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ABSTRACT 

Compression resin transfer molding (CRTM) is an alternative solution to 

conventional resin transfer molding processes. It offers the capability to produce net 

shape composites with fast cycle times making it conducive for high volume 

production. The resin flow during this process can be separated into three phases; (i) 

metered amount of resin injection into a partially closed mold containing dry fiber 

preform, (ii) closure of the mold until it is in contact with the fiber preform displacing 

all the resin into the preform and (iii) further mold closure to the desired thickness of 

the part compacting the preform and redistributing the resin. Understanding the flow 

behavior in every phase is imperative for predictive process modeling that guarantees 

full preform saturation within a given time and under specified force constraints. 

In this thesis, the CRTM flow is modeled as a two dimensional flow in a 

gradually deformed porous medium during all three phases. The governing equations 

are formulated and coupled with the constitutive equations that describe the 

deformation and permeability behavior. Due to the non-linear nature of coupled 

system of equations, a numerical solution is developed that describes the flow front 

progression and the preform deformation during the process. A non dimensional 

analysis is conducted in which the applied force and initial gap size emerge as the 

important process variables that influence the process cycle time. Limiting cases are 

identified which reduce the flow to one dimensional flow for which a simplified 

solution is developed. The results are verified using an experimental setup which 



 xv

applies a constant force to the preform in a transparent mold allowing one to track the 

flow front. 

This study quantifies the effect of preform deformation due to the fluid 

pressure and should prove useful in applications that involve fluid impregnation in 

deforming porous media. 
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Chapter 1 

INTRODUCTION 

An advanced polymer composite consists of a polymer matrix and 

continuous fiber strands. The fibers are mainly responsible for the mechanical 

properties while the polymer matrix transfers the load to the fibers and protects them 

from environmental damage. The interface between fibers and matrix is as important 

as the fibers and the matrix. Hence manufacturing, which combines the fibers and 

resin together, plays a key role in determination of the composite physical and 

mechanical properties. In the early days of composites, the resin was applied to the 

fabric by hand, which formed air bubbles and poor interface resulting in deterioration 

of properties. Many processes emerged to address this issue along with the ability to 

automate the process and reduce the labor required to make a composite part. Among 

them, liquid composite molding (LCM) processes have been preferred for net shape 

part manufacturing as they allow for complexity of part geometry and have the ability 

to produce parts with desired mechanical properties and good surface finish. In LCM, 

the preform is placed in a mold or on a tool surface and resin is transferred to cover the 

spaces between the fibers to make a composite. 

Before the mid nineties, most of the improvements in LCM were done by 

“trial and error” methodology and experience of the process engineer. However, as 

composite parts are being considered for replacing metal parts in many application 

areas such as automotive, sports, marine or aerospace, there is a need to develop a 

prototype in a relative short time period without numerous trials. Hence, the tools of 
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process analysis and simulation developed over the last decade are being used to 

mitigate the risk of failure to manufacture and to speed up the prototype development 

cycle. In some cases one can use these tools to optimize and even control the 

variability in part manufacturing. 
 
 
 

 

Figure 1-1 Schematic of the resin transfer molding process 

 
 
 

The most common LCM manufacturing process used to make parts of the 

order of one meter is called resin transfer molding (RTM) and consists of injecting 

resin into the stationary fiber reinforcement compacted inside a mold. It can be 

described in steps which are fiber reinforcement cutting and draping, fiber compaction, 
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resin injection, cure and final part demolding (see Figure 1-1). The advantages of 

RTM include manufacturing speed (compared to hand layup) and the potential to 

manufacture void free net shape parts at high fiber content with class A surface finish. 

However the RTM process is limited for certain applications as the cost of the mold 

and the injection equipment increases rapidly with part size. 
 
 
 

 

Figure 1-2 Schematic of the vacuum assisted resin transfer molding process 

 
 
 

An alternative to this process that is cost effective for large structures is 

called vacuum assisted resin transfer molding (VARTM). The reinforcing fiber 

preform is draped on a bottom mold and a plastic film is placed on top of it, playing 
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the role of the upper side of the mold. The whole setup is sealed and a vacuum is 

applied to pull the resin from a resin reservoir at atmospheric pressure. In this process 

the preform is compacted, the compaction pressure being created by the vacuum (see 

Figure 1-2). A major improvement in filling time of this process was invented by 

Seemann where they place a very high permeability layer called distribution media on 

top of the reinforcement. This process is called Seemann’s Corporation Resin Infusion 

Molding Process (SCRIMP) [1-3]. This facilitates the distribution of the fluid over the 

fiber preform surface and has for consequence to increase the speed of the 

impregnation as the resin has to travel only in the thickness direction (see Figure 1-3). 

This process is preferred to RTM for manufacturing large structures at lower costs. 

However, this process encounters several disadvantages such as a very poor surface 

finish on the bagging side, manufacturing limited to only nearly flat structures, a long 

time for material preparation (involving high labor cost) and a lack of automation in 

addition to removal of the distribution media from the part after the resin has cured. 

Hence this process is not very suitable for large scale production. 
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Figure 1-3 Schematic of the SCRIMP process 

 
 
 

A new process that emerged in the last few years is called Compression 

Resin Transfer Molding (CRTM). This process can be used for high volume 

production and does have the potential to make large scale structures that can be filled 

at a much faster rate than RTM. 

1.1 CRTM process 

The CRTM process can be described in three phases. In the first phase, the 

resin amount necessary to obtain the desired amount of fiber volume fraction for a part 

of known dimensions is injected into a gap created on purpose between the plate and 

the preform. The resin will fill the gap quickly due to very low resistance to flow in the 
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gap over the surface of the preform and may also slightly penetrate the preform as 

depicted in Figure 1-4. This flow can be modeled as a flow during the SCRIMP 

process, the gap playing the role of the distribution media. The permeability of this 

“distribution media” will vary with the thickness of the gap. Since the operator can 

inject the resin at any pressure, the preform may undergo some deformation during this 

stage. 
 
 
 

 

Figure 1-4 Schematic of the Configuration at the Beginning and the end of phase 

1 

 
 
 

In the second phase (Figure 1-5), the mold is subjected to a prescribed 

load and starts to close, reducing the gap size and squeezing the resin into the preform. 

This phase is assumed to be complete when the mold comes in contact with the 

preform. During this phase, as the resin pressure is much higher due to the prescribed 

load on the mold, the preform will deform further due to the pressure gradients, even 
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though there is no mold/preform contact. As the gap size reduces during this phase, the 

permeability of the gap also decreases. During this phase, the compaction force 

transmitted to the reinforcement affects both the dry and saturated parts of the fiber 

preform. However, it has been experimentally observed that the compaction stress 

influences principally the wet part of the preform. 

The closing motion of the mold may be kinematically or force driven. In 

this thesis, the focus will be on the force driven case with the use of a compaction 

force. This is in line with manufacturing presses which are hydraulic and use constant 

pressure to create a force on the platen of the mold. 
 
 
 

 

Figure 1-5 Schematic of the Configuration at the Beginning and the end of phase 

2 

 
 
 

During the third phase (Figure 1-6), the mold continues to close the gap 

while compressing the preform in contact with the tool. Once the entire surface of the 

tool is in contact with the reinforcement, the upper platen continues to move down 
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until the final thickness of the part is achieved. During this phase the resin 

redistributes from saturated regions which are being compressed into regions that are 

devoid of resin. In this phase, until the entire tool surface comes in contact with the 

preform, it is difficult to describe the compaction as both the tool force and fluid 

pressure have non uniform and spatially varying magnitudes which act on the preform. 

After the mold in is physical contact with the entire preform, the compaction 

corresponds to the plate motion. When the mold is kinematically driven, the boundary 

displacement is directly given by the mold displacement. When the compaction 

method is a prescribed force, one has to relate the displacement through strain to the 

stress in the preform to predict the compaction. 
 
 
 

 

Figure 1-6 Schematic of the Configuration at the Beginning and the end of phase 

3 

 
 
 

As the final part is enclosed between two plates with high surface finish 

guarantees a final part with class A surface finish. Due to the high pressures needed, 
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the main reason preventing this process to be more widely used is the tooling cost. 

Moreover, despite the recent studies on the process, very little is known concerning all 

the physics involved and hence the need for the process analysis. 

There has been some work in this area in which the process and its 

challenges have been described [4] using several assumptions but an accurate 

simulation which accounts for the key physics involved (flow in a progressively 

deforming media) and identification of important material and process parameters still 

needs to be established. Bhat et. al developed a simulation tool of the three phases 

assuming that the deformation only happens when there is contact between the tool 

and the preform [5, 6]. Shojaei [7-9], Kang [10] and Pillai [11, 12] also developed a 

simulation tool for complex parts. However, the deformation due to the fluid was 

neglected. Many studies have investigated the phenomenon related to some phases of 

the process. Bickerton [13, 14] and Pham [15] modeled the compaction behavior of 

the preform and the flow front progression when the tool compacts the preform (phase 

III). Bickerton also studied the tooling force necessary to compact a partially saturated 

fabric [16, 17]. Finally, most of the studies previously cited do not incorporate an open 

gap inside the mold during the injection. The mold is already in contact with the 

uncompressed preform. The CRTM process is then composed of an injection phase 

(RTM in a low fiber volume fraction media) followed directly by preform compaction. 

Many geometric, material and process parameters influence the filling time. For 

instance, the choice of gate location and number of gates, the closing speed of the 

mold platen and the material properties such as preform permeability and part aspect 

ratio will influence the flow [18]. Thus, an analysis to understand the role of such 

parameters has to be conducted to optimize the process. 
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1.2 Scope of this thesis 

The objective of this thesis is to predict the compression of the fabric and 

the impregnation of the resin into the preform during the CRTM process. This thesis 

will account for the fact that the preform is non uniformly deformed by the fluid 

pressure gradient as well as the elastic stress even when the preform is not in contact 

with the tool. This study will also include simplifications that can be made to the 

process simulation and derive and discuss their detailed solutions. The thesis has been 

organized as follows. Chapter 2 presents the formulation of the governing equations 

that couple the deformation to the resulting flow through the preform. Chapter 3 

provides the constitutive equations to describe preform compression and preform 

permeability for the materials used in this study and the experimental methodology to 

characterize the material properties. The important process parameters are determined 

in chapter 4. Chapter 5 details the two dimensional numerical simulation of the 

process. Discretization method, numerical algorithms used and finally the numerical 

validation of the simulation is presented. A parametric study is conducted in chapter 6, 

it explores the influence of key parameters such as gap size and compaction force on 

the flow geometry and on preform deformation. Chapter 7 derives and investigates two 

simplified cases that shed light on important dimensionless variables and their 

influence on filling and deformation. The results of simplified cases are validated with 

experiments designed and conducted for that purpose. Chapter 8 summarizes the 

contributions and proposes future work for improvement of the modeling and 

simulation and technique in CRTM. 
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Chapter 2 

THEORY AND FORMULATION OF GOVERNING EQUATIONS 

Previous researchers have modeled various stages of the CRTM process 

using simplifying assumptions. Shojaei [7-9], Bhat [5, 6] and Pillai [11, 12] assumed 

that during phase 2 the preform does not deform if it is not in contact with the mold. 

This allowed them to decouple the fluid flow from deforming porous media which 

made the solution much less complex. To test the validity of these assumptions, we 

designed and carried out experiments to specifically monitor the compression of the 

preform during phase 2 of the process (Figure 2-1). The experimental setup is detailed 

in section 7.1.6. We used a fabric that is not necessarily very compliant (24 oz. E-glass 

woven fabric). Our experiments clearly demonstrated that the deformation during 

phase 2 cannot be neglected. The results in Figure 2-2 show that the preform 

compacted on the order of 15% over the phase 2 confirming that the flow analysis 

during this phase has to address the deformation of the preform thus introducing a 

non-linear coupling between flow and fiber deformation. 
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Figure 2-1 Experimental setup used to monitor the deformation of the preform 

during the process 

 
 

 

Figure 2-2 Preform thicknesses during second phase of CRTM 
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The goal of this thesis is to develop and formulate a model that will 

address the preform compaction during all the phases. All process models have 

neglected preform compaction during phase 1 and 2. The model will still follow 

Darcy’s law to describe the resin impregnation into a deforming preform and we will 

assume that quasi steady assumption at each time step still applies. This assumption 

has been justified and validated [19]. 

The process model will be addressed by analyzing different regions during 

the phases of the CRTM process as showed in Figure 2-3. In this study, the model will 

describe the filling process of a rectangular part of length L and thickness H. A total of 

five governing equations will be used to model the CRTM process (Figure 2-3). Two 

governing equations will control the progression of the resin flow through the gap and 

the preform. Two equations will govern the distribution of the fluid pressures in the 

gap as well as in the preform. Finally, a last equation will relate the fluid pressure to 

the compressive stress experienced by the fabric. 
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Figure 2-3 Development of governing equations in different regions during the 

CRTM process 

 
 
 

Only one injection gate will be used and it will be located in the middle of 

the part. One can take advantage of symmetry along the vertical axis that passes 

through the injection gate location to simplify the problem. A numerical solution will 

be used to solve the system of partial differential equations which is presented in 

chapter 5. The horizontal origin of the system is located at the injection point and the 

vertical origin corresponds to the preform top. A schematic of the problem is given in 

Figure 2-4. 
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Figure 2-4 Schematic of the problem. Note that as the preform compresses under 

fluid pressure (exaggerated in the figure), the gap between the 

preform and the mold plate can be non-uniform 

 
 

2.1 Flow progression 

2.1.1 Flow progression in the gap 

As the resin enters the gap, the gap is much smaller than the length or the 

width direction; one can treat the movement of the resin in the gap as a lubrication 

flow. This, in turn, can be described as flow through porous media of equivalent 

permeability and porosity of 1. Thus one can use Darcy’s law [19-21] to describe the 
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flow in the gap in the average sense. The general form of Darcy’s equation can be 

written as, 

 .v p
η

= − ∇
K

 (2.1) 

Where v  is the volume averaged velocity, K the permeability tensor, η the fluid 

viscosity and p is the fluid pressure. Applying one dimensional form of Eq. (2.1) in the 

x direction in the gap and the preform (Figure 2-4), 

 
( )

x
gap

gap gapgap

x L

K x LL p

t η =

=∂ ∂ 
= −  

∂ ∂ 
 (2.2) 

here Lgap is the flow front position moving along the x axis starting from the center 

(x=0 in Figure 2-4), Kgap is the in plane permeability of the gap. The in-plane 

permeability of the gap can be calculated using the gap thickness Hgap as follows, 

 ( )
( )

2

12
gap

gap

H x
K x =  (2.3) 

2.1.3 Flow progression in the preform 

 

The resin in the preform flows in the plane as well as through the 

thickness direction (Figure 2-5). If Lp is the depth to which the resin penetrates into the 

preform (Figure 2-4) one can write a differential equation to describe this depth of 

penetration along the x direction. 
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Figure 2-5 Flow front progression in the preform 

 
 
 

The position of a fluid particle at time t=t0 is (x0,y0). Its position at a time 

t=t0+dt is (x0+dx,y0+dy). Where, 

 x
v

dx dt
φ

=  (2.4) 

And 

 
y

v
dy dt

φ
=  (2.5) 

xv  and 
y

v  are the averaged velocities and φ  is the preform porosity. The depth of 

penetration Lp is a function of x and t. At time t=t0, one has, 

 ( )0 0 0,p pL x t L=  (2.6) 

At time t=t0+dt, the depth of penetration at x=x(t0+dt)=x+dx is, 

 ( )0 0 0,
y

p p

v
L x dx t dt L dt

φ
+ + = +  (2.7) 
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Then, Lp(x0,t+dt) becomes, 

 ( ) ( )
0

0 0 0 0, , p

p p

x

L
L x t dt L x dx t dt dx

x

∂ 
+ = + + −  

∂ 
 (2.8) 

Substituting Eqs. (2.4), (2.5) and (2.7) in Eq. (2.8) and rearranging results in, 

 
( )

0

0 0 0, yp p p x

x

vL x t dt L L v

dt xφ φ

+ − ∂ 
= −  

∂ 
 (2.9) 

taking the limits as dx→0, dt→0 results in, 

 
( )

( )
( )

( ), ,
p p yx

p px x

L L v xv x

t x x y L x y Lφ φ

∂ ∂ 〈 〉〈 〉   
= − +   

∂ ∂ = =   
 (2.10) 

Using Darcy’s law to find the averaged velocities in x and y directions, one can write a 

differential equation for how the depth of penetration varies with x and the fluid 

pressure p, 

 
( )
( )

( )
( ), ,

, ,

, ,
p p

xx p yy pp p

x y Lp p x y Lx x

K x y L K x y LL L p p

t x x yx y L x y Lηφ ηφ= =

= =∂ ∂     ∂ ∂ 
= −      

∂ ∂ ∂ ∂= =      
 (2.11) 

2.2 Pressure distribution 

2.2.1 Pressure distribution in the gap 

In our model, the pressure within the gap are assumed to vary only with x 

and not the y direction hence this will also be the pressure experienced by the surface 

of the preform in contact with the resin in the gap and will serve as the boundary 

condition when one does the force balance for the preform. To perform a mass balance 

of the resin in the gap, we need to include the preform boundary as some of the resin 
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from the gap will be exiting into the preform as shown in a control volume selected for 

mass balance in Figure 2-6. 
 
