively extract features learned from a large amount of imagery

data. Such a deep representation has shown great promise in stereo matching [128,

127, 69]. Little work, however, has been proposed on using deep learning for DfF or

more importantly, integrating stereo and DfF. This is mainly due to the lack of fully

annotated DfF datasets.

We first construct a comprehensive focal stack dataset. Our dataset is based on

the highly diversified dataset from [73], which contains both stereo color images and

ground truth disparity maps. Then we adopt the algorithm from Virtual DSLR [123]

to generate the refocused images. [123] uses color and depth image pair as input for

light field synthesis and rendering, but without the need to actually create the light

field. The quality of the rendered focal stacks is comparable to those captured by

expensive DSLR camera. Next, we propose three individual networks: (1) Focus-Net,

a multi-scale network to extract depth from a single focal stack (2) EDoF-Net, a deep

network consisting of small convolution kernels to obtain the extended depth of field
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(EDoF) image from the focal stack and (3) Stereo-Net to obtain depth directly from

a stereo pair. The EDoF image from EDoF-Net serves to both guide the refinement

of the depth from Focus-Net and provide inputs for Stereo-Net. We also show how to

integrate them into a unified solution BDfF-Net to obtain high quality depth maps.

Fig. 5.1 illustrates the pipeline.

We evaluate our approach on both synthetic and real data. To physically im-

plement B-DfF, we construct a light field stereo pair by using two Lytro Illum cam-

eras. Light field rendering is then applied to produce the two focal stacks as input to

our framework. Comprehensive experiments show that our technique outperforms the

state-of-the-art techniques in both accuracy and speed. More importantly, we believe

our solution provides important insights on developing future sensors and companion

3D reconstruction solutions analogous to human eyes.

5.2 Dual Focal Stack Dataset

With fast advances in the data driven methods, numerous datasets have been

created for various applications. However, by far, there are limited resources on focal

stacks. To this end, we generate our dual focal stack dataset based on FlyingThings3D

from [73]. FlyingThings3D is an entirely synthetic dataset, consisting of everyday

objects flying along randomized 3D paths. Their 3D models and textures are separated

into disjointed training and testing parts. In total, the dataset contains about 25,000

stereo images with ground truth disparity. To make the data tractable, we select stereo

frames whose largest disparity is less than 100 pixels, then we normalize the disparity

to 0 ∼ 1.

Takeda et al. [104] demonstrate that in stereo setup, the disparity d and the

diameter of the circle of confusion c have a linear relationship:

d

c
=

l

D
(5.1)

where l is the baseline length and D is the aperture size. Based on above

observation, we adopt the Virtual DSLR approach from [123] to generate synthetic focal
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(b)

(a)

Figure 5.2: (a) Same scene rendered with varying blur kernel. The top row shows the
ground truth color and depth images for the stereo pair. The middle and
bottom row are the rendered defocused image, where the bottom row is
rendered with a larger kernel than the top row. Left and right columns
show images with different focal plane. The insets show the close-up
views. (b) Image with/without the Poisson noise. Best viewed in the
electronic version by zooming in.

stacks. Virtual DSLR requires color and disparity image pair as inputs, and outputs

refocused images with quality comparable to those captured from regular, expensive

DSLR. The advantage of their algorithm is that it resembles light field synthesis and
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refocusing but does not require actual creation of the light field, hence reducing both

memory and computational load. Further, the Virtual DSLR takes special care of

occlusion boundaries, to avoid color bleeding and discontinuity commonly observed on

brute-force blur-based defocus synthesis.

To better explain their approach, we list the formulation as below:

Cp =
|s− sp|
sp

D = sD| 1
zp
− 1

zs
|, (5.2)

To simulate a scene point p with depth zp projected to a circular region on the

sensor, we assume the focal length f , an aperture size D, sensor to lens distance s,and

the circular region diameter Cp. Here zs = (1/f − 1/s)−1 and sp = (1/f − 1/zp)
−1

according to the thin lens law. The diameter of the circular region Cp measures the size

of the blur kernel and it is linear to the absolute difference of the inverse of the distances

zp and zs. For the scope of this paper, we use only circular apertures, although more

complex ones can easily be synthesized. To emulate the pupil of the eye in varying

lighting conditions, we randomly select the size of the blur kernel for each stereo pair

but limit the largest diameter of the blur kernel to 31 pixels. We also evenly separate

the scene into 16 depth layers and render a refocused image for each layer. After

generating the focal stacks, we add Poisson noise to the images to simulate the real

image captured by a camera. This turns out to be critical in real scene experiments,

as described in section 5.5.2. Finally, we split the generated dual focal stacks into 750

training data and 70 testing data. Figure 5.2 shows two slices from the dual focal and

their corresponding color and depth image.

5.3 B-DfF Network Architecture

Convolutional neural networks are very efficient at learning the non-linear map-

ping between the input and the output. Therefore, we aim to take an end-to-end

approach to predict a depth map. [94] shows that a deep network with small kernels is

very effective in image recognition tasks. Although a small kernel has limited spatial

support, a deep network by stacking multiple layers of such kernels could substantially
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enlarge the receptive field while reducing the number of parameters to avoid overfitting.

Therefore, a general principle in designing our network is to use deep architecture with

small convolutional kernels.