 
 

 

Figure 2-6 Mass balance for a control volume in the gap that includes the resin 

that impregnates the preform in touch with the resin in the gap 

 
 
 

In the gap, the injected resin travels along the gap and also penetrates the 

preform. The resin pressure in the gap is responsible for the fabric deformation due to 

the pressure load, which is accounted for in the part of the control volume in the 

preform. Thus a mass balance on a control volume located in the gap as depicted in 

Figure 2-6 can be written as, 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
,

1 1 2 2 3' '

gap

x y dlx

gap gap

dH d
dx dxdl

dt dt

V x H x V x H x V x dl V x dl V x dx

ε

=

   
+ =   
  

− + − −

 (2.12) 



 20

with ε as the infinitesimal strain of deformation, dx as the infinitesimal length of the 

control volume, dl as the infinitesimal height of a control volume in the preform, Hgap 

is the gap thickness, V1 and V1’ are the velocities of the resin entering and leaving the 

gap region of the control volume, V2 and V2’ are the velocities of the resin entering and 

leaving the preform region of the control volume and V3 is the velocity of the resin 

leaving the gap and entering the preform.  

The volume of resin leaving the control volume only in the gap can be expressed as a 

function of the volume of resin entering the volume as follows, 

 ( ) ( ) ( ) ( ) ( )1
1 1'

gap gap gap

x

V
V x H x V x H x dxH x

x

∂ 
= +  

∂ 
 (2.13) 

Similarly, the volume of resin leaving the preform part of the control volume can be 

expressed as, 

 ( ) ( ) 2
2 2'

x

V
V x dl V x dl dxdl

x

∂ 
= +  

∂ 
 (2.14) 

Substituting Eq. (2.13) and (2.14) in (2.12), 

 

( ) ( )

,

1 2
3

gap

x y dlx

gap

x x

dH d
dx dxdl

dt dt

V V
dxH x dxdl V x dx

x x

ε

=

   
+ =   
  

∂ ∂   
− − −   

∂ ∂   

 (2.15) 

Applying Darcy’s law to the velocities and substituting them in the mass balance 

equation (7) and taking the limits of dx going to zero results in, 

 

( )

( ) ( )

, ,

3

, , ,,

,

,

12

gap yy

x y dl x y dlx

gap xx

x y dl x y dl
x y dlx y dl

H K x y dl p
dl =

t t η y

H x K x y dlp p
dl

x η x x η x

ε

= =

= = ==

∂ =   ∂ ∂ 
+ +    

∂ ∂ ∂    

   =∂ ∂ ∂ ∂     +       ∂ ∂ ∂ ∂     

 (2.16) 
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Here Kyy and Kxx represent the in plane and through the thickness permeabilities 

respectively of the preform, η the resin viscosity, p the fluid pressure, x and y are the 

spatial coordinates as shown in Figure 2-4. 

 

2.2.2 Pressure distribution in the preform 

 
 
 

 

Figure 2-7 Resin flow through a control volume in the preform 

 
 
 

In the preform, the resin enters the control volume in the vertical and 

horizontal direction. As the preform gets compacted, the control volume will reduce 

and act as a source of resin. In the schematic above dx is a constant value. However, 

the preform deforms vertically and dy is not constant. The thickness of the control 
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volume will then be called dh and will change with its location. A mass balance on the 

control volume depicted in Figure 2-7 results in, 

 
( )

( ) ( ) ( ) ( ) ( ) ( )
,

2 2 1 1

,

, , , ' , , , '

x y

d
dxdh x y

dt

V x y dh x y V x y dh x y V x y dx V x y dx

ε 
= 

 

− + −

 (2.17) 

Expressing the volume of resin leaving the control volume as a function as the volume 

entering it, 

 ( ) ( ) ( ) ( ) ( )2
2 2

,

, ' , , , ,
x y

V
V x y dh x y V x y dh x y dxdh x y

x

∂ 
= +  

∂ 
 (2.18) 

Substituting Eq (2.18) in Eq. (2.17) results in, 

 ( ) ( ) ( )2 1

, , ,

, , ,
x y x y x y

V Vd
dxdh x y dxdh x y dh x y dx

dt x y

ε  ∂ ∂  
= − −     

∂ ∂     
 (2.19) 

The equation governing the pressures distribution can be formulated by combining 

Darcy’s law in the x and y directions with Eq (2.19), 

 

( )

( ) ( )
( )

( )

,

, ,, ,

,

,, ,
,

x y

yyxx

x y x yx y x y

dh x y
t

K x ydh x y K x y p p
dh x y

x x y y

ε

η η

∂ 
= 

∂ 

    ∂ ∂ ∂ ∂   +       ∂ ∂ ∂ ∂      

 (2.20) 

2.3 Preform Compaction 

The compaction of each control volume of the preform is a function of a 

compressive stress ppref related to the fluid pressure. The strain rate is then a function 

of ppref, the constitutive equation relating ppref and ε will be described in chapter 3. A 

relation between the fluid pressure and the compressive stress in a porous media has 

been highlighted by the Terzaghi’s relation [22], 



 23

 
pref top

p p p= −  (2.21) 

Where ppref is the compressive stress. If the preform is saturated, the compressive 

stress is a combination of the pressure on top of the preform ptop (pressure in the gap) 

and the fluid pressure in the preform p. When the preform is dry, 0p =  and on top of 

the preform, ppref=0. 

When all the equations governing the process are determined, one has to 

determine constitutive relationships in order to apply these equations to a specific 

material. 



 24

Chapter 3 

MATERIAL CHARACTERIZATION 

The governing equation formulated in chapter 2 are general expressions 

which can incorporate any constitutive equation one selects to describe the change in 

fiber stress ppref, and preform permeability Kxx, as a function of fv . This chapter will 

describe the characterization method used to find the material constants that 

constitutively describe the permeability and compaction behavior with fiber volume 

fraction. 

3.1 Compaction behavior 

The goal here is to record how much stress the fibers take as the preform 

is compressed from their unloaded state (initial fiber volume fraction) to a higher fiber 

volume fraction and then describe the relationship with a mathematical form for the 

range of fiber volume fraction explored. 

3.1.1 Experimental Setup 

To describe the stress-strain relationship of the preform, an Instron 

machine coupled to a load cell was used. The load cell records the force needed by the 

two circular steel plates to compact the fabric (see Figure 3-1). The samples were cut 

into circular discs and placed between the two plates. The two plates move toward 

each other at a constant speed and compact the preform. The data is recorded at 

constant time intervals (∆t=0.5 s). The use of perforated plate helps one to describe the 
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influence of lubrication on the behavior. To do so, the preform is soaked into a resin 

bath and placed between the discs. The perforations in the plates help to bleed the 

resin more easily, avoiding an increase in resin pressure thus making it possible to 

accurately measure the load exerted only on the fiber preform. Woven e-glass 24oz 

fabric was used as the perform material for characterization. 
 
 
 

 

Figure 3-1 Experimental setup used to measure the compaction behavior 
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3.1.2 Experiment Analysis 

The lubrication is known to help the compaction and therefore increase the 

final fiber volume fraction corresponding to a given applied stress. When the preform is 

only partially saturated through the thickness (existence of a flow front), the overall 

behavior is a combination of saturated and dry behavior. According to Terzaghi’s relation 

(Eq. (2.21)), if the preform is saturated with resin, the compressive stress is the difference 

between the resin pressure at the preform surface and the resin pressure within the 

saturated preform. However, for the part of the preform that is dry, ptop=0 and therefore 

ppref=ptop (Figure 3-2 schematically shows the distribution of stresses over the preform). 
 
 
 

 

Figure 3-2 Compressive stresses distribution over a partially saturated preform 

 
 
 

One can then formulate the global displacement of the perform top, λ, as 

an addition of the deformation experienced by the wet preform λwet and by the dry 

preform λdry, 
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wet dry

λ λ λ= +  (3.1) 

 

 

Using Figure 3-2, 

 ( )
0

S

wet top
f p p dyλ = −∫  (3.2) 

And 

 ( )
H

dry top
S

g p dyλ =∫  (3.3) 

where f and g are functions relating the strain to the stress. In order to investigate the 

compaction behavior of the E-glass 24 oz. woven fabric, several experiments were 

conducted, varying different parameters such as lubrication, compaction speed, 

number of layer, etc. The study was performed by M. Gebauer from the Center for 

Composite Materials [5]. Figure 3-3 and Figure 3-4 show the stress-fiber volume 

fraction data collected for different compaction speeds (15 mm/s and 25mm/s) under 

wet and dry states of the fiber preform. The testing material was a 24 oz. E-glass 

woven fabric and each experiment has been conducted without pre-compaction. 

 

From Figure 3-3 and Figure 3-4, one can assume that until a high 

compaction speed, the dry and saturated behaviors can be assumed to be the same, thus 

one can assume that the function f varies the same way as the function g. 
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Figure 3-3 Stress-fiber volume fraction data for Instron speed of s=25mm/s 

 

Figure 3-4 Stress-fiber volume fraction data for s=15mm/s 
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Figure 3-5 Evolution of resin penetration during the second phase of CRTM 

 
 
 

By studying two different depth of penetration of the fluid S1 and S2, if 

the flow progresses ( 2 1S S〉  in Figure 3-5) and if f g= , the deformation λ1 

corresponding to a depth of penetration S1 is, 

 ( ) ( )
1

1 0 1

S H

top top
S

f p p dy f p dyλ = − +∫ ∫  (3.4) 

Similarly, the deformation λ2 associated to a depth of penetration S2 is, 

 ( ) ( )
2

2 0 2

S H

top top
S

f p p dy f p dyλ = − +∫ ∫  (3.5) 

which leads to 

 1 2λ λ>  (3.6) 

According to eq.(3.6), if f g= , the deeper the flow goes the less compaction the 

preform will experience. This means that as soon as a compressive stress is applied on 

top of the preform, one should assist to a sudden deformation followed by a relaxation 

of the preform as the flow progresses through the thickness. From Figure 2-2, it is seen 

that for higher compaction speed (more than 30mm/min) the top of the preform keeps 

moving downward as the flow progresses. To accomodate this behavior, the dry 

preform has to be much stiffer than the saturated one. This could be explained by the 
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visco-elastic behavior of the preform. Robitaille [23, 24] has shown that the 

compaction speed has an influence on the stress-strain relation when the fabric is dry. 

When it is lubricated, for limited compaction speeds, it can be assumed that the speed 

does not really affect this relation. Further investigation would have to be done to 

explain the compaction behavior of a partially filled preform. To account of this 

property of CRTM, the dry preform will be assumed to be undeformable and only the 

saturated part will deform during the compression. 

3.1.2 “Hyperbolic tangent” compaction model 

A number of compaction models have been published through the years 

[17, 23-29]. The most commonly used is a power law model and takes the form, 

 . b

pref fp a v=  (3.7) 

where vf is the resulting fiber volume fraction and a and b are the material parameters. 

The power law model is simple, however it neither predicts the fiber volume fraction 

when the compaction stresses ppref is zero nor does it reflect the true asymptotic 

behavior at high stress levels usually experienced in CRTM processing. As this 

behavior is important to describe and capture, in this work we use the following 

compaction model to characterize the materials [32, 43], 

 ( )
max

tanh prefn

f f0 fmax f0

pref

p
v = v + v v

p m

 
−   

 
 (3.8) 

Pprefmax is the minimum stress after which the fiber volume fraction will not increase 

with any additional stress on the fibers. The m and n are two curve fitting parameters. 

The compression behavior is captured by equation (3.8) at the price of evaluating 

additional constants. However, these constants can be found from the same 
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experiments and do not require any additional characterization. Table 3-1 lists the 

constants that gave us the best least squares fit with the experimental data depicted in 

Figure 3-3. 
 
 
 

Table 3-1 Model parameters for compaction model described by Eq. (3.8) 

E-glass woven (24 oz) 

n 0.45 

m 0.86 

vfmax 0.62 

vf0 0.30 

pprefmax 4.5.105 Pa 

 
 
 

To study the sensitivity of the two shape parameters n and m, their values 

were varied from 0.35 to 0.55 for n and from 0.75 to 0.95 for m. As one can notice 

from Figure 3-6, a slight change in the value of m and n does cause a significant 

change in the value of fiber volume fraction at the same force (stress) level. This 

ensures that the fit of the experimental data is very sensitive to the values of m and n. 

Thus for each material one can determine m and n with reasonable accuracy from the 

stress- fiber volume fraction curve. 
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Figure 3-6 Range of resulting fiber volume fractions corresponding to a 

prescribed load (errors bars correspond to different values of m and 

n applied to the model) 

 
 
 

The derivatives of this model will also be needed as zero compressive 

pressures are encountered at the top surface of the preform. When ppref=0, f

pref

v

p

∂
= ∞

∂
 
, 

whereas f

pref

v

p

∂

∂
 
is finite experimentally. The experimental derivatives are calculated 

from the strain-stress relation as follows, 

 
1 1

1 1

i
i i

f f f

i i

pref pref pref

dv v v

dp p p

+ −

+ −

  −
=   − 

 (3.9) 
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i+1 and i-1 represent the neighboring data points of point i. At ppref=0, the model 

value of dvf/dppref is infinite, however this derivative will not be used in the system as 

the only locations where compacting pressure is 0 lies on the boundary. There, p is set 

to Ptop and vf=vf0. Figure 3-7 compares the model and experimental fiber volume 

fractions and their derivatives with respect to applied stress. 
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Figure 3-7 Change in fiber volume fraction and its derivative with respect to 

compaction pressure for E-glass woven fabric 

3.1.3 Linear Stress strain relation 

In order to model the two dimensional flow during the CRTM process, it 

has been assumed that the stress strain relationship is linear. This may not be a bad 
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assumption if the strains are small. This simplification allows us to model the 

compaction behavior by a linear model using a fabric Young’s modulus E and 

describing the strain of each element as a function of stress due to the fluid ppref and 

the stress due to the contact tool/preform pel, 

 pref el
p p

=
E E

ε − −  (3.10) 

However, as one would calculate the strain spatially at all discretized 

locations as shown in Figure 2-3, a slight oscillatory behavior of one of them can have 

a dramatic impact on the entire system of equations. In order to attenuate these 

temporary oscillations, an exponential damping term is added to the computations of 

the deformation, 

 ( )( )( )1 1 1 cdt

t t th h H h eε −
+ = + + − −  (3.11) 

where H is the initial preform thickness, t is the last recorded time and c is a damping 

coefficient chosen arbitrarily. 

3.2 Permeability 

In CRTM, the resin flows along the preform in the in-plane direction as 

well as in the thickness direction which is the direction in which the upper platen 

moves to compress the preform. Therefore, one needs to characterize the permeability 

of the preform as a function of the fiber volume fraction across the thickness as well as 

in-plane. 

3.2.1 Experimental setup 

In order to measure the permeability of a preform as a function of the 

compaction, a RTM mold was used. Different combinations of spacers were used, it 
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provided different mold cavity thicknesses which led to different preform compactions 

and hence fiber volume fractions. Once the preform is placed in the mold and 

compacted to a selected thickness dictated by the spacer plate, the resin is injected at a 

selected constant pressure into the mold in a uniform way through a line gate creating 

a one dimensional flow in the plane. The location of the flow front is recorded. Using 

Darcy’s law (Eq.(2.1)) and the movement of the one dimensional flow, one can 

calculate the in-plane permeability of the fabric at that fiber volume fraction. The 

experiment was repeated at different compactions thus recording permeability values 

at various fiber volume fractions. 

To measure the permeability in the thickness direction, we applied the lead 

length concept to the RTM mold [32]. By placing a distribution media of higher 

permeability on top of the preform, the resin was allowed to flow preferentially 

through the high permeability layer and then to permeate through the thickness of the 

preform (Figure 3-8). The resin front advancement is recorded on top (where the 

distribution media is) and the bottom (Figure 3-9). The difference between the flow 

fronts during the experiments is called as the lead length and is a function of the fiber 

volume fraction and the permeability of the distribution media. A numerical three 

dimensional mold filling code LIMS was used to find the through the thickness 

permeability [33]. 

Once the data was measured at a few fiber volume fractions, one could use 

these results in constitutive models for permeability as a function of the fiber volume 

fraction. 
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Figure 3-8 Lead length schematic 

 

Figure 3-9 Experimental setup to measure through thickness permeability by 

recording the advancement of the flow front at the top and the 

bottom surface of the mold. 
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3.2.2 Kozeny-Carman model 

One could use one of the many available models in the literature; we 

selected the Kozeny-Carman [19, 20, 30, 34] relation to describe this change which is 

given by, 

 ( )
( )

3

2

1
f

f

f

v
K v = ko

v

−
 (3.12) 

The fiber volume fraction can be expressed as a function of the initial fiber volume 

fraction vf0, initial thickness H and actual thickness h, 

 0f

f

v H
v

h
=  (3.13) 

One could easily substitute another expression to describe the change in permeability. 

As shown in Figure 3-10, a good fit with the in-plane experimental data was found at 

the higher values of fiber volume fractions using equation (3.12) when a value of  

4.10-10m2 was used for ko. The curve fit with the four last experiment data points 

(Figure 3-10) leads to the following results for the through plane (koyy) and in-plane 

(koxx) permeability coefficients, 

 12 22.7.10yyko m
−=  (3.14) 

And 

 10 24.10
xx

ko m
−=  (3.15) 
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Figure 3-10 In plane permeability values for e-glass woven fabric and its fit with 

the Kozeny Carman equation at higher fiber volume fractions 

(R
2
=0.99 for the last four data points) 
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Chapter 4 

NON DIMENSIONAL ANALYSIS 

In this chapter, a non dimensional analysis is conducted to identify the 

important process parameters. The governing equations derived in chapter 2 are as 

follows: 

Flow progression in the gap, 

 
( )

,x
gap

gap gapgap

x L dl

K x LL p

t η =

=∂ ∂ 
= −  

∂ ∂ 
 (4.1) 

Flow progression in the preform, 

 
( )
( )

( )
( ), ,

, ,

, ,
p p

xx p yy pp p

x y Lp p x y Lx x

K x y L K x y LL L p p

t x x yx y L x y Lηφ ηφ= =

= =∂ ∂     ∂ ∂ 
= −      

∂ ∂ ∂ ∂= =      
 (4.2) 

Pressure distribution in the gap, 

 

( )

( )

, ,

3

, , ,,

,

( , )

12

gap yy

x y dl x y dlx

gap xx

x y dl x y dl x y dlx y dl

H K x y dl p
dl =

t t η y

H x K x y dlp p
dl

x η x x η x

ε

= =

= = ==

∂ =   ∂ ∂ 
+ +    

∂ ∂ ∂    

   =∂ ∂ ∂ ∂     +       ∂ ∂ ∂ ∂     

 (4.3) 
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Pressure distribution in the preform, 

 

 

( )
( ) ( )

( )
( )

, , ,

, ,

, ,
,

,
,

xx

x y x y x y

yy

x y x y

dh x y K x y p
dh x y

t x x

K x y p
dh x y

y y

ε

η

η

 ∂ ∂ ∂   
= +     ∂ ∂ ∂    

  ∂ ∂
   ∂ ∂  

 (4.4) 

To non dimensionalize, independent and dependent variables were 

identified and non-dimensionalized with respect to characteristic values. When the 

characteristic values were not obvious, they were determined by normalizing the 

coefficients of the equation. 

Dependent and independent variables have been non-dimesionalized and 

listed in Table 4-1, 

 

For example, the in-plane permeability is non dimensionalized in the 

following way, 

 ˆ xx
xx

o xx

K
K

k
=  (4.5) 

Using the variables from Table 4-1, the governing equations listed in chapter 2 will be 

non-dimensionalized. 
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Table 4-1 Non dimensionalized variables with their characteristic value 

Variable Physical significance 
characterized value with 

respective to which it is non-
dimensionalized 

x Horizontal coordinate L (length of the mold) 
y Vertical coordinate H (thickness of the mold) 

dh 
Control volume 

thickness 
H 

h Preform thickness H 
Lg Flow position in the gap L 

Lp 
Flow position in the 

preform 
H 

Hg Gap size Hgap (thickness of the gap) 
Kxx In plane permeability koxx (in-plane permeability) 

Kyy 
Through plane 
permeability 

koyy (through thickness 
permeability) 

t Time tc (characteristic time) 

Pel 
Stress due to contact 

preform/tool 
Pap (applied pressure on top of 

preform) 
p Fluid pressure Pap, Pinj (injection pressure) 

A 
Horizontal surface of the 
preform (unity depth in 

coordinate z) 
L 

 
 
 

4.1 Pressure distribution 

The equation governing most of the process being the bulk equation (2.20) 

it will be the first one to be non-dimensionalized, 

 

( ) ( ) ( )

( ) ( )

2

2
ˆ ˆ ˆ ˆ, , ˆ ˆ,

ˆ ˆ, ˆ ˆ,

ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , ,
ˆ ˆ ˆ

ˆˆ ˆˆ ˆ ˆ ˆ, ,
ˆ ˆ

xx
xx

x y x yyy x y

yy

x y
x y

ko H p
dh x y dh x y K x y

t ko L x x

p
dh x y K x y

y y

ε  ∂ ∂ ∂   
= +     ∂ ∂ ∂    

  ∂ ∂
   ∂ ∂  

 (4.6) 
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Where tc is chosen as such, 

 

2

c

yy inj

H
t

ko P

η
=

 (4.7) 

for phase 1 and, 

 

2

c

yy ap

H
t

ko P

η
=

 (4.8) 

for phase 2 and 3. tc represents twice the time to fill a cavity of length H of fabric of 

permeability koyy by a fluid of viscosity η at a pressure Pap.  

The infinitesimal strain rate of deformation can be expressed from Eq. (3.11) and non 

dimensionalized, 

 

( )
( )

( )

( )
( ) ( )( )( )

ˆ

ˆ ˆ,

ˆ

ˆˆ ˆ ˆ,
1

ˆˆ ˆˆ ˆ,

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ, , 1

ˆˆ ˆ ˆ,

c

c

t

ct dt

t
x y

ap ct dt

pref elt

dy dh x y
e

t dh x y dt

Pdy
p x y p x y e

Edtdh x y

ε −

−

−∂ 
= − − 

∂ 

− −

 (4.9) 

Substituting Eq. (4.9) into (4.6), one finds for phase 1, 

 

( ) ( )

( ) ( )

( )
( )

( )
( )

( )
( )

2

2
ˆ ˆ, ˆ ˆ,

ˆ ˆ, ˆ ˆ,

ˆ

ˆˆ ˆˆ ˆ ˆ ˆ, ,
ˆ ˆ

ˆˆ ˆˆ ˆ ˆ ˆ, ,
ˆ ˆ

ˆˆ ˆ ˆ,ˆ ˆ ˆ, 1
ˆ ˆˆ ˆ,

ˆˆ ˆ ˆ ˆ,
ˆˆ ˆ ˆ,

c

xx
xx

x yyy x y

yy

x y
x y

t

ct dt

t

inj

prt

ko H p
dh x y K x y

ko L x x

p
dh x y K x y

y y

dy dh x y
dh x y e

dh x y dt

Pdy
dh x y p

Edtdh x y

−

 ∂ ∂ 
+   ∂ ∂  

  ∂ ∂
  =  ∂ ∂  

 −
− − 

 
 

( ) ( )( ) ( )ˆˆ ˆ ˆ ˆ ˆ, , 1 cct dt

ef el
x y p x y e

−
 

− − 
 
 

 (4.10) 
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And for phase 2 and 3, 

 

( ) ( )

( ) ( )

( )
( )

( )
( )

( )
( )

2

2
ˆ ˆ, ˆ ˆ,

ˆ ˆ, ˆ ˆ,

ˆ

ˆˆ ˆˆ ˆ ˆ ˆ, ,
ˆ ˆ

ˆˆ ˆˆ ˆ ˆ ˆ, ,
ˆ ˆ

ˆˆ ˆ ˆ,ˆ ˆ ˆ, 1
ˆ ˆˆ ˆ,

ˆˆ ˆ ˆ ˆ,
ˆˆ ˆ ˆ,

c

xx
xx

x yyy x y

yy

x y
x y

t

ct dt

t

ap

pret

ko H p
dh x y K x y

ko L x x

p
dh x y K x y

y y

dy dh x y
dh x y e

dh x y dt

Pdy
dh x y p

Edtdh x y

−

 ∂ ∂ 
+   ∂ ∂  

  ∂ ∂
  =  ∂ ∂  

 −
− − 

 
 

( ) ( )( )( )ˆˆ ˆ ˆ ˆ ˆ, , 1 cct dt

f el
x y p x y e

−
 

− − 
 
 

 (4.11) 

In Eq. (4.10) and (4.11) one can identify the ratio of in-plane versus through thickness 

permeability, 

 

2

2
xx

yy

ko H

ko L
α =

 (4.12) 

The ratio between injection pressure versus Young’s modulus of the preform during 

phase 1 is determined as follows, 

 1
inj

P

E
δ =  (4.13) 

And the ratio between available stress versus Young’s modulus of the preform during 

phase 2 and 3, 

 2
ap

P F

E AE
δ = =  (4.14) 

 

Where A is area of the surface in contact with the tool. When the gap still exists the 

stress in the preform due to contact tool/preform equals zero, the top layer elements 

are then not deformed. Non dimensionalizing the vertical component of Eq. (2.16) 
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with respect to Hgap and substituting the characteristic time (4.8) or (4.7) depending on 

the phase, the gap equation becomes, 

 

( )

( )

( )

2

2
ˆˆ ˆ,ˆ

2 2
3

2
ˆˆ ˆ, ˆˆ ˆ,

2 2

2 2
ˆˆ ˆ,

ˆ ˆˆˆ ˆ ˆ,
ˆ ˆ

ˆˆ ˆ
ˆ ˆ12

ˆˆ ˆˆ ˆ ˆ,
ˆ

g

yy

gap x y dlx

gap

g

x y dlyy x y dl

xx
xx

yy x y dl

H H p
K x y dl

t H y

H H p
H x

L ko x x

ko H p
dlK x y dl

ko L x

=

= =

=

 ∂  ∂
= = +    ∂ ∂  

 ∂ ∂ 
+   ∂ ∂  

 ∂
=  

∂ 

 (4.15) 

In Eq.(4.15), one can recast (4.12) and identify the ratio of the gap versus the through 

thickness permeability, 

 
2 2

212
gap

yy

H H

L ko
β =  (4.16) 

As well as the ratio between the gap and the preform thickness, 

 
gap

H

H
γ =  (4.17) 

4.2 Flow front progression 

The non dimensionalized form of the equation describing the evolution of 

the flow front in the gap (2.2) becomes, 

 ( )
2 2

2

2

ˆ ˆˆ ˆ
ˆ ˆ12
g gap

g

xyy

L H H p
H x

t L ko x

∂ ∂ 
= −  

∂ ∂ 
 (4.18) 

Where one can identify α and β. 
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Similarly, the flow front progression through the thickness of the preform is written in 

its dimensionless form, 

 

( )
( )

( )
( )

ˆˆ ˆ,ˆ

2

2
ˆˆ ˆ,ˆˆ ˆ,

ˆ ˆˆ ˆ ˆ, ˆ
ˆ ˆ ˆˆ ˆ,

ˆ ˆ ˆˆ ˆ, ˆ
ˆ ˆ ˆˆ ˆ,

p

p
p

yy pp

x y Lpx

xx p pxx

x y Lyy p x y L

K x y LL p

t yx y L

K x y L Lko H p

ko L x xx y L

φ

φ

=

=
=

= ∂  ∂
= − +    ∂ ∂=   

=  ∂ ∂ 
    ∂ ∂ =  

 (4.19) 

From the previous equations and the constitutive equations listed in chapter 2, one can 

identify 6 non dimensional parameters influencing the flow front progression and the 

compaction of the preform. They are listed in Table 4-2 along with their physical 

significance. 
 