As already mentioned, the input to the neural network is binocular focal stacks.

Therefore, we name our network binocular depth from focus net, or BDfF-Net. To

extract depth from defocus and disparity respectively, BDfF-Net is composed of three

individual networks. We start in section 5.3.1 by describing the Focus-Net, a multi-

scale network that estimates depth from a single focal stack. Then in section 5.3.2 we

show that the result can be further enhanced by the extended depth of field images

from EDoF-Net. Finally we combine Stereo-Net and Focus-Net in 5.3.3 to infer high

quality depth from binocular focal stacks.

5.3.1 FocusNet for DfF/DfD

Motivated by successes from multi-scale networks, we propose Focus-Net, a mul-

tiscale network to extract depth from a single focal stack. Specifically, Focus-Net con-

sists of four branches of various scales. Except for the first branch, other branches

subsample the image by using different strides in the convolutional layer, enabling

aggregation of information over large areas. Therefore, both the high-level informa-

tion from the coarse feature maps and the fine details could be preserved. At the

end of the branch, a deconvolutional layer is introduced to upsample the image to its

original resolution. Compared with the traditional bicubic upsampling, deconvolution

layer automatically learns upsampling kernels that are better suited for the application.

Finally, we stack the multi-scale features maps together, resulting in a concatenated

per-pixel feature vector. The feature vectors are further fused by layers of convolutional

networks to predict the final depth value.

An illustration of the network architecture is shown in Fig. 5.3. We use 3 × 3

kernels for most layers except those convolutional layers used for downsampling and

upsampling, where a larger kernel is used to cover more pixels. The spatial padding

is also applied for each convolution layer to preserve the resolution. Following [94],
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Figure 5.3: Focus-Net is a multi-scale network for conducting depth-from-focus.

the number of feature maps increases as the image resolution decreases. Between the

convolutional layers we insert PReLU layer [40] to increase the network’s nonlinearity.

For the input of the network we simply stack the focal stack images together along the

channel’s dimension.
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Figure 5.4: EDoF-Net consists of 20 layers of convolutional layers to form an extended
depth-of-field (EDoF) image from focal stack.

5.3.2 Guided Depth Refinement by EDoF Image

There exist many approaches [29, 47] to refine/upsample depth image with the

guidance of an intensity image. The observation is that homogeneous texture regions

often correspond to homogeneous surface parts, while depth edges often occur at high

intensity variations. With this in mind, we set out to first extract the EDoF image

from the focal stack, then guide the refinement of the depth image. Several methods

[59, 101] have been proposed to extract the EDoF image from the focal stack. However,

the post processing is suboptimal in terms of computational efficiency and elegance.

Thus, we seek to directly output an EDoF image from a separate network, which we

termed EDoF-Net.

EDoF-Net is composed of 20 convolutional layers, with PRelu as its activation

function. The input of the EDoF-Net is the focal stack, the same as the input of

Focus-Net, and the output is the EDoF image. With the kernel size of 3× 3, a 20 layer

convolutional network will produce a receptive field of 41×41, which is larger than the
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Figure 5.5: Our Focus-Net-v2 combines Focus-Net and EDoF-Net by using the EDoF
image to refine the depth estimation.

size of the largest blur kernel. Fig. 5.4 shows the architecture of EDoF-Net.

Finally, we concatenate the depth image from Focus-Net and the EDoF image

from the EDoF-Net, and fuse them by using another 10 layer convolutional network.

We call the new network Focus-Net-v2. The architecture of Focus-Net-v2 is illustrated

in Fig. 5.5.

5.3.3 StereoNet and BDfFNet for Depth from Binocular Focal Stack

Given the EDoF stereo pair from the EDoF-Net, we set out to estimate depth

from stereo using another network, termed Stereo-Net. For stereo matching, it is critical

to consolidate both local and global cues to generate precise pixel-wise disparity. To this

end, we propose Stereo-Net by adopting the Hourglass(HG) network architecture [83],

as shown in Fig. 6.2. HG network features a contractive part and an expanding part

with skip layers between them. The contractive part is composed of convolution layers

for feature extraction, and max pooling layers for aggregating high-level information
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Figure 5.6: (a) Stereo-Net follows the Hourglass network architecture which consists
of the max pooling layer (green), the nearest neighbor upsampling layer
(pink), the residual module (blue), and convolution layer (yellow). The
network includes intermediate supervision (red) to facilitate the training
process. (b) shows the detailed residual module.

over large areas. Specifically, we perform several rounds of max pooling to dramatically

reduce the resolution, allowing smaller convolutional filters to be applied to extract

features that span across the entire space of image. The expanding part is a mirrored

architecture of the contracting part, with max pooling replaced by nearest neighbor

upsampling layer for upsampling. A skip layer that contains a residual module connects

each pair of max pooling and upsampling layer so that the spatial information at

each resolution will be preserved. Elementwise addition between the skip layer and

the upsampled feature map follows to integrate the information across two adjacent

resolutions. Both contractive and expanding part utilize a large amount of residual

modules [41]. Figure 6.2 shows one HG structure.
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One pair of contractive and expanding network can be viewed as one iteration of

prediction. By stacking multiple HG networks together, we can further reevaluate and

refine the initial prediction. In our experiment, we find a two-stack network is suffi-

cient to provide satisfactory performance. Adding additional networks only marginally

improves the results but at the expense of longer training time. Further, since our

stacked HG network is very deep, we also insert auxiliary supervision after each HG

network to facilitate the training process. Specifically, we first apply 1× 1 convolution

after each HG to generate an intermediate depth prediction. By comparing the pre-

diction against the ground truth depth, we compute a loss. Finally, the intermediate

prediction is remapped to the feature space by applying another 1 × 1 convolution,

then added back to the features output from previous HG network. Our two-stack HG

network has two intermediate loss, whose weight is equal to the weight of the final loss.