 
 

Table 4-2 Non dimensional parameters in the process 

Non dimensional parameter Physical significance 
vf0 Initial fiber volume fraction 

2

2
xx

yy

ko H

ko L
α =  Ratio of in plane to through plane 

permeability 
2 2

212
gap

yy

H H

L ko
β =  Ratio of gap to through plane 

permeability 

gap

H

H
γ =  Ratio of gap to preform thickness 

1
inj

P

E
δ =  

Ratio of maximum stress to available 
stress to compact the preform during the 

first phase 

2

F

AE
δ =  

Ratio of maximum stress and available 
stress to compact the preform during 

phase 2 and 3 
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Using Table 4-2, the governing equations can be expressed in their 

dimensionless form: 

Flow front progression in the gap, 

 ( )
2

ˆˆ

ˆ ˆˆ ˆ
ˆ ˆ

g

g

g

x L

L p
H x

t x
β

=
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 (4.20) 

Flow front progression in the preform, 
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 (4.21) 

Pressure distribution in the gap, 

 

( )

( ) ( )

2

ˆˆ ˆ,ˆ

2
3

2
ˆ ˆˆ ˆ, ˆ ˆ ˆ,ˆ ˆ,

ˆ ˆˆˆ ˆ ˆ,
ˆ ˆ

ˆ ˆˆ ˆˆ ˆˆ ˆ ˆ,
ˆ ˆ ˆ

g

yy

x y dlx

g xx

x y dl x y dlx y dl

H p
K x y dl

t y

p p
H x dlK x y dl

x x x

γ

β α

=

= ==

 ∂  ∂
= = +    ∂ ∂  

   ∂ ∂ ∂ 
+ =     ∂ ∂ ∂    

 (4.22) 

Pressure distribution in the preform during phase 1, 
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 (4.23) 
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Pressure distribution in the preform during phase 2 and 3, 

 

( ) ( )

( ) ( )

( )
( )

( )
( )

( )
( )

( )

ˆ ˆ, ˆ ˆ,

ˆ ˆ, ˆ ˆ,

ˆ

2

ˆˆ ˆˆ ˆ ˆ ˆ, ,
ˆ ˆ

ˆˆ ˆˆ ˆ ˆ ˆ, ,
ˆ ˆ

ˆˆ ˆ ˆ,ˆ ˆ ˆ, 1
ˆ ˆˆ ˆ,

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
ˆˆ ˆ ˆ,

c

xx

x y
x y

yy

x y
x y

t

ct dt

t

pref elt

p
dh x y K x y

x x

p
dh x y K x y

y y

dy dh x y
dh x y e

dh x y dt

dy
dh x y p x y p x

dtdh x y

α

δ

−

 ∂ ∂ 
+   ∂ ∂  

  ∂ ∂
  =  ∂ ∂  

 −
− − 

 
 

− ( )( )( )ˆˆ, 1 cct dt
y e

−
 

− 
 
 

 (4.24) 
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Chapter 5 

NUMERICAL MODELING 

From chapter 4 we determined the non dimensional equations that will 

govern the flow during the CRTM process. However, these partial differential 

equations cannot be solved analytically. A numerical technique is developed to cast the 

governing equations into a linear system of algebraic equation using finite difference 

method. The solution approach is presented for each phase of the process. The model 

is verified by comparing it with another established numerical simulation and results 

are also presented for a case study. 

5.1 Numerical approach 

5.1.1 Assumptions 

In order to simplify the process model, several assumptions describing the 

compaction behavior have to be made. 

5.1.1.1 Visco-elasticity 

Due to the visco-elastic behavior of the dry preform and the high closing 

speeds involved, the dry part of the preform will be assumed to be stiff [23, 30]. 

Concerning the lubricated part of the preform, its visco-elasticity will be neglected 

(fiber volume fraction depends only on the applied stress). 
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5.1.1.2 Applied force 

In the industry, the load is usually applied using a hydraulic press. 

Therefore, the press does not instantaneously set itself to the desired force. Moreover, 

numerically one cannot usually directly apply the full compaction force after the first 

phase. In our case, the shock wave that should be induced by the brutal transition is 

damped by the exponential term in the equation governing the preform compaction 

(Eq.(3.11)). However, we still include a ramping term that will insure a smooth 

transition between the loads applied in phase one and two. The load is linearly ramped 

at a certain rate. To model this progressive load, the following equation is used, 

 
( )0

0( )
applied

F F
F t F t

R

−
= +  (5.1) 

Where, F0 is the averaged load exerted by the fluid on the preform at the end of the 

first phase, Fapplied is the target load, R is a ramping coefficient. R is chosen arbitrarily 

and will delay the full application of the force. A decrease of R will then speed the 

process but risk instability of the numerical solution. Once the targeted load is reached, 

the value of F becomes constant and equal to Fapplied. 

5.1.2 Discretization method 

To model the flow during the CRTM process, one has to solve a system 

composed of the equations describing the flow as well as the compaction during the 

three phases (Eqs.(4.20), (4.21), (4.22), (4.23) and (4.24)) To do so, an implicit 

scheme regrouping all the primary unknowns (flow front positions, gap sizes, fluid 

pressures,…) is used [35]. The use of an implicit scheme allows us to have a stable 

solution for any value of time step. The secondary unknowns (permeabilities, 

deformation strains, fiber volume fractions) are then computed using the primary 
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unknowns. The unknown values and the criteria to end each phase are listed in Table 

5-1, 
 
 
 

Table 5-1 System unknowns and criteria to end each phase 

 Primary unknowns 
Secondary 
unknowns 

End of phase 
criteria 

Phase 1 

Lg (flow front 
position in gap) 
Lp (flow front 
positions in 
preform) 
p (fluid pressure 
values) 

Kxx, Kyy 

(permeabilities) 
Hg (gap size) 
vf (fiber volume 
fraction) 
dh (deformed 
element thickness) 

volume of resin in 
the system equal to 
volume of resin 
initially injected 

Phase 2 

Lg 

Lp 

p 

Hg 

∆ (distance between 
the two mold plates) 

Kxx, Kyy 
vf 
dh 

When  the tool 
touches the 
preform at any 
location. 

Phase 3 

Lg 

Lp 

p 

Hg 
pel (compressive 
stress due to contact 
preform/tool) 
∆ 

Kxx, Kyy 
vf 

dh 

Until every node is 
filled 

 
 
 

Once all the primary unknowns are determined, the secondary unknowns 

are calculated by using the constitutive equations listed in chapter 3. 
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5.1.2.1 Mesh generation 

 
 
 

 

Figure 5-1 Two dimensional mesh used to solve the problem (before and after 

deformation) 

 
 
 

The equations derived in chapter 4 are discretized according to a 

deformable mesh (Figure 5-1). A pressure is associated at each node in the mesh, 

whereas permeability of the fabric and the fiber volume fraction are assigned to each 

element. There are m nodes along the thickness and n nodes along the length of the 

part. During the CRTM process, the preform will deform. To solve the equations using 

a deformable mesh, one should use a transposition matrix to transform the deformable 

mesh into a fixed mesh in order to compute the derivatives properly [35, 36]. In our 

study, the nodes are displaced vertically only and a relatively stiff fabric has been used 
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for the simulation. The mesh is then only slightly deformed; hence the involved 

Jacobian matrix is close to identity. In order to simplify the derivative computations, a 

new variable is introduced to express the thickness of each element; 

 , ,
ˆ ˆ(1 )i j i jdh dy ε= +  (5.2) 

where dhi,j represents the deformed element thickness, εi,j the strain of the element. 

The derivative will then be numerically expressed as a function of dh instead of dy and 

the mass balance for each element will be made over a stiff orthogonal mesh. 

5.1.2.2 Finite differences and equation computation 

In order to discretize the derivatives involved in the governing equations 

given by (Eqs.(4.20), (4.21), (4.22), (4.23) and (4.24)), the finite difference method 

will be used [35-37]. The equations associated to the boundaries of the domain will 

also be discretized and the method to solve the system of equations will be detailed. 

5.1.2.2.1 Boundary condition 

On the wall, the first derivative will be equal to zero. On the right and left 

sides of the wall, 

 ,ˆ
0

ˆ
i j

p
=

x

∂

∂
 (5.3) 

And on the top and bottom of the mold, 

 ,ˆ
0

ˆ
i j

p
=

y

∂

∂
 (5.4) 

To discretize the derivative at the domain walls, the mirror method is used. An 

imaginary node is created on the other side of the wall and its pressure value is the 

same than the node before the wall. Equation (5.3) is discretized as follows, 
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 , 1 , 1ˆ ˆ
i j i j

p p+ −=  (5.5) 

 
 
 

 

Figure 5-2 Mirror concept 

 
 
 

Applying eq. (5.5) to the discretization of the second derivatives results in the 

following derivatives at the end of the mold (j=n), 

 
2

, , 1 ,

2 2

ˆ ˆ ˆ2 2

ˆ ˆ

t t

i j i j i j
p p p

=
x dx

−∂ −

∂
 (5.6) 

At the symmetry axis (j=1), the second derivative is, 

 
2

, , 1 ,

2 2

ˆ ˆ ˆ2 2

ˆ ˆ

t t

i j i j i j
p p p

=
x dx

+∂ −

∂
 (5.7) 

The injection gate being located in the middle, one can simplify the problem by 

applying a symmetry condition at the middle (see Figure 2-4). At j=1, one would apply 

Eq. (5.3) and (5.7). 
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5.1.2.2.2 Pressure interpolation 

 
 
 

 

Figure 5-3 Schematic of interpolating pressure near the flow front 

 
 
 

In order to locate the flow front between two nodes, an equation 

determining the pressure after the flow front is added. The pressure at the flow front is 

equal to zero, the pressure located after the flow front will then be negative. It will be 
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determined using a linear interpolation based on the fluid penetration between two 

vertical nodes (Figure 5-3), 

 1
ˆ ˆˆ ˆ

ˆ 0
ˆ ˆ ˆ ˆ

indpref dry indpref flow

flowfront

flow dry flow dry

p d p d
p

d d d d

+
= = +

+ +
 (5.8) 

Leading to, 

 , 1,
ˆ ˆˆ ˆ 0dry indpref j flow indpref jd p d p ++ =  (5.9) 

Where ddry and dflow are the dry and wet lengths between two nodes, indpref is the 

vertical index of the last filled node. Similarly, the flow front in the gap is located by, 

 1, 1, 1
ˆ ˆˆ ˆ 0drygap indgap flowgap indgapd p d p ++ =  (5.10) 

Where ddrygap and dflowgap are the dry and wet lengths between two nodes, indgap is the 

horizontal gap index of the last filled node. 

5.1.2.2.3 Finding the primary unknowns 

At each time step, a system of equations is created from the discretization 

of the partial differential equations ((Eqs.(4.20), (4.21), (4.22), (4.23) and (4.24)) As 

an example Eq (4.20) can be discretized in the following way, 

 ( )1 1 1
1

ˆ ˆ
ˆ ˆˆ ˆ

ˆ
indgapgt t t t

g indgap indgap g

H dt
L p p L

dx

β
+ + +

−+ − =  (5.11) 

All the unknowns’ coefficients are put in a matrix G that is multiplied by the 

unknowns vector U. This multiplication is equal to a forcing term F. The system has 

then the following structure, 

 [ ] [ ] [ ].G U F=  (5.12) 
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In Eq. (5.11), 1t

gapL
+  and p at t+1 form the unknown U vector and t

gapL  forms the force 

vector F whereas unity is the coefficient associated with the unknown 1t

gapL
+  and 

ˆ ˆ

ˆ
indgapgH dt

dx

β
 is the coefficient associated with the unknown pressures in the matrix G. 

The unknown variables in the vector U can be calculated by solving the system of 

algebraic equations (5.12) 

 [ ] [ ] [ ]
1

U G F
−

=  (5.13) 

The vector U contains then every primary unknown required to compute the secondary 

unknowns stated in Table 5-1. As the primary unknowns change with each phase, the 

matrix structure will be described for each phase. 

5.1.3 Application to the numerical method to the CRTM phases 

In this section, the solution method will be applied to each phase of the 

CRTM process. 

5.1.3.1 Calculation of the required volume of resin to inject 

In order to saturate the preform without any voids one must compute the 

final porosity (volume that the resin can fill) as a function of the final geometry, 

 01
ˆ

f

final

final

v
=

h
φ −  (5.14) 

hfinal is the final thickness, H is the initial thickness and vf0 is the initial fiber volume 

fraction. Once the final thickness is known, one can easily determine the required 

amount of resin needed to completely fill the part, 

 ˆ ˆ
r̂esin final finalV = h Aφ  (5.15) 

Where Vresin is the required amount of resin, A the area of the top surface of the mold. 
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Once the required amount of resin to inject is computed, the pressure at the node 

representing the injection gate is set equal to a constant value of 1. 

5.1.3.2 Equations common to the three phases 

The pressure distribution as well as the flow progression and the preform 

deformation will be governed by the discretized version of equations (4.20), (4.21), 

(4.22), (4.23) and (4.24). The flow front progression and pressure distribution in the 

preform equations are common to every phases of the process. However, the pressure 

distribution equation on the top layer as well as some boundary conditions will vary 

between the different phases. For each phase, they will be treated separately along with 

the matrix structure. Finally, once the primary unknowns are determined using the 

governing equations, the secondary unknowns can be computed. These computations 

are common to each phase. 

5.1.3.2.1 Flow in the gap 

The interpolated pressure is only a linear approximation; therefore it does 

not respect the conservation of mass in the element. The flow front progression in the 

gap is then computed using the pressures calculated from accurate relations. The 

derivative of the pressure with respect to x will then be approximated using a 

backward differentiation. The discretized version of Eq. (4.20) is, 

 ( )1 1 1
1

ˆ ˆ
ˆ ˆˆ ˆ

ˆ
indgapgt t t t

g indgap indgap g

H dt
L p p L

dx

β
+ + +

−+ − =  (5.16) 

5.1.3.2.2 Flow in the preform 

To compute the vertical flow front position, the same reason than in the 

gap is used to choose the proper indices in order to compute the pressure derivatives. 
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The preform being compacted, the difference between depths of penetration has to be 

made from a vertical reference position. The y position of the top of the preform being 

not constant, the difference of Lp’s will be calculated from the bottom of the mold as 

showed in Figure 5-4. 
 
 
 

 

Figure 5-4 Schematic showing difference between two neighboring depths of 

penetration 
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The flow front progression in the preform can be expressed as follows, 
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 (5.17) 

Where indpref is the last vertical filled node of the column of nodes. 

5.1.3.2.3 Pressure distribution in the preform 

The equation describing the pressure in the preform is only applied to the 

rows below the first layer of nodes. The pressures in the first layer of nodes will be 

governed by the gap equation. To calculate the pressures in the preform, one has to 

determine the infinitesimal strain rate of deformation. It can be expressed as follows, 

 
1 1

, , ,

,
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i j i j i j

t

i j

dh dh
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ε
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 (5.18) 

The infinitesimal height of a control volume is computed by applying Eq. (3.11) to a 

control volume, 

 ( )( ) ( )ˆ
1

ˆ ˆ ˆ ˆˆ ˆ1 1 cct dt

t t pref el tdh dh p p dy dh eδ δ −
+ = + − − − −  (5.19) 

Substituting Eq. (5.19) into Eq.(5.18), 
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 (5.20) 
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Discretizing Eq. (4.23) and substituting Eq. (5.20), 
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 (5.21) 

Where 
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And δ is δ1 or δ2 depending on the process phase. On the right wall of the mold, using 

the mirror method, Eq. (5.21) becomes, 
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Similarly on the left side, the pressure distribution on the wall is, 
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On the bottom of the mold, 
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Finally on the bottom right and left of the mold, the vertical and horizontal mirrors are 

applied. The pressure equation on the bottom right of the mold is, 
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In the first and second phase, there is no contact between the tool and the preform. The 

stress due to contact pel will then be equal to zero. This equation is only valid inside 

the filled domain (i≤indpref). For the node just beyond the flow front (i=indpref+1), 

the interpolation equation is solved. When the node position is beyond the 

interpolation line (i>indpref+1), the pressure at this node is set equal to zero. 