Different from [83], we do not downsample input images before the first down-

sampling part. This stems from the difference in problem settings: our solution aims

for pixel-wise precision while [83] only requires structured understanding of images.

After each pair of downsampling and upsampling parts, supervision is applied using

the same ground truth disparity map. The final output is of the same resolution as

the input images.

Finally, we construct BDfF-Net by concatenating the results from Stereo-Net,

Focus-Net-v2 and EDoF-Net, and adding more convolutional layers. The convolutional

layers serve to find the optimal combination from focus cue and disparity cue. The

overall structure of BDfF-Net is shown in figure 5.7.

5.4 Implementation

Optimization Given the focal stack as input and ground truth color/depth image

as the label, we train all the networks end-to-end. In our implementation, we first

train each network individually, then fine-tune the concatenated network with the

pre-trained weights as initialization. Because Focus-Net and Focus-Net-v2 contains

multiple convolutional layers for downsampling, the input image needs to be cropped
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Figure 5.7: The overall structure of BDfF-Net.

to the nearest number that is multiple of 8 for both height and width. We use the

mean square error (MSE) with l2-norm regularization as the loss for all models, which

leads to the following objective function

min
θ

1

N

N∑
i=1

∥∥F (Si; θ)−Di
∥∥2
2

+
λ

2
‖θ‖22 (5.3)

where Si and Di are the i-th focal stack and depth image, F (Si; θ) is the function

represented by the network and θ are the learned weights. Although there are works

[131] suggesting the mean absolute error (MAE) might be a better loss function, our

experiment shows that results from MAE are inferior to MSE.

Following [48], we apply batch normalization after the convolution layer and

before PRelu layer. We initialize the weights using the technique from [40]. We employ

MXNET [13] as the learning framework and train and test the networks on a NVIDIA

K80 graphic card. We make use of the Adam optimizer [54] and set the weight decay

= 0.002, β1 = 0.9, β2 = 0.999. The initial learning rate is set to be 0.001. All the

networks are trained for 80 epochs.

Data augmentation and preprocessing For Focus-Net and EDoF-Net, the size of
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Figure 5.8: Results of our EDoF-Net. The upper and lower triangles on the first
row show corresponding slices focusing at respective depths. Second and
third row show the EDoF and ground truth image respectively.

the analyzed patches determines the largest sensible blur kernel size. Therefore, we

randomly crop a patch of size 64×64 from the image, which contains enough contextual

information to extract the depth and EDoF image. For Stereo-Net, a larger patch of

size 256 × 256 is used to accommodate the large disparity between stereo images.

To facilitate the generalization of the network, we augment the data by flipping the

patches horizontally and vertically. All the data augmentations are performed on the

fly at almost no extra cost. Finally, the range of all images is normalized to 0 ∼ 1.
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Figure 5.9: Comparisons on Focus-Net(second row), Focus-Net-v2 (third row) and
ground truth depth(fourth row), i.e., without and with the guide of an
all-focus image.

5.5 Experiments

5.5.1 Extract the EDoF Image from Focal Stack

We train EDoF-Net on a single focal stack of 16 slices. Although the network

has simple structure, the output EDoF image features high image quality. Our network

also runs much faster than conventional methods based on global optimization: on the

resolution of 960 × 540 it runs at 4 frames per second. Fig. 5.8 shows the result of

EDoF-Net. Compared with ground truth image, the produced EDoF image is slightly

blurry. However, given a very noisy focal stack as input, the resultant EDoF image

gets rid of large part of the noise. Our experiments also show that it suffices to guide

the refinement of the depth image and be used as the input of Stereo-Net.
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5.5.2 Depth Estimation from Focal Stack

As mentioned in 5.3.2, to construct Focus-Net-v2, we first train Focus-Net and

EDoF-Net respectively, then concatenate their output with more fusion layers and

train the combination. Fig. 5.9 shows the result of both Focus-Net and Focus-Net-v2.

We observe that Focus-Net produces results with splotchy artifacts, and depth bleeds

across object’s boundary. However, Focus-Net-v2 utilizes the EDoF color image to

assist depth refinement, alleviating the artifacts and leading to clearer depth boundary.

It is worth noting that we also trained a network that has identical structure to Focus-

Net-v2 from scratch, but the result is of inferior quality. We suspect this is due to the

good initialization provided by the pre-trained model.

We compare our results with [101] and [75] using the data provided by the

authors of [101]. We select 16 images from their focal stack for DfF. Fig. 5.10 illustrates

the results. Our Focus-Net-v2 is capable of predicting disparity value with higher

quality, while using significantly less time (0.9 second) than [101] (10 minutes) and [75]

(4 seconds).

We also train the Focus-Net-v2 on a clean dataset without Poisson noise. It

performs better on synthetic data, but exhibits severe noise pattern on real images, as

shown in Fig. 5.11. The experiment confirms the necessity to add noise to the dataset

for simulating real images.

5.5.3 Depth Estimation from Stereo and Binocular Focal Stack

Figure 5.12 shows the results from Stereo-Net and BDfF-Net. Compared with

Focus-Net-v2, Stereo-Net gives better depth estimation. This is expected since Stereo-

Net requires binocular focal stacks as input, while Focus-Net-v2 only use a single focal

stack. However, Stereo-Net exhibits blocky artifacts and overly smoothed boundary.

In contrast, depth prediction from BDfF-Net features sharp edges. The depth in flat

surface region is also smoother compared to Focus-Net-v2.

Table 5.1 describes the mean absolute error (MAE) and running time of all

models on 960× 540 image.
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Figure 5.10: Comparisons on depth estimation from a single focal stack using our
Focus-Net-v2 (last column) vs. [101] (second column) and [75] (third
column). Focus-Net-v2 is able to maintain smoothness on flat regions
while preserving sharp occlusion boundaries. Note that our approach
produces disparity map while [101, 75] generate depth map, thus the
colors are flipped.

Focus-Net Focus-Net-v2 Stereo-Net BDfF-Net

MAE 0.045 0.031 0.024 0.021
Time(s) 0.6 0.9 2.8 9.7

Table 5.1: MAE and running time of models.

5.5.4 Real Scene Experiments

We further conduct tests on real scenes. To physically implement B-DfF, we

construct a light field stereo pair by using two Lytro Illum cameras, as illustrated in
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Figure 5.11: Results from Focus-Net-v2 trained by the clean dataset without poisson
noise.

Focal Stack Stereo-Net BDfF-Net Ground Truth

Figure 5.12: Comparisons on results only using Stereo-Net vs. the composed BDfF-
Net. BDfF-Net produces much sharper boundaries while reducing
blocky artifacts.

Fig. 5.13. Light field camera contains a microlens array to capture multiple views

of the scene, allowing users to perform post-capture refocusing. In our experiment

the two light field cameras share the same configuration including the zoom and focus

settings. The raw images are preprocessed using Light Field Toolbox [19]. Finally we

conduct refocusing using shift-and-add algorithm [84] to synthesize the focal stack.

Figure 5.14 shows the predicted depth from Focus-Net-v2, Stereo-Net and BDfF-

Net. Results show that BDfF-Net benefits from both Focus-Net-v2 and Stereo-Net to
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Figure 5.13: To emulate our B-DfF setup, we combine a pair of Lytro Illum cameras
into a stereo setup.

offer smoother depth with sharp edges. The experiments also demonstrate that models

learned from our dataset could be transferred to predict real scene depth.

5.6 Discussions

Our BDfF-Net exploits efficient learning and computational light field imaging

to infer depths from a focal stack pair. Our technique mimics human vision system

that simultaneously employs binocular stereo matching and monocular depth-from-

focus. Comprehensive experiments show that our technique is able to produce high

quality depth estimation orders of magnitudes faster than the prior art. In addition,

we have created a large dual focal stack database with ground truth disparity.

Our current implementation limits the input size of our network to be focal

stacks of 16 layers. In our experiments, we have shown that it is able to produce

high fidelity depth estimation under our setup. To handle denser focal stacks, one

possibility is to concatenate all images in the stack as a 3D (XY S) focal cube or

volume [135], where X and Y are the width and height and S is the index of a layer.

We can then downsample the XS slice along S dimension to 16 slices using light field

compression or simplification techniques such as tensor [112] and triangulation [126].

Another important future direction we plan to explore is to replace one of the two focal

stacks to be an all-focus image. This would further reduce the computational cost for

constructing the network but would require adjusting the architecture.

76
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Figure 5.14: Comparisons of real scene results from Focus-Net-v2, Stereo-Net and
BDfF-Net.
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Chapter 6

HYBRID DEPTH FROM DEFOCUS AND STEREO IMAGING

6.1 Background

In this chapter, we investigate a similar but slightly different setup with chapter

5. Given an all-focus stereo pair and a defocused image of one of the stereo views, we

propose a learning based approach to extract depth from the image triplets. While

chapter 5 focuses on combining depth from focus (DfF) with stereo, this chapter ex-

ploits combining depth from defocus (DfD) with stereo.

It is important to note that DfD and stereo are complementary to each other:

stereo provides accurate depth estimation even for distant objects whereas DfD can

reliably handle repetitive texture patterns. In computational imaging, a number of

hybrid sensors have been designed to combine the benefits of the two. In this chapter,

we seek to leverage deep learning techniques to infer depths in such hybrid DfD and

stereo setups. While recent advances in neural network have revolutionized both high-

level and low-level vision, most existing solutions have exploited only stereo cues [69,

127, 128] and very little work addresses using deep learning for hybrid stereo and DfD

or even DfD alone, mainly due to the lack of a fully annotated DfD dataset.