5.1.3.2.4 Calculation of secondary unknowns 

To find the secondary unknowns, one has to compute the new element 

thicknesses from the fluid pressures and the stresses due to the contact tool/preform 

(only present in the last phase). 

 

According to Figure 5-5, to compute the total thickness, one has to sum all the 

elements over the thickness of the preform, 
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The thickness of the gap is then found by subtracting the preform thickness from the 

initial distance between the mold platens ∆, 
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g j
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Figure 5-5 Schematic of the thickness chain of dimension 

 
 
 

The fiber volume fraction of each element can be found by applying a mass 

conservation relation to the element, 
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Once the fiber fraction of the element is found, its permeability is computed using the 

Kozeny-Carman relation (3.12), 
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5.1.3.3 Specific equations and solving method related to phase 1 

During the first phase, an injection gate is open and the resin is injected 

into the gap at a certain pressure. Due to the porosity of the preform, some of this fluid 

will also impregnate the fabric. The injection gate is modeled as a node characterized 

by a fixed constant pressure. 

5.1.3.3.1 Pressure distribution in the gap 

The pressure distribution in the gap will be calculated for all the nodes 

from j=2 to j=n. Indeed, at j=1 the pressure is fixed and equal to the injection 

pressure. In the gap, we have the following simplifications, 
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Involving, 
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The discretized form of equation (4.22) becomes, 
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On the right end of the gap, Eq. (5.37) becomes, 
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All the values dependant on p in the brackets are secondary unknowns and taken from 

the previous iteration. At the very first iteration of each time step, the secondary values 

are taken from the last iteration of the last time step. 

5.1.3.3.2 Matrix structure 

All the discretized equations are now separated as explained in section 

5.1.2.2. Every equation governing the flow and the pressures are arranged as a system 

of discretized equation in the matrix form in the following order (the numbers in 

bracket are the number of equations involved in the system, n is the total number of 

nodes in one line of the mesh), 
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5.1.3.3.3 Volume computation 

The first phase of the process is stopped when the required amount of 

resin has been introduced in the system (preform+gap). The total volume of resin is 

computed by summing all the filled volumes over the preform and gap. In order to 



 67

simplify the volumes computation, it was approximated that a volume is considered 

completely filled if its associated node is filled. When the mesh is coarse, the volume 

computation will not be accurate but the error due to the volume computations will 

reduce as the mesh gets finer. The volume of each element at a given time step in the 

preform is computed as follows, 

 1 1 1
, , ,

ˆˆ ˆt t t

i j i j i jV dxdh φ+ + +=  (5.39) 

Similarly, in the gap the volume of each element is computed as follows 
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Finally, the total volume of resin in the system is calculated by adding all the filled 

volumes, 

 
( )

1 1 1
,

1 1 1

ˆ ˆ ˆ
j

indgap indgap indpref j
t t t

gap i j

j j i

Vol V V
+ + +

= = =

= +∑ ∑ ∑  (5.41) 

5.1.3.4 Specific equation and solving method related to phase 2 

From the first to the second phase, the injection gate is closed and a load is 

now applied to the fluid in the gap. Therefore, the force will be transferred and 

distributed to the fluid all over the preform surface. The forced pressure at the 

injection gate boundary condition will be replaced by an equation that insures the 

distribution of the load all over the filled region of the gap. The motion of the upper 

plate is driven by an applied force; an extra equation has to be added into the system of 

equations in order to compute this motion as a function of the fluid pressure. 
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5.1.3.4.1 Pressure distribution in the gap 

The equation governing the distribution of the pressures in the gap (5.42) 

is still valid. However, from the first to the second phase, the gap size has been 

transferred from secondary unknown to primary unknown. Therefore, the coefficient 

associated the gap thickness at time t+1 has to be present into the G matrix. Equation 

(5.43) is recast as follows 
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 (5.44) 

As previously explained the injection gate is closed and a force F is now applied (see 

Eq. (5.1)). An extra equation that integrates the fluid pressures over the surface of the 

preform to calculate the force, F experienced   

 ( )
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ˆ ˆ ˆ ˆgL

top
F p x dx= ∫  (5.45) 

Where ptop represents the pressure values on the surface of the preform. Eq (5.45) can 

be discretized as follows, 

 1
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t

jp dx F
+ =∑  (5.46) 

5.1.3.4.2 Motion of the mold 

The motion of the mold is directly dependant on the value ∆ representing 

the distance between the two plates. An extra equation is then introduced in the system 
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in order to calculate this value ∆. From Figure 5-5, ∆ is a function of the total 

thickness of the preform and the gap size. Summing Eq. (5.19) over the thickness and 

relating it to the gap size and ∆ results in the following relation 
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Note that ∆ has to be a constant value over the length of the preform as the mold is 

composed of two rigid plates translating vertically parallel to each other. 

5.1.3.4.3 Matrix structure 

The matrix structure associated to the solution for the second phase is 

shown as follows, 
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5.1.3.5 Specific equation and solving method related to phase 3 

During the last phase of CRTM, the upper platen continues to move 

downward until the final geometry of the part is achieved. This phase can be divided in 

two different stages: the first stage in which the gap progressively disappears (the 



 70

contact surface between tool and preform increases) and the second stage where the 

tool entirely touches and compacts the preform. 

5.1.3.5.1 Pressure distribution on top of the preform 

When the gap is still present in the system, the gap equation (5.44) is still 

valid. When the preform is in contact with the tool, the equation describing the 

pressures distribution in the preform (Eq.(5.21))  is used and the appropriate boundary 

conditions are applied. On the top layer of the preform, due to the contact 

preform/mold. Recalling Eq.(5.34), the stress due to the fluid gradient is equal to zero. 

The mirror method is used to compute the pressure distribution and Eq.(5.21) 

becomes, 
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 (5.48) 
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The pressure on the top right corner is also calculated, 
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An extra equation forcing the gap to be equal to zero is added. 

5.1.3.5.2 Motion of the mold 

The mold continues to travel toward the lower platen. When the gap 

remains, equation (5.47) is still valid. When the tool is in contact with the preform, the 

stress due to this contact is added into the expression of ppref. and the unknown Hgap is 

replaced by pel in the U vector. Equation (5.47) becomes, 
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5.1.3.5.3 Matrix structure 

The matrix structure associated with the solution for the third phase is 

shown as follows, 
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5.1.4 Solving scheme 

At each time step, an iterative solution is computed and compared to the 

previous iteration. If the relative error between the two iterations is less or equal to a 

certain value, the time step is validated. The margin of error is described in the 

following equation, 

 
1k k

U U
err

N

−−
≤  (5.51) 

Where 1k kU U −−  is the Euclidean norm of the difference of the vector grouping all 

the primary unknowns, N is the length of this vector and err is an arbitrary chosen 

small value. For all numerical work conducted in this thesis the arbitrary err=1.10-5 

has been chosen and verified. Only the lines of nodes associated with the filled 

elements are included in the equation system, this means that N will increase as time 

progresses as more and more elements are filled. If the results do not converge after a 

set number of iterations (in our case it was set to a maximum of 20 iterations), it is 

likely the flow is oscillating between two nodes varying the size of the vector U at 

each iteration. Hence, the margin of error generated at each iteration will oscillate 
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around a certain value and the solution will never converge. To overcome this issue, 

the time step is reduced by a factor of 10, 

 
ˆ

ˆ
10

dt
dt =  (5.52) 

This decreases the rate of advancement of the flow and prevents the oscillation. The 

solution algorithm for each phase is described in Figure 5-6, 

 

5.2 Validation 

In order to investigate the validity of the simulation, two different 

verification tools will be used. As a similar modeling approach has not been done 

previously, it is very difficult to validate it using comparison with previous works. A 

first check will be conducted using the conservation of the resin through the process 

and the convergence of the solution for different mesh refinements. Another way to 

validate the process is to compare our model with previously established models for 

special cases in which the assumptions in our model are the same than in the finite 

element control volume numerical method. 
 
 



 74

 

Figure 5-6 Numerical solution algorithm 
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5.2.1 Convergence of the solution 

In order to verify the interpolations and discretization techniques, a 

convergence study is conducted by varying the number of elements in the mesh. 

In finite differences, the error generated is mostly the truncation error due 

to the accuracy of the derivative discretization. A finer mesh reduces this error and it is 

a typical solution to increase the simulation accuracy. However, in our case, a more 

important number of nodes will result in a dramatic increase of matrix size and 

computation time to inverse it. Therefore, the convergence study will also help to 

determine the minimal mesh refinement to achieve reasonable accuracy. 

The two dimensional model was used for this convergence study. The 

initial and target geometries are listed in Table 5-2. The element number was gradually 

increased from 200 to 6050 elements. A further increase could not be achieved due to 

the memory limitation of the computer. The aspect ratio of the elements was kept at 

0.64. This ensures that the high aspect ratio of the element will not negatively 

influence the results in the study. 
 

Table 5-2 Convergence study initial and final parameters 

Hgap H Pinj Pap vf0 E C htarget koxx koyy 

4 mm 1 cm 
1.105 

Pa 

7.105 

Pa 
0.2 

15.105 

Pa 
1 7 mm 

2.10-10 

m2 

2.10-12 

m2 
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It is expected that the achieved final thickness should converge as the 

number of elements increases. As the elements count increases, the variation in 

computed thicknesses decreases and the error related to mesh refinement can be 

considered as negligible. The final thickness converges to a value smaller than the 

target thickness. This loss of resin is due to the mesh approximation and can be 

neglected (error=2.86%). 
 
 
 

 

Figure 5-7 Study showing convergence of fiber volume fraction with increasing 

number of elements 

 
 
 

The time required to fill the part is also recorded (Figure 5-8) and, as 

expected, it shows a convergent behavior similar to the final thickness curve (Figure 

5-7). 
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Figure 5-8 Study showing convergence of filling time with increasing number of 

elements 

 
 
 

Due to the very high computing time (6 days) for relatively fine meshes 

(2450 elements), the followings studies will be conducted using a mesh involving 

1250 elements. The results will not be very accurate but the general behavior or the 

system will be conserved and the computation can be completed in 12 hours. 

5.2.2 Resin mass conservation 

All the governing equations listed in chapter 4 are based on the principle 

of mass conservation. A good way to verify if the model is correct is to track the 

amount of resin present in the system during the process. During phase 1, resin is 

injected in the system; therefore the focus will be made on the two following phases as 

the injection is closed at the end of the first phase. 

At the end of each time step, the amount of resin is computed using 

Eq.(5.41) and summing the calculated amount over all the elements. As explained in 
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section 5.1.3.3, the entire control volume is filled as soon as the associated node is 

assigned a positive pressure. The size of this control volume, however, will change 

during time as it gets compressed. As a result, one will notice an abrupt change in 

resin volume as soon as a node gets filled and a decrease of this volume until another 

node is filled. The accuracy of the resin computation will then increase as the mesh 

gets finer. Figure 5-9 and Figure 5-10 show the difference in volume accuracy through 

the entire CRTM process. 

As mentioned in the previous section, the other source of resin loss can be 

attributed to the approximation in the derivative computation, leading to a flow front 

progressing slower than the reality. 
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Figure 5-9 Amount of resin present in the system during the process (Nel=450 

elements) 
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Figure 5-10 Amount of resin present in the system during the process (Nel=1250 

elements) 

5.2.3 Comparison using the software LIMS 

LIMS (Liquid Injection Molding Simulation) is a software that simulates 

the filling stage of RTM and related processes by modeling the flow through a porous 

media using the finite element method [33, 38]. Previous work modeling the CRTM 

process has been done using this software [5, 6, 39]. The flow during the first phase of 

CRTM can be approximated as a VARTM flow using a highly permeable distribution 

media. This assumption will be used to validate our model by comparing our results to 

the results generated by LIMS. The fabric will be assumed to be rigid with a gap on 

top of it. A fixed amount of resin is injected into the system, the filling time and flow 

front position are recorded when all the resin has penetrated into the system 

(preform+gap). The input parameters are listed in Table 5-3 and the results are shown 

in Figure 5-11 and Figure 5-12. The final filling times were tfill=3.18344 s for LIMS 

versus tfill=3.1740s for our model. 
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Table 5-3 Input parameters in the first phase validation 

H L Hgap Vol 
1 cm 25 cm 1 mm 0.001 m3 
 
 
 

 

Figure 5-11 Pressure distribution computed with LIMS at the end of the first 

phase 
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Figure 5-12 Pressure distribution computed with our model at the end of the first 

phase 

 
 
 

5.3 Case study 

The filling of an initial part of rectangular shape is modeled. The target 

dimensions of the part are known. The initial part will be submitted to the CRTM 

process model, the flow front position as well as the part thickness at the end of each 

phase will be recorded and is presented in Figure 5-13, Figure 5-14 and Figure 5-15 in 

their non dimensional form. Table 5-4 lists the input parameters for the model. 
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Table 5-4 Input parameters for the CRTM model 

Preform initial properties 

Initial thickness 1 cm 
Initial length 25 cm 
In plane permeability 
number 

2.10-10 m2 

through thickness 
permeability 

2.10-12 m2 

Young’s modulus 15.105 Pa 
Initial fiber volume fraction 0.2 
Damping factor c 3 

Preform final properties Final thickness 7 mm 

Process parameters 

Gap size 3 mm 
Injection pressure 1.105 Pa 
Compaction force 1.7.105 N 
Ramping factor R 0.1 
Fluid viscosity 0.3 Pa.s 

 
 
 

 

Figure 5-13 Flow front position a) and pressure distribution b) at the end of the 

first phase 
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Figure 5-14 Flow front position a) and pressure distribution b) at the end of the 

second phase 

 

Figure 5-15 Flow front position a) and pressure distribution b) at the end of the 

third phase 
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Chapter 6 

PARAMETRIC STUDY 

The material properties and the final geometry are usually defined by the 

desired mechanical properties, hence only the influence of the parameters related to the 

injection pressure (δ1), the applied force (δ2) and the initial gap size (γ) is investigated. 

6.1 Influence of initial gap size γ 

In order to study the influence of γ on the flow front development and the 

preform compaction, several numerical experiments were conducted in which the 

value of γ was varied while the other two process parameters were held constant 

(δ1=0.0667, δ2=0.467) and so were the material parameters (vf0=0.2 and α=0.04). 

However, the non dimensional number relating the gap permeability to the preform 

permeability β will change as γ changes. The preform permeability being unchanged, 

the characteristic time will stay the same. Figure 6-1 details the impact of the gap size 

on the time taken by the process to achieve the final dimension. 