In our setup, we adopt a three images setting: an all-focus stereo pair and a

defocused image of one of the stereo views, the left view in our case. We have physi-

cally constructed such a hybrid sensor by using Lytro Illum camera. We first generate

a comprehensive training dataset for such an imaging setup. Similar to chapter 5, our

dataset is based on FlyingThings3D from [73], which contains stereo color pairs and

ground truth disparity maps. We then apply occlusion-aware light field rendering[123]

to synthesize the defocused image. Next, we adopt the hourglass network [83] architec-

ture to extract depth from stereo and defocus respectively. Hourglass network features
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Figure 6.1: Top row shows the generated defocused image by using Virtual DSLR
technique (best viewed in the electronic version by zooming in). The
bottom row shows the ground truth color and depth images. We add
Poisson noise to training data, a critical step for handling real scenes.

a multi-scale architecture that consolidates both local and global contextures to output

per-pixel depth. We use stacked hourglass network to repeat the bottom-up, top-down

depth inferences, allowing for refinement of the initial estimates. Finally, we exploit

different connection methods between the two separate networks for integrating them

into a unified solution to produce high fidelity 3D depth maps. Comprehensive experi-

ments on real and synthetic data show that our new learning-based hybrid 3D sensing

technique can significantly improve accuracy and robustness in 3D reconstruction.

6.2 Training Data

The key to any successful learning based depth inference scheme is a plausible

training dataset. Numerous datasets have been proposed for stereo matching but very

few are readily available for defocus based depth inference schemes. To address the is-

sue, we set out to create a comprehensive DfD dataset. Our dataset generation similar

to the dual focal stack dataset in chapter 5. The dataset is based on FlyingThing3D

[73], a synthetic dataset consisting of 25,000 stereo images with ground truth dispari-

ties. We again adopt the Virtual DSLR approach from [123] to simulate the defocused
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Figure 6.2: The overall architecture of HG-DfD-Net and HG-Stereo-Net. The hour-
glass structure in the middle represents the two stack HG network. The
siamese network before the HG network aims to reduce the feature map
size, while the deconvolution layers (gray) progressively recover the fea-
ture map to its original resolution. At each scale the upsampled low
resolution features are fused with high resolution features by using the
concatenating layer (orange).

image.

To emulate different focus settings of the camera, we randomly set the focal

plane, and select the size of the blur kernel in the range of 7 ∼ 23 pixels. Finally, we

add Poisson noise to both defocused image and the stereo pair to simulate the noise

contained in real images. Our final training dataset contains 750 training samples and

160 testing samples, with each sample containing one stereo pair and the defocused

image of the left view. The resolution of the generated images is 960× 540, the same

as the ones in FlyingThings3D. Figure 6.1 shows two samples of our training set.

6.3 DfD-Stereo Network Architecture

Depth inference requires integration of both fine- and large-scale structures. For

DfD and stereo, the depth cues could be distributed at various scales in an image. For

instance, textureless background requires understanding of a large region, while objects

with complex shapes need attentive evaluation of fine details. To capture the contextual

information across different scales, a number of recent approaches adopt multi-scale
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networks and the corresponding solutions have shown plausible results [22, 47]. In

addition, recent studies [94] have shown that a deep network with small kernels are

very effective in image recognition tasks. In comparison to large kernels, multiple

layers of small kernels maintain a large receptive field while reducing the number of

parameters to avoid overfitting. Therefore, we design our network with small kernels

in a deep multi-scale architecture.

6.3.1 Hourglass Network for DfD and Stereo

Based on the observations above, we construct multi-scale networks that follow

the hourglass (HG) architecture [83] for both DfD and stereo.

We have introduced the HG network in Chapter 5 and shown its structure.

Here we will briefly reiterate its architecture. The advantage of this network is that

it can attentively evaluate the coherence of features across scales by utilizing large

amount of residual modules [41]. The network composes of downsampling part and

upsampling part. The downsampling part consists of a series of max pooling interleaved

with residual modules while the upsampling part is a mirrored architecture of the

downsampling part, with max pooling replaced by nearest neighbor upsampling layer

for upsampling. Between any pair of corresponding max pooling and upsampling, there

is a skip layer comprising of a residual module. Elementwise addition follows to add

processed lower-level features to higher-level features. In this way, the network learns a

more holistic representation of input images. Prediction is generated at the end of the

upsampling part. One round of downsampling and upsampling part can be viewed as

one iteration of predicting, whereas additional rounds can be stacked to refine initial

estimates. For StereoNet, we use two rounds of downsampling and upsampling parts

as they already give good performance, while further rounds improve marginally at the

cost of more training time. Note that the weights are not shared in the two rounds.

After each round of downsampling and upsampling, we add intermediate supervision

since the overall network is deep.

81



Siamese
Network

Siamese
Network

Concat Deconv
NetworkHourglass Hourglass

C
on

v

C
on

v

C
on

v

C
on

v

Figure 6.3: Architecture of HG-Fusion-Net. The convolution layers exchange infor-
mation between networks at various stages, allowing the fusion of defocus
and disparity cues.

Before the two-stack HG network, we add a siamese network, whose two network

branches share the same architecture and weights. By using convolution layers that

have a stride of 2, the siamese network serves to shrink the size of the feature map,

thus reducing the memory usage and computational cost of the HG network. After

the HG network, we apply deconvolution layers to progressively recover the image to

its original size. At each scale the upsampled low resolution features are fused with

high-resolution features from siamese network. This upsampling process with multi-

scale guidance allows structures to be resolved at both fine- and large-scale. Note that

based on our experiment, the downsample/upsample process largely facilitates the

training and produces results that are very close to those obtained from full resolution

patches. Finally, the network produces pixel-wise disparity prediction at the end. For

DfD and stereo, we utilize the same HG architecture, which we call HG-DfD-Net and

HG-Stereo-Net. Figure 6.2 shows the overall structure of both networks.

6.3.2 Network Fusion

The most brute-force approach to integrate DfD and stereo is to directly concate-

nate the output disparity maps from the two branches and apply more convolutions.

However, such an approach does not make use of the features readily presented in the

branches and hence neglects cues for deriving the appropriate combination of the pre-

dicted maps. Consequently, such naive approaches tend to average the results of two

branches rather than making further improvement, as shown in Table 6.1.
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Instead, we propose HG-Fusion-Net to fuse DfD and stereo, as illustrated in

figure 6.3. HG-Fusion-Net consists of two HG networks, with extra connections between

them. Each connection applies an 1×1 convolution on the features of one network and

adds to the other one. In doing so, the two sub-networks can exchange information

at various stages, which is critical for different cues from the two networks to interact

with each other. The 1 × 1 convolution kernel serves as a transformation of feature

space, consolidating new cues into the other branch.

In our network, we set up pairs of interconnections at two spots, one at the

beginning of each hourglass. At the cost of only four 1 × 1 convolutions, the inter-

connections largely proliferate the paths of the network. The HG-Fusion-Net can be

regarded as an ensemble of original HG networks with different lengths that enables

much stronger representation power. In addition, the fused network avoids solving

the whole problem all at once, but first collaboratively solves the stereo and DfD sub-

problems, then merges into one coherent solution.

In addition to the above proposal, we also explore multiple variants of the

HG-Fusion-Net. With no interconnection, the HG-Fusion-Net simply degrades to the

brute-force approach. A compromise between our HG-Fusion-Net and the brute-force

approach would be using only one pair of interconnections. We choose to keep the first

pair, the one before the first hourglass, since it would enable the network to exchange

information early. Apart from the number of interconnections, we also investigate the

identity interconnections, which directly adds features to the other branch without

going through 1× 1 convolution. We present the quantitative results of all the models

on Table 6.1.

6.4 Implementation

Optimization

The input of HG-DfD-Net, HG-Stereo-Net, HG-Fusion-Net are defocused/focus

image pair, stereo pair and stereo pair plus the defocused image of the left view,

respectively. All networks are trained in an end-to-end fashion. For the loss we use the
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mean absolute error (MAE) with l2-norm regularization. We adopt MXNET [13] deep

learning framework to implement and train our models. Our implementation applies

batch normalization [48] after each convolution layer, and use PRelu layer [40] to add

nonlinearity to the network while avoiding “dead” filters. We also use the technique

from [40] to initialize the weights. For the network solver we choose the Adam optimizer

[54] and set the initial learning rate to 0.001, weight decay = 0.002, β1 = 0.9, β2 =

0.999. We train and test all the models on a NVIDIA Tesla K80 graphic card.

Data Preparation and Augmentation To prepare the data, we first stack the

stere/defocus pair along the channel’s direction, then extract patches from the stacked

image with a stride of 64 to increase the number of training samples. Recall that

the HG network contains multiple max pooling layers for downsampling, the patch

needs to be cropped to the nearest number that is multiple of 64 for both height and

width. In the training phase, we use patches of size 512 × 256 as input. The large

patch contains enough contextual information to recover depth from both defocus and

stereo. To increase the generalization of the network, we also augment the data by

flipping the patches horizontally and vertically. We perform the data augmentation on

the fly at almost no additional cost.

6.5 Experiments

6.5.1 Synthetic Data

We train the HG-DfD-Net, HG-Stereo-Net and HG-Fusion-Net separately, and

then conduct experiments on test samples from the synthetic data. Figure 6.4(a)

compares the results of three networks. We observe that results from HG-DfD-Net

show clearer depth edge, but also exhibit noise on flat regions. On the contrary, HG-

Stereo-Net provides smooth depth. However, there is depth bleeding across boundaries,

especially when there are holes, such as the tire of the motorcycle on the first row. We

suspect that the depth bleeding is due to the occlusion, by which DfD is less affected.

Finally, HG-Fusion-Net finds the optimal combination of the two, producing smooth

depth while keeping sharp depth boundaries. Table 6.1 also quantitatively describes
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the performance of different models on our synthetic dataset. Results from Table 6.1

confirm that HG-Fusion-Net achieves the best result for almost all metrics, with notable

margin ahead of using stereo or defocus cues alone. The brute-force fusion approach

without interconnection only averages results from HG-DfD-Net and HG-Stereo-Net,

making no further improvement. The network with fewer or identity interconnection

performs slightly worse than the HG-Fusion-Net, but still a lot better than the net-

work without interconnection. This demonstrates that interconnections can efficiently

broadcast information across branches and largely facilitate mutual optimization.