The gap size also influences the geometry of the flow. Indeed, the gap 

permeability is a function of the gap thickness. Therefore, the fluid will flow 

principally in the gap for large gaps and will flow more and more into the preform as 

the gap size reduces. Figure 6-2 shows the flow front geometry after the first phase of 

injection for different γ values. 
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Figure 6-1 Influence of γ on the total filling time (δ1=0.0667, δ2=0.467) 

 

Figure 6-2 Flow front shape after the first phase for different values of γ 

(δ1=0.0667), here x=0 is the symmetry plane 
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The increase of the gap size has a great impact on the filling time only if γ 

is relatively limited. For larger gap sizes values, an increase of γ will not improve the 

fill time by much.  

To explain the improvement of the process time for limited gap sizes; one 

has to recall the geometry of the part. Indeed, the part is long and thin (H=1cm, 

L=25cm). If the gap is large (γ is small), the flow will be close to a one dimensional 

flow in the y direction (Figure 6-2). The part being thin, the fluid will fill the mold in a 

relatively short time. When the gap is small (large values of γ), the resin flow will 

quickly reach the bottom of the mold under the injection gate (Figure 6-2). The resin 

has then to impregnate the remaining preform region along the length to complete the 

filling. The time it takes to do this will be much larger than the time it takes to reach 

the bottom of the mold by travelling only vertically. 

For large gap sizes (γ≤2.5), a decrease of γ will not have a great impact on 

the total filling time. For such large gaps, at the end of the first phase, the gap will not 

be entirely filled. When the phase two initiates, as the gap closes, the resin will be 

principally driven in the gap direction. When the resin reaches the end of the gap, a 

limited amount of resin will have penetrated the preform. This state is not that 

different than if one started with a smaller gap size. A larger gap size requires one to 

drive the resin to fill the gap. Hence although phase 1 time is reduced for large gaps, it 

will increase the phase two time. 

6.2 Influence of applied load δ 

The applied force or injection pressure has an impact on the compaction of 

the preform and therefore the permeability of the preform. An increase of the force (or 

injection pressure) will decrease the fill time; however, the improvement due to this 
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increase might not be worth the increase in tooling cost. To investigate this impact, the 

material parameters (vf0=0.2 and α=0.04) were kept constant and γ was chosen such 

that the gap size provides a reasonable injection time. Figure 6-3 and Figure 6-4 detail 

the impact of the delta parameter on the fill time of phase one and the entire process 

respectively. 
 
 
 

 

Figure 6-3 Influence of δ1 on the phase 1 fill time (γ=10) 
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Figure 6-4 Influence of δ2 on the process fill time (δ1=0.0667 and γ=2.5) 

 
 
 

The resulting overall behavior is the same for the variation of δ1 and δ2. 

The same analysis will be conducted for δ1 and δ2; a common number δ will then be 

used. Initially, increasing δ significantly lowers the fill time. However with further 

increase, its influence on the fill time improvement decreases relative to the increase 

of the force or pressure, and consequently, the tooling cost. As explained in section 

7.2.5, one can define a δoptimal value that will quantify the diminishing returns. In this 

study, δoptimal can be set as the lowest value of δ satisfying,  

 
( )
( )
2

2
phase optimal

phase optimal

t

t

δ

δ
〉  (6.1) 

This means that doubling the applied force/injection pressure will half the phase time. 
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Chapter 7 

LIMITING CASES 

As seen in chapter 6, that the process parameters β which measures the 

influence of gap to through plane permeability and γ which is the ratio of the initial 

thickness to the initial gap can influence the geometry of the flow development. 

Higher value of β and lower value of γ will fill the gap preferentially before 

impregnating the preform. Once the entire gap is filled, the fluid will flow uniformly 

across the length in the thickness direction. Thus for this limiting case, the flow can be 

simplified to a unidirectional flow through the thickness of the preform as shown in 

Figure 7-1. 

On the other hand, if the aspect ratio of the part α is significantly small 

(α<1.10-3) or if the ratio of the initial thickness to the initial gap thickness is limited 

(γ≥10), the flow during phase 1 and 2 will be two dimensional until it reaches the 

bottom of the mold. Then, the flow front will start equalizing along the thickness of 

the preform and become vertical (Figure 7-2). 
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Figure 7-1 Uniform one dimensional flow through the thickness at the end of the 

first phase (β=1070, γ=2.5) 

 
 
 

 

Figure 7-2 Flow front development during phase 1 and 2 for limited values of β 

and α 
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Therefore, the last phase can be approximated as a one dimensional flow 

front progression in the in plane direction. Figure 7-3 shows the flow development 

computed by the two dimensional model at the end of the second phase in such case. 
 
 
 

 

Figure 7-3 Result of the two dimensional flow model for α limited and γ large 

(Hgap=1mm) 

 
 
 

In these two limiting cases, the two dimensional flow can be simplified 

into a dimensional flow. This will simplify the solution and allow one to study the 
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influence of various parameters. This chapter will detail the solution of these limiting 

cases, validate them with experiments and conduct parametric studies. 

7.1 One dimensional flow through the thickness 

7.1.1 Problem statement and assumptions 

The goal of this section is to predict the compression of the fabric and the 

impregnation of the resin into the preform as the mold platen pushes the resin into the 

preform under a prescribed force (Figure 7-4). A parametric study will identify the role 

of the applied force on the resin impregnation dynamics. 
 
 
 

 

Figure 7-4 Schematic of the second phase of the CRTM process in which the resin 

impregnates the preform simultaneously compressing the preform 

even before the mold platen touches the preform. 
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If the injection pressure during phase one is limited, the pressure 

compacting the preform is small and one can neglect its deformation during phase one. 

It is also assumed that the gap permeability is significantly higher than the preform 

permeability which can be easily justified. This assumption ensures that the entire gap 

will be filled before any impregnation into the preform provided that the volume of 

resin injected is at least equal to the gap volume.  

In phase one of the process, the gap volume is set slightly smaller than the 

injected resin volume. Thus, the gap will be fully filled and some resin will also 

impregnate the preform, as shown in Figure 7-4. We assume that a linear pressure 

gradient exists in the filled region of the preform before the initiation of phase two as 

the magnitude of this initial pressure is small and the depth of penetration is only a 

fraction of initial preform thickness. As the resin covers the entire surface of the 

preform uniformly in the first phase and the platen moves in the thickness direction 

when it closes the gap, one can assume a one dimensional flow through the thickness 

(see Figure 7-5). 

Other assumptions are as follows: 

(i) Due to the visco-elastic behavior of the dry preform and the high closing 

speeds involved, the dry part of the preform will be assumed to be stiff 

[23]. Concerning the lubricated part of the preform, its visco-elasticity will 

be neglected (fiber volume fraction depends only on the applied stress). 

This applies only to the preform deformation. The system will still behave 

visco-elastically as the necessary fluid transfer governed by Darcy law still 

dampens the deformation. 

(ii) We assume that the flow follows Darcy’s law and as the Reynold’s number 
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is much less than one, we can assume it to be quasi-steady. This allows us 

to solve for the steady state problem at each time step. 

7.1.2 Governing equations 

To model the process, two “separate” equations governing the pressure 

distribution through the domain and the progression of the flow front need to be 

formulated. 
 
 
 

 

Figure 7-5 Schematic of the initial condition used in the model 

 
 
 

The applied force is recast as applied pressure as the area on which the force acts does 

not change during the compression process. The two parameters are related in the 

following way, 

 
ap

F
P =

A
 (7.1) 
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Where Pap is the pressure resulting from the applied force F over the preform area A. 

The distribution of the fluid pressures p through the domain can be described using 

Darcy’s law [19-21] coupled to the mass conservation due to the compaction of the 

elements by the fluid. At each time step, one finds  

 . p =
η t

ε  ∂
∇ − ∇ − 

∂ 

K
 (7.2) 

where ε is the strain. The rigorous evaluation of the deformation field requires a 

known stress-strain relation in both the wet and the dry fibrous preform. For modest 

deformations, one can use the infinitesimal strain which yields the following model to 

describe the rate of change of strain in the preform as  

 f 0 f

2

f

v vε
=

t v t

∂∂
−

∂ ∂
 (7.3) 

where vf0 is the initial fiber volume fraction of the fabric.  

The derivative with respect to time of fiber volume fraction in Eq. (7.3) can be 

rewritten as function of compaction pressure ppref (compaction stress experienced by 

the fiber preforms) as follows, 

 f f pref

pref

v v p

t p t

∂ ∂ ∂
=

∂ ∂ ∂
 (7.4) 

which when substituted in eq. (7.3) results in, 

 f 0 f pref

2

f pref

v v pε
=

t v p t

∂ ∂∂
−

∂ ∂ ∂
 (7.5) 

Similarly one can express the change in permeability of the preform in the through 

thickness direction, Kzz with respect to change in the thickness direction as follows 
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 yy yy f pref

f pref

K K v p

y v p y

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
 (7.6) 

Using Eq. (7.2) to describe the resin flow in the z direction and substituting Eqs. (7.5) 

and (7.6) in Eq. (7.2)  results in the following governing equation, 

 
2

2

1 yy f pref yy f 0 f pref

2

f pref f pref

K v p K v v pp p
=

η v p y y η y v p t

∂ ∂ ∂ ∂ ∂∂ ∂
+ −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (7.7) 

Equation (7.7) is a general expression which can incorporate any form of constitutive 

equations to describe (i) the change in fiber volume fraction fv  as a function of ppref 

and (ii) change in preform permeability Kyy as a function of fv . 

To determine the flow front position, the flow front advancement is computed from 

the averaged velocity provided by the Darcy's law at the flow front position: 

 
( )
( )

p

yy pp

p
y=L

K y = LL p
=

t yη y = Lφ

∂  ∂
−  

∂ ∂ 
 (7.8) 

where L is the depth of penetration of the fluid into the preform relative to the upper 

surface of the preform and )1( fv−=φ  is the porosity of the fabric. 

7.1.3 Constitutive equations 

One must consider the stress-strain relationship in lubricated preforms to 

develop the relationship between ppref and
f

v . A significant number of compaction 

models that propose various forms of such a constitutive equation have been published 

through the years [14, 24, 27, 29, 40-43]. As explained in chapter 3,we selected the 

following relationship between vf and the applied stress ppref, [31] 

 ( ) tanh prefn

f f0 fmax f0

pref max

p
v = v + v v

p m

 
−   

 
 (7.9) 
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One also needs a constitutive equation to describe the permeability as a function of the 

fabric fiber volume fraction fv . One could use one of the many available in the 

literature, we selected the Kozeny-Carman [19, 20, 34] relation to describe this 

change. The Kozeny-Carman equation did provide a reasonable fit for the fiber volume 

fractions  of our fabric with ko=2.7x10-12 m2. 

 ( )
( )

3

2

1
f

yy f yy

f

v
K v = ko

v

−
 (7.10) 

7.1.4 Non dimensional analysis 

In order to identify the key parameters, a non dimensional analysis was 

carried out where dependent and independent variables have been selected. 

Using the non dimensionalization variables from Table 4-1, one can write the non 

dimensional form of Eq. (7.7) as, 

 
2 2

2
2 2

0

ˆ ˆ ˆ ˆˆ
ˆˆ ˆ ˆ ˆ

yy ap c yy f f

f yy

f f pref pref

ko P t K v vp p p
v + K =

v η H v p y y t p

 ∂ ∂ ∂ ∂ ∂ ∂
 −   ∂ ∂ ∂ ∂ ∂ ∂  

 (7.11) 

One can choose the value of tc in such a way as to make the value of the coefficient on 

the left hand side equal to unity, hence 

 
2

0f

c

yy ap

v η H
t =

ko P
 (7.12) 

Interestingly, this value represents twice the time to fill a cavity between two plates 

separated by a distance H, filled by porous material of permeability ko with a fluid of 

viscosity η when injected with a constant injection pressure equal to Pap with no 

preform deformation. As such, it provides a reasonable first order estimate of the 

filling time. 
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Substituting eq. (7.12) into eq. (7.11) and applying Terzaghi’s relation [22] to express 

the deformation as function of fluid pressure, 

 
2 2

2
2

ˆˆ ˆ ˆˆ
ˆˆ ˆ

yy

f yy

f

Kp p p
v K ' + =

y v ' y t

  ∂ ∂ ∂
 −   ∂ ∂ ∂  

 (7.13) 

where, 
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2 3

3

ˆ 3 1 2 1
ˆ f f fyy
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f f

v v vK
K ' =

v v

− − − −∂
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∂
 (7.14) 

and 

( ) 1

max 0 2
ˆ ˆ

1 tanh tanh
ˆ

n

f f apf pref ap pref ap

f

pref max max max

v v nPv p P p P
v ' = +

p m P m P m P

−
−   ∂    

=        ∂      
 (7.15) 

Using the non dimensionalization variables from Table 4-1 and substituting Eq. (7.12), 

the dimensionless version of Eq. (7.8) is, 

 
( )
( )

0
ˆˆ ˆ

ˆ ˆ
p

yy p fp

p y=L

K y = L vL p
=

t yy = Lφ

∂  ∂
−  

∂ ∂ 
 (7.16) 

Where the subscript y=Lp represents the values at flow front position. 

7.1.5 Numerical solution 

As equation (7.13) is non linear, we will use a finite differences scheme 

with fluid pressure at each node as our primary variable for the calculations. As the 

resin progresses in the preform only in the transverse through thickness direction, one 

can increase the size of the domain at each time step to accommodate this moving 

resin boundary. The element size will increase as well.  

To solve Eqs. (7.13) and (7.16), we use the finite differences scheme. The derivatives 

are discretized as follows,  
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The previous expressions are substituted into eq. (7.13) and its finite differences form 

becomes, 

 

2 1 1 1 1 1
2 1 1 1 1

2

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2ˆ
ˆˆ ˆ2

t t t+ t+ t+ t+ t+

i+ i i+ i i i izz
f yy

f

p p p + p p p pK
v K ' + =

∆y v ' ∆y ∆t

− −
    − − −
 −         

 (7.20) 

The secondary unknowns (fiber volume fraction, permeability and their derivatives) 

are computed for ˆ t

ip . Note that the first order differentiation raised to square is 

expressed at the time t while the second derivative with respect to y is at t+1. The 

motivation of this choice is to restrict the solution technique to a semi-implicit 

scheme. The system should be more stable than the fully explicit one without dealing 

with the complex formulation and iteration difficulties encountered in fully implicit 

schemes. 

By sorting the pressures at time t and t+1 and by grouping the coefficients by the 

individual nodal values one finds, 

 ( ) ( )
2 1 1 1
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where, 
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This equation is valid for every internal node i. At boundaries i=0 and i=iL, one apply 

the following boundary conditions, 

 ( )ˆ 0 1p y = =  (7.23) 

 ( )ˆˆ 0
p

p y L= =  (7.24) 

 

The best way to solve this system of equations is to express it as a matrix including 

every space step, 
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 (7.25) 

For the initial pressure distribution, we assume that some fluid penetration has 

occurred during phase 1; it involves a linear pressure distribution over its length. 
 

Substituting discretized derivatives into equation (7.16), 
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where, 
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( )
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32

1

1

fap f0

fap
f0

v v
=

v v
ξ

−
−

−
 (7.27) 

vfap is the fiber volume fraction corresponding to a applied pressure of Pap without any 

fluid pressure. 
 

To solve the problem, the new domain is determined by solving eq. (7.26) at each time 

step. The new mesh over this domain is then generated and pressures are solved using 

equation (7.25). 
 

In order to compute the deformation of the preform occurring during the 

process, the fluid pressure at each node is converted into a strain. To do so, Terzaghi’s 

relation [22] is used to obtain the stress in the preform ppref from the fluid pressure p. 

Once ppref is known, the corresponding fiber volume fraction of each element is known 

by averaging the stresses at the two neighboring nodes and by applying Eq.(7.9). One 

needs then to integrate with respect to time the infinitesimal stress strain relation given 

by Eq.(7.3)  

 0 1f

f

v

v
ε = −  (7.28) 

The strain is calculated for each element. The sum of all the infinitesimal deformations 

over the domain will give the global deformation. 

7.1.6 Experimental validation 

In order to validate the one dimensional solution, an experimental setup 

using constant applied pressure was developed. The setup consists of a semi-circular 
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cavity with a glass wall for the straight edge. This allows us to observe the evolution 

of the key components (flow front, preform top, molds) during the process of CRTM. 

A plate of similar shape is used as the top plate. The mold and plate form a male 

female combination. In this setup, the bottom mold moves vertically up and the upper 

plate is stationary. The movement of the mold is achieved by placing the mold on an 

inflatable rubber tube. This rubber tube is attached to a pressure bucket containing 

water. By injecting the water into the rubber tube at constant pressure, the lower part 

of the mold is pushed upwards with constant force (Figure 7-6). 
 
 
 

 

Figure 7-6 One dimensional phase two experimental setup 
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A series of 5 experiments have been conducted with E-glass woven fabric 

24 oz as a reference material due to its very small variability in its properties. The 

initial thickness as well as the initial weight, number of layers and resin viscosity were 

measured for each experiment. For each experiment, 15 layers of woven E-glass were 

placed into the mold. The gap was set to 4mm. Dyed corn syrup was injected using a 

syringe to cover the entire surface and fill the gap. Viscosity of the fluid was about 

0.4Pa.s at room temperature. The final filling time and deformation were recorded 

until the preform came in contact with the tooling. The same parameters have been set 

as inputs in the simulation. The experimental results and the simulation outputs are 

compared (filling time (Figure 7-7) and final thickness (Figure 7-8)). 

In Figure 7-7, the model errors bars represent the variability in filling time 

due to the variability of the measured permeability while the experiment errors bars 

represent the inaccuracy of the contact time determination. Similarly, in Figure 7-8, the 

model error bars represent the variability in deformation due to the compaction 

behavior while the experiment error bars represent the inaccuracy of the contact 

position measurement. 
 
 
 



 104

 

Figure 7-7 Prediction of normalized deformation (H=15mm) and its comparison 

with experimental results for 24 oz. E-glass fabric 

 

Figure 7-8 Prediction of normalized fill time (tc=2.014s) and its comparison with 

experimental results for 24 oz. E-glass fabric 
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7.1.7 Parametric study 

From Eq. (7.13) and (7.16), we can identify four parameters that do 

influence the flow front and the compaction of the preform. They are listed in Table 

7-1 along with their physical significance. 
 
 
 

Table 7-1 Non dimensional parameters in the one dimensional limiting phase 2 

case 

Non-dimensional 
parameter 

Physical Significance 

maxP

P
=

ap
Ω  Ratio of available stress and maximum stress to compact 

the preform  

n, m 
Parameters describing the preform compaction as a 
function of fiber volume fraction 

vf0 Initial fiber volume fraction 

0max ff vv −=Γ  Preform compliance 

 
 
 

The material properties and the final geometry being usually fixed by the 

mechanical properties desired, only the influence of Ω will be studied.  

In order to identify the role of Ω, several numerical experiments varying 

the applied force while maintaining the material properties (Γ=0.3, vf0=0.3, n=0.45, 

m=0.86) constant were carried out. The impact of this variation on the two outputs: 

deformation and filling time is shown in Figure 7-9 and Figure 7-10. Final thickness, 

hfinal, is non dimensionalized with respect to the initial thickness H. The fill time will 

not be non dimensionalized as the characteristic time is a function of the applied 

pressure. The gap size is fixed and different amounts of forces are applied on the resin 
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on top of the preform in order to squeeze it into the material. The filling time and final 

deformation are recorded when all the resin has penetrated the preform (calculated for 

vffinal=0.45 at the end of the process). 
 
 
 

 

Figure 7-9 Influence of non-dimensional parameter Ω (ratio of available stress to 

maximum possible) on the final deformation 
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Figure 7-10 Influence of non-dimensional parameter Ω (ratio of available stress 

to maximum possible) on the filling time 

 
 
 

Initially, increasing Ω increases the compaction of the fabric and more 

importantly significantly lowers the fill time. However with further increase, its 

influence on the fill time improvement decreases relative to the increase of the force, 

and consequently, the tooling cost. However, the overall improvement of the process 

will also depend on the last phase. This behavior has already been observed in CRTM 

when a prescribed force is applied to a saturated preform and pushes the fluid 

horizontally [31]. Therefore, there exists an optimal applied force that will improve 

significantly the process fill time without overly increasing the tooling cost. Beyond 

this point (which needs to be set on a case-by-case basis) further marginal 

improvement is still possible but it is not economical.  
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Another way to decrease the fill time of the second phase is to increase the 

initial depth of penetration of the fluid. This will decrease the gap size and therefore 

decrease the amount of resin to squeeze into the preform during phase two. As the 

final deformation is calculated using the final depth of penetration (which depends on 

the total volume of resin), the final thickness will be unchanged. However, the gain in 

time made in phase two will be offset by the increase in time required to complete 

phase one as one must inject the resin into the preform further in phase one under low 

pressure. 

7.2 In plane one dimensional flow 

Assuming that the part is long and thin and the permeability anisotropy is 

limited, it was demonstrated that the resin could saturate the preform through the 

thickness near the inlet once the platen comes in contact with the preform as shown in 

Figure 7-3 [18]. If this occurs, and as the mold platen compresses the preform, the 

flow front can only advance uniformly in the plane as shown in the schematic in 

Figure 7-11. The in-plane flow of resin during the compression of the partially 

impregnated preform is of utmost interest, as the resin moves slowest, or requires 

highest driving loads. To simplify the analysis, we assume that the part is long and 

slender ([1-3]) and thus the resin flows in x-direction only (see Figure 7-11). This 

limits the analysis to one dimensional flow and allows one to identify important 

process and material parameters. Previous work [13-15] has addressed this situation 

when the upper platen is compressing the preform with constant speed in which case 

the preform deformation is explicitly known. In this section, we will address the other 

important situation in which the preform is compressed under controlled force and 
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preform deformation needs to be evaluated along with the resin pressure to find the 

location of the flow front with time. 
 
 
 

 

Figure 7-11 One dimensional flow of a partially impregnated preform (Due to 

symmetry only one half of the mold will be analyzed). 

 
 
 

7.2.1 Problem statement and assumptions 

In the following, we will simplify and model the final stage of the CRTM 

phase. The mold is in uniform contact with the preform, the initial location of the 

uniform flow front across the thickness in the partially impregnated preform is at L0 as 

shown in Figure 7-11. As the initial thickness of the fabric when the mold makes 

contact, H, is known one can calculate the initial fiber volume fraction from the mass 
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and density of the preform material. The top mold platen under applied constant force 

compresses the preform which forces the resin to advance in the horizontal direction to 

saturate the dry preform. Due to the movement of the top platen, the preform thickness 

decreases, its fiber volume fraction increases and the compressive stress experienced 

by the fabric increases appropriately. The process is stopped when the flow front 

reaches the end of the mold and the preform is fully saturated. The resin will not 

entirely fill the preform if the applied force on the platen is smaller or equal to the 

force required to compact the fabric to the projected fiber volume fraction. In such 

situations, the force exhibited by the fabric will halt the movement of the upper mold 

platen prematurely. Otherwise, the flow front will progress until the entire preform is 

saturated. The goal of this study is to relate the transient flow progression with the 

known transient force applied on the mold. Practically, this will be used to determine 

the force required to ensure that the resin does reach the mold end within a certain 

amount of time as a function of the fabric compliance and the initial flow front 

position. 

Other assumptions are made as follows: 

(i) The mold is in direct contact with the wet and the dry parts of the fabric. When 

the fabric is compacted, we assume that the compaction behavior is the 

same in dry or wet preform. A different behavior for the dry part can 

however be easily added by separating the dry and wet areas during the 

stress integration. 

(ii) We assume that the flow follows Darcy’s law and the quasi-steady solution 

technique applies. This assumption is justified and validated. 
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7.2.2 Governing equations 

The governing equation can be formulated by combining Darcy’s law [19-

21] in the x direction with the mass conservation due the movement of the upper 

platen at each time step as follows 

 
( ) ( ) ( )

( )

2

2

xx f
K v p x,t h t

=
η x h t

∂

∂

�

 (7.29) 

where Kxx is the fabric permeability in the horizontal x- direction, η is the fluid 

viscosity, vf is the fabric fiber volume fraction, p is the fluid pressure and h is the 

instantaneous preform thickness. Note that here the permeability of the fabric will 

reduce as the fiber volume fraction increases due to compression and that ( )th�  denotes 

h
t

∂
∂

 and is not known apriori since the control is asserted over the applied force, not 

displacement. One can solve for the pressure field at a given instant in time inside the 

mold by applying the following two boundary conditions at the inlet (symmetry 

boundary condition) and at the flow front location (which is still unknown) 

0
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x
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 and ( )( ) 0fp x = L t =  

Thus, the resin pressure at a given time can be explicitly calculated as follows  
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 (7.30) 

Now the total force, ( )tF  per unit width at any time t acting on the platen is equal to 

the sum of the force exerted by the resin and the fabric according to Terzaghi’s relation 

[22]. Thus, 
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( ) ( )

0 0 ( )
,

f f

f

L t L t L
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L t

F t = p x t dx p t dx p t dx+ +∫ ∫ ∫  (7.31) 
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Here 
pref

p  and 
pref dry

p denote the compressive stress experienced by the saturated and 

dry parts of the fabric due to compression and must be separately characterized for 

each fabric as a function of deformation. To simplify the derivation, both dry and 

saturated fabrics are set to behave the same way under compression. In this case 

Equation (7.31) becomes, 

 ( ) ( ) ( )
( )

0 0
,

fL t L

pref
F t = p x t dx p t dx+∫ ∫  (7.32) 

 Substituting Eq. (7.30) in (7.32) and integrating the first term results in 
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Mathematically one can express the mass conservation inside the filled part of the 

preform as follows 

 ( ) 0
f f f f

L h = L h L h L h
t

φ φ φ φ
∂

= + +
∂

���  (7.34) 

where φ is the porosity in the mold and the dot represents the derivative with respect to 

time. The volume conservation of the fabric inside the mold allows us to write the 

following equation 

 ( )1fhv h = constantφ= −  (7.35) 

Taking the time derivative and rearranging equation (7.35) allows one to find an 

expression for φ� , which is 
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Substituting Eq. (7.36) into Eq. (7.34) and rearranging leads to, 
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Rewriting Eq. (7.36) in terms of fv  results in 

 ( ) ( )( ) ( ) ( ) ( ) ( ) 0
f f f

v t h t = v t h t +v t h t =
t

∂

∂
��  (7.38) 

which allows one to relate Lf to fv  by substituting equation (7.38) and (7.37) into 

equation (7.34), 
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One can solve the ordinary differential equation (7.39) by applying the following 

boundary conditions,  

( )0
0f fL = L and ( )

0
0 ff v=v  

The result relates the current fiber volume fraction of the preform in the mold to the 

location of the flow front at that instant in time as follows 
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 (7.40) 

By substituting equation (7.40) in Eq. (7.30) and Eq. (7.33), we can eliminate the 

transient fiber volume fraction from the expressions for the resin pressure and the 

applied force per unit width at any instant in time 
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and 
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Equations (7.41) and (7.42) are general expressions which can incorporate 

any constitutive equation one selects to describe the change in fiber volume fraction vf, 

and preform permeability, Kxx, as a function of ppref. As explained in chapter 3, the 

hyperbolic tangent model (3.8) as well as the Kozeny Carman relation (3.12) will be 

used in this study. 

By substituting the constitutive models (Eq. (3.12) for permeability and 

compaction Eq. (3.8)) in equation (7.42), the final governing equation that predicts the 

location of the flow front as a function of the applied force F per unit width is 
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 (7.43) 

The ODE (7.43) is not separable and an analytic solution for this ordinary differential 

equation is non-trivial. However, when F is constant, one can separate Eq.(7.43), 
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Eq. (7.44) can be numerically integrated and one finds, 
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If F is not constant, we use the finite difference explicit scheme to convert it to an 

algebraic form 
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 (7.46) 

As F is known (and constant in the following studies), Eq. (7.46) provides the value of 

L at time t+1, as all terms on the left hand side are known at time t and are functions of 

material parameters which stem from permeability and compaction characterization of 

the fabric and the viscosity of the resin injected. 

To validate the numerical solution, F is set as constant and the two 

approaches are compared. The results are identical verifying the finite difference code. 
 

Finally, the thickness obtained at the end of the process is calculated by 

relating the final flow front position with the final fiber volume fraction using equation 

(7.40). Final fiber volume fraction is then related to final thickness by the following 

relation, 

 0f

ffinal

Hv
h

v
=  (7.47) 
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7.2.3 Non dimensional Analysis 

Non-dimensional analysis was carried out to identify the important process 

and material parameters that influence the filling process. Independent and dependent 

variables in Equation (7.43) were non-dimensionalized as follows 

 ˆ f

f

L
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L
 (7.48) 
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 (7.49) 

 ˆ
c

t
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t
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Where totL  is the total length of the preform to be impregnated, maxF is the maximum 

force per unit width available and tc is the characteristic time, specified below. One 

can recast equation (7.43) in non-dimensional form as follows, 

( ) ( ) ( )
( )

( )

0

01

4 4
max max 0 max 00

0

1

ˆ1 1 1 1
tanh

ˆ ˆ ˆ1 1
1

ˆ

pref max f f

f f f ff f f f

f f

n

Lp m v L t
=

F v v v v tL t L t L v

Lv L t

−

 
   
   
   ∂ 

+ −   
− − ∂−   +   

    
 

 (7.51) 

With the characteristic time tc being equal to 
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The number Lf0/L is a function of the other non dimensional parameters. They are 

related in the following way, 
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Where vffinal is the fiber volume fraction of the part obtained at the end of the process. 

Substituting eq. (3.8) in equation (7.53), 
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Reformulating eq.(7.51), 
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(7.55) 

7.2.4 Experimental validation 

Before we non-dimensionalize the equation and conduct a parametric 

study to quantify the influence of the various parameters on the filling time, we carried 

out experiments to validate the one dimensional solution formulated above. The intent 

was to gage the validity of our assumptions in the model and to study the sensitivity of 

the material parameters on the results. An experimental setup which provides constant 

applied pressure which translates into constant applied force was developed. The setup 

consists of a rectangular cavity with a transparent wall on one side. This allows us to 

observe the evolution of the key components (flow front, preform compression, etc.) 

during the process. A plate of similar shape as the mold is used as the top plate. The 

mold and plate form a male female combination. In this setup, the bottom mold moves 



 118

vertically up and the upper plate is stationary. The movement of the mold is achieved 

by placing an air spring under the bottom platen. This air spring is attached to a 

pressurized air line. The complete setup is showed in Figure 7-12. 