We also conduct another experiment on a scene with a staircase textured by

horizontal stripes, as illustrated in figure 6.4(b). The scene is rendered from the front

view, making it extremely challenging for stereo since all the edges are parallel to the

epipolar line. On the contrary, DfD will be able to extract the depth due to its 2D

aperture. Figure 6.4(b) shows the resultant depths enclosed in the red box of the front

view, proving the effectiveness of our learning-based DfD on such difficult scene. Note

that the inferred depth is not perfect. This is mainly due to the fact that our training

data lacks objects with stripe texture. We can improve the result by adding similar

textures to the training set.

6.5.2 Real Scene

To conduct experiments on the real scene, we use light field (LF) camera to

capture the LF and generate the defocused image. LF camera captures a rich set of

rays to describe the visual appearance of the scene. In free space, LF is commonly

represented by two-plane parameterizations L(u, v, s, t), where st is the camera plane

and uv is the image plane [62]. To conduct digital refocusing, we can move the synthetic

image plane that leads to the following photography equation [84]:

E(s, t) =

∫∫
L(u, v, u+

s− u
α

, v +
t− v
α

)dudv (6.1)

By varying α, we can refocus the image at different depth. Note that by fixing

st, we obtain the sub-aperture image L(s?t?)(u, v) that is amount to the image captured
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Color Image HG-DfD-Net HG-Stereo-Net HG-Fusion-Net Ground Truth

Front View HG-DfD-Net HG-Stereo-Net HG-Fusion-Net Ground TruthSide View
(a)

(b)

Figure 6.4: Results of HG-DfD-Net, HG-Stereo-Net and HG-Fusion-Net on (a) our
dataset (b) staircase scene textured with horizontal stripes. HG-Fusion-
Net produces smooth depth at flat regions while maintaining sharp depth
boundaries. Best viewed in the electronic version by zooming in.

using a sub-region of the main lens aperture. Therefore, Eqn. 6.1 corresponds to shift-

and-add the sub-aperture images [84].

In our experiment we use Lytro Illum camera as our capturing device. We first

mount the camera on a translation stage and move the LF camera horizontally to

capture two LFs. Then we extract the sub-aperture images from each LF using Light

Field Toolbox [19]. The two central sub-aperture images are used to form a stereo

pair. We also use the central sub-aperture image in the left view as the all-focused

image due to its small aperture size. Finally, we apply the shift-and-add algorithm to

generate the defocused image. Both the defocused and sub-aperture image has the size

of 625× 433.
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> 1 px > 3 px > 5 px MAE (px) Time (s)

HG-DfD-Net 70.07% 38.60% 20.38% 3.26 0.24
HG-Stereo-Net 28.10% 6.12% 2.91% 1.05 0.24
HG-Fusion-Net 20.79% 5.50% 2.54% 0.87 0.383

No Interconnection 45.46% 10.89% 5.08% 1.57 0.379
Less Interconnection 21.85% 5.23% 2.55% 0.91 0.382

Identity Interconnection 21.37% 6.00% 2.96% 0.94 0.382

Table 6.1: Quantitative results of proposed models. Upper half compares results from
different input combinations: defocus pair, stereo pair and stereo pair +
defocused image. Lower half compares various fusion scheme, mainly dif-
ferentiating by the number and type of interconnection: No interconnec-
tion is the brute-force approach that only concatenates feature maps after
the HG network, before the deconvolution layers. Less Interconnection
only uses one interconnection before the first hourglass; Identity Intercon-
nection directly adds features to the other branch, without applying the
1× 1 convolution.

The result of real scene is shown in Fig.6.5. We have conducted tests on both

indoor and outdoor scenes. In general, both HG-DfD-Net and HG-Stereo-Net preserve

depth edges well, but results from HG-DfD-Net are noisier. HG-Fusion-Net produces

the best results with smooth depth and sharp depth boundaries. The plant in the first

row of Fig.6.5 presents challenges for both stereo and DfD methods due to the heavy

occlusion of branches and leaves. But HG-Fusion-Net manages to identify the fine

structure of leaves and generate correct depth value. We have also trained HG-Fusion-

Net on a clean dataset without Poisson noise, and show the results in the last column

of Fig.6.5. The inferred depths exhibit severe noise pattern on real data, confirming

the necessity to add noise to dataset for simulating real images.

6.6 Discussion

We have presented a learning based solution for a hybrid DfD and stereo depth

sensing scheme. We have adopted the hourglass network architecture to separately

extract depth from defocus and stereo. We have then studied and explored multiple

neural network architectures for linking both networks to improve depth inference.
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Color Image HG-DfD-Net HG-Stereo-Net HG-Fusion-Net HG-Fusion-Net (Clean)

Figure 6.5: Comparisons of real scene results from HG-DfD-Net, HG-Stereo-Net and
HG-Fusion-Net. The last column shows the results from HG-Fusion-Net
trained by the clean dataset without Poisson noise. Best viewed in color.

Comprehensive experiments show that our proposed approach preserves the strength

of DfD and stereo while effectively suppressing their weaknesses. In addition, we have

created a large synthetic dataset for our setup that includes image triplets of a stereo

pair and a defocused image along with the corresponding ground truth disparity.

Our immediate future work is to explore different DfD inputs and their interac-

tion with stereo. For instance, instead of using a single defocused image, we can vary

the aperture size to produce a stack of images where objects at the same depth exhibit

different blur profiles. Learning based approaches can be directly applied to the profile

for depth inference or can be combined with our current framework for conducting

hybrid depth inference. We have presented one DfD-Stereo setup. Another minimal

design was shown in [104], where a stereo pair with different focus distance is used as

input. In the future, we will study the cons and pros of different hybrid DfD-stereo

setups and tailor suitable learning-based solutions for fully exploiting the advantages

of such setups.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions

In this dissertation, I have presented several computational imaging algorithms

and systems to infer geometry of the scene.

Mobile Multi-flash System To obtain a qualitative depth map of the scene on a

mobile platform, we have presented a new mobile multi-flash camera that uses the

mobile device’s own flash as a pseudo synchronization unit. Our mobile MF camera

is compact, light-weight, inexpensive and can be mounted on most smart phones and

tablets as a hand-held imaging system. The corresponding algorithm is tailored to

mobile platform and is able to extract depth map, depth edge of the scene, as well as

produce non-photorealistic effects.

A portable Immersive System using RGB-D Sensor We have also developed a

system that is based on structured light technique to recover large scale structure in

real time. Specifically, we use the Microsoft Kinect sensor as the acquisition device

and develop a class of multi-view 3D fusion techniques to faithfully reconstruct the

event. We have conducted preliminary tests of the system fidelity for cholecystectomy

(gallbladder surgery) training and have developed a space-time visualization system to

display the acquired data. Furthermore, we integrate our system with 3D stereoscopic

displays to enhance the user experience.

Depth from a Single Light Field To extract depth in a time sensitive scenario,

we have developed a fast depth extraction algorithm that is tailored to barcode. Our

algorithm first localize the barcode region in the raw light field image, then jointly

analyze the size and the statistical characteristics of the barcode region to infer depth.
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Finally, with the depth information we only need to render one focal slice that focuses

on the barcode plane, which dramatically reduce the amount of time needed to produce

a decodable image.

Depth from Dual Light Fields Human vision system perceives depth with both

disparity cue and focus cue. Therefore, we have presented a learning based technique

mimics human vision system that simultaneously employs binocular stereo matching

and monocular depth-from-focus. Given a binocular focal stack as input, we propose

BDfDNet to extract depth. We decompose BDfFNet into sub-networks and first train

each sub-network separately before combining them to further finetune the result.

This allows us to infer depth from either a single focal stack or the dual focal stack.

Comprehensive experiments show that our technique is able to produce high quality

depth estimation orders of magnitudes faster than the prior art. In addition, we have

created a large dual focal stack database with ground truth disparity.

Hybrid Depth from Defocus and Stereo Imaging We have also investigated

combining the disparity cue with the defocus cue. Given an all-focus stereo pair and

a defocused image of one of the stereo views, we propose a learning based approach

to extract depth from the image triplets. We have adopted the hourglass network ar-

chitecture to separately extract depth from defocus and stereo. We have then studied

and explored multiple neural network architectures for linking both networks to im-

prove depth inference. Comprehensive experiments show that our proposed approach

preserves the strength of DfD and stereo while effectively suppressing their weaknesses.

7.2 Future Work

There are several directions for future research.

Mobile Multi-flash System The mobile multi-flash system will enable several new

applications. On the computer vision front, we can rely on the inferred depth to aid

object detection, tracking and recognition on mobile devices. On the graphics front,

we can explore a broader range of image manipulation applications such as depth edge

guided image retargeting, and distracting regions de-emphasis. We will also investigate
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using the mobile multi-flash technique for enhancing hand gesture and head pose based

human-computer interaction.

A portable Immersive System using RGB-D Sensor Based on structured light

technique, the RGB-D sensor has shown great potential. However, our current imple-

mentation only recovers point clouds. In the future we will focus on generating a mesh

from the depth maps and color images, making the virtual navigation more realistic.

Depth from a Single Light Field For light field barcode scanner, our current algo-

rithm only support the 1D barcode. Our immediate next step will extend our system

to 2D barcode scanning. We will also explore other application that could benefit from

our statistical analysis on the raw light field image.

Depth from Dual Light Fields Our current implementation of the BDfDNet limits

the input size of our network to be focal stacks of 16 layers. Our experiments have

shown that it is able to produce high fidelity depth estimation under our setup. To

handle denser focal stacks, one possibility is to concatenate all images in the stack as

a 3D (XY S) focal cube or volume [135], where X and Y are the width and height and

S is the index of a layer. We can then downsample the XS slice along S dimension to

16 slices using light field compression or simplification techniques such as tensor [112]

and triangulation [126]. Another important future direction we plan to explore is to

replace one of the two focal stacks to be an all-focus image. This would further reduce

the computational cost for constructing the network but would require adjusting the

architecture.

Hybrid Depth from Defocus and Stereo Imaging Exploring different depth from

defocus inputs and their interaction with stereo will be our immediate next step. For

instance, instead of using a single defocused image, we can vary the aperture size to

produce a stack of images where objects at the same depth exhibit different blur profiles.

Learning based approaches can be directly applied to the profile for depth inference or

can be combined with our current framework for conducting hybrid depth inference.

We have presented one DfD-Stereo setup. Another minimal design was shown in [104],

where a stereo pair with different focus distance is used as input. In the future, we
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will study the cons and pros of different hybrid DfD-stereo setups and tailor suitable

learning-based solutions for fully exploiting the advantages of such setups.
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