A total of 9 experiments were conducted using E-glass woven fabric 24 

oz. The initial thickness as well as the initial weight, number of layer and resin 

viscosity were measured before initiating each experiment. For each experiment, dyed 

corn syrup was used as the resin and was injected under a pressure of 15 psi. A total of 

10 layers of woven E-glass were placed in the mold. The initial length of penetration 

(L0) of the resin was varied from 10 to 16 cm. Viscosity of the fluid varied between 

0.08 and 0.17 Pa.s depending on the room temperature and the fluid. The applied force 

was 18kN. The final flow front position was measured along with the final thickness 

of the part. The same parameters were set as inputs in the simulation and the results 

were compared in Figure 7-13 and Figure 7-14. The characteristic times for each 

experiment are listed in Table 7-2. 
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Figure 7-12 Experimental setup used to compress the partially filled preform 

under constant applied force 

 
 
 

Table 7-2 Characteristic times used in the normalization of the filling times 

tc1(s) tc2(s) tc3(s) tc4(s) tc5(s) tc6(s) tc7(s) tc8(s) tc9(s) 
86.1 122 122 195.6 181.4 181.4 330.6 330.6 294 
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Figure 7-13 Prediction of normalized fill time and its comparison with 

experimental results for 24 oz. E-glass fabric 

 

Figure 7-14 Prediction of normalized deformation (H=10mm) and its comparison 

with experimental results for 24 oz. E-glass fabric 
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From the above results, one can conclude that the model assumptions are 

reasonable. However, to reduce the error in the filling time, one will need a more 

accurate material characterization for permeability description. 

7.2.5 Process feasibility and optimization 

From equation (7.55) we can identify five parameters that influence the 

behavior of the flow front. They are listed in Table 7-3 along with their physical 

explanation. 
 
 
 

Table 7-3 Non dimensional parameters in Eq. (7.55) 

Non-dimensional 
parameter 

Physical Significance 

max

pref maxLp

F
Ω =  

Ratio of maximum compressive force the preform can 
exert and and the available force to compact the 
preform  

n, m 
Shape parameters describing the preform compaction as 
a function of fiber volume fraction 

0fv  Initial fiber volume fraction 

max 0f fv vΓ = −  Compliance of the preform 
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Equation (7.55) can be rewritten as follows, 
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 (7.56) 

The simulation can be run to investigate the effect of the different 

parameters listed in Table 7-3. The material properties and the final geometry being 

usually fixed by the mechanical properties needed to reach the objectives, only the 

influence of Ω will be studied.  
 

The study will focus on: (a) ensuring that the process is feasible and (b) 

finding the necessary applied force to accomplish the process in reasonable time. In 

the later case, compromise is sought between cost of slow compaction (low process 

cycle, reaction inhibitors) and the cost of applying force (press hardware, mold 

manufacturing). 

 

The increase of the applied pressure has a great impact on the filling time 

only when Ω is relatively large (force smaller than the one used in conventional LCM 

processes). From equation (7.43), the applied stress on the platen is used to compact 

the fabric but also to push the fluid through it. According to Terzaghi’s relation, for 

low Ω values, most of the stress is used to push the fluid while a limited part of it 

compacts the preform. This is the opposite for larger Ω where most of the force 
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compacts the preform. This phenomenon can be noticed in Figure 7-15 until Ω reaches 

Ωcritical=7. The Ωcritical corresponds here to the minimal applied force to fill the mold. 
 
 
 

 

Figure 7-15 Influence of the applied force parameter on the non dimensional 

filling time (m=0.8, n=0.6, vf0=0.3, Ψ=0.3) 

 
 
 

Beyond Ω=Ωcritical, all the available stress cannot compress the fabric to 

the desirable fiber volume fraction. Consequently, the resin cannot flow forward and 

fill the mold. 
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For a given initial flow front position, one needs to apply at least a 

minimal force (Ωcritical) to be able to fill the mold. Nevertheless, the fill time 

corresponding to Ω being superior or equal to Ωcritical is infinite. Decreasing Ω 

(increasing force) lowers the fill time. However as one continues to decrease Ω, the fill 

time improvement is disproportionally small compared to the increase of the force, and 

consequently, the tooling cost. Hence one can define a Ωoptimal value that will quantify 

the diminishing returns. In this paper, Ωoptimal is the lowest value of Ω satisfying,  

 
( )
( )
2

2
fill optimal

fill optimal

t

t

Ω
〉

Ω
 (7.57) 

This means that doubling the applied force will half the time to fill the 

part. Here, tfill is the non dimensional fill time. Contour plots are generated in Figure 

7-16 and Figure 7-17 which show the values of Ωcritical and Ωoptimal respectively for 

each combination of vf0 and Γ. vf0 and Γ influence the compaction behavior and hence 

the applied force. If Ω is smaller than the values of Figure 7-17, the benefit from 

decreasing the fill time does not justify the additional cost in terms of higher force 

(which is lowering of Ω). The optimal applied force is mostly dependent on the 

compliance of the preform. The ratio Ωcritical/Ωoptimal is usually the same as the general 

shape of the curve tfill=f(Ω) is the same. 
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Figure 7-16 Values of Ωcritical for different preform properties 

 

Figure 7-17 Values of Ωoptimal for different preform properties 
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Through these two limiting cases of this chapter, it has been shown that 

the flow through the preform can be simplified into a one dimensional problem. The 

problem being much simpler, the computation time will be significantly reduced (from 

12 hours to less than one hour). The two problems have been experimentally verified 

and the model’s predictions are accurate enough considering the variability in material 

permeability. Through a parametric study, it was shown that the applied force 

parameter has an important influence on the process; an increase of this force can 

significantly improve the time to fill for this phase. However, this improvement 

decreases with a further increase of the compression force. 
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Chapter 8 

CONCLUSION AND FUTURE WORK 

In this work, a previous assumption stating that the fabric does not deform 

under a load created by the fluid pressure was found to be not justifiable when the 

preform deformation was measured for a simple case. Therefore, a two dimensional 

flow and compaction model describing the flow during the CRTM process allowing 

the preform to non uniformly deform through the thickness under fluid pressure has 

been formulated and numerically implemented. The resin is injected into the gap using 

constant pressure and the motion of the mold is driven by a prescribed constant force. 

The problem solution predicts the progression of the flow front as well as the part 

thickness during the three phases of the process (injection, gap closing and preform 

compaction). Through a parametric study, an optimal injection pressure, compaction 

pressure and gap size has been highlighted. It was also demonstrated that the gap size 

had an important influence on the flow front development and therefore the filling 

time. Finally, the problem was simplified and two particular one dimensional cases 

reducing the computation time have been formulated. They highlight the behavior of 

the flow front progression in the horizontal direction and in the vertical direction when 

the preform is compacted under prescribed force. Their solution has been validated 

using experiments and it has been shown that the solutions are accurate enough 

considering the variability in material properties. Non dimensional parameters have 

been identified that play an important role in this process. 
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Additional work needs to be done to further advance the analysis of the 

process. An experimental validation of the two dimensional model needs to be 

conducted to verify the assumptions and quantify the improvement compared to the 

previous CRTM simulations. The two terms damping the application of the force (R) 

as well as the preform compaction (C) have to be studied to investigate the stability of 

the system and the impact on the fill time. Moreover, some work remains to make this 

simulation suitable for more complex part manufacturing. The assumption that the dry 

preform can be considered as rigid due to its visco-elastic behavior will have to be 

investigated further. One cannot model this problem as a two dimensional flow if the 

fluid does not cover the entire surface of the preform. Indeed, if the tool is in direct 

contact with the dry preform, the process will stop, the preform being considered as 

undeformable. An adequate compaction model has to be found and implemented into 

the general model. Furthermore, when the part is long and thin, it has been 

demonstrated that the gap closes before reaching the end of the mold, dramatically 

increasing the fill time. To manufacture these parts, a multiple injection gates system 

can be envisioned to improve the filling time and hence the cycle time of the process. 

Hence it is also useful to study the flow when the fluid is injected from multiple 

injection points. Finally, to make the model suitable for complex parts, the governing 

equations will have to be solved using the finite elements method instead of finite 

differences. 
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Appendix A 

P4 FABRIC CHARACTERIZATION 

The model describing the unidirectional flow through the thickness of the 

preform has also been validated using the P4 fabric. The P4 fabric is manufactured by 

Owens Corning Fiber Glass Co. and the term P4 stands for Programmable Powdered 

Preforming Process. It was introduced for automotive industry to form net shapes of a 

composite skeleton at a very high rate of production. The P4 material is made of 

chopped glass fibers binded with a small amount of melted thermoplastic powder. The 

fibers are uniformly distributed using a programmable robot and the whole preform is 

vacuumed into a mold that will give the final shape. We obtained this fabric from Oak 

Ridge National Laboratories [5, 6]. Figure A-1 shows the material surface. 
 
 
 

 

Figure A-1 P4 preform 
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To conduct the validation of the unidirectional flow through the thickness 

of the preform, one has to characterize the compaction behavior as well as the 

permeability of the preform. 

A.1 Compaction behavior 

The response of the fabric to an applied stress has been measured using 

the experimental setup detailed in chapter 3 by Mr. Timo Gebauer from the Center for 

Composite Materials [5]. The experiment was repeated 16 times. The compaction 

response of the fabric is shown in Figure A-2, 
 
 
 

 

Figure A-2 Compaction behavior of the lubricated P4 fabric 
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The letters A,B,C,D represent the location of the sample on a panel of P4 

fabric while the letter P followed by a number represents the fabric panel. The P4 

fabric reveals an important variability in properties (up to 5% of fiber volume fraction 

variation for a given compressive stress). This important variability can be due to the 

distribution of the chopped fibers and binder over the panel. The model will have to 

take into account these changes in behavior. Table A-1 shows the values of the 

compaction parameters used in the model (3.8), 
 
 
 

Table A-1 Compaction model parameters for compaction model of P4 357D-3120 

P4 fabric 305D-3120 
 Low compliance Average High compliance 
n 66 50 40 
m 76 80 97 
vfmax 0.43 0.43 0.43 
vf0 0.2 0.2 0.2 
pprefmax 4.5.105 Pa 4.5.105 Pa 4.5.105 Pa 
 
 
 

A.2 Permeability 

The permeability of the P4 fabric has been measured using the 

experimental setup described in section 3.2. Due to the limited amount of fabric 

available, the experiment has been realized only one time for five different fiber 

volume fractions. The permeability as a function of fiber volume fraction is shown in 

Figure A-3. 
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Figure A-3 permeability values of P4 fabric (357D-3120) at different fiber volume 

fractions 

 
 
 

A curve fit with the Kozeny-Carman relation (3.12) has revealed a value 

of koyy=2.73.10-12 m2. According to the previous measurement, the limited number of 

experiments and the usual variability in permeability measurement for a single 

material, two extreme permeabilities have been introduced. They will be 25% higher 

or lower than the measured permeability. Table A-2 shows the values of the 

permeability parameter used in the validation. 
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Table A-2 Permeability parameter P4 357D-3120 

P4 fabric 305D-3120 

 Low permeability 
Measured 
permeability 

High permeability 

koyy (m
2
) 2.15.10-12 2.87.10-12 3.59.10-1240 
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Appendix B 

VALIDATION OF THE UNIDIRECTIONAL FLOW THROUGH THE 

THICKNESS MODEL USING P4 FABRIC 

The experimental setup used to validate the model with P4 fabric is 

detailed in section 7.1.6. 10 experiments were conducted, the initial thickness as well 

as the initial weight, number of layers and resin viscosity were measured for each 

experiment. For each experiment, 3 layers of P4 fabric were placed into the mold. The 

final filling time as well as the deformation at the end of phase two were recorded. The 

same parameters have been set as inputs in the simulation (fluid viscosity, gap size, 

initial fluid penetration). The experimental results and the simulation outputs are 

compared for filling time (Figure B-1) and for the final thickness (Figure B-2). 
 

In the graphs, the errors bars for the experiment correspond to a reading 

error of about half a millimeter above and half a millimeter below the read value. This 

is due to the fact that we only look at a specific and relatively small location of the 

entire setup. The error bars in the simulation are due to the variability in permeability 

(Figure B-1) and compaction behavior (Figure B-2). 
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Figure B-1 Prediction of fill time and its comparison with experimental results 

for P4 357D-3120 fabric 

 

Figure B-2 Prediction of normalized deformation (H=15mm) and its comparison 

with experimental results for P4 357D-3120 fabric 
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Appendix C 

RADIAL FORMULATION FOR IN PLANE FLOW 

As an alternative problem to the one formulated in section 7.2, one can 

think of a setup using radial injection. The problem can be reduced to a two 

dimensional problem, the resin being at the same position through the thickness and 

assuming that the preform has isotropic properties. As well as the previous section, 

this problem has been solved for pressures kinematically driven [14]. Using polar 

coordinates, one finds that the pressure will not vary with the theta direction (Figure 

C-1). The problem can then be reduced to a one dimensional polar problem. 
 
 
 

 

Figure C-1 Schematic of phase three radial flow 
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Adapting equation (7.29) to this situation, one finds, 
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where Kr is the fabric permeability in the radial direction and η is the fluid viscosity. 

At the flow front r=rf one can use the following boundary conditions ( )( ) 0
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 at the center of the part. The conservation of resin volume during 

the process, 
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One finds, 
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Applying equation (7.40) to equation (C.2), one obtains the followings relationship, 
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The equations describing p and F are then, 
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The final governing equation for the radial flow is obtained by plugging the 

permeability and compaction models, 
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Where kor=koxx in this study. Using the following boundary conditions: 
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As explained in section 7.2.2, if F is constant, a close form solution can be 

found. If F varies with time, the solution is determined using the finite differences 

explicit scheme, 
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The radial resin flow, during the compaction of a circular part will then be 

analyzed. A circular part of radius R is injected with resin until an initial radial depth 

of penetration r0. A force F is applied on top of the preform. Table C-1 represents the 

dimensions and properties of the fabric used as well as the force applied and the fluid 

viscosity. 
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Table C-1 Input parameters for the simulation of the flow through as circular 

porous media 

Radius of the part R 0.1m 
Initial radius of penetration r0 0.06m 
Initial part thickness H 0.0113m 
Initial fiber volume fraction vf0 0.3 

Compaction parameters 
n 0.45 
m 0.86 

Maximal fiber volume 
fraction 

vfmax 0.6 

Maximal applied stress pprefmax 4.5.105Pa 
Permeability number kor 2.10-10Pa 
Applied force F 2.105Pa 
Fluid viscosity η 0.3 
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Figure C-2 Flow front position during the compaction of the preform 



 144

0 0.05 0.1 0.15 0.2 0.25
4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

-3

Time (s)

P
re

fo
rm

 t
h
ic

k
n
e
s
s
 (

m
)

 

Figure C-3 Thickness of the preform during compaction 
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Figure C-4 Fiber volume fraction during the compaction of the preform 


